WorldWideScience

Sample records for river steelhead genetics

  1. Electronic tags and genetics explore variation in migrating steelhead kelts (oncorhynchus mykiss), Ninilchik river, Alaska

    Science.gov (United States)

    Nielsen, J.L.; Turner, S.M.; Zimmerman, C.E.

    2011-01-01

    Acoustic and archival tags examined freshwater and marine migrations of postspawn steelhead kelts (Oncorhynchus mykiss) in the Ninilchik River, Alaska, USA. Postspawn steelhead were captured at a weir in 2002-2005. Scale analysis indicated multiple migratory life histories and spawning behaviors. Acoustic tags were implanted in 99 kelts (2002-2003), and an array of acoustic receivers calculated the average speed of outmigration, timing of saltwater entry, and duration of residency in the vicinity of the river mouth. Ocean migration data were recovered from two archival tags implanted in kelts in 2004 (one male and one female). Archival tags documented seasonal differences in maximum depth and behavior with both fish spending 97% of time at sea <6 m depth (day and night). All study fish were double tagged with passive integrated transponder (PIT) tags implanted in the body cavity. Less than 4% of PIT tags were retained in postspawn steelhead. Molecular genetics demonstrated no significant differences in genetic population structure across years or among spawning life history types, suggesting a genetically panmictic population with highly diverse life history characteristics in the Ninilchik River.

  2. John Day Steelhead - Genetic Monitoring of John Day Steelhead

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Assist Oregon Department of Fish and Wildlife (ODFW) in determining the extent to which genetic introgression exists between Snake River hatchery steelhead straying...

  3. Wenatchee River steelhead reproductive success - Estimate the relative reproductive success of hatchery and wild steelhead in the Wenatchee River, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project uses genetic parentage analysis to estimate the relative reproductive success of hatchery and wild steelhead spawning in the Wenatchee River, WA. The...

  4. Stock Identification of Columbia River Chinook Salmon and Steelhead Trout, 1986 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl B.; Li, Hiran W.; Hjort, Randy C.

    1986-08-01

    For the first time genetic similarities among chinook salmon and among steelhead trout stocks of the Columbia River were determined using a holistic approach including analysis of life history, biochemical, body shape and meristic characters. We examined between year differences for each of the stock characteristics and we also correlated the habitat characteristics with the wild stock characteristics. The most important principle for managing stocks of Columbia River chinook salmon and steelhead trout is that geographically proximal stocks tend to be like each other. Run timing and similarity of the stream systems should be taken into account when managing stocks. There are similarities in the classifications derived for chinook salmon and steelhead trout. Steelhead trout or chinook salmon tend to be genetically similar to other steelhead or chinook stocks, respectively, that originate from natal streams that are geographically close, regardless of time of freshwater entry. The primary exception Lo this trend is between stocks of spring and fall chinook in the upper Columbia River where fish with the different run timings are dissimilar, though geographically proximate stocks within a run form are generally very similar. Spring chinook stocks have stronger affinities to other spring chinook stocks that originate in the same side of the Cascade Range than to these Spring chinook stock: spawned on the other side of the Cascade Range. Spring chinook from west of the Cascades are more closely related to fall chinook than they are to spring chinook from east of the Cascades. Summer chinook can be divided into two main groups: (1) populations in the upper Columbia River that smolt as subyearlings and fall chinook stocks; and (2) summer chinook stocks from the Salmon River, Idaho, which smolt as yearlings and are similar to spring chinook stocks from Idaho. Fall chinook appear to comprise one large diverse group that is not easily subdivided into smaller subgroups. In

  5. Lewis Steelhead Genetics - Lewis River Steelhead Reintroduction

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rainbow trout and steelhead consist of the same species and often inhabit the similar habitat types within the same watershed. Although their life histories differ...

  6. Idaho Steelhead Monitoring and Evaluation Studies : Annual Progress Report 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Timothy; Putnam, Scott

    2008-12-01

    The goal of Idaho Steelhead Monitoring and Evaluation Studies is to collect monitoring data to evaluate wild and natural steelhead populations in the Clearwater and Salmon river drainages. During 2007, intensive population data were collected in Fish Creek (Lochsa River tributary) and Rapid River (Little Salmon River tributary); extensive data were collected in other selected spawning tributaries. Weirs were operated in Fish Creek and Rapid River to estimate adult escapement and to collect samples for age determination and genetic analysis. Snorkel surveys were conducted in Fish Creek, Rapid River, and Boulder Creek (Little Salmon River tributary) to estimate parr density. Screw traps were operated in Fish Creek, Rapid River, Secesh River, and Big Creek to estimate juvenile emigrant abundance, to tag fish for survival estimation, and to collect samples for age determination and genetic analysis. The estimated wild adult steelhead escapement in Fish Creek was 81 fish and in Rapid River was 32 fish. We estimate that juvenile emigration was 24,127 fish from Fish Creek; 5,632 fish from Rapid River; and 43,674 fish from Big Creek. The Secesh trap was pulled for an extended period due to wildfires, so we did not estimate emigrant abundance for that location. In cooperation with Idaho Supplementation Studies, trap tenders PIT tagged 25,618 steelhead juveniles at 18 screw trap sites in the Clearwater and Salmon river drainages. To estimate age composition, 143 adult steelhead and 5,082 juvenile steelhead scale samples were collected. At the time of this report, 114 adult and 1,642 juvenile samples have been aged. Project personnel collected genetic samples from 122 adults and 839 juveniles. We sent 678 genetic samples to the IDFG Eagle Fish Genetics Laboratory for analysis. Water temperature was recorded at 37 locations in the Clearwater and Salmon river drainages.

  7. Iteroparity in Columbia River summer-run steelhead (Oncorhynchus mykiss) : implications for conservation

    International Nuclear Information System (INIS)

    Keefer, M.L.; Boggs, C.T.; Peery, C.A.; Evans, A.F.

    2008-01-01

    This study examined the outmigration environment for steelhead kelts (anadromous rainbow trout, Oncorhynchus mykiss) in the Columbia River Basin, where summer-run kelts must pass up to 9 hydroelectric dams and reservoirs to reach the Pacific Ocean. Such fish passage barriers present many direct and indirect mortality hazards for outmigrating kelts. In some years, kelt migration mortality in the impounded portion of the system can be higher than 95 per cent. Current efforts to improve kelt survival in the Columbia system include increasing iteroparity to take advantage of genetic and demographic benefits of repeat spawners. Some of the basic iteroparity information gaps in the aggregated summer-run steelhead population of the interior Columbia River Basin were addressed in this study. Kelt demographics were collected along the outmigration corridor. Repeat spawner return rates were examined along with kelt demographics, outmigration timing and collection location and year. The roles of these factors in predicting repeat spawner returns were evaluated using an information-theoretic approach. The life history characteristics of returning fish was examined with reference to breeding interval, migration timing and distribution within the Columbia River Basin. The study tested whether repeat spawner return rates would be affected by outmigration distance and whether they would differ among demographic groups. It was concluded that the expression of iteroparity among interior Columbia River steelhead has persisted despite decades of impoundment-related selection pressures. Post spawn kelts and repeat spawners in downstream fish bypass systems at the Columbia River and Snake River dams were found to be disproportionately female and of wild origin. The results of this study provide baseline data for evaluating kelt mortality mitigation efforts and basic life history information for steelhead conservation planning. 78 refs., 4 tabs., 4 figs

  8. Hood River Steelhead Genetics Study; Relative Reproductive Success of Hatchery and Wild Steelhead in the Hood River, Final Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Blouin, Michael

    2003-05-01

    There is a considerable interest in using hatcheries to speed the recovery of wild populations. The Bonneville Power Administration (BPA), under the authority of the Northwest Power Planning Act, is currently funding several hatchery programs in the Columbia Basin as off-site mitigation for impacts to salmon and steelhead caused by the Columbia River federal hydropower system. One such project is located on the Hood River, an Oregon tributary of the Columbia. These hatchery programs cost the region millions of dollars. However, whether such programs actually improve the status of wild fish remains untested. The goal of this project was to evaluate the effectiveness of the Hood River hatchery program as required by the Northwest Power Planning Council Fish and Wildlife Program, by the Oregon Plan for Coastal Salmonids, by NMFS ESA Section 4(d) rulings, and by the Oregon Department of Fish and Wildlife (ODFW) Wild Fish Management Policy (OAR 635-07-525 through 529) and the ODFW Hatchery Fish Gene Resource Management Policy (OAR 635-07-540 through 541). The Hood River supports two populations of steelhead, a summer run and a winter run. They spawn only above the Powerdale Dam, which is a complete barrier to all salmonids. Since 1991 every adult passed above the dam has been measured, cataloged and sampled for scales. Therefore, we have a DNA sample from every adult steelhead that went over the dam to potentially spawn in the Hood River from 1991 to the present. Similar numbers of hatchery and wild fish have been passed above the dam during the last decade. During the 1990's 'old' domesticated hatchery stocks of each run (multiple generations in the hatchery, out-of-basin origin; hereafter H{sub old}) were phased out, and conservation hatchery programs were started for the purpose of supplementing the two wild populations (hereafter 'new' hatchery stocks, H{sub new}). These samples gave us the unprecedented ability to estimate, via

  9. Ecological interactions between hatchery summer steelhead and wild Oncorhynchus mykiss in the Willamette River basin, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Harnish, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Green, Ethan D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vernon, Christopher R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mcmichael, Geoffrey A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    The purpose of this study was to determine the extent to which juvenile hatchery summer steelhead and wild winter steelhead overlap in space and time, to evaluate the extent of residualism among hatchery summer steelhead in the South Santiam River, and to evaluate the potential for negative ecological interactions among hatchery summer steelhead and wild winter steelhead. Because it is not possible to visually discern juvenile winter steelhead from resident rainbow trout, we treated all adipose-intact juvenile O. mykiss as one group that represented juvenile wild winter steelhead. The 2014 study objectives were to 1) estimate the proportion of hatchery summer steelhead that residualized in the South Santiam River in 2014, 2) determine the extent to which hatchery and naturally produced O. mykiss overlapped in space and time in the South Santiam River, and 3) characterize the behavioral interactions between hatchery-origin juvenile summer steelhead and naturally produced O. mykiss. We used a combination of radio telemetry and direct observations (i.e., snorkeling) to determine the potential for negative interactions between hatchery summer and wild winter steelhead juveniles in the South Santiam River. Data collected from these two independent methods indicated that a significant portion of the hatchery summer steelhead released as smolts did not rapidly emigrate from the South Santiam River in 2014. Of the 164 radio-tagged steelhead that volitionally left the hatchery, only 66 (40.2%) were detected outside of the South Santiam River. Forty-four (26.8% of 164) of the radio-tagged hatchery summer steelhead successfully emigrated to Willamette Falls. Thus, the last known location of the majority of the tagged fish (98 of 164 = 59.8%) was in the South Santiam River. Thirty-three of the tagged hatchery steelhead were detected in the South Santiam River during mobile-tracking surveys. Of those, 21 were found to be alive in the South Santiam River over three months after

  10. Steelhead Supplementation Studies in Idaho Rivers: To evaluate the feasibility of using artificial production to increase natural steelhead populations and to collect baseline life history, genetic, and disease data from natural steelhead populations. 1993 Annual report

    International Nuclear Information System (INIS)

    Byrne, A.

    1996-01-01

    The Steelhead Supplementation Study was designed to evaluate the feasibility of using artificial production to increase natural steelhead Oncorhynchus mykiss populations and to collect baseline life history, genetic, and disease data from natural steelhead populations. To evaluate supplementation, the authors focused their experimental design on post-release survival, reproductive success, long-term fitness, and ecological interactions. They began field experiments in 1993 by outplanting hatchery adults and fingerlings to assess reproductive fitness and long-term survival. They snorkeled eight streams to estimate juvenile steelhead densities, recorded temperatures in 17 streams, and tagged natural steelhead in six streams with Passive Integrated Transponder (PIT) tags

  11. Steelhead migration - Tracking steelhead migration from the Columbia River through the Pacific Ocean

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tag juvenile Columbia River steelhead in the Columbia estuary with acoustic tags to determine their marine distributions. This was a small pilot project to test our...

  12. Steelhead Spawning Surveys Near Locke Island, Hanford Reach of the Columbia River; TOPICAL

    International Nuclear Information System (INIS)

    DR Geist; RP Mueller

    1999-01-01

    In 1997, the National Marine Fisheries Service (NMFS) listed upper Columbia River steelhead trout (Oncorhynchus znykiss) as endangered. This action affected management of land-use activities along and within the Hanford Reach of the Columbia River, which flows through the U.S. Department of Energy (DOE) Hanford Site. Steelhead covered in this listing include all naturally spawned populations of steel-head and their progeny in streams in the Columbia River Basin upstream from the Yakima River to the United States/Canada border. The NMFS has identified a general listing of activities that could potentially result in harm to steelhead (62 FR 43937, August 18, 1997). One of these concerns includes land-use changes resulting in mass wasting or surface erosion. Landslide activity along the White Bluffs on the east ,side of Locke Island has redirected river flow into the island where substantial erosion has occurred. This erosion has exposed important anthropological and archaeological resources that were previously buried on the island. The DOE is working with affected tribes and other agencies to develop a plan for addressing the erosion of Locke Island. As part of this effort, the U.S. Army Corps of Engineers has prepared an assessment of potential alternatives to stabilize the erosion, including a no-action alternative. Steelhead historically spawned in the vicinity of Locke Island, but recent information on the occurrence of steelhead spawning or availability of spawning habitat was lacking. Therefore, the purpose of this study was to determine if steelhead spawned in the vicinity of Locke Island erosion and to evaluate the composition of substrate in the affected area. Surveys to document the occurrence of steelheads redds were conducted in Spring 1999. The surveys were conducted from the air as well as with the use of an underwater video camera. Neither aerial nor underwater surveys documented steelhead spawning within the survey area. Habitat surveys were

  13. Characterize and Quantify Residual Steelhead in the Clearwater River, Idaho, 1999-2000 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Brostrom, Jody K. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

    2006-08-01

    During 1999-2002 we determined whether size at release and release site influenced emigration success and survival of hatchery steelhead smolts raised at Dworshak National Fish Hatchery and released into the Clearwater River drainage. We marked 4,500 smolts each year with Passive Integrated Transponder Tags (PIT-tags) which enabled us to track emigration and estimate survival through mainstem Snake and Columbia river dams. Hatchery steelhead raised in System I freshwater were significantly smaller than those raised in warmer System II re-use water (196 mm, 206 mm, 198 mm and 201 mm System I; 215 mm, 213 mm, 206 mm and 209 mm System II). However, there was no significant difference in detection rates to mainstem observation sites between the two groups (65%, 58%, 78% and 55% System I; 69%, 59%, 74% and 53% System II). Survival estimates to Lower Granite Dam were also not significant between the two groups (72%, 81%, 80% and 77% System I; 77%, 79%, 77%, and 72% System II). Smolts less than 180 mm FL were less likely to be detected than larger smolts. Hatchery steelhead smolts released into Clear Creek, the South Fork Clearwater River and the Clearwater River at Dworshak National Fish Hatchery had significantly different lengths each year, but there was no discernible pattern due to random egg takes and rearing systems. Detection rates to mainstem observation sites for smolts released into Clear Creek were significantly less than the other two groups in all years except 2002 (62%, 57%, 71%, and 57% Clear Creek; 68%, 63%, 73% and 61% South Fork Clearwater River; 70%, 59%, 78% and 55% Clearwater River). However, survival rates to Lower Granite Dam were not significantly different (73%, 65%, 78%, and 77% Clear Creek; 79%, 72%, 79% and 76% South Fork Clearwater River; 81%, 76%, 80% and 83% Clearwater River). Similar to the size at release group, smolts less than 180 mm FL were less likely to get detected than larger smolts. Smolts from both size at release and release

  14. Behavior and movement of adult summer steelhead following collection and release, lower Cowlitz River, Washington, 2012--2013

    Science.gov (United States)

    Kock, Tobias J.; Liedtke, Theresa L.; Ekstrom, Brian K.; Rondorf, Dennis W.; Gleizes, Chris; Dammers, Wolf; Gibson, Scott; Murphy, Jamie

    2013-01-01

    Executive SummaryHistorically, adult summer steelhead Oncorhynchus mykiss returning to hatcheries on the lower Cowlitz River were sometimes transported and released in the river (recycled) to provide additional angling opportunity for the popular sport fishery in the basin. However, this practice has not been used in recent years because of concerns associated with interactions between hatchery fish and wild fish. Fishery managers were interested in resuming recycling but lacked information regarding effects of this practice on wild steelhead so we conducted a study during 2012–2013 to: (1) enumerate recycled steelhead that returned to the hatchery or were removed by anglers; and (2) determine if steelhead that were not removed from the river remained in the system where they could interact with wild fish.During June–August 2012, a total of 549 summer steelhead were captured at the Cowlitz Salmon Hatchery, tagged, and released downstream near the Interstate 5 Bridge. All recycled steelhead were tagged with a white Floy® tag and opercle-punched; 109 (20 percent) of these fish also were radio-tagged. All adult steelhead that return to the hatchery were handled by hatchery staff so recycled steelhead that returned to the hatchery were enumerated daily. A creel survey and voluntary angler reports were used to determine the number of recycled steelhead that were caught by anglers. We established three fixed telemetry monitoring sites on the mainstem Cowlitz River and eight additional sites were deployed on tributaries to the lower Cowlitz River where wild winter steelhead are known to spawn. We also conducted mobile tracking from a boat during October 2012, November 2012, and January 2013 to locate radio-tagged fish.A total of 10,722 summer steelhead were captured at the Cowlitz Salmon Hatchery in 2012, which was the largest return since 2008. River flows during much of the study period were similar to 2008–2011 average flows, however, high-flow periods in July

  15. Barged/In-river steelhead migrant data - Evaluation of methods to reduce straying rates of barged juvenile steelhead

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goals of this study are to develop methods to reduce wandering and straying of steelhead (Oncorhynchus mykiss) that are collected and barged from the Snake River...

  16. Laboratory data on Snake River steelhead - Evaluation of methods to reduce straying rates of barged juvenile steelhead

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goals of this study are to develop methods to reduce wandering and straying of steelhead (Oncorhynchus mykiss) that are collected and barged from the Snake River...

  17. Salmon and steelhead genetics and genomics - Epigenetic and genomic variation in salmon and steelhead

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conduct analyses of epigenetic and genomic variation in Chinook salmon and steelhead to determine influence on phenotypic expression of life history traits. Genetic,...

  18. Fish Research Project, Oregon : Evaluation of the Success of Supplementing Imnaha River Steelhead with Hatchery Reared Smolts: Phase One : Completion Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W.; Whitesel, Timothy A.; Jonasson, Brian C.

    1995-08-01

    Two streams in the Imnaha River subbasin (Camp Creek and Little Sheep Creek) and eight streams in the Grande Ronde River subbasin (Catherine, Deer, Five Points, Fly, Indian, Lookingglass, Meadow, and Sheep creeks) were selected as study streams to evaluate the success and impacts of steelhead supplementation in northeast Oregon. The habitat of the study streams was inventoried to compare streams and to evaluate whether habitat might influence the performance parameters we will measure in the study. The mean fecundity of hatchery and natural steelhead 1-salts returning to Little Sheep Creek fish facility in 1990 and 1991 ranged from 3,550 to 4,663 eggs/female; the mean fecundity of hatchery and natural steelhead 2-salts ranged from 5,020 to 5,879 eggs/female. Variation in length explained 57% of the variation in fecundity of natural steelhead, but only 41% to 51% of the variation in fecundity of hatchery steelhead. Adult steelhead males had an average spermatocrit of 43.9% at spawning. We were also able to stain sperm cells so that viable cells could be distinguished from dead cells. Large, red disc tags may be the most useful for observing adults on the spawning grounds. The density of wild, juvenile steelhead ranged from 0 fish/l00{sup 2} to 35.1 (age-0) and 14.0 (age-1) fish/l00m{sup 2}. Evidence provided from the National Marine Fisheries Service suggests that hatchery and wild fish within a subbasin are genetically similar. The long-term experimental design is presented as a component of this report.

  19. Methow River Steelhead - Methow River Steelhead hatchery reform research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Steelhead in Pacific Northwest hatcheries are typically reared for release as 1-year-old smolts, rather than the 2and 3-year-old smolt life history patterns found in...

  20. Evaluation of the behavior and movement of adult summer steelhead in the lower Cowlitz River, Washington, following collection and release, 2013-2014

    Science.gov (United States)

    Kock, Tobias J.; Liedtke, Theresa L.; Ekstrom, Brian K.; Gleizes, Chris; Dammers, Wolf

    2014-01-01

    Summer steelhead (Oncorhynchus mykiss) produced by a hatchery on the lower Cowlitz River, Washington, support a popular sport fishery during June–September each year. Many of these fish return to the Cowlitz Salmon Hatchery and are held until they are spawned in December. In the past, fishery managers have released some of the steelhead that return to the hatchery at downstream release sites (hereafter referred to as “recycled steelhead”) to increase angling opportunity. The recycling of summer steelhead is a potential use of hatchery fish that can benefit anglers in the lower Cowlitz River, provided these fish are harvested or return to the hatchery. However, recycled steelhead that are not removed from the river could compete against or spawn with wild winter steelhead, which would be a negative consequence of recycling. The Washington Department of Fish and Wildlife (WDFW) conducted an evaluation during 1998 and recycled 632 summer steelhead. They determined that 55 percent of the recycled steelhead returned to the hatchery and 15 percent of the fish were harvested by anglers. The remaining 30 percent of recycled fish were not known to have been removed from the river. Recycling has not occurred in recent years because definitive studies have not been conducted to determine the fate of the fish that remain in the lower Cowlitz River after being recycled. The U.S. Geological Survey and WDFW conducted a 2-year study during 2012–2014 to quantify recycled steelhead that (1) returned to the hatchery, (2) were captured by anglers, or (3) remained in the river. All recycled steelhead were marked with a Floy® tag and opercle punch, and 20 percent of the recycled fish were radio-tagged to determine post-release behavior and movement patterns, and to describe locations of tagged fish that remained in the river during the spawning period. During 2012–2013, we recycled 549 steelhead and determined that 50 percent of the fish returned to the hatchery, 18 percent

  1. Genetic differences in growth, migration, and survival between hatchery and wild steelhead and Chinook salmon: Introduction and executive summary

    Science.gov (United States)

    Rubin, Steve P.; Reisenbichler, Reginald; Wetzel, Lisa A.; Hayes, Michael C.

    2012-01-01

    This report presents results of studies testing for genetically based differences in performance (growth, migration, and survival) between hatchery and wild populations of steelhead and Chinook salmon (Project Number 90-052). The report is organized into 10 chapters with a general study introduction preceding the first chapter. A growing body of data shows that domestication and a resulting loss of fitness for natural rearing occur in hatchery populations of anadromous salmonids; however, the magnitude of domestication will vary among species and hatchery programs. Better information on domestication is needed to accurately predict the consequences when hatchery and wild fish interbreed. The intent of hatchery supplementation is to increase natural production through introduction of hatchery fish into natural production areas. The goal of this study was to provide managers with information on the genetic risks of hatchery supplementation to wild populations of Columbia River Basin summer steelhead and spring Chinook salmon.

  2. Spring outmigration of wild and hatchery chinook salmon and steelhead trout smolts from the Imnaha River: March 1, 1994--June 15, 1994; TOPICAL

    International Nuclear Information System (INIS)

    Ashe, B.L.; Miller, A.C.; Kucera, P.A.; Blenden, M.L.

    1995-01-01

    In 1994, the Nez Perce Tribe began a smolt monitoring study on the Imnaha River in cooperation with the Fish Passage Center (FPC). A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from March 1 to June 15, 1994. We PIT tagged and released 956 wild chinook salmon, 661 hatchery chinook salmon, 1,432 wild steelhead trout and 2,029 hatchery steelhead trout. Cumulative interrogation rates at mainstem Snake and Columbia River dams were 62.2% for wild chinook salmon, 45.2% for hatchery chinook salmon, 51.3% for wild steelhead trout, and 34.3% for hatchery steelhead trout

  3. Potential fitness benefits of the half-pounder life history in Klamath River steelhead

    Science.gov (United States)

    Hodge, Brian W.; Wilzbach, Peggy; Duffy, Walter G.

    2014-01-01

    Steelhead Oncorhynchus mykiss from several of the world's rivers display the half-pounder life history, a variant characterized by an amphidromous (and, less often, anadromous) return to freshwater in the year of initial ocean entry. We evaluated factors related to expression of the half-pounder life history in wild steelhead from the lower Klamath River basin, California. We also evaluated fitness consequences of the half-pounder phenotype using a simple life history model that was parameterized with our empirical data and outputs from a regional survival equation. The incidence of the half-pounder life history differed among subbasins of origin and smolt ages. Precocious maturation occurred in approximately 8% of half-pounders and was best predicted by individual length in freshwater preceding ocean entry. Adult steelhead of the half-pounder phenotype were smaller and less fecund at age than adult steelhead of the alternative (ocean contingent) phenotype. However, our data suggest that fish of the half-pounder phenotype are more likely to spawn repeatedly than are fish of the ocean contingent phenotype. Models predicted that if lifetime survivorship were equal between phenotypes, the fitness of the half-pounder phenotype would be 17–28% lower than that of the ocean contingent phenotype. To meet the condition of equal fitness between phenotypes would require that first-year ocean survival be 21–40% higher among half-pounders in freshwater than among their cohorts at sea. We concluded that continued expression of the half-pounder phenotype is favored by precocious maturation and increased survival relative to that of the ocean contingent phenotype.

  4. Steelhead Kelt Reconditioning and Reproductive Success, 2008 Annul Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hatch, Douglas R. [Columbia River Inter-Tribal Fish Commission

    2009-04-02

    Iteroparity, the ability to repeat spawn, is a natural life history strategy that is expressed by some species from the family Salmonidae. Current rates of observed steelhead Oncorhynchus mykiss iteroparity rates in the Columbia River Basin are severely depressed due to anthropogenic development which includes operation of the hydropower system and other habitat degradations. Artificial reconditioning, which is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and redevelop mature gonads, is evaluated in this study as method to restore depressed steelhead populations. To test the efficacy of steelhead kelt reconditioning as a management and recovery tool different scenarios were investigated ranging from very low intensity (collect and transport fish) to high intensity (collect and feed fish in captivity until rematuration). Examinations of gamete and progeny viability were performed for first-time spawners and reconditioned kelt steelhead. We have continued to examine reproductive success of reconditioned kelt steelhead in Omak Creek using microsatellite loci to perform parentage analysis on juvenile O. mykiss . The groundwork has also begun on developing a genetic analysis of the Yakima subbasin in order to determine steelhead kelt contribution by utilizing parentage analysis on a larger scale. A research and study plan has been developed cooperatively with the University of Idaho to determine the feasibility of steelhead kelt reconditioning program in the Snake River Basin. Analysis of management scenarios indicated that while no-term and short-term reconditioned kelts continue to perform well outmigrating to the ocean but returns from these groups have been low ranging from 0-12% during 2002-2008. Survival (56%) of fish in the long-term treatment in 2008 was the highest we have observed in this project. Analyzing the three different management scenarios within the Yakima River subbasin

  5. Spring outmigration of wild and hatchery chinook salmon and steelhead trout smolts from the Imnaha River, Oregon, February 6, 1995--June 20, 1995

    International Nuclear Information System (INIS)

    Blenden, M.L.; Osborne, R.S.; Kucera, P.A.

    1996-01-01

    For the second consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 6 to June 20, 1995. We PIT tagged and released 421 wild chinook salmon smolts, 747 hatchery chinook salmon smolts (445 HxW and 302 HxH), 227 wild steelhead trout smolts and 1,296 hatchery steelhead trout smolts. Cumulative interrogation rates at mainstem Snake and Columbia River dams were 78.4% for wild chinook salmon, 58.9% for hatchery chinook salmon (HxW), 56.6% for hatchery chinook salmon (HxH), 76.2% for wild steelhead trout, and 69.2% for hatchery steelhead trout. Peak outmigration of NPT tagged wild Imnaha River chinook salmon smolts occurred from early to mid-May at Lower Granite, Little Goose, and Lower Monumental Dams. Median and 90% passage dates for wild chinook salmon smolts at Lower Granite Dam were May 1 and May 11, respectively. Continuous spill at Lower Granite Dam was initiated on May 3 and lasted for 51 days. The 90% passage date of wild chinook salmon smolts at Lower Granite Dam (May 11) preceded peak Snake River and Lower Granite (June 6) flows by 26 days. Although hatchery chinook salmon exhibited a shorter outmigration period through the Snake River than their wild counterparts, peak arrival for both groups occurred at approximately the same time. Median and 90% passage dates at Lower Granite Dam for other PIT tagged groups were: hatchery chinook salmon (NPT-HxW) - May 2 and May 13; hatchery chinook salmon (FPC-HxH) - May 8 and May 15; wild steelhead trout - May 2 and May 9; and hatchery steelhead trout (NPT and FPC) - May 31 and June 16. Hatchery steelhead trout displayed small peaks in arrival timing at Lower Granite and Little Goose Dams in mid-May to mid-June

  6. Evaluation of the behavior and movement patterns of adult coho salmon and steelhead in the North Fork Toutle River, Washington, 2005-2009

    Science.gov (United States)

    Liedtke, Theresa L.; Kock, Tobias J.; Rondorf, Dennis W.

    2013-01-01

    The 1980 eruption of Mount St. Helens severely affected the North Fork Toutle River (hereafter Toutle River), Washington, and threatened anadromous salmon (Oncorhynchus spp.) populations in the basin. The Toutle River was further affected in 1989 when a sediment retention structure (SRS) was constructed to trap sediments in the upper basin. The SRS completely blocked upstream volitional passage, so a fish collection facility (FCF) was constructed to trap adult coho salmon (O. kisutch) and steelhead (O. mykiss) so they could be transported upstream of the SRS. The Washington Department of Fish and Wildlife (WDFW) has operated a trap-and-haul program since 1989 to transport coho salmon and steelhead into tributaries of the Toutle River, upstream of the SRS. Although this program has allowed wild coho salmon and steelhead populations to persist in the Toutle River basin, the trap-andhaul program has faced many challenges that may be limiting the effectiveness of the program. We conducted a multi-year evaluation during 2005–2009 to monitor tagged fish in the upper Toutle River to provide information on the movements and behavior of adult coho salmon and steelhead, and to evaluate the efficacy of the FCF. Radio-tagged coho salmon and steelhead were released: (1) in Toutle River tributaries to evaluate the behavior and movements of fish released as part of the trap-and-haul program; (2) between the FCF and SRS to determine if volitional upstream passage through the SRS spillway was possible; (3) in the sediment plain upstream of the SRS to determine if volitional passage through the sediment plain was possible; and (4) downstream of the FCF to evaluate the efficacy of the structure. We also deployed an acoustic camera in the FCF to monitor fish movements near the entrance to the FCF, and in the fish holding vault where coho salmon and steelhead are trapped. A total of 20 radio-tagged coho salmon and 10 radio-tagged steelhead were released into Alder and Hoffstadt

  7. Spring outmigration of wild and hatchery chinook salmon and steelhead trout smolts from the Imnaha River, Oregon, February 23--June 24, 1996. Annual report 1996

    International Nuclear Information System (INIS)

    Blendon, M.L.; Rocklage, S.J.; Kucera, P.A.

    1997-04-01

    For the third consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 23 to June 24, 1996. A total of 1,797 wild chinook salmon, 11,896 hatchery chinook salmon, 3,786 wild steelhead trout, and 31,094 hatchery steelhead trout smolts were captured during outmigration studies on the Imnaha River in 1996. Mortality associated with trapping, handling and tagging was low, being 1.4% for wild chinook, 0.18% for hatchery chinook, 0.21% for wild steelhead and 0.28% for hatchery steelhead trout smolts

  8. Sex biased survival and differences in migration of wild steelhead (Oncorhynchus mykiss) smolts from two coastal Oregon rivers

    Science.gov (United States)

    Thompson, Neil F.; Leblanc, Camille A.; Romer, Jeremy D.; Schreck, Carl B.; Blouin, Michael S.; Noakes, David L. G.

    2016-01-01

    In salmonids with partial migration, females are more likely than males to undergo smoltification and migrate to the ocean (vs. maturing in freshwater). However, it is not known whether sex affects survivorship during smolt migration (from fresh water to entry into the ocean). We captured wild steelhead (Oncorhynchus mykiss) smolts in two coastal Oregon rivers (USA) and collected fin tissue samples for genetic sex determination (2009; N = 70 in the Alsea and N = 69 in the Nehalem, 2010; N = 25 in the Alsea). We implanted acoustic tags and monitored downstream migration and survival until entry in to the Pacific Ocean. Survival was defined as detection at an estuary/ocean transition array. We found no effect of sex on smolt survivorship in the Nehalem River in 2009, or in the Alsea River in 2010. However, males exhibited significantly lower survival than females in the Alsea River during 2009. Residency did not influence this result as an equal proportion of males and females did not reach the estuary entrance (11% of males, 9% of females). The sexes did not differ in timing or duration of migration, so those variables seem unlikely to explain sex-biased survivorship. Larger males had higher odds of survival than smaller males in 2009, but the body size of females did not affect survivorship. The difference in survivorship between years in the Alsea River could be due to flow conditions, which were higher in 2010 than in 2009. Our findings suggest that sex may affect steelhead smolt survival during migration, but that the difference in survivorship may be weak and not a strong factor influencing adult sex ratios.

  9. Sex-biased survivorship and differences in migration of wild steelhead (Oncorhynchus mykiss) smolts from two coastal Oregon rivers

    Science.gov (United States)

    Thompson, Neil F.; Leblanc, Camille A.; Romer, Jeremy D.; Schreck, Carl B.; Blouin, Michael S.; Noakes, David L. G.

    2016-01-01

    In salmonids with partial migration, females are more likely than males to undergo smoltification and migrate to the ocean (vs. maturing in freshwater). However, it is not known whether sex affects survivorship during smolt migration (from fresh water to entry into the ocean). We captured wild steelhead (Oncorhynchus mykiss) smolts in two coastal Oregon rivers (USA) and collected fin tissue samples for genetic sex determination (2009; N = 70 in the Alsea and N = 69 in the Nehalem, 2010; N = 25 in the Alsea). We implanted acoustic tags and monitored downstream migration and survival until entry in to the Pacific Ocean. Survival was defined as detection at an estuary/ocean transition array. We found no effect of sex on smolt survivorship in the Nehalem River in 2009, or in the Alsea River in 2010. However, males exhibited significantly lower survival than females in the Alsea River during 2009. Residency did not influence this result as an equal proportion of males and females did not reach the estuary entrance (11% of males, 9% of females). The sexes did not differ in timing or duration of migration, so those variables seem unlikely to explain sex-biased survivorship. Larger males had higher odds of survival than smaller males in 2009, but the body size of females did not affect survivorship. The difference in survivorship between years in the Alsea River could be due to flow conditions, which were higher in 2010 than in 2009. Our findings suggest that sex may affect steelhead smolt survival during migration, but that the difference in survivorship may be weak and not a strong factor influencing adult sex ratios.

  10. Identification of steelhead and resident rainbow trout progeny in the Deschutes River, Oregon, revealed with otolith microchemistry

    Science.gov (United States)

    Zimmerman, C.E.; Reeves, G.H.

    2002-01-01

    Comparisons of strontium:calcium (Sr:Ca) ratios in otolith primordia and freshwater growth regions were used to identify the progeny of steelhead Oncorhynchus mykiss (anadromous rainbow trout) and resident rainbow trout in the Deschutes River, Oregon. We cultured progeny of known adult steelhead and resident rainbow trout to confirm the relationship between Sr:Ca ratios in otolith primordia and the life history of the maternal parent. The mean (??SD) Sr:Ca ratio was significantly higher in the otolith primordia of the progeny of steelhead (0.001461 ?? 0.00029; n = 100) than in those of the progeny of resident rainbow trout (0.000829 ?? 0.000012; n = 100). We used comparisons of Sr:Ca ratios in the primordia and first-summer growth regions of otoliths to determine the maternal origin of unknown O. mykiss juveniles (n = 272) collected from rearing habitats within the main-stem Deschutes River and tributary rearing habitats and thus to ascertain the relative proportion of each life history morph in each rearing habitat. Resident rainbow trout fry dominated the bi-monthly samples collected from main-stem rearing habitats between May and November 1995. Steelhead fry dominated samples collected from below waterfalls on two tributaries in 1996 and 1998.

  11. Lyons Ferry Hatchery - Summer Steelhead, Final Report

    International Nuclear Information System (INIS)

    Watson, M.

    1996-05-01

    This report presents the findings of the independent audit of the Lyons Ferry Hatchery (Summer Steelhead). Lyons Ferry Hatchery is located downstream of the confluence of the Palouse and Snake rivers, about 7 miles west of Starbuck, Washington. The hatchery is used for adult collection of fall chinook and summer steelhead, egg incubation of fall chinook, spring chinook, steelhead, and rainbow trout and rearing of fall chinook, spring chinook, summer steelhead, and rainbow trout. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the US Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife

  12. "Investigations of salmon and steelhead trout downstream migrations in Caspar Creek and Little River, Mendocino County, March-July, 1993"

    Science.gov (United States)

    Albert Rodriguez; Weldon Jones

    1993-01-01

    Abstract - This annual study has been conducted, since 1987, on two coastal streams, in order to observe the different trend patterns of juvenile out migrations for coho salmon and steelhead-trout, figure 1. Analysis of the 1993 trapping season indicates, at Little River, a decrease of steelhead-trout yearlings but an increase in coho ""y+"". Coho...

  13. Spring outmigration of wild and hatchery chinook salmon and steelhead trout smolts from the Imnaha River, Oregon, February 23--June 24, 1996. Annual report 1996; ANNUAL

    International Nuclear Information System (INIS)

    Blendon, M.L.; Rocklage, S.J.; Kucera, P.A.

    1997-01-01

    For the third consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 23 to June 24, 1996. A total of 1,797 wild chinook salmon, 11,896 hatchery chinook salmon, 3,786 wild steelhead trout, and 31,094 hatchery steelhead trout smolts were captured during outmigration studies on the Imnaha River in 1996. Mortality associated with trapping, handling and tagging was low, being 1.4% for wild chinook, 0.18% for hatchery chinook, 0.21% for wild steelhead and 0.28% for hatchery steelhead trout smolts

  14. Wild Steelhead and introduced spring Chinook Salmon in the Wind River, Washington: Overlapping populations and interactions

    Science.gov (United States)

    Jezorek, I.G.; Connolly, P.J.

    2010-01-01

    We investigated interactions of introduced juvenile spring Chinook salmon Oncorhynchus tshawytscha with wild juvenile steelhead O. mykiss in the upper Wind River watershed (rkm 24.6 to rkm 43.8), Washington. Our objective was to determine if the presence of introduced spring Chinook salmon influenced populations of wild juvenile steelhead and if other biotic or abiotic factors influenced distribution and populations of these species. We snorkeled to assess distribution and abundance in one to six stream reaches per year during 2001 through 2007. Juvenile steelhead were found in each sampled reach each year, but juvenile Chinook salmon were not. The upstream extent of distribution of juvenile Chinook salmon varied from rkm 29.7 to 42.5. Our analyses suggest that juvenile Chinook salmon distribution was much influenced by flow during the spawning season. Low flow appeared to limit access of escaped adult Chinook salmon to upper stream reaches. Abundance of juvenile Chinook salmon was also influenced by base flow during the previous year, with base flow occurring post spawn in late August or early September. There were no relationships between juvenile Chinook salmon abundance and number of Chinook salmon spawners, magnitude of winter flow that might scour redds, or abundance of juvenile steelhead. Abundance of age-0 steelhead was influenced primarily by the number of steelhead spawners the previous year, and abundance of age-1 steelhead was influenced primarily by abundance of age-0 steelhead the previous year. Juvenile steelhead abundance did not show a relationship with base or peak flows, nor with number of escaped Chinook salmon adults during the previous year. We did not detect a negative influence of the relatively low abundance of progeny of escaped Chinook salmon on juvenile steelhead abundance. This low abundance of juvenile Chinook salmon was persistent throughout our study and is likely a result of hatchery management and habitat conditions. Should one or

  15. Factors affecting route selection and survival of steelhead kelts at Snake River dams in 2012 and 2013

    Energy Technology Data Exchange (ETDEWEB)

    Harnish, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colotelo, Alison H. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Xinya [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fu, Tao [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ham, Kenneth D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Zhiqun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Green, Ethan D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-31

    In 2012 and 2013, Pacific Northwest National Laboratory (PNNL) conducted a study that summarized the passage route proportions and route-specific survival rates of steelhead kelts that passed through Federal Columbia River Power System (FCRPS) dams. To accomplish this, a total of 811 steelhead kelts were tagged with Juvenile Salmon Acoustic Telemetry System (JSATS) transmitters. Acoustic receivers, both autonomous and cabled, were deployed throughout the FCRPS to monitor the downstream movements of tagged kelts. Kelts were also tagged with passive integrated transponder tags to monitor passage through juvenile bypass systems (JBS) and detect returning fish. The current study evaluated data collected in 2012 and 2013 to identify environmental, temporal, operational, individual, and behavioral variables that were related to forebay residence time, route of passage, and survival of steelhead kelts at FCRPS dams on the Snake River. Multiple approaches, including 3-D tracking, bivariate and multivariable regression modeling, and decision tree analyses were used to identify the environmental, temporal, operational, individual, and behavioral variables that had the greatest effect on forebay residence time, route of passage, and route-specific and overall dam passage survival probabilities for tagged kelts at Lower Granite (LGR), Little Goose (LGS), and Lower Monumental (LMN) dams. In general, kelt behavior and discharge appeared to work independently to affect forebay residence times. Kelt behavior, primarily approach location, migration depth, and “searching” activities in the forebay, was found to have the greatest influence on their route of passage. The condition of kelts was the single most important factor affecting their survival. The information gathered in this study may be used by dam operators and fisheries managers to identify potential management actions to improve in-river survival of kelts or collection methods for kelt reconditioning programs to aid

  16. Assessing fish predation on migrating juvenile steelhead and a retrospective comparison to steelhead survival through the Priest Rapids Hydroelectric Project, Columbia River, Washington, 2009-11

    Science.gov (United States)

    Hardiman, Jill M.; Counihan, Timothy D.; Burgess, Dave S.; Simmons, Katrina E.; Holmberg, Glen S.; Rogala, Josh; Polacek, Rochelle

    2012-01-01

    The U.S. Geological Survey (USGS) and the Washington Department of Fish and Wildlife (WDFW) have been working with the Public Utility District No. 2 of Grant County, Washington (Grant PUD), to increase their understanding of predator-prey interactions in the Priest Rapids Hydroelectric Project (PRP), Columbia River, Washington. For this study, the PRP is defined as the area approximately 6 kilometers upstream of Wanapum Dam to the Priest Rapids Dam tailrace, 397.1 miles from the mouth of the Columbia River. Past year’s low survival numbers of juvenile steelhead (Oncorhynchus mykiss) through Wanapum and Priest Rapids Dams has prompted Grant PUD, on behalf of the Priest Rapids Coordinating Committee, to focus research efforts on steelhead migration and potential causal mechanisms for low survival. Steelhead passage survival in 2009 was estimated at 0.944 through the Wanapum Development (dam and reservoir) and 0.881 through the Priest Rapids Development and for 2010, steelhead survival was 0.855 for Wanapum Development and 0.904 for Priest Rapids Development. The USGS and WDFW implemented field collection efforts in 2011 for northern pikeminnow (Ptychocheilus oregonensis), smallmouth bass (Micropterus dolomieu), and walleye (Sander vitreus, formerly Stizostedion vitreum) and their diets in the PRP. For predator indexing, we collected 948 northern pikeminnow, 237 smallmouth bass, 18 walleye, and two largemouth bass (Micropterus salmoides). The intent of this study was to provide standardized predation indices within individual reaches of the PRP to discern spatial variability in predation patterns. Furthermore, the results of the 2011 study were compared to results of a concurrent steelhead survival study. Our results do not indicate excessively high predation of Oncorhynchus spp. occurring by northern pikeminnow or smallmouth bass in any particular reach throughout the study area. Although we found Oncorhynchus spp. in the predator diets, the relative

  17. Genetic variation underlying resistance to infectious hematopoietic necrosis virus in a steelhead trout (Oncorhynchus mykiss) population

    Science.gov (United States)

    Brieuc, Marine S. O.; Purcell, Maureen K.; Palmer, Alexander D.; Naish, Kerry A.

    2015-01-01

    Understanding the mechanisms of host resistance to pathogens will allow insights into the response of wild populations to the emergence of new pathogens. Infectious hematopoietic necrosis virus (IHNV) is endemic to the Pacific Northwest and infectious to Pacific salmon and trout (Oncorhynchus spp.). Emergence of the M genogroup of IHNV in steelhead trout O. mykiss in the coastal streams of Washington State, between 2007 and 2011, was geographically heterogeneous. Differences in host resistance due to genetic change were hypothesized to be a factor influencing the IHNV emergence patterns. For example, juvenile steelhead trout losses at the Quinault National Fish Hatchery (QNFH) were much lower than those at a nearby facility that cultures a stock originally derived from the same source population. Using a classical quantitative genetic approach, we determined the potential for the QNFH steelhead trout population to respond to selection caused by the pathogen, by estimating the heritability for 2 traits indicative of IHNV resistance, mortality (h2 = 0.377 (0.226 - 0.550)) and days to death (h2 = 0.093 (0.018 - 0.203)). These results confirm that there is a genetic basis for resistance and that this population has the potential to adapt to IHNV. Additionally, genetic correlation between days to death and fish length suggests a correlated response in these traits to selection. Reduction of genetic variation, as well as the presence or absence of resistant alleles, could affect the ability of populations to adapt to the pathogen. Identification of the genetic basis for IHNV resistance could allow the assessment of the susceptibility of other steelhead populations.

  18. Passage Distribution and Federal Columbia River Power System Survival for Steelhead Kelts Tagged Above and at Lower Granite Dam, Year 2

    Energy Technology Data Exchange (ETDEWEB)

    Colotelo, Alison HA; Harnish, Ryan A.; Jones, Bryan W.; Hanson, Amanda C.; Trott, Donna M.; Greiner, Michael J.; McMichael, Geoffrey A.; Ham, Kenneth D.; Deng, Zhiqun; Brown, Richard S.; Weiland, Mark A.; Li, X.; Fu, Tao

    2014-03-28

    Steelhead (Oncorhynchus mykiss) populations have declined throughout their range in the last century and many populations, including those of the Snake River Basin are listed under the Endangered Species Act of 1973. The reasons for their decline are many and complex, but include habitat loss and degradation, overharvesting, and dam construction. The 2008 Biological Opinion calls for an increase in the abundance of female steelhead through an increase in iteroparity (i.e., repeat spawning) and this can be realized through a combination of reconditioning and in-river survival of migrating kelts. The goal of this study is to provide the data necessary to inform fisheries managers and dam operators of Snake River kelt migration patterns, survival, and routes of dam passage. Steelhead kelts (n = 487) were captured and implanted with acoustic transmitters and passive integrated transponder (PIT)-tags at the Lower Granite Dam (LGR) Juvenile Fish Facility and at weirs located in tributaries of the Snake and Clearwater rivers upstream of LGR. Kelts were monitored as they moved downstream through the Federal Columbia River Power System (FCRPS) by 15 autonomous and 3 cabled acoustic receiver arrays. Cabled receiver arrays deployed on the dam faces allowed for three-dimensional tracking of fish as they approached the dam face and were used to determine the route of dam passage. Overall, 27.3% of the kelts tagged in this study successfully migrated to Martin Bluff (rkm 126, as measured from the mouth of the Columbia River), which is located downstream of all FCRPS dams. Within individual river reaches, survival per kilometer estimates ranged from 0.958 to 0.999; the lowest estimates were observed in the immediate forebay of FCRPS dams. Steelhead kelts tagged in this study passed over the spillway routes (spillway weirs, traditional spill bays) in greater proportions and survived at higher rates compared to the few fish passed through powerhouse routes (turbines and juvenile

  19. Passage Distribution and Federal Columbia River Power System Survival for Steelhead Kelts Tagged Above and at Lower Granite Dam, Year 2

    Energy Technology Data Exchange (ETDEWEB)

    Colotelo, Alison H.A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Harnish, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Bryan W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanson, Amanda C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Trott, Donna M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greiner, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mcmichael, Geoffrey A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ham, Kenneth D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Zhiqun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brown, Richard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weiland, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Xinya [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fu, Tao [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-15

    Steelhead (Oncorhynchus mykiss) populations have declined throughout their range in the last century and many populations, including those of the Snake River Basin are listed under the Endangered Species Act of 1973. The reasons for their decline are many and complex, but include habitat loss and degradation, overharvesting, and dam construction. The 2008 Biological Opinion calls for an increase in the abundance of female steelhead through an increase in iteroparity (i.e., repeat spawning) and this can be realized through a combination of reconditioning and in-river survival of migrating kelts. The goal of this study is to provide the data necessary to inform fisheries managers and dam operators of Snake River kelt migration patterns, survival, and routes of dam passage. Steelhead kelts (n = 487) were captured and implanted with acoustic transmitters and passive integrated transponder (PIT)-tags at the Lower Granite Dam (LGR) Juvenile Fish Facility and at weirs located in tributaries of the Snake and Clearwater rivers upstream of LGR. Kelts were monitored as they moved downstream through the Federal Columbia River Power System (FCRPS) by 15 autonomous and 3 cabled acoustic receiver arrays. Cabled receiver arrays deployed on the dam faces allowed for three-dimensional tracking of fish as they approached the dam face and were used to determine the route of dam passage. Overall, 27.3% of the kelts tagged in this study successfully migrated to Martin Bluff (rkm 126, as measured from the mouth of the Columbia River), which is located downstream of all FCRPS dams. Within individual river reaches, survival per kilometer estimates ranged from 0.958 to 0.999; the lowest estimates were observed in the immediate forebay of FCRPS dams. Steelhead kelts tagged in this study passed over the spillway routes (spillway weirs, traditional spill bays) in greater proportions and survived at higher rates compared to the few fish passed through powerhouse routes (turbines and juvenile

  20. Integrated Status and Effectiveness Monitoring Program - Entiat River Rotary Screw Traps,Snorkel Surveys, and Steelhead Redd Surveys, 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Nelle, R.D.; Desgroseiller, Tom; Cotter, Michael (U.S. Fish and Wildlife Service)

    2009-02-17

    The USFWS Mid-Columbia River Fishery Resource Office (MCRFRO) operated two rotary screw traps on the Entiat River as part of the Integrated Status and Effectiveness Monitoring Program from March through November of 2008. Along with the smolt traps, juvenile emigrants were also captured at remote locations throughout the Entiat watershed and its major tributary, the Mad River. A total of 16,782 wild salmonids were PIT tagged during the study period. Of this, 3,961(23.6%) were wild Oncorhynchus mykiss, 6,987 (41.6%) were wild spring run O. tshawytscha, and 5,591 (33.3%) were identified as wild O. tshawytscha of unknown run. Rotary screw trap efficiencies averaged 40.3% at the upper (Rkm 11.0) trap and 7.8% for the lower (Rkm 2.0) trap. These efficiencies were pooled for emigrant O. tshawytscha and O. mykiss. The MCRFRO conducted effectiveness monitoring snorkel surveys at 24 sites during the winter period and 30 sites during the summer and fall periods of 2008 as part of the Integrated Status and Effectiveness Monitoring Program in the Entiat River. The 2008 steelhead spawning grounds surveys were conducted weekly in the main Entiat River from rkm 1.1 to 44.2. A total of 222 steelhead redds were identified over the period from February 28 to June 16 2008 with April being the peak spawning month. Approximately 80% of the steelhead redds were located downstream of the rkm 26.

  1. Wild Steelhead Studies, Salmon and Clearwater Rivers, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Holubetz, Terry B; Leth, Brian D.

    1997-05-01

    To enumerate chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss adult escapements, weirs were operated in Marsh, Chamberlain, West Fork Chamberlain, and Running creeks. Beginning in late July 1994, a juvenile trap was installed in Running Creek to estimate juvenile outmigrants. Plans have been completed to install a weir in Rush Creek to enumerate steelhead adult escapement beginning in spring 1995. Design and agreements are being developed for Johnson Creek and Captain John Creek. Data collected in 1993 and 1994 indicate that spring chinook salmon and group-B steelhead populations and truly nearing extinction levels. For example, no adult salmon or steelhead were passed above the West Fork Chamberlain Creek weir in 1984, and only 6 steelhead and 16 chinook salmon were passed into the important spawning area on upper Marsh Creek. Group-A steelhead are considerably below desirable production levels, but in much better status than group-B stocks. Production of both group-A and group-B steelhead is being limited by low spawning escapements. Studies have not been initiated on wild summer chinook salmon stocks.

  2. Escapement and Productivity of Spring Chinook and Summer Steelhead in the John Day River Basin, Technical Report 2004-2005.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Wayne

    2007-04-01

    The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. Spawning ground surveys for spring (stream-type) Chinook salmon were conducted in four main spawning areas (Mainstem, Middle Fork, North Fork, and Granite Creek System) and seven minor spawning areas (South Fork, Camas Creek, Desolation Creek, Trail Creek, Deardorff Creek, Clear Creek, and Big Creek) in the John Day River basin during August and September of 2005. Census surveys included 298.2 river kilometers (88.2 rkm within index, 192.4 rkm additional within census, and 17.6 rkm within random survey areas) of spawning habitat. We observed 902 redds and 701 carcasses including 227 redds in the Mainstem, 178 redds in the Middle Fork, 420 redds in the North Fork, 62 redds in the Granite Creek System, and 15 redds in Desolation Creek. Age composition of carcasses sampled for the entire basin was 1.6% age 3, 91.2% age 4, and 7.1% age 5. The sex ratio was 57.4% female and 42.6% male. Significantly more females than males were observed in the Granite Creek System. During 2005, 82.3% of female carcasses sampled had released all of their eggs. Significantly more pre-spawn mortalities were observed in Granite Creek. Nine (1.3%) of 701 carcasses were of hatchery origin. Of 298 carcasses examined, 4.0% were positive for the presence of lesions. A significantly higher incidence of gill lesions was found in the Granite Creek System when compared to the rest of the basin. Of 114 kidney samples tested, two (1.8%) had clinical BKD levels. Both infected fish were age-4 females in the Middle Fork. All samples tested for IHNV were negative. To estimate spring Chinook and summer steelhead smolt-to-adult survival (SAR) we PIT tagged 5,138 juvenile

  3. Integrated Status and Effectiveness Monitoring Program - Entiat River Rotary Screw Traps, Snorkel Surveys, and Steelhead Redd Surveys, 2008-2009.

    Energy Technology Data Exchange (ETDEWEB)

    Nelle, R.D.; Desgroseillier, Tom; Cotter, Michael [U.S. Fish and Wildlife Service

    2009-04-14

    The USFWS Mid-Columbia River Fishery Resource Office (MCRFRO) operated two rotary screw traps on the Entiat River as part of the Integrated Status and Effectiveness Monitoring Program from March through November of 2008. Along with the smolt traps, juvenile emigrants were also captured at remote locations throughout the Entiat watershed and its major tributary, the Mad River. A total of 16,782 wild salmonids were PIT tagged during the study period. Of this, 3,961(23.6%) were wild Oncorhynchus mykiss, 6,987 (41.6%) were wild spring run O. tshawytscha, and 5,591 (33.3%) were identified as wild O. tshawytscha of unknown run. Rotary screw trap efficiencies averaged 40.3% at the upper (Rkm 11.0) trap and 7.8% for the lower (Rkm 2.0) trap. These efficiencies were pooled for emigrant O. tshawytscha and O. mykiss. The MCRFRO conducted effectiveness monitoring snorkel surveys at 24 sites during the winter period and 30 sites during the summer and fall periods of 2008 as part of the Integrated Status and Effectiveness Monitoring Program in the Entiat River. The 2008 steelhead spawning grounds surveys were conducted weekly in the main Entiat River from rkm 1.1 to 44.2. A total of 222 steelhead redds were identified over the period from February 28 to June 16 2008 with April being the peak spawning month. Approximately 80% of the steelhead redds were located downstream of the rkm 26.

  4. Salmonid Gamete Preservation in the Snake River Basin, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul

    2002-06-01

    Steelhead (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) populations in the Northwest are decreasing. Genetic diversity is being lost at an alarming rate. Along with reduced population and genetic variability, the loss of biodiversity means a diminished environmental adaptability. The Nez Perce Tribe (Tribe) strives to ensure availability of genetic samples of the existing male salmonid population by establishing and maintaining a germplasm repository. The sampling strategy, initiated in 1992, has been to collect and preserve male salmon and steelhead genetic diversity across the geographic landscape by sampling within the major river subbasins in the Snake River basin, assuming a metapopulation structure existed historically. Gamete cryopreservation conserves genetic diversity in a germplasm repository, but is not a recovery action for listed fish species. The Tribe was funded in 2001 by the Bonneville Power Administration (BPA) and the U.S. Fish and Wildlife Service Lower Snake River Compensation Plan (LSRCP) to coordinate gene banking of male gametes from Endangered Species Act (ESA) listed steelhead and spring and summer chinook salmon in the Snake River basin. In 2001, a total of 398 viable chinook salmon semen samples from the Lostine River, Catherine Creek, upper Grande Ronde River, Lookingglass Hatchery (Imnaha River stock), Lake Creek, the South Fork Salmon River weir, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi Hatchery, and Sawtooth Hatchery (upper Salmon River stock) were cryopreserved. Also, 295 samples of male steelhead gametes from Dworshak Hatchery, Fish Creek, Grande Ronde River, Little Sheep Creek, Pahsimeroi Hatchery and Oxbow Hatchery were also cryopreserved. The Grande Ronde chinook salmon captive broodstock program stores 680 cryopreserved samples at the University of Idaho as a long-term archive, half of the total samples. A total of 3,206 cryopreserved samples from Snake River basin steelhead and

  5. Characteristics of pools used by adult summer steelhead oversummering in the New River, California

    Science.gov (United States)

    Rodney J. Nakamoto

    1994-01-01

    Abstract - I assessed characteristics of pools used by oversummering adults of summer steelhead Oncorhynchus mykiss between July and October 1991 in the New River, northwestern California. Most fish occupied channel confluence pools and other pools of moderate size (200-1,200 m 2); these pools had less than 35% substrate embeddedness and mean water depths of about 1.0...

  6. Salmonid Gamete Preservation in the Snake River Basin : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul A. [Nez Perce Tribe. Dept. of Fisheries Resource Management, Lapwai, ID (US)

    2001-06-01

    Steelhead (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) populations in the Northwest are decreasing. Genetic diversity is being lost at an alarming rate. The Nez Perce Tribe (Tribe) strives to ensure availability of genetic samples of the existing male salmonid population by establishing and maintaining a germplasm repository. The sampling strategy, initiated in 1992, has been to collect and preserve male salmon and steelhead genetic diversity across the geographic landscape by sampling within the major river subbasins in the Snake River basin, assuming a metapopulation structure existed historically. Gamete cryopreservation conserves genetic diversity in a germplasm repository, but is not a recovery action for listed fish species. The Tribe was funded in 2000 by the Bonneville Power Administration (BPA) and the U.S. Fish and Wildlife Service Lower Snake River Compensation Plan (LSRCP) to coordinate gene banking of male gametes from Endangered Species Act listed steelhead and spring and summer chinook salmon in the Snake River basin. In 2000, a total of 349 viable chinook salmon semen samples from the Lostine River, Catherine Creek, upper Grande Ronde River, Lookingglass Hatchery (Imnaha River stock), Rapid River Hatchery, Lake Creek, the South Fork Salmon River weir, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi Hatchery, and Sawtooth Hatchery (upper Salmon River stock) were cryopreserved. Also, 283 samples of male steelhead gametes from Dworshak Hatchery, Fish Creek, Grande Ronde River, Imnaha River, Little Sheep Creek, Pahsimeroi Hatchery and Oxbow Hatchery were also cryopreserved. The Tribe acquired 5 frozen steelhead samples from the Selway River collected in 1994 and 15 from Fish Creek sampled in 1993 from the U.S. Geological Survey, for addition into the germplasm repository. Also, 590 cryopreserved samples from the Grande Ronde chinook salmon captive broodstock program are being stored at the University of Idaho as

  7. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, Progress Report 2000-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Cleary, Peter; Kucera, Paul; Blenden, Michael

    2003-12-01

    This report summarizes the emigration studies of the Nez Perce Tribe in the Imnaha River subbasin during the 2001 and 2002 migration years. A migration year for the Imnaha River is defined here as beginning July 31 of the previous year and ending July 30 the following year. The conclusion of the studies at the end of migration year 2002 marked the 11th year of the Nez Perce Tribe's Lower Snake River Emigration Studies. The Nez Perce Tribe has participated in the Fish Passage Center's Smolt Monitoring Program for nine of the 11 years. These studies collect and tag juvenile chinook salmon and steelhead at two locations in the fall, rkm 74 and rkm 7, and at rkm 7 during the spring. Data from captured and tagged fish provide an evaluation of hatchery production and releases strategies, post release survival of hatchery chinook salmon, abundance of natural chinook salmon, and downstream survival and arrival timing of natural and hatchery chinook salmon and steelhead. The hydrologic conditions that migrating fish encountered in 2001 were characterized as a drought and conditions in 2002 were characterized as below average. Hatchery chinook salmon had a mean fork length that was 34 mm greater in 2001 and 35 mm greater in 2002 than the mean fork length of natural chinook smolts. Hatchery steelhead smolt mean fork lengths were 39 mm greater than natural steelhead smolts in 2001 and 44 mm greater than natural steelhead smolt fork lengths in 2002. A significant difference (p < 0.05) between hatchery and natural chinook salmon and steelhead fork lengths has been documented by these emigration studies from 1997 to 2002. Hatchery chinook salmon were volitionally released in 2001 and 2002 and the 90% arrivals for 2001 and 2002 at the lower rkm 7 trap were within the range of past observations of 22 to 38 days observed in 1999 and 2000. We estimated that 93.9% of the 123,014 hatchery chinook salmon released in 2001 survived to the lower trap and 90.2% of the 303

  8. BPA genetic monitoring - BPA Genetic Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Initiated in 1989, this study monitors genetic changes associated with hatchery propagation in multiple Snake River sub-basins for Chinook salmon and steelhead. We...

  9. Stock Identification of Columbia River Chinook Salmon and Steelhead Trout, 1984-1985 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl B.; Sharpe, Cameron; Li, Hiram W. (Oregon State University, Oregon Cooperative Fishery Research Unit, Corvallis, OR)

    1985-09-21

    Fish were collected from 60 stocks of chinook salmon and 62 stocks of steelhead trout. Electrophoretic analyses were completed on 43 stocks of chinook salmon and 41 stocks of steelhead trout and meristic counts were completed on 43 stocks of chinook and 41 stocks of steelhead. Statistical comparisons between year classes of our electrophoretic data indicate that most enzyme systems are stable over time but some may be dynamic and should be used with caution in our analyses. We also compared neighboring stocks of both spring chinook and steelhead trout. These comparisons were between stocks of the same race from adjacent stream systems and/or hatcheries. Differences in isozyme gene frequencies can be used to estimate genetic segregation between pairs of stocks. Analysis of the chinook data suggests that, as expected, the number of statistically significant differences in isozyme gene frequencies increases as the geographic distance between stocks increases. The results from comparisons between adjacent steelhead stocks were inconclusive and must await final analysis with more data. Cluster analyses using either isozyme gene frequencies or meristic characters both tended to group the chinook and steelhead stocks by geographic areas and by race and both methods resulted in generally similar grouping patterns. However, cluster analyses using isozyme gene frequencies produced more clusters than the analyses using meristic characters probably because of the greater number of electrophoretic characters compared to the number of meristic characters. Heterozygosity values for each stock were computed using the isozyme gene frequencies. The highest heterozygosity values for chinook were observed in summer chinook and the hatchery stocks while the lowest values were observed in the spring chinook and wild stocks. The results of comparisons of heterozygosity values among areas were inconclusive. The steelhead heterozygosity values were higher in the winter stocks than in the

  10. Hood River and Pelton Ladder monitoring and evaluation project and Hood River fish habitat project : annual progress report 1999-2000.; ANNUAL

    International Nuclear Information System (INIS)

    Lambert, Michael B.; McCanna, Joseph P.; Jennings, Mick

    2001-01-01

    The Hood River subbasin is home to four species of anadromous salmonids: chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), steelhead (Oncorhynchus mykiss), and sea run cutthroat trout (Salmo clarki). Indigenous spring chinook salmon were extirpated during the late 1960's. The naturally spawning spring chinook salmon currently present in the subbasin are progeny of Deschutes stock. Historically, the Hood River subbasin hatchery steelhead program utilized out-of-basin stocks for many years. Indigenous stocks of summer and winter steelhead were listed in March 1998 by National Marine Fisheries Service (NMFS) under the Endangered Species Act (ESA) as a ''Threatened'' Species along with similar genetically similar steelhead in the Lower Columbia Basin. This annual report summarizes work for two consecutive contract periods: the fiscal year (FY) 1999 contract period was 1 October, 1998 through 30 September, 1999 and 1 October, 1999 through 30 September, 2000 for FY 2000. Work implemented during FY 1999 and FY 2000 included (1) acclimation of hatchery spring chinook salmon and hatchery summer and winter steelhead smolts, (2) spring chinook salmon spawning ground surveys on the West Fork Hood River (3) genetic analysis of steelhead and cutthroat[contractual service with the ODFW], (4) Hood River water temperature studies, (5) Oak Springs Hatchery (OSH) and Round Butte Hatchery (RBH) coded-wire tagging and clipping evaluation, (6) preparation of the Hood River Watershed Assessment (Coccoli et al., December 1999) and the Fish Habitat Protection, Restoration, and Monitoring Plan (Coccoli et al., February 2000), (7) project implementation of early action habitat protection and restoration projects, (8) Pelton Ladder evaluation studies, (9) management oversight and guidance to BPA and ODFW engineering on HRPP facilities, and (10) preparation of an annual report summarizing project objectives for FY 1999 and FY 2000

  11. Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Branstetter, Ryan; Whiteaker, John; Hatch, Douglas R. (Columbia River Inter-Tribal Fish Commission, Portland, OR)

    2006-01-01

    Iteroparity, the ability to repeat spawn, is a natural life history strategy that is expressed by some species from the family Salmonidae. Estimated rates of repeat spawning for post-development Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. It is expected that currently observed iteroparity rates for wild steelhead in the Basin are severely depressed due to development and operation of the hydropower system and various additional anthropogenic factors. Increasing the current expression of repeat spawning rates using fish culturing methods could be a viable technique to assist the recovery of depressed steelhead populations, and could help reestablish this naturally occurring life history trait. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and redevelop mature gonads. Reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia River Basin steelhead populations has prompted interest in developing reconditioning methods for wild steelhead populations within the Basin. To test kelt steelhead reconditioning as a potential recovery tool, wild emigrating steelhead kelts were placed into one of four study groups (in river release, direct capture and transport, short-term reconditioning, or long-term reconditioning). Steelhead kelts from the Yakima River were collected at the Chandler Juvenile Monitoring Facility (CJMF, located on the Yakima River at river kilometer 75.6) from 11 March to 23 June 2005. In total, 519 kelts were collected for reconditioning at Prosser Hatchery. Captive specimens represented 15.0% (519 of 3,451) of the entire 2004-2005 Yakima River wild steelhead population, based on fish ladder counts at Prosser Dam. Steelhead kelts were reconditioned in 20-foot circular tanks, and fed freeze-dried krill initially (first 2

  12. Salmonid Gamete Preservation in the Snake River Basin, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Young, William; Kucera, Paul

    2003-07-01

    In spite of an intensive management effort, chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) populations in the Northwest have not recovered and are currently listed as threatened species under the Endangered Species Act. In addition to the loss of diversity from stocks that have already gone extinct, decreased genetic diversity resulting from genetic drift and inbreeding is a major concern. Reduced population and genetic variability diminishes the environmental adaptability of individual species and entire ecological communities. The Nez Perce Tribe (NPT), in cooperation with Washington State University and the University of Idaho, established a germplasm repository in 1992 in order to preserve the remaining salmonid diversity in the region. The germplasm repository provides long-term storage for cryopreserved gametes. Although only male gametes can be cryopreserved, conserving the male component of genetic diversity will maintain future management options for species recovery. NPT efforts have focused on preserving salmon and steelhead gametes from the major river subbasins in the Snake River basin. However, the repository is available for all management agencies to contribute gamete samples from other regions and species. In 2002 a total of 570 viable semen samples were added to the germplasm repository. This included the gametes of 287 chinook salmon from the Lostine River, Catherine Creek, upper Grande Ronde River, Imnaha River (Lookingglass Hatchery), Lake Creek, South Fork Salmon River, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi River (Pahsimeroi Hatchery), and upper Salmon River (Sawtooth Hatchery) and the gametes of 280 steelhead from the North Fork Clearwater River (Dworshak Hatchery), Fish Creek, Little Sheep Creek, Pahsimeroi River (Pahsimeroi Hatchery) and Snake River (Oxbow Hatchery). In addition, gametes from 60 Yakima River spring chinook and 34 Wenatchee River coho salmon were added to the

  13. Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2008 Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Wayne H.; Schricker, Jaym' e; Ruzychi, James R. (Oregon Department of Fish and Wildlife)

    2009-02-13

    The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations remain depressed relative to historic levels and limited information is available for steelhead life history. Numerous habitat protection and rehabilitation projects have been implemented in the basin to improve salmonid freshwater production and survival. However, these projects often lack effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed programmatic or watershed (status and trend) information to help evaluate project-specific effectiveness monitoring efforts as well as meet some data needs as index stocks. Our continued monitoring efforts to estimate salmonid smolt abundance, age structure, SAR, smolts/redd, freshwater habitat use, and distribution of critical life states will enable managers to assess the long-term effectiveness of habitat projects and to differentiate freshwater and ocean survival. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the level of emphasis by the NWPPC Fish and Wildlife Program, Independent Scientific Advisory Board (ISAB), Independent Scientific Review Panel (ISRP), NOAA National Marine Fisheries Service (NMFS), and the Oregon Plan for Salmon and Watersheds (OWEB). Each of these groups have placed priority on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. The objective is to estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook Oncorhynchus tshawytscha and summer

  14. Relationship of external fish condition to pathogen prevalence and out-migration survival in juvenile steelhead

    Science.gov (United States)

    Hostetter, N.J.; Evans, A.F.; Roby, D.D.; Collis, K.; Hawbecker, M.; Sandford, B.P.; Thompson, D.E.; Loge, F.J.

    2011-01-01

    Understanding how the external condition of juvenile salmonids is associated with internal measures of health and subsequent out-migration survival can be valuable for population monitoring programs. This study investigated the use of a rapid, nonlethal, external examination to assess the condition of run-of-the-river juvenile steelhead Oncorhynchus mykiss migrating from the Snake River to the Pacific Ocean. We compared the external condition (e.g., body injuries, descaling, external signs of disease, fin damage, and ectoparasite infestations) with (1) the internal condition of a steelhead as measured by the presence of selected pathogens detected by histopathology and polymerase chain reaction analysis and (2) out-migration survival through the Snake and Columbia rivers as determined by passive integrated transponder (PIT) tag technology. The results from steelhead captured and euthanized (n = 222) at Lower Monumental Dam on the lower Snake River in 2008 indicated that external condition was significantly correlated with selected measures of internal condition. The odds of testing positive for a pathogen were 39.2, 24.3, and 5.6 times greater for steelhead with severe or moderate external signs of disease or more than 20% descaling, respectively. Capture-recapture models of 22,451 PIT-tagged steelhead released at Lower Monumental Dam in 2007-2009 indicated that external condition was significantly correlated with juvenile survival. The odds of outmigration survival for steelhead with moderate or severe external signs of disease, more than 20% descaling, or severe fin damage were 5.7, 4.9, 1.6, and 1.3 times lower, respectively, than those for steelhead without these external conditions. This study effectively demonstrated that specific measures of external condition were associated with both the internal condition and out-migration survival of juvenile steelhead. ?? American Fisheries Society 2011.

  15. Historical Population Structure of Central Valley Steelhead and Its Alteration by Dams

    Directory of Open Access Journals (Sweden)

    Steven T. Lindley

    2006-02-01

    Full Text Available Effective conservation and recovery planning for Central Valley steelhead requires an understanding of historical population structure. We describe the historical structure of the Central Valley steelhead evolutionarily significant unit using a multi-phase modeling approach. In the first phase, we identify stream reaches possibly suitable for steelhead spawning and rearing using a habitat model based on environmental envelopes (stream discharge, gradient, and temperature that takes a digital elevation model and climate data as inputs. We identified 151 patches of potentially suitable habitat with more than 10 km of stream habitat, with a total of 25,500 km of suitable habitat. We then measured the distances among habitat patches, and clustered together patches within 35 km of each other into 81 distinct habitat patches. Groups of fish using these 81 patches are hypothesized to be (or to have been independent populations for recovery planning purposes. Consideration of climate and elevation differences among the 81 habitat areas suggests that there are at least four major subdivisions within the Central Valley steelhead ESU that correspond to geographic regions defined by the Sacramento River basin, Suisun Bay area tributaries, San Joaquin tributaries draining the Sierra Nevada, and lower-elevation streams draining to the Buena Vista and Tulare basins, upstream of the San Joaquin River. Of these, it appears that the Sacramento River basin was the main source of steelhead production. Presently, impassable dams block access to 80% of historically available habitat, and block access to all historical spawning habitat for about 38% of the historical populations of steelhead.

  16. Factors Affecting Route Selection and Survival of Steelhead Kelts at Snake River Dams in 2012 and 2013

    Energy Technology Data Exchange (ETDEWEB)

    Harnish, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colotelo, Alison HA [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Xinya [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ham, Kenneth D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Zhiqun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    In 2012 and 2013, Pacific Northwest National Laboratory conducted a study that summarized the passage proportions and route-specific survival rates of steelhead kelts that passed through Federal Columbia River Power System (FCRPS) dams. To accomplish this, a total of 811 steelhead kelts were tagged with Juvenile Salmon Acoustic Telemetry System (JSATS) transmitters. Acoustic receivers, both autonomous and cabled, were deployed throughout the FCRPS to monitor the downstream movements of tagged-kelts. Kelts were also tagged with Passive Integrated Transponder tags to monitor passage through juvenile bypass systems and detect returning fish. The current study evaluated data collected in 2012 and 2013 to identify individual, behavioral, environmental and dam operation variables that were related to passage and survival of steelhead kelts that passed through FCRPS dams. Bayesian model averaging of multivariable logistic regression models was used to identify the environmental, temporal, operational, individual, and behavioral variables that had the highest probability of influencing the route of passage and the route-specific survival probabilities for kelts that passed Lower Granite (LGR), Little Goose (LGS), and Lower Monumental (LMN) dams in 2012 and 2013. The posterior probabilities of the best models for predicting route of passage ranged from 0.106 for traditional spill at LMN to 0.720 for turbine passage at LGS. Generally, the behavior (depth and near-dam searching activity) of kelts in the forebay appeared to have the greatest influence on their route of passage. Shallower-migrating kelts had a higher probability of passing via the weir and deeper-migrating kelts had a higher probability of passing via the JBS and turbines than other routes. Kelts that displayed a higher level of near-dam searching activity had a higher probability of passing via the spillway weir and those that did less near-dam searching had a higher probability of passing via the JBS and

  17. Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2005-2006 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Branstetter, Ryan; Whiteaker, John; Hatch, Douglas R. (Columbia River Inter-Tribal Fish Commission, Portland, OR)

    2006-12-01

    Iteroparity, the ability to repeat spawn, is a natural life history strategy that is expressed by some species from the family Salmonidae. Estimated rates of repeat spawning for post-development Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. It is expected that currently observed iteroparity rates for wild steelhead in the Basin are severely depressed due to development and operation of the hydropower system and various additional anthropogenic factors. Increasing the current expression of repeat spawning rates using fish culturing methods could be a viable technique to assist the recovery of depressed steelhead populations, and could help reestablish this naturally occurring life history trait. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and redevelop mature gonads. Reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia River Basin steelhead populations has prompted interest in developing reconditioning methods for wild steelhead populations within the Basin. To test kelt steelhead reconditioning as a potential recovery tool, wild emigrating steelhead kelts were placed into one of four study groups (in river release, direct capture and transport, short-term reconditioning, or long-term reconditioning). Steelhead kelts from the Yakima River were collected at the Chandler Juvenile Monitoring Facility (CJMF, located on the Yakima River at river kilometer 75.6) from 7 March to 8 June 2006. In total, 348 kelts were collected for reconditioning at Prosser Hatchery. Captive specimens represented 17.0% (348 of 2,002) of the entire 2005-2006 Yakima River wild steelhead population, based on fish ladder counts at Prosser Dam. Steelhead kelts were reconditioned in 20-foot circular tanks, and fed freeze-dried krill initially (first 2

  18. The effects of riverine physical complexity on anadromy and genetic diversity in steelhead or rainbow trout Oncorhynchus mykiss around the Pacific Rim.

    Science.gov (United States)

    McPhee, M V; Whited, D C; Kuzishchin, K V; Stanford, J A

    2014-07-01

    This study explored the relationship between riverine physical complexity, as determined from remotely sensed metrics, and anadromy and genetic diversity in steelhead or rainbow trout Oncorhynchus mykiss. The proportion of anadromy (estimated fraction of individuals within a drainage that are anadromous) was correlated with riverine complexity, but this correlation appeared to be driven largely by a confounding negative relationship between drainage area and the proportion of anadromy. Genetic diversity decreased with latitude, was lower in rivers with only non-anadromous individuals and also decreased with an increasing ratio of floodplain area to total drainage area. Anadromy may be less frequent in larger drainages due to the higher cost of migration associated with reaches farther from the ocean, and the negative relationship between genetic diversity and floodplain area may be due to lower effective population size resulting from greater population fluctuations associated with higher rates of habitat turnover. Ultimately, the relationships between riverine physical complexity and migratory life history or genetic diversity probably depend on the spatial scale of analysis. © 2014 The Fisheries Society of the British Isles.

  19. Genetic variation in steelhead (Salmo gairdneri) from the north coast of Washington

    Science.gov (United States)

    Reisenbichler, R.R.; Phelps, S.R.

    1989-01-01

    Steelhead (Salmo gairdneri) collected from various sites in nine drainages in northwestern Washington were genetically characterized at 65 protein-coding loci by starch-gel electrophoresis. Genetic differentiation within and among drainages was not significant, and genetic variation among drainages was much less than that reported in British Columbia; these results may be the consequence of gene flow from hatchery stocks that have been released in Washington since the 1940's. Allele frequencies varied significantly among year-classes (hence, genetic characterization studies must include data from several year-classes), and also between hatchery fish (including a stock developed with local wild fish) and wild fish, indicating that few wild fish have been successfully and routinely included in hatchery brood stocks. Conservation of genetic diversity along the north coast of Washington should be facilitated by reducing the numbers of hatchery fish that spawn in streams and by including wild fish in hatchery brood stocks.

  20. Natural Reproductive Success and Demographic Effects of Hatchery-Origin Steelhead in Abernathy Creek, Washington : Annual Report 2008.

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Fish & Wildlife Service, Abernathy Fish Technology Center

    2008-12-01

    Many hatchery programs for steelhead pose genetic or ecological risks to natural populations because those programs release or outplant fish from non-native stocks. The goal of many steelhead programs has been to simply provide 'fishing opportunities' with little consideration given to conservation concerns. For example, the Washington Department of Fish and Wildlife (WDFW) has widely propagated and outplanted one stock of winter-run steelhead (Chambers Creek stock) and one stock of summer-run steelhead (Skamania stock) throughout western Washington. Biologists and managers now recognize potential negative effects can occur when non-native hatchery fish interact biologically with native populations. Not only do non-native stocks pose genetic and ecological risks to naturally spawning populations, but non-native fish stray as returning adults at a much higher rate than do native fish (Quinn 1993). Biologists and managers also recognize the need to (a) maintain the genetic resources associated with naturally spawning populations and (b) restore or recover natural populations wherever possible. As a consequence, the U.S. Fish & Wildlife Service (USFWS) and the NOAA Fisheries have been recommending a general policy that discourages the use of non-native hatchery stocks and encourages development of native broodstocks. There are two primary motivations for these recommendations: (1) reduce or minimize potential negative biological effects resulting from genetic or ecological interactions between hatchery-origin and native-origin fish and (2) use native broodstocks as genetic repositories to potentially assist with recovery of naturally spawning populations. A major motivation for the captive-rearing work described in this report resulted from NOAA's 1998 Biological Opinion on Artificial Propagation in the Columbia River Basin. In that biological opinion (BO), NOAA concluded that non-native hatchery stocks of steelhead jeopardize the continued existence of

  1. Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hatch, Douglas R.; Branstetter, Ryan (Columbia River Inter-Tribal Fish Commission, Portland, OR); Blodgett, Joe (Yakama Nation, Toppenish, WA)

    2004-03-01

    Repeat spawning is a life history strategy that is expressed by some species from the family Salmonidae. Rates of repeat spawning for post-development Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. It is expected that currently observed iteroparity rates for wild steelhead in the Basin are severely depressed due to development and operation of the hydropower system and various additional anthropogenic factors. Increasing the natural expression of historical repeat spawning rates using fish culturing methods could be a viable technique to assist the recovery of depressed steelhead populations. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and redevelop mature gonads. Kelt reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia Basin steelhead populations has prompted interest in developing reconditioning methods for wild steelhead populations within the Basin. To test kelt steelhead reconditioning as a potential recovery tool, we captured wild emigrating steelhead kelts from the Yakima River and evaluated reconditioning (short and long-term) success and diet formulations at Prosser Hatchery on the Yakima River. Steelhead kelts from the Yakima River were collected at the Chandler Juvenile Monitoring Facility (CJMF, located on the Yakima River at river kilometer 75.6) from 12 March to 28 May 2003. In total, 690 kelts were collected for reconditioning at Prosser Hatchery. Captive specimens represented 30.8% (690 of 2,235) of the entire 2002-2003 Yakima River wild steelhead population, based on fish ladder counts at Prosser Dam. All steelhead kelts were reconditioned in circular tanks, fed freeze-dried krill and received hw-wiegandt multi vit dietary supplement; long-term steelhead kelts also received Moore-Clark pellets

  2. Population Structure of Columbia River Basin Chinook Salmon and Steelhead Trout, Technical Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, E.L.; National Science Foundation (U.S.)

    2002-08-01

    The population structure of chinook salmon and steelhead trout is presented as an assimilation of the life history forms that have evolved in synchrony with diverse and complex environments over their Pacific range. As poikilotherms, temperature is described as the overwhelming environmental influence that determines what life history options occur and where they are distributed. The different populations represent ecological types referred to as spring-, summer-, fall, and winter-run segments, as well as stream- and ocean-type, or stream- and ocean-maturing life history forms. However, they are more correctly described as a continuum of forms that fall along a temporal cline related to incubation and rearing temperatures that determine spawn timing and juvenile residence patterns. Once new habitats are colonized, members of the founding populations spread through adaptive evolution to assume complementary life history strategies. The related population units are collectively referred to as a metapopulation, and members most closely associated within common temporal and geographic boundaries are designated as first-order metapopulations. Population structure of chinook salmon and steelhead in the Columbia Basin, therefore, is the reflection of the genetic composition of the founding source or sources within the respective region, shaped by the environment, principally temperature, that defines life history evolutionary strategy to maximize fitness under the conditions delineated. The complexity of structure rests with the diversity of opportunities over the elevations that exist within the Basin. Consistent with natural selection, rather than simply attempting to preserve populations, the challenge is to provide opportunities to expand their range to new or restored habitat that can accommodate genetic adaptation as directional environmental changes are elaborated. Artificial propagation can have a critical role in this process, and the emphasis must be placed on

  3. Hood Canal Steelhead - Hood Canal Steelhead Supplementation Experiment

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hood Canal Steelhead Project is a 17-year before-after-control-impact experiment that tests the effects of supplementation on natural steelhead populations in...

  4. Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hatch, Douglas R.; Branstetter, Ryan (Columbia River Inter-Trial Fish Commission, Portland, OR); Blodgett, Joe (Yakama Nation, Toppenish, WA)

    2003-07-01

    Repeat spawning is a life history strategy that is expressed by some species from the family Salmonidae. Rates of repeat spawning for post-development Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. It is expected that currently observed iteroparity rates for wild steelhead in the Basin are severely depressed due to development and operation of the hydropower system and various additional anthropogenic factors. Increasing the natural expression of historical repeat spawning rates using fish culturing means could be a viable technique to assist the recovery of depressed steelhead populations. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and again develop mature gonads. Kelt reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia Basin steelhead populations has prompted interest in developing reconditioning methods for wild steelhead populations within the Basin. To test kelt steelhead reconditioning as a potential recovery tool, we captured wild emigrating steelhead kelts from the Yakima River and evaluated reconditioning (short and long-term) success and diet formulations at Prosser Hatchery on the Yakima River. Steelhead kelts from the Yakima River were collected at the Chandler Juvenile Evaluation Facility (CJEF, located at Yakima River kilometer 48) from March 12 to June 13, 2002. In total, 899 kelts were collected for reconditioning at Prosser Hatchery. Captive specimens represented 19.8% (899 of 4,525) of the entire 2001-2002 Yakima River wild steelhead population, based on fish ladder counts at Prosser Dam. Kelts were reconditioned in circular tanks and were fed freeze-dried krill, Moore-Clark pellets, altered Moore-Clark pellets (soaked in krill extract and dyed), or a combination of the altered Moore

  5. You Can't Unscramble an Egg: Population Genetic Structure of Oncorhynchus mykiss in the California Central Valley Inferred from Combined Microsatellite and Single Nucleotide Polymorphism Data

    Directory of Open Access Journals (Sweden)

    Devon E. Pearse

    2015-12-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2015v13iss4art3Steelhead/rainbow trout (Oncorhynchus mykiss are found in all of the major tributaries of the Sacramento and San Joaquin rivers, which flow through California’s Central Valley and enter the ocean through San Francisco Bay and the Golden Gate. This river system is heavily affected by water development, agriculture, and invasive species, and salmon and trout hatchery propagation has been occurring for over 100 years. We collected genotype data for 18 highly variable microsatellite loci and 95 single nucleotide polymorphisms (SNPs from more than 1,900 fish from Central Valley drainages to analyze genetic diversity, population structure, differentiation between populations above and below dams, and the relationship of Central Valley O. mykiss populations to coastal California steelhead. In addition, we evaluate introgression by both hatchery rainbow trout strains, which have primarily native Central Valley ancestry, and imported coastal steelhead stocks. In contrast to patterns typical of coastal steelhead, Central Valley O. mykiss above and below dams within the same tributary were not found to be each others’ closest relatives, and we found no relationship between genetic and geographic distance among below-barrier populations. While introgression by hatchery rainbow trout strains does not appear to be widespread among above-barrier populations, steelhead in the American River and some neighboring tributaries have been introgressed by coastal steelhead. Together, these results demonstrate that the ancestral population genetic structure that existed among Central Valley tributaries has been significantly altered in contemporary populations. Future conservation, restoration, and mitigation efforts should take this into account when working to meet recovery planning goals.

  6. Migration of steelhead - Genetic basis of migratory tendency and life history plasticity in Oncorhynchus mykiss

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Steelhead and rainbow trout are the same species. However, their life histories diverge - with steelhead undertaking an anadromous life cycle whereas rainbow trout...

  7. Hood River production program monitoring and evaluation. Report B: Hood River and Pelton Ladder. Annual report 1996

    International Nuclear Information System (INIS)

    Lambert, M.B.; Jennings, M.; McCanna, J.P.

    1996-01-01

    The Hood River Production Program (HRPP) is jointly implemented by the Confederated Tribes of the Warm Springs Reservation of Oregon (CTWS) and the Oregon Department of Fish and Wildlife (ODFW). The primary goals of the HRPP are (1) to re-establish naturally sustaining spring chinook salmon using Deschutes River stock in the Hood River subbasin, (2) rebuild naturally sustaining runs of summer and winter steelhead in the Hood River subbasin, (3) maintain the genetic characteristics of the populations, and (4) contribute to tribal and non-tribal fisheries, ocean fisheries, and the Northwest Power Planning Council's (NPPC) interim goal of doubling salmon runs

  8. River food webs: Incorporating nature’s invisible fabric into river management

    Science.gov (United States)

    Andrea Watts; Ryan Bellmore; Joseph Benjamin; Colden Baxter

    2018-01-01

    Increasing the population of spring Chinook salmon and summer steelhead in Washington state’s Methow River is a goal of the Upper Columbia Spring Chinook Salmon and Steelhead Recovery Plan. Spring Chinook salmon and summer steelhead are listed as endangered and threatened, respectively, under the Endangered Species Act. Installing logjams and...

  9. Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hatch, Douglas R.; Branstetter, Ryan; Whiteaker, John (Columbia River Inter-Tribal Fish Commission, Portland, OR)

    2004-11-01

    Iteroparity, the ability to repeat spawn, is a life history strategy that is expressed by some species from the family Salmonidae. Rates of repeat spawning for post-development Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. It is expected that currently observed iteroparity rates for wild steelhead in the Basin are severely depressed due to development and operation of the hydropower system and various additional anthropogenic factors. Increasing the expression of historical repeat spawning rates using fish culturing methods could be a viable technique to assist the recovery of depressed steelhead populations, and could help reestablish this naturally occurring life history trait. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and redevelop mature gonads. Kelt reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia River Basin steelhead populations has prompted interest in developing reconditioning methods for wild steelhead populations within the Basin. To test kelt steelhead reconditioning as a potential recovery tool, wild emigrating steelhead kelts were placed into one of three study groups (direct capture and transport, short-term reconditioning, or long-term reconditioning). Steelhead kelts from the Yakima River were collected at the Chandler Juvenile Monitoring Facility (CJMF, located on the Yakima River at river kilometer 75.6) from 15 March to 21 June 2004. In total, 842 kelts were collected for reconditioning at Prosser Hatchery. Captive specimens represented 30.5% (842 of 2,755) of the entire 2003-2004 Yakima River wild steelhead population, based on fish ladder counts at Prosser Dam. All steelhead kelts were reconditioned in 20-foot circular tanks, and fed freeze-dried krill initially or for the duration of the

  10. Passage survival of juvenile steelhead, coho salmon, and Chinook salmon in Lake Scanewa and at Cowlitz Falls Dam, Cowlitz River, Washington, 2010–16

    Science.gov (United States)

    Liedtke, Theresa L.; Kock, Tobias J.; Hurst, William

    2018-04-03

    A multi-year evaluation was conducted during 2010–16 to evaluate passage survival of juvenile steelhead (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), and coho salmon (O. kisutch) in Lake Scanewa, and at Cowlitz Falls Dam in the upper Cowlitz River Basin, Washington. Reservoir passage survival was evaluated in 2010, 2011, and 2016, and included the tagging and release of 1,127 juvenile salmonids. Tagged fish were released directly into the Cowlitz and Cispus Rivers, 22.3 and 8.9 km, respectively, upstream of the reservoir, and were monitored as they moved downstream into, and through the reservoir. A single release-recapture survival model was used to analyze detection records and estimate reservoir passage survival, which was defined as successful passage from reservoir entry to arrival at Cowlitz Falls Dam. Tagged fish generally moved quickly downstream of the release sites and, on average, arrived in the dam forebay within 2 d of release. Median travel time from release to first detection at the dam ranged from 0.23 to 0.96 d for juvenile steelhead, from 0.15 to 1.11 d for juvenile coho salmon, and from 0.18 to 1.89 d for juvenile Chinook salmon. Minimum reservoir passage survival probabilities were 0.960 for steelhead, 0.855 for coho salmon and 0.900 for Chinook salmon.Dam passage survival was evaluated at the pilot-study level during 2013–16 and included the tagging and release of 2,512 juvenile salmonids. Juvenile Chinook salmon were evaluated during 2013–14, and juvenile steelhead and coho salmon were evaluated during 2015–16. A paired-release study design was used that included release sites located upstream and downstream of Cowlitz Falls Dam. The downstream release site was positioned at the downstream margin of the dam’s tailrace, which allowed dam passage survival to be measured in a manner that included mortality that occurred in the passage route and in the dam tailrace. More than one-half of the tagged Chinook salmon (52 percent

  11. Development of a Progeny Marker for Steelhead; A Thesis submitted to Oregon State University.

    Energy Technology Data Exchange (ETDEWEB)

    Shippentower, Gene E. [Oregon State Univ., Corvallis, OR (United States)

    2009-04-15

    This study was undertaken to determine if strontium chloride could be used to create a trans-generational otolith mark in steelhead (Oncorhynchus mykiss). I completed two strontium injection trials and a survey of juvenile steelhead from various steelhead hatcheries. The two trials measured Sr:Ca ratios in otoliths in response to injections and the survey measured the natural variation in Sr:Ca ratios in otoliths of juvenile hatchery steelhead in response to the natural variation. In 2003, adult female Wallowa River, Oregon O. mykiss, were captured at the hatchery and evenly divided between a control group and two treatment groups. These females received an intraperitoneal injection of 1cc/500 g of body weight of a physiologically isotonic solution (0.9% saline) containing concentrations of 0 (control), 1000, or 5000 parts per million (ppm) of strontium chloride hexahydrate (SrCl2* 6H2O). Females were housed in a single outdoor tank until spawned artificially, and a distinct external tag identified each female within each treatment group. In 2004, female steelhead were captured throughout the duration of the adult returns to the Umatilla River basin and injected with 0, 1000, 5000, or 20,000-ppm strontium. In both trials, progeny of fish treated with strontium had significantly higher Sr:Ca ratios in the primordial region of their otoliths as measured using an electron wavelength dispersive microprobe. There was no difference in fertilization rates of eggs and survival rates of fry among treatment groups. Progeny from treated mothers were on average larger than progeny of untreated mothers. The Sr:Ca ratios in otoliths collected from various populations of steelhead were greater than the control values measured in both injections studies. This study suggests that the marking technique works and the utility for such a technique could be used for empirical observations in determining the relative fitness of progeny of adult hatchery origin fish

  12. Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hatch, Douglas R.; Anders, Paul J., Evans, Allen F. (Columbia River Inter-Tribal Fish Commission, Portland, OR)

    2002-12-01

    Repeat spawning is a life history strategy that is expressed by some species from the family Salmonidae. Rates of repeat spawning for post-development Columbia River steelhead (Oncorhynchus mykiss) populations range from 1.6 to 17%. It is expected that currently observed iteroparity rates for wild steelhead in the Basin are artificially and in some cases severely depressed due to development and operation of the hydropower system and various additional anthropogenic factors. Increasing the natural expression of historical repeat spawning rates using fish culturing means could be a viable technique to assist the recovery of depressed steelhead populations. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and again develop mature gonads. Kelt reconditioning techniques were initially developed for Atlantic salmon (Salmo salar) and sea-trout (S. trutta). The recent Endangered Species Act listing of many Columbia Basin steelhead populations has prompted interest in developing reconditioning methods for wild steelhead populations within the Basin. To address recovery, we captured wild emigrating steelhead kelts from the Yakima River and tested reconditioning and the effects of several diet formulations on its success at Prosser Hatchery on the Yakama Reservation. Steelhead kelts from the Yakima River were collected at the Chandler Juvenile Evaluation Facility (CJEF, located at Yakima River kilometer 48) from 12 March to 5 July 2001. Kelts were reconditioned in circular tanks and fed a mixed diet of starter paste, adult sized trout pellets, and freeze-dried krill. Formalin was used to control outbreaks of fungus and we tested the use of Ivermectin{trademark}to control internal parasites (e.g., Salmincola spp.). Surviving specimens were released for natural spawning in two groups on 15 November 2001 and 18 January 2002. Overall success of the reconditioning process was based on

  13. Summer Steelhead Distribution [ds341

    Data.gov (United States)

    California Natural Resource Agency — Summer Steelhead Distribution October 2009 Version This dataset depicts observation-based stream-level geographic distribution of anadromous summer-run steelhead...

  14. ASSESSING THE IMPORTANCE OF THERMAL REFUGE USE TO MIGRATING ADULT SALMON AND STEELHEAD

    Science.gov (United States)

    Salmon populations require river networks that provide water temperature regimes sufficient to support a diversity of salmonid life histories across space and time. The importance of cold water refuges for migrating adult salmon and steelhead may seem intuitive, and refuges are c...

  15. Escapement and Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2005-2006 Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Terra Lang; Wilson, Wayne H.; Ruzycki, James R. [Oregon Department of Fish and Wildlife

    2009-04-10

    The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations, however, remain depressed relative to historic levels. Between the completion of the life history and natural escapement study in 1984 and the start of this project in 1998, spring Chinook spawning surveys did not provide adequate information to assess age structure, progeny-to-parent production values, smolt-to-adult survival (SAR), or natural spawning escapement. Further, only very limited information is available for steelhead life history, escapement, and productivity measures in the John Day subbasin. Numerous habitat protection and rehabilitation projects to improve salmonid freshwater production and survival have also been implemented in the basin and are in need of effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed background information for developing context for project-specific effectiveness monitoring efforts. To meet the data needs as index stocks, to assess the long-term effectiveness of habitat projects, and to differentiate freshwater and ocean survival, sufficient annual estimates of spawner escapement, age structure, SAR, egg-to-smolt survival, smolt-per-redd ratio, and freshwater habitat use are essential. We have begun to meet this need through spawning ground surveys initiated for spring Chinook salmon in 1998 and smolt PIT-tagging efforts initiated in 1999. Additional sampling and analyses to meet these goals

  16. 76 FR 8345 - Endangered and Threatened Species; Recovery Plan Module for Columbia River Estuary Salmon and...

    Science.gov (United States)

    2011-02-14

    ... and Threatened Species; Recovery Plan Module for Columbia River Estuary Salmon and Steelhead AGENCY.... ACTION: Notice of availability; recovery plan module for Columbia River estuary salmon and steelhead... Plan Module for Salmon and Steelhead (Estuary Module). The Estuary Module addresses the estuary...

  17. Route-Specific Passage and Survival of Steelhead Kelts at The Dalles and Bonneville Dams, 2012 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rayamajhi, Bishes; Ploskey, Gene R.; Woodley, Christa M.; Weiland, Mark A.; Faber, Derek M.; Kim, Jin A.; Colotelo, Alison HA; Deng, Zhiqun; Fu, Tao

    2013-07-31

    This study was mainly focused on evaluating the route-specific passage and migration success of steelhead kelts passing downstream through The Dalles Dam (TDA) and Bonneville Dam (BON) at Columbia River (CR) river kilometers 309 and 234 respectively. Oregon Department of Fish and Wildlife (ODFW) personnel collected, tagged and released out-migrating steelhead kelts in the tributaries of the Deschutes River, 15 Mile Creek and Hood River between April 14 and June 4, 2012. A PIT tag was injected into each kelt’s dorsal sinus whereas a Juvenile Salmon Acoustic Telemetry System (JSATS) acoustic micro-transmitter was attached to an external FLoy T-bar tag and inserted into the dorsal back musculature using a Floy tagging gun. JSATS cabled arrays were deployed at TDA and BON and autonomous node arrays were deployed near Celilo, Oregon (CR325); the BON forebay (CR236); the BON tailrace (CR233); near Knapp, Washington (CR156); and near Kalama, Washington (CR113) to monitor the kelts movement while passing through the dams and above mentioned river cross-sections.

  18. Performance of a surface bypass structure to enhance juvenile steelhead passage and survival at Lower Granite Dam, Washington

    Science.gov (United States)

    Adams, Noah S.; Plumb, John M.; Perry, Russell W.; Rondorf, Dennis W.

    2014-01-01

    An integral part of efforts to recover stocks of Pacific salmon Oncorhynchus spp. and steelhead O. mykiss in Pacific Northwest rivers is to increase passage efficacy and survival of juveniles past hydroelectric dams. As part of this effort, we evaluated the efficacy of a prototype surface bypass structure, the removable spillway weir (RSW), installed in a spillbay at Lower Granite Dam, Washington, on the Snake River during 2002, 2003, 2005, and 2006. Radio-tagged juvenile steelhead were released upstream from the dam and their route of passage through the turbines, juvenile bypass, spillway, or RSW was recorded. The RSW was operated in an on-or-off condition and passed 3–13% of the total discharge at the dam when it was on. Poisson rate models were fit to the passage counts of hatchery- and natural-origin juvenile steelhead to predict the probability of fish passing the dam. Main-effect predictor variables were RSW operation, diel period, day of the year, proportion of flow passed by the spillway, and total discharge at the dam. The combined fish passage through the RSW and spillway was 55–85% during the day and 37–61% during the night. The proportion of steelhead passing through nonturbine routes was 95% when the RSW was on during the day. The ratio of the proportion of steelhead passed to the proportion of water passing the RSW was from 6.3:1 to 10.0:1 during the day and from 2.7:1 to 5.2:1 during the night. Steelhead passing through the RSW exited the tailrace about 15 min faster than fish passing through the spillway. Mark–recapture single-release survival estimates for steelhead passing the RSW ranged from 0.95 to 1.00. The RSW appeared to be an effective bypass structure compared with other routes of fish passage at the dam.

  19. COLUMBIA RIVER BASIN SALMON AND STEELHEAD: Federal Agencies' Recovery Responsibilities, Expenditures and Actions

    National Research Council Canada - National Science Library

    2002-01-01

    ..., and unfavorable weather and ocean conditions. The population decline has resulted in the listing of 12 salmon and steelhead populations in the basin as threatened or endangered under the Endangered...

  20. Using broad landscape level features to predict redd densities of steelhead trout (Oncorhynchus mykiss) and Chinook Salmon (Oncorhynchus tshawytscha) in the Methow River watershed, Washington

    Science.gov (United States)

    Romine, Jason G.; Perry, Russell W.; Connolly, Patrick J.

    2013-01-01

    We used broad-scale landscape feature variables to model redd densities of spring Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) in the Methow River watershed. Redd densities were estimated from redd counts conducted from 2005 to 2007 and 2009 for steelhead trout and 2005 to 2009 for spring Chinook salmon. These densities were modeled using generalized linear mixed models. Variables examined included primary and secondary geology type, habitat type, flow type, sinuosity, and slope of stream channel. In addition, we included spring effect and hatchery effect variables to account for high densities of redds near known springs and hatchery outflows. Variables were associated with National Hydrography Database reach designations for modeling redd densities within each reach. Reaches were assigned a dominant habitat type, geology, mean slope, and sinuosity. The best fit model for spring Chinook salmon included sinuosity, critical slope, habitat type, flow type, and hatchery effect. Flow type, slope, and habitat type variables accounted for most of the variation in the data. The best fit model for steelhead trout included year, habitat type, flow type, hatchery effect, and spring effect. The spring effect, flow type, and hatchery effect variables explained most of the variation in the data. Our models illustrate how broad-scale landscape features may be used to predict spawning habitat over large areas where fine-scale data may be lacking.

  1. Hood River and Pelton Ladder Evaluation Studies, 2008 Annual Report : October 2007 - September 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Reagan, Robert E.; Olsen, Erik A. [Oregon Department of Fish and Wildlife

    2009-09-28

    This report summarizes the life history and production data collected in the Hood River subbasin during FY 2008. Included is a summary of jack and adult life history data collected at the Powerdale Dam trap on seventeen complete run years of winter steelhead, spring and fall chinook salmon, and coho salmon, and on fifteen complete run years of summer steelhead. Also included are summaries of (1) the hatchery winter steelhead broodstock collection program; (2) hatchery production releases in the Hood River subbasin; (3) subbasin wild summer and winter steelhead smolt production, (4) numbers of hatchery summer and winter steelhead smolts leaving the subbasin; (5) smolt migration timing past Bonneville Dam, (6) wild and hatchery steelhead smolt-to-adult survival rates; (7) wild summer and winter steelhead egg to smolt survival rates; and (8) streamflow at selected locations in the Hood River subbasin. Data will be used in part to (1) evaluate the HRPP relative to its impact on indigenous populations of resident and anadromous salmonids (see Ardren Draft), (2) evaluate the HRPP's progress towards achieving the biological fish objectives defined in the Hood River Subbasin Plan (Coccoli 2004) and the Revised Master Plan for the Hood River Production Program (HDR|FishPro, ODFW, and CTWSRO 2008), (3) refine spawner escapement objectives to more accurately reflect subbasin carrying capacity, and (4) refine estimates of subbasin smolt production capacity to more accurately reflect current and potential subbasin carrying capacity.

  2. Wind River Watershed Restoration 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.; Jezorek, Ian G. [U.S. Geological Survey

    2008-11-10

    During 2004, researchers from U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. Juvenile salmonid population surveys were conducted within select study areas throughout the subbasin. We expanded our survey coverage of the mainstem Wind River to a reach in the vicinity of Carson National Fish Hatchery to assess effects of non-indigenous Chinook on native steelhead. These efforts add to a database of habitat and fish data collected in the Wind River since 1996. This research contributes to the Wind River Restoration Project, which includes active stream habitat restoration and monitoring of adult and juvenile steelhead populations. We maintained a network of 32 thermographs in the Wind River subbasin during 2004. Additionally, Underwood Conservation District provided us with data from seven thermographs that they maintained during 2004. Thermograph data are identifying areas with chronic high water temperatures and stream sections where high rates of warming are occurring. During 2004, water temperatures at 26 thermograph sites exceeded the 16 C limit for surface waters set by the Washington Department of Ecology. Water temperatures exceeded 20 C at five sites in the Trout Creek watershed. Our thermograph dataset includes information from as early as 1996 at some sites and has become a valuable long-term dataset, which will be crucial in determining bioenergetic relationships with habitat and life-histories. We have monitored salmonid populations throughout the Wind River subbasin by electrofishing and snorkeling. We electrofished four stream sections for population estimates during 2004. In these sections, and others where we simply collected fish without a population estimate, we tagged juvenile steelhead and Chinook salmon with Passive Integrated Transponder

  3. Monitoring of downstream salmon and steelhead at federal hydroelectric facilities, 1991

    International Nuclear Information System (INIS)

    Hawkes, L.A.; Martinson, R.D.; Smith, W.W.

    1992-04-01

    The 1991 smolt monitoring project of the National Marine Fisheries Service provided data on the seaward migration of juvenile salmon and steelhead at John Day, The Dalles and Bonneville Dams. All pertinent fish capture and condition data as well as dam operations and river flow data were provided to Fish Passage Center for use in developing fish passage indices and migration timing, and for water budget and spill management

  4. Physiological indices of seawater readiness in postspawning steelhead kelts

    Science.gov (United States)

    Buelow, Jessica; Moffitt, Christine M.

    2015-01-01

    Management goals to improve the recovery of steelhead (Oncorhynchus mykiss) stocks at risk of extinction include increasing the proportion of postspawning fish that survive and spawn again. To be successful, postspawning steelhead (kelts) migrating downstream to the ocean must prepare physiologically and physically for a seawater transition. We sampled blood, gill filaments, and evaluated the external condition of migrating kelts from an ESA-listed population in the Snake/Columbia River system over two consecutive years to evaluate their physiological readiness for transition to seawater. We chose attributes often considered as measures of preparation for seawater in juveniles, including gill Na+,K+ ATPase activity, plasma electrolytes and hormones to consider factors related to external condition, size and sex. We found kelts in good external condition had plasma profiles similar to downstream-migrating smolts. In addition, we found more than 80% of kelts ranked in good external condition had smolt-like body silvering. We compared measures from migrating kelts with samples obtained from hatchery fish at the time of spawning to confirm that Na+, K+ ATPase activity in kelts was significantly elevated over spawning fish. We found significant differences in gill Na+, K+ ATPase activity in migrating kelts between the years of sampling, but little indication of influence of fish condition. We conclude that the postspawning steelhead sampled exhibited a suite of behaviours, condition and physiology characteristic of fish prepared for successful transition to a seawater environment.

  5. Steelhead Critical Habitat, Coast - NOAA [ds122

    Data.gov (United States)

    California Department of Resources — This layer depicts areas designated for Steelhead Critical Habitat as well as habitat type and quality in the Coastal California Steelhead ESUs (evolutionarily...

  6. Wild steelhead studies. 1993 Annual report

    International Nuclear Information System (INIS)

    Holubetz, T.B.

    1995-11-01

    Significant progress was attained in implementing the complex and challenging studies of wild steelhead Oncorhynchus mykiss production in Idaho. Study sites were selected and techniques were developed to collect the needed data in remote wilderness locations. Cursory examination of existing data provides indication that most wild steelhead stocks are under escaped, especially the Group B stocks. Abundance of wild steelhead is generally declining in recent years. The portable weir concept and electronic fish counting developed through this project have been well received by land owners and reviewing governmental agencies with less impact to the land, stream, and fishery resources than conventional permanent weirs

  7. Juvenile salmonid monitoring in the White Salmon River, Washington, post-Condit Dam removal, 2016

    Science.gov (United States)

    Jezorek, Ian G.; Hardiman, Jill M.

    2017-06-23

    2010, though age-1 and older O. mykiss abundance was similar. In Rattlesnake Creek, age-0 O. mykiss abundance during 2016 slightly exceeded the mean abundance from 2001 through 2005, although age-1 and older O. mykiss abundance was lower than from 2001 through 2005. These sampling efforts also provided the opportunity to collect genetic samples to investigate parental and stock origin, although funding to analyze the samples was not part of this grant. Juvenile salmonid sampling efforts during 2016 have shown that natural spawning produced steelhead and coho smolts and that coho were colonizing some tributaries. The 2016 efforts also provided the first post-dam juvenile abundance estimates. We hope to continue monitoring to better understand abundance trends, distribution, and life history patterns of recolonizing salmonids in the White Salmon River to assess efficacy of natural recolonization and to inform management decisions.

  8. Spatial segregation of spawning habitat limits hybridization between sympatric native Steelhead and Coastal Cutthroat Trout

    Science.gov (United States)

    Buehrens, T.W.; Glasgow, J.; Ostberg, Carl O.; Quinn, T.P.

    2013-01-01

    Native Coastal Cutthroat Trout Oncorhynchus clarkii clarkii and Coastal Steelhead O. mykiss irideus hybridize naturally in watersheds of the Pacific Northwest yet maintain species integrity. Partial reproductive isolation due to differences in spawning habitat may limit hybridization between these species, but this process is poorly understood. We used a riverscape approach to determine the spatial distribution of spawning habitats used by native Coastal Cutthroat Trout and Steelhead as evidenced by the distribution of recently emerged fry. Molecular genetic markers were used to classify individuals as pure species or hybrids, and individuals were assigned to age-classes based on length. Fish and physical habitat data were collected in a spatially continuous framework to assess the relationship between habitat and watershed features and the spatial distribution of parental species and hybrids. Sampling occurred in 35 reaches from tidewaters to headwaters in a small (20 km2) coastal watershed in Washington State. Cutthroat, Steelhead, and hybrid trout accounted for 35%, 42%, and 23% of the fish collected, respectively. Strong segregation of spawning areas between Coastal Cutthroat Trout and Steelhead was evidenced by the distribution of age-0 trout. Cutthroat Trout were located farther upstream and in smaller tributaries than Steelhead were. The best predictor of species occurrence at a site was the drainage area of the watershed that contributed to the site. This area was positively correlated with the occurrence of age-0 Steelhead and negatively with the presence of Cutthroat Trout, whereas hybrids were found in areas occupied by both parental species. A similar pattern was observed in older juveniles of both species but overlap was greater, suggesting substantial dispersal of trout after emergence. Our results offer support for spatial reproductive segregation as a factor limiting hybridization between Steelhead and Coastal Cutthroat Trout.

  9. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix D: Natural River Drawdown Engineering

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  10. Wind River Watershed Restoration Project; Underwood Conservation District, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    White, Jim

    2004-02-01

    The goal of the Wind River project is to preserve, protect and restore Wind River steelhead. In March, 1998, the National Marine Fisheries Service listed the steelhead of the lower Columbia as 'threatened' under the Endangered Species Act. In 1997, the Washington Department of Fish and Wildlife rated the status of the Wind River summer run steelhead as critical. Due to the status of this stock, the Wind River summer steelhead have the highest priority for recovery and restoration in the state of Washington's Lower Columbia Steelhead Conservation Initiative. The Wind River Project includes four cooperating agencies. Those are the Underwood Conservation District (UCD), United States Geological Service (USGS), US Forest Service (USFS), and Washington State Department of Fish & Wildlife (WDFW). Tasks include monitoring steelhead populations (USGS and WDFW), Coordinating a Watershed Committee and Technical Advisory Group (UCD), evaluating physical habitat conditions (USFS and UCD), assessing watershed health (all), reducing road sediments sources (USFS), rehabilitating riparian corridors, floodplains, and channel geometry (UCD, USFS), evaluate removal of Hemlock Dam (USFS), and promote local watershed stewardship (UCD, USFS). UCD's major efforts have included coordination of the Wind River Watershed Committee and Technical Advisory Committee (TAC), water temperature and water chemistry monitoring, riparian habitat improvement projects, and educational activities. Our coordination work enables the local Watershed Committee and TAC to function and provide essential input to Agencies, and our habitat improvement work focuses on riparian revegetation. Water chemistry and temperature data collection provide information for monitoring watershed conditions and fish habitat, and are comparable with data gathered in previous years. Water chemistry information collected on Trout Creek should, with 2 years data, determine whether pH levels make conditions

  11. Biological and Physical Inventory of the Streams within the Nez Perce Reservation; Juvenile Steelhead Survey and Factors that Affect Abundance in Selected Streams in the Lower Clearwater River Basin, Idaho, 1983-1984 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kucera, Paul A.; Johnson, David B. (Nez Perce Tribe, Lapwai, ID)

    1986-08-01

    A biological and physical inventory of selected tributaries in the lower Clearwater River basin was conducted to collect information for the development of alternatives and recommendations for the enhancement of the anadromous fish resources in streams on the Nez Perce Reservation. Five streams within the Reservation were selected for study: Bedrock and Cottonwood Creeks were investigated over a two year period (1983 to 1984) and Big Canyon, Jacks and Mission Creeks were studied for one year (1983). Biological information was collected and analyzed on the density, biomass, production and outmigration of juvenile summer steelhead trout. Physical habitat information was collected on available instream cover, stream discharge, stream velocity, water temperature, bottom substrate, embeddedness and stream width and depth. The report focuses on the relationships between physical stream habitat and juvenile steelhead trout abundance.

  12. Hood River Production Program Monitoring and Evaluation (M&E) - Confederated Tribes of Warm Springs : Annual Report For Fiscal Year, October 2007 – September 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Gerstenberger, Ryan [Confederated Tribes of Warm Springs Reservation

    2009-07-27

    This progress report describes work performed by the Confederated Tribes of Warm Springs (CTWSRO) portion of the Hood River Production Program Monitoring and Evaluation Project (HRPP) during the 2008 fiscal year. A total of 64,736 hatchery winter steelhead, 12,108 hatchery summer steelhead, and 68,426 hatchery spring Chinook salmon smolts were acclimated and released in the Hood River basin during the spring. The HRPP exceeded program goals for a release of and 50,000 winter steelhead but fell short of the steelhead release goals of 30,000 summer steelhead and 75,000 spring Chinook in 2008. Passive Integrated Transponders (PIT) tags were implanted in 6,652 hatchery winter steelhead, and 1,196 hatchery summer steelhead, to compare migratory attributes and survival rates of hatchery fish released into the Hood River. Water temperatures were recorded at six locations within the Hood River subbasin to monitor for compliance with Oregon Department of Environmental Quality water quality standards. A preseason spring Chinook salmon adult run forecast was generated, which predicted an abundant return adequate to meet escapement goal and brood stock needs. As a result the tribal and sport fisheries were opened. A tribal creel was conducted from May 22 to July 18 during which an estimated 172 spring Chinook were harvested. One hundred sixteen Spring Chinook salmon redds were observed and 72 carcasses were inspected on 19.4 miles of spawning grounds throughout the Hood River Basin during 2008. Annual salvage operations were completed in two irrigation canals resulting in the liberation of 1,641 fish back to the Hood River.

  13. StreamNet: Report on the status of salmon and steelhead in the Columbia River Basin -- 1995

    International Nuclear Information System (INIS)

    Anderson, D.A.; Christofferson, G.; Beamesderfer, R.; Woodard, B.; Rowe, M.; Hansen, J.

    1996-04-01

    Information on fish populations, fisheries, and fish habitat is crucial to the success of ongoing program to protect, recover, enhance, and manage fish resources in the Columbia River Basin. However, pertinent data are often difficult to locate because it is scattered among many agencies and is often unpublished. The goal of this annual report is to bring many diverse data types and sources into a single comprehensive report on the status of anadromous fish runs in the Columbia River Basin and the environmental conditions that may affect that status. Brief summaries are provided to identify the type and scope of available information. This synopsis is intended to complement other more detailed reports to which readers are referred for comprehensive treatment of specific subjects. This first report focuses mainly on anadromous salmon and steelhead (primarily through 1994) but the authors intend to expand the scope of future issues to include resident species. This is the first of what the authors intend to be an annual report. They welcome constructive suggestions for improvements. This report is a product of the StreamNet (formerly Coordinated Information System and Northwest Environmental Data Base) project which is a part of the Bonneville Power Administration's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The project is called for in the Fish and Wildlife Program of the Northwest Power Planning Council. The project's objective is to promote exchange and dissemination of information in a standardized electronic format throughout the basin. This project is administered by the Pacific States Marine Fisheries Commission with active participation by tribal, state, and federal fish and wildlife agencies

  14. Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dalles Dam, Spring 2011

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, John R.; Townsend, Richard L.; Seaburg, Adam; Johnson, Gary E.; Ploskey, Gene R.; Carlson, Thomas J.

    2012-06-12

    The study estimated dam passage survival at The Dalles Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and provided additional performance measures as stipulated in the Columbia Basin Fish Accords. This summary report focuses on spring run stocks, yearling Chinook salmon and steelhead.

  15. Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dales Dam, Spring 2011

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, John R.; Townsend, Richard L.; Seaburg, Adam; Johnson, Gary E.; Ploskey, Gene R.; Carlson, Thomas J.

    2012-02-01

    The study estimated dam passage survival at The Dalles Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and provided additional performance measures as stipulated in the Columbia Basin Fish Accords. This summary report focuses on spring run stocks, yearling Chinook salmon and steelhead.

  16. Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Allen F.; Beaty, Roy E.; Hatch, Douglas R. (Columbia River Inter-Tribal Fish Commission, Portland, OR)

    2001-12-01

    Repeat spawning is a life history strategy that is expressed by some species from the family salmonidae. Natural rates of repeat spawning for Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. Increasing this repeat spawning rate using fish culture techniques could assist the recovery of depressed steelhead populations. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to grow and develop mature gonads. Kelt reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia Basin steelhead populations has prompted interest in developing reconditioning methods for local populations. The primary purpose of this project in 2000 was to test the general feasibility of collecting, feeding, and treating steelhead kelts in a captive environment. Steelhead kelts were collected from the Yakima River at the Chandler Juvenile Evaluation Facility (Rkm 48) from 12 March to 13 June 2000. Kelts were reconditioned at adjacent Prosser Hatchery in both rectangular and circular tanks and fed a mixed diet of starter paste, adult sized trout pellets, and freeze-dried krill. Formalin was used to control outbreaks of fungus, and we tested the use of ivermectin to control internal parasites (e.g., Salmincola spp.). Some the kelts that died during the reconditioning process were analyzed via pathology and gonad histology to ascertain the possible cause of death and to describe their reproductive development at the time of death. All surviving specimens were released for natural spawning on 12 December 2000. Overall success of the reconditioning process was based on the proportion of fish that survived captivity, gained weight, and on the number of fish that successfully underwent gonadal recrudescence. Many of the reconditioned kelts were radio tagged to assess their spawning migration behavior and

  17. Hood River and Pelton Ladder Evaluation Studies, Annual Report 2000-2001.

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Erik

    2009-09-01

    The Bonneville Power Administration (BPA) funded the development of two master plans which outline the rationale, and general approach, for implementing a defined group of projects that are an integral part of a comprehensive watershed goal to 'Protect, enhance and restore wild and natural populations of anadromous and resident fish within the Hood River Subbasin'. The Hood River Production Master Plan and the Pelton Ladder Master Plan were completed in 1991 and subsequently approved by the Northwest Power Planning Council in 1992. Action items identified in the two master plans, as well as in a later document entitled 'Hood River/Pelton Ladder Master Agreement' (ODFW and CTWSRO Undated), are designed to achieve two biological fish objectives: (1) to increase production of wild summer and winter steelhead (Oncorhynchus mykiss) to levels commensurate with the subbasins current carrying capacity and (2) re-establishing a self-sustaining population of spring chinook salmon (Oncorhynchus tshawytscha). Numerical fish objectives for subbasin escapement, spawner escapement, and subbasin harvest are defined for each of these species in Coccoli (2000). Several projects are presently funded by the BPA to achieve the Hood River subbasin's numerical fish objectives for summer and winter steelhead and spring chinook salmon. They include BPA project numbers 1998-021-00 (Hood River Fish Habitat), 1998-053-03 (Hood River Production Program - CTWSRO: M&E), 1998-053-07 (Parkdale Fish Facility), 1998-053-08 (Powerdale/Oak Springs O&M), and 1998-053-12 (Hood River Steelhead Genetics Study). Collectively, they are implemented under the umbrella of what has come to be defined as the Hood River Production Program (HRPP). The HRPP is jointly implemented by the Oregon Department of Fish and Wildlife (ODFW) and The Confederated Tribes of the Warm Springs Reservation of Oregon (CTWSRO). Strategies for achieving the HRPP's biological fish objectives for the Hood

  18. Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at Bonneville Dam, Spring 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Faber, Derrek M.; Weiland, Mark A.; Carlson, Thomas J.

    2012-09-01

    The purpose of this study was to estimate the survival for yearling Chinook salmon and steelhead smolts during spring 2010 in a portion of the Columbia River that includes Bonneville Dam. The study estimated smolt survival from a virtual release at Bonneville Dam to a survival array 81 km downstream of Bonneville Dam. We also estimated median forebay residence time, median tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. A single release design was used to estimate survival from Bonneville Dam to a primary array located 81 km downstream of Bonneville. The approach did not include a reference tailrace release. Releases of acoustic-tagged smolts above John Day Dam to Hood River contributed to the formation of virtual releases at a Bonneville Dam forebay entrance array and at the face of the dam. A total of 3,880 yearling Chinook salmon and 3,885 steelhead smolts were tagged and released in the investigation. The Juvenile Salmon Acoustic Telemetry System (JSATS) tag model number ATS-156dB, weighing 0.438 g in air, was used in this investigation.

  19. Salish Sea Marine Survival (Steelhead) - Early Marine Survival of Puget Sound Steelhead

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The primary objectives of this study are to estimate a predation rate by harbor seals on steelhead smolt in Puget Sound, and determine whether predation by harbor...

  20. Kelt reconditioning : A research project to enhance iteroparity in Columbia Basin steelhead (Oncorhynchus mykiss) : Annual report 2000; ANNUAL

    International Nuclear Information System (INIS)

    Evans, Allen F.

    2001-01-01

    Repeat spawning is a life history strategy that is expressed by some species from the family salmonidae. Natural rates of repeat spawning for Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. Increasing this repeat spawning rate using fish culture techniques could assist the recovery of depressed steelhead populations. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to grow and develop mature gonads. Kelt reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia Basin steelhead populations has prompted interest in developing reconditioning methods for local populations. The primary purpose of this project in 2000 was to test the general feasibility of collecting, feeding, and treating steelhead kelts in a captive environment. Steelhead kelts were collected from the Yakima River at the Chandler Juvenile Evaluation Facility (Rkm 48) from 12 March to 13 June 2000. Kelts were reconditioned at adjacent Prosser Hatchery in both rectangular and circular tanks and fed a mixed diet of starter paste, adult sized trout pellets, and freeze-dried krill. Formalin was used to control outbreaks of fungus, and we tested the use of ivermectin to control internal parasites (e.g., Salmincola spp.). Some the kelts that died during the reconditioning process were analyzed via pathology and gonad histology to ascertain the possible cause of death and to describe their reproductive development at the time of death. All surviving specimens were released for natural spawning on 12 December 2000. Overall success of the reconditioning process was based on the proportion of fish that survived captivity, gained weight, and on the number of fish that successfully underwent gonadal recrudescence. Many of the reconditioned kelts were radio tagged to assess their spawning migration behavior and

  1. Umatilla River Fish Passage Operations Program, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2004-03-01

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from August 17, 2002 to September 29, 2003. A total of 3,080 summer steelhead (Oncorhynchus mykiss); 1716 adult, 617 jack, and 1,709 subjack fall chinook (O. tshawytscha); 3,820 adult and 971 jack coho (O. kisutch); and 3,607 adult and 135 jack spring chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 6 summer steelhead and 330 adult and 49 jack spring chinook were hauled upstream from Threemile Dam. There were 2,882 summer steelhead; 1161 adult, 509 jack and 1,546 subjack fall chinook; 3,704 adult and 915 jack coho; and 2,406 adult and 31 jack spring chinook either released at, or allowed to volitionally migrate past, Threemile Dam. Also, 109 summer steelhead; 532 adult and 32 jack fall chinook; and 560 adult and 28 jack spring chinook were collected for brood. In addition, 282 spring chinook were collected for the outplanting efforts in the Walla Walla Basin. The Westland Canal juvenile facility (Westland), located near the town of Echo at rivermile (RM) 27, is the major collection point for outmigrating juvenile salmonids and steelhead kelts. The canal was open for 159 days between January 27 and July 4, 2003. During that period, fish were bypassed back to the river 145 days and were trapped 11 days. An estimated 205 pounds of juvenile fish were transported from Westland to the Umatilla River boat ramp (RM 0.5). Approximately 82% of the juveniles transported were salmonids. No steelhead kelts were hauled from Westland this year. The Threemile Dam west bank juvenile bypass was opened on September 16, 2002. and continued until November 1, 2002. The bypass was reopened March 3, 2003 and ran until July 3, 2003. The juvenile trap was operated by the Umatilla Passage Evaluation

  2. Evaluation of the Reproductive Success of Wild and Hatchery Steelhead in Hatchery and Natural and Hatchery Environments : Annual Report for 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Thomas P.; Seamons, todd; Hauser, Lorenz; Naish, Kerry

    2008-12-05

    This report summarizes the field, laboratory, and analytical work from December 2007 through November 2008 on a research project that investigates interactions and comparative reproductive success of wild and hatchery origin steelhead (Oncorhynchus mykiss) trout in Forks Creek, a tributary of the Willapa River in southwest Washington. First, we continued to successfully sample hatchery and wild (i.e., naturally spawned) adult and wild smolt steelhead at Forks Creek. Second, we revealed microsatellite genotype data for adults and smolts through brood year 2008. Finally, four formal scientific manuscripts were published in 2008 and two are in press, one is in revision and two are in preparations.

  3. Salmonid Gamete Preservation in the Snake River Basin, 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul A. (Nez Perce Tribe, Lapwai, ID)

    1999-03-01

    Steelhead (Oncorhynchus mykiss) and salmon (Oncorhynchus tshawytscha)populations in the Northwest are decreasing. The Nez Perce Tribe (Tribe) was funded in 1998 by the Bonneville Power Administration to coordinate gene banking of male gametes from Endangered Species Act (ESA) listed steelhead and spring and summer chinook salmon in the Snake River basin.

  4. Puget Sound steelhead life cycle model analyses - Population Viability Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This research was initiated by the Puget Sound Steelhead Technical Recovery Team to develop viability criteria for threatened Puget Sound steelhead and to support...

  5. Hood River Production Program Review, Final Report 1991-2001.

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, Keith; Chapman, Colin; Ackerman, Nicklaus

    2003-12-01

    This document provides a comprehensive review of Bonneville Power Administration (BPA) funded activities within the Hood River Basin from 1991 to 2001. These activities, known as the Hood River Production Program (HRPP), are intended to mitigate for fish losses related to operation of federal dams in the Columbia River Basin, and to contribute to recovery of endangered and/or threatened salmon and steelhead, as directed by Nation Oceanic and Atmospheric Administration - Fisheries (NOAA Fisheries). The Environmental Impact Statement (EIS) for the HRPP, which authorized BPA to fund salmon and steelhead enhancement activities in the Hood River Basin, was completed in 1996 (BPA 1996). The EIS specified seven years of monitoring and evaluation (1996-2002) after program implementation to determine if program actions needed modification to meet program objectives. The EIS also called for a program review after 2002, that review is reported here.

  6. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix L: Lower Snake River Mitigation History and Status. Appendix M: Fish and Wildlife Coordination Act Report

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  7. White River Falls Fish Passage Project, Tygh Valley, Oregon : Final Technical Report, Volume III, Appendix B, Fisheries Report; Appendix C, Engineering Alternative Evaluation; Appendix D, Benefit/Cost Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Oregon. Dept. of Fish and Wildlife; Mount Hood National Forest (Or.)

    1985-06-01

    Studies were conducted to describe current habitat conditions in the White River basin above White River Falls and to evaluate the potential to produce anadromous fish. An inventory of spawning and rearing habitats, irrigation diversions, and enhancement opportunities for anadromous fish in the White River drainage was conducted. Survival of juvenile fish at White River Falls was estimated by releasing juvenile chinook and steelhead above the falls during high and low flow periods and recapturing them below the falls in 1983 and 1984. Four alternatives to provide upstream passage for adult salmon and steelhead were developd to a predesign level. The cost of adult passage and the estimated run size of anadromous fish were used to determine the benefit/cost of the preferred alternative. Possible effects of the introduction of anadromous fish on resident fish and on nearby Oak Springs Hatchery were evaluated. This included an inventory of resident species, a genetic study of native rainbow, and the identification of fish diseases in the basin. This volume contains appendices of habitat survey data, potential production, resident fish population data, upstream passage designs, and benefit/cost calculations. (ACR)

  8. Climate variables explain neutral and adaptive variation within salmonid metapopulations: The importance of replication in landscape genetics

    Science.gov (United States)

    Hand, Brian K.; Muhlfeld, Clint C.; Wade, Alisa A.; Kovach, Ryan; Whited, Diane C.; Narum, Shawn R.; Matala, Andrew P.; Ackerman, Michael W.; Garner, B. A.; Kimball, John S; Stanford, Jack A.; Luikart, Gordon

    2016-01-01

    Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population-specific and pairwise FST) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, USA. Using 151 putatively neutral and 29 candidate adaptive SNP loci, we found that climate-related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables and FST across all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin-wide to the metapopulation scale). Sensitivity analysis (leave-one-population-out) revealed consistent relationships between climate variables and FST within three metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (N = 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.

  9. Analysis of Salmon and Steelhead Supplementation, 1990 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William H.; Coley, Travis C.; Burge, Howard L.

    1990-09-01

    Supplementation or planting salmon and steelhead into various locations in the Columbia River drainage has occurred for over 100 years. All life stages, from eggs to adults, have been used by fishery managers in attempts to establish, rebuild, or maintain anadromous runs. This report summarizes and evaluates results of past and current supplementation of salmon and steelhead. Conclusions and recommendations are made concerning supplementation. Hatchery rearing conditions and stocking methods can affect post released survival of hatchery fish. Stress was considered by many biologists to be a key factor in survival of stocked anadromous fish. Smolts were the most common life stage released and size of smolts correlated positively with survival. Success of hatchery stockings of eggs and presmolts was found to be better if they are put into productive, underseeded habitats. Stocking time, method, species stocked, and environmental conditions of the receiving waters, including other fish species present, are factors to consider in supplementation programs. The unpublished supplementation literature was reviewed primarily by the authors of this report. Direct contact was made in person or by telephone and data compiled on a computer database. Areas covered included Oregon, Washington, Idaho, Alaska, California, British Columbia, and the New England states working with Atlantic salmon. Over 300 projects were reviewed and entered into a computer database. The database information is contained in Appendix A of this report. 6 refs., 9 figs., 21 tabs.

  10. Trapping and transportation of adult and juvenile salmon in the lower Umatilla River in northeast Oregon, 1996-1997. Umatilla River Basin Trap and Haul Program. Annual progress report, October 1996 - September 1997

    International Nuclear Information System (INIS)

    Zimmerman, B.; Duke, B.B.

    1997-09-01

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were collected at Threemile Dam from August 30, 1996 to August 26, 1997. A total of 2,477 summer steelhead (Oncorhynchus mykiss); 646 adult, 80 jack, and 606 subjack fall chinook (O. tshawytscha); 618 adult and 24 jack coho (O. kisutch); and 2,194 adult and four jack spring chinook (O. tshawytscha) were collected. All fish were trapped at the east bank facility. Of the fish collected, 22 summer steelhead; 18 adult and two jack fall chinook; five adult coho; and 407 adult and three jack spring chinook were hauled upstream from Threemile Dam. There were 2,245 summer steelhead; 70 adult, 51 jack and 520 subjack fall chinook; 593 adult and 24 jack coho; and 1,130 adult spring chinook released at Threemile Dam I In addition, 110 summer steelhead; 551 adult and 25 jack fall chinook; and 600 adult spring chinook were collected for broodstock. The Westland Canal juvenile facility (Westland), located near the town of Echo at rivermile (RM) 27, is the major collection point for outmigrating juvenile salmonids and steelhead kelts, The canal was open for a total of 210 days between December 16, 1996 and July 30, 1997. During that period, fish were bypassed back to the river 175 days and were trapped on 35 days, An estimated 1,675 pounds of juvenile fish were transported from Westland to the Umatilla River boat ramp (RM 0.5), Approximately 80% of the juveniles transported were salmonids, No steelhead kelts were hauled from Westland this year. The Threemile Dam west bank juvenile bypass was operated from October 4 to November 1, 1996 and from March 26 to July 7, 1997. The juvenile trap was not operated this year. 6 refs., 6 figs., 6 tabs

  11. Survival and Passage of Yearling and Subyearling Chinook Salmon and Juvenile Steelhead at McNary Dam, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, James S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weiland, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Woodley, Christa M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ploskey, Gene R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carpenter, Scott M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hennen, Matthew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fischer, Eric S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Batton, George [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cushing, Aaron W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Zhiqun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Etherington, D. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fu, Tao [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greiner, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ingraham, John M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Jin A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Xi [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Martinez, Jayson J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mitchell, T. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rayamajhi, Bishes [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Seaburg, Adam [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skalski, J. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Townsend, Richard L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wagner, Katie A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zimmerman, Shon A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-23

    The study was designed to evaluate the passage and survival of yearling and subyearling Chinook salmon and juvenile steelhead at McNary Dam as stipulated by the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a virtual/paired-release model. This study supports the USACE’s continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

  12. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix I: Economics

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  13. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Basin : Annual Report 2000 : Project Period 1 October 1999 to 30 November 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Monzyk, Fred R.

    2002-06-01

    The authors determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout O. mykiss from three populations in the Grande Ronde River basin. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O.mykiss could be distinguished. An early migrant group left upper rearing areas from July through January with a peak in the fall. A late migrant group descended from upper rearing areas from February through June with a peak in the spring.

  14. Columbia River system operation review. Final environmental impact statement

    International Nuclear Information System (INIS)

    1995-11-01

    This Appendix C of the Final Environmental Impact Statement for the Columbia River System discusses impacts on andromous fish and juvenile fish transportation. The principal andromous fish in the Columbia basin include salmonid species (Chinook, coho, and sockeye salmon, and steelhead) and nonsalmoinid andromous species (sturgeon, lamprey, and shad). Major sections in this document include the following: background, scope and process; affected environment for salmon and steelhead, shaded, lamprey, sturgeon; study methods; description of alternatives: qualitative and quantitative findings

  15. Survival and Passage of Yearling and Subyearling Chinook Salmon and Steelhead at The Dalles Dam, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Skalski, J. R.; Carlson, Thomas J.; Ploskey, Gene R.; Weiland, Mark A.; Deng, Zhiqun; Fischer, Eric S.; Hughes, James S.; Khan, Fenton; Kim, Jin A.; Townsend, Richard L.

    2011-12-01

    The acoustic telemetry study reported here was conducted by researchers at Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) for the U.S. Army Corps of Engineers, Portland District (USACE). The purpose of the study was to estimate dam passage survival and other performance measures for yearling and subyearling Chinook salmon and steelhead at The Dalles Dam as stipulated by the 2008 Biological Opinion on operation of the Federal Columbia River Power System (FCRPS) and 2008 Columbia Basin Fish Accords.

  16. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix C: Water Quality

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower-Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  17. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix K: Real Estate

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects-on four lower Snake River salmon and steelhead stocks listed for protection- under the Endangered Species Act (ESA). The U.S...

  18. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix J: Plan Formulation

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  19. Umatilla River Fish Passage Operations Project : Annual Progress Report October 2007 - September 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P.; Loffink, Ken; Duke, Bill

    2008-12-31

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from June 7, 2007 to August 11, 2008. A total of 3,133 summer steelhead (Oncorhynchus mykiss); 1,487 adult, 1,067 jack, and 999 subjack fall Chinook (O. tshawytscha); 5,140 adult and 150 jack coho (O. kisutch); and 2,009 adult, 517 jack, and 128 subjack spring Chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 1,442 summer steelhead and 88 adult and 84 jack spring Chinook were hauled upstream from Threemile Dam. There were 1,497 summer steelhead; 609 adult, 1,018 jack and 979 subjack fall Chinook; 5,036 adult and 144 jack coho; and 1,117 adult, 386 jack and 125 subjack spring Chinook either released at, or allowed to volitionally migrate past, Threemile Dam. Also, 110 summer steelhead; 878 adult and 43 jack fall Chinook; and 560 adult and 28 jack spring Chinook were collected as broodstock for the Umatilla River hatchery program. In addition, there were 241 adult and 15 jack spring Chinook collected at Threemile Dam for outplanting in the South Fork Walla Walla River and Mill Cr, a tributary of the mainstem Walla Walla River. The Westland Canal juvenile facility (Westland), located near the town of Echo at river mile (RM) 27, is the major collection point for out-migrating juvenile salmonids and steelhead kelts. The canal was open for 158 days between February 11, 2008 and July 18, 2008. During that period, fish were bypassed back to the river 150 days and were trapped 6 days. There were also 2 days when fish were directed into and held in the canal forebay between the time the bypass was closed and the trap opened. An estimated 64 pounds of fish were transported from the Westland trapping facility. Approximately 25.8% of the fish transported were salmonids. In addition, one

  20. Investigations into the early life history of naturally produced spring chinook salmon and summer steelhead in the Grande Ronde River Basin : annual report 2000 : project period 1 October 1999 to 30 November 2000.; ANNUAL

    International Nuclear Information System (INIS)

    Monzyk, Fred R.; United States. Bonneville Power Administration. Environment, Fish and Wildlife.

    2002-01-01

    The authors determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout O. mykiss from three populations in the Grande Ronde River basin. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O.mykiss could be distinguished. An early migrant group left upper rearing areas from July through January with a peak in the fall. A late migrant group descended from upper rearing areas from February through June with a peak in the spring

  1. Assembling a dual purpose TaqMan-based panel of single-nucleotide polymorphism markers in rainbow trout and steelhead (Oncorhynchus mykiss) for association mapping and population genetics analysis

    DEFF Research Database (Denmark)

    Hansen, Mette H H; Young, Sewall; Jørgensen, Hanne Birgitte Hede

    2011-01-01

    We establish a TaqMan-based assay panel for genotyping single-nucleotide polymorphisms in rainbow trout and steelhead (Oncorhynchus mykiss). We develop 22 novel single-nucleotide polymorphism markers based on new steelhead sequence data and on assays from sister taxa. Additionally, we adapt 154 p...

  2. StreamNet; Northwest Aquatic Resource Information Network - Status of Salmon and Steelhead in the Columbia River Basin, 1995 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Duane A.; Beamesderfer, Raymond C. [Oregon Dept. of Fish and Wildlife, Enterprise, OR (United States); Woodard, Bob [Washington Dept. of Fish and Wildlife, Olympia, WA (United States)

    1996-04-01

    Information on fish populations, fisheries, and fish habitat is crucial to the success of ongoing program to protect, recover, enhance, and manage fish resources in the Columbia River Basin. However, pertinent data are often difficult to locate because it is scattered among many agencies and is often unpublished. The goal of this annual report is to bring many diverse data types and sources into a single comprehensive report on the status of anadromous fish runs in the Columbia River Basin and the environmental conditions that may affect that status. Brief summaries are provided to identify the type and scope of available information. This synopsis is intended to complement other more detailed reports to which readers are referred for comprehensive treatment of specific subjects. This first report focuses mainly on anadromous salmon and steelhead (primarily through 1994) but the authors intend to expand the scope of future issues to include resident species. This is the first of what the authors intend to be an annual report. They welcome constructive suggestions for improvements. This report is a product of the StreamNet (formerly Coordinated Information System and Northwest Environmental Data Base) project which is a part of the Bonneville Power Administration`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The project is called for in the Fish and Wildlife Program of the Northwest Power Planning Council. The project`s objective is to promote exchange and dissemination of information in a standardized electronic format throughout the basin. This project is administered by the Pacific States Marine Fisheries Commission with active participation by tribal, state, and federal fish and wildlife agencies.

  3. Assessment of Salmonids and Their Habitat Conditions in the Walla Walla River Basin within Washington, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Mendel, Glen; Trump, Jeremy; Gembala, Mike

    2003-09-01

    This study began in 1998 to assess salmonid distribution, relative abundance, genetics, and the condition of salmonid habitats in the Walla Walla River basin. Stream flows in the Walla Walla Basin continue to show a general trend that begins with a sharp decline in discharge in late June, followed by low summer flows and then an increase in discharge in fall and winter. Manual stream flow measurements at Pepper bridge showed an increase in 2002 of 110-185% from July-September, over flows from 2001. This increase is apparently associated with a 2000 settlement agreement between the U.S. Fish and Wildlife Service (USFWS) and the irrigation districts to leave minimum flows in the river. Stream temperatures in the Walla Walla basin were similar to those in 2001. Upper montane tributaries maintained maximum summer temperatures below 65 F, while sites in mid and lower Touchet and Walla Walla rivers frequently had daily maximum temperatures well above 68 F (high enough to inhibit migration in adult and juvenile salmonids, and to sharply reduce survival of their embryos and fry). These high temperatures are possibly the most critical physiological barrier to salmonids in the Walla Walla basin, but other factors (available water, turbidity or sediment deposition, cover, lack of pools, etc.) also play a part in salmonid survival, migration, and breeding success. The increased flows in the Walla Walla, due to the 2000 settlement agreement, have not shown consistent improvements to stream temperatures. Rainbow/steelhead (Oncorhynchus mykiss) trout represent the most common salmonid in the basin. Densities of Rainbow/steelhead in the Walla Walla River from the Washington/Oregon stateline to Mojonnier Rd. dropped slightly from 2001, but are still considerably higher than before the 2000 settlement agreement. Other salmonids including; bull trout (Salvelinus confluentus), chinook salmon (Oncorhynchus tshawytscha), mountain whitefish (Prosopium williamsoni), and brown trout (Salmo

  4. Habitat-dependent interactions between two size-classes of juvenile steelhead in a small stream

    Science.gov (United States)

    Bret C. Harvey; Rodney J. Nakamoto

    1997-01-01

    Abstract - The presence of small steelhead (Oncorhynchus mykiss; averaging 55 mm fork length) influenced the growth of larger juvenile steelhead (90 mm fork length) during a 6-week experiment conducted in North Fork Caspar Creek, California, in summer 1994. In fenced replicate deep stream sections in this small stream, growth of the larger steelhead was greater in...

  5. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Part II: Chapters 5-13

    National Research Council Canada - National Science Library

    2003-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  6. Genetic investigation of natural hybridization between rainbow and coastal cutthroat trout in the copper River Delta, Alaska

    Science.gov (United States)

    Williams, I.; Reeves, G.H.; Graziano, S.L.; Nielsen, J.L.

    2007-01-01

    Molecular genetic methods were used to quantify natural hybridization between rainbow trout Oncorhynchus mykiss or steelhead (anadromous rainbow trout) and coastal cutthroat trout O. clarkii clarkii collected in the Copper River delta, Southeast Alaska. Eleven locations were sampled to determine the extent of hybridization and the distribution of hybrids. Four diagnostic nuclear microsatellite loci and four species-specific simple sequence repeat markers were used in combination with restriction fragment length polymorphism analyses of NADH dehydrogenase 5/6 (ND5/6) mitochondrial DNA (mtDNA) to investigate the genetic structure of trout from both species and identify putative interspecific hybrids. Hybrids were found in 7 of the 11 streams sampled in the Copper River delta, the extent of hybridization across all streams varying from 0% to 58%. Hybrid trout distribution appeared to be nonrandom, most individuals of mixed taxonomic ancestry being detected in streams containing rainbow trout rather than in streams containing coastal cutthroat trout. Genotypic disequilibrium was observed among microsatellite loci in populations with high levels of hybridization. We found no significant correlation between unique stream channel process groups and the number of hybrid fish sampled. Eighty-eight percent of fish identified as first-generation hybrids (F1) in two populations contained coastal cutthroat trout mtDNA, suggesting directionality in hybridization. However, dominance of coastal cutthroat trout mtDNA was not observed at a third location containing F1 hybrids, indicating that interspecific mating behavior varied among locations. Backcrossed individuals were found in drainages lacking F1 hybrids and in populations previously thought to contain a single species. The extent and distribution of backcrossed individuals suggested that at least some hybrids are reproductively viable and backcrossed hybrid offspring move throughout the system.

  7. Walla Walla River Fish Passage Operations Program, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2006-02-01

    In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2004-2005 project year, there were 590 adult summer steelhead, 31 summer steelhead kelts (Oncorhynchus mykiss), 70 adult bull trout (Salvelinus confluentus); 80 adult and 1 jack spring Chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway video counting window between December 13, 2004, and June 16, 2005. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. In addition, the old ladder trap was operated by ODFW in order to enumerate fish passage. Of the total, 143 adult summer steelhead and 15 summer steelhead kelts were enumerated at the west ladder at Nursery Bridge Dam during the video efforts between February 4 and May 23, 2005. Operation of the Little Walla Walla River

  8. Genetic Diversity and Spatial Genetic Structure of the Grassland Perennial Saxifraga granulata along Two River Systems.

    Directory of Open Access Journals (Sweden)

    Sascha van der Meer

    Full Text Available Due to changes in land use, the natural habitats of an increasing number of plant species have become more and more fragmented. In landscapes that consist of patches of suitable habitat, the frequency and extent of long-distance seed dispersal can be expected to be an important factor determining local genetic diversity and regional population structure of the remaining populations. In plant species that are restricted to riparian habitats, rivers can be expected to have a strong impact on the dynamics and spatial genetic structure of populations as they may enable long-distance seed dispersal and thus maintain gene flow between fragmented populations. In this study, we used polymorphic microsatellite markers to investigate the genetic diversity and the spatial genetic structure of 28 populations of Saxifraga granulata along two rivers in central Belgium. We hypothesized that rivers might be essential for gene flow among increasingly isolated populations of this species. Genetic diversity was high (HS = 0.68, which to a certain extent can be explained by the octoploid nature of S. granulata in the study area. Populations along the Dijle and Demer rivers were also highly differentiated (G"ST = 0.269 and 0.164 and DEST = 0.190 and 0.124, respectively and showed significant isolation-by-distance, indicating moderate levels of gene flow primarily between populations that are geographically close to each other. Along the river Demer population genetic diversity was higher upstream than downstream, suggesting that seed dispersal via the water was not the primary mode of dispersal. Overall, these results indicate that despite increasing fragmentation populations along both rivers were highly genetically diverse. The high ploidy level and longevity of S. granulata have most likely buffered negative effects of fragmentation on genetic diversity and the spatial genetic structure of populations in riparian grasslands.

  9. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix E: Existing Systems and Major System Improvements Engineering

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  10. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Summary

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four -lower Snake- Rive salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  11. Steelhead Critical Habitat, Central Valley - NOAA [ds123

    Data.gov (United States)

    California Natural Resource Agency — This layer depicts areas designated for Steelhead Critical Habitat as well as habitat type and quality in the California Central Valley Evolutionary Significant Unit...

  12. Hydroacoustic Evaluation of Overwintering Summer Steelhead Fallback and Kelt Passage at The Dalles Dam, 2009-2010

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Fenton; Johnson, Gary E.; Weiland, Mark A.

    2010-07-31

    This report presents the results of an evaluation of overwintering summer steelhead (Oncorhynchus mykiss) fallback and early out-migrating steelhead kelts downstream passage at The Dalles Dam (TDA) sluiceway and turbines during fall/winter 2009 through early spring 2010. The study was conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers, Portland District (USACE). The goal of this study was to characterize adult steelhead spatial and temporal distributions and passage rates at the sluiceway and turbines for fisheries managers and engineers to use in decision-making relative to sluiceway operations. The study was from November 1, 2009 to April 10, 2010. The study was divided into three study periods: Period 1, November 1 - December 15, 2009 for a fall/winter sluiceway and turbine study; Period 2, December 16, 2009 - February 28, 2010 for a turbine only study; Period 3, March 1 - April 10, 2010 for a spring sluiceway and turbine study. Sluiceway operations were scheduled to begin on March 1 for this study; however, because of an oil spill cleanup near the sluice outfall, sluiceway operations were delayed until March 8, 2010, therefore the spring study period did not commence until March 8. The study objectives were to (1) estimate the number and distribution of overwintering summer steelhead fallbacks and kelt-sized acoustic targets passing into the sluiceway and turbines at TDA between November 1 and December 15, 2009 and March 1 and April 10, 2010, and (2) estimate the numbers and distribution of adult steelhead and kelt-sized targets passing into turbine units between December 16, 2009 and February 28, 2010. We obtained fish passage data using fixed-location hydroacoustics. For Period 1, overwintering summer steelhead fallback occurred throughout the 45-day study period. A total of 879 {+-} 165 (95% CI) steelhead targets passed through the powerhouse and sluiceway during November 1 to December 15, 2009. Ninety two

  13. Assessment of the flow-survival relationship obtained by Sims and Ossiander (1981) for Snake River spring/summer chinook salmon smolts. Final report

    International Nuclear Information System (INIS)

    Steward, C.R.

    1994-04-01

    There has been much debate recently among fisheries professionals over the data and functional relationships used by Sims and Ossiander to describe the effects of flow in the Snake River on the survival and travel time of chinook salmon and steelhead smolts. The relationships were based on mark and recovery experiments conducted at various Snake and Columbia River sites between 1964 and 1979 to evaluate the effects of dams and flow regulation on the migratory characteristic's chinook sa mon and steelhead trout smolts. The reliability of this information is crucial because it forms the logical basis for many of the flow management options being considered today to protect,upriver populations of chinook salmon and steelhead trout. In this paper I evaluate the primary data, assumptions, and calculations that underlie the flow-survival relationship derived by Sims and Ossiander (1981) for chinook salmon smolts

  14. Spatial ecological processes and local factors predict the distribution and abundance of spawning by steelhead (Oncorhynchus mykiss across a complex riverscape.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Falke

    Full Text Available Processes that influence habitat selection in landscapes involve the interaction of habitat composition and configuration and are particularly important for species with complex life cycles. We assessed the relative influence of landscape spatial processes and local habitat characteristics on patterns in the distribution and abundance of spawning steelhead (Oncorhynchus mykiss, a threatened salmonid fish, across ∼15,000 stream km in the John Day River basin, Oregon, USA. We used hurdle regression and a multi-model information theoretic approach to identify the relative importance of covariates representing key aspects of the steelhead life cycle (e.g., site access, spawning habitat quality, juvenile survival at two spatial scales: within 2-km long survey reaches (local sites and ecological neighborhoods (5 km surrounding the local sites. Based on Akaike's Information Criterion, models that included covariates describing ecological neighborhoods provided the best description of the distribution and abundance of steelhead spawning given the data. Among these covariates, our representation of offspring survival (growing-season-degree-days, °C had the strongest effect size (7x relative to other predictors. Predictive performances of model-averaged composite and neighborhood-only models were better than a site-only model based on both occurrence (percentage of sites correctly classified = 0.80±0.03 SD, 0.78±0.02 vs. 0.62±0.05, respectively and counts (root mean square error = 3.37, 3.93 vs. 5.57, respectively. The importance of both temperature and stream flow for steelhead spawning suggest this species may be highly sensitive to impacts of land and water uses, and to projected climate impacts in the region and that landscape context, complementation, and connectivity will drive how this species responds to future environments.

  15. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix F: Hydrology/Hydraulics and Sedimentation. Appendix G: Hydroregulations. Appendix H: Fluvial Geomorphology

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  16. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environment Impact Statement. Appendix N: Cultural Resources. Appendix O: Public Outreach Program. Appendix P: Air Quality

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  17. Winter Steelhead Distribution, Pacific Northwest (updated March, 2006)

    Data.gov (United States)

    Pacific States Marine Fisheries Commission — This dataset is a record of fish distribution and activity for WINTER STEELHEAD contained in the StreamNet database. This feature class was created based on linear...

  18. Assessment of the Flow-Survival Relationship Obtained by Sims and Ossiander (1981) for Snake River Spring/Summer Chinook Salmon Smolts, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Steward, C.R. (Cleveland R.)

    1994-04-01

    There has been much debate recently among fisheries professionals over the data and functional relationships used by Sims and Ossiander to describe the effects of flow in the Snake River on the survival and travel time of chinook salmon and steelhead smolts. The relationships were based on mark and recovery experiments conducted at various Snake and Columbia River sites between 1964 and 1979 to evaluate the effects of dams and flow regulation on the migratory characteristic`s chinook sa mon and steelhead trout smolts. The reliability of this information is crucial because it forms the logical basis for many of the flow management options being considered today to protect,upriver populations of chinook salmon and steelhead trout. In this paper I evaluate the primary data, assumptions, and calculations that underlie the flow-survival relationship derived by Sims and Ossiander (1981) for chinook salmon smolts.

  19. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix C: Anadromous Fish and Juvenile Fish Transportation.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    This Appendix C of the Final Environmental Impact Statement for the Columbia River System discusses impacts on andromous fish and juvenile fish transportation. The principal andromous fish in the Columbia basin include salmonid species (Chinook, coho, and sockeye salmon, and steelhead) and nonsalmoinid andromous species (sturgeon, lamprey, and shad). Major sections in this document include the following: background, scope and process; affected environment for salmon and steelhead, shaded, lamprey, sturgeon; study methods; description of alternatives: qualitative and quantitative findings.

  20. Hydroacoustic Evaluation of Overwintering Summer Steelhead Fallback and Kelt Passage at The Dalles Dam Turbines, Early Spring 2011

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Fenton; Royer, Ida M.

    2012-02-01

    This report presents the results of an evaluation of overwintering summer steelhead (Oncorhynchus mykiss) fallback and early out-migrating steelhead kelts downstream passage at The Dalles Dam turbines during early spring 2011. The study was conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers, Portland District (USACE) to investigate whether adult steelhead are passing through turbines during early spring before annual sluiceway operations typically begin. The sluiceway surface flow outlet is the optimal non-turbine route for adult steelhead, although operating the sluiceway reduces hydropower production. This is a follow-up study to similar studies of adult steelhead passage at the sluiceway and turbines we conducted in the fall/winter 2008, early spring 2009, fall/winter 2009, and early spring 2010. The goal of the 2011 study was to characterize adult steelhead passage rates at the turbines while the sluiceway was closed so fisheries managers would have additional information to use in decision-making relative to sluiceway operations. Sluiceway operations were not scheduled to begin until April 10, 2011. However, based on a management decision in late February, sluiceway operations commenced on March 1, 2011. Therefore, this study provided estimates of fish passage rates through the turbines, and not the sluiceway, while the sluiceway was open. The study period was March 1 through April 10, 2011 (41 days total). The study objective was to estimate the number and distribution of adult steelhead and kelt-sized targets passing into turbine units. We obtained fish passage data using fixed-location hydroacoustics with transducers deployed at all 22 main turbine units at The Dalles Dam. Adult steelhead passage through the turbines occurred on 9 days during the study (March 9, 12, 30, and 31 and April 2, 3, 5, 7, and 9). We estimated a total of 215 {+-} 98 (95% confidence interval) adult steelhead targets passed through the

  1. Multiscale Genetic Structure of Yellowstone Cutthroat Trout in the Upper Snake River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Cegelski, Christine C.; Campbell, Matthew R.

    2006-05-30

    Populations of Yellowstone cutthroat trout Oncorhynchus clarkii bouvierii have declined throughout their native range as a result of habitat fragmentation, overharvest, and introductions of nonnative trout that have hybridized with or displaced native populations. The degree to which these factors have impacted the current genetic population structure of Yellowstone cutthroat trout populations is of primary interest for their conservation. In this study, we examined the genetic diversity and genetic population structure of Yellowstone cutthroat trout in Idaho and Nevada with data from six polymorphic microsatellite loci. A total of 1,392 samples were analyzed from 45 sample locations throughout 11 major river drainages. We found that levels of genetic diversity and genetic differentiation varied extensively. The Salt River drainage, which is representative of the least impacted migration corridors in Idaho, had the highest levels of genetic diversity and low levels of genetic differentiation. High levels of genetic differentiation were observed at similar or smaller geographic scales in the Portneuf River, Raft River, and Teton River drainages, which are more altered by anthropogenic disturbances. Results suggested that Yellowstone cutthroat trout are naturally structured at the major river drainage level but that habitat fragmentation has altered this structuring. Connectivity should be restored via habitat restoration whenever possible to minimize losses in genetic diversity and to preserve historical processes of gene flow, life history variation, and metapopulation dynamics. However, alternative strategies for management and conservation should also be considered in areas where there is a strong likelihood of nonnative invasions or extensive habitat fragmentation that cannot be easily ameliorated.

  2. Genetics, recruitment, and migration patterns of Arctic Cisco (Coregonus autumnalis) in the Colville River, Alaska and Mackenzie River, Canada

    Science.gov (United States)

    Zimmerman, Christian E.; Ramey, Andy M.; Turner, S.; Mueter, Franz J.; Murphy, S.; Nielsen, Jennifer L.

    2013-01-01

    Arctic cisco Coregonus autumnalis have a complex anadromous life history, many aspects of which remain poorly understood. Some life history traits of Arctic cisco from the Colville River, Alaska, and Mackenzie River basin, Canada, were investigated using molecular genetics, harvest data, and otolith microchemistry. The Mackenzie hypothesis, which suggests that Arctic cisco found in Alaskan waters originate from the Mackenzie River system, was tested using 11 microsatellite loci and a single mitochondrial DNA gene. No genetic differentiation was found among sample collections from the Colville River and the Mackenzie River system using molecular markers (P > 0.19 in all comparisons). Model-based clustering methods also supported genetic admixture between sample collections from the Colville River and Mackenzie River basin. A reanalysis of recruitment patterns to Alaska, which included data from recent warm periods and suspected changes in atmospheric circulation patterns, still finds that recruitment is correlated to wind conditions. Otolith microchemistry (Sr/Ca ratios) confirmed repeated, annual movements of Arctic cisco between low-salinity habitats in winter and marine waters in summer.

  3. Evaluation and monitoring of wild/natural steelhead trout production: project progress report, 1996; ANNUAL

    International Nuclear Information System (INIS)

    Leth, Brian D.; Holubetz, Terry; Nemeth, Doug

    2000-01-01

    This project was initiated to provide additional, and more definitive, information regarding wild steelhead Oncorhynchus mykiss populations in Idaho. Important streams for wild steelhead production were identified and selected for monitoring. Monitoring activities employed among streams varied, but generally included: aerial redd counts, placement of adult weirs, enumeration of juveniles through mask and snorkel counts, and emigrant trapping. This report details activities during the 1996 field season

  4. Bird monitoring as an aid to riparian restoration: Findings from the Trinity River in northwestern California

    Science.gov (United States)

    C. Klamath Bird Observatory and USFS Pacific Southwest Research Station

    2013-01-01

    The Trinity River Restoration Program began in 2000 with the goal of restoring the Trinity River's salmon and steelhead fisheries, which were severely degraded during the last half-century as a result of dams, water diversions under the Central Valley Project, and land-use practices such as gold mining. The restoration program, as outlined in the U.S. Department...

  5. Seismology of the Oso-Steelhead landslide

    Science.gov (United States)

    Hibert, C.; Stark, C. P.; Ekström, G.

    2014-12-01

    We carry out a combined analysis of the short- and long-period seismic signals generated by the devastating Oso-Steelhead landslide that occurred on 22 March 2014. The seismic records show that the Oso-Steelhead landslide was not a single slope failure, but a succession of multiple failures distinguished by two major collapses that occurred approximately three minutes apart. The first generated long-period surface waves that were recorded at several proximal stations. We invert these long-period signals for the forces acting at the source, and obtain estimates of the first failure runout and kinematics, as well as its mass after calibration against the mass-center displacement estimated from remote-sensing imagery. Short-period analysis of both events suggests that the source dynamics of the second are more complex than the first. No distinct long-period surface waves were recorded for the second failure, which prevents inversion for its source parameters. However, by comparing the seismic energy of the short-period waves generated by both events we are able to estimate the volume of the second. Our analysis suggests that the volume of the second failure is about 15-30% of the total landslide volume, which is in agreement with ground observations.

  6. Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River Basin, Annual Report 2003-2006.

    Energy Technology Data Exchange (ETDEWEB)

    White, Tara

    2007-02-01

    This report summarizes activities conducted by the Oregon Department of Fish and Wildlife's Juvenile Outmigration and Survival M&E project in the Umatilla River subbasin between 2004-2006. Information is used to make informed decisions on hatchery effectiveness, natural production success, passage improvement and flow enhancement strategies. Data collected includes annual estimates of smolt abundance, migration timing, and survival, life history characteristics and productivity status and trends for spring and fall Chinook salmon, coho salmon and summer steelhead. Productivity data provided is the key subbasin scale measure of the effectiveness of salmon and steelhead restoration actions in the Umatilla River. Information is also used for regional planning and recovery efforts of Mid-Columbia River (MCR) ESA-listed summer steelhead. Monitoring is conducted via smolt trapping and PIT-tag interrogation at Three Mile Falls Dam. The Umatilla Juvenile Outmigration and Survival Project was established in 1994 to evaluate the success of management actions and fisheries restoration efforts in the Umatilla River Basin. Project objectives for the 2004-2006 period were to: (1) operate the PIT tag detection system at Three Mile Falls Dam (TMFD), (2) enhance provisional PIT-tag interrogation equipment at the east bank adult fish ladder, (3) monitor the migration timing, abundance and survival of naturally-produced juvenile salmonids and trends in natural production, (4) determine migration parameters and survival of hatchery-produced fish representing various rearing, acclimation and release strategies, (5) evaluate the relative survival between transported and non-transported fish, (6) monitor juvenile life history characteristics and evaluate trends over time, (7) investigate the effects of river, canal, fishway operations and environmental conditions on smolt migration and survival, (8) document the temporal distribution and diversity of resident fish species, and (9

  7. The role of river drainages in shaping the genetic structure of capybara populations.

    Science.gov (United States)

    Byrne, María Soledad; Quintana, Rubén Darío; Bolkovic, María Luisa; Cassini, Marcelo H; Túnez, Juan Ignacio

    2015-12-01

    The capybara, Hydrochoerus hydrochaeris, is an herbivorous rodent widely distributed throughout most of South American wetlands that lives closely associated with aquatic environments. In this work, we studied the genetic structure of the capybara throughout part of its geographic range in Argentina using a DNA fragment of the mitochondrial control region. Haplotypes obtained were compared with those available for populations from Paraguay and Venezuela. We found 22 haplotypes in 303 individuals. Hierarchical AMOVAs were performed to evaluate the role of river drainages in shaping the genetic structure of capybara populations at the regional and basin scales. In addition, two landscape genetic models, isolation by distance and isolation by resistance, were used to test whether genetic distance was associated with Euclidean distance (i.e. isolation by distance) or river corridor distance (i.e. isolation by resistance) at the basin scale. At the regional scale, the results of the AMOVA grouping populations by mayor river basins showed significant differences between them. At the basin scale, we also found significant differences between sub-basins in Paraguay, together with a significant correlation between genetic and river corridor distance. For Argentina and Venezuela, results were not significant. These results suggest that in Paraguay, the current genetic structure of capybaras is associated with the lack of dispersion corridors through permanent rivers. In contrast, limited structuring in Argentina and Venezuela is likely the result of periodic flooding facilitating dispersion.

  8. Effectiveness and retention of thiamine and its analogs administered to steelhead and landlocked Atlantic salmon

    Science.gov (United States)

    Ketola, H.G.; Isaacs, G.R.; Robins, J.S.; Lloyd, R.C.

    2008-01-01

    We investigated the feasibility of enhancing the reproduction of steelhead Oncorhynchus mykiss and landlocked Atlantic salmon Salmo salar in lakes where the consumption of alewives Alosa pseudoharengus and other forage fishes containing thiaminase can cause them to become thiamine deficient and thereby reduce the survival of their fry. We evaluated feeding fingerling steelhead excess thiamine hydrochloride (THCl) for 1 or 2 weeks or equimolar amounts of thiamine mononitrate, thiamine-tetrahydrofurfuryl-disulfide, benfotiamine, or dibenzoyl thiamine (DBT). We found minimal internal reserves of thiamine after 6 months. We also compared the ability of injections of thiamine and its analogs to prevent mortality in thiamine-deficient steelhead and Atlantic salmon sac fry and found all forms to be effective, although benfotiamine was the least effective on an equimolar basis. Further, we injected yearling steelhead and found that DBT was tolerated at approximately 11,200 nmol/g of body weight, about 10 times more than thiamine in any other form. When yearling steelhead were injected with near-maximal doses of thiamine hydrochloride and several analogs and then fed a thiamine-deficient diet, DBT was retained for approximately 2 years - in contrast to other forms, which were retained for less than about 6 months. Therefore, these results suggest that neither feeding nor injecting young hatchery salmonids with DBT is likely to enhance their reproduction for more than 2 years after stocking. However, injecting DBT in nearly mature fish (either cultured fish from hatcheries or wild fish captured in lakes) may provide them with enough thiamine to successfully spawn within 2 years even though they consume mainly thiaminase-containing forage fishes. ?? Copyright by the American Fisheries Society 2008.

  9. Spatio-temporal migration patterns of Pacific salmon smolts in rivers and coastal marine waters.

    Directory of Open Access Journals (Sweden)

    Michael C Melnychuk

    Full Text Available BACKGROUND: Migrations allow animals to find food resources, rearing habitats, or mates, but often impose considerable predation risk. Several behavioural strategies may reduce this risk, including faster travel speed and taking routes with shorter total distance. Descriptions of the natural range of variation in migration strategies among individuals and populations is necessary before the ecological consequences of such variation can be established. METHODOLOGY/PRINCIPAL FINDINGS: Movements of tagged juvenile coho, steelhead, sockeye, and Chinook salmon were quantified using a large-scale acoustic tracking array in southern British Columbia, Canada. Smolts from 13 watersheds (49 watershed/species/year combinations were tagged between 2004-2008 and combined into a mixed-effects model analysis of travel speed. During the downstream migration, steelhead were slower on average than other species, possibly related to freshwater residualization. During the migration through the Strait of Georgia, coho were slower than steelhead and sockeye, likely related to some degree of inshore summer residency. Hatchery-reared smolts were slower than wild smolts during the downstream migration, but after ocean entry, average speeds were similar. In small rivers, downstream travel speed increased with body length, but in the larger Fraser River and during the coastal migration, average speed was independent of body length. Smolts leaving rivers located towards the northern end of the Strait of Georgia ecosystem migrated strictly northwards after ocean entry, but those from rivers towards the southern end displayed split-route migration patterns within populations, with some moving southward. CONCLUSIONS/SIGNIFICANCE: Our results reveal a tremendous diversity of behavioural migration strategies used by juvenile salmon, across species, rearing histories, and habitats, as well as within individual populations. During the downstream migration, factors that had strong

  10. Comparative evaluation of molecular diagnostic tests for Nucleospora salmonis and prevalence in migrating juvenile salmonids from the Snake River, USA

    Science.gov (United States)

    Badil, Samantha; Elliott, Diane G.; Kurobe, Tomofumi; Hedrick, Ronald P.; Clemens, Kathy; Blair, Marilyn; Purcell, Maureen K.

    2011-01-01

    Nucleospora salmonis is an intranuclear microsporidian that primarily infects lymphoblast cells and contributes to chronic lymphoblastosis and a leukemia-like condition in a range of salmonid species. The primary goal of this study was to evaluate the prevalence of N. salmonis in out-migrating juvenile hatchery and wild Chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss from the Snake River in the U.S. Pacific Northwest. To achieve this goal, we first addressed the following concerns about current molecular diagnostic tests for N. salmonis: (1) nonspecific amplification patterns by the published nested polymerase chain reaction (nPCR) test, (2) incomplete validation of the published quantitative PCR (qPCR) test, and (3) whether N. salmonis can be detected reliably from nonlethal samples. Here, we present an optimized nPCR protocol that eliminates nonspecific amplification. During validation of the published qPCR test, our laboratory developed a second qPCR test that targeted a different gene sequence and used different probe chemistry for comparison purposes. We simultaneously evaluated the two different qPCR tests for N. salmonis and found that both assays were highly specific, sensitive, and repeatable. The nPCR and qPCR tests had good overall concordance when DNA samples derived from both apparently healthy and clinically diseased hatchery rainbow trout were tested. Finally, we demonstrated that gill snips were a suitable tissue for nonlethal detection of N. salmonis DNA in juvenile salmonids. Monitoring of juvenile salmonid fish in the Snake River over a 3-year period revealed low prevalence of N. salmonis in hatchery and wild Chinook salmon and wild steelhead but significantly higher prevalence in hatchery-derived steelhead. Routine monitoring of N. salmonis is not performed for all hatchery steelhead populations. At present, the possible contribution of this pathogen to delayed mortality of steelhead has not been determined.

  11. Compliance Monitoring of Yearling and Subyearling Chinook Salmon and Juvenile Steelhead Survival and Passage at John Day Dam, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Weiland, Mark A.; Woodley, Christa M.; Hughes, James S.; Ploskey, Gene R.; Deng, Zhiqun; Carlson, Thomas J.

    2013-05-01

    The purpose of this compliance study was to estimate dam passage survival of yearling and subyearling Chinook salmon and steelhead smolts at John Day Dam during the spring and summer outmigrations in 2012. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 for spring migrants and greater than or equal to 0.93 for summer migrants, estimated with a standard error (SE) less than or equal to 0.015. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailrace 3 km downstream of the dam, as well as the forebay residence time, tailrace egress time, spill passage efficiency (SPE), and fish passage efficiency (FPE), as required in the Columbia Basin Fish Accords (Fish Accords). A virtual/paired-release design was used to estimate dam passage survival at John Day Dam. The approach included releases of smolts, tagged with acoustic micro-transmitters, above John Day Dam that contributed to the formation of a virtual release at the face of John Day Dam. A survival estimate from this release was adjusted by a paired release below John Day Dam. A total of 3376 yearling Chinook salmon, 5726 subyearling Chinook salmon, and 3239 steelhead smolts were used in the virtual releases. Sample sizes for the below-dam paired releases (R2 and R3, respectively) were 997 and 995 for yearling Chinook salmon smolts, 986 and 983 for subyearling Chinook salmon smolts, and 1000 and 1000 for steelhead smolts. The Juvenile Salmon Acoustic Telemetry System (JSATS) tags were manufactured by Advanced Telemetry Systems. Model SS300 tags, weighing 0.304 g in air, were surgically implanted in yearling and subyearling Chinook salmon, and Model SS130 tag, weighing 0.438 g in air, were surgically implanted in juvenile steelhead for this investigation. The intent of the spring study was to estimate dam passage survival during both 30% and 40% spill conditions. The two

  12. Seasonal Juvenile Salmonid Presence and Migratory Behavior in the Lower Columbia River

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Jessica A.; McMichael, Geoffrey A.; Welch, Ian D.; Harnish, Ryan A.; Bellgraph, Brian J.

    2009-04-30

    To facilitate preparing Biological Assessments of proposed channel maintenance projects, the Portland District of the U.S. Army Corps of Engineers contracted the Pacific Northwest National Laboratory to consolidate and synthesize available information about the use of the lower Columbia River and estuary by juvenile anadromous salmonids. The information to be synthesized included existing published documents as well as data from five years (2004-2008) of acoustic telemetry studies conducted in the Columbia River estuary using the Juvenile Salmon Acoustic Telemetry System. For this synthesis, the Columbia River estuary includes the section of the Columbia River from Bonneville Dam at river kilometer (Rkm) 235 downstream to the mouth where it enters the Pacific Ocean. In this report, we summarize the seasonal salmonid presence and migration patterns in the Columbia River estuary based on information from published studies as well as relevant data from acoustic telemetry studies conducted by NOAA Fisheries and the Pacific Northwest National Laboratory (PNNL) between 2004 and 2008. Recent acoustic telemetry studies, conducted using the Juvenile Salmon Acoustic Telemetry System (JSATS; developed by the Portland District of the U.S. Army Corps of Engineers), provided information on the migratory behavior of juvenile steelhead (O. mykiss) and Chinook salmon in the Columbia River from Bonneville Dam to the Pacific Ocean. In this report, Section 2 provides a summary of information from published literature on the seasonal presence and migratory behavior of juvenile salmonids in the Columbia River estuary and plume. Section 3 presents a detailed synthesis of juvenile Chinook salmon and steelhead migratory behavior based on use of the JSATS between 2004 and 2008. Section 4 provides a discussion of the information summarized in the report as well as information drawn from literature reviews on potential effects of channel maintenance activities to juvenile salmonids rearing in

  13. Stress of formalin treatment in juvenile spring chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Salmo gairdneri)

    Science.gov (United States)

    Wedemeyer, Gary; Yasutake, W.T.

    1973-01-01

    The physiological stress of 200 ppm formalin treatments at 10 C is more severe in the juvenile steelhead trout (Salmo gairdneri) than in the spring chinook salmon (Oncorhynchus tshawytscha). In the steelhead, a marked hypochloremia follows a 1-hr treatment and recovery requires about 24 hr. During longer treatments, hypercholesterolemia together with reduced regulatory precision, hypercortisolemia, alkaline reserve depletion, and hypocapnia unaccompanied by a fall in blood pH occur — suggestive of compensated respiratory alkalosis. In the spring chinook, hypochloremia and reduced plasma cholesterol regulatory precision are the significant treatment side effects but recovery requires only a few hours.Formalin treatments also cause epithelial separation, hypertrophy, and necrosis in the gills of both fishes but again, consistent with the physiological dysfunctions, these are more severe in the steelhead.

  14. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zabel, Richard; Williams, John G.; Smith, Steven G. (Northwest and Alaska Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2002-06-01

    In 2001, the National Marine Fisheries Service and the University of Washington completed the ninth year of a study to estimate survival and travel time of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from passive integrated transponder (PIT)-tagged fish. We PIT tagged and released at Lower Granite Dam a total of 17,028 hatchery and 3,550 wild steelhead. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream of the hydropower system and sites within the hydropower system. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using the Single-Release Model. Primary research objectives in 2001 were to: (1) estimate reach and project survival and travel time in the Snake and Columbia Rivers throughout the yearling chinook salmon and steelhead migrations; (2) evaluate relationships between survival estimates and migration conditions; and (3) evaluate the survival-estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2001 for PIT-tagged yearling chinook salmon and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Results are reported primarily in the form of tables and figures with a minimum of text. More details on methodology and statistical models used are provided in previous reports cited in the text. Results for summer-migrating chinook salmon will be reported separately.

  15. Effect of short-term decrease in water temperature on body temperature and involvement of testosterone in steelhead and rainbow trout, Oncorhynchus mykiss.

    Science.gov (United States)

    Miura, Go; Munakata, Arimune; Yada, Takashi; Schreck, Carl B; Noakes, David L G; Matsuda, Hiroyuki

    2013-09-01

    The Pacific salmonid species Oncorhynchus mykiss is separated into a migratory form (steelhead trout) and a non-migratory form (rainbow trout). A decrease in water temperature is likely a cue triggering downstream behavior in the migratory form, and testosterone inhibits onset of this behavior. To elucidate differences in sensitivity to water temperature decreases between the migratory and non-migratory forms and effect of testosterone on the sensitivity, we examined two experiments. In experiment 1, we compared changes in body temperature during a short-term decrease in water temperature between both live and dead steelhead and rainbow trout. In experiment 2, we investigated effects of testosterone on body temperature decrease in steelhead trout. Water temperature was decreased by 3°C in 30min. The body temperature of the steelhead decreased faster than that of the rainbow trout. In contrast, there was no significant difference in the decrease in body temperature between dead steelhead and rainbow trout specimens. The body temperature of the testosterone-treated steelhead trout decreased more slowly than that of control fish. Our results suggest that the migratory form is more sensitive to decreases in water temperature than the non-migratory form. Moreover, testosterone might play an inhibitory role in sensitivity to such decreases. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Examination of the influence of juvenile Atlantic salmon on the feeding mode of juvenile steelhead in Lake Ontario tributaries

    Science.gov (United States)

    Johnson, James H.; Waldt, Emily M.

    2014-01-01

    We examined diets of 1204 allopatric and sympatric juvenile Atlantic salmon (Salmo salar) and steelhead (Oncorhynchus mykiss) in three tributaries of Lake Ontario. The diet composition of both species consisted primarily of ephemeropterans, trichopterans, and chironomids, although juvenile steelhead consumed more terrestrial invertebrates, especially at the sympatric sites. Subyearlings of both species consumed small prey (i.e. chironomids) whereas large prey (i.e. perlids) made up a higher percentage of the diet of yearlings. The diet of juvenile steelhead at the allopatric sites was more closely associated with the composition of the benthos than with the drift, but was about equally associated with the benthos and drift at the sympatric sites. The diet of both subyearling and yearling Atlantic salmon was more closely associated with the benthos than the drift at the sympatric sites. The evidence suggests that juvenile steelhead may subtly alter their feeding behavior in sympatry with Atlantic salmon. This behavioral adaptation may reduce competitive interactions between these species.

  17. Genetic characterization of fin fish species from the Warri River at ...

    African Journals Online (AJOL)

    SAM

    2014-07-02

    Jul 2, 2014 ... Genetic characterization of fin fish species from the. Warri River at Ubeji, Niger Delta, Nigeria. Asagbra ..... Prochilodus lineatus, Salminus brasiliensis and Steindachneridion scripta) from Uruguay River basin. Brazilian Archives Biol. Tech. 49(4):589-598. Saad YM, Shaden-Hanafi M, Essa MA, Guerges AA ...

  18. Willingness-to-pay for steelhead trout fishing: Implications of two-step consumer decisions with short-run endowments

    Science.gov (United States)

    McKean, John R.; Johnson, Donn; Taylor, R. Garth

    2010-09-01

    Choice of the appropriate model of economic behavior is important for the measurement of nonmarket demand and benefits. Several travel cost demand model specifications are currently in use. Uncertainty exists over the efficacy of these approaches, and more theoretical and empirical study is warranted. Thus travel cost models with differing assumptions about labor markets and consumer behavior were applied to estimate the demand for steelhead trout sportfishing on an unimpounded reach of the Snake River near Lewiston, Idaho. We introduce a modified two-step decision model that incorporates endogenous time value using a latent index variable approach. The focus is on the importance of distinguishing between short-run and long-run consumer decision variables in a consistent manner. A modified Barnett two-step decision model was found superior to other models tested.

  19. Genetic differentiation of spring-spawning and fall-spawning male Atlantic sturgeon in the James River, Virginia.

    Directory of Open Access Journals (Sweden)

    Matthew T Balazik

    Full Text Available Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus, Acipenseridae populations are currently at severely depleted levels due to historic overfishing, habitat loss, and pollution. The importance of biologically correct stock structure for effective conservation and management efforts is well known. Recent improvements in our understanding of Atlantic sturgeon migrations, movement, and the occurrence of putative dual spawning groups leads to questions regarding the true stock structure of this endangered species. In the James River, VA specifically, captures of spawning Atlantic sturgeon and accompanying telemetry data suggest there are two discrete spawning groups of Atlantic sturgeon. The two putative spawning groups were genetically evaluated using a powerful microsatellite marker suite to determine if they are genetically distinct. Specifically, this study evaluates the genetic structure, characterizes the genetic diversity, estimates effective population size, and measures inbreeding of Atlantic sturgeon in the James River. The results indicate that fall and spring spawning James River Atlantic sturgeon groups are genetically distinct (overall FST = 0.048, F'ST = 0.181 with little admixture between the groups. The observed levels of genetic diversity and effective population sizes along with the lack of detected inbreeding all indicated that the James River has two genetically healthy populations of Atlantic sturgeon. The study also demonstrates that samples from adult Atlantic sturgeon, with proper sample selection criteria, can be informative when creating reference population databases. The presence of two genetically-distinct spawning groups of Atlantic sturgeon within the James River raises concerns about the current genetic assignment used by managers. Other nearby rivers may also have dual spawning groups that either are not accounted for or are pooled in reference databases. Our results represent the second documentation of genetically

  20. Influence of a weak field of pulsed DC electricity on the behavior and incidence of injury in adult Steelhead and Pacific Lamprey

    Science.gov (United States)

    Mesa, Matthew G.; Copeland, Elizabeth S.

    2009-01-01

    Predation by pinnipeds, such as California sea lions Zalophus californianus, Pacific harbor seals Phoca vitulina, and Stellar sea lions Eumetopias jubatus on adult Pacific salmon Oncorhynchus spp in the lower Columbia River has become a serious concern for fishery managers trying to conserve and restore runs of threatened and endangered fish. As a result, Smith-Root, Incorporated (SRI; Vancouver, Washington), manufacturers of electrofishing and closely-related equipment, proposed a project to evaluate the potential of an electrical barrier to deter marine mammals and reduce the amount of predation on adult salmonids (SRI 2007). The objectives of their work were to develop, deploy, and evaluate a passive, integrated sonar and electric barrier that would selectively inhibit the upstream movements of marine mammals and reduce predation, but would not injure pinnipeds or impact anadromous fish migrations. However, before such a device could be deployed in the field, concerns by regional fishery managers about the potential effects of such a device on the migratory behavior of Pacific salmon, steelhead O. mykiss, Pacific lampreys Entoshpenus tridentata, and white sturgeon Acipenser transmontanus, needed to be addressed. In this report, we describe the results of laboratory research designed to evaluate the effects of prototype electric barriers on adult steelhead and Pacific lampreys.

  1. Trapping and transportation of adult and juvenile salmon in the lower Umatilla River in northeast Oregon, 1995--1996 -- Umatilla River Basin Trap and Haul Program. Annual progress report, October 1995--September 1996

    International Nuclear Information System (INIS)

    Zimmerman, B.C.; Duke, B.B.

    1996-09-01

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were collected at Threemile Dam from September 5, 1995 to July 1, 1996. A total of 2,081 summer steelhead (Oncorhynchus mykiss); 603 adult, 288 jack, and 338 subjack fall chinook (O. tshawytscha); 946 adult and 53 jack coho (O. kisutch); and 2,152 adult and 121 jack spring chinook (O. tshawytscha) were collected. All fish were trapped at the east bank facility. The Westland Canal juvenile facility (Westland), located near the town of Echo at rivermile (RM) 27, is the major collection point for outmigrating juvenile salmonids and steelhead kelts. The Threemile Dam west bank juvenile bypass was operated from September 8 to October 13, 1995 and from March 18 to June 30, 1996. The juvenile trap was operated from July 1 to July 11. Daily operations at the facility were conducted by the ODFW Fish Passage Research project to monitor juvenile outmigration

  2. Genomic evidence for the population genetic differentiation of Misgurnus anguillicaudatus in the Yangtze River basin of China.

    Science.gov (United States)

    Yi, Shaokui; Wang, Weimin; Zhou, Xiaoyun

    2018-02-21

    Misgurnus anguillicaudatus, an important aquatic species, is mainly distributed in the Yangtze River basin. To reveal the population genetic structure of M. anguillicaudatus distributed in the Yangtze River basin, genotyping by sequencing (GBS) technique was employed to detect the genome wide genetic variations of M. anguillicaudatus. A total of 30.03 Gb raw data were yielded from 70 samples collected from 15 geographic sites located in the Yangtze River basin. Subsequently, 2092 high quality SNPs were genotyped across these samples and used for a series of genetic analysis. The results of genetic analysis showed that high levels of genetic diversity were observed and the populations from upper reaches (UR) were significantly differentiated from the middle and lower reaches (MLR) of Yangtze River basin. Meanwhile, no significant isolation by distance was detected among the populations. Ecological factors (e.g. complicated topography and climatic environment) and anthropogenic factors (e.g. aquaculture and agriculture cultivation) might account for the genetic disconnectivity between UR and MLR populations. This study provided valuable genetic data for the future breeding program and also for the conversation and scientific utilization of those abundant genetic resources stored in the Yangtze River basin. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. AFSC/ABL: 1996 Brood year Steelhead growth and early life-history transitions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Heritabilities of growth, precocious maturation and smolting were measured in 75 families of juvenile steelhead or rainbow trout Oncorhynchus mykiss, progeny of...

  4. Investigations of Bull Trout (Salvelinus Confluentus), Steelhead Trout (Oncorhynchus Mykiss), and Spring Chinook Salmon (O. Tshawytscha) Interactions in Southeast Washington Streams : 1991 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Steven W.

    1992-07-01

    Bull trout (Salvelinus confluentus) are native to many tributaries of the Snake River in southeast Washington. The Washington Department of Wildlife (WDW) and the American Fisheries Society (AFS) have identified bull trout as a species of special concern which means that they may become threatened or endangered by relatively, minor disturbances to their habitat. Steelhead trout/rainbow trout (Oncorhynchus mykiss) and spring chinook salmon (O.tshawytscha) are also native to several tributaries of the Snake river in southeast Washington. These species of migratory fishes are depressed, partially due to the construction of several dams on the lower Snake river. In response to decreased run size, large hatchery program were initiated to produce juvenile steelhead and salmon to supplement repressed tributary stocks, a practice known as supplementation. There is a concern that supplementing streams with artificially high numbers of steelhead and salmon may have an impact on resident bull trout in these streams. Historically, these three species of fish existed together in large numbers, however, the amount of high-quality habitat necessary for reproduction and rearing has been severely reduced in recent years, as compared to historic amounts. The findings of the first year of a two year study aimed at identifying species interactions in southeast Washington streams are presented in this report. Data was collected to assess population dynamics; habitat utilization and preference, feeding habits, fish movement and migration, age, condition, growth, and the spawning requirements of bull trout in each of four streams. A comparison of the indices was then made between the study streams to determine if bull trout differ in the presence of the putative competitor species. Bull trout populations were highest in the Tucannon River (supplemented stream), followed by Mill Creek (unsupplemented stream). Young of the year bull trout utilized riffle and cascade habitat the most in all

  5. Forecasting Shaharchay River Flow in Lake Urmia Basin using Genetic Programming and M5 Model Tree

    Directory of Open Access Journals (Sweden)

    S. Samadianfard

    2017-01-01

    Full Text Available Introduction: Precise prediction of river flows is the key factor for proper planning and management of water resources. Thus, obtaining the reliable methods for predicting river flows has great importance in water resource engineering. In the recent years, applications of intelligent methods such as artificial neural networks, fuzzy systems and genetic programming in water science and engineering have been grown extensively. These mentioned methods are able to model nonlinear process of river flows without any need to geometric properties. A huge number of studies have been reported in the field of using intelligent methods in water resource engineering. For example, Noorani and Salehi (23 presented a model for predicting runoff in Lighvan basin using adaptive neuro-fuzzy network and compared the performance of it with neural network and fuzzy inference methods in east Azerbaijan, Iran. Nabizadeh et al. (21 used fuzzy inference system and adaptive neuro-fuzzy inference system in order to predict river flow in Lighvan river. Khalili et al. (13 proposed a BL-ARCH method for prediction of flows in Shaharchay River in Urmia. Khu et al. (16 used genetic programming for runoff prediction in Orgeval catchment in France. Firat and Gungor (11 evaluated the fuzzy-neural model for predicting Mendes river flow in Turkey. The goal of present study is comparing the performance of genetic programming and M5 model trees for prediction of Shaharchay river flow in the basin of Lake Urmia and obtaining a comprehensive insight of their abilities. Materials and Methods: Shaharchay river as a main source of providing drinking water of Urmia city and agricultural needs of surrounding lands and finally one of the main input sources of Lake Urmia is quite important in the region. For obtaining the predetermined goals of present study, average monthly flows of Shaharchay River in Band hydrometric station has been gathered from 1951 to 2011. Then, two third of mentioned

  6. Compendium of Low-Cost Pacific Salmon and Steelhead Trout Production Facilities and Practices in the Pacific Northwest.

    Energy Technology Data Exchange (ETDEWEB)

    Senn, Harry G.

    1984-09-01

    The purpose was to research low capital cost salmon and steelhead trout production facilities and identify those that conform with management goals for the Columbia Basin. The species considered were chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and steelhead trout (Salmo gairdneri). This report provides a comprehensive listing of the facilities, techniques, and equipment used in artificial production in the Pacific Northwest. (ACR)

  7. Methow and Columbia Rivers studies: summary of data collection, comparison of database structure and habitat protocols, and impact of additional PIT tag interrogation systems to survival estimates, 2008-2012

    Science.gov (United States)

    Martens, Kyle D.; Tibbits, Wesley T.; Watson, Grace A.; Newsom, Michael A.; Connolly, Patrick J.

    2014-01-01

    The U.S. Geological Survey (USGS) received funding from the Bureau of Reclamation (Reclamation) to provide monitoring and evaluation on the effectiveness of stream restoration efforts by Reclamation in the Methow River watershed. This monitoring and evaluation program is designed to partially fulfill Reclamation’s part of the 2008 Biological Opinion for the Federal Columbia River Power System that includes a Reasonable and Prudent Alternative (RPA) to protect listed salmon and steelhead across their life cycle. The target species in the Methow River for the restoration effort include Upper Columbia River (UCR) spring Chinook salmon (Oncorhynchus tshawytscha), UCR steelhead (Oncorhynchus mykiss), and bull trout (Salvelinus confluentus), which are listed as threatened or endangered under the Endangered Species Act. Since 2004, the USGS has completed two projects of monitoring and evaluation in the Methow River watershed. The first project focused on the evaluation of barrier removal and steelhead recolonization in Beaver Creek with Libby and Gold Creeks acting as controls. The majority of this work was completed by 2008, although some monitoring continued through 2012. The second project (2008–2012) evaluated the use and productivity of the middle Methow River reach (rkm 65–80) before the onset of multiple off-channel restoration projects planned by the Reclamation and Yakama Nation. The upper Methow River (upstream of rkm 80) and Chewuch River serve as reference reaches and the Methow River downstream of the Twisp River (downstream of rkm 65) serves as a control reach. Restoration of the M2 reach was initiated in 2012 and will be followed by a multi-year, intensive post-evaluation period. This report is comprised of three chapters covering different aspects of the work completed by the USGS. The first chapter is a review of data collection that documents the methods used and summarizes the work done by the USGS from 2008 through 2012. This data summary was

  8. A floating bridge disrupts seaward migration and increases mortality of steelhead smolts in Hood Canal, Washington state.

    Directory of Open Access Journals (Sweden)

    Megan Moore

    Full Text Available Habitat modifications resulting from human transportation and power-generation infrastructure (e.g., roads, dams, bridges can impede movement and alter natural migration patterns of aquatic animal populations, which may negatively affect survival and population viability. Full or partial barriers are especially problematic for migratory species whose life histories hinge on habitat connectivity.The Hood Canal Bridge, a floating structure spanning the northern outlet of Hood Canal in Puget Sound, Washington, extends 3.6 meters underwater and forms a partial barrier for steelhead migrating from Hood Canal to the Pacific Ocean. We used acoustic telemetry to monitor migration behavior and mortality of steelhead smolts passing four receiver arrays and several single receivers within the Hood Canal, Puget Sound, and Strait of Juan de Fuca. Twenty-seven mortality events were detected within the vicinity of the Hood Canal Bridge, while only one mortality was recorded on the other 325 receivers deployed throughout the study area. Migrating steelhead smolts were detected at the Hood Canal Bridge array with greater frequency, on more receivers, and for longer durations than smolts migrating past three comparably configured arrays. Longer migration times and paths are likely to result in a higher density of smolts near the bridge in relation to other sites along the migration route, possibly inducing an aggregative predator response to steelhead smolts.This study provides strong evidence of substantial migration interference and increased mortality risk associated with the Hood Canal Bridge, and may partially explain low early marine survival rates observed in Hood Canal steelhead populations. Understanding where habitat modifications indirectly increase predation pressures on threatened populations helps inform potential approaches to mitigation.

  9. A floating bridge disrupts seaward migration and increases mortality of steelhead smolts in Hood Canal, Washington state.

    Science.gov (United States)

    Moore, Megan; Berejikian, Barry A; Tezak, Eugene P

    2013-01-01

    Habitat modifications resulting from human transportation and power-generation infrastructure (e.g., roads, dams, bridges) can impede movement and alter natural migration patterns of aquatic animal populations, which may negatively affect survival and population viability. Full or partial barriers are especially problematic for migratory species whose life histories hinge on habitat connectivity. The Hood Canal Bridge, a floating structure spanning the northern outlet of Hood Canal in Puget Sound, Washington, extends 3.6 meters underwater and forms a partial barrier for steelhead migrating from Hood Canal to the Pacific Ocean. We used acoustic telemetry to monitor migration behavior and mortality of steelhead smolts passing four receiver arrays and several single receivers within the Hood Canal, Puget Sound, and Strait of Juan de Fuca. Twenty-seven mortality events were detected within the vicinity of the Hood Canal Bridge, while only one mortality was recorded on the other 325 receivers deployed throughout the study area. Migrating steelhead smolts were detected at the Hood Canal Bridge array with greater frequency, on more receivers, and for longer durations than smolts migrating past three comparably configured arrays. Longer migration times and paths are likely to result in a higher density of smolts near the bridge in relation to other sites along the migration route, possibly inducing an aggregative predator response to steelhead smolts. This study provides strong evidence of substantial migration interference and increased mortality risk associated with the Hood Canal Bridge, and may partially explain low early marine survival rates observed in Hood Canal steelhead populations. Understanding where habitat modifications indirectly increase predation pressures on threatened populations helps inform potential approaches to mitigation.

  10. Stock Assessment of Columbia River Anadromous Salmonids : Final Report, Volume I, Chinook, Coho, Chum and Sockeye Salmon Summaries.

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Philip J.

    1986-07-01

    The purpose was to identify and characterize the wild and hatchery stocks of salmon and steelhead in the Columbia River Basin on the basis of currently available information. This report provides a comprehensive compilation of data on the status and life histories of Columbia Basin salmonid stocks.

  11. The impact of small irrigation diversion dams on the recent migration rates of steelhead and redband trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Weigel, Dana E.; Connolly, Patrick J.; Powell, Madison S.

    2013-01-01

    Barriers to migration are numerous in stream environments and can occur from anthropogenic activities (such as dams and culverts) or natural processes (such as log jams or dams constructed by beaver (Castor canadensis)). Identification of barriers can be difficult when obstructions are temporary or incomplete providing passage periodically. We examine the effect of several small irrigation diversion dams on the recent migration rates of steelhead (Oncorhynchus mykiss) in three tributaries to the Methow River, Washington. The three basins had different recent migration patterns: Beaver Creek did not have any recent migration between sites, Libby Creek had two-way migration between sites and Gold Creek had downstream migration between sites. Sites with migration were significantly different from sites without migration in distance, number of obstructions, obstruction height to depth ratio and maximum stream gradient. When comparing the sites without migration in Beaver Creek to the sites with migration in Libby and Gold creeks, the number of obstructions was the only significant variable. Multinomial logistic regression identified obstruction height to depth ratio and maximum stream gradient as the best fitting model to predict the level of migration among sites. Small irrigation diversion dams were limiting population interactions in Beaver Creek and collectively blocking steelhead migration into the stream. Variables related to stream resistance (gradient, obstruction number and obstruction height to depth ratio) were better predictors of recent migration rates than distance, and can provide important insight into migration and population demographic processes in lotic species.

  12. Yangtze River, an insignificant genetic boundary in tufted deer (Elaphodus cephalophus): the evidence from a first population genetics study.

    Science.gov (United States)

    Sun, Zhonglou; Pan, Tao; Wang, Hui; Pang, Mujia; Zhang, Baowei

    2016-01-01

    Great rivers were generally looked at as the geographical barrier to gene flow for many taxonomic groups. The Yangtze River is the third largest river in the world, and flows across South China and into the East China Sea. Up until now, few studies have been carried out to evaluate its effect as a geographical barrier. In this study, we attempted to determine the barrier effect of the Yangtze River on the tufted deer ( Elaphodus cephalophus ) using the molecular ecology approach. Using mitochondrial DNA control region (CR) sequences and 13 nuclear microsatellite loci, we explored the genetic structure and gene flow in two adjacent tufted deer populations (Dabashan and Wulingshan populations), which are separated by the Yangtze River. Results indicated that there are high genetic diversity levels in the two populations, but no distinguishable haplotype group or potential genetic cluster was detected which corresponded to specific geographical population. At the same time, high gene flow was observed between Wulingshan and Dabashan populations. The tufted deer populations experienced population decrease from 0.3 to 0.09 Ma BP, then followed by a distinct population increase. A strong signal of recent population decline ( T = 4,396 years) was detected in the Wulingshan population by a Markov-Switching Vector Autoregressions(MSVAR) process population demography analysis. The results indicated that the Yangtze River may not act as an effective barrier to gene flow in the tufted deer. Finally, we surmised that the population demography of the tufted deer was likely affected by Pleistocene climate fluctuations and ancient human activities.

  13. Wind River Watershed Restoration: 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.

    2001-09-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey--Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination--Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring--Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment--Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration--Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  14. Genetic diversity analysis of the oriental river prawn (Macrobrachium nipponense) in Huaihe River.

    Science.gov (United States)

    Cui, Feng; Yu, Yanyan; Bao, Fangyin; Wang, Song; Xiao, Ming Song

    2018-04-19

    The oriental river prawn (Macrobrachium nipponense) is an economically and nutritionally important species of decapod crustaceans in China. Genetic structure and demographic history of Macrobrachium nipponense were examined using sequence data from portions of the mitochondrial DNA cytochrome oxidase subunit I (COI) gene. Samples of 191 individuals were collected from 10 localities in the upper to middle reaches of the Huaihe River. Variability was detected at a total of 42 nucleotide sites along 684 bp length of homologous sequence (6.14%), and base substitutions occurred mostly at the second codon position. Haplotype diversity (h) and nucleotide diversity (π) of all populations were 0.9136 ± 0.0116 and 0.0078 ± 0.0042, respectively. Phylogenetic tree constructed using the maximum-likelihood (ML) method showed that the 44 haplotypes were assigned to two obvious clades associated with geographic regions. Moreover, the median-joining network was similar to the topology of the phylogenetic tree with 44 haplotypes. The pairwise F ST values between the populations varied from -0.0298 to 0.2994. Generally, moderate genetic differentiation (F ST  = 0.1598, p = .0000) among different geographic populations was detected, with the significant differentiation between the Huaibin (HB) and other Macrobrachium nipponense populations. Both mismatch distribution analyses and neutrality tests suggested the early stage of Late Pleistocene population expansion 85,500 years before present for the species, which was consistent with the palaeoclimatic condition of the Huaihe River Basin.

  15. Detection and Genetic Analysis of Human Sapoviruses in River Water in Japan▿

    OpenAIRE

    Kitajima, Masaaki; Oka, Tomoichiro; Haramoto, Eiji; Katayama, Hiroyuki; Takeda, Naokazu; Katayama, Kazuhiko; Ohgaki, Shinichiro

    2010-01-01

    We investigated the prevalence of sapoviruses (SaVs) in the Tamagawa River in Japan from April 2003 to March 2004 and performed genetic analysis of the SaV genes identified in river water. A total of 60 river water samples were collected from five sites along the river, and 500 ml was concentrated using the cation-coated filter method. By use of a real-time reverse transcription (RT)-PCR assay, 12 (20%) of the 60 samples were positive for SaV. SaV sequences were obtained from 15 (25%) samples...

  16. Migratory Behavior and Survival of Juvenile Salmonids in the Lower Columbia River and Estuary in 2009

    Energy Technology Data Exchange (ETDEWEB)

    McMichael, Geoffrey A.; Harnish, Ryan A.; Bellgraph, Brian J.; Carter, Jessica A.; Ham, Kenneth D.; Titzler, P. Scott; Hughes, Michael S.

    2010-08-01

    The study reported herein was funded as part of the Anadromous Fish Evaluation Program, which is managed by the U.S. Army Corps of Engineers (USACE). The Anadromous Fish Evaluation Program study code is EST P 02 01: A Study of Salmonid Survival and Behavior through the Columbia River Estuary Using Acoustic Tags. The study was conducted by the Pacific Northwest National Laboratory (PNNL) and National Oceanic and Atmospheric Administration (NOAA) Fisheries for the USACE Portland District. Estimated survival of acoustic-tagged juvenile Chinook salmon and steelhead through the lower Columbia River and estuary in 2009 was lowest in the final 50 km of the estuary. Probability of survival was relatively high (>0.90) for yearling and subyearling Chinook salmon from the Bonneville Dam forebay (rkm 236) to Three-tree Point (rkm 49.6). Survival of juvenile Chinook salmon declined sharply through the lower 50 km of the estuary. Acoustic-tagged steelhead smolts did not survive as well as juvenile Chinook salmon between Bonneville Dam and the mouth of the Columbia River. Steelhead survival began to decline farther upstream (at rkm 86) relative to that of the Chinook salmon stocks. Subyearling Chinook salmon survival decreased markedly as the season progressed. It remains to be determined whether later migrating subyearling Chinook salmon are suffering increasing mortality as the season progresses or whether some portion of the apparent loss is due to fish extending their freshwater residence. This study provided the first glimpse into what promises to be a very informative way to learn more about how juvenile salmonid passage experiences through the FCRPS may influence their subsequent survival after passing Bonneville Dam. New information regarding the influence of migration pathway through the lower 50 km of the Columbia River estuary on probability of survival of juvenile salmonids, combined with increased understanding regarding the foraging distances and time periods of

  17. Wind River Watershed restoration: 1999 annual report; ANNUAL

    International Nuclear Information System (INIS)

    Connolly, Patrick J.

    2001-01-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey-Columbia River Research Lab (USGS-CRRL), and WA Department of Fish and Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination-Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring-Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment-Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration-Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  18. Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at John Day Dam, Spring 2010

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Skalski, J. R.; Townsend, Richard L.

    2012-11-15

    The purpose of this study was to compare dam passage survival, at two spill treatment levels, of yearling Chinook salmon and steelhead smolts at John Day Dam during spring 2010. The two treatments were 30% and 40% spill out of total project discharge. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 and estimated with a standard error (SE) less than or equal 0.015. The study also estimated forebay residence time, tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. However, by agreement among the stakeholders, this study was not an official BiOp compliance test because the long-term passage measures at John Day Dam have yet to be finalized and another year of spill-treatment testing was desired.

  19. Revised Master Plan for the Hood River Production Program, Technical Report 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Oregon Department of Fish and Wildlife; Confederated Tribes of the Warm Springs Reservation

    2008-04-28

    The Hood River Production Program (HRPP) is a Bonneville Power Administration (BPA) funded program initiated as a mitigation measure for Columbia River hydrosystem effects on anadromous fish. The HRPP began in the early 1990s with the release of spring Chinook and winter steelhead smolts into the basin. Prior to implementation, co-managers, including the Confederated Tribes of the Warm Springs Reservation and the Oregon Department of Fish and Wildlife drafted the Hood River Production Master Plan (O'Toole and ODFW 1991a; O'Toole and ODFW 1991b) and the Pelton Ladder Master Plan (Smith and CTWSR 1991). Both documents were completed in 1991 and subsequently approved by the Council in 1992 and authorized through a BPA-led Environmental Impact Statement in 1996. In 2003, a 10-year programmatic review was conducted for BPA-funded programs in the Hood River (Underwood et al. 2003). The primary objective of the HRPP Review (Review) was to determine if program goals were being met, and if modifications to program activities would be necessary in order to meet or revise program goals. In 2003, an agreement was signed between PacifiCorp and resource managers to remove the Powerdale Dam (RM 10) and associated adult trapping facility by 2010. The HRPP program has been dependant on the adult trap to collect broodstock for the hatchery programs; therefore, upon the dam's removal, some sort of replacement for the trap would be needed to continue the HRPP. At the same time the Hood River Subbasin Plan (Coccoli 2004) was being written and prompted the co-managers to considered future direction of the program. This included revising the numerical adult fish objectives based on the assimilated data and output from several models run on the Hood River system. In response to the Review as well as the Subbasin Plan, and intensive monitoring and evaluation of the current program, the HRPP co-managers determined the spring Chinook program was not achieving the HRPP

  20. The floodplain food web mosaic: a study of its importance to salmon and steelhead with implications for their recovery

    Science.gov (United States)

    Bellmore, J. Ryan; Baxter, Colden V.; Martens, Kyle; Connolly, Patrick J.

    2013-01-01

    Although numerous studies have attempted to place species of interest within the context of food webs, such efforts have generally occurred at small scales or disregard potentially important spatial heterogeneity. If food web approaches are to be employed to manage species, studies are needed that evaluate the multiple habitats and associated webs of interactions in which these species participate. Here, we quantify the food webs that sustain rearing salmon and steelhead within a floodplain landscape of the Methow River, Washington, USA, a location where restoration has been proposed to restore side channels in an attempt to recover anadromous fishes. We combined year-long measures of production, food demand, and diet composition for the fish assemblage with estimates of invertebrate prey productivity to quantify food webs within the main channel and five different, intact, side channels; ranging from channels that remained connected to the main channel at low flow to those reduced to floodplain ponds. Although we found that habitats within the floodplain had similar invertebrate prey production, these habitats hosted different local food webs. In the main channel, 95% of total prey consumption flowed to fishes that are not the target of proposed restoration. These fishes consumed 64% and 47% of the prey resources that were found to be important to fueling chinook and steelhead production in the main channel, respectively. Conversely, in side channels, a greater proportion of prey was consumed by anadromous salmonids. As a result, carrying capacity estimates based on food were 251% higher, on average, for anadromous salmonids in side channels than the main channel. However, salmon and steelhead production was generally well below estimated capacity in both the main and side channels, suggesting these habitats are under-seeded with respect to food, and that much larger populations could be supported. Overall, this study demonstrates that floodplain heterogeneity is

  1. Imprinting Hatchery Reared Salmon and Steelhead Trout for Homing, Volume III of III; Disease and Physiology Supplements, 1978-1983 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Slatick, Emil; Gilbreath, Lyle G.; Harmon, Jerrel R. (Northwest and Alaska Fisheries Science Centr, Coastal Zone and Estuarine Studies Division, Seattle, WA)

    1988-02-03

    The main functions of the National Marine Fisheries Service (NMFS) Aquaculture Task biologists and contractual scientists involved in the 1978 homing studies were primarily a surveillance of fish physiology, disease, and relative survival during culture in marine net-pens, to determine if there were any unusual factors that might affect imprinting and homing behavior. The studies were conducted with little background knowledge of the implications of disease and physiology on imprinting and homing in salmonids. The health status of the stocks was quite variable as could be expected. The Dworshak and Wells Hatcheries steelhead suffered from some early stresses in seawater, probably osmoregulatory. The incidences of latent BKD in the Wells and Chelan Hatcheries steelhead and Kooskia Hatchery spring chinook salmon were extremely high, and how these will affect survival in the ocean is not known. Gill enzyme activity in the Dworshak and Chelan Hatcheries steelhead at release was low. Of the steelhead, survival in the Tucannon Hatchery stock will probably be the highest, with Dworshak Hatchery stock the lowest. This report contains five previously published papers.

  2. Ecosystem experiment reveals benefits of natural and simulated beaver dams to a threatened population of steelhead (Oncorhynchus mykiss)

    Science.gov (United States)

    Bouwes, Nicolaas; Weber, Nicholas; Jordan, Chris E.; Saunders, W. Carl; Tattam, Ian A.; Volk, Carol; Wheaton, Joseph M.; Pollock, Michael M.

    2016-01-01

    Beaver have been referred to as ecosystem engineers because of the large impacts their dam building activities have on the landscape; however, the benefits they may provide to fluvial fish species has been debated. We conducted a watershed-scale experiment to test how increasing beaver dam and colony persistence in a highly degraded incised stream affects the freshwater production of steelhead (Oncorhynchus mykiss). Following the installation of beaver dam analogs (BDAs), we observed significant increases in the density, survival, and production of juvenile steelhead without impacting upstream and downstream migrations. The steelhead response occurred as the quantity and complexity of their habitat increased. This study is the first large-scale experiment to quantify the benefits of beavers and BDAs to a fish population and its habitat. Beaver mediated restoration may be a viable and efficient strategy to recover ecosystem function of previously incised streams and to increase the production of imperiled fish populations. PMID:27373190

  3. Population structure and genetic diversity of Sinibrama macrops from Ou River and Ling River based on mtDNA D-loop region analysis, China.

    Science.gov (United States)

    Zhao, Liangjie; Chenoweth, Erica L; Liu, Qigen

    2018-03-01

    In order to understand the influence of human activities such as habitat fragmentation on freshwater fish population evolution, we investigated and compared the genetic diversity and phylogeography of Sinibrama macrops populations in the Oujiang River and Ling River. Mitochondrial control region sequences (D-loop region) of 131 specimens from six populations were obtained and analyzed. The diversity of main stream in the Ou River was lower than that in Ling River. Changtan population showed the lowest diversity (H = 0.646 ± 0.077; π = 0.00060 ± 0.00820). Pairwise F ST , gene flow (Nm), and genetic distance (Da) indicated that Longquan and Changtan significantly differentiate from other populations. Nested clade phylogeographical analysis (NCPA) showed some clades and total cladogram experienced isolation by distance. In conclusion, the populations from severely fragmented Ou River have the lower diversity and more intense differentiation than that from the mainstream of Ling River, Changtan population present the lowest diversity and were isolated by the dam construction.

  4. Rapid Diagnosis of IHN Virus Infection in Salmon and Steelhead Trout, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Leong, JoAnn Ching

    1984-12-01

    The main objective for this study was the development of a rapid diagnostic method for IHN virus in fish tissue samples. The rationale for developing new techniques for diagnosing IHNV infection was that present methods were time consuming and dependent on virus neutralization by specific antisera, a reagent that was not readily available or reliable. Fish pathologists required a rapid detection method which was sensitive enough to detect virus strain differences so that they could provide data for effective management decisions in controlling the spread of IHNV. Bonneville Power Administration's (BPA) role in efforts in fish diseases and more generically the protection, mitigation, and enhancement of Columbia River salmon and steelhead populations, is mandated by Congress through the Pacific Northwest Electric Power Planning and Conservation Act (Regional Act), Pub. L. 96-501. Section 4 (h) of the Regional Act directs the Northwest Power Planning Council to develop a Fish and Wildlife Program. BPA's Administrator is authorized in Section 4 (h) (10) (A) to ''use funds and the authorities available to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries''. The fund is to be used to implement measures that are consistent with the Council's Fish and Wildlife Program. The research detailed in this final report is consistent with these objectives. This final report has been prepared as part of BPA's policy to encourage the preservation and dissemination of research results by publication in scientific journals.

  5. Walla Walla River Fish Passage Operations Program, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

    2004-12-01

    In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2003-2004 project year, there were 379 adult summer steelhead (Oncorhynchus mykiss), 36 adult bull trout (Salvelinus confluentus); 108 adult and 3 jack spring chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway video counting window between December 21, 2003, and June 30, 2004. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. In addition, the old ladder trap was operated by the WWBNPME project in order to radio tag spring chinook adults. A total of 2 adult summer steelhead, 4 bull trout, and 23 adult spring chinook were enumerated at the west ladder at Nursery Bridge Dam during the trapping operations between May 6 and May 23, 2004. Operation of the Little Walla Walla

  6. Investigations into the Early Life-history of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Basin, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Reischauer, Alyssa; Monzyk, Frederick; Van Dyke, Erick

    2003-06-01

    We determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout Oncorhynchus mykiss using rotary screw traps on four streams in the Grande Ronde River basin during the 2001 migratory year (MY 2001) from 1 July 2000 through 30 June 2001. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O. mykiss could be distinguished. An 'early' migrant group left upper rearing areas from 1 July 2000 through 29 January 2001 with a peak in the fall. A 'late' migrant group descended from upper rearing areas from 30 January 2001 through 30 June 2001 with a peak in the spring. The migrant population of juvenile spring chinook salmon in the upper Grande Ronde River in MY 2001 was very low in comparison to previous migratory years. We estimated 51 juvenile spring chinook migrated out of upper rearing areas with approximately 12% of the migrant population leaving as early migrants to overwinter downstream. In the same migratory year, we estimated 16,067 O. mykiss migrants left upper rearing areas with approximately 4% of these fish descending the upper Grande Ronde River as early migrants. At the Catherine Creek trap, we estimated 21,937 juvenile spring chinook migrants in MY 2001. Of these migrants, 87% left upper rearing areas early to overwinter downstream. We also estimated 20,586 O. mykiss migrants in Catherine Creek with 44% leaving upper rearing areas early to overwinter downstream. At the Lostine River trap, we estimated 13,610 juvenile spring chinook migrated out of upper rearing areas with approximately 77% migrating early. We estimated 16,690 O. mykiss migrated out of the Lostine River with approximately 46% descending the river as early migrants. At the Minam River trap, we estimated 28,209 juvenile spring chinook migrated out of the river with 36% migrating early. During the same period, we estimated 28,113 O. mykiss with

  7. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Brimmer, Arnold F.

    1994-10-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1994 spring outmigration at migrant traps on the Snake River, Clearwater River, and Salmon River. The 1994 snowpack was among the lowest since the beginning of the present drought, and the subsequent runoff was very poor. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1994. Total annual (hatchery + wild) chinook salmon catch at the Snake River trap was 1.5 times greater than in 1993. Hatchery and wild steelhead trout catches were similar to 1993. The Snake River trap collected 30 age 0 chinook salmon. Hatchery chinook salmon catch at the Clearwater River trap was 3.5 times higher than in 1993, and wild chinook salmon catch was 4.2 times higher. Hatchery steelhead trout trap catch was less than half of 1993 numbers because the trap was fishing near the north shore during the majority of the hatchery steelhead movement due to flow augmentations from Dworshak. Wild steelhead trout trap catch was 2 times higher than in 1993. The Salmon River trap was operated for about a month longer in 1994 than in 1993 due to extremely low flows. Hatchery chinook salmon catch was 1.4 times greater in 1994 than the previous year. Wild chinook salmon catch was slightly less in 1994. The 1994 hatchery steelhead trout collection did not change significantly from 1993 numbers. Wild steelhead trout collection in 1994 was 59% of the 1993 catch. Fish tagged with Passive Integrated Transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993, cumulative interrogation data is not comparable with the prior five years (1988-1992).

  8. A stakeholder project to model water temperature under future climate scenarios in the Satus and Toppenish watersheds of the Yakima River Basinin Washington, USA

    Science.gov (United States)

    Graves, D.; Maule, A.

    2014-01-01

    The goal of this study was to support an assessment of the potential effects of climate change on select natural, social, and economic resources in the Yakima River Basin. A workshop with local stakeholders highlighted the usefulness of projecting climate change impacts on anadromous steelhead (Oncorhynchus mykiss), a fish species of importance to local tribes, fisherman, and conservationists. Stream temperature is an important environmental variable for the freshwater stages of steelhead. For this study, we developed water temperature models for the Satus and Toppenish watersheds, two of the key stronghold areas for steelhead in the Yakima River Basin. We constructed the models with the Stream Network Temperature Model (SNTEMP), a mechanistic approach to simulate water temperature in a stream network. The models were calibrated over the April 15, 2008 to September 30, 2008 period and validated over the April 15, 2009 to September 30, 2009 period using historic measurements of stream temperature and discharge provided by the Yakama Nation Fisheries Resource Management Program. Once validated, the models were run to simulate conditions during the spring and summer seasons over a baseline period (1981–2005) and two future climate scenarios with increased air temperature of 1°C and 2°C. The models simulated daily mean and maximum water temperatures at sites throughout the two watersheds under the baseline and future climate scenarios.

  9. Detection and genetic analysis of human sapoviruses in river water in Japan.

    Science.gov (United States)

    Kitajima, Masaaki; Oka, Tomoichiro; Haramoto, Eiji; Katayama, Hiroyuki; Takeda, Naokazu; Katayama, Kazuhiko; Ohgaki, Shinichiro

    2010-04-01

    We investigated the prevalence of sapoviruses (SaVs) in the Tamagawa River in Japan from April 2003 to March 2004 and performed genetic analysis of the SaV genes identified in river water. A total of 60 river water samples were collected from five sites along the river, and 500 ml was concentrated using the cation-coated filter method. By use of a real-time reverse transcription (RT)-PCR assay, 12 (20%) of the 60 samples were positive for SaV. SaV sequences were obtained from 15 (25%) samples, and a total of 30 SaV strains were identified using six RT-PCR assays followed by cloning and sequence analysis. A newly developed nested RT-PCR assay utilizing a broadly reactive forward primer showed the highest detection efficiency and amplified more diverse SaV genomes in the samples. SaV sequences were frequently detected from November to March, whereas none were obtained in April, July, September, or October. No SaV sequences were detected in the upstream portion of the river, whereas the midstream portion showed high positive rates. Based on phylogenetic analysis, SaV strains identified in the river water samples were classified into nine genotypes, namely, GI/1, GI/2, GI/3, GI/5, GI/untyped, GII/1, GII/2, GII/3, and GV/1. To our knowledge, this is the first study describing seasonal and spatial distributions and genetic diversity of SaVs in river water. A combination of real-time RT-PCR assay and newly developed nested RT-PCR assay is useful for identifying and characterizing SaV strains in a water environment.

  10. 75 FR 65299 - Endangered and Threatened Species; Recovery Plans

    Science.gov (United States)

    2010-10-22

    ... demographically independent populations of spring Chinook in the Upper Willamette River based on geography... streams cool and provide large woody debris, and managing land use by applying best management practices... potential of any population. Upper Willamette River Steelhead ``Steelhead'' is the name commonly applied to...

  11. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2003 spring out-migration at migrant traps on the Snake River and Salmon River. In 2003 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 2.1 times less in 2003 than in 2002. The wild Chinook catch was 1.1 times less than the previous year. Hatchery steelhead trout catch was 1.7 times less than in 2002. Wild steelhead trout catch was 2.1 times less than the previous year. The Snake River trap collected 579 age-0 Chinook salmon of unknown rearing. During 2003, the Snake River trap captured five hatchery and 13 wild/natural sockeye salmon and 36 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant differences in catch between 2003 and the previous year were due mainly to low flows during much of the trapping season and then very high flows at the end of the season, which terminated the trapping season 12 days earlier than in 2002. Trap operations began on March 9 and were terminated on May 27. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 16.8% less and wild Chinook salmon catch was 1.7 times greater than in 2002. The hatchery steelhead trout collection in 2003 was 5.6% less than in 2002. Wild steelhead trout collection was 19.2% less than the previous year. Trap operations began on March 9 and were terminated on May 24 due to high

  12. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2002 spring out-migration at migrant traps on the Snake River and Salmon River. In 2002 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 11.4 times greater in 2002 than in 2001. The wild Chinook catch was 15.5 times greater than the previous year. Hatchery steelhead trout catch was 2.9 times greater than in 2001. Wild steelhead trout catch was 2.8 times greater than the previous year. The Snake River trap collected 3,996 age-0 Chinook salmon of unknown rearing. During 2002, the Snake River trap captured 69 hatchery and 235 wild/natural sockeye salmon and 114 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant increase in catch in 2002 was due to a 3.1 fold increase in hatchery Chinook production and a more normal spring runoff. Trap operations began on March 10 and were terminated on June 7. The trap was out of operation for a total of four days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 4.2 times greater and wild Chinook salmon catch was 2.4 times greater than in 2001. The hatchery steelhead trout collection in 2002 was 81% of the 2001 numbers. Wild steelhead trout collection in 2002 was 81% of the previous year's catch. Trap operations began on March 10 and were terminated on May 29 due to high flows. The trap was out of operation for four days due to high flow or debris. The

  13. Survival estimates for the passage of juvenile salmonids through Snake River dams and reservoirs, 1996. Annual report

    International Nuclear Information System (INIS)

    Smith, S.G.; Muir, W.D.; Hockersmith, E.E.; Achord, S.; Eppard, M.B.; Ruehle, T.E.; Williams, J.G.

    1998-02-01

    In 1996, the National Marine Fisheries Service and the University of Washington completed the fourth year of a multi-year study to estimate survival of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake River. Actively migrating smolts were collected near the head of Lower Granite Reservoir and at Lower Granite Dam, tagged with passive integrated transponder (PIT) tags, and released to continue their downstream migration. Individual smolts were subsequently detected at PIT-tag detection facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day and Bonneville Dams. Survival estimates were calculated using the Single-Release (SR) and Paired-Release (PR) Models. Timing of releases of tagged hatchery steelhead (O. mykiss) from the head of Lower Granite Reservoir and yearling chinook salmon (O. tshawytscha) from Lower Granite Dam in 1996 spanned the major portion of their juvenile migrations. Specific research objectives in 1996 were to (1) estimate reach and project survival in the Snake River using the Single-Release and Paired-Release Models throughout the yearling chinook salmon and steelhead migrations, (2) evaluate the performance of the survival-estimation models under prevailing operational and environmental conditions in the Snake River, and (3) synthesize results from the 4 years of the study to investigate relationships between survival probabilities, travel times, and environmental factors such as flow levels and water temperature

  14. Survival Estimates for the Passage of Juvenile Salmonids through Snake River Dams and Reservoirs, 1996 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Steven G.

    1998-02-01

    In 1996, the National Marine Fisheries Service and the University of Washington completed the fourth year of a multi-year study to estimate survival of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake River. Actively migrating smolts were collected near the head of Lower Granite Reservoir and at Lower Granite Dam, tagged with passive integrated transponder (PIT) tags, and released to continue their downstream migration. Individual smolts were subsequently detected at PIT-tag detection facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day and Bonneville Dams. Survival estimates were calculated using the Single-Release (SR) and Paired-Release (PR) Models. Timing of releases of tagged hatchery steelhead (O. mykiss) from the head of Lower Granite Reservoir and yearling chinook salmon (O. tshawytscha) from Lower Granite Dam in 1996 spanned the major portion of their juvenile migrations. Specific research objectives in 1996 were to (1) estimate reach and project survival in the Snake River using the Single-Release and Paired-Release Models throughout the yearling chinook salmon and steelhead migrations, (2) evaluate the performance of the survival-estimation models under prevailing operational and environmental conditions in the Snake River, and (3) synthesize results from the 4 years of the study to investigate relationships between survival probabilities, travel times, and environmental factors such as flow levels and water temperature.

  15. Genetic characterization of fin fish species from the Warri River at ...

    African Journals Online (AJOL)

    A study to evaluate the genetic similarities and differences among 11 specimens of cichlids and four specimens of mudcatfishes obtained from Warri River was carried out through DNA fingerprinting analysis using random amplified polymorphic DNA (RAPD)-PCR amplification with seven decamer primers and dendrograms ...

  16. Research, Monitoring, and Evaluation of Avian Predation on Salmonid Smolts in the Lower and Mid-Columbia River, 2008 Draft Season Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Roby, Daniel D. [USGS - Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife, Oregon State University; Collis, Ken [Real Time Research, Inc.; Lyons, Donald E. [USGS - Oregon Cooperative Fish and Wildlife Research Unit, Oregon State University

    2009-07-08

    This report describes investigations into predation by piscivorous colonial waterbirds on juvenile salmonids (Oncorhynchus spp.) from throughout the Columbia River basin during 2008. East Sand Island in the Columbia River estuary again supported the largest known breeding colony of Caspian terns (Hydroprogne caspia) in the world (approximately 10,700 breeding pairs) and the largest breeding colony of double-crested cormorants (Phalacrocorax auritus) in western North America (approximately 10,950 breeding pairs). The Caspian tern colony increased from 2007, but not significantly so, while the double-crested cormorant colony experienced a significant decline (20%) from 2007. Average cormorant nesting success in 2008, however, was down only slightly from 2007, suggesting that food supply during the 2008 nesting season was not the principal cause of the decline in cormorant colony size. Total consumption of juvenile salmonids by East Sand Island Caspian terns in 2008 was approximately 6.7 million smolts (95% c.i. = 5.8-7.5 million). Caspian terns nesting on East Sand Island continued to rely primarily on marine forage fishes as a food supply. Based on smolt PIT tag recoveries on the East Sand Island Caspian tern colony, predation rates were highest on steelhead in 2008; minimum predation rates on steelhead smolts detected passing Bonneville Dam averaged 8.3% for wild smolts and 10.7% for hatchery-raised smolts. In 2007, total smolt consumption by East Sand Island double-crested cormorants was about 9.2 million juvenile salmonids (95% c.i. = 4.4-14.0 million), similar to or greater than that of East Sand Island Caspian terns during that year (5.5 million juvenile salmonids; 95% c.i. = 4.8-6.2 million). The numbers of smolt PIT tags recovered on the cormorant colony in 2008 were roughly proportional to the relative availability of PIT-tagged salmonids released in the Basin, suggesting that cormorant predation on salmonid smolts in the estuary was less selective than tern

  17. Effect of Migration Pathway on Travel Time and Survival of Acoustic-Tagged Juvenile Salmonids in the Columbia River Estuary

    Energy Technology Data Exchange (ETDEWEB)

    Harnish, Ryan A.; Johnson, Gary E.; McMichael, Geoffrey A.; Hughes, Michael S.; Ebberts, Blaine D.

    2012-02-01

    Off-channel areas (side channels, tidal flats, sand bars, and shallow-water bays) may serve as important migration corridors through estuarine environments for salmon and steelhead smolts. Relatively large percentages (21-33%) of acoustic-tagged yearling and subyearling Chinook salmon and steelhead smolts were detected migrating through off-channel areas of the Columbia River estuary in 2008. The probability of survival for off-channel migrants (0.78-0.94) was similar to or greater than the survival probability of main channel migrants (0.67-0.93). Median travel times were similar for all species or run types and migration pathways we examined, ranging from 1-2 d. The route used by smolts to migrate through the estuary may affect their vulnerability to predation. Acoustic-tagged steelhead that migrated nearest to avian predator nesting colonies experienced higher predation rates (24%) than those that migrated farthest from the colonies (10%). The use of multiple migration pathways may be advantageous to out-migrating smolts because it helps to buffer against high rates of mortality, which may occur in localized areas, and helps to minimize inter- and intraspecific competition.

  18. Demographic and phenotypic responses of juvenile steelhead trout to spatial predictability of food resources

    Science.gov (United States)

    Matthew R. Sloat; Gordon H. Reeves

    2014-01-01

    We manipulated food inputs among patches within experimental streams to determine how variation in foraging behavior influenced demographic and phenotypic responses of juvenile steelhead trout (Oncorhynchus mykiss) to the spatial predictability of food resources. Demographic responses included compensatory adjustments in fish abundance, mean fish...

  19. Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hillson, Todd D. [Washington Department of Fish and Wildlife

    2009-06-12

    The National Marine Fisheries Service (NMFS) listed Lower Columbia River (LCR) chum salmon as threatened under the Endangered Species Act (ESA) in March, 1999 (64 FR 14508, March 25, 1999). The listing was in response to the reduction in abundance from historical levels of more than one-half million returning adults to fewer than 10,000 present-day spawners. Harvest, habitat degradation, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for this decline. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam, where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Prior to 1997, only two chum salmon populations were recognized as genetically distinct in the Columbia River, although spawning had been documented in many Lower Columbia River tributaries. The first population was in the Grays River (RKm 34), a tributary of the Columbia River, and the second was a group of spawners utilizing the mainstem Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks. Using additional DNA samples, Small et al. (2006) grouped chum salmon spawning in the mainstem Columbia River and the Washington State tributaries into three groups: the Coastal, the Cascade and the Gorge. The Coastal group comprises those spawning in the Grays River, Skamokawa Creek and the broodstock used at the Sea Resources facility on the Chinook River. The Cascade group comprises those spawning in the Cowlitz (both summer and fall stocks), Kalama, Lewis, and East Fork Lewis rivers, with most supporting unique populations. The Gorge group comprises those spawning in the mainstem Columbia River from the I-205 Bridge up to

  20. Dynamics of the Oso-Steelhead landslide from broadband seismic analysis

    Science.gov (United States)

    Hibert, C.; Stark, C. P.; Ekström, G.

    2015-06-01

    We carry out a combined analysis of the short- and long-period seismic signals generated by the devastating Oso-Steelhead landslide that occurred on 22 March 2014. The seismic records show that the Oso-Steelhead landslide was not a single slope failure, but a succession of multiple failures distinguished by two major collapses that occurred approximately 3 min apart. The first generated long-period surface waves that were recorded at several proximal stations. We invert these long-period signals for the forces acting at the source, and obtain estimates of the first failure runout and kinematics, as well as its mass after calibration against the mass-centre displacement estimated from remote-sensing imagery. Short-period analysis of both events suggests that the source dynamics of the second event is more complex than the first. No distinct long-period surface waves were recorded for the second failure, which prevents inversion for its source parameters. However, by comparing the seismic energy of the short-period waves generated by both events we are able to estimate the volume of the second. Our analysis suggests that the volume of the second failure is about 15-30% of the total landslide volume, giving a total volume mobilized by the two events between 7 × 106 and 10 × 106 m3, in agreement with estimates from ground observations and lidar mapping.

  1. Geomorphic and habitat response to a large-dam removal in a Mediterranean river

    Science.gov (United States)

    Harrison, L.; East, A. E.; Smith, D. P.; Bond, R.; Logan, J. B.; Nicol, C.; Williams, T.; Boughton, D. A.; Chow, K.

    2017-12-01

    The presence of large dams has fundamentally altered physical and biological processes in riverine ecosystems, and dam removal is becoming more common as a river restoration strategy. We used a before-after-control-impact study design to investigate the geomorphic and habitat response to removal of 32-m-high San Clemente Dam on the Carmel River, CA. The project represents the first major dam removal in a Mediterranean river and is also unique among large dam removals in that most reservoir sediment was sequestered in place. We found that in the first year post-removal, a sediment pulse migrated 3.5 km downstream, filling pools and the interstitial pore spaces of gravels with sand. These sedimentary and topographic changes initially reduced the overall quality of steelhead (O. mykiss) spawning and rearing habitat in impacted reaches. Over the second winter after dam removal, a sequence of high flows flushed large volumes of sand from pools and mobilized the river bed throughout much of the active channel. The floods substantially altered fluvial evolution in the upper part of the reservoir, promoting new avulsion and the subsequent delivery of gravel and large wood to below dam reaches. These geomorphic processes increased the availability of spawning-sized gravel and enhanced channel complexity in reaches within several km of the former dam, which should improve habitat for multiple life stages of steelhead. Results indicate that when most reservoir sediment remains impounded, high flows become more important drivers of geomorphic and habitat change than dam removal alone. In such cases, the rates at which biophysical processes are reestablished will depend largely on post-dam removal flow sequencing and the upstream supply of sediment and large wood.

  2. Summary report for Bureau of Fisheries stream habitat surveys: Cowlitz River basin. Final report 1934--1942

    International Nuclear Information System (INIS)

    McIntosh, B.A.; Clark, S.E.; Sedell, J.R.

    1995-07-01

    This document contains summary reports of stream habitat surveys, conducted in the Cowlitz River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1938--1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead. The purpose of the survey was to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949--1952 by the US Fish and Wildlife Service

  3. Genetic Diversity of Daphnia pulex in the Middle and Lower Reaches of the Yangtze River

    Science.gov (United States)

    Wang, Wenping; Zhang, Kun; Deng, Daogui; Zhang, Ya-Nan; Peng, Shuixiu; Xu, Xiaoxue

    2016-01-01

    Increased human activities and environmental changes may lead to genetic diversity variations of Cladocerans in water. Daphnia pulex are distributed throughout the world and often regarded as a model organism. The 16S rDNA, cytochrome c oxidase subunit I (COI), and 18S genes were used as molecular marks. The genetic diversity and phylogeny of D. pulex obtained from 10 water bodies in the middle and lower reaches of the Yangtze River were studied. For 16S rDNA, COI gene, and 18S gene, the A+T content (65.4%, 58.4%, and 54.6%) was significantly higher than the G+C content (34.6%, 41.6% and 45.4%). This result was consistent with higher A and T contents among invertebrates. Based on the genetic distances of 16S rDNA and COI genes, the genetic differences of D. pulex from 10 water bodies located in the middle and lower reaches of the Yangtze River in China was minimal (0%–0.8% for 16S rDNA and 0%–1.5% for COI gene). However, D. pulex evolved into two branches in the phylogenetic trees, which coincided with its geographical distribution. Compared with D. pulex from other countries, the average genetic distance of D. pulex obtained from 10 water bodies in the middle and lower reaches of the Yangtze River reached 9.1%–10.5%, thereby indicating that D. pulex may have evolved into different subspecies. PMID:27015539

  4. Genetic Diversity of Daphnia pulex in the Middle and Lower Reaches of the Yangtze River.

    Directory of Open Access Journals (Sweden)

    Wenping Wang

    Full Text Available Increased human activities and environmental changes may lead to genetic diversity variations of Cladocerans in water. Daphnia pulex are distributed throughout the world and often regarded as a model organism. The 16S rDNA, cytochrome c oxidase subunit I (COI, and 18S genes were used as molecular marks. The genetic diversity and phylogeny of D. pulex obtained from 10 water bodies in the middle and lower reaches of the Yangtze River were studied. For 16S rDNA, COI gene, and 18S gene, the A+T content (65.4%, 58.4%, and 54.6% was significantly higher than the G+C content (34.6%, 41.6% and 45.4%. This result was consistent with higher A and T contents among invertebrates. Based on the genetic distances of 16S rDNA and COI genes, the genetic differences of D. pulex from 10 water bodies located in the middle and lower reaches of the Yangtze River in China was minimal (0%-0.8% for 16S rDNA and 0%-1.5% for COI gene. However, D. pulex evolved into two branches in the phylogenetic trees, which coincided with its geographical distribution. Compared with D. pulex from other countries, the average genetic distance of D. pulex obtained from 10 water bodies in the middle and lower reaches of the Yangtze River reached 9.1%-10.5%, thereby indicating that D. pulex may have evolved into different subspecies.

  5. Epidemiology and Control of Infectious Diseases of Salmonids in the Columbia River Basin, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, John L.

    1985-11-01

    The Department of Microbiology at Oregon State University with funding from the Bonneville Power Administration has conducted a study since 1983 relating to the epidemiology and control of three diseases of salmonids in the Columbia River Basin. These diseases are ceratomyxosis, caused by the protozoan parasite Ceratomyxa Shasta, bacterial kidney disease, the etiological agent of which is Renibacterium salmoninarum and infectious hematopoietic necrosis which is caused by a rhabdovirus. Each of these diseases is difficult or impossible to treat with antimicrobial agents. The presence of the infectious stage of C. shasta was again detected at Little Goose Dam on the Snake River. The prevalence of ceratomyxosis increased from 1.1% in 1984 to 10% in 1985. None of the susceptible rainbow trout exposed in the Yakima and Umatilla Rivers died of this disease. Ceratomyxosis in resistant chinook salmon smolts seined from the Columbia River just above the estuary seems dependent on whether or not they are held after capture in fresh or salt water. In fresh water the disease incidence ranged from 7--19%, whereas in salt water it ranged from 0--3%. These results which suggest that recovery from ceratomyxosis may occur after the smolts enter salt water are different from those obtained with susceptible Alsea steelhead trout where experimental groups in salt water have died at the same rate as those in fresh water. Comparing data from groups of Columbia River chinook smolts held after capture in either fresh or salt water, R. salmoninarum is a much more effective pathogen in the salt water environment. After four years of sampling smolts in the open ocean, numbers of this microorganism sufficient to cause death have been detected in chinook (7%) and, coho salmon (2%) and steelhead trout (1%). Results from three years of sampling have consistently indicated that additional fish infected with R. salmoninarum will be detected if egg washings are included in the procedures for

  6. Columbia River basin fish and wildlife program strategy for salmon

    International Nuclear Information System (INIS)

    Ruff, J.; Fazio, J.

    1993-01-01

    Three species of Snake River salmon have been listed as threatened or endangered under the federal Endangered Species Act. In response, the Northwest Power Planning Council worked with the states of Idaho, Montana, Oregon and Washington, Indian tribes, federal agencies and interest groups to address the status of Snake River salmon runs in a forum known as the Salmon Summit. The Summit met in 1990 and 1991 and reached agreement on specific, short-term actions. When the Summit disbanded in April 1991, responsibility for developing a regional recovery plan for salmon shifted to the Council. The Council responded with a four-phased process of amending its Columbia River Basin Fish and Wildlife Program. The first three phases. completed in September 1992, pertain to salmon and steelhead. Phase four, scheduled for completion in October 1993, will take up issues of resident fish and wildlife. This paper deals with the first three phases, collectively known as Strategy for Salmon

  7. Minthorn Springs Creek Summer Juvenile Release and Adult Collection Facility; 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowan, Gerald D.

    1995-05-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to enhance steelhead and re-establish salmon runs in the Umatilla River Basin. Bonifer Pond, Minthorn Springs and Imeques C-mem-ini-kem acclimation facilities are operated for acclimation and release of juvenile summer steelhead (Oncorhynchus mykiss), fall and spring chinook salmon (O. tshawytscha) and coho salmon (O, kisutch). Minthorn is also used for holding and spawning summer steelhead, fall chinook and coho salmon. In the spring of 1994, juvenile summer steelhead were acclimated at Bonifer and Minthorn. At Imeques C-mem-ini-kem, juvenile spring chinook were acclimated in the spring and fall. A total of 92 unmarked and 42 marked summer steelhead were collected for broodstock at Three Mile Dam from October 1, 1993 through May 2, 1994 and held at Minthorn. An estimated 234,432 green eggs were taken from 48 females. The eggs were transferred to Irrigon Hatchery for incubation and early rearing. Fingerlings were transferred to Umatilla Hatchery for final rearing and release into the Umatilla River in 1995. Fall chinook and coho salmon broodstock were not collected in 1994. Coded-wire tag recovery information was accessed to determine the contribution of Umatilla River releases to ocean, Columbia River and Umatilla River fisheries. Total estimated juvenile adult survival rates are detailed in this document.

  8. Walla Walla River Fish Passage Operations Program, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2004-03-01

    In the late 1990's, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and initiating trap and haul efforts. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2002-2003 project year, there were 545 adult summer steelhead (Oncorhynchus mykiss), 29 adult bull trout (Salvelinus confluentus); 1 adult and 1 jack spring chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway adult trap between January 1 and June 23, 2003. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. Operation of the Little Walla Walla River juvenile trap for trap and haul purposes was not necessary this year. The project transported 21 adult spring chinook from Ringold Springs Hatchery and 281 from Threemile Dam to the South Fork Walla Walla Brood Holding Facility. Of these, 290 were outplanted in August for natural spawning in the basin.

  9. Increased natural reproduction and genetic diversity one generation after cessation of a steelhead trout (Oncorhynchus mykiss) conservation hatchery program.

    Science.gov (United States)

    Berejikian, Barry A; Van Doornik, Donald M

    2018-01-01

    Spatial and temporal fluctuations in productivity and abundance confound assessments of captive propagation programs aimed at recovery of Threatened and Endangered populations. We conducted a 17 year before-after-control-impact experiment to determine the effects of a captive rearing program for anadromous steelhead trout (Oncorhynchus mykiss) on a key indicator of natural spawner abundance (naturally produced nests or 'redds'). The supplemented population exhibited a significant (2.6-fold) increase in redd abundance in the generation following supplementation. Four non-supplemented (control) populations monitored over the same 17 year period exhibited stable or decreasing trends in redd abundance. Expected heterozygosity in the supplemented population increased significantly. Allelic richness increased, but to a lesser (non-significant) degree. Estimates of the effective number of breeders increased from a harmonic mean of 24.4 in the generation before supplementation to 38.9 after supplementation. Several non-conventional aspects of the captive rearing program may have contributed to the positive response in the natural population.

  10. Increased natural reproduction and genetic diversity one generation after cessation of a steelhead trout (Oncorhynchus mykiss conservation hatchery program.

    Directory of Open Access Journals (Sweden)

    Barry A Berejikian

    Full Text Available Spatial and temporal fluctuations in productivity and abundance confound assessments of captive propagation programs aimed at recovery of Threatened and Endangered populations. We conducted a 17 year before-after-control-impact experiment to determine the effects of a captive rearing program for anadromous steelhead trout (Oncorhynchus mykiss on a key indicator of natural spawner abundance (naturally produced nests or 'redds'. The supplemented population exhibited a significant (2.6-fold increase in redd abundance in the generation following supplementation. Four non-supplemented (control populations monitored over the same 17 year period exhibited stable or decreasing trends in redd abundance. Expected heterozygosity in the supplemented population increased significantly. Allelic richness increased, but to a lesser (non-significant degree. Estimates of the effective number of breeders increased from a harmonic mean of 24.4 in the generation before supplementation to 38.9 after supplementation. Several non-conventional aspects of the captive rearing program may have contributed to the positive response in the natural population.

  11. Bull trout in the Boundary System: managing connectivity and the feasibility of a reintroduction in the lower Pend Oreille River, northeastern Washington

    Science.gov (United States)

    Dunham, Jason B.; Taylor, Eric B.; Allendorf, Fred W.

    2014-01-01

    Many of the World’s rivers are influenced by large dams (>15 m high) most of which have fragmented formerly continuous habitats, and significantly altered fish passage, natural flow, temperature, and sediment fluxes (Nilsson and others, 2005; Arthington, 2012; Liermann and others, 2012). In the Pacific Northwest, dams on major rivers have been a major focus for fishery managers, primarily in regard to passage of anadromous salmonids (principally Pacific salmon and steelhead trout [Oncorhynchus mykiss], for example, Ferguson and others, 2011), but more recently other species, such as Pacific lamprey (Entosphenus tridentatus) and resident (non-anadromous) salmonids, are receiving more attention (Neraas and Spruell, 2001; Moser and others, 2002; Muhlfeld and others, 2012). In the case of resident salmonids, fish can adopt a wide range of migratory behaviors that often bring them into mainstem rivers where they can come into direct contact with large dams. When this occurs, some of the most important direct effects of dams on salmonids include barriers to upstream and downstream movement and mortality associated with entrainment within the dam or spill over dams. Biologically, these direct impacts can lead to (1) disruption of natural historical (pre-dam) genetic and demographic connectivity among local populations, (2) loss of access to historically used migratory destinations, (3) loss of individuals to the population through mortality associated with entrainment.

  12. Population bottlenecks, genetic diversity and breeding ability of the three-spined stickleback (Gasterosteus aculeatus) from three polluted English Rivers.

    Science.gov (United States)

    Santos, Eduarda M; Hamilton, Patrick B; Coe, Tobias S; Ball, Jonathan S; Cook, Alastair C; Katsiadaki, Ioanna; Tyler, Charles R

    2013-10-15

    Pollution is a significant environmental pressure on fish populations in both freshwater and marine environments. Populations subjected to chronic exposure to pollutants can experience impacts ranging from altered reproductive capacity to changes in population genetic structure. Few studies, however, have examined the reproductive vigor of individuals within populations inhabiting environments characterized by chronic pollution. In this study we undertook an analysis of populations of three-spined sticklebacks (Gasterosteus aculeatus) from polluted sites, to determine levels of genetic diversity, assess for evidence of historic population genetic bottlenecks and determine the reproductive competitiveness of males from these locations. The sites chosen included locations in the River Aire, the River Tees and the River Birket, English rivers that have been impacted by pollution from industrial and/or domestic effluents for over 100 years. Male reproductive competitiveness was determined via competitive breeding experiments with males and females derived from a clean water site, employing DNA microsatellites to determine parentage outcome. Populations of stickleback collected from the three historically polluted sites showed evidence of recent population bottlenecks, although only the River Aire population showed low genetic diversity. In contrast, fish collected from two relatively unpolluted sites within the River Gowy and Houghton Springs showed weak, or no evidence of such bottlenecks. Nevertheless, males derived from polluted sites were able to reproduce successfully in competition with males derived from clean water exposures, indicating that these bottlenecks have not resulted in any substantial loss of reproductive fitness in males. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Genetic differentiation in red-bellied piranha populations (Pygocentrus nattereri, Kner, 1858) from the Solimões-Amazonas River.

    Science.gov (United States)

    Dos Santos, Carlos Henrique Dos A; de Sá Leitão, Carolina S; Paula-Silva, Maria de N; Almeida-Val, Vera Maria F

    2016-06-01

    Red-bellied piranhas (Pygocentrus nattereri) are widely caught with different intensities throughout the region of Solimões-Amazonas River by local fishermen. Thus, the management of this resource is performed in the absence of any information on its genetic stock. P. nattereri is a voracious predator and widely distributed in the Neotropical region, and it is found in other regions of American continent. However, information about genetic variability and structure of wild populations of red-bellied piranha is unavailable. Here, we describe the levels of genetic diversity and genetic structure of red-bellied piranha populations collected at different locations of Solimões-Amazonas River system. We collected 234 red-bellied piranhas and analyzed throughout eight microsatellite markers. We identified high genetic diversity within populations, although the populations of lakes ANA, ARA, and MAR have shown some decrease in their genetic variability, indicating overfishing at these communities. Was identified the existence of two biological populations when the analysis was taken altogether at the lakes of Solimões-Amazonas River system, with significant genetic differentiation between them. The red-bellied piranha populations presented limited gene flow between two groups of populations, which were explained by geographical distance between these lakes. However, high level of gene flow was observed between the lakes within of the biological populations. We have identified high divergence between the Catalão subpopulation and all other subpopulations. We suggest the creation of sustainable reserve for lakes near the city of Manaus to better manage and protect this species, whose populations suffer from both extractive and sport fishing.

  14. Assessment of Salmonids and their Habitat Conditions in the Walla Walla River Basin of Washington : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Mendel, Glen Wesley; Karl, David; Coyle, Terrence

    2001-11-01

    Concerns about the decline of native salmon and trout populations have increased among natural resource managers and the public in recent years. As a result, a multitude of initiatives have been implemented at the local, state, and federal government levels. These initiatives include management plans and actions intended to protect and restore salmonid fishes and their habitats. In 1998 bull trout were listed under the Endangered Species Act (ESA), as ''Threatened'', for the Walla Walla River and its tributaries. Steelhead were listed as ''Threatened'' in 1999 for the mid-Columbia River and its tributaries. These ESA listings emphasize the need for information about the threatened salmonid populations and their habitats. The Washington Department of Fish and Wildlife (WDFW) is entrusted with ''the preservation, protection, and perpetuation of fish and wildlife....[and to] maximize public recreational or commercial opportunities without impairing the supply of fish and wildlife (WAC 77. 12.010).'' In consideration of this mandate, the WDFW submitted a proposal in December 1997 to the Bonneville Power Administration (BPA) for a study to assess salmonid distribution, relative abundance, genetics, and the condition of their habitats in the Walla Walla River basin. The primary purposes of this project are to collect baseline biological and habitat data, to identify major data gaps, and to draw conclusions whenever possible. The study reported herein details the findings of the 2000 field season (March to November, 2000).

  15. Spatial scales of carbon flow in a river food web

    Science.gov (United States)

    Finlay, J.C.; Khandwala, S.; Power, M.E.

    2002-01-01

    Spatial extents of food webs that support stream and river consumers are largely unknown, but such information is essential for basic understanding and management of lotic ecosystems. We used predictable variation in algal ??13C with water velocity, and measurements of consumer ??13C and ??15N to examine carbon flow and trophic structure in food webs of the South Fork Eel River in Northern California. Analyses of ??13C showed that the most abundant macroinvertebrate groups (collector-gatherers and scrapers) relied on algae from local sources within their riffle or shallow pool habitats. In contrast, filter-feeding invertebrates in riffles relied in part on algal production derived from upstream shallow pools. Riffle invertebrate predators also relied in part on consumers of pool-derived algal carbon. One abundant taxon drifting from shallow pools and riffles (baetid mayflies) relied on algal production derived from the habitats from which they dispersed. The trophic linkage from pool algae to riffle invertebrate predators was thus mediated through either predation on pool herbivores dispersing into riffles, or on filter feeders. Algal production in shallow pool habitats dominated the resource base of vertebrate predators in all habitats at the end of the summer. We could not distinguish between the trophic roles of riffle algae and terrestrial detritus, but both carbon sources appeared to play minor roles for vertebrate consumers. In shallow pools, small vertebrates, including three-spined stickleback (Gasterosteus aculeatus), roach (Hesperoleucas symmetricus), and rough-skinned newts (Taricha granulosa), relied on invertebrate prey derived from local pool habitats. During the most productive summer period, growth of all size classes of steelhead and resident rainbow trout (Oncorhynchus mykiss) in all habitats (shallow pools, riffles, and deep unproductive pools) was largely derived from algal production in shallow pools. Preliminary data suggest that the strong

  16. The Atlantic-Mediterranean watershed, river basins and glacial history shape the genetic structure of Iberian poplars.

    Science.gov (United States)

    Macaya-Sanz, D; Heuertz, M; López-de-Heredia, U; De-Lucas, A I; Hidalgo, E; Maestro, C; Prada, A; Alía, R; González-Martínez, S C

    2012-07-01

    Recent phylogeographic studies have elucidated the effects of Pleistocene glaciations and of Pre-Pleistocene events on populations from glacial refuge areas. This study investigates those effects in riparian trees (Populus spp.), whose particular features may convey enhanced resistance to climate fluctuations. We analysed the phylogeographic structure of 44 white (Populus alba), 13 black (Populus nigra) and two grey (Populus x canescens) poplar populations in the Iberian Peninsula using plastid DNA microsatellites and sequences. We also assessed fine-scale spatial genetic structure and the extent of clonality in four white and one grey poplar populations using nuclear microsatellites and we determined quantitative genetic differentiation (Q(ST) ) for growth traits in white poplar. Black poplar displayed higher regional diversity and lower differentiation than white poplar, reflecting its higher cold-tolerance. The dependence of white poplar on phreatic water was evidenced by strong differentiation between the Atlantic and Mediterranean drainage basins and among river basins, and by weaker isolation by distance within than among river basins. Our results suggest confinement to the lower river courses during glacial periods and moderate interglacial gene exchange along coastlines. In northern Iberian river basins, white poplar had lower diversity, fewer private haplotypes and larger clonal assemblies than in southern basins, indicating a stronger effect of glaciations in the north. Despite strong genetic structure and frequent asexual propagation in white poplar, some growth traits displayed adaptive divergence between drainage and river basins (Q(ST) >F(ST)), highlighting the remarkable capacity of riparian tree populations to adapt to regional environmental conditions. © 2012 Blackwell Publishing Ltd.

  17. Research, monitoring and evaluation of fish and wildlife restoration projects in the Columbia River Basin: Lessons learned and suggestions for large-scale monitoring programs.

    Science.gov (United States)

    Lyman L. McDonald; Robert Bilby; Peter A. Bisson; Charles C. Coutant; John M. Epifanio; Daniel Goodman; Susan Hanna; Nancy Huntly; Erik Merrill; Brian Riddell; William Liss; Eric J. Loudenslager; David P. Philipp; William Smoker; Richard R. Whitney; Richard N. Williams

    2007-01-01

    The year 2006 marked two milestones in the Columbia River Basin and the Pacific Northwest region's efforts to rebuild its once great salmon and steelhead runs: the 25th anniversary of the creation of the Northwest Power and Conservation Council and the 10th anniversary of an amendment to the Northwest Power Act that formalized scientific peer review of the council...

  18. Umatilla River Basin Anadromus Fish Habitat Enhancement Project. 1994 Annual report

    International Nuclear Information System (INIS)

    Shaw, R.T.

    1994-05-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing cooperative instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River in the vicinity of Gibbon, Oregon. In 1993, the project shifted emphasis to a comprehensive watershed approach, consistent with other basin efforts, and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. During the 1994--95 project period, a one river mile demonstration project was implemented on two privately owned properties on Wildhorse Creek. This was the first watershed improvement project to be implemented by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) off of the Reservation

  19. Umatilla Basin Natural Production Monitoring and Evaluation; 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Jesse D.M.; Contor, Craig C.; Hoverson, Eric (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

    2005-10-01

    Basin developed with the efforts to restore natural populations of spring and fall Chinook salmon, (Oncorhynchus tshawytsha) coho salmon and (O. kisutch) and enhance summer steelhead (O. mykiss). The need for restoration began with agricultural development in the early 1900's that extirpated salmon and reduced steelhead runs (BOR 1988). The most notable development was the construction and operation of Three-Mile Falls Dam (3MD) and other irrigation projects that dewatered the Umatilla River during salmon migrations. The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and the Oregon Department of Fish and Wildlife (ODFW) developed the Umatilla Hatchery Master Plan to restore the historical fisheries in the basin. The plan was completed in 1990 and included the following objectives: (1) Establish hatchery and natural runs of Chinook and coho salmon. (2) Enhance existing summer steelhead populations through a hatchery program. (3) Provide sustainable tribal and non-tribal harvest of salmon and steelhead. (4) Maintain the genetic characteristics of salmonids in the Umatilla River Basin. (5) Produce almost 48,000 adult returns to Three-Mile Falls Dam. The goals were reviewed in 1999 and were changed to 31,500 adult salmon and steelhead returns (Table 2). We conduct core long-term monitoring activities each year as well as two and three-year projects that address special needs for adaptive management. Examples of these projects include adult passage evaluations (Contor et al. 1995, Contor et al. 1996, Contor et al. 1997, Contor et al. 1998), genetic monitoring (Currens & Schreck 1995, Narum et al. 2004), and habitat assessment surveys (Contor et al. 1995, Contor et al. 1996, Contor et al. 1997, Contor et al. 1998). Our project goal is to provide quality information to managers and researchers working to restore anadromous salmonids to the Umatilla River Basin. This is the only project that monitors the restoration of naturally producing salmon and

  20. Fish research project -- Oregon: Investigations into the early life history of naturally produced spring chinook salmon in the Grande Ronde River Basin. Annual progress report, 1 September 1995--31 August 1996

    International Nuclear Information System (INIS)

    Jonasson, B.C.; Carmichael, R.W.; Keefe, M.

    1997-09-01

    Historically, the Grande Ronde River produced an abundance of salmonids including stocks of spring, summer and fall chinook salmon, sockeye salmon, coho salmon, and summer steelhead. During the past century, numerous factors have caused the reduction of salmon stocks such that only sustainable stocks of spring chinook salmon and summer steelhead remain. The sizes of spring chinook salmon populations in the Grande Ronde River basin also have been declining steadily and are substantially depressed from estimates of historic levels. In addition to a decline in population abundance, a reduction of spring chinook salmon spawning distribution is evident in the Grande Ronde River basin. Numerous factors are thought to contribute to the decline of spring chinook salmon in the Snake River and its tributaries. These factors include passage problems and increased mortality of juvenile and adult migrants at mainstem Columbia and Snake river dams, overharvest, and habitat degradation associated with timber, agricultural, and land development practices. This study was designed to describe aspects of the life history strategies exhibited by spring chinook salmon in the Grande Ronde River basin. During the past year the focus was on rearing and migration patterns of juveniles in the upper Grande Ronde River and Catherine Creek. The study design included three objectives: (1) document the annual in-basin migration patterns for spring chinook salmon juveniles in the upper Grande Ronde River and Catherine Creek, including the abundance of migrants, migration timing and duration; (2) estimate and compare smolt survival indices to mainstem Columbia and Snake river dams for fall and spring migrating spring chinook salmon; and (3) determine summer and winter habitat utilization and preference of juvenile spring chinook salmon in the upper Grande Ronde River and Catherine Creek

  1. Genetic divergence between Pseudoplatystoma corruscans and Pseudoplatystoma reticulatum (Siluriformes: Pimelodidae in the Paraná River Basin

    Directory of Open Access Journals (Sweden)

    TS. Bignotto

    Full Text Available Pseudoplatystoma corruscans (Spix and Agassiz, 1829 and Pseudoplatystoma reticulatum (Eingenmann and Eigenmann, 1889 are large migratory catfishes of high biological importance and great commercial value in South America. Because fertile crossbreeds can be artificially produced in hatcheries, a high genetic proximity between these two Pimelodidae species is conceivable. Possible escape of crossbred specimens from pisciculture stations is a serious environmental concern. Despite their importance, knowledge of P. corruscans and P. reticulatum biology, ecology, population diversity and genetics is limited. In the present work, the genetic divergence between P. corruscans and P. reticulatum populations from the Paraná River Basin was analyzed on the basis of polymorphisms in ISSR fragments and in the hypervariable sequence of the mitochondrial DNA (mtDNA control region. Estimates of intraspecific haplotype (h > 0.5 and nucleotide diversities (π < 0.01 indicate that P. corruscans and P. reticulatum have survived a historical population decline, followed by a demographic expansion. The interspecific polymorphisms within the mtDNA control region and ISSR fragments were suitable as diagnostic molecular markers and could be used to discriminate the two species. A unique Pseudoplatystoma specimen, captured in the Upper Paraná River Floodplain, was identified by these DNA diagnostic markers as a hybrid P. reticulatum x P. corruscans, which possibly escaped from pisciculture. The integrity of the natural population of P. corruscans in the Upper Paraná River is at risk of genetic introgression or homogenization due to the presence of hybrids and the transposition of P. reticulatum upstream through the Canal da Piracema at Itaipu Dam. Data presented herein improve the understanding of the genetic relatedness between P. corruscans and P. reticulatum and represent potential tools for future programs of conservation and surveillance of genetic introgression

  2. The effect of metal pollution on the population genetic structure of brown trout (Salmo trutta L.) residing in the River Hayle, Cornwall, UK

    Energy Technology Data Exchange (ETDEWEB)

    Durrant, Christopher J. [King' s College London, Metals Metabolism Group, Division of Diabetes and Nutritional Sciences, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom); Stevens, Jamie R. [University of Exeter, Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD (United Kingdom); Hogstrand, Christer [King' s College London, Metals Metabolism Group, Division of Diabetes and Nutritional Sciences, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom); Bury, Nicolas R., E-mail: nic.bury@kcl.ac.uk [King' s College London, Metals Metabolism Group, Division of Diabetes and Nutritional Sciences, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom)

    2011-12-15

    The River Hayle in south-west England is impacted with metals and can be divided into three regions depending on the copper and zinc concentrations: a low-metal upper section; a highly-contaminated middle section and a moderately contaminated lower section. Hayle river water is toxic to metal-naive brown trout, but brown trout are found in the upper and lower regions. The study aimed to evaluate the population genetic structure of River Hayle brown trout and to determine if the highly-contaminated section acts as a chemical barrier to migration. Population genetic analysis indicated that metals were not a barrier to gene flow within the river, but there was a high level of differentiation observed between fish sampled at two sites in the upper region, despite being separated by only 1 km. The metal tolerance trait exhibited by this brown trout population may represent an important component of the species genetic diversity in this region. - Highlights: > River Hayle, Cornwall, UK, water is toxic to metal-naive brown trout. > Some brown trout populations resident in the River Hayle are tolerant of elevated metals (e.g. copper and zinc). > Elevated metals do not affect the gene flow between sites on the river. > The population genetic structure of the brown trout in the River Hayle appears unaffected by elevated metals. - Aquatic metal pollution does not affect the gene flow between brown trout resident below and above a metal mining waste discharge point in the River Hayle, Cornwall, UK.

  3. Riverine based eco-tourism: Trinity River non-market benefits estimates

    Science.gov (United States)

    Douglas, A.J.; Taylor, J.G.

    1998-01-01

    California's Central Valley Project (CVP) was approved by voters in a statewide referendum in 1933. CVP referendum approval initiated funding for construction of important water development projects that had far reaching effects on regional water supplies. The construction of Trinity Dam in 1963 and the subsequent transbasin diversion of Trinity River flow was one of several CVP projects that had noteworthy adverse environmental and regional economic impacts. The Trinity River is the largest tributary of the Klamath River, and has its headwaters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel. Before 1963, the Trinity River was a major recreation resource of Northern California. The loss of streamflow has had a marked adverse impact on Trinity River-related recreation activities and the size and robustness of Trinity River salmon, steelhead, shad, and sturgeon runs. Trinity River water produces hydropower during its transit via Bureau of Reclamation canals and pumps to the northern San Joaquin Valley, where it is used for irrigated agriculture. The benefits provided by Trinity River instream flow-related environmental amenities were estimated with the travel cost method (TCM). Trinity River non-market benefits are about $406 million per annum, while the social cost of sending water down the Trinity River ranges from $17 to $42 million per annum, depending on the exact flow. We also discuss the relative magnitude of Trinity River survey data contingent value method (CVM) benefits estimates.

  4. Genetic diversity of Prochilodus lineatus stocks using in the stocking program of Tietê River, Brazil

    Directory of Open Access Journals (Sweden)

    Ricardo Ribeiro

    2013-11-01

    Full Text Available Objective. Assess the genetic diversity in four brood stocks and one juvenile stock of curimba Prochilodus lineatus in a Hydropower plant in São Paulo - Brazil, using the Tietê River stocking program. Materials and methods. Five RAPD primers were used to amplify the extracted DNA from 150 fin-clip samples. Results. Fifty-nine fragments were polymorphic, 52 had frequencies with significant differences (p<0.05, 45 had low frequencies, 54 were excluded, and two were fixed fragments. High values for polymorphic fragments (71.19% to 91.53% and Shannon index (0.327 to 0.428 were observed. The genetic divergence values within each stock were greater than 50%. Most of the genetic variation was found within the groups through the AMOVA analysis, which was confirmed by the results of the identity and genetic distance. High ancestry levels (FST among the groups value indicated high and moderate genetic differentiation. The estimates of number of migrants by generation (Nm indicated low levels of gene flow. High and moderate genetic divergence between groups (0.58 to 0.83 was observed. Conclusions. The results indicate high variability within the stocks, and genetic differentiation among them. The fish stocks analyzed represent a large genetic base that will allow the fish technicians to release juveniles without genetic risks to wild populations present in the river. These genetic procedures may be used as models for other migratory species, including those threatened by extinction.

  5. Assessment of salmonids and their habitat conditions in the Walla Walla River Basin of Washington : 2000 annual report; ANNUAL

    International Nuclear Information System (INIS)

    Mendel, Glen Wesley; Karl, David; Coyle, Terrence

    2001-01-01

    Concerns about the decline of native salmon and trout populations have increased among natural resource managers and the public in recent years. As a result, a multitude of initiatives have been implemented at the local, state, and federal government levels. These initiatives include management plans and actions intended to protect and restore salmonid fishes and their habitats. In 1998 bull trout were listed under the Endangered Species Act (ESA), as ''Threatened'', for the Walla Walla River and its tributaries. Steelhead were listed as ''Threatened'' in 1999 for the mid-Columbia River and its tributaries. These ESA listings emphasize the need for information about the threatened salmonid populations and their habitats. The Washington Department of Fish and Wildlife (WDFW) is entrusted with ''the preservation, protection, and perpetuation of fish and wildlife....[and to] maximize public recreational or commercial opportunities without impairing the supply of fish and wildlife (WAC 77.12.010).'' In consideration of this mandate, the WDFW submitted a proposal in December 1997 to the Bonneville Power Administration (BPA) for a study to assess salmonid distribution, relative abundance, genetics, and the condition of their habitats in the Walla Walla River basin. The primary purposes of this project are to collect baseline biological and habitat data, to identify major data gaps, and to draw conclusions whenever possible. The study reported herein details the findings of the 2000 field season (March to November, 2000)

  6. Smolt monitoring at the head of Lower Granite Reservoir and Lower Granite Dam, 1998.; ANNUAL

    International Nuclear Information System (INIS)

    2000-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka, during the 1998 spring outmigration at migrant traps on the Snake and Salmon rivers. All hatchery chinook salmon released above Lower Granite Dam 19 1998 were marked with a fin-clip. Total annual hatchery chinook salmon catch at the Snake River trap was 226% of the 1997 number and 110% of the 1996 catch. The wild chinook catch was 120% of the 1997 catch but was only 93% of 1996. Hatchery steelhead trout catch was 501% of 1997 numbers but only 90% of the 1996 numbers. Wild steelhead trout catch was 569% of 1997 and 125% of the 1996 numbers. The Snake River trap collected 106 age-0 chinook salmon. During 1998, for the first time, the Snake River trap captured a significant number of hatchery sockeye salmon (1,552) and hatchery coho salmon O. kisutch (166). Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 8 and were terminated for the season due to high flows on June 12. The trap was out of operation for 34 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 476% and wild chinook salmon catch was 137% of 1997 numbers and 175% and 82% of 1996 catch, respectively. The hatchery steelhead trout collection in 1998 was 96% of the 1997 catch and 13% of the 1996 numbers. Wild steelhead trout collection in 1998 was 170% of the 1997 catch and 37% of the 1996 numbers. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout, marked at the head of the reservoir were affected by discharge. For fish tagged at the Snake River trap, statistical analysis of 1998 detected a significant relation between migration rate and discharge. For hatchery and

  7. Effects of geological changes and climatic fluctuations on the demographic histories and low genetic diversity of Squaliobarbus curriculus in Yellow River.

    Science.gov (United States)

    Zhou, Wei; Song, Na; Wang, Jun; Gao, Tianxiang

    2016-09-15

    The 104 samples of Squaliobarbus curriculus were collected from four localities in Yellow River and one region in Yangtze River. Analyses of the first hypervariable region of mitochondrial DNA control region of 555bp revealed only 15 polymorphism sites and defined 19 haplotypes. Low-to-moderate levels of haplotype diversity and low nucleotide diversity were observed in Yellow River populations (h=0.2529-0.7510, π=0.0712%-0.2197%). In contrast, Poyang Lake population showed high haplotype diversity and lower-middle nucleotide diversity (h=0.9636, π=0.5317%). Low genetic differentiation was estimated among Yellow River populations and significant level of genetic structure was detected between two rivers. Population genetic structure between two rivers was believed to be connected with geographical barriers and paleoclimatic events. The demographic history of S. curriculus in Yellow River examined by neutrality tests, mismatch distribution analysis, and Bayesian skyline analysis suggested a sudden and spatial population expansion dating to the Holocene. Climatic warming and changes of Yellow River course may have important effects on demographic facet of S. curriculus history. The same signal was also obtained on Poyang Lake population in late Pleistocene during the last interglacial period. During the period, the pronounced climatic change and the water system variation of PYL may have an important influence on the population. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Genetic diversity of the Chinese goat in the littoral zone of the Yangtze River as assessed by microsatellite and mtDNA.

    Science.gov (United States)

    E, Guang-Xin; Zhao, Yong-Ju; Chen, Li-Peng; Ma, Yue-Hui; Chu, Ming-Xing; Li, Xiang-Long; Hong, Qiong-Hua; Li, Lan-Hui; Guo, Ji-Jun; Zhu, Lan; Han, Yan-Guo; Gao, Hui-Jiang; Zhang, Jia-Hua; Jiang, Huai-Zhi; Jiang, Cao-De; Wang, Gao-Fu; Ren, Hang-Xing; Jin, Mei-Lan; Sun, Yuan-Zhi; Zhou, Peng; Huang, Yong-Fu

    2018-05-01

    The objective of this study was to assess the genetic diversity and population structure of goats in the Yangtze River region using microsatellite and mtDNA to better understand the current status of those goat genetic diversity and the effects of natural landscape in fashion of domestic animal genetic diversity. The genetic variability of 16 goat populations in the littoral zone of the Yangtze River was estimated using 21 autosomal microsatellites, which revealed high diversity and genetic population clustering with a dispersed geographical distribution. A phylogenetic analysis of the mitochondrial D-loop region (482 bp) was conducted in 494 goats from the Yangtze River region. In total, 117 SNPs were reconstructed, and 173 haplotypes were identified, 94.5% of which belonged to lineages A and B. Lineages C, D, and G had lower frequencies (5.2%), and lineage F haplotypes were undetected. Several high-frequency haplotypes were shared by different ecogeographically distributed populations, and the close phylogenetic relationships among certain low-frequency haplotypes indicated the historical exchange of genetic material among these populations. In particular, the lineage G haplotype suggests that some west Asian goat genetic material may have been transferred to China via Muslim migration.

  9. Winter food habits of coastal juvenile steelhead and coho salmon in Pudding Creek, northern California

    Science.gov (United States)

    Heather Anne Pert

    1993-01-01

    The objectives of this study were to determine winter food sources, availability, and preferences for coho salmon (Oncorhynchus kisutch) and steelhead (Oncorhynchus mykiss) in Pudding Creek, California. The majority of research on overwintering strategies of salmonids on the West Coast has been done in cooler, northern climates studying primarily the role of habitat...

  10. The effect of metal pollution on the population genetic structure of brown trout (Salmo trutta L.) residing in the River Hayle, Cornwall, UK

    International Nuclear Information System (INIS)

    Durrant, Christopher J.; Stevens, Jamie R.; Hogstrand, Christer; Bury, Nicolas R.

    2011-01-01

    The River Hayle in south-west England is impacted with metals and can be divided into three regions depending on the copper and zinc concentrations: a low-metal upper section; a highly-contaminated middle section and a moderately contaminated lower section. Hayle river water is toxic to metal-naive brown trout, but brown trout are found in the upper and lower regions. The study aimed to evaluate the population genetic structure of River Hayle brown trout and to determine if the highly-contaminated section acts as a chemical barrier to migration. Population genetic analysis indicated that metals were not a barrier to gene flow within the river, but there was a high level of differentiation observed between fish sampled at two sites in the upper region, despite being separated by only 1 km. The metal tolerance trait exhibited by this brown trout population may represent an important component of the species genetic diversity in this region. - Highlights: → River Hayle, Cornwall, UK, water is toxic to metal-naive brown trout. → Some brown trout populations resident in the River Hayle are tolerant of elevated metals (e.g. copper and zinc). → Elevated metals do not affect the gene flow between sites on the river. → The population genetic structure of the brown trout in the River Hayle appears unaffected by elevated metals. - Aquatic metal pollution does not affect the gene flow between brown trout resident below and above a metal mining waste discharge point in the River Hayle, Cornwall, UK.

  11. The Umatilla Basin Natural Production Monitoring and Evaluation Project, 2008 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Contor, Craig R.; Harris, Robin; King, Marty [Confederated Tribes of the Umatilla Indian Reservation

    2009-06-10

    salmon (O. kisutch), and enhance summer steelhead (O. mykiss). The need for restoration began with agricultural development in the early 1900's that extirpated salmon and reduced steelhead runs (Bureau of Reclamation, BOR 1988). The most notable development was the construction and operation of Three Mile Falls Dam (TMD) and other irrigation projects which dewatered the Umatilla River during salmon migrations. CTUIR and ODFW developed the Umatilla Hatchery Master Plan to restore fisheries to the basin. The plan was completed in 1990 and included the following objectives which were updated in 1999: (1) Establish hatchery and natural runs of Chinook and coho salmon. (2) Enhance existing summer steelhead populations through a hatchery program. (3) Provide sustainable tribal and non-tribal harvest of salmon and steelhead. (4) Maintain the genetic characteristics of salmonids in the Umatilla River Basin. (5) Increase annual returns to Three Mile Falls Dam to 31,500 adult salmon and steelhead. In the past the M&E project conducted long-term monitoring activities as well as two and three-year projects that address special needs for adaptive management. Examples of these projects include adult passage evaluations, habitat assessment surveys (Contor et al. 1995, Contor et al. 1996, Contor et al. 1997, Contor et al. 1998), and genetic monitoring (Currens & Schreck 1995, Narum et al. 2004). The project's goal is to provide quality information to managers and researchers working to restore anadromous salmonids to the Umatilla River Basin. The status of completion of each of BPA's standardized work element was reported in 'Pisces'(March 2008) and is summarized.

  12. Minthorn Springs Creek summer juvenile release and adult collection facility: Annual report 1992; ANNUAL

    International Nuclear Information System (INIS)

    Rowan, Gerald D.

    1993-01-01

    The Confederated Tribes of the Umatilla Indian Reservation (CT'UIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to supplement steelhead and re-establish salmon runs in the Umatilla River Basin. As an integral part of this program, Bonifer and Minthorn Acclimation Facilities are operated for holding and spawning adult steelhead and fall chinook salmon and acclimation and release of juvenile salmon and steelhead. Acclimation of 109,101 spring chinook salmon and 19,977 summer steelhead was completed at Bonifer in the spring of 1992. At Minthorn, 47,458 summer steelhead were acclimated and released. Control groups of spring chinook salmon were released instream concurrent with the acclimated releases to evaluate the effects of acclimation on adult returns to the Umatilla River. Acclimation studies with summer steelhead were not conducted in 1992. A total of 237 unmarked adult steelhead were collected for broodstock at Three Mile Dam from October 18, 1991 through April 24, 1992 and held at Minthorn. Utilizing a 3 x 3 spawning matrix, a total of 476,871 green eggs were taken from 86 females. The eggs were transferred to Umatilla Hatchery for incubation, rearing, and later release into the Umatilla River. A total of 211 fall chinook salmon were also collected for broodstock at Three Mile Dam and held at Minthorn. Using a 1:1 spawning ratio, a total of 195,637 green eggs were taken from 58 females. They were also transferred to Umatilla Hatchery for incubation, rearing, and later release into the Umatilla River. Personnel from the ODFW Eastern Oregon Fish Pathology Laboratory in La Grande took samples of tissues and reproductive fluids from Umatilla River summer steelhead and fall chinook salmon broodstock for monitoring and evaluation purposes. Cell culture assays for replicating agents, including IHNV virus, on all spawned fish were negative. One of 60 summer steelhead tested positive for EIBS virus, while all fall chinook tested

  13. Determine movement patterns and survival rates of Central Valley Chinook salmon, steelhead and their predators using acoustic tags.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The project’s objective is to document movement patterns and survival rates of Chinook salmon, steelhead, green sturgeon, and other fish from several sources in...

  14. Migratory Behavior and Survival of Juvenile Salmonids in the Lower Columbia River, Estuary, and Plume in 2010

    Energy Technology Data Exchange (ETDEWEB)

    McMichael, Geoffrey A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Harnish, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skalski, John R. [Univ. of Washington, Seattle, WA (United States); Deters, Katherine A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ham, Kenneth D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Townsend, Richard L. [Univ. of Washington, Seattle, WA (United States); Titzler, P. Scott [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hughes, Michael S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Jin A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Trott, Donna M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2011-09-01

    Uncertainty regarding the migratory behavior and survival of juvenile salmonids passing through the lower Columbia River and estuary after negotiating dams on the Federal Columbia River Power System (FCRPS) prompted the development and application of the Juvenile Salmon Acoustic Telemetry System (JSATS). The JSATS has been used to investigate the survival of juvenile salmonid smolts between Bonneville Dam (river kilometer (rkm) 236) and the mouth of the Columbia River annually since 2004. In 2010, a total of 12,214 juvenile salmonids were implanted with both a passive integrated transponder (PIT) and a JSATS acoustic transmitter. Using detection information from JSATS receiver arrays deployed on dams and in the river, estuary, and plume, the survival probability of yearling Chinook salmon and steelhead smolts tagged at John Day Dam was estimated form multiple reaches between rkm 153 and 8.3 during the spring. During summer, the survival probability of subyearling Chinook salmon was estimated for the same reaches. In addition, the influence of routes of passage (e.g., surface spill, deep spill, turbine, juvenile bypass system) through the lower three dams on the Columbia River (John Day, The Dalles, and Bonneville) on juvenile salmonid smolt survival probability from the dams to rkm 153 and then between rkm 153 and 8.3 was examined to increase understanding of the immediate and latent effects of dam passage on juvenile salmon survival. Similar to previous findings, survival probability was relatively high (>0.95) for most groups of juvenile salmonids from the Bonneville Dam tailrace to about rkm 50. Downstream of rkm 50 the survival probability of all species and run types we examined decreased markedly. Steelhead smolts suffered the highest mortality in this lower portion of the Columbia River estuary, with only an estimated 60% of the tagged fish surviving to the mouth of the river. In contrast, yearling and subyearling Chinook salmon smolts survived to the mouth

  15. Wind River Watershed Restoration, 2006-2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.; Jezorek, Ian G.; Munz, Carrie S. [U.S. Geological Survey

    2008-11-04

    This report summarizes work completed by U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2006 through March 2007 under Bonneville Power Administration (BPA) contract 26922. During this period, we collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and the Lower Columbia Fish Enhancement Group (LCFEG). Funding from USFWS was for work to contribute to a study of potential interactions between introduced Chinook salmon Oncorhynchus tshawytscha and wild steelhead O. mykiss. Funding from LCFEG was for work to evaluate the effects of nutrient enrichment in small streams. A statement of work (SOW) was submitted to BPA in March 2006 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

  16. Genetic relatedness of faecal coliforms and enterococci bacteria isolated from water and sediments of the Apies River, Gauteng, South Africa.

    Science.gov (United States)

    Ekwanzala, Mutshiene Deogratias; Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Keshri, Jitendra; Momba, Ndombo Benteke Maggy

    2017-12-01

    To date, the microbiological quality of river sediments and its impact on water resources are not included in the water quality monitoring assessment. Therefore, the aim of this study was to establish genetic relatedness between faecal coliforms and enterococci isolated from the river water and riverbed sediments of Apies River to better understand the genetic similarity of microorganisms between the sediment and water phases. Indicator bacteria were subjected to a molecular study, which consisted of PCR amplification and sequence analysis of the 16S rRNA and 23S rRNA gene using specific primers for faecal coliforms and enterococci, respectively. Results revealed that the Apies River had high faecal pollution levels with enterococci showing low to moderate correlation coefficient (r 2 values ranged from 0.2605 to 0.7499) compared to the faecal coliforms which showed zero to low correlation (r 2 values ranged from 0.0027 to 0.1407) indicating that enterococci may be better indicator than faecal coliforms for detecting faecal contamination in riverbed sediments. The phylogenetic tree of faecal coliforms revealed a 98% homology among their nucleotide sequences confirming the close genetic relatedness between river water and riverbed sediment isolates. The phylogenetic tree of the enterococci showed that Enterococcus faecalis and Enterococcus faecium are the predominant species found in both river water and riverbed sediments with bootstrap values of ≥99%. A high degree of genetic relatedness between sediment and water isolates indicated a possible common ancestry and transmission pathway. We recommend the microbial monitoring of riverbed sediments as it harbours more diverse microbial community and once resuspended may cause health and environmental problems.

  17. Smolt monitoring at the head of lower granite reservoir and lower Granite Dam, annual report 1999 operations.; ANNUAL

    International Nuclear Information System (INIS)

    United States. Bonneville Power Administration. Division of Fish and Wildlife; Idaho. Dept. of Fish and Game.

    2001-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 1999 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1999. Total annual hatchery chinook salmon catch at the Snake River trap was 440% of the 1998 number. The wild chinook catch was 603% of the previous year's catch. Hatchery steelhead trout catch was 93% of 1998 numbers. Wild steelhead trout catch was 68% of 1998 numbers. The Snake River trap collected 62 age-0 chinook salmon. During 1998 the Snake River trap captured 173 hatchery and 37 wild/natural sockeye salmon and 130 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 14 and were terminated for the season due to high flows on May 25. The trap was out of operation for 18 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 214%, and wild chinook salmon catch was 384% of 1998 numbers. The hatchery steelhead trout collection in 1999 was 210% of the 1998 numbers. Wild steelhead trout collection in 1999 was 203% of the 1998 catch. Trap operations began on March 14 and were terminated for the season due to high flows on May 21. The trap was out of operation for 17 d during the season due to high flow and debris

  18. Effects of steelhead density on growth of Coho salmon in a small coastal California stream

    Science.gov (United States)

    Bret C. Harvey; Rodney J. Nakamoto

    1996-01-01

    Abstract - Weight change in age-0 coho salmon, Oncorhynchus kisutch at about natural density was negatively related to the density of juvenile steelhead (anadromous rainbow trout O. mykiss) in a 6-week experiment conducted in July-August 1993 in the north and south forks of Caspar Creek, California. The experiment used 12 enclosed stream sections, each containing a...

  19. Salmon River Habitat Enhancement, 1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  20. Idaho Habitat/Natural Production Monitoring Part I, 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hall-Griswold, J.A.; Petrosky, C.E. (Idaho Department of Fish and Game, Boise, ID)

    1996-12-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring trends in juvenile spring and summer chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, O. mykiss, populations in the Salmon, Clearwater, and lower Snake River drainages for the past 12 years. This work is the result of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. Project 91-73, Idaho Natural Production Monitoring, consists of two subprojects: General Monitoring and Intensive Monitoring. This report updates and summarizes data through 1995 for the General Parr Monitoring (GPM) database to document status and trends of classes of wild and natural chinook salmon and steelhead trout populations. A total of 281 stream sections were sampled in 1995 to monitor trends in spring and summer chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss parr populations in Idaho. Percent carrying capacity and density estimates were summarized for 1985--1995 by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon, and natural spring and summer chinook salmon. The 1995 data were also summarized by subbasins as defined in Idaho Department of Fish and Game`s 1992--1996 Anadromous Fish Management Plan.

  1. Idaho habitat/natural production monitoring: Part 1. Annual report 1995

    International Nuclear Information System (INIS)

    Hall-Griswold, J.A.; Petrosky, C.E.

    1996-11-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring trends in juvenile spring and summer chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, O. mykiss, populations in the Salmon, Clearwater, and lower Snake River drainages for the past 12 years. This work is the result of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. Project 91-73, Idaho Natural Production Monitoring, consists of two subprojects: General Monitoring and Intensive Monitoring. This report updates and summarizes data through 1995 for the General Parr Monitoring (GPM) database to document status and trends of classes of wild and natural chinook salmon and steelhead trout populations. A total of 281 stream sections were sampled in 1995 to monitor trends in spring and summer chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss parr populations in Idaho. Percent carrying capacity and density estimates were summarized for 1985--1995 by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon, and natural spring and summer chinook salmon. The 1995 data were also summarized by subbasins as defined in Idaho Department of Fish and Game's 1992--1996 Anadromous Fish Management Plan

  2. Assessment of Salmonids and their Habitat Conditions in the Walla Walla River Basin within Washington, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Mendel, Glen Wesley; Trump, Jeremy; Karl, David

    2002-12-01

    Concerns about the decline of native salmon and trout populations have increased among natural resource managers and the public in recent years. As a result, a multitude of initiatives have been implemented at the local, state, and federal government levels. These initiatives include management plans and actions intended to protect and restore salmonid fishes and their habitats. In 1998 bull trout (Salvelinus confluentus) were listed under the Endangered Species Act (ESA), as ''Threatened'', for the Walla Walla River and its tributaries. Steelhead (Oncorhynchus mykiss) were listed as ''Threatened'' in 1999 for the mid-Columbia River and its tributaries. These ESA listings emphasize the need for information about these threatened salmonid populations and their habitats. The Washington Department of Fish and Wildlife (WDFW) is entrusted with ''the preservation, protection, and perpetuation of fish and wildlife....[and to] maximize public recreational or commercial opportunities without impairing the supply of fish and wildlife (WAC 77.12.010).'' In consideration of this mandate, the WDFW submitted a proposal in December 1997 to the Bonneville Power Administration (BPA) for a study to assess salmonid distribution, relative abundance, genetics, and the condition of salmonid habitats in the Walla Walla River basin. The primary purposes of this project are to collect baseline biological and habitat data, to identify major data gaps, and to draw conclusions whenever possible. The study reported herein details the findings of the 2001 field season (March to November, 2001).

  3. Geography and host species shape the evolutionary dynamics of U genogroup infectious hematopoietic necrosis virus

    Science.gov (United States)

    Black, Allison; Breyta, Rachel; Bedford, Trevor; Kurath, Gael

    2016-01-01

    Infectious hematopoietic necrosis virus (IHNV) is a negative-sense RNA virus that infects wild and cultured salmonids throughout the Pacific Coastal United States and Canada, from California to Alaska. Although infection of adult fish is usually asymptomatic, juvenile infections can result in high mortality events that impact salmon hatchery programs and commercial aquaculture. We used epidemiological case data and genetic sequence data from a 303 nt portion of the viral glycoprotein gene to study the evolutionary dynamics of U genogroup IHNV in the Pacific Northwestern United States from 1971 to 2013. We identified 114 unique genotypes among 1,219 U genogroup IHNV isolates representing 619 virus detection events. We found evidence for two previously unidentified, broad subgroups within the U genogroup, which we designated ‘UC’ and ‘UP’. Epidemiologic records indicated that UP viruses were detected more frequently in sockeye salmon (Oncorhynchus nerka) and in coastal waters of Washington and Oregon, whereas UC viruses were detected primarily in Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, which is a large, complex watershed extending throughout much of interior Washington, Oregon, and Idaho. These findings were supported by phylogenetic analysis and by FST. Ancestral state reconstruction indicated that early UC viruses in the Columbia River Basin initially infected sockeye salmon but then emerged via host shifts into Chinook salmon and steelhead trout sometime during the 1980s. We postulate that the development of these subgroups within U genogroup was driven by selection pressure for viral adaptation to Chinook salmon and steelhead trout within the Columbia River Basin.

  4. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; US Geological Survey Reports, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J. (US Geological Survey, Columbia River Research Laboratory, Western Fisheries Research Center, Cook, WA)

    2003-12-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective is to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the second year of at least a three-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  5. Assess Current and Potential Salmonid Production in Rattlesnake Creek in Association with Restoration Efforts, US Geological Survey Report, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M. Brady; Connolly, Patrick J.; Jezorek, Ian G. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

    2006-06-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attended to three main objectives of the Rattlesnake Creek project. The first objective was to characterize stream and riparian habitat conditions. This effort included measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective was to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective was to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the fourth year of a five-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  6. Assess Current and Potential Salmonid Production in Rattlesnake Creek in Association with Restoration Effors; US Geological Survey Reports, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M. Brady; Connolly, Patrick J.; Munz, Carrie S. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

    2006-02-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective was to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the third year of at least a five-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  7. Fish Passage Center 2001 annual report.; ANNUAL

    International Nuclear Information System (INIS)

    Fish Passage Center

    2002-01-01

    Extremely poor water conditions within the Columbia River Basin along with extraordinary power market conditions created an exceptionally poor migration year for juvenile salmon and steelhead. Monthly 2001 precipitation at the Columbia above Grand Coulee, the Snake River above Ice Harbor, and the Columbia River above The Dalles was approximately 70% of average. As a result the 2001 January-July runoff volume at The Dalles was the second lowest in Columbia River recorded history. As a compounding factor to the near record low flows in 2001, California energy deregulation and the resulting volatile power market created a financial crisis for the Bonneville Power Administration (BPA). Power emergencies were first declared in the summer and winter of 2000 for brief periods of time. In February of 2001, and on April 3, the BPA declared a ''power emergency'' and suspended many of the Endangered Species Act (ESA) and Biological Opinion (Opinion) measures that addressed mainstem Columbia and Snake Rivers juvenile fish passage. The river and reservoir system was operated primarily for power generation. Power generation requirements in January through March coincidentally provided emergence and rearing flows for the Ives-Pierce Islands spawning area below Bonneville Dam. In particular, flow and spill measures to protect juvenile downstream migrant salmon and steelhead were nearly totally suspended. Spring and summer flows were below the Opinion migration target at all sites. Maximum smolt transportation was implemented instead of the Opinion in-river juvenile passage measures. On May 16, the BPA Administrator decided to implement a limited spill for fish passage at Bonneville and The Dalles dams. On May 25, a limited spill program was added at McNary and John Day dams. Spill extended to July 15. Juvenile migrants, which passed McNary Dam after May 21, experienced a noticeable, improved survival, as a benefit of spill at John Day Dam. The suspension of Biological Opinion

  8. Genetic, morphological, and spectral characterization of relictual Niobrara River hybrid aspens (Populus × smithii).

    Science.gov (United States)

    Deacon, Nicholas John; Grossman, Jake Joseph; Schweiger, Anna Katharina; Armour, Isabella; Cavender-Bares, Jeannine

    2017-12-01

    Aspen groves along the Niobrara River in Nebraska have long been a biogeographic curiosity due to morphological differences from nearby remnant Populus tremuloides populations. Pleistocene hybridization between P. tremuloides and P. grandidentata has been proposed, but the nearest P. grandidentata populations are currently several hundred kilometers east. We tested the hybrid-origin hypothesis using genetic data and characterized putative hybrids phenotypically. We compared nuclear microsatellite loci and chloroplast sequences of Niobrara River aspens to their putative parental species. Parental species and putative hybrids were also grown in a common garden for phenotypic comparison. On the common garden plants, we measured leaf morphological traits and leaf-level spectral reflectance profiles, from which chemical traits were derived. The genetic composition of the three unique Niobrara aspen genotypes is consistent with the hybridization hypothesis and with maternal chloroplast inheritance from P. grandidentata . Leaf margin dentition and abaxial pubescence differentiated taxa, with the hybrids showing intermediate values. Spectral profiles allowed statistical separation of taxa in short-wave infrared wavelengths, with hybrids showing intermediate values, indicating that traits associated with internal structure of leaves and water absorption may vary among taxa. However, reflectance values in the visible region did not differentiate taxa, indicating that traits related to pigments are not differentiated. Both genetic and phenotypic results support the hypothesis of a hybrid origin for these genetically unique aspens. However, low genetic diversity and ongoing ecological and climatic threats to the hybrid taxon present a challenge for conservation of these relictual boreal communities. © 2017 Botanical Society of America.

  9. Fatty-acid profiles of white muscle and liver in stream-maturing steelhead trout Oncorhynchus mykiss from early migration to kelt emigration

    Science.gov (United States)

    Penney, Zachary L.; Moffitt, Christine M.

    2015-01-01

    The profiles of specific fatty acids (FA) in white muscle and liver of fasting steelhead troutOncorhynchus mykiss were evaluated at three periods during their prespawning migration and at kelt emigration in the Snake–Columbia River of Washington, Oregon and Idaho, to improve the understanding of energy change. Twenty-seven FAs were identified; depletion of 10 of these was positively correlated in liver and white muscle of prespawning O. mykiss. To observe relative changes in FA content more accurately over sampling intervals, the lipid fraction of tissues was used to normalize the quantity of individual FA to an equivalent tissue wet mass. Saturated and monounsaturated FAs were depleted between upstream migration in September and kelt emigration in June, whereas polyunsaturated FAs were more conserved. Liver was depleted of FAs more rapidly than muscle. Three FAs were detected across all sampling intervals: 16:0, 18:1 and 22:6n3, which are probably structurally important to membranes. When structurally important FAs of O. mykiss are depleted to provide energy, physiological performance and survival may be affected.

  10. Investigations of bull trout (Salvelinus confluentus), steelhead trout (Oncorhynchus mykiss), and spring chinook salmon (O. tshawytscha) interactions in Southeast Washington streams. Final report 1992

    International Nuclear Information System (INIS)

    Underwood, K.D.; Martin, S.W.; Schuck, M.L.; Scholz, A.T.

    1995-01-01

    The goal of this two year study was to determine if supplementation with hatchery reared steelhead trout (Oncorhynchus mykiss) and spring chinook salmon (O. tshawytscha) negatively impacted wild native bull trout (Salvelinus confluentus) through competitive interactions. Four streams with varying levels of fish supplementation activity were sampled in Southeast Washington. Tasks performed during this study were population density, relative abundance, microhabitat utilization, habitat availability, diet analysis, bull trout spawning ground surveys, radio telemetry of adult bull trout, and growth analysis. Results indicate that bull trout overlapped geographically with the supplemented species in each of the study streams suggesting competition among species was possible. Within a stream, bull trout and the supplemented species utilized dissimilar microhabitats and microhabitat utilization by each species was the same among streams suggesting that there was no shifts in microhabitat utilization among streams. The diet of bull trout and O. mykiss significantly overlapped in each of the study streams. The stream most intensely supplemented contained bull trout with the slowest growth and the non-supplemented stream contained bull trout with the fastest growth. Conversely, the stream most intensely supplemented contain steelhead with the fastest growth and the non-supplemented stream contained steelhead with the slowest growth. Growth indicated that bull trout may have been negatively impacted from supplementation, although other factors may have contributed. At current population levels, and current habitat quantity and quality, no impacts to bull trout as a result of supplementation with hatchery reared steelhead trout and spring chinook salmon were detected. Project limitations and future research recommendations are discussed

  11. Investigations of Bull Trout (Salvelinus Confluentus), Steelhead Trout (Oncorhynchus Mykiss), and Spring Chinook Salmon (O. Tshawytscha) Interactions in Southeast Washington Streams. Final Report 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, Keith D.

    1995-01-01

    The goal of this two year study was to determine if supplementation with hatchery reared steelhead trout (Oncorhynchus mykiss) and spring chinook salmon (O. tshawytscha) negatively impacted wild native bull trout (Salvelinus confluentus) through competitive interactions. Four streams with varying levels of fish supplementation activity were sampled in Southeast Washington. Tasks performed during this study were population density, relative abundance, microhabitat utilization, habitat availability, diet analysis, bull trout spawning ground surveys, radio telemetry of adult bull trout, and growth analysis. Results indicate that bull trout overlapped geographically with the supplemented species in each of the study streams suggesting competition among species was possible. Within a stream, bull trout and the supplemented species utilized dissimilar microhabitats and microhabitat utilization by each species was the same among streams suggesting that there was no shifts in microhabitat utilization among streams. The diet of bull trout and O. mykiss significantly overlapped in each of the study streams. The stream most intensely supplemented contained bull trout with the slowest growth and the non-supplemented stream contained bull trout with the fastest growth. Conversely, the stream most intensely supplemented contain steelhead with the fastest growth and the non-supplemented stream contained steelhead with the slowest growth. Growth indicated that bull trout may have been negatively impacted from supplementation, although other factors may have contributed. At current population levels, and current habitat quantity and quality, no impacts to bull trout as a result of supplementation with hatchery reared steelhead trout and spring chinook salmon were detected. Project limitations and future research recommendations are discussed.

  12. The study of genetic diversity and population structure of Vimba vimba persa (Pallas, 1814 populations in the Eastern and Western coastline of the Caspian sea (Havigh River and GorganRoud River using microsatellite markers

    Directory of Open Access Journals (Sweden)

    Samira Mohamadian

    2011-01-01

    Full Text Available Genetic diversity of Vimba vimba persa was investigated using microsatellite markers from two regions of the Iranian coastline of southern Caspian sea (Havigh River in Guilan province, GorganRoud River in Golestan province. The purpose of this research was the study of Vimba vimba persa’s possible populations related to genetic diversity and population structure in the Caspian sea and introducing the useful genetic markers. To investigate the genetic structure of Vimba vimba persa populations, we sampled 50 specimens of Vimba vimba persa caught by beach seine from GorganRoud River in Golestan Province (30 specimens and Havigh River in the Guilan Province (20 specimens. Genomic DNA was extracted from fin tissue by phenol-Chlorophorm method and PCR reaction was accomplished with 17 microsatellite primers 10 of which were amplified with reasonable polymorphism. Means of alleles were on 6.75 averages, observed and expected heterozygosity averages were 0.817 and 0.735, respectively. Most cases, significantly deviated from Hardy-Weinberg equilibrium (p≤0.01. According to the Fst values, there are two significant populations of Vimba vimba persa in the eastern and western coasts of the Caspian Sea which restocking of these species should be considered. Based on the survey revealed, since the population of this species is decreasing with its high genetic diversity, the Caspian Vimba had an enormous diversity in the past.

  13. Adaptive trade-offs in juvenile salmonid metabolism associated with habitat partitioning between coho salmon and steelhead trout in coastal streams.

    Science.gov (United States)

    Van Leeuwen, Travis E; Rosenfeld, Jordan S; Richards, Jeffrey G

    2011-09-01

    1. Adaptive trade-offs are fundamental to the evolution of diversity and the coexistence of similar taxa and occur when complimentary combinations of traits maximize efficiency of resource exploitation or survival at different points on environmental gradients. 2. Standard metabolic rate (SMR) is a key physiological trait that reflects adaptations to baseline metabolic performance, whereas active metabolism reflects adaptations to variable metabolic output associated with performance related to foraging, predator avoidance, aggressive interactions or migratory movements. Benefits of high SMR and active metabolism may change along a resource (productivity) gradient, indicating that a trade-off exists among active metabolism, resting metabolism and energy intake. 3. We measured and compared SMR, maximal metabolic rate (MMR), aerobic scope (AS), swim performance (UCrit) and growth of juvenile hatchery and wild steelhead and coho salmon held on high- and low-food rations in order to better understand the potential significance of variation in SMR to growth, differentiation between species, and patterns of habitat use along a productivity gradient. 4. We found that differences in SMR, MMR, AS, swim performance and growth rate between steelhead trout and coho salmon were reduced in hatchery-reared fish compared with wild fish. Wild steelhead had a higher MMR, AS, swim performance and growth rate than wild coho, but adaptations between species do not appear to involve differences in SMR or to trade-off increased growth rate against lower swim performance, as commonly observed for high-growth strains. Instead, we hypothesize that wild steelhead may be trading off higher growth rate for lower food consumption efficiency, similar to strategies adopted by anadromous vs. resident brook trout and Atlantic salmon vs. brook trout. This highlights potential differences in food consumption and digestion strategies as cryptic adaptations ecologically differentiating salmonid species

  14. Use of streambed substrate as refuge by steelhead or rainbow trout Oncorhynchus mykiss during simulated freshets

    Science.gov (United States)

    F. K. Ligon; Rodney Nakamoto; Bret Harvey; P. F. Baker

    2016-01-01

    A flume was used to estimate the carrying capacity of streambed substrates for juvenile steelhead or rainbow trout Oncorhynchus mykiss seeking refuge from simulated freshets. The simulated freshets had mean water column velocities of c. 1·1 m s−1. The number of O. mykiss finding cover...

  15. Elwha River dam removal: A major opportunity for salmon and steelhead recolonization

    Science.gov (United States)

    Pess, George R.; Brenkman, Samuel J.; Winans, Gary A.; McHenry, Michael L.; Duda, Jeffrey J.; Beechie, Timothy J.

    2010-01-01

    In this in-depth paper, authors George R. Pess, Gary A. Winans and Timothy J. Beechie of the NOAA Fisheries, Northwest Fisheries Science Center in Seattle, Samuel J. Brenkman of the National Park Service, Olympic National Park, Michael L. McHenry of the Lower Elwha Klallam Tribe and Jeffrey J. Duda of the U.S. Geological Survey, Western Fisheries Research Center in Seattle, provide an historical overview of the Elwha River system, and its native anadromous fish runs and the prospect of their recolonization after the Elwha and Glines Canyon dams are removed.

  16. Smolt monitoring at the head of Lower Granite Reservoir and Lower Granite Dam, annual report 1997 operations.; ANNUAL

    International Nuclear Information System (INIS)

    United States. Bonneville Power Administration. Division of Fish and Wildlife.

    1999-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1997 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1997. Total annual hatchery chinook salmon catch at the Snake River trap was 49% of the 1996 number but only 6% of the 1995 catch. The wild chinook catch was 77% of the 1996 but was only 13% of 1995. Hatchery steelhead trout catch was 18% of 1996 numbers but only 7% of the 1995 numbers. Wild steelhead trout catch was 22% of 1996 but only 11% of the 1995 numbers. The Snake River trap collected eight age-0 chinook salmon and one sockeye/kokanee salmon O. nerka. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations were terminated for the season due to high flows and trap damage on May 8 and were out of operation for 23 d due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 37% and wild chinook salmon catch was 60% of 1996 numbers but only 5% and 11% of 1995 catch, respectively. The 1997 hatchery steelhead trout collection was 13% of the 1996 catch and 32% of the 1995 numbers. Wild steelhead trout collection in 1997 was 21% of the 1996 catch and 13% of the 1995 numbers. Trap operations were terminated for the season due to high flows and trap damage on May 7 and were out of operation for 19 d due to high flow and debris

  17. Yakima River Species Interactions Studies, Annual Report 1998

    International Nuclear Information System (INIS)

    Pearsons, Todd N.; Ham, Kenneth D.; McMichael, Geoffrey A.

    1999-01-01

    Species interactions research and monitoring was initiated in 1989 to investigate ecological interactions among fish in response to proposed supplementation of salmon and steelhead in the upper Yakima River basin. This is the seventh of a series of progress reports that address species interactions research and pre-supplementation monitoring of fishes in the Yakima River basin. Data have been collected prior to supplementation to characterize the ecology and demographics of non-target taxa (NTT) and target taxon, and develop methods to monitor interactions and supplementation success. Major topics of this report are associated with monitoring potential impacts to support adaptive management of NTT and baseline monitoring of fish predation indices on spring chinook salmon smolts. This report is organized into three chapters, with a general introduction preceding the first chapter. This annual report summarizes data collected primarily by the Washington Department of Fish and Wildlife (WDFW) between January 1, 1998 and December 31, 1998 in the Yakima basin, however these data were compared to data from previous years to identify preliminary trends and patterns

  18. Rangewide phylogeography and landscape genetics of the Western U.S. endemic frog Rana boylii (Ranidae): Implications for the conservation of frogs and rivers

    Science.gov (United States)

    Lind, A.J.; Spinks, P.Q.; Fellers, G.M.; Shaffer, H.B.

    2011-01-01

    Genetic data are increasingly being used in conservation planning for declining species. We sampled both the ecological and distributional limits of the foothill yellow-legged frog, Rana boylii to characterize mitochondrial DNA (mtDNA) variation in this declining, riverine amphibian. We evaluated 1525 base pairs (bp) of cytochrome b and ND2 fragments for 77 individuals from 34 localities using phylogenetic and population genetic analyses. We constructed gene trees using maximum likelihood and Bayesian inference, and quantified genetic variance (using AMOVA and partial Mantel tests) within and among hydrologic regions and river basins. Several moderately supported, geographically-cohesive mtDNA clades were recovered for R. boylii. While genetic variation was low among populations in the largest, most inclusive clade, samples from localities at the edges of the geographic range demonstrated substantial genetic divergence from each other and from more central populations. Hydrologic regions and river basins, which represent likely dispersal corridors for R. boylii, accounted for significant levels of genetic variation. These results suggest that both rivers and larger hydrologic and geographic regions should be used in conservation planning for R. boylii. ?? 2010 US Government.

  19. Investigations of bull trout (Salvelinus confluentus), steelhead trout (Oncorhynchus mykiss), and spring chinook salmon (O. tshawytscha) interactions in Southeast Washington streams. Final report 1992; FINAL

    International Nuclear Information System (INIS)

    Underwood, K.D.; Martin, S.W.; Schuck, M.L.; Scholz, A.T.

    1995-01-01

    The goal of this two year study was to determine if supplementation with hatchery reared steelhead trout (Oncorhynchus mykiss) and spring chinook salmon (O. tshawytscha) negatively impacted wild native bull trout (Salvelinus confluentus) through competitive interactions. Four streams with varying levels of fish supplementation activity were sampled in Southeast Washington. Tasks performed during this study were population density, relative abundance, microhabitat utilization, habitat availability, diet analysis, bull trout spawning ground surveys, radio telemetry of adult bull trout, and growth analysis. Results indicate that bull trout overlapped geographically with the supplemented species in each of the study streams suggesting competition among species was possible. Within a stream, bull trout and the supplemented species utilized dissimilar microhabitats and microhabitat utilization by each species was the same among streams suggesting that there was no shifts in microhabitat utilization among streams. The diet of bull trout and O. mykiss significantly overlapped in each of the study streams. The stream most intensely supplemented contained bull trout with the slowest growth and the non-supplemented stream contained bull trout with the fastest growth. Conversely, the stream most intensely supplemented contain steelhead with the fastest growth and the non-supplemented stream contained steelhead with the slowest growth. Growth indicated that bull trout may have been negatively impacted from supplementation, although other factors may have contributed. At current population levels, and current habitat quantity and quality, no impacts to bull trout as a result of supplementation with hatchery reared steelhead trout and spring chinook salmon were detected. Project limitations and future research recommendations are discussed

  20. Summary Report for Bureau of Fisheries Stream Habitat Surveys: Cowlitz River Basin, 1934-1942 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat surveys, conducted in the Cowlitz River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1938-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead. The purpose of the survey was, as described by Rich, [open quotes]to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes[close quotes]. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946. Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin.

  1. Population genetic structure of the malaria vector Anopheles funestus, in a recently re-colonized area of the Senegal River basin and human-induced environmental changes.

    Science.gov (United States)

    Samb, Badara; Dia, Ibrahima; Konate, Lassana; Ayala, Diego; Fontenille, Didier; Cohuet, Anna

    2012-09-05

    Anopheles funestus is one of the major malaria vectors in tropical Africa. Because of several cycles of drought events that occurred during the 1970s, this species had disappeared from many parts of sahelian Africa, including the Senegal River basin. However, this zone has been re-colonized during the last decade by An. funestus, following the implementation of two dams on the Senegal River. Previous studies in that area revealed heterogeneity at the biological and chromosomal level among these recent populations. Here, we studied the genetic structure of the newly established mosquito populations using eleven microsatellite markers in four villages of the Senegal River basin and compared it to another An. funestus population located in the sudanian domain. Our results presume Hardy Weinberg equilibrium in each An. funestus population, suggesting a situation of panmixia. Moreover, no signal from bottleneck or population expansion was detected across populations. The tests of genetic differentiation between sites revealed a slight but significant division into three distinct genetic entities. Genetic distance between populations from the Senegal River basin and sudanian domain was correlated to geographical distance. In contrast, sub-division into the Senegal River basin was not correlated to geographic distance, rather to local adaptation. The high genetic diversity among populations from Senegal River basin coupled with no evidence of bottleneck and with a gene flow with southern population suggests that the re-colonization was likely carried out by a massive and repeated stepping-stone dispersion starting from the neighboring areas where An. funestus endured.

  2. Instream flow characterization of upper Salmon River Basin streams, Central Idaho, 2003

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2004-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream from the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the federally listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications, as a result of irrigation practices, have directly affected the quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include the collection of habitat and streamflow information for the Physical Habitat Simulation (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts in the evaluation of potential fish habitat and passage improvements by increasing streamflow. Instream flow characterization studies were completed on Pole, Fourth of July, Elk, and Valley Creeks during 2003. Continuous streamflow data were collected upstream from all diversions on each stream. In addition, natural summer streamflows were estimated for each study site using regression

  3. Epidemiology and Control of Infectious Diseases of Salmonids in the Columbia River Basin, 1983 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, John L.

    1984-11-01

    The Department of Microbiology at Oregon State University with funding from the Bonneville Power Administration conducted a study relating to the epidemiology and control of three fish diseases of salmonids in the Columbia River Basin. These three diseases were ceratomyxosis which is caused by the myxosporidan parasite Ceratomyxa shasta, bacterial kidney disease, the etiological agent of which is Renibacterium salmoninarum, and infectious hematopoietic necrosis, which is caused by a rhabdovirus. Each of these diseases is highly destructive and difficult or impossible to treat with antimicrobial agents. The presence of ceratomyxosis in rainbow trout exposed at McNary and Little Goose Dams extends the range of this disease about 200 miles further up the Columbia River and into the Snake River drainage. Wallowa steelhead trout were less resistant to this disease than other upriver stocks tested. Juvenile salmonids entering the Columbia River estuary were collected periodically between May to September, 1983. Nine percent of the beach seined chinook salmon and 5, 11 and 12%, respectively, of the purse seined coho and chinook salmon and steelhead trout were infected with Ceratomyxa shasta. Experiments indicated ceratomyxosis progresses in salt water at the same rate as in fresh water once the fish have become infected. These data indicate a longer exposure to infective stages of C. shasta than previously identified and that approximately 10% of the migrating salmonids are infected and will probably die from this organism after entering salt water. Since sampling began in 1981 the bacterial kidney disease organism, Renibacterium salmoninarum, has been detected by the fluorescent antibody test in seven salmonid species caught in the open ocean off the coasts of Washington and Oregon. The bacterium has been found primarily in chinook salmon (11%) with lesions in 2.5% of these fish. This disease was also detected at levels ranging from 17% in coho salmon to 25% in chinook

  4. The role of beaver in shaping steelhead trout (Oncorhynchus mykiss) habitat complexity and thermal refugia in a central Oregon stream

    Science.gov (United States)

    Consolati, F.; Wheaton, J. M.; Neilson, B. T.; Bouwes, N.; Pollock, M. M.

    2012-12-01

    The incised and degraded habitat of Bridge Creek, tributary to the John Day River in central Oregon, is thought to be limiting the local population of ESA-listed steelhead trout (Oncorhynchus mykiss). Restoration efforts for this watershed are aimed to improve their habitat through reconnecting the channel with portions of its former floodplain (now terraces) to increase stream habitat complexity and the extent of riparian vegetation. This is being done via the installation of over a hundred beaver dam support (BDS) structures that are designed to either mimic beaver dams or support existing beaver dams. The overall objective of this study is to determine if the BDS structures have had an effect on stream channel habitat complexity and thermal refugia in selected sections of Bridge Creek. Analysis of stream temperature data in restoration treatment and control areas will show the effects of beaver dams on stream temperature. Analysis of aerial imagery and high resolution topographic data will exhibit how the number and types of geomorphic units have changed after the construction of beaver dams. Combined, the results of this research are aimed to increase our understanding of how beaver dams impact fish habitat and stream temperature.

  5. Transmission routes maintaining a viral pathogen of steelhead trout within a complex multi-host assemblage

    Science.gov (United States)

    Breyta, Rachel; Brito, Ilana L.; Ferguson, Paige; Kurath, Gael; Naish, Kerry A.; Purcell, Maureen; Wargo, Andrew R.; LaDeau, Shannon L.

    2017-01-01

    This is the first comprehensive region wide, spatially explicit epidemiologic analysis of surveillance data of the aquatic viral pathogen infectious hematopoietic necrosis virus (IHNV) infecting native salmonid fish. The pathogen has been documented in the freshwater ecosystem of the Pacific Northwest of North America since the 1950s, and the current report describes the disease ecology of IHNV during 2000–2012. Prevalence of IHNV infection in monitored salmonid host cohorts ranged from 8% to 30%, with the highest levels observed in juvenile steelhead trout. The spatial distribution of all IHNV-infected cohorts was concentrated in two sub-regions of the study area, where historic burden of the viral disease has been high. During the study period, prevalence levels fluctuated with a temporal peak in 2002. Virologic and genetic surveillance data were analyzed for evidence of three separate but not mutually exclusive transmission routes hypothesized to be maintaining IHNV in the freshwater ecosystem. Transmission between year classes of juvenile fish at individual sites (route 1) was supported at varying levels of certainty in 10%–55% of candidate cases, transmission between neighboring juvenile cohorts (route 2) was supported in 31%–78% of candidate cases, and transmission from adult fish returning to the same site as an infected juvenile cohort was supported in 26%–74% of candidate cases. The results of this study indicate that multiple specific transmission routes are acting to maintain IHNV in juvenile fish, providing concrete evidence that can be used to improve resource management. Furthermore, these results demonstrate that more sophisticated analysis of available spatio-temporal and genetic data is likely to yield greater insight in future studies.

  6. Using a food web model to inform the design of river restoration—An example at the Barkley Bear Segment, Methow River, north-central Washington

    Science.gov (United States)

    Benjamin, Joseph R.; Bellmore, J. Ryan; Dombroski, Daniel

    2018-01-29

    With the decline of Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss), habitat restoration actions in freshwater tributaries have been implemented to improve conditions for juveniles. Typically, physical (for example, hydrologic and engineering) based models are used to design restoration alternatives with the assumption that biological responses will be improved with changes to the physical habitat. Biological models rarely are used. Here, we describe simulations of a food web model, the Aquatic Trophic Productivity (ATP) model, to aid in the design of a restoration project in the Methow River, north-central Washington. The ATP model mechanistically links environmental conditions of the stream to the dynamics of river food webs, and can be used to simulate how alternative river restoration designs influence the potential for river reaches to sustain fish production. Four restoration design alternatives were identified that encompassed varying levels of side channel and floodplain reconnection and large wood addition. Our model simulations suggest that design alternatives focused on reconnecting side channels and the adjacent floodplain may provide the greatest increase in fish capacity. These results were robust to a range of discharge and thermal regimes that naturally occur in the Methow River. Our results suggest that biological models, such as the ATP model, can be used during the restoration planning phase to increase the effectiveness of restoration actions. Moreover, the use of multiple modeling efforts, both physical and biological, when evaluating restoration design alternatives provides a better understanding of the potential outcome of restoration actions.

  7. Resilience and Water Governance: Adaptive Governance in the Columbia River Basin

    Directory of Open Access Journals (Sweden)

    Barbara A. Cosens

    2012-12-01

    Full Text Available The 1964 Columbia River Treaty between the United States and Canada is currently under review. Under the treaty, the river is jointly operated by the two countries for hydropower and is the largest producer of hydropower in the western hemisphere. In considering the next phase of international river governance, the degree of uncertainty surrounding the drivers of change complicates efforts to predict and manage under traditional approaches that rely on historical ecosystem responses. At the same time, changes in social values have focused attention on ecosystem health, the decline of which has led to the listing of seven salmon and four steelhead populations under the U.S. Endangered Species Act. Although adaptive management is considered one approach to resource management in the face of uncertainty, an early attempt at its implementation in the U.S. portion of the basin failed. We explore these issues in the context of resilience, taking the position that while adaptive management may foster ecological resilience, it is only one factor in the institutional changes needed to foster social-ecological resilience captured in the concept of adaptive governance.

  8. Population genomic analysis suggests strong influence of river network on spatial distribution of genetic variation in invasive saltcedar across the southwestern United States

    Science.gov (United States)

    Lee, Soo-Rang; Jo, Yeong-Seok; Park, Chan-Ho; Friedman, Jonathan M.; Olson, Matthew S.

    2018-01-01

    Understanding the complex influences of landscape and anthropogenic elements that shape the population genetic structure of invasive species provides insight into patterns of colonization and spread. The application of landscape genomics techniques to these questions may offer detailed, previously undocumented insights into factors influencing species invasions. We investigated the spatial pattern of genetic variation and the influences of landscape factors on population similarity in an invasive riparian shrub, saltcedar (Tamarix L.) by analysing 1,997 genomewide SNP markers for 259 individuals from 25 populations collected throughout the southwestern United States. Our results revealed a broad-scale spatial genetic differentiation of saltcedar populations between the Colorado and Rio Grande river basins and identified potential barriers to population similarity along both river systems. River pathways most strongly contributed to population similarity. In contrast, low temperature and dams likely served as barriers to population similarity. We hypothesize that large-scale geographic patterns in genetic diversity resulted from a combination of early introductions from distinct populations, the subsequent influence of natural selection, dispersal barriers and founder effects during range expansion.

  9. Diversity and genetic distance in populations of Steindachnerina in the upper Paraná river floodplain of Brazil.

    Science.gov (United States)

    Oliveira, A V; Prioli, A J; Prioli, S M A P; Pavanelli, C S; Júlio, H F; Panarari, R S

    2002-08-01

    Whereas four species of the genus Steindachnerina occur in the Paraná river basin, S. insculpta was the only endemic species of the region under analysis, which is the third lower section of the upper Paraná river. Among other factors, this species has been characterised by the absence of spots in the basal region of the dorsal fin. However, various specimens with this characteristic appeared in the region after the construction of the Itaipu Hydroelectric Plant in 1982. An analysis of the genetic variability of Steindachnerina populations with or without spots is provided. Specimens were collected in different sites of the floodplain of the upper Paraná river and samples were compared by random amplified polymorphic DNA (RAPD) technique and morphological analyses. Ninety-eight amplified loci with nine random primers were analysed in 19 specimens of each phenotype. Data for genetic distance showed great divergences between the two phenotypes and indicate two different species. Spotted specimens may be identified as S. brevipinna, found in the region downstream Sete Quedas Falls. The species must have overcome the geographical barrier during the building of the Itaipu hydroelectric dam that submerged the waterfalls and which became an obstacle between the upper and middle Paraná river some 150 km downstream. Since phenotypes do not share dominant alleles, absence of gene flow has been suggested.

  10. DNA barcoding and evaluation of genetic diversity in Cyprinidae fish in the midstream of the Yangtze River.

    Science.gov (United States)

    Shen, Yanjun; Guan, Lihong; Wang, Dengqiang; Gan, Xiaoni

    2016-05-01

    The Yangtze River is the longest river in China and is divided into upstream and mid-downstream regions by the Three Gorges (the natural barriers of the Yangtze River), resulting in a complex distribution of fish. Dramatic changes to habitat environments may ultimately threaten fish survival; thus, it is necessary to evaluate the genetic diversity and propose protective measures. Species identification is the most significant task in many fields of biological research and in conservation efforts. DNA barcoding, which constitutes the analysis of a short fragment of the mitochondrial cytochrome c oxidase subunit I (COI) sequence, has been widely used for species identification. In this study, we collected 561 COI barcode sequences from 35 fish from the midstream of the Yangtze River. The intraspecific distances of all species were below 2% (with the exception of Acheilognathus macropterus and Hemibarbus maculatus). Nevertheless, all species could be unambiguously identified from the trees, barcoding gaps and taxonomic resolution ratio values. Furthermore, the COI barcode diversity was found to be low (≤0.5%), with the exception of H. maculatus (0.87%), A. macropterus (2.02%) and Saurogobio dabryi (0.82%). No or few shared haplotypes were detected between the upstream and downstream populations for ten species with overall nucleotide diversities greater than 0.00%, which indicated the likelihood of significant population genetic structuring. Our analyses indicated that DNA barcoding is an effective tool for the identification of cyprinidae fish in the midstream of the Yangtze River. It is vital that some protective measures be taken immediately because of the low COI barcode diversity.

  11. Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed, Technical Report 2003-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn

    2007-02-01

    The Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed is a multi-phase project to enhance steelhead trout in the Lapwai Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District (District). Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period December 1, 2003 through February 28, 2004 include; seven grade stabilization structures, 0.67 acres of wetland plantings, ten acres tree planting, 500 linear feet streambank erosion control, two acres grass seeding, and 120 acres weed control.

  12. Applications of genetic data to improve management and conservation of river fishes and their habitats

    Science.gov (United States)

    Scribner, Kim T.; Lowe, Winsor H.; Landguth, Erin L.; Luikart, Gordon; Infante, Dana M.; Whelan, Gary; Muhlfeld, Clint C.

    2015-01-01

    Environmental variation and landscape features affect ecological processes in fluvial systems; however, assessing effects at management-relevant temporal and spatial scales is challenging. Genetic data can be used with landscape models and traditional ecological assessment data to identify biodiversity hotspots, predict ecosystem responses to anthropogenic effects, and detect impairments to underlying processes. We show that by combining taxonomic, demographic, and genetic data of species in complex riverscapes, managers can better understand the spatial and temporal scales over which environmental processes and disturbance influence biodiversity. We describe how population genetic models using empirical or simulated genetic data quantify effects of environmental processes affecting species diversity and distribution. Our summary shows that aquatic assessment initiatives that use standardized data sets to direct management actions can benefit from integration of genetic data to improve the predictability of disturbance–response relationships of river fishes and their habitats over a broad range of spatial and temporal scales.

  13. Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sobocinski, Kathryn; Johnson, Gary; Sather, Nichole [Pacific Northwest National Laboratory

    2008-03-17

    This document is the first annual report for the study titled 'Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River'. Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program. The goal of the 2007-2009 Tidal Freshwater Monitoring Study is to answer the following questions: In what types of habitats within the tidal freshwater area of the lower Columbia River and estuary (LCRE; Figure 1) are yearling and subyearling salmonids found, when are they present, and under what environmental conditions?1 And, what is the ecological importance2 of shallow (0-5 m) tidal freshwater habitats to the recovery of Upper Columbia River spring Chinook salmon and steelhead and Snake River fall Chinook salmon? Research in 2007 focused mainly on the first question, with fish stock identification data providing some indication of Chinook salmon presence at the variety of habitat types sampled. The objectives and sub-objectives for the 2007 study were as follows: (1) Habitat and Fish Community Characteristics-Provide basic data on habitat and fish community characteristics for yearling and subyearling salmonids at selected sites in the tidal freshwater reach in the vicinity of the Sandy River delta. (1a) Characterize vegetation assemblage percent cover, conventional water quality, substrate composition, and beach slope at each of six sampling sites in various tidal freshwater habitat types. (1b

  14. The Reaches Project : Ecological and Geomorphic Dtudies Supporting Normative Flows in the Yakima River Basin, Washington, Final Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Stanford, Jack A.; Lorang, Mark N.; Matson, Phillip L. (University of Montana, Flathead Lake Biological Station, Poison, MT)

    2002-10-01

    The Yakima River system historically produced robust annual runs of chinook, sockeye, chum and coho salmon and steelhead. Many different stocks or life history types existed because the physiography of the basin is diverse, ranging from very dry and hot in the high desert of the lower basin to cold and wet in the Cascade Mountains of the headwaters (Snyder and Stanford 2001). Habitat diversity and life history diversity of salmonids are closely correlated in the Yakima Basin. Moreover, habitat diversity for salmonids and many other fishes maximizes in floodplain reaches of river systems (Ward and Stanford 1995, Independent Scientific Group 2000). The flood plains of Yakima River likely were extremely important for spawning and rearing of anadromous salmonids (Snyder and Stanford 2001). However, Yakima River flood plains are substantially degraded. Primary problems are: revetments that disconnect main and side channel habitats; dewatering associated with irrigation that changes base flow conditions and degrades the shallow-water food web; chemical and thermal pollution that prevents proper maturation of eggs and juveniles; and extensive gravel mining within the floodplain reaches that has severed groundwater-channel connectivity, increased thermal loading and increased opportunities for invasions of nonnative species. The Yakima River is too altered from its natural state to allow anything close to the historical abundance and diversity of anadromous fishes. Habitat loss, overharvest and dam and reservoir passage problems in the mainstem Columbia River downstream of the Yakima, coupled with ocean productivity variation, also are implicated in the loss of Yakima fisheries. Nonetheless, in an earlier analysis, Snyder and Stanford (2001) concluded that a significant amount of physical habitat remains in the five floodplain reaches of the mainstem river because habitat-structuring floods do still occur on the remaining expanses of floodplain environment. Assuming main

  15. Instream flow characterization of upper Salmon River basin streams, central Idaho, 2004

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2005-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing streamflow. In 2004, instream flow characterization studies were completed on Salmon River and Beaver, Pole, Champion, Iron, Thompson, and Squaw Creeks. Continuous streamflow data were recorded upstream of all diversions on Salmon River and Pole, Iron, Thompson, and Squaw Creeks. In addition, natural summer streamflows were

  16. Demographic collapse and low genetic diversity of the Irrawaddy dolphin population inhabiting the Mekong River.

    Science.gov (United States)

    Krützen, Michael; Beasley, Isabel; Ackermann, Corinne Y; Lieckfeldt, Dietmar; Ludwig, Arne; Ryan, Gerard E; Bejder, Lars; Parra, Guido J; Wolfensberger, Rebekka; Spencer, Peter B S

    2018-01-01

    In threatened wildlife populations, it is important to determine whether observed low genetic diversity may be due to recent anthropogenic pressure or the consequence of historic events. Historical size of the Irrawaddy dolphin (Orcaella brevirostris) population inhabiting the Mekong River is unknown and there is significant concern for long-term survival of the remaining population as a result of low abundance, slow reproduction rate, high neonatal mortality, and continuing anthropogenic threats. We investigated population structure and reconstructed the demographic history based on 60 Irrawaddy dolphins samples collected between 2001 and 2009. The phylogenetic analysis indicated reciprocal monophyly of Mekong River Orcaella haplotypes with respect to haplotypes from other populations, suggesting long-standing isolation of the Mekong dolphin population from other Orcaella populations. We found that at least 85% of all individuals in the two main study areas: Kratie and Stung Treng, bore the same mitochondrial haplotype. Out of the 21 microsatellite loci tested, only ten were polymorphic and exhibited very low levels of genetic diversity. Both individual and frequency-based approaches suggest very low and non-significant genetic differentiation of the Mekong dolphin population. Evidence for recent bottlenecks was equivocal. Some results suggested a recent exponential decline in the Mekong dolphin population, with the current size being only 5.2% of the ancestral population. In order for the Mekong dolphin population to have any potential for long-term survival, it is imperative that management priorities focus on preventing any further population fragmentation or genetic loss, reducing or eliminating anthropogenic threats, and promoting connectivity between all subpopulations.

  17. Non–invasive sampling of endangered neotropical river otters reveals high levels of dispersion in the Lacantun River System of Chiapas, Mexico

    Directory of Open Access Journals (Sweden)

    Ortega, J.

    2012-01-01

    Full Text Available Patterns of genetic dispersion, levels of population genetic structure, and movement of the neotropical river otter (Lontra longicaudis were investigated by screening eight polymorphic microsatellites from DNA extracted from fecal samples, collected in a hydrologic system of the Lacandon rainforest in Chiapas, Mexico. A total of 34 unique genotypes were detected from our surveys along six different rivers, and the effect of landscape genetic structure was studied. We recovered 16 of the 34 individuals in multiple rivers at multiple times. We found high levels of dispersion and low levels of genetic differentiation among otters from the six surveyed rivers (P > 0.05, except for the pairwise comparison among the Lacantún and José rivers (P < 0.05. We recommend that conservation management plans for the species consider the entire Lacantún River System and its tributaries as a single management unit to ensure the maintenance of current levels of population genetic diversity, because the population analyzed seems to follow a source–sink dynamic mainly determined by the existence of the major river.

  18. Smolt monitoring at the head of Lower Granite Reservoir and Lower Granite Dam; ANNUAL

    International Nuclear Information System (INIS)

    Brimmer, Arnold F.; Buettner, Edwin W.

    1998-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O.mykiss smolts during the 1996 spring outmigration at migrant traps on the Snake River and Salmon River

  19. Effects of landscape features on population genetic variation of a tropical stream fish, Stone lapping minnow, Garra cambodgiensis, in the upper Nan River drainage basin, northern Thailand

    Directory of Open Access Journals (Sweden)

    Chaowalee Jaisuk

    2018-03-01

    Full Text Available Spatial genetic variation of river-dwelling freshwater fishes is typically affected by the historical and contemporary river landscape as well as life-history traits. Tropical river and stream landscapes have endured extended geological change, shaping the existing pattern of genetic diversity, but were not directly affected by glaciation. Thus, spatial genetic variation of tropical fish populations should look very different from the pattern observed in temperate fish populations. These data are becoming important for designing appropriate management and conservation plans, as these aquatic systems are undergoing intense development and exploitation. This study evaluated the effects of landscape features on population genetic diversity of Garra cambodgiensis, a stream cyprinid, in eight tributary streams in the upper Nan River drainage basin (n = 30–100 individuals/location, Nan Province, Thailand. These populations are under intense fishing pressure from local communities. Based on 11 microsatellite loci, we detected moderate genetic diversity within eight population samples (average number of alleles per locus = 10.99 ± 3.00; allelic richness = 10.12 ± 2.44. Allelic richness within samples and stream order of the sampling location were negatively correlated (P < 0.05. We did not detect recent bottleneck events in these populations, but we did detect genetic divergence among populations (Global FST = 0.022, P < 0.01. The Bayesian clustering algorithms (TESS and STRUCTURE suggested that four to five genetic clusters roughly coincide with sub-basins: (1 headwater streams/main stem of the Nan River, (2 a middle tributary, (3 a southeastern tributary and (4 a southwestern tributary. We observed positive correlation between geographic distance and linearized FST (P < 0.05, and the genetic differentiation pattern can be moderately explained by the contemporary stream network (STREAMTREE analysis, R2 = 0.75. The MEMGENE analysis

  20. Water quality and algal conditions in the North Umpqua River, Oregon, 1995-2007, and their response to Diamond Lake restoration

    Science.gov (United States)

    Carpenter, Kurt D.; Anderson, Chauncey W.; Jones, Mikeal E.

    2014-01-01

    The Wild and Scenic North Umpqua River is one of the highest-quality waters in the State of Oregon, supporting runs of wild salmon, steelhead, and trout. For many years, blooms of potentially toxic blue-green algae in Diamond and Lemolo Lakes have threatened water quality, fisheries, and public health. The blooms consist primarily of Anabaena, a nitrogen (N)-fixing planktonic alga that appears to have contributed to N enrichment, which could account for changes in communities and biomass of periphyton, or attached benthic algae, in the river. Periphyton can become a nuisance in summer by affecting riffle habitat and causing high pH that fails to meet State of Oregon water-quality standards. These symptoms of nutrient enrichment in the North Umpqua River were first documented in 1995, and the symptoms have continued since then. Restoring natural ecosystem processes that store nutrients rather than fueling algae might help improve pH and water-clarity conditions.

  1. Instream flow characterization of Upper Salmon River basin streams, central Idaho, 2005

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2006-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model simulation results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing or decreasing streamflow. In 2005, instream flow characterization studies were completed on Big Boulder, Challis, Bear, Mill, and Morgan Creeks. Continuous streamflow data were recorded upstream of all diversions on Big Boulder. Instantaneous measurements of discharge were also made at selected sites. In

  2. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Monitoring and Evaluation, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Boe, Stephen J.; Weldert, Rey F.; Crump, Carrie A. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

    2003-03-01

    This is the fifth annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Conventional and captive broodstock supplementation techniques are being used to restore spring chinook salmon fisheries in these streams. Statement of Work Objectives for 2002: (1) Plan for, administer, coordinate and assist comanagers in GRESCP M&E activities. (2) Evaluate performance of supplemented juvenile spring chinook salmon. (3) Evaluate life history differences between wild and hatchery-origin (F{sub 1}) adult spring chinook salmon. (4) Describe life history characteristics and genetics of adult summer steelhead collected at weirs.

  3. Could refuge theory and rivers acting as barriers explain the genetic variability distribution in the Atlantic Forest?

    Science.gov (United States)

    Cazé, Ana Luiza R; Mäder, Geraldo; Nunes, Teonildes S; Queiroz, Luciano P; de Oliveira, Guilherme; Diniz-Filho, José Alexandre F; Bonatto, Sandro L; Freitas, Loreta B

    2016-08-01

    The Atlantic Forest is one of the most species-rich ecoregions in the world. The historical origins of this richness and the evolutionary processes that produced diversification and promoted speciation in this ecosystem remain poorly understood. In this context, focusing on Passiflora contracta, an endemic species from the Atlantic Forest distributed exclusively at sea level along forest edges, this study aimed to characterize the patterns of genetic variability and explore two hypotheses that attempt to explain the possible causes of the genetic diversity in this region: the refuge and riverine barrier theories. We employed Bayesian methods combined with niche modeling to identify genetically homogeneous groups, to determine the diversification age, and identify long-term climate stability areas to species survival. The analyses were performed using molecular markers from nuclear and plastid genomes, with samples collected throughout the entire geographic distribution of the species, and comparisons with congeners species. The results indicated that populations were genetically structured and provided evidence of demographic stability. The molecular markers indicated the existence of a clear structure and the presence of five homogeneous groups. Interestingly, the separation of the groups coincides with the geographical locations of local rivers, corroborating the hypothesis of rivers acting as barriers to gene flow in this species. The highest levels of genetic diversity and the areas identified as having long-term climate stability were found in the same region reported for other species as a possible refuge area during the climatic changes of the Quaternary. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Yakima River species interactions studies annual report, 2000; ANNUAL

    International Nuclear Information System (INIS)

    Pearsons, Todd N.

    2001-01-01

    Species interactions research and monitoring was initiated in 1989 to investigate ecological interactions among fish in response to proposed supplementation of salmon and steelhead in the upper Yakima River basin. This is the ninth of a series of progress reports that address species interactions research and supplementation monitoring of fishes in the Yakima River basin. Data have been collected prior to supplementation to characterize the ecology and demographics of non-target taxa (NTT) and target taxon, and develop methods to monitor interactions and supplementation success. Major topics of this report are associated with the chronology of ecological interactions that occur throughout a supplementation program, implementing NTT monitoring prescriptions for detecting potential impacts of hatchery supplementation, hatchery fish interactions, and monitoring fish predation indices. This report is organized into four chapters, with a general introduction preceding the first chapter. This annual report summarizes data collected primarily by the Washington Department of Fish and Wildlife (WDFW) between January 1, 2000 and December 31, 2000 in the Yakima basin, however these data were compared to data from previous years to identify preliminary trends and patterns. Summaries of each of the chapters included in this report are described

  5. Life-history diversity and its importance to population stability and persistence of a migratory fish: steelhead in two large North American watersheds.

    Science.gov (United States)

    Moore, Jonathan W; Yeakel, Justin D; Peard, Dean; Lough, Jeff; Beere, Mark

    2014-09-01

    Life-history strategies can buffer individuals and populations from environmental variability. For instance, it is possible that asynchronous dynamics among different life histories can stabilize populations through portfolio effects. Here, we examine life-history diversity and its importance to stability for an iconic migratory fish species. In particular, we examined steelhead (Oncorhynchus mykiss), an anadromous and iteroparous salmonid, in two large, relatively pristine, watersheds, the Skeena and Nass, in north-western British Columbia, Canada. We synthesized life-history information derived from scales collected from adult steelhead (N = 7227) in these watersheds across a decade. These migratory fishes expressed 36 different manifestations of the anadromous life-history strategy, with 16 different combinations of freshwater and marine ages, 7·6% of fish performing multiple spawning migrations, and up to a maximum of four spawning migrations per lifetime. Furthermore, in the Nass watershed, various life histories were differently prevalent through time - three different life histories were the most prevalent in a given year, and no life history ever represented more than 45% of the population. These asynchronous dynamics among life histories decreased the variability of numerical abundance and biomass of the aggregated population so that it was > 20% more stable than the stability of the weighted average of specific life histories: evidence of a substantial portfolio effect. Year of ocean entry was a key driver of dynamics; the median correlation coefficient of abundance of life histories that entered the ocean the same year was 2·5 times higher than the median pairwise coefficient of life histories that entered the ocean at different times. Simulations illustrated how different elements of life-history diversity contribute to stability and persistence of populations. This study provides evidence that life-history diversity can dampen fluctuations in

  6. Genetic and Phenotypic Catalog of Native Resident Trout of the interior Columbia River Basin : FY-2001 Report : Populations in the Wenatchee, Entiat, Lake Chelan and Methow River Drainages.

    Energy Technology Data Exchange (ETDEWEB)

    Trotter, Patrick C.

    2001-10-01

    The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project was to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-2001 was year three (and final year) of a project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-2001 we worked in collaboration with the Wenatchee National Forest to catalog populations in the Wenatchee, Entiat, Lake Chelan, and Methow River drainages of Washington State.

  7. Water velocity influences prey detection and capture by drift-feeding juvenile coho salmon (Oncorhynchus kisutch) and steelhead (Oncorhynchus mykiss irideus)

    Science.gov (United States)

    John J. Piccolo; Nicholas F. Hughes; Mason D. Bryant

    2008-01-01

    We examined the effects of water velocity on prey detection and capture by drift-feeding juvenile coho salmon (Oncorhynchus kisutch) and steelhead (sea-run rainbow trout,Oncorhynchus mykiss irideus) in laboratory experiments. We used repeated-measures analysis of variance to test the effects of velocity, species, and the velocity x species interaction on prey capture...

  8. Upstream passage, spawning, and stock identification of fall chinook in the Snake River, 1992 and 1993. Final report

    International Nuclear Information System (INIS)

    Blankenship, H.L.; Mendel, G.W.

    1997-05-01

    This final report of the 3-year study summarizes activities and results for 1993. Study objectives were to: (1) determine the source of losses (or accounting errors) for adult chinook salmon between Ice Harbor Dam (IHR) and Lower Granite Dam (LGR), and upstream of LGR in the Snake River; (2) identify spawning locations upstream of LGR for calibration of aerial redd surveys, redd habitat mapping, carcass recovery for genetic stock profile analysis, and correction of estimated adult/redd ratios; and (3) estimate passage and migration times at Snake River. 200 fall chinook salmon were radio tagged and tracked with aerial, fixed-site, and ground mobile tracking. Fish were released upstream of IHR at Charbonneau Park (CHAR). 190 of the fish were tracked or relocated away from CHAR. 59 fish descended to below IHR without crossing Lower Monumental Dam (LMO). Another 128 salmon passed upstream of LMO without falling back at IHR. Only 80 salmon passed Little Goose Dam (LGO) without falling back at a downstream dam; 66 of these fish passed LGR. Many fish that fell back reascended the dams. A total of 72 salmon released at CHAR passed upstream of LGR, including fish that had fallen back and reascended a dam. Over 80 percent of the salmon that entered Lyons Ferry Hatchery each year had reached LGO before descending to the hatchery. Extensive wandering was documented between LMO and upstream of LGR before salmon entered Lyons Ferry Hatchery or the Tucannon River. In 1993, 41 salmon were found to be of hatchery origin when recovered. These fish entered Lyons Ferry Hatchery with similar movements to unmarked salmon. Each year a few salmon have remained near the hatchery without entering, which suggests the hatchery may have inadequate attraction flows. Fall chinook passed lower Snake River dams in 2-5 days each on average. Median travel times through LMO and LGO were 1.0-1.3 days each, which was slower than for spring chinook or steelhead in 1993. 5 refs., 21 figs., 20 tabs

  9. Umatilla hatchery satellite facilities operation and maintenance. Annual report 1996

    International Nuclear Information System (INIS)

    Rowan, G.D.

    1997-06-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to enhance steelhead and re-establish salmon runs in the Umatilla River Basin. As an integral part of this program, Bonifer Pond, Minthorn Springs, Imeques C-mem-ini-kem and Thornhollow satellite facilities are operated for acclimation and release of juvenile summer steelhead (Oncorhynchus mykiss), fall and spring chinook salmon (O. tshawytscha) and coho salmon (O. kisutch). Minthorn is also used for holding and spawning adult summer steelhead and Three Mile Dam is used for holding and spawning adult fall chinook and coho salmon. Bonifer, Minthorn, Imeques and Thornhollow facilities are operated for acclimation and release of juvenile salmon and summer steelhead. The main goal of acclimation is to reduce stress from trucking prior to release and improve imprinting of juvenile salmonids in the Umatilla River Basin. Juveniles are transported to the acclimation facilities primarily from Umatilla and Bonneville Hatcheries. This report details activities associated with operation and maintenance of the Bonifer, Minthorn, Imeques, Thornhollow and Three Mile Dam facilities in 1996

  10. Application of Biota Dose Assessment Committee Methodology to Assess Radiological Risk to Salmonids in the Hanford Reach of the Columbia River

    International Nuclear Information System (INIS)

    Poston, Ted M.; Antonio, Ernest J.; Peterson, Robert E.

    2002-01-01

    Protective guidance for biota in the U.S. Department of Energy's Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota is based on population level protection guides of 10 or 1 mGy.d-1, respectively. Several 'ecologically significant units' of Pacific salmon are listed under the Endangered Species Act. The Middle Columbia Steelhead unit is endangered and the adult steelhead spawn in the reach. The reach also supports one of the largest spawning populations of fall chinook salmon in the Northwest. The existence of the major spawning areas in the Hanford Reach has focused considerable attention on their ecological health by the U.S. Department of Energy, other federal and state regulatory agencies, and special interest groups. Dose assessments for developing salmonid embryos were performed for the hypothetical exposure to tritium, strontium-90, technetium-99, iodine-129, and uranium isotopes at specific sites on the Hanford Reach. These early life stages are potentially exposed in some areas of the Hanford Reach to radiological contaminants that enter the river via shoreline seeps and upwelling through the river substrate. At the screening level, one site approached the dose guideline of 10 mGy.d-1 established with the RAD-BCG methodology and exceeded a precautionary benchmark of 2.5 mGy.d-1. Special status of listed species affords these populations more consideration when assessing potential impacts of exposure to radionuclides and other contaminants associated with the Hanford Site operations. The evolution of dose benchmarks for aquatic organisms and consideration of precautionary principal and cumulative impacts are discussed in this paper.

  11. Genetic diversity of contemporary populations of Salmo trutta L. in the basin of the River Neretva, Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Belma Kalamujic

    2015-11-01

    Full Text Available Across its cosmopolitan range, the survival of the local gene pool of wild brown trout, Salmo trutta L., is threatened due to habitat degradation, overexploitation, inadequate stocking and hybridization. In Bosnia and Herzegovina, brown trout reside in both, the Danube and the Adriatic river drainages. The aim of this study was to assess the contemporary genetic diversity of brown trout populations in the Neretva River basin and to detect the populations that could serve as a source of material for future revitalization projects. The control region of mitochondrial genome, LDH gene, 13 nuclear microsatellites as well as GP85 SNP were analyzed in a total of 335 specimens from the main course of the River Neretva and 11 of its tributaries. Sampling locations on tributaries were located in hardly accessible areas so to maximally reduce the possibility of previous stocking. Besides the indigenous Adriatic haplotype, the Danube and the Atlantic mtDNA haplotypes were detected, which clearly indicates that populations of brown trout in the Neretva river basin have been subject to translocation activities and stocking with allochthonous gene pool. The existence of individuals with Adriatic haplotype but microsatellite variants corresponding to the Danube and the Atlantic lineages, as well as the presence of obtusirostris haplotype, characteristic for soft-muzzled trout, clearly prove hybridization events. The frequency of almost 100% of the allele 167 (locus SsoSL417 in indigenous group clearly points to the possibility that this allele is correlated with the Neretva/Adriatic haplotype and could be used as a potential marker of autochthony. Though the gene pool of the Neretva brown trout has been highly compromised, there is still a real genetic basis for the successful revitalization of indigenous genetic resources, if the immediate and urgent actions are taken through joint activities of the government, public and private sectors (fisheries, and

  12. Columbia River Stock Identification Study; Validation of Genetic Method, 1980-1981 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Milner, George B.; Teel, David J.; Utter, Fred M. (Northwest and Alaska Fisheries Science Center, Coastal Zone and Estuarine Studies Division, Seattle, WA)

    1981-06-01

    The reliability of a method for obtaining maximum likelihood estimate of component stocks in mixed populations of salmonids through the frequency of genetic variants in a mixed population and in potentially contributing stocks was tested in 1980. A data base of 10 polymorphic loci from 14 hatchery stocks of spring chinook salmon of the Columbia River was used to estimate proportions of these stocks in four different blind'' mixtures whose true composition was only revealed subsequent to obtaining estimates. The accuracy and precision of these blind tests have validated the genetic method as a valuable means for identifying components of stock mixtures. Properties of the genetic method were further examined by simulation studies using the pooled data of the four blind tests as a mixed fishery. Replicated tests with samples sizes between 100 and 1,000 indicated that actual standard deviations on estimated contributions were consistently lower than calculated standard deviations; this difference diminished as sample size increased. It is recommended that future applications of the method be preceded by simulation studies that will identify appropriate levels of sampling required for acceptable levels of accuracy and precision. Variables in such studies include the stocks involved, the loci used, and the genetic differentiation among stocks. 8 refs., 6 figs., 4 tabs.

  13. Willingness to pay for non angler recreation at the lower Snake River reservoirs

    Science.gov (United States)

    McKean, J.R.; Johnson, D.; Taylor, R.G.; Johnson, Richard L.

    2005-01-01

    This study applied the travel cost method to estimate demand for non angler recreation at the impounded Snake River in eastern Washington. Net value per person per recreation trip is estimated for the full non angler sample and separately for camping, boating, water-skiing, and swimming/picnicking. Certain recreation activities would be reduced or eliminated and new activities would be added if the dams were breached to protect endangered salmon and steelhead. The effect of breaching on non angling benefits was found by subtracting our benefits estimate from the projected non angling benefits with breaching. Major issues in demand model specification and definition of the price variables are discussed. The estimation method selected was truncated negative binomial regression with adjustment for self selection bias.

  14. Survival of migrating salmon smolts in large rivers with and without dams.

    Directory of Open Access Journals (Sweden)

    David W Welch

    2008-10-01

    Full Text Available The mortality of salmon smolts during their migration out of freshwater and into the ocean has been difficult to measure. In the Columbia River, which has an extensive network of hydroelectric dams, the decline in abundance of adult salmon returning from the ocean since the late 1970s has been ascribed in large measure to the presence of the dams, although the completion of the hydropower system occurred at the same time as large-scale shifts in ocean climate, as measured by climate indices such as the Pacific Decadal Oscillation. We measured the survival of salmon smolts during their migration to sea using elements of the large-scale acoustic telemetry system, the Pacific Ocean Shelf Tracking (POST array. Survival measurements using acoustic tags were comparable to those obtained independently using the Passive Integrated Transponder (PIT tag system, which is operational at Columbia and Snake River dams. Because the technology underlying the POST array works in both freshwater and the ocean, it is therefore possible to extend the measurement of survival to large rivers lacking dams, such as the Fraser, and to also extend the measurement of survival to the lower Columbia River and estuary, where there are no dams. Of particular note, survival during the downstream migration of at least some endangered Columbia and Snake River Chinook and steelhead stocks appears to be as high or higher than that of the same species migrating out of the Fraser River in Canada, which lacks dams. Equally surprising, smolt survival during migration through the hydrosystem, when scaled by either the time or distance migrated, is higher than in the lower Columbia River and estuary where dams are absent. Our results raise important questions regarding the factors that are preventing the recovery of salmon stocks in the Columbia and the future health of stocks in the Fraser River.

  15. Columbia River White Sturgeon Genetics and Early Life History: Population Segregation and Juvenile Feeding Behavior, 1987 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, Ernest L.

    1988-06-01

    The geographic area of the genetics study broadly covered the distribution range of sturgeon in the Columbia from below Bonneville Dam at Ilwaco at Lake Roosevelt, the Upper Snake River, and the Kootenai River. The two remote river sections provided data important for enhancement considerations. There was little electrophoretic variation seen among individuals from the Kootenai River. Upper Snake river sturgeon showed a higher percentage of polymorphic loci than the Kootenai fish, but lower than the other areas in the Columbia River we sampled. Sample size was increased in both Lake Roosevelt and at Electrophoretic variation was specific to an individual sampling area in several cases and this shaped our conclusions. The 1987 early life history studies concentrated on the feeding behavior of juvenile sturgeon. The chemostimulant components in prey attractive to sturgeon were examined, and the sensory systems utilized by foraging sturgeon were determined under different environmental conditions. These results were discussed with regard to the environmental changes that have occurred in the Columbia River. Under present river conditions, the feeding mechanism of sturgeon is more restricted to certain prey types, and their feeding range may be limited. In these situations, enhancement measures cannot be undertaken without consideration given to the introduction of food resources that will be readily available under present conditions. 89 refs., 7 figs., 11 tabs.

  16. Founder effects and genetic population structure of brown trout (Salmo trutta) in a Danish river system

    DEFF Research Database (Denmark)

    Hansen, Michael Møller; Mensberg, Karen-Lise Dons

    1996-01-01

    The influence of founder effects on the genetic population structure of brown trout (Salmo trutta) was studied in a small Danish river system. Samples of trout from seven locations were analysed by allozyme electrophoresis and mitochondrial DNA restriction fragment length polymorphism analysis....... For comparison, allozyme data from other Danish trout populations and mtDNA data from two hatchery strains were included. Genetic differentiation among populations was found to be small but significant. Pairwise tests for homogeneity of allele and haplotype frequencies between samples showed that significance...... simulations of the influence of founder effects on mitochondrial DNA differentiation and variability showed that the observed divergence could be due either to natural founder effects or to a genetic contribution by hatchery trout. However, the allozyme results pointed towards natural founder effects...

  17. Population Genetic Structure and Genetic Diversity in Twisted-Jaw Fish, Belodontichthys truncatus Kottelat & Ng, 1999 (Siluriformes: Siluridae, from Mekong Basin

    Directory of Open Access Journals (Sweden)

    Surapon Yodsiri

    2017-01-01

    Full Text Available The Mekong River and its tributaries possess the second highest diversity in fish species in the world. However, the fish biodiversity in this river is threatened by several human activities, such as hydropower plant construction. Understanding the genetic diversity and genetic structure of the species is important for natural resource management. Belodontichthys truncatus Kottelat & Ng is endemic to the Mekong River basin and is an important food source for people in this area. In this study, the genetic diversity, genetic structure, and demographic history of the twisted-jaw fish, B. truncatus, were investigated using mitochondrial cytochrome b gene sequences. A total of 124 fish specimens were collected from 10 locations in the Mekong and its tributaries. Relatively high genetic diversity was found in populations of B. truncatus compared to other catfish species in the Mekong River. The genetic structure analysis revealed that a population from the Chi River in Thailand was genetically significantly different from other populations, which is possibly due to the effect of genetic drift. Demographic history analysis indicated that B. truncatus has undergone recent demographic expansion dating back to the end of the Pleistocene glaciation.

  18. Management applications of genetic structure of anadromous sturgeon populations in the Lower Danube River (LDR, Romania

    Directory of Open Access Journals (Sweden)

    ONĂRĂ Dalia Florentina

    2013-12-01

    Full Text Available During the last decades, the over-exploitation of sturgeon stocks for caviar production simultaneously with severe habitat deteriorations has led to drastic declines in the natural populations of the Danube River. As a result of (i decrease of sturgeon catches from 37.5 tons in year 2002 to 11.8 tons in year 2005, (ii disrupted age class structure of sturgeon adult cohorts in years 2003 and 2004, and (iii lack or low recruitment in the period 2001 – 2004, in 2005 the Romanian Government started the Supportive Stocking Program of Lower Danube River with hatchery-produced young sturgeons in Romania. Subsequently, in 2006 the commercial sturgeon fishing in Romania was banned for a 10-year period. Genetic investigations were undertaken as an attempt to assess the genetic variability of the sturgeon brood fish, captured from the wild, used in two aquaculture facilities in Romania for obtaining juveniles for supportive stocking of LDR with young sturgeons produced by artificial propagation in year 2007. Our data indicate strong genetic diversity in case of stellate sturgeon and lack of diversity within the batch of beluga sturgeon brood fish captured in 2007, analyzed in the current study. Specific measures that could improve the management plan of sturgeon brood fish in the Romanian part of LDR in the light of recent FAO guidelines regarding the sturgeon hatchery practices and management for release were suggested

  19. Salmon and steelhead in the White Salmon River after the removal of Condit Dam–Planning efforts and recolonization results

    Science.gov (United States)

    Allen, Brady; Engle, Rod O; Zendt, Joseph S; Shrier, Frank C; Wilson, Jeremy T; Connolly, Patrick J.

    2016-01-01

    Condit Dam, at river kilometer 5.3 on the White Salmon River, Washington, was breached in 2011 and completely removed in 2012. This action opened habitat to migratory fish for the first time in 100 years. The White Salmon Working Group was formed to create plans for fish salvage in preparation for fish recolonization and to prescribe the actions necessary to restore anadromous salmonid populations in the White Salmon River after Condit Dam removal. Studies conducted by work group members and others served to inform management decisions. Management options for individual species were considered, including natural recolonization, introduction of a neighboring stock, hatchery supplementation, and monitoring natural recolonization for some time period to assess the need for hatchery supplementation. Monitoring to date indicates that multiple species and stocks of anadromous salmonids are finding and spawning in the now accessible and recovering habitat.

  20. Proposed modifications to the Lower Mokelumne River Project, California: FERC Project No. 2916-004

    International Nuclear Information System (INIS)

    1993-11-01

    This final environmental impact statement (FEIS) has been prepared for the Federal Energy Regulatory Commission (Commission) to consider modifications to the existing Lower Mokelumne River Project (LMRP) (FERC Project No. 2916-004) in California. Chinook salmon and steelhead trout populations in the lower Mokelumne River have experienced recent declines and fish kills associated, in part, with discharges from Camanche Dam. The California Department of Fish and Game and the California Sportfishing Protection Alliance have asked the Commission to investigate and correct these problems. A wide range of different mitigation actions has been proposed by parties participating in the scoping of this proceeding, and staff has evaluated these proposed actions in this assessment. The staff is recommending a combination of flow and non-flow modifications to the existing license, including new minimum flow and minimum pool elevation requirements at Camanche Reservoir, ramping rates on dam releases, interim attraction and out-migrant spike flows, instream habitat improvements, and a series of studies and monitoring to determine feasible means for solving off-site fish passage problems

  1. Conservation genetics of the vulnerable Treur River barb, Barbus ...

    African Journals Online (AJOL)

    At present there are only two populations of the vulnerable Treur River barb, Barbus treurensis, in existence; a founder population in the upper Blyde River and a translocated population in the Treur River where the species became extinct. The translocated population was derived from individuals from the upper Blyde River ...

  2. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Brimmer, Arnold F.

    1996-10-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1995 spring outmigration at migrant traps on the Snake River, Clearwater River, and Salmon River. The 1995 snowpack was below average through February. Heavy precipitation from the Salmon River drainage south, in March through May, provided the best runoff conditions in the Salmon River since the drought began in 1987.

  3. Smolt monitoring at the head of Lower Granite Reservoir and Lower Granite Dam. Annual report 1995

    International Nuclear Information System (INIS)

    Buettner, E.W.; Brimmer, A.F.

    1996-10-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1995 spring outmigration at migrant traps on the Snake River, Clearwater River, and Salmon River. The 1995 snowpack was below average through February. Heavy precipitation from the Salmon River drainage south, in March through May, provided the best runoff conditions in the Salmon River since the drought began in 1987

  4. Migrational Characteristics, Biological Observations, and Relative Survival of Juvenile Salmonids Entering the Columbia River Estuary, 1966-1983, 1985 Final Report of Research.

    Energy Technology Data Exchange (ETDEWEB)

    Dawley, Earl M.

    1986-04-01

    Natural runs of salmonids in the Columbia River basin have decreased as a result of hydroelectric-dam development, poor land- and forest-management, and over-fishing. This has necessitated increased salmon culture to assure adequate numbers of returning adults. Hatchery procedures and facilities are continually being modified to improve both the efficiency of production and the quality of juveniles produced. Initial efforts to evaluate changes in hatchery procedures were dependent upon adult contributions to the fishery and returns to the hatchery. Procedures were developed for sampling juvenile salmon and steelhead entering the Columbia River estuary and ocean plume. The sampling of hatchery fish at the terminus of their freshwater migration assisted in evaluating hatchery production techniques and identifying migrational or behavioral characteristics that influence survival to and through the estuary. The sampling program attempted to estimate survival of different stocks and define various aspects of migratory behavior in a large river, with flows during the spring freshet from 4 to 17 thousand cubic meters per second (m/sup 3//second).

  5. A high-resolution genetic linkage map and QTL fine mapping for growth-related traits and sex in the Yangtze River common carp (Cyprinus carpio haematopterus).

    Science.gov (United States)

    Feng, Xiu; Yu, Xiaomu; Fu, Beide; Wang, Xinhua; Liu, Haiyang; Pang, Meixia; Tong, Jingou

    2018-04-02

    A high-density genetic linkage map is essential for QTL fine mapping, comparative genome analysis, identification of candidate genes and marker-assisted selection for economic traits in aquaculture species. The Yangtze River common carp (Cyprinus carpio haematopterus) is one of the most important aquacultured strains in China. However, quite limited genetics and genomics resources have been developed for genetic improvement of economic traits in such strain. A high-resolution genetic linkage map was constructed by using 7820 2b-RAD (2b-restriction site-associated DNA) and 295 microsatellite markers in a F2 family of the Yangtze River common carp (C. c. haematopterus). The length of the map was 4586.56 cM with an average marker interval of 0.57 cM. Comparative genome mapping revealed that a high proportion (70%) of markers with disagreed chromosome location was observed between C. c. haematopterus and another common carp strain (subspecies) C. c. carpio. A clear 2:1 relationship was observed between C. c. haematopterus linkage groups (LGs) and zebrafish (Danio rerio) chromosomes. Based on the genetic map, 21 QTLs for growth-related traits were detected on 12 LGs, and contributed values of phenotypic variance explained (PVE) ranging from 16.3 to 38.6%, with LOD scores ranging from 4.02 to 11.13. A genome-wide significant QTL (LOD = 10.83) and three chromosome-wide significant QTLs (mean LOD = 4.84) for sex were mapped on LG50 and LG24, respectively. A 1.4 cM confidence interval of QTL for all growth-related traits showed conserved synteny with a 2.06 M segment on chromosome 14 of D. rerio. Five potential candidate genes were identified by blast search in this genomic region, including a well-studied multi-functional growth related gene, Apelin. We mapped a set of suggestive and significant QTLs for growth-related traits and sex based on a high-density genetic linkage map using SNP and microsatellite markers for Yangtze River common carp. Several

  6. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Boe, Stephen J.; Lofy, Peter T. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2003-03-01

    This is the third annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to restore fisheries in these streams. Statement of Work Objectives for 2000: (1) Participate in implementation of the comprehensive multiyear operations plan for the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCP). (2) Plan for recovery of endemic summer steelhead populations in Catherine Creek and the upper Grande Ronde River. (3) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2000. (4) Collect summer steelhead. (5) Collect adult endemic spring chinook salmon broodstock. (6) Acclimate juvenile spring chinook salmon prior to release into the upper Grande Ronde River and Catherine Creek. (7) Document accomplishments and needs to permitters, comanagers, and funding agency. (8) Communicate project results to the scientific community. (9) Plan detailed GRESCP Monitoring and Evaluation for future years. (10) Monitor adult population abundance and characteristics of Grande Ronde River spring chinook salmon populations and incidentally-caught summer steelhead and bull trout. (11) Monitor condition, movement, and mortality of spring chinook salmon acclimated at remote facilities. (12) Monitor water quality at facilities. (13) Participate in Monitoring & Evaluation of the captive brood component of the Program to document contribution to the Program.

  7. Yakima River Species Interactions Study; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 7 of 7, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; Fritts, Anthony L.; Temple, Gabriel M. (Washington Department of Fish and Wildlife, Olympia, WA)

    2004-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the twelfth of a series of progress reports that address species interactions research and supplementation monitoring of fishes in response to supplementation of salmon and steelhead in the upper Yakima River basin (Hindman et al. 1991; McMichael et al. 1992; Pearsons et al. 1993; Pearsons et al. 1994; Pearsons et al. 1996; Pearsons et al. 1998, Pearsons et al. 1999, Pearsons et al. 2001a, Pearsons et al. 2001b, Pearsons et al. 2002, Pearsons et al. 2003). Journal articles and book chapters have also been published from our work (McMichael 1993; Martin et al. 1995; McMichael et al. 1997; McMichael and Pearsons 1998; McMichael et al. 1998; Pearsons and Fritts 1999; McMichael et al. 1999; McMichael et al. 1999; Pearsons and Hopley 1999; Ham and Pearsons 2000; Ham and Pearsons 2001; Amaral et al. 2001; McMichael and Pearsons 2001; Pearsons 2002, Fritts and Pearsons 2004, Pearsons et al. in press, Major et al. in press). This progress report summarizes data collected between January 1, 2003 and December 31, 2003. These data were compared to findings from previous years to identify general trends and make preliminary comparisons. Interactions between fish produced as part of the YKFP, termed target species or stocks, and other species or stocks (non-target taxa) may alter the population status of non-target species or stocks. This may occur through a variety of mechanisms, such as competition, predation, and interbreeding (Pearsons et al. 1994; Busack et al. 1997; Pearsons and Hopley 1999). Furthermore, the success of a supplementation program may be limited by strong

  8. Differences in Ichthyophonus prevalence and infection severity between upper Yukon River and Tanana River chinook salmon, Oncorhynchus tshawytscha (Walbaum), stocks.

    Science.gov (United States)

    Kocan, R; Hershberger, P

    2006-08-01

    Two genetically distinct populations of chinook salmon, Oncorhynchus tshawytscha (Walbaum), were simultaneously sampled at the confluence of the Yukon and Tanana rivers in 2003. Upper Yukon-Canadian fish had significantly higher infection prevalence as well as more severe infections (higher parasite density in heart tissue) than the lower Yukon-Tanana River fish. Both populations had migrated the same distance from the mouth of the Yukon River at the time of sampling but had significantly different distances remaining to swim before reaching their respective spawning grounds. Multiple working hypotheses are proposed to explain the differences between the two stocks: (1) the two genetically distinct populations have different inherent resistance to infection, (2) genetically influenced differences in feeding behaviour resulted in temporal and/or spatial differences in exposure, (3) physiological differences resulting from different degrees of sexual maturity influenced the course of disease, and (4) the most severely infected Tanana River fish either died en route or fatigued and were unable to complete their migration to the Tanana River, thus leaving a population of apparently healthier fish.

  9. Methow River Studies, Washington: abundance estimates from Beaver Creek and the Chewuch River screw trap, methodology testing in the Whitefish Island side channel, and survival and detection estimates from hatchery fish releases, 2013

    Science.gov (United States)

    Martens, Kyle D.; Fish, Teresa M.; Watson, Grace A.; Connolly, Patrick J.

    2014-01-01

    Salmon and steelhead populations have been severely depleted in the Columbia River from factors such as the presence of tributary dams, unscreened irrigation diversions, and habitat degradation from logging, mining, grazing, and others (Raymond, 1988). The U.S. Geological Survey (USGS) has been funded by the Bureau of Reclamation (Reclamation) to provide evaluation of on-going Reclamation funded efforts to recover Endangered Species Act (ESA) listed anadromous salmonid populations in the Methow River watershed, a watershed of the Columbia River in the Upper Columbia River Basin, in north-central Washington State (fig. 1). This monitoring and evaluation program was funded to document Reclamation’s effort to partially fulfill the 2008 Federal Columbia River Power System Biological Opinion (BiOp) (National Oceanographic and Atmospheric Administration, Fisheries Division 2003). This Biological Opinion includes Reasonable and Prudent Alternatives (RPA) to protect listed salmon and steelhead across their life cycle. Species of concern in the Methow River include Upper Columbia River (UCR) spring Chinook salmon (Oncorhynchus tshawytscha), UCR summer steelhead (O. mykiss), and bull trout (Salvelinus confluentus), which are all listed as threatened or endangered under the ESA. The work done by the USGS since 2004 has encompassed three phases of work. The first phase started in 2004 and continued through 2012. This first phase involved the evaluation of stream colonization and fish production in Beaver Creek following the modification of several water diversions (2000–2006) that were acting as barriers to upstream fish movement. Products to date from this work include: Ruttenburg (2007), Connolly and others (2008), Martens and Connolly (2008), Connolly (2010), Connolly and others (2010), Martens and Connolly (2010), Benjamin and others (2012), Romine and others (2013a), Weigel and others (2013a, 2013b, 2013c), and Martens and others (2014). The second phase, initiated in

  10. A Fisheries Evaluation of the Richland and Toppenish/Satus Canal Fish Screening Facilities, Spring 1986 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D.A.; Abernethy, C. Scott; Lusty, E. William

    1987-05-01

    The fisheries evaluation phase of diversion screen effectiveness summarizes the results of work at the Richland and Toppenish/Satus Fish screening facilities (Richland Screens and Toppenish/Satus Screens) during 1986. More than 10,000 steelhead, Salmo gairdneri, and chinook salmon, Oncorhynchus tshawytscha, were released at the screen diversions. At the Richland Screens, 61% of the released steelhead were recovered and 1.1% were descaled; 93% of the spring chinook salmon were recovered and less than 1% were descaled. At the Toppenish/Satus Screens, only steelhead were evaluated for descaling; 88.9% were recovered and 23.9% were descaled. Only steelhead were evaluated because the Yakima River fisheries managers did not expect any other smolts to occur in Toppenish Creek. Because of the acclimation conditions and the amount of time the fish had to be held before testing, some of the test population were descaled during holding and transportation. The 23.9% descaling for the test fish was compared to 26.4% for the controls.

  11. Yakima River Species Interactions Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; Temple, Gabriel M.; Fritts, Anthony L. (Washington Department of Fish and Wildlife, Olympia, WA)

    2005-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the thirteenth of a series of progress reports that address species interactions research and supplementation monitoring of fishes in response to supplementation of salmon and steelhead in the upper Yakima River basin (Hindman et al. 1991; McMichael et al. 1992; Pearsons et al. 1993; Pearsons et al. 1994; Pearsons et al. 1996; Pearsons et al. 1998, Pearsons et al. 1999, Pearsons et al. 2001a, Pearsons et al. 2001b, Pearsons et al. 2002, Pearsons et al. 2003, Pearsons et al. 2004). Journal articles and book chapters have also been published from our work (McMichael 1993; Martin et al. 1995; McMichael et al. 1997; McMichael and Pearsons 1998; McMichael et al. 1998; Pearsons and Fritts 1999; McMichael et al. 1999; McMichael et al. 1999; Pearsons and Hopley 1999; Ham and Pearsons 2000; Ham and Pearsons 2001; Amaral et al. 2001; McMichael and Pearsons 2001; Pearsons 2002, Fritts and Pearsons 2004, Pearsons et al. in press, Major et al. in press). This progress report summarizes data collected between January 1, 2004 and December 31, 2004. These data were compared to findings from previous years to identify general trends and make preliminary comparisons. Interactions between fish produced as part of the YKFP, termed target species or stocks, and other species or stocks (non-target taxa) may alter the population status of non-target species or stocks. This may occur through a variety of mechanisms, such as competition, predation, and interbreeding (Pearsons et al. 1994; Busack et al. 1997; Pearsons and Hopley 1999). Furthermore, the success of a supplementation program may

  12. Population genetic structure and life history variability in Oncorhynchus nerka from the Snake River basin. Final report

    International Nuclear Information System (INIS)

    Waples, R.S.; Aebersold, P.B.; Winans, G.A.

    1997-05-01

    The authors used protein electrophoresis to examine genetic relationships among samples of sockeye salmon and kokanee (Oncorhynchus nerka) from the Snake River basin. A few collections from elsewhere in the Pacific Northwest were also included to add perspective to the analysis. After combining temporal samples that did not differ statistically within and between years, 32 different populations were examined for variation at 64 gene loci scored in all populations. Thirty-five (55%) of these gene loci surveyed were polymorphic in at least one population. Average heterozygosities were relatively low (0.006--0.041), but genetic differentiation among populations was pronounced: the value of Wright's F ST of 0.244 is higher than has been reported in any other study of Pacific salmon

  13. Indirect effects of impoundment on migrating fish: temperature gradients in fish ladders slow dam passage by adult Chinook salmon and steelhead.

    Directory of Open Access Journals (Sweden)

    Christopher C Caudill

    Full Text Available Thermal layering in reservoirs upstream from hydroelectric dams can create temperature gradients in fishways used by upstream migrating adults. In the Snake River, Washington, federally-protected adult salmonids (Oncorhynchus spp. often encounter relatively cool water in dam tailraces and lower ladder sections and warmer water in the upstream portions of ladders. Using radiotelemetry, we examined relationships between fish passage behavior and the temperature difference between the top and bottom of ladders (∆T at four dams over four years. Some spring Chinook salmon (O. tshawytscha experienced ∆T ≥ 0.5 °C. Many summer and fall Chinook salmon and summer steelhead (O. mykiss experienced ∆T ≥ 1.0 °C, and some individuals encountered ΔT > 4.0°C. As ΔT increased, migrants were consistently more likely to move down fish ladders and exit into dam tailraces, resulting in upstream passage delays that ranged from hours to days. Fish body temperatures equilibrated to ladder temperatures and often exceeded 20°C, indicating potential negative physiological and fitness effects. Collectively, the results suggest that gradients in fishway water temperatures present a migration obstacle to many anadromous migrants. Unfavorable temperature gradients may be common at reservoir-fed fish passage facilities, especially those with seasonal thermal layering or stratification. Understanding and managing thermal heterogeneity at such sites may be important for ensuring efficient upstream passage and minimizing stress for migratory, temperature-sensitive species.

  14. Genetic integrity of European grayling (Thymallus thymallus L. 1758 within the Vienne River drainage basin after five decades of stockings

    Directory of Open Access Journals (Sweden)

    Henri Persat

    2015-11-01

    Full Text Available European grayling of the upper Vienne River drainage basin represent the westernmost populations inside the natural distribution of the species. Since the 19th century, their extension across this sub-basin has been dramatically reduced by the harnessing of the river network for dams, initially serving mills but then hydroelectric power generation. Since the 1960s, local fishing authorities have attempted to compensate for these declines with stocking programs, but the efficiency of these efforts have never been accurately monitored. We aim to evaluate the genetic imprints of these stocking programs and thus provide an indirect measure of the long-term survival of stocked fish. Three target populations were analyzed at both mtDNA (Control Region and nDNA levels (12 µSats, and compared to populations representative of surrounding drainage basins or fish farm facilities. Among 37 "wild" fish sequenced, only three control region haplotypes were identified, all belonging to the highly divergent Loire basin lineage. Two were specific to the Upper Vienne area, and one was observed in some individuals of the most downstream location, but previously described from the upper Allier sub-drainage. Microsatellite analysis of 87 "wild" fish also demonstrated a rather low diversity within each population (but typical for the Loire drainage with all Upper Vienne individuals belonging to a single diagnosable unit. This genetic cluster was clearly distinct from all other samples including hatchery strains, which strongly supports its native origin. The only piece of evidence of a possible stocking contribution was the occurrence of the Allier haplotype, but it cannot be excluded that this haplotype was also native to this reach of river. The total lack of genetic impact of five decades of stocking deeply questions the efficacy of this management approach, at least in a regional context.

  15. Proposed modifications to the Lower Mokelumne River Project, California: FERC Project No. 2916-004. Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This final environmental impact statement (FEIS) has been prepared for the Federal Energy Regulatory Commission (Commission) to consider modifications to the existing Lower Mokelumne River Project (LMRP) (FERC Project No. 2916-004) in California. Chinook salmon and steelhead trout populations in the lower Mokelumne River have experienced recent declines and fish kills associated, in part, with discharges from Camanche Dam. The California Department of Fish and Game and the California Sportfishing Protection Alliance have asked the Commission to investigate and correct these problems. A wide range of different mitigation actions has been proposed by parties participating in the scoping of this proceeding, and staff has evaluated these proposed actions in this assessment. The staff is recommending a combination of flow and non-flow modifications to the existing license, including new minimum flow and minimum pool elevation requirements at Camanche Reservoir, ramping rates on dam releases, interim attraction and out-migrant spike flows, instream habitat improvements, and a series of studies and monitoring to determine feasible means for solving off-site fish passage problems.

  16. Biochemical genetic variation between four populations of ...

    African Journals Online (AJOL)

    system) to 0.093 in the Spekboom River population (Limpopo River system). The genetic distance, FST and NEM values, as well as pair-wise contingency c2 analyses indicate a lack of gene flow between populations, as expected for isolated fish. Evidence of foreign genetic material in one population was also observed.

  17. Guidelines for monitoring and adaptively managing restoration of Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) on the Elwha River

    Science.gov (United States)

    Peters, R.J.; Duda, J.J.; Pess, G.R.; Zimmerman, M.; Crain, P.; Hughes, Z.; Wilson, A.; Liermann, M.C.; Morley, S.A.; McMillan, J.; Denton, K.; Warheit, K.

    2014-01-01

    As of January, 2014, the removal of the Elwha and Glines Canyon dams on the Elwha River, Washington, represents the largest dam decommissioning to date in the United States. Dam removal is the single largest step in meeting the goals of the Elwha River Ecosystem and Fisheries Restoration Act of 1992 (The Elwha Act) — full restoration of the Elwha River ecosystem and its native anadromous fisheries (Section 3(a)). However, there is uncertainty about project outcomes with regards to salmon populations, as well as what the ‘best’ management strategy is to fully restore each salmon stock. This uncertainty is due to the magnitude of the action, the large volumes of sediment expected to be released during dam removal, and the duration of the sediment impact period following dam removal. Our task is further complicated by the depleted state of the native salmonid populations remaining in the Elwha, including four federally listed species. This situation lends itself to a monitoring and adaptive management approach to resource management, which allows for flexibility in decision-making processes in the face of uncertain outcomes.

  18. Analysis by RAPD of the genetic structure of Astyanax altiparanae (Pisces, Characiformes in reservoirs on the Paranapanema River, Brazil

    Directory of Open Access Journals (Sweden)

    Maria Sueli Papa Leuzzi

    2004-01-01

    Full Text Available In this study, the RAPD technique was used to analyze the genetic structure of populations of the fish Astyanax altiparanae (Characidae, Tetragonopterinae living in the lower, middle and upper Paranapanema River, Brazil. The aim was to assess this structure regarding fish handling and conservation programs. The genetic variability (P was found to be 42.64%, 75% and 75% in the low, middle and upper reaches, respectively. The dendrogram of genetic similarity, obtained by comparative analysis of the sets of samples from the three sites, showed the formation of three clusters. All of the genetic parameters used indicate that the population in the lower Paranapanema is genetically different from those in the middle and upper sections. The theta P test shows that the low Paranapanema is highly differentiated from the middle (0.2813 and upper (0.2912 Paranapanema, while the differentiation between the last two is moderate (0.0895. The data obtained in the present work suggest that recolonization and conservation studies should not be focused on the species A. altiparanae as such, but on the conservation units, because they are the genetically differentiated populations.

  19. Characterisation of adaptive genetic diversity in environmentally contrasted populations of Eucalyptus camaldulensis Dehnh. (river red gum.

    Directory of Open Access Journals (Sweden)

    Shannon Dillon

    Full Text Available As an increasing number of ecosystems face departures from long standing environmental conditions under climate change, our understanding of the capacity of species to adapt will become important for directing conservation and management of biodiversity. Insights into the potential for genetic adaptation might be gained by assessing genomic signatures of adaptation to historic or prevailing environmental conditions. The river red gum (Eucalyptus camaldulensis Dehnh. is a widespread Australian eucalypt inhabiting riverine and floodplain habitats which spans strong environmental gradients. We investigated the effects of adaptation to environment on population level genetic diversity of E. camaldulensis, examining SNP variation in candidate gene loci sampled across 20 climatically diverse populations approximating the species natural distribution. Genetic differentiation among populations was high (F(ST = 17%, exceeding previous estimates based on neutral markers. Complementary statistical approaches identified 6 SNP loci in four genes (COMT, Dehydrin, ERECTA and PIP2 which, after accounting for demographic effects, exhibited higher than expected levels of genetic differentiation among populations and whose allelic variation was associated with local environment. While this study employs but a small proportion of available diversity in the eucalyptus genome, it draws our attention to the potential for application of wide spread eucalypt species to test adaptive hypotheses.

  20. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd

    1993-04-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program Measure 704 (d) (1) 34.02 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River (downstream of the Meacham Creek confluence upstream to the Reservation East Boundary). In 1993, the project shifted emphasis to a comprehensive watershed approach consistent with other basin efforts and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. Maintenance of existing habitat improvement projects was included under this comprehensive approach. Maintenance of existing gravel traps, instream and bank stabilization structures was required within project areas during the reporting period due to spring flooding damage and high bedload movement. Maintenance activities were completed between river mile (RM) 0.0 and RM 0.25 Boston Canyon Creek, between RM 0.0 and RM 4 Meacham Creek and between RM 78.5 and RM 79 Umatilla River. Habitat enhancement areas were seeded with native grass, legume, shrub and wildflower mixes and planted with willow cuttings to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. Water quality monitoring continued for temperature and turbidity throughout the upper Umatilla River Watershed. Survey of cross sections and

  1. Spatial genetic structure in natural populations of Phragmites australis in a mosaic of saline habitats in the Yellow River Delta, China.

    Directory of Open Access Journals (Sweden)

    Lexuan Gao

    Full Text Available Determination of spatial genetic structure (SGS in natural populations is important for both theoretical aspects of evolutionary genetics and their application in species conservation and ecological restoration. In this study, we examined genetic diversity within and among the natural populations of a cosmopolitan grass Phragmites australis (common reed in the Yellow River Delta (YRD, China, where a mosaic of habitat patches varying in soil salinity was detected. We demonstrated that, despite their close geographic proximity, the common reed populations in the YRD significantly diverged at six microsatellite loci, exhibiting a strong association of genetic variation with habitat heterogeneity. Genetic distances among populations were best explained as a function of environmental difference, rather than geographical distance. Although the level of genetic divergence among populations was relatively low (F'(ST =0.073, weak but significant genetic differentiation, as well as the concordance between ecological and genetic landscapes, suggests spatial structuring of genotypes in relation to patchy habitats. These findings not only provided insights into the population dynamics of common reed in changing environments, but also demonstrated the feasibility of using habitat patches in a mosaic landscape as test systems to identify appropriate genetic sources for ecological restoration.

  2. Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Mark A.; Woodley, Christa M.; Ploskey, Gene R.; Hughes, James S.; Hennen, Matthew J.; Kim, Jin A.; Deng, Zhiqun; Fu, Tao; Skalski, J. R.; Townsend, Richard L.; Wagner, Katie A.; Fischer, Eric S.; Duncan, Joanne P.; Batten, G.; Carlson, Thomas J.; Carpenter, Scott M.; Cushing, Aaron W.; Elder, T.; Etherington, D. J.; Johnson, Gary E.; Khan, Fenton; Miracle, Ann L.; Mitchell, T. D.; Prather, K.; Rayamajhi, Bishes; Royer, Ida; Seaburg, Adam; Zimmerman, Shon A.

    2013-06-21

    This report presents survival, behavioral, and fish passage results for tagged yearling Chinook salmon and juvenile steelhead as part of a survival study conducted at John Day Dam during spring 2011. This study was designed to evaluate the passage and survival of yearling Chinook salmon and juvenile steelhead to assist managers in identifying dam operations for compliance testing as stipulated by the 2008 Federal Columbia River Power System Biological Opinion and the 2008 Columbia Basin Fish Accords. Survival estimates were based on a paired-release survival model.

  3. Quantifying the net benefit impacts of the Troy Waste Water Treatment Plant on Steelhead Habitat in the West Fork Little Bear Creek drainage

    Science.gov (United States)

    Sanchez-Murillo, R.; Brooks, E. S.; Boll, J.

    2010-12-01

    Discharge of waste water treatment plants (WWTPs) typically is viewed to result in water quality impairment. However, WWTPs can also be a source of nutrients to enhance the salmonid food web as well as an efficient way to maintain acceptable water temperature regimes and flow conditions during summer. We observed this paradox in West Fork Little Bear Creek (WFLB) in the City of Troy, Idaho. Despite the nutrient load, the WFLB had the highest Steelhead trout density in the watershed, with a mean density of 13.2 fish/100 m2. The objective of this project was to utilize a water quality model, QUAL2kw, and an ecology assessment to examine how the nutrient load from the WWTP affects: a) habitat conditions for steelhead juveniles, and b) physic-chemical parameters. Four monitoring stations were installed from May through November in 2009 and 2010. An undisturbed creek was used as a control site in 2010. Dissolved oxygen (DO), electrical conductivity, temperature, and discharge were measured continuously at each monitoring station. Weekly samples were collected at each monitoring station and analyzed for nitrate, nitrite, ammonia, total Kjeldahl nitrogen, total phosphorous, and orthophosphates. In 2010, Chlorophyll a was analyzed weekly, while bottom algae biomass was determined monthly. Results show that during summer months, the WWTP provides the majority of the flow (0.1 cfs) in the creek. Water samples and DO measurements taken 200 m downstream of the plant during late summer months indicate that nitrification process leads to low DO level well below the state standard of 6 mg/L for cold water biota. However dissolved oxygen levels recover within 1 km downstream. Discharge data suggest that without the flow from the treatment most of the creek would dry during late summer months. Abundance of macroinverbrates, high primary productivity, and sustained flow during summer suggests that the effluent from the WWTP is a net benefit to the Steelhead habitat in the basin

  4. Umatilla Satellite and Release Sites Project : Final Siting Report.

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, James M.

    1992-04-01

    This report presents the results of site analysis for the Umatilla Satellite and Release Sites Project. The purpose of this project is to provide engineering services for the siting and conceptual design of satellite and release facilities for the Umatilla Basin hatchery program. The Umatilla Basin hatchery program consists of artificial production facilities for salmon and steelhead to enhance production in the Umatilla River as defined in the Umatilla master plan approved in 1989 by the Northwest Power Planning Council. Facilities identified in the master plan include adult salmon broodstock holding and spawning facilities, facilities for recovery, acclimation, and/or extended rearing of salmon juveniles, and development of river sites for release of hatchery salmon and steelhead. The historic and current distribution of fall chinook, summer chinook, and coho salmon and steelhead trout was summarized for the Umatilla River basin. Current and future production and release objectives were reviewed. Twenty seven sites were evaluated for the potential and development of facilities. Engineering and environmental attributes of the sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  5. Survival Estimates for the Passage of Juvenile Salmonids through Snake River Dams and Reservoirs, 1997 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hockersmith, Eric E.

    1999-03-01

    This report consists of two parts describing research activities completed during 1997 under Bonneville Power Administration Project Number 93-29. Part 1 provides reach survival and travel time estimates for 1997 for PIT-tagged hatchery steelhead and yearling chinook salmon in the Snake and Columbia Rivers. The results are reported primarily in the form of tables and figures with a minimum of text. More detailed information on methodology and the statistical models used in the analysis are provided in previous annual reports cited in the text. Analysis of the relationships among travel time, survival, and environmental factors for 1997 and previous years of the study will be reported elsewhere. Part 2 of this report describes research to determine areas of loss and delay for juvenile hatchery salmonids above Lower Granite Reservoir.

  6. Genetic variation in westslope cutthroat trout Oncorhynchus clarkii lewisi: Implications for conservation

    Science.gov (United States)

    Drinan, D.P.; Kalinowski, S.T.; Vu, N.V.; Shepard, B.B.; Muhlfeld, C.C.; Campbell, M.R.

    2011-01-01

    Twenty-five populations of westslope cutthroat trout from throughout their native range were genotyped at 20 microsatellite loci to describe the genetic structure of westslope cutthroat trout. The most genetic diversity (heterozygosity, allelic richness, and private alleles) existed in populations from the Snake River drainage, while populations from the Missouri River drainage had the least. Neighbor-joining trees grouped populations according to major river drainages. A great amount of genetic differentiation was present among and within all drainages. Based on Nei's DS, populations in the Snake River were the most differentiated, while populations in the Missouri River were the least. This pattern of differentiation is consistent with a history of sequential founding events through which westslope cutthroat trout may have experienced a genetic bottleneck as they colonized each river basin from the Snake to the Clark Fork to the Missouri river. These data should serve as a starting point for a discussion on management units and possible distinct population segments. Given the current threats to the persistence of westslope cutthroat trout, and the substantial genetic differentiation between populations, these topics warrant attention. ?? 2011 Springer Science+Business Media B.V.

  7. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn (Nez Perce Soil and Conservation District, Lewiston, ID)

    2006-07-01

    The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District. Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period September 1, 2004 through October 31, 2005 include; 2.7 riparian miles treated, 3.0 wetland acres treated, 5,263.3 upland acres treated, 106.5 riparian acres treated, 76,285 general public reached, 3,000 students reached, 40 teachers reached, 18 maintenance plans completed, temperature data collected at 6 sites, 8 landowner applications received and processed, 14 land inventories completed, 58 habitat improvement project designs completed, 5 newsletters published, 6 habitat plans completed, 34 projects installed, 2 educational workshops, 6 displays, 1 television segment, 2 public service announcements, a noxious weed GIS coverage, and completion of NEPA, ESA, and cultural resources requirements.

  8. Genetic diversity and variation of mitochondrial DNA in native and introduced bighead carp

    Science.gov (United States)

    Li, Si-Fa; Yang, Qin-Ling; Xu, Jia-Wei; Wang, Cheng-Hui; Chapman, Duane C.; Lu, Guoping

    2010-01-01

    The bighead carp Hypophthalmichthys nobilis is native to China but has been introduced to over 70 countries and is established in many large river systems. Genetic diversity and variation in introduced bighead carp have not previously been evaluated, and a systematic comparison among fish from different river systems was unavailable. In this study, 190 bighead carp specimens were sampled from five river systems in three countries (Yangtze, Pearl, and Amur rivers, China; Danube River, Hungary; Mississippi River basin, USA) and their mitochondrial 16S ribosomal RNA gene and D-loop region were sequenced (around 1,345 base pairs). Moderate genetic diversity was found in bighead carp, ranging from 0.0014 to 0.0043 for nucleotide diversity and from 0.6879 to 0.9333 for haplotype diversity. Haplotype analysis provided evidence that (1) multiple haplotype groups might be present among bighead carp, (2) bighead carp probably originated from the Yangtze River, and (3) bighead carp in the Mississippi River basin may have some genetic ancestry in the Danube River. The analysis of molecular variance showed significant genetic differentiation among these five populations but also revealed limited differentiation between the Yangtze and Amur River bighead carp. This large-scale study of bighead carp genetic diversity and variation provides the first global perspective of bighead carp in the context of biodiversity conservation as well as invasive species control and management.

  9. Extensive genetic divergence among Diptychus maculatus populations in northwest China

    Science.gov (United States)

    Meng, Wei; Yang, Tianyan; Hai, Sa; Ma, Yanwu; Cai, Lingang; Ma, Xufa; Gao, Tianxiang; Guo, Yan

    2015-05-01

    D. maculates is a kind of specialized Schizothoracinae fish has been locally listed as a protected animal in Xinjiang Province, China. Ili River located in north of Tianshan Mountain and Tarim River located in north of Qinghai-Tibetan Plateau were two main distribution areas of this fish. To investigate the genetic diversity and genetic structure of D. maculates, four populations from Tarim River system and two populations from Ili River system were collected in this study. A 570-bp sequence of the control region was obtained for 105 specimens. Twenty-four haplotypes were detected from six populations, only Kunes River population and Kashi River population shared haplotypes with each other. For all the populations examined, the haplotype diversity ( h) was 0.904 8±0.012 6, nucleotide diversity (π) was 0.027 9±0.013 9, and the average number of pairwise nucleotide differences ( k) was 15.878 3±7.139 1. The analysis of molecular variance (AMOVA) showed that 86.31% of the total genetic variation was apportioned among populations, and the variation within sampled populations was 13.69%. Genetic differences among sampled populations were highly significant. F st statistical test indicated that all populations were significantly divergent from each other ( P<0.01). The largest F st value was between Yurungkash River population and Muzat River population, while the smallest F st value was between Kunes River population and Kashi River population. NJ phylogenetic tree of D-loop haplotypes revealed two main clades. The neutrality test and mismatch distribution analysis suggested that the fish had went through a recent population expansion. The uplift of Tianshan Mountain and movement of Qinghai-Tibetan Plateau might contribute to the wide genetic divergence of D. maculates in northwest China.

  10. Idaho Natural Production Monitoring and Evaluation : Annual Progress Report February 1, 2007 - January 31, 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Timothy; Johnson, June; Putnam, Scott

    2008-12-01

    Populations of anadromous salmonids in the Snake River basin declined precipitously following the construction of hydroelectric dams in the Snake and Columbia rivers. Raymond (1988) documented a decrease in survival of emigrating steelhead trout Oncorhynchus mykiss and Chinook salmon O. tshawytscha from the Snake River following the construction of dams on the lower Snake River during the late 1960s and early 1970s. Although Raymond documented some improvements in survival through the early 1980s, anadromous populations remained depressed and declined even further during the 1990s (Petrosky et al. 2001; Good et al. 2005). The effect was disastrous for all anadromous salmonid species in the Snake River basin. Coho salmon O. kisutch were extirpated from the Snake River by 1986. Sockeye salmon O. nerka almost disappeared from the system and were declared under extreme risk of extinction by authority of the Endangered Species Act (ESA) in 1991. Chinook salmon were classified as threatened with extinction in 1992. Steelhead trout were also classified as threatened in 1997. Federal management agencies in the basin are required to mitigate for hydroelectric impacts and provide for recovery of all ESA-listed populations. In addition, the Idaho Department of Fish and Game (IDFG) has the long-term goal of preserving naturally reproducing salmon and steelhead populations and recovering them to levels that will provide a sustainable harvest (IDFG 2007). Management to achieve these goals requires an understanding of how salmonid populations function (McElhany et al. 2000) as well as regular status assessments. Key demographic parameters, such as population density, age composition, recruits per spawner, and survival rates must be estimated annually to make such assessments. These data will guide efforts to meet mitigation and recovery goals. The Idaho Natural Production Monitoring and Evaluation Project (INPMEP) was developed to provide this information to managers. The Snake

  11. Genetic diversity of pacu and piapara broodstocks in restocking programs in the rivers Paraná and Paranapanema (Brazil

    Directory of Open Access Journals (Sweden)

    Nelson Mauricio Lopera-Barrero

    2016-09-01

    Full Text Available The genetic diversity of Piaractus mesopotamicus (pacu and Leporinus elongatus (piapara broodstocks used in restocking programs in the rivers Paraná and Paranapanema is analyzed. One hundred and twenty specimens (two broodstocks of each species from fish ponds in Palotina PR Brazil and in Salto Grande SP Brazil were assessed. Ten primers produced 96 fragments, comprising 68 (70.83% and 94 (97.92% polymorphic fragments for P. mesopotamicus and L. elongatus broodstocks, respectively. Differences (p < 0.05 in the frequency of 15 and 27 fragments were detected for each species, without exclusive fragments. Shannon Index (0.347 - 0.572 and the percentage of polymorphic fragments (57.3% - 94.8% revealed high intra-population genetic variability for all broodstocks. Results of molecular variance analyses (AMOVA showed that most variations do not lie between the broodstocks but within each broodstock (89%. Genetic (0.088 and 0.142 and identity (0.916 and 0.868 distance rates demonstrated similarity between the broodstocks of each species, corroborated by Fst (0.1023 and 010.27 and Nm (4.18 and 4.33 rates, with a slight genetic difference due to genic flux. High intrapopulation genetic variability and similarity between the broodstocks of each species was also detected, proving a common ancestry.

  12. Seasonal variation in diel behaviour and habitat use by age 1+ steelhead (Oncorhynchus mykiss) in Coast and Cascade Range streams in Oregon, U.S.A

    Science.gov (United States)

    Gordon H. Reeves; Jon B. Grunbaum; Dirk W. Lang

    2009-01-01

    The seasonal diel behaviour of age 1+ steelhead from Coast and Cascade Range streams in Oregon was examined in the field and in laboratory streams. During the summer, fish from both areas were active during the day in natural streams: they held position in the water column in moderate velocities and depths. At night, fish were in slower water, closer to the bottom...

  13. Genetic and Phenotype [Phenotypic] Catalog of Native Resident Trout of the interior Columbia River Basin : FY-99 Report : Populations of the Pend Oreille, Kettle, and Sanpoil River Basins of Colville National Forest.

    Energy Technology Data Exchange (ETDEWEB)

    Trotter, Patrick C.

    2001-05-01

    The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project is to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-99 was year two of a five-year project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-99 we worked in collaboration with the Colville National Forest and Kalispel Indian Tribe to catalog populations in the northeastern corner of Washington State.

  14. Headwater Capture Evidenced by Paleo-Rivers Reconstruction and Population Genetic Structure of the Armored Catfish (Pareiorhaphis garbei) in the Serra do Mar Mountains of Southeastern Brazil

    Science.gov (United States)

    Lima, Sergio M. Q.; Berbel-Filho, Waldir M.; Araújo, Thais F. P.; Lazzarotto, Henrique; Tatarenkov, Andrey; Avise, John C.

    2017-01-01

    Paleo-drainage connections and headwater stream-captures are two main historical processes shaping the distribution of strictly freshwater fishes. Recently, bathymetric-based methods of paleo-drainage reconstruction have opened new possibilities to investigate how these processes have shaped the genetic structure of freshwater organisms. In this context, the present study used paleo-drainage reconstructions and single-locus cluster delimitation analyses to examine genetic structure on the whole distribution of Pareiorhaphis garbei, a ‘near threatened’ armored catfish from the Fluminense freshwater ecoregion in Southeastern Brazil. Sequences of two mitochondrial genes (cytochrome b and cytochrome c oxidase subunit 1) were obtained from five sampling sites in four coastal drainages: Macaé (KAE), São João (SJO), Guapi-Macacu [sub-basins Guapiaçu (GAC) and Guapimirim (GMI)], and Santo Aleixo (SAL). Pronounced genetic structure was found, involving 10 haplotypes for cytB and 6 for coi, with no haplotypes shared between localities. Coalescent-based delineation methods as well as distance-based methods revealed genetic clusters corresponding to each sample site. Paleo-drainage reconstructions showed two putative paleo-rivers: an eastern one connecting KAE and SJO; and a western one merging in the Guanabara Bay (GAC, GMI, and SAL). A disagreement was uncovered between the inferred past riverine connections and current population genetic structure. Although KAE and SJO belong to the same paleo-river, the latter is more closely related to specimens from the Guanabara paleo-river. This discordance between paleo-drainage connections and phylogenetic structure may indicate an ancient stream-capture event in headwaters of this region. Furthermore, all analyses showed high divergence between KAE and the other lineages, suggesting at least one cryptic species in the latter, and that the nominal species should be restricted to the Macaé river basin, its type locality. In

  15. Headwater Capture Evidenced by Paleo-Rivers Reconstruction and Population Genetic Structure of the Armored Catfish (Pareiorhaphis garbei in the Serra do Mar Mountains of Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Sergio M. Q. Lima

    2017-12-01

    Full Text Available Paleo-drainage connections and headwater stream-captures are two main historical processes shaping the distribution of strictly freshwater fishes. Recently, bathymetric-based methods of paleo-drainage reconstruction have opened new possibilities to investigate how these processes have shaped the genetic structure of freshwater organisms. In this context, the present study used paleo-drainage reconstructions and single-locus cluster delimitation analyses to examine genetic structure on the whole distribution of Pareiorhaphis garbei, a ‘near threatened’ armored catfish from the Fluminense freshwater ecoregion in Southeastern Brazil. Sequences of two mitochondrial genes (cytochrome b and cytochrome c oxidase subunit 1 were obtained from five sampling sites in four coastal drainages: Macaé (KAE, São João (SJO, Guapi-Macacu [sub-basins Guapiaçu (GAC and Guapimirim (GMI], and Santo Aleixo (SAL. Pronounced genetic structure was found, involving 10 haplotypes for cytB and 6 for coi, with no haplotypes shared between localities. Coalescent-based delineation methods as well as distance-based methods revealed genetic clusters corresponding to each sample site. Paleo-drainage reconstructions showed two putative paleo-rivers: an eastern one connecting KAE and SJO; and a western one merging in the Guanabara Bay (GAC, GMI, and SAL. A disagreement was uncovered between the inferred past riverine connections and current population genetic structure. Although KAE and SJO belong to the same paleo-river, the latter is more closely related to specimens from the Guanabara paleo-river. This discordance between paleo-drainage connections and phylogenetic structure may indicate an ancient stream-capture event in headwaters of this region. Furthermore, all analyses showed high divergence between KAE and the other lineages, suggesting at least one cryptic species in the latter, and that the nominal species should be restricted to the Macaé river basin, its type

  16. Evaluation and prioritization of stream habitat monitoring in the Lower Columbia Salmon and Steelhead Recovery Domain as related to the habitat monitoring needs of ESA recovery plans

    Science.gov (United States)

    Puls, Amy L.; Anlauf Dunn, Kara; Graham Hudson, Bernadette

    2014-01-01

    The lower Columbia River and its tributaries once supported abundant runs of salmon and steelhead; however, there are five species currently listed under the federal Endangered Species Act (ESA). The National Marine Fisheries Service has completed, and is proposing for adoption, a comprehensive ESA Recovery Plan for the Lower Columbia Evolutionarily Significant Units (ESUs) based on the recovery plans developed by Oregon and Washington. One of the primary factors attributed to the decline of these species is habitat degradation. There are numerous entities conducting status and/or trends monitoring of instream habitat in the lower Columbia River Basin, but because the programs were developed for agency specific reasons, the existing monitoring efforts are not well coordinated, and often lack the spatial coverage, certainty, or species coverage necessary to answer questions related to status and trends of the ESA listed populations. The Pacific Northwest Aquatic Monitoring Partnership’s Integrated Status and Trends Monitoring (ISTM) project was initiated to improve integration of existing and new monitoring efforts by developing recommendations for sampling frames, protocols, and data sharing. In an effort to meet the ISTM project goals, five objectives were identified: (1) identify and prioritize decisions, questions, and monitoring objectives, (2) evaluate how existing programs align with these management decisions, questions, and objectives, (3) identify the most appropriate monitoring design to inform priority management decisions, questions, and objectives, (4) use trade-off analysis to develop specific recommendations for monitoring based on outcomes of Objectives 1-3 and (5) recommend implementation and reporting mechanisms. This report summarizes the effort to address Objectives 1 and 2, detailing the commonalities among the habitat characteristics that all entities measure and monitor, and how the metrics align with the priorities listed in the

  17. Congenital Malformations in River Buffalo (Bubalus bubalis

    Directory of Open Access Journals (Sweden)

    Sara Albarella

    2017-02-01

    Full Text Available The world buffalo population is about 168 million, and it is still growing, in India, China, Brazil, and Italy. In these countries, buffalo genetic breeding programs have been performed for many decades. The occurrence of congenital malformations has caused a slowing of the genetic progress and economic loss for the breeders, due to the death of animals, or damage to their reproductive ability or failing of milk production. Moreover, they cause animal welfare reduction because they can imply foetal dystocia and because the affected animals have a reduced fitness with little chances of survival. This review depicts, in the river buffalo (Bubalus bubalis world population, the present status of the congenital malformations, due to genetic causes, to identify their frequency and distribution in order to develop genetic breeding plans able to improve the productive and reproductive performance, and avoid the spreading of detrimental gene variants. Congenital malformations most frequently reported in literature or signaled by breeders to the Department of Veterinary Medicine and Animal Production of the University Federico II (Naples, Italy in river buffalo are: musculoskeletal defects (transverse hemimelia, arthrogryposis, umbilical hernia and disorders of sexual development. In conclusion this review put in evidence that river buffalo have a great variety of malformations due to genetic causes, and TH and omphalocele are the most frequent and that several cases are still not reported, leading to an underestimation of the real weight of genetic diseases in this species.

  18. Congenital Malformations in River Buffalo (Bubalus bubalis)

    Science.gov (United States)

    Albarella, Sara; Ciotola, Francesca; D’Anza, Emanuele; Coletta, Angelo; Zicarelli, Luigi; Peretti, Vincenzo

    2017-01-01

    Simple Summary Congenital malformations (due to genetic causes) represent a hidden danger for animal production, above all when genetic selection is undertaken for production improvements. These malformations are responsible for economic losses either because they reduce the productivity of the farm, or because their spread in the population would decrease the total productivity of that species/breed. River buffalo is a species of increasing interest all over the world for its production abilities, as proved by the buffalo genome project and the genetic selection plans that are currently performed in different countries. The aim of this review is to provide a general view of different models of congenital malformations in buffalo and their world distribution. This would be useful either for those who performed buffalo genetic selection or for researchers in genetic diseases, which would be an advantage to their studies with respect to the knowledge of gene mutations and interactions in this species. Abstract The world buffalo population is about 168 million, and it is still growing, in India, China, Brazil, and Italy. In these countries, buffalo genetic breeding programs have been performed for many decades. The occurrence of congenital malformations has caused a slowing of the genetic progress and economic loss for the breeders, due to the death of animals, or damage to their reproductive ability or failing of milk production. Moreover, they cause animal welfare reduction because they can imply foetal dystocia and because the affected animals have a reduced fitness with little chances of survival. This review depicts, in the river buffalo (Bubalus bubalis) world population, the present status of the congenital malformations, due to genetic causes, to identify their frequency and distribution in order to develop genetic breeding plans able to improve the productive and reproductive performance, and avoid the spreading of detrimental gene variants. Congenital

  19. Population genetics of the Eastern Hellbender (Cryptobranchus alleganiensis alleganiensis across multiple spatial scales.

    Directory of Open Access Journals (Sweden)

    Shem D Unger

    Full Text Available Conservation genetics is a powerful tool to assess the population structure of species and provides a framework for informing management of freshwater ecosystems. As lotic habitats become fragmented, the need to assess gene flow for species of conservation management becomes a priority. The eastern hellbender (Cryptobranchus alleganiensis alleganiensis is a large, fully aquatic paedamorphic salamander. Many populations are experiencing declines throughout their geographic range, yet the genetic ramifications of these declines are currently unknown. To this end, we examined levels of genetic variation and genetic structure at both range-wide and drainage (hierarchical scales. We collected 1,203 individuals from 77 rivers throughout nine states from June 2007 to August 2011. Levels of genetic diversity were relatively high among all sampling locations. We detected significant genetic structure across populations (Fst values ranged from 0.001 between rivers within a single watershed to 0.218 between states. We identified two genetically differentiated groups at the range-wide scale: 1 the Ohio River drainage and 2 the Tennessee River drainage. An analysis of molecular variance (AMOVA based on landscape-scale sampling of basins within the Tennessee River drainage revealed the majority of genetic variation (∼94-98% occurs within rivers. Eastern hellbenders show a strong pattern of isolation by stream distance (IBSD at the drainage level. Understanding levels of genetic variation and differentiation at multiple spatial and biological scales will enable natural resource managers to make more informed decisions and plan effective conservation strategies for cryptic, lotic species.

  20. Study of Disease and Physiology in the 1978 Homing Study Hatchery Stocks: A Supplement to "Imprinting Salmon and Steelhead Trout for Homing" by Slatick, Novotny, and Gilbreath, January 1979.

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, Anthony J.; Zaugg, Waldo S.

    1979-11-01

    The main functions of the National Marine Fisheries Service (NMFS) Aquaculture Task biologists and contractual scientists involved in the 1978 homing studies were primarily a surveillance of fish physiology, disease, and relative survival during culture in marine net-pens, to determine if there were any unusual factors that might effect imprinting and homing behavior. The studies were conducted with little background knowledge of the implications of disease and physiology on imprinting and homing in salmonids. Hatcheries and stocks sampled are listed in Table 1. The health status of the stocks was quite variable as could be expected. The Dworshak and Wells Hatcheries steelhead suffered from some early stresses in seawater, probably osmoregulatory. The incidences of latent BKD in the Wells and Chelan Hatcheries steelhead and Kooskia Hatchery spring chinook salmon were extremely high, and how these will effect survival in the ocean is not known. Gill enzyme activity in the Dworshak and Chelan Hatcheries steelhead at release was low. Of the steelhead, survival in the Tucannon Hatchery stock will probably be the highest, with Dworshak Hatchery stock the lowest. The analyses conducted by the veterinary pathologist indicate that overall there was no evidence of serious pathological conditions that might be disastrous to any given stock, but at this time it is also difficult to interpret the results of certain types of clinical pathology that have either not been previously reported or extensively studied. For example, if the 77% incidence of basophillic granular organisms in the gills of the Carson coho salmon does represent an infestation of microsporidian protozoan parasites, is the intensity of infestation severe enough to cause irreparable damage that might affect survival? The results of the viral assays are questionable because the Rangen Laboratory is the only one that found evidence of viruses in these stocks (however, the veterinary pathologist did find evidence

  1. Genetic comparison of Caspian Sea Rutilus frisii kutum (Kamenskii, 1901 in Gorganroud and Cheshmekile (Tonekabon rivers using microsatellite markers

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaei

    2010-04-01

    Full Text Available The population structure of Rutilus frisii kutum in southern coasts of Caspian Sea was investigated using microsatellite loci. 50 Kutum fish samples were collected from Gorganroud (Golestan province and Cheshmekile (Mazandaran province rivers in April 2006. All the 10 loci investigated in this study (Ca1, Ca3, CypG3, CypG24, CypG27, CypG30, Lid1, Rru2, Rru4, Z21908 were polymorphic. The mean number of alleles at the population level was 7.95 which is lower than the reported values for anadromous fishes. Both populations showed signs of bottleneck. The mean value of observed heterozygosity was 0.80 for Gorganroud and 0.74 for Cheshmekile, respectively. Among the 20 tests of population-loci, 11 samples showed significant deviation from Hardy-Weinberg equilibrium. Results from Fst (0.008 and Rst (0.04 values showed low genetic differentiation among the populations, also, AMOVA analysis indicated only 4% genetic diversity between populations. The values of genetic distance was 0.03 among the regions. It seems that mismanagement of kutum’restocking programs has had negative effects on the genetic structure of this species.

  2. Columbia River Hatchery Reform System-Wide Report.

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Dan [Hatchery Scientific Review Group

    2009-04-16

    for Puget Sound/Coastal Washington hatchery programs, followed by the development in 2005 of a suite of analytical tools to support application of the principles (all reports and tools are available at www.hatcheryreform.us). In 2005, Congress directed the National Oceanic and Atmospheric Administration-Fisheries (NOAA Fisheries) to replicate the Puget Sound and Coastal Washington Hatchery Reform Project in the Columbia River Basin. The HSRG was expanded to 14 members to include individuals with specific knowledge about the Columbia River salmon and steelhead populations. This second phase was initially envisioned as a one-year review, with emphasis on the Lower Columbia River hatchery programs. It became clear however, that the Columbia River Basin needed to be viewed as an inter-connected ecosystem in order for the review to be useful. The project scope was subsequently expanded to include the entire Basin, with funding for a second year provided by the Bonneville Power Administration (BPA) under the auspices of the Northwest Power and Conservation Council's (NPCC) Fish and Wildlife Program. The objective of the HSRG's Columbia River Basin review was to change the focus of the Columbia River hatchery system. In the past, these hatchery programs have been aimed at supplying adequate numbers of fish for harvest as mitigation primarily for hydropower development in the Basin. A new, ecosystem-based approach is founded on the idea that harvest goals are sustainable only if they are compatible with conservation goals. The challenge before the HSRG was to determine whether or not conservation and harvest goals could be met by fishery managers and, if so, how. The HSRG determined that in order to address these twin goals, both hatchery and harvest reforms are necessary. The HSRG approach represents an important change of direction in managing hatcheries in the region. It provides a clear demonstration that current hatchery programs can indeed be redirected to

  3. Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Mark A.; Woodley, Christa M.; Ploskey, Gene R.; Hughes, James S.; Kim, Jin A.; Deng, Zhiqun; Fu, Tao; Fischer, Eric S.; Skalski, J. R.; Townsend, Richard L.; Duncan, Joanne P.; Hennen, Matthew J.; Wagner, Katie A.; Arntzen, Evan V.; Miller, Benjamin L.; Miracle, Ann L.; Zimmerman, Shon A.; Royer, Ida M.; Khan, Fenton; Cushing, Aaron W.; Etherington, D. J.; Mitchell, T. D.; Elder, T.; Batton, George; Johnson, Gary E.; Carlson, Thomas J.

    2013-05-01

    This report presents survival, behavioral, and fish passage results for yearling and subyearling Chinook salmon smolts and juvenile steelhead tagged with JSATS acoustic micro-transmitters as part of a survival study conducted at John Day Dam during 2010. This study was designed to evaluate the passage and survival of yearling and subyearling Chinook salmon and juvenile steelhead to assist managers in identifying dam operations for compliance testing as stipulated by the 2008 Federal Columbia River Power System Biological Opinion and the 2008 Columbia Basin Fish Accords. Survival estimates were based on a single-release survival estimate model.

  4. Refining and defining riverscape genetics: How rivers influence population genetic structure

    Science.gov (United States)

    Chanté D. Davis; Clinton W. Epps; Rebecca L. Flitcroft; Michael A. Banks

    2018-01-01

    Traditional analysis in population genetics evaluates differences among groups of individuals and, in some cases, considers the effects of distance or potential barriers to gene flow. Genetic variation of organisms in complex landscapes, seascapes, or riverine systems, however, may be shaped by many forces. Recent research has linked habitat heterogeneity and landscape...

  5. 2008 NWFSC Tidal Freshwater Genetics Results

    Energy Technology Data Exchange (ETDEWEB)

    David Teel

    2009-05-01

    Genetic Analysis of Juvenile Chinook Salmon for inclusion in 'Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008. Annual Report to Bonneville Power Administration, Contract DE-AC05-76RL01830.'

  6. Microsatellite genetic diversity and differentiation of native and introduced grass carp populations in three continents

    Science.gov (United States)

    Chapman, Duane C.; Chen, Qin; Wang, Chenghui; Zhao, Jinlian; Lu, Guoqing; Zsigmond, Jeney; Li, Si-Fa

    2012-01-01

    Grass carp (Ctenopharyngodon idella), a freshwater species native to China, has been introduced to about 100 countries/regions and poses both biological and environmental challenges to the receiving ecosystems. In this study, we analyzed genetic variation in grass carp from three introduced river systems (Mississippi River Basin in US, Danube River in Hungary, and Tone River in Japan) as well as its native ranges (Yangtze, Pearl, and Amur Rivers) in China using 21 novel microsatellite loci. The allelic richness, observed heterozygosity, and within-population gene diversity were found to be lower in the introduced populations than in the native populations, presumably due to the small founder population size of the former. Significant genetic differentiation was found between all pairwise populations from different rivers. Both principal component analysis and Bayesian clustering analysis revealed obvious genetic distinction between the native and introduced populations. Interestingly, genetic bottlenecks were detected in the Hungarian and Japanese grass carp populations, but not in the North American population, suggesting that the Mississippi River Basin grass carp has experienced rapid population expansion with potential genetic diversification during the half-century since its introduction. Consequently, the combined forces of the founder effect, introduction history, and rapid population expansion help explaining the observed patterns of genetic diversity within and among both native and introduced populations of the grass carp.

  7. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 2005-2006 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, Rick D.; Kovalchuk, Gregory M.; Ballinger, Dean (Pacific States Marine Fisheries Commission, The Dalles, OR)

    2006-04-01

    2005 was an average to below average flow year at John Day and Bonneville Dams. A large increase in flow in May improved migration conditions for that peak passage month. Spill was provided April through August and averaged about 30% and 48% of river flow at John Day and Bonneville Dams, respectively. Water temperature graphs were added this year that show slightly lower than average water temperature at John Day and slightly higher than average temperatures at Bonneville. The number of fish handled at John Day decreased from 412,797 in 2004 to 195,293 this year. Of the 195,293 fish, 120,586 (61.7%) were collected for researchers. Last year, 356,237 (86.3%) of the fish sampled were for researchers. This dramatic decline is the result of (1) fewer research fish needed (2) a smaller, lighter tag which allowed for tagging of smaller fish, and (3) a larger average size for subyearling chinook. These factors combined to reduce the average sample rate to 10.8%, about half of last year's rate of 18.5%. Passage timing at John Day was similar to previous years, but the pattern was distinguished by larger than average passage peaks for spring migrants, especially sockeye. The large spike in mid May for sockeye created a very short middle 80% passage duration of just 16 days. Other spring migrants also benefited from the large increase in flow in May. Descaling was lower than last year for all species except subyearling chinook and below the historical average for all species. Conversely, the incidence of about 90% of the other condition factors increased. Mortality, while up from last year for all species and higher than the historical average for all species except sockeye, continued to be low, less than 1% for all species. On 6 April a slide gate was left closed at John Day and 718 fish were killed. A gate position indicator light was installed to prevent reoccurrences. Also added this year was a PIT tag detector on the adult return-to-river flume. For the first time

  8. Status after 5 Years of Survival Compliance Testing in the Federal Columbia River Power System (FCRPS)

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, John R.; Weiland, Mark A.; Ham, Kenneth D.; Ploskey, Gene R.; McMichael, Geoffrey A.; Colotelo, Alison H.; Carlson, Thomas J.; Woodley, Christa M.; Eppard, M. Brad; Hockersmith, Eric E.

    2016-06-27

    Survival studies of juvenile salmonids implanted with acoustic tags have been conducted at hydroelectric dams within the Federal Columbia River Power System (FCRPS) in the Columbia and Snake rivers between 2010 and 2014 to assess compliance with dam passage survival standards stipulated in the 2008 Biological Opinion (BiOp). For juvenile salmonids migrating downstream in the spring, dam passage survival defined as survival from the upstream dam face to the tailrace mixing zone must be ≥96% and for summer migrants, ≥93%, and estimated with a standard error ≤1.5% (i.e., 95% confidence interval of ±3%). A total of 29 compliance tests have been conducted at 6 of 8 FCRPS main-stem dams, using over 109,000 acoustic-tagged salmonid smolts. Of these 29 compliance studies, 23 met the survival standards and 26 met the precision requirements. Of the 6 dams evaluated to date, individual survival estimates range from 0.9597 to 0.9868 for yearling Chinook Salmon, 0.9534 to 0.9952 for steelhead, and 0.9076 to 0.9789 for subyearling Chinook Salmon. These investigations suggest the large capital investment over the last 20 years to improve juvenile salmon passage through the FCRPS dams has been beneficial.

  9. Landscape and Climate Adaptation Planning for the Mashel Watershed

    Science.gov (United States)

    Salmon are important to the economic, social, cultural, and aesthetic values of the people in the Nisqually River. The Mashel watershed is important to recovery of Chinook salmon (Oncorhynchus tshawytscha) and winter steelhead (O. mykiss), and long-term sustainability of coho sal...

  10. Temporal genetic monitoring of hybridization between native westslope cutthroat trout and introduced rainbow trout in the Stehekin River, Washington

    Science.gov (United States)

    Ostberg, Carl O.; Chase, Dorothy M.

    2012-01-01

    Introgressive hybridization with introduced rainbow trout (RBT) (Oncorhynchus mykiss) has led to the loss of native cutthroat trout species (O. clarkii) throughout their range, creating conservation concerns. Monitoring temporal hybridization trends provides resource managers with a tool for determining population status and information for establishing conservation goals for native cutthroat trout. In this study, we re-sampled six locations in 2010 within the Stehekin River watershed, North Cascades National Park, which were originally sampled between 1999 and 2003. We used genetic markers to monitor changes in hybridization levels between sampling periods in the native westslope cutthroat trout (WCT) (O. c. lewisi) stemming from past RBT introductions. Additionally, two new locations from the lower Stehekin drainage were added to the baseline data. We found that the frequency of WCT, RBT, and their hybrids was not significantly different between monitoring periods, but that RBT allele frequencies decreased in two locations and increased in one location. We also found a consistent, substantial reduction in the frequency of RBT alleles over the monitoring period in the Stehekin River upstream of Bridge Creek (SR3) compared to the Stehekin River downstream of Bridge Creek (SR1 -2) and within lower Bridge Creek (BR1) although these three locations are confined to a small geographic area (approximately 5 km). Ecological and/or evolutionary processes likely restrict the dispersal of RBT alleles in the Stehekin River upstream of Bridge Creek.

  11. Genetic and phenotype catalog of native resident trout of the interior Columbia River Basin: FY-99 report: populations of the Pend Oreille, Kettle, and Sanpoil River Basins of Colville National Forest/ fiscal year 1999 report; ANNUAL

    International Nuclear Information System (INIS)

    Trotter, Patrick C.

    2001-01-01

    The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project is to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-99 was year two of a five-year project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-99 we worked in collaboration with the Colville National Forest and Kalispel Indian Tribe to catalog populations in the northeastern corner of Washington State

  12. Surgically Implanted JSATS Micro-Acoustic Transmitters Effects on Juvenile Chinook Salmon and Steelhead Tag Expulsion and Survival, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Woodley, Christa M.; Carpenter, Scott M.; Carter, Kathleen M.; Wagner, Katie A.; Royer, Ida M.; Knox, Kasey M.; Kim, Jin A.; Gay, Marybeth E.; Weiland, Mark A.; Brown, Richard S.

    2011-09-16

    The purpose of this study was to evaluate survival model assumptions associated with a concurrent study - Acoustic Telemetry Evaluation of Dam Passage Survival and Associated Metrics at John Day, The Dalles, and Bonneville Dams, 2010 by Thomas Carlson and others in 2010 - in which the Juvenile Salmonid Acoustic Telemetry System (JSATS) was used to estimate the survival of yearling and subyearling Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) migrating through the Federal Columbia River Power System (FCRPS). The micro-acoustic transmitter used in these studies is the smallest acoustic transmitter model to date (12 mm long x 5 mm wide x 4 mm high, and weighing 0.43 g in air). This study and the 2010 study by Carlson and others were conducted by researchers from the Pacific Northwest National Laboratory and the University of Washington for the U.S. Army Corps of Engineers, Portland District, to meet requirements set forth by the 2008 FCRPS Biological Opinion. In 2010, we compared survival, tag burden, and tag expulsion in five spring groups of yearling Chinook salmon (YCH) and steelhead (STH) and five summer groups of subyearling Chinook salmon (SYC) to evaluate survival model assumptions described in the concurrent study. Each tagging group consisted of approximately 120 fish/species, which were collected and implanted on a weekly basis, yielding approximately 600 fish total/species. YCH and STH were collected and implanted from late April to late May (5 weeks) and SYC were collected and implanted from mid-June to mid-July (5 weeks) at the John Day Dam Smolt Monitoring Facility. The fish were collected once a week, separated by species, and assigned to one of three treatment groups: (1) Control (no surgical treatment), (2) Sham (surgical implantation of only a passive integrated transponder [PIT] tag), and (3) Tagged (surgical implantation of JSATS micro-acoustic transmitter [AT] and PIT tags). The test fish were held for 30 days in indoor

  13. [Genetic structure of Hemibarbus labeo and Hemibarbus medius in South China based on mtDNA COI and ND5 genes].

    Science.gov (United States)

    Lan, Zhao Jun; Lin, Long Feng; Zhao, Jun

    2017-04-18

    Both Hemibarbus labeo and H. medius (Cypriniformes: Cyprinidae: Gobioninae) are primary freshwater fishes and are widely distributed. As such, they provide an ideal model for phylogeographical studies. However, the similarity in morphological characters between these two species made the description of their distributions and the validation of species quite challenging. Here we employed variations in the DNA sequences of mitochondrial COI and ND5 genes (2151 bp) to solve this challenge and to study the population genetics structure of these two species. Among the 130 specimens belonging to 8 populations of H. labeo and 9 populations of H. medius from 17 drainage systems in southern China,196 variable sites (9.1% in the full sequences) falling into 50 haplotypes were identified. The haplotype diversity (h) and the nucleotide diversity (π) were 0.964 and 0.019, respectively, indicating a high level of genetic diversity and an evolutionary potential in both species. The result of neighbor-joining tree based on composite nucleotide sequences of the mtDNA COI and ND5 genes showed that the H. labeo and H. medius fell into two major clades (clade1and clade2): clade1was composed of some specimens of Oujiang River, all the specimens of Hanjiang River and Jiulongjiang River, whereas all remaining populations fell in clade2. The genetic distance between clade I and clade II was 0.036, while that between H. labeo and H. medius was 0.027. The haplotype network analyses indicated that the populations of Hanjiang River and Jiulongjiang River had relatively high genetic variation with the rest rivers. The po-pulations of Hainan Island migrated northward to Moyangjaing River. Haplotypes of the rivers of Hainan Island and Moyangjang River had relatively higher genetic variation with the Yangtze River than Pearl River. The populations of Xiangjiang River had no genetic variation with the populations of Guijiang River and Liujiang River. Analysis of molecular variance (AMOVA

  14. Detailed genetic structure of European bitterling populations in Central Europe

    Directory of Open Access Journals (Sweden)

    Veronika Bartáková

    2015-11-01

    Full Text Available The European bitterling (Rhodeus amarus is a small cyprinid fish whose populations declined markedly between 1950 and 1980. However, its range currently expands, partly due to human-assisted introductions. We determined the genetic variability and detailed spatial structure among bitterling populations in Central Europe and tested alternative hypotheses about colonization of this area. Twelve polymorphic microsatellite loci on a large sample of 688 individuals had been used to analyse genetic variability and population structure. Samples originated from 27 localities with emphasis on area of the Czech Republic where three major sea drainages (Black, Baltic, and Northern Sea meet. Highly variable level of intrapopulation genetic variability had generally been detected and a recent decrease in numbers (“bottleneck” had been indicated by genetic data among six populations. High level of interpopulation differentiation was identified even within the basins. There was a significant role of genetic drift and indications of low dispersal ability of R. amarus. Surprisingly, the Odra River was inhabited by two distinct populations without any genetic signatures of a secondary contact. Czech part of the Odra (Baltic basin was colonized from the Danubian refugium (similarly to adjacent Danubian basin rivers including the Morava, while Polish part of the Odra was genetically similar to the populations in the Vistula River (Baltic basin, that has been colonized by a different (Eastern phylogeographic lineage of R. amarus. Most Czech R. amarus populations were colonized from the Danubian refugium, suggesting potential for a human-mediated colonization of the Odra or Elbe Rivers by R. amarus. One Elbe basin population was genetically mixed from the two (Danubian and Eastern phylogeographic lineages. In general the Czech populations of R. amarus were genetically stable except for a single population which has probably been recently introduced. This research

  15. Minthorn Springs Creek summer juvenile release and adult collection facility : annual report 1990.; ANNUAL

    International Nuclear Information System (INIS)

    Lofy, Peter T.; Rowan, Gerald D.

    1991-01-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to increase steelhead and re-establish salmon runs in the Umatilla River Basin. As part of this program, Bonifer and Minthorn Acclimation Facilities are operated for holding and spawning adult steelhead and acclimation and release of juvenile salmon and steelhead. Regularly-scheduled maintenance was completed in 1990. Equipment and pumps received maintenance and repair. Two of the Minthorn and all of the Bonifer pond outlet screens were replaced with vertical bars to alleviate clogging problems. A horizontal bar screen was installed in the water control structure at the largest spring at Bonifer to prevent fish from migrating upstream during acclimation. A pipe was installed under the railroad tracks at Bonifer to make unloading of fish from transport trucks easier and safer. The Minthorn access road was repaired to provide better access for delivery of fish to the facility and for general operations and maintenance

  16. Salmon vulnerability maps - Effect of Climate Change on Salmon Population Vulnerability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Steelhead (Oncorhynchus mykiss) and other Pacific salmon are threatened by unsustainable levels of harvest, genetic introgression from hatchery stocks and...

  17. Stream flow and temperature maps - Effect of Climate Change on Salmon Population Vulnerability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Steelhead (Oncorhynchus mykiss) and other Pacific salmon are threatened by unsustainable levels of harvest, genetic introgression from hatchery stocks and...

  18. Columbia River White Sturgeon (Acipenser Transmontanus) Population Genetics and Early Life History Study, January 1, 1986 to December 31, 1986, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, Ernest L.

    1986-12-01

    The 1986 Columbia River white sturgeon investigations continued to assess genetic variability of sturgeon populations isolated in various areas of the Columbia River, and to examine environmental factors in the habitat that may affect early life history success. Baseline data have been collected for three character sets. Twenty-eight loci have been analyzed for differences using electrophoresis, snout shapes were assessed for multivariate distinction, and scute counts have been examined as an index of variability. Fish that reside in the mid-Columbia and lower river have been sufficiently characterized by electrophoresis to compare with up-river areas. To date, few electrophoretic differences have been identified. However, Lake Roosevelt sturgeon sample size will be increased to determine if some of the observed differences from lower river fish are significant. Snout shape has been shown to be easily quantifiable using the digitizing technique. Scute count data initially indicate that variability exists within as well as between areas. Patterns of differentiation of one or more of these data sets may be used to formulate stock transplant guidelines essential for proper management or enhancement of this species. The historical habitat available to sturgeon in the Columbia River has changed through the development of hydroelectric projects. Dams have reduced the velocity and turbulence, and increased light penetration in the water column from less silt. These changes have affected the ability of sturgeon to feed and have made them more vulnerable to predation, which appear to have altered the ability of populations isolated in the reservoirs to sustain themselves. Present studies support the theory that both the biological and physical habitat characteristics of the Columbia River are responsible for reduced sturgeon survival, and justify consideration of enhancement initiatives above Bonneville to improve sturgeon reproductive success.

  19. Effects of telemetry transmitter placement on egg retention in naturally spawning, captively reared steelhead

    International Nuclear Information System (INIS)

    Berejikian, Barry A.; Brown, Richard S.; Tatara, Chris P.; Cooke, Steven J.

    2007-01-01

    Maturing female anadromous salmonids receiving surgical intraperitoneally-implanted telemetry transmitters may experience difficulty depositing eggs during natural spawning. We allocated maturing adult steelhead females to three treatments: tags surgically implanted in the body cavity (internal), tags implanted between the skin and muscle tissue (subdermal), and non-tagged, and allowed them to spawn naturally in an experimental channel. Internally tagged females retained significantly more eggs than both the subdermally tagged treatment (P = 0.005) and non-tagged controls (P = 0.001); the subdermal and non-tag controls did not differ significantly (P = 0.934). The internal, subdermal and non-tag treatments retained an average of 49%, 11% and 2% of their eggs, respectively. The onset of sexual activity did not differ significantly among treatments (P = 0.413). Post-spawning mortality was 70% for both internally and subdermally tagged females and 0% for non-tagged females (P <0.01). We suggest that subdermal implantation techniques be considered in future studies during the reproductive period to reduce egg retention caused by internal implantation of transmitters

  20. Effects of telemetry transmitter placement on egg retention in naturally spawning, captively reared steelhead

    Energy Technology Data Exchange (ETDEWEB)

    Berejikian, Barry A.; Brown, Richard S.; Tatara, Chris P.; Cooke, Steven J.

    2007-05-01

    Maturing female anadromous salmonids receiving surgical intraperitoneally-implanted telemetry transmitters may experience difficulty depositing eggs during natural spawning. We allocated maturing adult steelhead females to three treatments: tags surgically implanted in the body cavity (internal), tags implanted between the skin and muscle tissue (subdermal), and non-tagged, and allowed them to spawn naturally in an experimental channel. Internally tagged females retained significantly more eggs than both the subdermally tagged treatment (P = 0.005) and non-tagged controls (P = 0.001); the subdermal and non-tag controls did not differ significantly (P = 0.934). The internal, subdermal and non-tag treatments retained an average of 49%, 11% and 2% of their eggs, respectively. The onset of sexual activity did not differ significantly among treatments (P = 0.413). Post-spawning mortality was 70% for both internally and subdermally tagged females and 0% for non-tagged females (P <0.01). We suggest that subdermal implantation techniques be considered in future studies during the reproductive period to reduce egg retention caused by internal implantation of transmitters.

  1. INDIVIDUAL BASED MODELLING APPROACH TO THERMAL ...

    Science.gov (United States)

    Diadromous fish populations in the Pacific Northwest face challenges along their migratory routes from declining habitat quality, harvest, and barriers to longitudinal connectivity. Changes in river temperature regimes are producing an additional challenge for upstream migrating adult salmon and steelhead, species that are sensitive to absolute and cumulative thermal exposure. Adult salmon populations have been shown to utilize cold water patches along migration routes when mainstem river temperatures exceed thermal optimums. We are employing an individual based model (IBM) to explore the costs and benefits of spatially-distributed cold water refugia for adult migrating salmon. Our model, developed in the HexSim platform, is built around a mechanistic behavioral decision tree that drives individual interactions with their spatially explicit simulated environment. Population-scale responses to dynamic thermal regimes, coupled with other stressors such as disease and harvest, become emergent properties of the spatial IBM. Other model outputs include arrival times, species-specific survival rates, body energetic content, and reproductive fitness levels. Here, we discuss the challenges associated with parameterizing an individual based model of salmon and steelhead in a section of the Columbia River. Many rivers and streams in the Pacific Northwest are currently listed as impaired under the Clean Water Act as a result of high summer water temperatures. Adverse effec

  2. Smolt Monitoring Program, Volume II, Migrational Characteristics of Columbia Basin Salmon and Steelhead Trout, 1986 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fish Passage Center

    1987-02-01

    Smolt Monitoring Program Annual Report, 1986, Volume I, describes the results of travel time monitoring and other migrational characteristics of yearling and sub-yearling chinook salmon (Oncorhynchus tshawytscha), sockeye salmon (Oncorhynchus nerka), and steelhead trout (Salmo gairdneri). This volume presents the data from Fish Passage Center freeze brands used in the analysis of travel time for Lewiston, Lower Granite, Lower Monumental, Rock Island, McNary, and John Day dams. Summary of data collection procedures and explanation of data listings are presented in conjunction with the mark recapture data. Data for marked fish not presented in this report will be provided upon request. Daily catch statistics (by species), flow, and sample parameters for the smolt monitoring sites, Clearwater, Lewiston, Lower Granite, Lower Monumental, Rock Island, McNary, John Day, and Bonneville also will be provided upon request.

  3. Enloe Dam Passage Project, Volume I, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fanning, M.L.

    1985-07-01

    This report discusses issues related to the provision of fish passage facilities at Enloe Dam and the introduction of anadromous salmonid fish to the upper Similkameen River basin. The species of fish being considered is a summer run of steelhead trout adapted to the upper Columbia basin. (ACR)

  4. 75 FR 18160 - Small Takes of Marine Mammals Incidental to Specified Activities; Antioch Bridge Seismic Retrofit...

    Science.gov (United States)

    2010-04-09

    ... Resources, National Marine Fisheries Service, 1315 East-West Highway, Silver Spring, MD 20910-3225 or by... apart. It will be constructed using approximately 160 24-in steel hollow shell piles, which will be... Sacramento River Winter-run Chinook salmon, threatened CV Spring-run Chinook salmon, threatened CV steelhead...

  5. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. YONGFANG JIA. Articles written in Journal of Genetics. Volume 97 Issue 1 March 2018 pp 157-172 RESEARCH ARTICLE. Identification, molecular characterization and analysis of the expression pattern of SoxF subgroup genes the Yellow River carp, Cyprinus carpio · TINGTING LIANG ...

  6. Genetic differentiation and trade among populations of peach palm ( Bactris gasipaes Kunth) in the Peruvian Amazon-implications for genetic resource management.

    Science.gov (United States)

    Adin, A; Weber, J C; Sotelo Montes, C; Vidaurre, H; Vosman, B; Smulders, M J M

    2004-05-01

    Peach palm ( Bactris gasipaes Kunth) is cultivated for fruit and 'heart of palm', and is an important component of agroforestry systems in the Peruvian Amazon. In this study, AFLP was used to compare genetic diversity among domesticated populations along the Paranapura and Cuiparillo rivers, which are managed by indigenous and colonist farming communities, respectively. Gene diversity was 0.2629 for the populations in indigenous communities and 0.2534 in colonist communities. Genetic differentiation among populations ( G(st)) was 0.0377-0.0416 ( Prodents is thought to occur only across relatively short distances (100-200 m), it is likely that exchange of material by farmers and commercial traders is responsible for most of the 'long-distance' (over more than 20 km) gene flow among populations along the two rivers studied. This exchange of material may be important to counteract the effects of selection as well as genetic drift in small groups of trees in farmers' fields, much as in a metapopulation, and may account for the weak genetic differentiation between the two rivers ( G(st)=0.0249, PPeru and Brazil showed the existence of an isolation-by-distance structure up to 3,000 km, consistent with gene flow on a regional scale, likely mediated by trade in the Amazon Basin. Results are discussed with regard to practical implications for the management of genetic resources with farming communities.

  7. Above Bonneville passage and propagation cost effectiveness analysis

    International Nuclear Information System (INIS)

    Paulsen, C.M.; Hyman, J.B.; Wernstedt, K.

    1993-05-01

    We have developed several models to evaluate the cost-effectiveness of alternative strategies to mitigate hydrosystem impacts on salmon and steelhead, and applied these models to areas of the Columbia River Basin. Our latest application evaluates the cost-effectiveness of proposed strategies that target mainstem survival (e.g., predator control, increases in water velocity) and subbasin propagation (e.g., habitat improvements, screening, hatchery production increases) for chinook salmon and steelhead stocks, in the portion of the Columbia Basin bounded by Bonneville, Chief Joseph, Dworshak, and Hells Canyon darns. At its core the analysis primarily considers financial cost and biological effectiveness, but we have included other attributes which may be of concern to the region

  8. Above Bonneville Passage and Propagation Cost Effectiveness Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Paulsen, C.M.; Hyman, J.B.; Wernstedt, K.

    1993-05-01

    We have developed several models to evaluate the cost-effectiveness of alternative strategies to mitigate hydrosystem impacts on salmon and steelhead, and applied these models to areas of the Columbia River Basin. Our latest application evaluates the cost-effectiveness of proposed strategies that target mainstem survival (e.g., predator control, increases in water velocity) and subbasin propagation (e.g., habitat improvements, screening, hatchery production increases) for chinook salmon and steelhead stocks, in the portion of the Columbia Basin bounded by Bonneville, Chief Joseph, Dworshak, and Hells Canyon darns. At its core the analysis primarily considers financial cost and biological effectiveness, but we have included other attributes which may be of concern to the region.

  9. Anatomy and genetic diversity of two populations of Schinus terebinthifolius (Anacardiaceae) from the Tibagi River basin in Paraná, Brazil.

    Science.gov (United States)

    Ruas, E A; Ruas, C F; Medri, P S; Medri, C; Medri, M E; Bianchini, E; Pimenta, J A; Rodrigues, L A; Ruas, P M

    2011-03-29

    Knowledge of the effects of flooding on plant survival is relevant for the efficiency of management and conservation programs. Schinus terebinthifolius is a tree of economic and ecological importance that is common in northeast Brazil. Flooding tolerance and genetic variation were investigated in two riparian populations of S. terebinthifolius distributed along two different ecological regions of the Tibagi River basin. Flooding tolerance was evaluated through the investigation of young plants, submitted to different flooding intensities to examine the morphological and anatomical responses to this stress. The growth rate of S. terebinthifolius was not affected by flooding, but total submersion proved to be lethal for 100% of the plants. Morphological alterations such as hypertrophied lenticels were observed in both populations and lenticel openings were significantly higher in plants from one population. Genetic analysis using DNA samples obtained from both populations showed a moderate degree of genetic variation between populations (13.7%); most of the variation was found within populations (86.3%). These results show that for conservation purposes and management of degraded areas, both populations should be preserved and could be used in programs that intend to recompose riparian forests.

  10. Genetic differentiation in the populations of red piranha, Pygocentrus nattereri Kner (1860 (Characiformes: Serrasalminae, from the river basins of northeastern Brazil

    Directory of Open Access Journals (Sweden)

    L. A. Luz

    Full Text Available Abstract The red piranha, Pygocentrus nattereri, is an important resource for artisanal and commercial fisheries. The present study determines the genetic differentiation among P. nattereri populations from the northeastern Brazilian state of Maranhão. The DNA was isolated using a standard phenol-chloroform protocol and the Control Region was amplified by PCR. The PCR products were sequenced using the didesoxyterminal method. A sequence of 1039 bps was obtained from the Control Region of 60 specimens, which presented 33 polymorphic sites, 41 haplotypes, һ =0.978 and π =0.009. The neutrality tests (D and Fs were significant (P < 0.05 for most of the populations analyzed. The AMOVA indicated that most of the molecular variation (72% arises between groups. The fixation index was highly significant (FST = 0.707, P < 0.00001. The phylogenetic analyses indicated that the specimens represented a monophyletic group. Genetic distances between populations varied from 0.8% to 1.9%, and were <0.5% within populations. The degree of genetic differentiation found among the stocks of P. nattereri indicates the need for the development of independent management plans for the different river basins in order to preserve the genetic variability of their populations.

  11. Genetic and life-history trait variation of the amphipod Melita plumulosa from polluted and unpolluted waterways in eastern Australia

    International Nuclear Information System (INIS)

    Chung, Pann Pann; Hyne, Ross V.; Mann, Reinier M.; Ballard, J. William O.

    2008-01-01

    To monitor genetic diversity and environmental contamination in eastern Australia, toxicity studies have employed the sensitive benthic amphipod Melita plumulosa. The goal of this study was to examine the genetic and life-history variability of natural populations of M. plumulosa from the Parramatta (polluted) and Hawkesbury (unpolluted) Rivers. The underlying genetics of the populations in these distinct waterways was examined at one mitochondrial (cytochrome c oxidase subunit I (COI)) and one nuclear (ribosomal internal transcribed spacer region 1 (ITS1)) locus. Seven unique haplotypes for COI were found amongst animals from the Parramatta River, while animals from the Hawkesbury River showed a complete absence of genetic variation at this locus. At ITS1 a total of two sequence variants were found amongst Parramatta River amphipods and three sequence variants among Hawkesbury River animals, with no common variants across the two river systems. To establish whether genetic differences were associated with organismal responses to toxicant exposure, two life-history trait variables (female head length as an estimator of amphipod size and female fecundity) were analyzed. Life-history trait analyses showed that females from the Hawkesbury River were significantly larger and more fecund. These data have critical implications for toxicity tests, the use of laboratory cultures for testing purposes, and environmental contamination in Sydney Harbor

  12. Genetic and life-history trait variation of the amphipod Melita plumulosa from polluted and unpolluted waterways in eastern Australia

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Pann Pann [Evolution and Ecology Research Centre, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052 (Australia); Hyne, Ross V. [Ecotoxicology and Environmental Contaminants Section, NSW Department of Environment and Climate Change, PO Box 29, Lidcombe, NSW 1825 (Australia); Mann, Reinier M. [Centre for Ecotoxicology, Department of Environmental Sciences, University of Technology-Sydney, C/-PO Box 29, Lidcombe, NSW 1825 (Australia); Ballard, J. William O. [Evolution and Ecology Research Centre, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052 (Australia)], E-mail: w.ballard@unsw.edu.au

    2008-09-15

    To monitor genetic diversity and environmental contamination in eastern Australia, toxicity studies have employed the sensitive benthic amphipod Melita plumulosa. The goal of this study was to examine the genetic and life-history variability of natural populations of M. plumulosa from the Parramatta (polluted) and Hawkesbury (unpolluted) Rivers. The underlying genetics of the populations in these distinct waterways was examined at one mitochondrial (cytochrome c oxidase subunit I (COI)) and one nuclear (ribosomal internal transcribed spacer region 1 (ITS1)) locus. Seven unique haplotypes for COI were found amongst animals from the Parramatta River, while animals from the Hawkesbury River showed a complete absence of genetic variation at this locus. At ITS1 a total of two sequence variants were found amongst Parramatta River amphipods and three sequence variants among Hawkesbury River animals, with no common variants across the two river systems. To establish whether genetic differences were associated with organismal responses to toxicant exposure, two life-history trait variables (female head length as an estimator of amphipod size and female fecundity) were analyzed. Life-history trait analyses showed that females from the Hawkesbury River were significantly larger and more fecund. These data have critical implications for toxicity tests, the use of laboratory cultures for testing purposes, and environmental contamination in Sydney Harbor.

  13. Natural Production Monitoring and Evaluation; Idaho Department of Fish and Game, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Timothy; Johnson, June; Bunn, Paul (Idaho Department of Fish and Game, Boise, ID)

    2004-12-01

    This report covers the following 3 parts of the Project: Part 1--Monitoring age composition of wild adult spring and summer Chinook salmon returning to the Snake River basin in 2003 to predict smolt-to-adult return rates Part 2--Development of a stock-recruitment relationship for Snake River spring/summer Chinook salmon to forecast natural smolt production Part 3--Improve the precision of smolt-to-adult survival rate estimates for wild steelhead trout by PIT tagging additional juveniles.

  14. Linking individual migratory behaviour of Atlantic salmon to their genetic origin

    DEFF Research Database (Denmark)

    Jepsen, Niels; Eg Nielsen, Einar; Deacon, M.

    2005-01-01

    (Salmo salar) in a Danish lowland river. The river has a small population of native salmon, but salmon juveniles from Irish, Scottish and Swedish populations have been stocked and return as adults. A total of 39 salmon were caught by electrofishing and tagged by surgical implantation. A tissue sample......Many stocks of fish consist of mixtures of individuals originating from different populations. This is particularly true for many salmon and trout stocks, where fish of different genetic background are being found in the same rivers and/or lakes due to stocking activities or straying caused...... by increased aquaculture activities. The interpretation of results from studies of survival and behaviour of fish from such “mixed stocks” require information of the genetic background of individual fish. We used genetic analysis combined with radiotelemetry to study upstream migration of Atlantic salmon...

  15. Lower Granite Dam Smolt Monitoring Program, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Mensik, Fred; Rapp, Shawn; Ross Doug (Washington Department of Fish and Wildlife, Olympia, WA)

    2005-11-01

    The 2004 fish collection season at Lower Granite Dam (LGR) was characterized by above average water temperatures, below average flows and spill, low levels of debris. The number of smolts collected for all species groups (with the exception of clipped and unclipped sockeye/kokanee) exceeded all previous collection numbers. With the continued release of unclipped supplementation chinook, steelhead and sockeye above LGR, we can not accurately distinguish wild chinook, wild steelhead and wild sockeye/kokanee from hatchery reared unclipped chinook and sockeye/kokanee in the sample. Wild steelhead can be identified from hatchery steelhead by the eroded dorsal and pectoral fins exhibited on unclipped hatchery steelhead. The numbers in the wild columns beginning in 1998 include wild and unclipped hatchery origin smolts. This season a total of 11,787,539 juvenile salmonids was collected at LGR. Of these, 11,253,837 were transported to release sites below Bonneville Dam, 11,164,132 by barge and 89,705 by truck. An additional 501,395 fish were bypassed to the river due to over-capacity of the raceways and for research purposes. According to the PTAGIS database, 177,009 PIT-tagged fish were detected at LGR in 2004. Of these, 105,894 (59.8%) were bypassed through the PIT-tag diversion system, 69,130 (39.1%) were diverted to the raceways to be transported, 1,640 (0.9%) were diverted to the sample tank, sampled and then transported, 345 (0.2%) were undetected at any of the bypass, raceway or sample exit monitors.

  16. Cedar River Chinook genotypes - Estimate relative reproductive success of hatchery and wild fall Chinook salmon in the Cedar River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are using genetic pedigree information to estimate the reproductive success of hatchery and wild fall-run Chinook salmon spawning in the Cedar River, Washington....

  17. Research on Captive Broodstock Programs for Pacific Salmon, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berejikian, Barry A.; Tezak, E.P. (National Marine Fisheries Service); Endicott, Rick (Long Live the Kings, Seattle, WA)

    2002-08-01

    In the 2000 Federal Columbia River Power System (FCRPS) Biological Opinion, NMFS identified six populations of steelhead and several salmon populations that had dropped to critically low levels and continue to decline. Following thorough risk-benefit analyses, captive propagation programs for some or all of the steelhead (Oncorhynchus mykiss) populations may be required to reduce the risk of extinction, and more programs may be required in the future. Thus, captive propagation programs designed to maintain or rebuild steelhead populations require intensive and rigorous scientific evaluation, much like the other objectives of BPA Project 1993-056-00 currently underway for chinook (O. tshawytscha) and sockeye salmon (O. nerka). Pacific salmon reared to the adult stage in captivity exhibit poor reproductive performance when released to spawn naturally. Poor fin quality and swimming performance, incomplete development of secondary sex characteristics, changes in maturation timing, and other factors may contribute to reduced spawning success. Improving natural reproductive performance is critical for the success of captive broodstock programs in which adult-release is a primary reintroduction strategy for maintaining ESA-listed populations.

  18. Walla Walla River Fish Passage Operations Program, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Brian C. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2004-02-01

    In the late 1990's, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow measures, and initiating trap and haul efforts. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2000-2001 project year, there were 624 summer steelhead (Oncorhynchus mykiss), 24 bull trout (Salvelinus confluentus), and 47 spring chinook (O. tshawytscha) counted at the Nursery Bridge Dam adult trap between December 27, 2000 and June 7, 2001. The Little Walla Walla River juvenile trap was not operated this year. The project transported 1600 adult spring chinook from Ringold Springs Hatchery to the South Fork Walla Walla Brood Holding Facility and outplanted 1156 for natural spawning in the basin. The project also provided equipment for transportation of juveniles captured during the construction fish salvage at Nursery Bridge Dam.

  19. Molecular analysis of population genetic structure and recolonization of rainbow trout following the Cantara spill

    Science.gov (United States)

    Nielsen, J.L.; Heine, Erika L.; Gan, Christina A.; Fountain, Monique C.

    2000-01-01

    Mitochondrial DNA (mtDNA) sequence and allelic frequency data for 12 microsatellite loci were used to analyze population genetic structure and recolonization by rainbow trout, Oncorhynchus mykiss, following the 1991 Cantara spill on the upper Sacramento River, California. Genetic analyses were performed on 1,016 wild rainbow trout collected between 1993 and 1996 from the mainstem and in 8 tributaries. Wild trout genotypes were compared to genotypes for 79 Mount Shasta Hatchery rainbow trout. No genetic heterogeneity was found 2 years after the spill (1993) between tributary populations and geographically proximate mainstem fish, suggesting recolonization of the upper mainstem directly from adjacent tributaries. Trout collections made in 1996 showed significant year-class genetic variation for mtDNA and microsatellites when compared to fish from the same locations in 1993. Five years after the spill, mainstem populations appeared genetically mixed with no significant allelic frequency differences between mainstem populations and geographically proximate tributary trout. In our 1996 samples, we found no significant genetic differences due to season of capture (summer or fall) or sampling technique used to capture rainbow trout, with the exception of trout collected by electrofishing and hook and line near Prospect Avenue. Haplotype and allelic frequencies in wild rainbow trout populations captured in the upper Sacramento River and its tributaries were found to differ genetically from Mount Shasta Hatchery trout for both years, with the notable exception of trout collected in the lower mainstem river near Shasta Lake, where mtDNA and microsatellite data both suggested upstream colonization by hatchery fish from the reservoir. These data suggest that the chemical spill in the upper Sacramento River produced significant effects over time on the genetic population structure of rainbow trout throughout the entire upper river basin.

  20. Genetic population structure of Shoal Bass within their native range

    Science.gov (United States)

    Taylor, Andrew T.; Tringali, Michael D.; Sammons, Steven M.; Ingram, Travis R.; O'Rouke, Patrick M.; Peterson, Douglas L.; Long, James M.

    2018-01-01

    Endemic to the Apalachicola River basin of the southeastern USA, the Shoal Bass Micropterus cataractae is a fluvial‐specialist sport fish that is imperiled because of anthropogenic habitat alteration. To counter population declines, restorative stocking efforts are becoming an increasingly relevant management strategy. However, population genetic structure within the species is currently unknown, but it could influence management decisions, such as brood source location. Leveraging a collaborative effort to collect and genotype specimens with 16 microsatellite loci, our objective was to characterize hierarchical population structure and genetic differentiation of the Shoal Bass across its native range, including an examination of structuring mechanisms, such as relatedness and inbreeding levels. Specimens identified as Shoal Bass were collected from 13 distinct sites (N ranged from 17 to 209 per location) and were then taxonomically screened to remove nonnative congeners and hybrids (pure Shoal Bass N ranged from 13 to 183 per location). Our results revealed appreciable population structure, with five distinct Shoal Bass populations identifiable at the uppermost hierarchical level that generally corresponded with natural geographic features and anthropogenic barriers. Substructure was recovered within several of these populations, wherein differences appeared related to spatial isolation and local population dynamics. An analysis of molecular variance revealed that 3.6% of the variation in our data set was accounted for among three larger river drainages, but substructure within each river drainage also explained an additional 8.9% of genetic variation, demonstrating that management at a scale lower than the river drainage level would likely best conserve genetic diversity. Results provide a population genetic framework that can inform future management decisions, such as brood source location, so that genetic diversity within and among populations is

  1. Investigation of head burns in adult salmonids: Phase 1: Examination of fish at Lower Granite Dam, July 2, 1996. Final report

    International Nuclear Information System (INIS)

    Elston, R.

    1996-08-01

    Head burn is a descriptive clinical term used by fishery biologists to describe exfoliation of skin and underlying connective tissue of the jaw and cranial region of salmonids, observed at fish passage facilities on the Columbia and Snake Rivers. The observations are usually made on upstream migrant adult salmon or steelhead. An expert panel, convened in 1996, to evaluate the risk and severity of gas bubble disease (GBD) in the Snake and Columbia River system believed that, while head burns appeared to be distinct from GBD, the relationship between dissolved gas saturation in the rivers and head burns was uncertain

  2. Molecular markers for genetic diversity, gene flow and genetic population structure of freshwater mussel species

    Directory of Open Access Journals (Sweden)

    AB Choupina

    Full Text Available Freshwater mussel species are in global decline. Anthropogenic changes of river channels and the decrease of autochthonous fish population, the natural hosts of mussels larval stages (glochidia, are the main causes. Therefore, the conservation of mussel species depends not only on habitat conservation, but also on the availability of the fish host. In Portugal, information concerning most of the mussel species is remarkably scarce. One of the most known species, Unio pictorum is also in decline however, in the basins of the rivers Tua and Sabor (Northeast of Portugal, there is some indication of relatively large populations. The aforementioned rivers can be extremely important for this species conservation not only in Portugal, but also in the remaining Iberian Peninsula. Thus, it is important to obtain data concerning Unio pictorum bioecology (distribution, habitat requirements, population structure, genetic variability, reproductive cycle and recruitment rates, as well as the genetic variability and structure of the population. Concomitantly, information concerning fish population structure, the importance of the different fish species as “glochidia” hosts and their appropriate density to allow effective mussel recruitment, will also be assessed. The achieved data is crucial to obtain information to develop effective management measures in order to promote the conservation of this bivalve species, the conservation of autochthonous fish populations, and consequently the integrity of the river habitats.

  3. The Araguaia River as an Important Biogeographical Divide for Didelphid Marsupials in Central Brazil.

    Science.gov (United States)

    Rocha, Rita Gomes; Ferreira, Eduardo; Loss, Ana Carolina; Heller, Rasmus; Fonseca, Carlos; Costa, Leonora Pires

    2015-01-01

    The riverine barrier model suggests that rivers play a significant role in separating widespread organisms into isolated populations. In this study, we used a comparative approach to investigate the phylogeography of 6 didelphid marsupial species in central Brazil. Specifically, we evaluate the role of the mid-Araguaia River in differentiating populations and estimate divergence time among lineages to assess the timing of differentiation of these species, using mitochondrial DNA sequence data. The 6 didelphid marsupials revealed different intraspecific genetic patterns and structure. The 3 larger and more generalist species, Didelphis albiventris, Didelphis marsupialis, and Philander opossum, showed connectivity across the Araguaia River. In contrast the genetic structure of the 3 smaller and specialist species, Gracilinanus agilis, Marmosa (Marmosa) murina, and Marmosa (Micoureus) demerarae was shaped by the mid-Araguaia. Moreover, the split of eastern and western bank populations of the 2 latter species is consistent with the age of Araguaia River sediments formation. We hypothesize that the role of the Araguaia as a riverine barrier is linked to the level of ecological specialization among the 6 didelphid species and differences in their ability to cross rivers or disperse through the associated habitat types. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Genetic diversity of the forage peanut in the Jequitinhonha, São Francisco, and Paranã River valleys of Brazil.

    Science.gov (United States)

    Azêvedo, H S F S; Sousa, A C B; Martins, K; Oliveira, J C; Yomura, R B T; Silva, L M; Valls, J F M; Assis, G M L; Campos, T

    2016-09-09

    Arachis pintoi and A. repens are legumes with a high forage value that are used to feed ruminants in consortium systems. Not only do they increase the persistence and quality of pastures, they are also used for ornamental and green cover. The objective of this study was to analyze microsatellite markers in order to access the genetic diversity of 65 forage peanut germplasm accessions in the section Caulorrhizae of the genus Arachis in the Jequitinhonha, São Francisco and Paranã River valleys of Brazil. Fifty-seven accessions of A. pintoi and eight of A. repens were analyzed using 17 microsatellites, and the observed heterozygosity (H O ), expected heterozygosity (H E ), number of alleles per locus, discriminatory power, and polymorphism information content were all estimated. Ten loci (58.8%) were polymorphic, and 125 alleles were found in total. The H E ranged from 0.30 to 0.94, and H O values ranged from 0.03 to 0.88. By using Bayesian analysis, the accessions were genetically differentiated into three gene pools. Neither the unweighted pair group method with arithmetic mean nor a neighbor-joining analysis clustered samples into species, origin, or collection area. These results reveal a very weak genetic structure that does not form defined clusters, and that there is a high degree of similarity between the two species.

  5. Genetic diversity, kinship analysis, and broodstock management of captive Atlantic sturgeon for population restoration

    Science.gov (United States)

    Henderson, A.P.; Spidle, A.P.; King, T.L.

    2005-01-01

    Captive Atlantic sturgeon Acipenser oxyrinchus considered for use as broodstock in a restoration program were genotyped using nuclear DNA microsatellites and compared to wild collections from the Hudson River, New York (source of parents of the captive sturgeon) and from Albemarle Sound, North Carolina. Because the potential broodfish were the progeny of a small number of parents, maintaining genetic diversity and minimizing inbreeding is essential to a successful breeding and supplementation program. The microsatellite loci used in this analysis generated unique multilocus genotypes for each of 136 Atlantic sturgeon. Analyses indicated significant genetic separation between the New York and North Carolina collections and correctly identified the potential broodstock as a subset of the Hudson River population. Pairwise genetic distance (-In proportion of shared alleles) between half and full siblings in the potential broodfish was as great as 1.386, a value exceeded by only 36% of the sampled broodfish pairs available for mating. Because the current broodstock population does not seem to have deviated far from their ancestral population in the Hudson River, progeny from that broodstock, or the parents themselves, would seem to be genetically suitable for release back into the Hudson River.

  6. Population genetic structure of Rufous-Vented Prinia ( Prinia burnesii )

    African Journals Online (AJOL)

    The objective of the study is to ascertain genetic variation within Rufous-vented Prinia, Prinia burnesii an endemic species, by DNA fingerprinting applying random amplified polymorphic DNA (RAPD) technique. Genetic material was obtained from three distant sites along western bank of River Indus. These sites include ...

  7. Evaluation of juvenile salmonid bypass facilities and passage at water diversions on the lower Umatilla River. Final report

    International Nuclear Information System (INIS)

    Cameron, W.A.; Knapp, S.M.; Carmichael, R.W.

    1997-07-01

    Outdated juvenile and adult fish passage facilities were recently reconstructed at the five major irrigation dams on the lower Umatilla River, Oregon to meet National marine Fisheries Service (NMFS) design standards. Changes in design at juvenile fish bypass facilities included reduced mesh size on the rotating drum screens, larger screening area, a more oblique orientation of the drum screens to canal flow, improved screen seals, replacement of bypass portals with vertical slot bypass channels, and increased bypass pipe diameters. Weir-and-pool adult fish ladders and jump pools were replaced with vertical-slot ladders. From 1991--1995, they investigated injury and travel rate of juvenile fish moving through the facilities, and efficiency of screens in preventing fish entry into the canals. Water velocities in front of canal screens, at bypass channel entrances, and at ladder diffusers were measured to assess adherence to NMFS criteria and identify hydraulic patterns. Biological evaluations were conducted by releasing and recapturing marked yearling summer steelhead (Oncorhynchus mykiss), yearling spring chinook salmon (O. tshawytscha), and subyearling fall chinook salmon (O. tshawytscha) in varying locations within the fish passage facilities

  8. Genetic diversity of a Daugava basin brown trout (Salmo trutta brood stock

    Directory of Open Access Journals (Sweden)

    Schmidt Thomas

    2017-01-01

    Full Text Available Genetics play an increasingly important role in the conservation of threatened fish populations. We have examined twelve microsatellite markers to determine the genetic diversity of a brood stock of brown trout from the Latvian Daugava river basin, used in a local supportive breeding program and compared diversity values to other Baltic populations. Allelic data was further inspected for indications of increased inbreeding. Additionally, we have analyzed the mitochondrial control region to classify the population within a broader phylogenetic framework. We found that the genetic diversity was comparatively low, but there was no strong evidence of high inbreeding. A newly detected mitochondrial haplotype indicates unnoticed genetic diversity of “Atlantic lineage” brown trout in the Daugava basin region. Our study provides first genetic details on resident brown trout from the Baltic Daugava river basin to improve the regional conservation management of this valuable genetic resource and contributes phylogeographically useful information.

  9. Fish Passage Center 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, Michele [Fish Passage Center of the Columbia Basin Fish & Wildlife Authority

    2008-11-25

    and McNary dams), whereas prior to 2005 spill was terminated at these projects after the spring period. In addition, the 2007 operations agreement provided regardless of flow conditions. For the first time spill for fish passage was provided in the low flow conditions that prevailed in the Snake River throughout the spring and summer migration periods. Gas bubble trauma (GBT) monitoring continued throughout the spill period. A higher incidence of rank 1, GBT signs were observed in late arriving steelhead smolts arriving after the 95% passage date had occurred. During this time dissolved gas levels were generally below the 110% water quality standard in the forebay where fish were sampled. This occurrence was due to prolonged exposure and extended travel times due to low migration flows. The 2007 migration conditions differed from any year in the historic record. The migration conditions combined low river flows in the Snake River with spill throughout the spring and summer season. The juvenile migration characteristics observed in 2007 were unique compared to past years in that high levels of 24 hour spill for fish passage were provided in low flow conditions, and with a delayed start to the smolt transportation program a smaller proportion of the total run being transported. This resulted in relatively high spring juvenile survival despite the lower flows. The seasonal spring average flow in the Snake River was 61 Kcfs much lower than the spring time average of 120 Kcfs that occurred in 2006. However juvenile steelhead survival through the Lower Granite to McNary reach in 2007 was nearly 70% which was similar to the juvenile steelhead survival seen in 2006 under higher migration flows. The low flows in the May-July period of 2007 were similar to the 2001 low flow year, yet survival for fall chinook juveniles in this period in 2007 was much higher. In 2001 the reach survival estimate for juvenile fall Chinook from Lower Granite to McNary Dam ranged from 0

  10. Species delimitation, genetic diversity and population historical dynamics of Cycas diannanensis (Cycadaceae occurring sympatrically in the Red River region of China

    Directory of Open Access Journals (Sweden)

    Liu eJian

    2015-09-01

    Full Text Available Delimitating species boundaries could be of critical importance when evaluating the species’ evolving process and providing guidelines for conservation genetics. Here, species delimitation was carried out on three endemic and endangered Cycas species with resembling morphology and overlapped distribution range along the Red River (Yuanjiang in China: Cycas diananensis Z. T. Guan et G. D. Tao, Cycas parvula S. L. Yang and Cycas multiovula D. Y. Wang. A total of 137 individuals from 15 populations were genotyped by using three chloroplastic (psbA-trnH, atpI-atpH and trnL-rps4 and two single copy nuclear (RPB1 and SmHP DNA sequences. Basing on the carefully morphological comparison and cladistic haplotype aggregation (CHA analysis, we propose all the populations as one species, with the rest two incorporated into C. diannanensis. Genetic diversity and structure analysis of the conflated C. diannanensis revealed this species possessed a relative lower genetic diversity than estimates of other Cycas species. The higher genetic diversity among populations and relative lower genetic diversity within populations, as well as obvious genetic differentiation among populations inferred from chloroplastic DNA (cpDNA suggested a recent genetic loss within this protected species. Additionally, a clear genetic structure of C. diannanensis corresponding with geography was detected based on cpDNA, dividing its population ranges into Yuanjiang-Nanhun basin and Ejia-Jiepai basin groups. Demographical history analyses based on combined cpDNA and one nuclear DNA (nDNA SmHP both showed the population size of C. diannanensis began to decrease in Quaternary glaciation with no subsequent expansion, while another nDNA RPB1 revealed a more recent sudden expansion after long-term population size contraction, suggesting its probable bottleneck events in history. Our findings offer grounded views for clarifying species boundaries of C. diannanensis when determining the

  11. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    was also evaluated on the riparian scale, with appropriate landscape variables analyzed within riparian buffers around each stream or river channel. Included in the overall watershed assessment are field habitat surveys and analyses of the physical and hydrological characteristics of primary chum and fall Chinook salmon spawning areas and spawning habitat availability and use. This assessment is a significant step in a comprehensive program to ensure the survival and recovery of Columbia River chum salmon in its most productive system and builds on existing recovery planning efforts for these ESA-listed salmonids within the Grays River and the lower Columbia River. This assessment also provides a basis for the recovery of other fish species in the Grays River, including coho salmon, winter steelhead, coastal cutthroat trout, and Pacific lamprey.

  12. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    was also evaluated on the riparian scale, with appropriate landscape variables analyzed within riparian buffers around each stream or river channel. Included in the overall watershed assessment are field habitat surveys and analyses of the physical and hydrological characteristics of primary chum and fall Chinook salmon spawning areas and spawning habitat availability and use. This assessment is a significant step in a comprehensive program to ensure the survival and recovery of Columbia River chum salmon in its most productive system and builds on existing recovery planning efforts for these ESA-listed salmonids within the Grays River and the lower Columbia River. This assessment also provides a basis for the recovery of other fish species in the Grays River, including coho salmon, winter steelhead, coastal cutthroat trout, and Pacific lamprey.

  13. Assessing survival of Mid-Columbia River released juvenile salmonids at McNary Dam, Washington, 2008-09

    Science.gov (United States)

    Evans, Scott D.; Walker, Christopher E.; Brewer, Scott J.; Adams, Noah S.

    2010-01-01

    Few studies have evaluated survival of juvenile salmon over long river reaches in the Columbia River and information regarding the survival of sockeye salmon at lower Columbia River dams is lacking. To address these information gaps, the U.S. Geological Survey was contracted by the U.S. Army Corps of Engineers to evaluate the possibility of using tagged fish released in the Mid-Columbia River to assess passage and survival at and downstream of McNary Dam. Using the acoustic telemetry systems already in place for a passage and survival study at McNary Dam, fish released from the tailraces of Wells, Rocky Reach, Rock Island, Wanapum, and Priest Rapids Dams were detected at McNary Dam and at the subsequent downstream arrays. These data were used to generate route-specific survival probabilities using single-release models from fish released in the Mid-Columbia River. We document trends in passage and survival probabilities at McNary Dam for yearling Chinook and sockeye salmon and juvenile steelhead released during studies in the Mid-Columbia River. Trends in the survival and passage of these juvenile salmonid species are presented and discussed. However, comparisons made across years and between study groups are not possible because of differences in the source of the test fish, the type of acoustic tags used, the absence of the use of passive integrated transponder tags in some of the release groups, differences in tagging and release protocols, annual differences in dam operations and configurations, differences in how the survival models were constructed (that is, number of routes that could be estimated given the number of fish detected), and the number and length of reaches included in the analysis (downstream reach length and arrays). Despite these differences, the data we present offer a unique opportunity to examine the migration behavior and survival of a group of fish that otherwise would not be studied. This is particularly true for sockeye salmon because

  14. Enhancing the Predicting Accuracy of the Water Stage Using a Physical-Based Model and an Artificial Neural Network-Genetic Algorithm in a River System

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Liu

    2014-06-01

    Full Text Available Accurate simulations of river stages during typhoon events are critically important for flood control and are necessary for disaster prevention and water resources management in Taiwan. This study applies two artificial neural network (ANN models, including the back propagation neural network (BPNN and genetic algorithm neural network (GANN techniques, to improve predictions from a one-dimensional flood routing hydrodynamic model regarding the water stages during typhoon events in the Danshuei River system in northern Taiwan. The hydrodynamic model is driven by freshwater discharges at the upstream boundary conditions and by the water levels at the downstream boundary condition. The model provides a sound physical basis for simulating water stages along the river. The simulated results of the hydrodynamic model show that the model cannot reproduce the water stages at different stations during typhoon events for the model calibration and verification phases. The BPNN and GANN models can improve the simulated water stages compared with the performance of the hydrodynamic model. The GANN model satisfactorily predicts water stages during the training and verification phases and exhibits the lowest values of mean absolute error, root-mean-square error and peak error compared with the simulated results at different stations using the hydrodynamic model and the BPNN model. Comparison of the simulated results shows that the GANN model can be successfully applied to predict the water stages of the Danshuei River system during typhoon events.

  15. Strong population genetic structuring in an annual fish, Nothobranchius furzeri, suggests multiple savannah refugia in southern Mozambique.

    Science.gov (United States)

    Bartáková, Veronika; Reichard, Martin; Janko, Karel; Polačik, Matej; Blažek, Radim; Reichwald, Kathrin; Cellerino, Alessandro; Bryja, Josef

    2013-09-12

    Intraspecific genetic variation of African fauna has been significantly affected by pronounced climatic fluctuations in Plio-Pleistocene, but, with the exception of large mammals, very limited empirical data on diversity of natural populations are available for savanna-dwelling animals. Nothobranchius furzeri is an annual fish from south-eastern Africa, inhabiting discrete temporary savannah pools outside main river alluvia. Their dispersal is limited and population processes affecting its genetic structure are likely a combination of those affecting terrestrial and aquatic taxa. N. furzeri is a model taxon in ageing research and several populations of known geographical origin are used in laboratory studies. Here, we analysed the genetic structure, diversity, historical demography and temporal patterns of divergence in natural populations of N. furzeri across its entire distribution range. Genetic structure and historical demography of N. furzeri were analysed using a combination of mitochondrial (partial cytochrome b sequences, 687 bp) and nuclear (13 microsatellites) markers in 693 fish from 36 populations. Genetic markers consistently demonstrated strong population structuring and suggested two main genetic groups associated with river basins. The split was dated to the Pliocene (>2 Mya). The northern group inhabits savannah pools across the basin of the intermittent river Chefu in south-western Mozambique and eastern Zimbabwe. The southern group (from southernmost Mozambique) is subdivided, with the River Limpopo forming a barrier (maximum divergence time 1 Mya). A strong habitat fragmentation (isolated temporary pools) is reflected in significant genetic structuring even between adjacent pools, with a major influence of genetic drift and significant isolation-by-distance. Analysis of historical demography revealed that the expansion of both groups is ongoing, supported by frequent founder effects in marginal parts of the range and evidence of secondary

  16. Synthesis of downstream fish passage information at projects owned by the U.S. Army Corps of Engineers in the Willamette River Basin, Oregon

    Science.gov (United States)

    Hansen, Amy C.; Kock, Tobias J.; Hansen, Gabriel S.

    2017-08-07

    The U.S. Army Corps of Engineers (USACE) operates the Willamette Valley Project (Project) in northwestern Oregon, which includes a series of dams, reservoirs, revetments, and fish hatcheries. Project dams were constructed during the 1950s and 1960s on rivers that supported populations of spring Chinook salmon (Oncorhynchus tshawytscha), winter steelhead (O. mykiss), and other anadromous fish species in the Willamette River Basin. These dams, and the reservoirs they created, negatively affected anadromous fish populations. Efforts are currently underway to improve passage conditions within the Project and enhance populations of anadromous fish species. Research on downstream fish passage within the Project has occurred since 1960 and these efforts are documented in numerous reports and publications. These studies are important resources to managers in the Project, so the USACE requested a synthesis of existing literature that could serve as a resource for future decision-making processes. In 2016, the U.S. Geological Survey conducted an extensive literature review on downstream fish passage studies within the Project. We identified 116 documents that described studies conducted during 1960–2016. Each of these documents were obtained, reviewed, and organized by their content to describe the state-of-knowledge within four subbasins in the Project, which include the North Santiam, South Santiam, McKenzie, and Middle Fork Willamette Rivers. In this document, we summarize key findings from various studies on downstream fish passage in the Willamette Project. Readers are advised to review specific reports of interest to insure that study methods, results, and additional considerations are fully understood.

  17. LCREP genetic stock ID - Lower Columbia River Ecosystem Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to document juvenile salmon habitat occurrence in the Lower Columbia River and estuary, and examine how habitat conditions...

  18. Genetic diversity and genetic structure of farmed and wild Chinese mitten crab (Eriocheir sinensis) populations from three major basins by mitochondrial DNA COI and Cyt b gene sequences.

    Science.gov (United States)

    Zhang, Cheng; Li, Qingqing; Wu, Xugan; Liu, Qing; Cheng, Yongxu

    2017-11-20

    The Chinese mitten crab, Eriocheir sinensis, is one of the important native crab species in East Asian region, which has been widely cultured throughout China, particularly in river basins of Yangtze, Huanghe and Liaohe. This study was designed to evaluate the genetic diversity and genetic structure of cultured and wild E. sinensis populations from the three river basins based on mitochondrial DNA (mtDNA) cytochrome oxidase subunit I (COI) and cytochrome b (Cyt b). The results showed that there were 62 variable sites and 30 parsimony informative sites in the 647 bp of sequenced mtDNA COI from 335 samples. Similarly, a 637 bp segment of Cyt b provided 59 variable sites and 26 parsimony informative sites. AMOVA showed that the levels of genetic differentiation were low among six populations. Although the haplotype diversity and nucleotide diversity of Huanghe wild population had slightly higher than the other populations, there were no significant differences. There was no significant differentiation between the genetic and geographic distance of the six populations, and haplotype network diagram indicated that there may exist genetic hybrids of E. sinensis from different river basins. The results of clustering and neutrality tests revealed that the distance of geographical locations were not completely related to their genetic distance values for the six populations. In conclusion, these results have great significance for the evaluation and exploitation of germplasm resources of E. sinensis.

  19. Protect and Restore the Upper Lochsa : Annual Progress Report, May 2008 – April 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, Rebecca; Forestieri, David [Nez Perce Tribe

    2009-08-13

    The Upper Lochsa watersheds included in the project contain critical spawning and rearing habitat for anadromous and resident fish (Clearwater National Forest 1999). Species that depend on the tributary habitat include spring chinook salmon (Oncorhynchus tshawytscha), Snake River summer steelhead (Oncorhynchus mykiss), bull trout (Salvelinus confluentes), and westslope cutthroat trout (Oncorhynchus clarki lewisi). Steelhead and bull trout populations are currently listed as Threatened under the Endangered Species Act (ESA), and westslope cutthroat trout has been petitioned for listing. Both out-of-basin and in-basin factors threaten fish populations in the Lochsa Drainage (Clearwater Subbasin Plan 2003). Out-of-basin factors include the hydroelectric system and ocean conditions, while in-basin factors include a variety of management activities leading to habitat degradation. This project is implemented under Bonneville Power Administration's Fish and Wildlife program in order to meet National Marine Fisheries Service requirements to offset losses caused by the operation of the hydrosystem by improving tributary habitats to promote increased productivity of salmon and steelhead. The Clearwater Subbasin Plan (2003) defines limiting factors to fisheries in the area as watershed disturbances, habitat degradation, sediment, temperature, and connectivity.

  20. Use of streambed substrate as refuge by steelhead or rainbow trout Oncorhynchus mykiss during simulated freshets.

    Science.gov (United States)

    Ligon, F K; Nakamoto, R J; Harvey, B C; Baker, P F

    2016-04-01

    A flume was used to estimate the carrying capacity of streambed substrates for juvenile steelhead or rainbow trout Oncorhynchus mykiss seeking refuge from simulated freshets. The simulated freshets had mean water column velocities of c. 1·1 m s(-1). The number of O. mykiss finding cover within the interstices of the substrate was documented for different substrate sizes and levels of embeddedness. The availability of suitable refuges determined the carrying capacity of the substrate for O. mykiss. For the size of the O. mykiss tested [mean ± s.d. fork length (L(F)) = 122 ± 12.6 mm], the number of interstices with depths ≥200 mm measured with a 14.0 mm diameter flexible plastic tube was the best predictor of the number of O. mykiss able to find cover (r(2)  = 0.75). Oncorhynchus mykiss seeking refuge from freshets may need deeper interstices than those seeking concealment at autumn or winter base flows. The availability of interstices suitable as refuge from high flows may determine autumn and winter carrying capacity. © 2016 The Fisheries Society of the British Isles.

  1. Significant genetic differentiation between native and introduced silver carp (Hypophthalmichthys molitrix) inferred from mtDNA analysis

    Science.gov (United States)

    Li, S.-F.; Xu, J.-W.; Yang, Q.-L.; Wang, C.H.; Chapman, D.C.; Lu, G.

    2011-01-01

    Silver carp Hypophthalmichthys molitrix (Cyprinidae) is native to China and has been introduced to over 80 countries. The extent of genetic diversity in introduced silver carp and the genetic divergence between introduced and native populations remain largely unknown. In this study, 241 silver carp sampled from three major native rivers and two non-native rivers (Mississippi River and Danube River) were analyzed using nucleotide sequences of mitochondrial COI gene and D-loop region. A total of 73 haplotypes were observed, with no haplotype found common to all the five populations and eight haplotypes shared by two to four populations. As compared with introduced populations, all native populations possess both higher haplotype diversity and higher nucleotide diversity, presumably a result of the founder effect. Significant genetic differentiation was revealed between native and introduced populations as well as among five sampled populations, suggesting strong selection pressures might have occurred in introduced populations. Collectively, this study not only provides baseline information for sustainable use of silver carp in their native country (i.e., China), but also offers first-hand genetic data for the control of silver carp in countries (e.g., the United States) where they are considered invasive.

  2. Good news for conservation: mitochondrial and microsatellite DNA data detect limited genetic signatures of inter-basin fish transfer in Thymallus thymallus (Salmonidae from the Upper Drava River

    Directory of Open Access Journals (Sweden)

    Meraner A.

    2013-06-01

    Full Text Available In the last few decades, numerous populations of European grayling, Thymallus thymallus, have been suffering from stocking-induced genetic admixture of foreign strains into wild populations. Concordantly, genetic introgression was also reportedfor grayling stocks inhabiting the Upper Drava River, but all published genetic data based on specimens caught at least a decade ago, when stocking load was strong. Here, we applied mitochondrial control region sequencing and nuclear microsatellite genotyping to Upper Drava grayling fry collections and reference samples to update patterns and extent of human-mediated introgression. In contrast to previous data, we highlighted an almost genetic integrity of Drava grayling, evidencing limited genetic signatures of trans-basin stocking for grayling of Northern Alpine Danubian origin. Recent hybridisation was detected only twice among sixty-nine samples, while several cases of later-generation hybrids were disclosed by linking mitochondrial sequence to nuclear genetic data. The observed past, but very limited recent genetic introgression in grayling from Upper Drava seems to reflect shifting stocking trends, changing from massive introduction of trans-basin fish to more conservation-oriented strategies during the last 27 years. In a conservation context, we encourage pursuing the use of local wild grayling for supportive- and captive-breeding, but underline the need for genetic approaches in brood-stock selection programs. Finally, our integrated results from sibship reconstruction validate our strictly fry-based sampling scheme, thus offering a reasonable alternative also for other rheophilic fish species with similar life-history characteristics.

  3. Population structure and effective/census population size ratio in threatened three-spined stickleback populations from an isolated river basin in northwest Spain.

    Science.gov (United States)

    Pérez-Figueroa, A; Fernández, C; Amaro, R; Hermida, M; San Miguel, E

    2015-08-01

    Variability at 20 microsatellite loci was examined to assess the population genetic structure, gene flow, and effective population size (N(e)) in three populations of three-spined stickleback (Gasterosteus aculeatus) from the upper basin of the Miño River in Galicia, NW Spain, where this species is threatened. The three populations showed similar levels of genetic diversity. There is a significant genetic differentiation between the three populations, but also significant gene flow. N(e) estimates based on linkage disequilibrium yielded values of 355 for the Miño River population and 241 and 311 for the Rato and Guisande Rivers, respectively, although we expect that these are overestimates. N(e) estimates based on temporal methods, considering gene flow or not, for the tributaries yielded values of 30-56 and 47-56 for the Rato and Guisande Rivers, respectively. Estimated census size (N(c)) for the Rato River was 880 individuals. This yielded a N(e)/N(c) estimate of 3-6 % for temporal estimation of N(e), which is within the empirical range observed in freshwater fishes. We suggest that the three populations analyzed have a sufficient level of genetic diversity with some genetic structure. Additionally, the absence of physical barriers suggests that conservation efforts and monitoring should focus in the whole basin as a unit.

  4. Genetic diversity is related to climatic variation and vulnerability in threatened bull trout

    Science.gov (United States)

    Kovach, Ryan; Muhlfeld, Clint C.; Wade, Alisa A.; Hand, Brian K.; Whited, Diane C.; DeHaan, Patrick W.; Al-Chokhachy, Robert K.; Luikart, Gordon

    2015-01-01

    Understanding how climatic variation influences ecological and evolutionary processes is crucial for informed conservation decision-making. Nevertheless, few studies have measured how climatic variation influences genetic diversity within populations or how genetic diversity is distributed across space relative to future climatic stress. Here, we tested whether patterns of genetic diversity (allelic richness) were related to climatic variation and habitat features in 130 bull trout (Salvelinus confluentus) populations from 24 watersheds (i.e., ~4–7th order river subbasins) across the Columbia River Basin, USA. We then determined whether bull trout genetic diversity was related to climate vulnerability at the watershed scale, which we quantified on the basis of exposure to future climatic conditions (projected scenarios for the 2040s) and existing habitat complexity. We found a strong gradient in genetic diversity in bull trout populations across the Columbia River Basin, where populations located in the most upstream headwater areas had the greatest genetic diversity. After accounting for spatial patterns with linear mixed models, allelic richness in bull trout populations was positively related to habitat patch size and complexity, and negatively related to maximum summer temperature and the frequency of winter flooding. These relationships strongly suggest that climatic variation influences evolutionary processes in this threatened species and that genetic diversity will likely decrease due to future climate change. Vulnerability at a watershed scale was negatively correlated with average genetic diversity (r = −0.77;P bull trout and other imperiled species. Genetic diversity is already depressed where climatic vulnerability is highest; it will likely erode further in the very places where diversity may be most needed for future persistence.

  5. Genetic variability in Oligosarcus paranensis (Teleostei: Characiformes from the São Francisco river, Ivaí river basin – Paraná State, Brazil - doi: 10.4025/actascibiolsci.v35i3.14179

    Directory of Open Access Journals (Sweden)

    Michele Rocha dos Santos

    2013-08-01

    Full Text Available The genetic variability of Oligosarcus paranensis was estimated from a population collected in São Francisco river, Prudentópolis county in Paraná State (Brazil using the electrophoresis in starch gel technique. Eleven enzymatic systems were analyzed: Aspartate aminotransaminase (AAT; E. C. 2.6.1, Alcohol dehydrogenase (ADH; E. C. 1.1.1.1, Esterase (EST; E. C. 3.1.1.1, Glucose-6-phosphate isomerase (GPI; E. C. 5.3.1.9, Glycerol-3-Phosphate dehydrogenase (G3PDH; E. C. 1.1.1, Isocitrate dehydrogenase (IDH; E. C. 1.1.1.42, L-lactate dehydrogenase (LDH; E. C. 1.1.1.27, Malate dehydrogenase (MDH; E. C. 1.1.1.37 , Malate dehydrogenase NADP (ME; E. C. 1.1.1.40, Phosphoglucomutase (PGM; E. C. 5.4.2.2 and Sorbitol dehydrogenase (SORB; E.C. 1.1.1.14. Twenty loci were identified through 15% corn starch gel electrophoresis of which nine (45% were polymorphic. The average expected heterozygosity was estimated as 0.1229 ± 0.1728, and the observed was 0.0586 ± 0.1069, indicating high genetic variability. The average value of FIS = 0.5145 indicates homozygote excess.  

  6. Northeast Oregon Hatchery Project, Conceptual Design Report, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Montgomery (Montgomery Watson, Bellevue, WA)

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  7. Northeast Oregon Hatchery Project final siting report. Final report

    International Nuclear Information System (INIS)

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed

  8. Northeast Oregon Hatchery Project conceptual design report. Final report

    International Nuclear Information System (INIS)

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed

  9. Northeast Oregon Hatchery Project, Final Siting Report.

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Montgomery

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  10. Idaho Habitat/Natural Production Monitoring, Pt. I: General Monitoring Subproject : Annual Progress Report 1990.

    Energy Technology Data Exchange (ETDEWEB)

    Rich, Bruce A.; Scully, Richard J.; Petrosky, Charles Edward

    1992-01-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring and evaluating proposed and existing habitat improvement projects for rainbow-steelhead trout Oncorhynchus mykiss, hereafter called steelhead, and chinook salmon O. tshawytscha, hereafter called chinook, in the Clearwater and Salmon River drainages for the past seven years. Projects included in the evaluation are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia rivers. This evaluation project is also funded under the same authority (Fish and Wildlife Program, Northwest Power Planning Council). A mitigation record is being developed using increased carrying capacity and/or survival as the best measure of benefit from a habitat enhancement project. Determination of full benefit from a project depends on completion or maturation of the project and presence of adequate numbers of fish to document actual increases in fish production. The depressed status of upriver anadromous stocks has precluded measuring full benefits of any habitat project in Idaho. Partial benefit is credited to the mitigation record in the interim period of run restoration.

  11. Phylogeography of Hypostomus strigaticeps (Siluriformes: Loricariidae inferred by mitochondrial DNA reveals its distribution in the upper Paraná River basin

    Directory of Open Access Journals (Sweden)

    Rafael Splendore de Borba

    Full Text Available In this study, phylogenetic and phylogeographic analyses of populations identified as Hypostomus strigaticeps from the upper Paraná River basin were conducted in order to test whether these different populations comprises cryptic species or structured populations and to assess their genetic variability. The sequences of the mitochondrial DNA ATP sintetase (subunits 6/8 of 27 specimens from 10 populations (one from Mogi-Guaçu River, five from Paranapanema River, three from Tietê River and one from Peixe River were analyzed. The phylogeographic analysis showed the existence of eight haplotypes (A-H, and despite the ancestral haplotype includes only individuals from the Tietê River basin, the distribution of H. strigaticeps was not restricted to this basin. Haplotypes A, B and F were the most frequent. Haplotypes D, E, F, G, and H were present in the sub-basin of Paranapanema, two (A and B were present in the sub-basin of the Tietê River, one (C was exclusively distributed in the sub-basin of the Peixe River, and one (B was also present in the sub-basin of the Grande River. The phylogenetic analysis showed that the populations of H. strigaticeps indeed form a monophyletic unit comprising two lineages: TG, with representatives from the Tietê, Mogi-Guaçu and Peixe Rivers; and PP, with specimens from the Paranapanema River. The observed degree of genetic divergence within the TG and PP lineages was 0.1% and 0.2%, respectively, whereas the genetic divergence between the two lineages themselves was approximately 1%. The results of the phylogenetic analysis do not support the hypothesis of existence of crypt species and the phylogeographic analysis confirm the presence of H. strigaticeps in other sub-basins of the upper Paraná River: Grande, Peixe, and Paranapanema sub-basins.

  12. Natural Propagation and Habitat Improvement, Volume I, Oregon, Supplement C, White River Habitat Inventory, 1983 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Heller, David

    1984-04-01

    More than 130 miles of stream fish habitat was inventoried and evaluated on the Mt. Hood National Forest during the first year of this multi-year project. First year tasks included field inventory and evaluation of habitat conditions on the White River and tributary streams thought to have the highest potential for supporting anadromous fish populations. All streams inventoried were located on the Mt. Hood National Forest. The surveyed area appears to contain most of the high quality anadromous fish habitat in the drainage. Habitat conditions appear suitable for steelhead, coho, and chinook salmon, and possibly sockeye. One hundred and twenty-four miles of potential anadromous fish habitat were identifed in the survey. Currently, 32 miles of this habitat would be readily accessible to anadromous fish. An additional 72 miles of habitat could be accessed with only minor passage improvement work. About 20 miles of habitat, however, will require major investment to provide fish passage. Three large lakes (Boulder, 14 acres; Badger, 45 acres; Clear, 550 acres) appear to be well-suited for rearing anadromous fish, although passage enhancement would be needed before self-sustaining runs could be established in any of the lakes.

  13. Mount St. Helens Ecosystem Restoration General Reevaluation Study Reconnaissance Report

    Science.gov (United States)

    2007-07-01

    reproduction observed in impacted streams was attributed to temporary groundwater upwelling. Adult salmon and steelhead that returned to the Toutle River...to 33.5% in 1982. Survival of eggs to hatching stage in volcanic substrate ranged from 50% to 95%. Successful reproduction observed in...areas with native conifers . Look for opportunities to enhance or restore off-channel rearing habitat. 84 A number of habitat constraints still

  14. Population genetic characterization and family reconstruction in brood bank collections of the Indian major carp Labeo rohita (Cyprinidae:Cypriniformes).

    Science.gov (United States)

    Ullah, Ashraf; Basak, Abhisak; Islam, Md Nazrul; Alam, Md Samsul

    2015-01-01

    The founder stock of a captive breeding program is prone to changes in genetic structure due to inbreeding and genetic drift. Genetic characterization of the founder population using suitable molecular markers may help monitor periodic changes in the genetic structure in future. To develop benchmark information about the genetic structure we analyzed six microsatellite loci in the Brodbank collections of rohu (Labeo rohita) originated from three major rivers-the Jamuna, the Padma and the Halda. A total of 28 alleles were detected in 90 individuals with an average of 4.6 alleles per locus. The average observed heterozygosity ranged from 0.655 to 0.705 and the expected heterozygosity ranged from 0.702 to 0.725. The mean F IS values were 0.103, 0.106 and 0.018 for the Jamuna, Padma and Halda fishes respectively. The population pair-wise F ST values ranged from 0.0057 to 0.0278. Structure analysis grouped the fishes of the three rivers into two clusters. The numbers of half-sib families were 5, 5 and 4 and the numbers of full-sib families were 12, 10 and 18 for the Halda, Jamuna and the Padma samples respectively. Bottleneck was detected in all the river samples. We recommend to collect more fish from different locations of the major rivers to broaden the genetic variability of the founder stocks of the Brood bank.

  15. Phase I Water Rental Pilot Project : Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    Energy Technology Data Exchange (ETDEWEB)

    Riggin, Stacey H.; Hansen, H. Jerome

    1992-10-01

    The Idaho Water Rental Pilot Project was implemented as a part of the Non-Treaty Storage Fish and Wildlife Agreement (NTSA) between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to improve juvenile and adult salmon and steelhead passage in the lower Snake River with the use of rented water for flow augmentation. The primary purpose of this project is to summarize existing resource information and provide recommendations to protect or enhance resident fish and wildlife resources in Idaho with actions achieving flow augmentation for anadromous fish. Potential impacts of an annual flow augmentation program on Idaho reservoirs and streams are modeled. Potential sources of water for flow augmentation and operational or institutional constraints to the use of that water are identified. This report does not advocate flow augmentation as the preferred long-term recovery action for salmon. The state of Idaho strongly believes that annual drawdown of the four lower Snake reservoirs is critical to the long-term enhancement and recovery of salmon (Andrus 1990). Existing water level management includes balancing the needs of hydropower production, irrigated agriculture, municipalities and industries with fish, wildlife and recreation. Reservoir minimum pool maintenance, water quality and instream flows are issues of public concern that will be directly affected by the timing and quantity of water rental releases for salmon flow augmentation, The potential of renting water from Idaho rental pools for salmon flow augmentation is complicated by institutional impediments, competition from other water users, and dry year shortages. Water rental will contribute to a reduction in carryover storage in a series of dry years when salmon flow augmentation is most critical. Such a reduction in carryover can have negative impacts on reservoir fisheries by eliminating shoreline spawning beds, reducing available fish habitat

  16. Performance Assessment of Bi-Directional Knotless Tissue-Closure Device in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters, 2010 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Woodley, Christa M.; Bryson, Amanda J.; Carpenter, Scott M.; Knox, Kasey M.; Gay, Marybeth E.; Wagner, Katie A.

    2012-09-10

    In 2010, researchers at Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) conducted a compliance monitoring study—the Lower Columbia River Acoustic Transmitter Investigations of Dam Passage Survival and Associated Metrics 2010 (Carlson et al. in preparation)—for the U.S. Army Corps of Engineers (USACE), Portland District. The purpose of the compliance study was to evaluate juvenile Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) passage routes and survival through the lower three Columbia River hydroelectric facilities as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp; NOAA Fisheries 2008) and the Columbia Basin Fish Accords (Fish Accords; 3 Treaty Tribes and Action Agencies 2008).

  17. Allozyme comparison of two populations of Rineloricaria (Siluriformes, Loricariidae from the Ivaí River, upper Paraná River basin, Brazil

    Directory of Open Access Journals (Sweden)

    Daniel M. Limeira

    2009-01-01

    Full Text Available Two allopatric morphotypes of the genus Rinelocaria were compared through the allozyme electrophoresis technique: one morphotype, R. pentamaculata, from the Keller River in the middle stretch of the Ivaí River basin and the other, R. aff. pentamaculata, from the São João River in the upper portion of the Ivaí River basin. The morphotype from the São João River was collected upstream from the São João waterfall, which is about 80 m deep. Twelve enzymatic systems (AAT, ADH, EST, GCDH, G3PDH, GPI, IDH, LDH, MDH, ME, PGM and SOD were analyzed, which allowed to score 22 loci. Only loci Aat-2, Est-3 and Mdh-C showed polymorphism. The two samples differed in allele frequencies at the three polymorphic loci. The average expected heterozygosity for all loci was 0.0806 ± 0.0447 in the Keller River sample. For the São João River morphotype, this value was 0.0489 ± 0.0350. Nei' s genetic identity and distance between the two populations were respectively 0.9789 and 0.0213. Wright's F IS, F IT and F STover all loci were estimated as 0.3121, 0.4021 and 0.1309, respectively. We consider that the two morphotypes represent species in statu nascendi.

  18. Allozyme analysis of the four species of Hypostomus (Teleostei: Loricariidae from the Ivaí river, upper Paraná river basin, Brazil - doi: 10.4025/actascibiolsci.v35i4.16355

    Directory of Open Access Journals (Sweden)

    Suzana de Paiva

    2013-07-01

    Full Text Available Allozyme electrophoresis analysis were performed in four species of Hypostomus (Loricariidae, H. albopunctatus, H. hermanni, H. regani, e Hypostomus sp. 1/NUP 5612 from the Ivaí river, a tributary of the upper Paraná river. The study of 14 loci revealed diagnostic characters and exclusive alleles in a low frequency. The heterozygosity ranged from 0.000 in H. albopunctatus to 0.199 in H. hermanni, which was higher than the heterozygosity in other samples of Hypostomus in literature, as well as in other fish groups. Hypostomus albopunctatus and H. regani revealed higher similarity (I = 0.804, while H. hermanni and Hypostomus sp. 1/NUP 5612 showed the least genetic identity (I = 0.569. All samples were genetically distinguished, despite there were several shared alleles. The FST value was 0.671, showing a high genetic differentiation among the samples. Hypostomus sp. 1/NUP 5612 was genetically distinguished from the three congeners by the loci Adh-A and G3pdh-B and by present rare exclusive alleles in other six enzymatic systems.

  19. Genetic variability of broodstocks of restocking programs in Brazil

    Directory of Open Access Journals (Sweden)

    Nelson Lopera-Barrero

    2015-09-01

    Full Text Available Objective. The aim of this study was evaluate the genetic diversity of the following broodstocks: piapara (Leporinus elongatus, dourado (Salminus brasiliensis, jundiá (Rhamdia quelen and cachara (Pseudoplatystoma fasciatum already useful for restocking programs in the Paranapanema, Iguaçu and Paraná Brazilian Rivers. Materials and methods. Samples from the caudal fin of 122 fish were analyzed. DNA was extracted by NaCl protocol. PCR products were separated by a horizontal agarose gel electrophoresis. The fragments were visualized by staining with ethidium bromide. Results. The amplification of 25 primers generated different fragments in studied species that allowed characterizing 440 fragments of 100-2900 bp. High percentage of polymorphic fragments (66.67 to 86.29, Shannon index (0.365 to 0.486 and genetic diversity of Nei (0.248 to 0.331 were detected. Conclusions. The level of genetic variability in the broodstocks was adequate for allowing their use in restocking programs in the studied Rivers. However, periodical monitoring studies of genetic variability in these stocks, the mating system, reproductive system and general management must be made to guarantee the preservation of wild populations.

  20. Interpreting the cross-sectional flow field in a river bank based on a genetic-algorithm two-dimensional heat-transport method (GA-VS2DH)

    Science.gov (United States)

    Su, Xiaoru; Shu, Longcang; Chen, Xunhong; Lu, Chengpeng; Wen, Zhonghui

    2016-12-01

    Interactions between surface waters and groundwater are of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer method is widely used in determination of the interactive exchange with high precision, low cost and great convenience. The flow in a river-bank cross-section occurs in vertical and lateral directions. In order to depict the flow path and its spatial distribution in bank areas, a genetic algorithm (GA) two-dimensional (2-D) heat-transport nested-loop method for variably saturated sediments, GA-VS2DH, was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model a 2-D bank-water flow field and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures in bank areas. A hypothetical model was developed to assess the reliability of GA-VS2DH in inverse modeling in a river-bank system. Some benchmark tests were conducted to recognize the capability of GA-VS2DH. The results indicated that the simulated seepage velocity and parameters associated with GA-VS2DH were acceptable and reliable. Then GA-VS2DH was applied to two field sites in China with different sedimentary materials, to verify the reliability of the method. GA-VS2DH could be applied in interpreting the cross-sectional 2-D water flow field. The estimates of horizontal hydraulic conductivity at the Dawen River and Qinhuai River sites are 1.317 and 0.015 m/day, which correspond to sand and clay sediment in the two sites, respectively.

  1. Ephemeral stream reaches preserve the evolutionary and distributional history of threespine stickleback in the Santa Clara and Ventura River watersheds of southern California

    Science.gov (United States)

    Richmond, Jonathan Q.; Jacobs, David K.; Backlin, Adam R.; Swift, Camm C.; Dellith, Chris; Fisher, Robert N.

    2015-01-01

    Much remains to be understood about the evolutionary history and contemporary landscape genetics of unarmored threespine stickleback in southern California, where populations collectively referred to as Gasterosteus aculeatus williamsoni have severely declined over the past 70+ years and are now endangered. We used mitochondrial sequence and microsatellite data to assess the population genetics and phylogeography of unarmored populations sampled immediately downstream from the type locality of G. a. williamsoni in the upper Santa Clara River, and assessed their distinctiveness with respect to low-armor populations in the downstream sections of the river and the adjacent Ventura River. We also characterized the geographic limits of different plate morphs and evaluated the congruence of those boundaries with barriers to dispersal in both river systems and to neutral genetic variation. We show substantial population structuring within the upper reach of the Santa Clara River, but little partitioning between the lower Santa Clara and Ventura Rivers—we attribute these patterns to different ancestry between spatially subdivided populations within the same drainage, a predominance of downstream gene flow, and ability for coastal dispersal between the Santa Clara and Ventura Rivers. We also show that alleles from introduced low-plate stock have infiltrated a native population in at least one upper Santa Clara River tributary, causing this formerly unarmored population to become gradually low-plated over a 30 + year time period. Measures of genetic diversity, census surveys, and severe habitat disturbance all indicate that unarmored stickleback near the type locality are currently at high risk of extinction.

  2. Genetic polymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam

    International Nuclear Information System (INIS)

    Agusa, Tetsuro; Iwata, Hisato; Fujihara, Junko; Kunito, Takashi; Takeshita, Haruo; Tu Binh Minh; Pham Thi Kim Trang; Pham Hung Viet; Tanabe, Shinsuke

    2010-01-01

    To elucidate the role of genetic factors in arsenic metabolism, we investigated associations of genetic polymorphisms in the members of glutathione S-transferase (GST) superfamily with the arsenic concentrations in hair and urine, and urinary arsenic profile in residents in the Red River Delta, Vietnam. Genotyping was conducted for GST ω1 (GSTO1) Ala140Asp, Glu155del, Glu208Lys, Thr217Asn, and Ala236Val, GST ω2 (GSTO2) Asn142Asp, GST π1 (GSTP1) Ile105Val, GST μ1 (GSTM1) wild/null, and GST θ1 (GSTT1) wild/null. There were no mutation alleles for GSTO1 Glu208Lys, Thr217Asn, and Ala236Val in this population. GSTO1 Glu155del hetero type showed higher urinary concentration of As V than the wild homo type. Higher percentage of DMA V in urine of GSTM1 wild type was observed compared with that of the null type. Strong correlations between GSTP1 Ile105Val and arsenic exposure level and profile were observed in this study. Especially, heterozygote of GSTP1 Ile105Val had a higher metabolic capacity from inorganic arsenic to monomethyl arsenic, while the opposite trend was observed for ability of metabolism from As V to As III . Furthermore, other factors including sex, age, body mass index, arsenic level in drinking water, and genotypes of As (+ 3 oxidation state) methyltransferase (AS3MT) were also significantly co-associated with arsenic level and profile in the Vietnamese. To our knowledge, this is the first study indicating the associations of genetic factors of GST superfamily with arsenic metabolism in a Vietnamese population.

  3. Pacific Lamprey Research and Restoration : Annual Report 1997.

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Aaron D.; Hatch, Douglas R.; Close, David A.

    1998-08-05

    The once abundant stocks of Pacific lamprey (Lampetra tridentata) above Bonneville Dam are currently depressed (Close et al. 1995). It is likely that many of the same factors that led to the decline of wild stocks of Columbia River Pacific salmon and steelhead have impacted Pacific lamprey populations as well. The Pacific Lamprey Research and Restoration Project, funded by Bonneville Power Administration, is a cooperative effort between the Confederated Tribes of the Umatilla Indian Reservation, the Columbia River Inter-Tribal Fish Commission, and Oregon State University with the goal to increase Pacific lamprey stocks above Bonneville Dam.

  4. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Achord, Stephen; McNatt, Regan A.; Hockersmith, Eric E. (National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2004-04-01

    Prior to 1992, decisions on dam operations and use of stored water relied on recoveries of branded hatchery fish, index counts at traps and dams, and flow patterns at the dams. The advent of PIT-tag technology provided the opportunity to precisely track the smolt migrations of many wild stocks as they pass through the hydroelectric complex and other monitoring sites on their way to the ocean. With the availability of the PIT tag, a more complete approach to these decisions was undertaken starting in 1992 with the addition of PIT-tag detections of several wild spring and summer chinook salmon stocks at Lower Granite Dam. Using data from these detections, we initiated development of a database on wild fish, addressing several goals of the Columbia River Basin Fish and Wildlife Program of the Pacific Northwest Electric Power Planning Council and Conservation Act (NPPC 1980). Section 304(d) of the program states, ''The monitoring program will provide information on the migrational characteristics of the various stocks of salmon and steelhead within the Columbia Basin.'' Further, Section 201(b) urges conservation of genetic diversity, which will be possible only if wild stocks are preserved. Section 5.9A.1 of the 1994 Fish and Wildlife Program states that field monitoring of smolt movement will be used to determine the best timing for water storage releases and Section 5.8A.8 states that continued research is needed on survival of juvenile wild fish before they reach the first dam with special attention to water quantity, quality, and several other factors. The goals of this ongoing study are as follows (1) Characterize the migration timing and estimate parr-to-smolt survival of different stocks of wild Snake River spring/summer chinook salmon smolts at Lower Granite Dam. (2) Determine whether consistent migration patterns are apparent. (3) Determine what environmental factors influence these patterns. (4) Characterize the migrational behavior and

  5. Summer habitat use by Columbia River redband trout in the Kootenai River drainage, Montana

    Science.gov (United States)

    Muhlfeld, Clint C.; Bennett, David H.

    2001-01-01

    The reported decline in the abundance, distribution, and genetic diversity of Columbia River redband trout Oncorhynchus mykiss gairdneri (a rainbow trout subspecies) has prompted fisheries managers to investigate their habitat requirements, identify critical habitat, and develop effective conservation and recovery programs. We analyzed the microhabitat, mesohabitat, and macrohabitat use and distribution of Columbia River redband trout by means of snorkel surveys in two watersheds in the Kootenai River drainage, Montana and Idaho, during the summers of 1997 and 1998. Juvenile (36–125 mm total length, TL) and adult (>=126 mm TL) fish preferred deep microhabitats (>=0.4 m) with low to moderate velocities (thalweg. Conversely, age-0 (<=35 mm) fish selected slow water (<=0.1 m/s) and shallow depths (<=0.2 m) located in lateral areas of the channel. Age-0, juvenile, and adult fish strongly selected pool mesohabitats and avoided riffles; juveniles and adults generally used runs in proportion to their availability. At the macrohabitat scale, density of Columbia River redband trout (35 mm) was positively related to the abundance of pools and negatively related to stream gradient. The pool: riffle ratio, gradient, and stream size combined accounted for 80% of the variation in density among 23 stream reaches in five streams. Our results demonstrate that low-gradient, medium-elevation reaches with an abundance of complex pools are critical areas for the production of Columbia River redband trout. These data will be useful in assessing the impacts of land-use practices on the remaining populations and may assist with habitat restoration or enhancement efforts.

  6. Genetic health and population monitoring of two small black bear (Ursus americanus populations in Alabama, with a regional perspective of genetic diversity and exchange.

    Directory of Open Access Journals (Sweden)

    John P Draper

    Full Text Available One of the major concerns in conservation today is the loss of genetic diversity which is a frequent consequence of population isolation and small population sizes. Fragmentation of populations and persecution of carnivores has posed a substantial threat to the persistence of free ranging carnivores in North America since the arrival of European settlers. Black bears have seen significant reductions in range size from their historic extent, which is most pronounced in the southeastern United States and even more starkly in Alabama where until recently bears were reduced to a single geographically isolated population in the Mobile River Basin. Recently a second population has naturally re-established itself in northeastern Alabama. We sought to determine size, genetic diversity and genetic connectivity for these two populations in relation to other regional populations. Both populations of black bears in Alabama had small population sizes and had moderate to low genetic diversity, but showed different levels of connectivity to surrounding populations of bears. The Mobile River Basin population had a small population size at only 86 individuals (76-124, 95% C.I., the lowest genetic diversity of compared populations (richness = 2.33, Ho and He = 0.33, and showed near complete genetic isolation from surrounding populations across multiple tests. The newly recolonizing population in northeastern Alabama had a small but growing population doubling in 3 years (34 individuals 26-43, 95% C.I., relatively moderate genetic diversity compared to surrounding populations (richness = 3.32, Ho = 0.53, He = 0.65, and showed a high level of genetic connectivity with surrounding populations.

  7. Genetic health and population monitoring of two small black bear (Ursus americanus) populations in Alabama, with a regional perspective of genetic diversity and exchange.

    Science.gov (United States)

    Draper, John P; Waits, Lisette P; Adams, Jennifer R; Seals, Christopher L; Steury, Todd D

    2017-01-01

    One of the major concerns in conservation today is the loss of genetic diversity which is a frequent consequence of population isolation and small population sizes. Fragmentation of populations and persecution of carnivores has posed a substantial threat to the persistence of free ranging carnivores in North America since the arrival of European settlers. Black bears have seen significant reductions in range size from their historic extent, which is most pronounced in the southeastern United States and even more starkly in Alabama where until recently bears were reduced to a single geographically isolated population in the Mobile River Basin. Recently a second population has naturally re-established itself in northeastern Alabama. We sought to determine size, genetic diversity and genetic connectivity for these two populations in relation to other regional populations. Both populations of black bears in Alabama had small population sizes and had moderate to low genetic diversity, but showed different levels of connectivity to surrounding populations of bears. The Mobile River Basin population had a small population size at only 86 individuals (76-124, 95% C.I.), the lowest genetic diversity of compared populations (richness = 2.33, Ho and He = 0.33), and showed near complete genetic isolation from surrounding populations across multiple tests. The newly recolonizing population in northeastern Alabama had a small but growing population doubling in 3 years (34 individuals 26-43, 95% C.I.), relatively moderate genetic diversity compared to surrounding populations (richness = 3.32, Ho = 0.53, He = 0.65), and showed a high level of genetic connectivity with surrounding populations.

  8. Low interbasin connectivity in a facultatively diadromous fish: evidence from genetics and otolith chemistry.

    Science.gov (United States)

    Hughes, Jane M; Schmidt, Daniel J; Macdonald, Jed I; Huey, Joel A; Crook, David A

    2014-03-01

    Southern smelts (Retropinna spp.) in coastal rivers of Australia are facultatively diadromous, with populations potentially containing individuals with diadromous or wholly freshwater life histories. The presence of diadromous individuals is expected to reduce genetic structuring between river basins due to larval dispersal via the sea. We use otolith chemistry to distinguish between diadromous and nondiadromous life histories and population genetics to examine interbasin connectivity resulting from diadromy. Otolith strontium isotope ((87) Sr:(86) Sr) transects identified three main life history patterns: amphidromy, freshwater residency and estuarine/marine residency. Despite the potential for interbasin connectivity via larval mixing in the marine environment, we found unprecedented levels of genetic structure for an amphidromous species. Strong hierarchical structure along putative taxonomic boundaries was detected, along with highly structured populations within groups using microsatellites (FST  = 0.046-0.181), and mtDNA (ΦST  = 0.498-0.816). The presence of strong genetic subdivision, despite the fact that many individuals reside in saline water during their early life history, appears incongruous. However, analysis of multielemental signatures in the otolith cores of diadromous fish revealed strong discrimination between river basins, suggesting that diadromous fish spend their early lives within chemically distinct estuaries rather than the more homogenous marine environment, thus avoiding dispersal and maintaining genetic structure. © 2014 John Wiley & Sons Ltd.

  9. Coupled stream and population dynamics: Modeling the role beaver (Castor canadensis) play in generating juvenile steelhead (Oncorhynchus mykiss) habitat

    Science.gov (United States)

    Jordan, C.; Bouwes, N.; Wheaton, J. M.; Pollock, M.

    2013-12-01

    Over the past several centuries, the population of North American Beaver has been dramatically reduced through fur trapping. As a result, the geomorphic impacts long-term beaver occupancy and activity can have on fluvial systems have been lost, both from the landscape and from our collective memory such that physical and biological models of floodplain system function neither consider nor have the capacity to incorporate the role beaver can play in structuring the dynamics of streams. Concomitant with the decline in beaver populations was an increasing pressure on streams and floodplains through human activity, placing numerous species of stream rearing fishes in peril, most notably the ESA listing of trout and salmon populations across the entirety of the Western US. The rehabilitation of stream systems is seen as one of the primary means by which population and ecosystem recovery can be achieved, yet the methods of stream rehabilitation are applied almost exclusively with the expected outcome of a static idealized stream planform, occasionally with an acknowledgement of restoring processes rather than form and only rarely with the goal of a beaver dominated riverscape. We have constructed an individual based model of trout and beaver populations that allows the exploration of fish population dynamics as a function of stream habitat quality and quantity. We based the simulation tool on Bridge Creek (John Day River basin, Oregon) where we have implemented a large-scale restoration experiment using wooden posts to provide beavers with stable platforms for dam building and to simulate the dams themselves. Extensive monitoring captured geomorphic and riparian changes, as well as fish and beaver population responses; information we use to parameterize the model as to the geomorphic and fish response to dam building beavers. In the simulation environment, stream habitat quality and quantity can be manipulated directly through rehabilitation actions and indirectly

  10. Evidence of natural reproduction of Atlantic sturgeon in the Connecticut River from unlikely sources.

    Directory of Open Access Journals (Sweden)

    Tom Savoy

    Full Text Available Atlantic Sturgeon is listed under the U.S. Endangered Species Act as five Distinct Population Segments (DPS. The "endangered" New York Bight (NYB DPS is thought to only harbor two populations; one in the Hudson River and a second smaller one in the Delaware River. Historically, the Connecticut River probably supported a spawning population of Atlantic Sturgeon that was believed extirpated many decades ago. In 2014, we successfully collected pre-migratory juvenile specimens from the lower Connecticut River which were subjected to mitochondrial DNA (mtDNA control region sequence and microsatellite analyses to determine their genetic relatedness to other populations coastwide. Haplotype and allelic frequencies differed significantly between the Connecticut River collection and all other populations coastwide. Sibship analyses of the microsatellite data indicated that the Connecticut River collection was comprised of a small number of families that were likely the offspring of a limited number of breeders. This was supported by analysis of effective population size (Ne and number of breeders (Nb. STRUCTURE analysis suggested that there were 11 genetic clusters among the coastwide collections and that from the Connecticut River was distinct from those in all other rivers. This was supported by UPGMA analyses of the microsatellite data. In AMOVA analyses, among region variation was maximized, and among population within regions variation minimized when the Connecticut River collection was separate from the other two populations in the NYB DPS indicating the dissimilarity between the Connecticut River collection and the other two populations in the NYB DPS. Use of mixed stock analysis indicated that the Connecticut River juvenile collection was comprised of specimens primarily of South Atlantic and Chesapeake Bay DPS origins. The most parsimonious explanation for these results is that the Connecticut River hosted successful natural reproduction in 2013

  11. Comparative analysis of riverscape genetic structure in rare, threatened and common freshwater mussels

    Science.gov (United States)

    Galbraith, Heather S.; Zanatta, David T.; Wilson, Chris C.

    2015-01-01

    Freshwater mussels (Bivalvia: Unionoida) are highly imperiled with many species on the verge of local extirpation or global extinction. This study investigates patterns of genetic structure and diversity in six species of freshwater mussels in the central Great Lakes region of Ontario, Canada. These species vary in their conservation status (endangered to not considered at risk), life history strategy, and dispersal capabilities. Evidence of historical genetic connectivity within rivers was ubiquitous across species and may reflect dispersal abilities of host fish. There was little to no signature of recent disturbance events or bottlenecks, even in endangered species, likely as a function of mussel longevity and historical population sizes (i.e., insufficient time for genetic drift to be detectable). Genetic structure was largely at the watershed scale suggesting that population augmentation via translocation within rivers may be a useful conservation tool if needed, while minimizing genetic risks to recipient sites. Recent interest in population augmentation via translocation and propagation may rely on these results to inform management of unionids in the Great Lakes region.

  12. An Optimization Waste Load Allocation Model in River Systems

    Science.gov (United States)

    Amirpoor Daylami, A.; jarihani, A. A.; Aminisola, K.

    2012-04-01

    In many river systems, increasing of the waste discharge leads to increasing pollution of these water bodies. While the capacity of the river flow for pollution acceptance is limited and the ability of river to clean itself is restricted, the dischargers have to release their waste into the river after a primary pollution treatment process. Waste Load Allocation as a well-known water quality control strategy is used to determine the optimal pollutant removal at a number of point sources along the river. This paper aim at developing a new approach for treatment and management of wastewater inputs into the river systems, such that water quality standards in these receiving waters are met. In this study, inspired by the fact that cooperation among some single point source waste dischargers can lead to a more waste acceptance capacity and/or more optimum quality control in a river, an efficient approach was implemented to determine both primary waste water treatment levels and/or the best releasing points of the waste into the river. In this methodology, a genetic algorithm is used as an optimization tool to calculate optimal fraction removal levels of each one of single or shared discharger. Besides, a sub-model embedded to optimization model was used to simulate water quality of the river in each one of discharging scenarios based on the modified Streeter and Phelps quality equations. The practical application of the model is illustrated with a case study of the Gharesoo river system in west of Iran.

  13. Enumeration of Salmonids in the Okanogan Basin Using Underwater Video, Performance Period: October 2005 (Project Inception) - 31 December 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Peter N.; Rayton, Michael D.; Nass, Bryan L.; Arterburn, John E.

    2007-06-01

    The Confederated Tribes of the Colville Reservation (Colville Tribes) identified the need for collecting baseline census data on the timing and abundance of adult salmonids in the Okanogan River Basin in order to determine basin and tributary-specific spawner distributions, evaluate the status and trends of natural salmonid production in the basin, document local fish populations, and augment existing fishery data. This report documents the design, installation, operation and evaluation of mainstem and tributary video systems in the Okanogan River Basin. The species-specific data collected by these fish enumeration systems are presented along with an evaluation of the operation of a facility that provides a count of fish using an automated method. Information collected by the Colville Tribes Fish & Wildlife Department, specifically the Okanogan Basin Monitoring and Evaluation Program (OBMEP), is intended to provide a relative abundance indicator for anadromous fish runs migrating past Zosel Dam and is not intended as an absolute census count. Okanogan Basin Monitoring and Evaluation Program collected fish passage data between October 2005 and December 2006. Video counting stations were deployed and data were collected at two locations in the basin: on the mainstem Okanogan River at Zosel Dam near Oroville, Washington, and on Bonaparte Creek, a tributary to the Okanogan River, in the town of Tonasket, Washington. Counts at Zosel Dam between 10 October 2005 and 28 February 2006 are considered partial, pilot year data as they were obtained from the operation of a single video array on the west bank fishway, and covered only a portion of the steelhead migration. A complete description of the apparatus and methodology can be found in 'Fish Enumeration Using Underwater Video Imagery - Operational Protocol' (Nass 2007). At Zosel Dam, totals of 57 and 481 adult Chinook salmon were observed with the video monitoring system in 2005 and 2006, respectively. Run

  14. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Willamette River Basin, 1934-1942, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat-surveys, conducted in the Willamette River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1934-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries contained in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the Bonneville Power

  15. Challenging the inbreeding hypothesis in a eusocial mammal: population genetics of the naked mole-rat, Heterocephalus glaber.

    Science.gov (United States)

    Ingram, Colleen M; Troendle, Nicholas J; Gill, Clare A; Braude, Stanton; Honeycutt, Rodney L

    2015-10-01

    The role of genetic relatedness in the evolution of eusociality has been the topic of much debate, especially when contrasting eusocial insects with vertebrates displaying reproductive altruism. The naked mole-rat, Heterocephalus glaber, was the first described eusocial mammal. Although this discovery was based on an ecological constraints model of eusocial evolution, early genetic studies reported high levels of relatedness in naked mole-rats, providing a compelling argument that low dispersal rates and consanguineous mating (inbreeding as a mating system) are the driving forces for the evolution of this eusocial species. One caveat to accepting this long-held view is that the original genetic studies were based on limited sampling from the species' geographic distribution. A growing body of evidence supports a contrary view, with the original samples not representative of the species-rather reflecting a single founder event, establishing a small population south of the Athi River. Our study is the first to address these competing hypotheses by examining patterns of molecular variation in colonies sampled from north and south of the Athi and Tana rivers, which based on our results, serve to isolate genetically distinct populations of naked mole-rats. Although colonies south of the Athi River share a single mtDNA haplotype and are fixed at most microsatellite loci, populations north of the Athi River are considerably more variable. Our findings support the position that the low variation observed in naked mole-rat populations south of the Athi River reflects a founder event, rather than a consequence of this species' unusual mating system. © 2015 John Wiley & Sons Ltd.

  16. Terrestrial fishes: rivers are barriers to gene flow in annual fishes from the African savanna

    Czech Academy of Sciences Publication Activity Database

    Bartáková, Veronika; Reichard, Martin; Blažek, Radim; Polačik, Matej; Bryja, Josef

    2015-01-01

    Roč. 42, č. 10 (2015), s. 1832-1844 ISSN 0305-0270 R&D Projects: GA ČR(CZ) GAP506/11/0112 Institutional support: RVO:68081766 Keywords : genetic structure * geodispersal * Mozambique * Nothobranchius * phylogeography * population genetics * river morphology * vernal pool Subject RIV: EG - Zoology Impact factor: 3.997, year: 2015

  17. Natural Propagation and Habitat Improvement Idaho: Lolo Creek and Upper Lochsa, Clearwater National Forest.

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, F.A. Jr.; Lee, Kristine M.

    1991-01-01

    In 1983, the Clearwater National Forest and the Bonneville Power Administration (BPA) entered into a contractual agreement to improve anadromous fish habitat in selected tributaries of the Clearwater River Basin. This agreement was drawn under the auspices of the Northwest Power Act of 1980 and the Columbia River basin Fish and Wildlife Program (section 700). The Program was completed in 1990 and this document constitutes the Final Report'' that details all project activities, costs, accomplishments, and responses. The overall goal of the Program was to enhance spawning, rearing, and riparian habitats of Lolo Creek and major tributaries of the Lochsa River so that their production systems could reach full capability and help speed the recovery of salmon and steelhead within the basin.

  18. Natural propagation and habitat improvement Idaho: Lolo Creek and Upper Lochsa, Clearwater National Forest

    International Nuclear Information System (INIS)

    Espinosa, F.A. Jr.; Lee, K.M.

    1991-01-01

    In 1983, the Clearwater National Forest and the Bonneville Power Administration (BPA) entered into a contractual agreement to improve anadromous fish habitat in selected tributaries of the Clearwater River Basin. This agreement was drawn under the auspices of the Northwest Power Act of 1980 and the Columbia River basin Fish and Wildlife Program (section 700). The Program was completed in 1990 and this document constitutes the ''Final Report'' that details all project activities, costs, accomplishments, and responses. The overall goal of the Program was to enhance spawning, rearing, and riparian habitats of Lolo Creek and major tributaries of the Lochsa River so that their production systems could reach full capability and help speed the recovery of salmon and steelhead within the basin

  19. Genetic evidence of population structuring in the neotropical freshwater fish Brycon hilarii (Valenciennes, 1850

    Directory of Open Access Journals (Sweden)

    A Sanches

    Full Text Available Brycon hilarii is a migratory fish widely distributed throughout the Paraguay River Basin. It is appreciated in sport fishing and for its superior meat quality. It is also the main species for tourist attraction in the Bonito region (State of Mato Grosso do Sul, Brazil. Considering the lack of information on the genetic structure of the fish of this species, the aim of the present study was to detect the genetic variability of Brycon hilarii through RAPD markers. A total of eighty specimens collected in different seasons at four sites of the Miranda River sub-basin (Paraguay River Basin, Brazil were used for analysis. The results of genetic similarity, Shannon diversity, and AMOVA revealed differences between the sampling sites. Through AMOVA, differences between populations were more evident among the animals collected during the non-reproductive season, corresponding to a time of less movement of these fish. A population structuring model in which B. hilarii appears organized into genetically differentiated reproductive units that coexist and co-migrate through the studied system was suggested, contrasting the currently accepted idea that freshwater migratory fish form large panmictic populations in a determined hydrographic system. Despite the lack of a complete picture regarding the distribution of B. hilarii in the studied region, this initial idea on its population genetic structure could be an important contribution to providing aid for management and conservation programs of these fish.

  20. Multi-Scale Action Effectiveness Research in the Lower Columbia River and Estuary, 2011

    Science.gov (United States)

    2012-05-01

    excluding salmon) while salmon were most predominant during spring 2010 and 2011 months. Four species of salmon and trout , unmarked and marked, were...salmonid catch), followed by chum salmon (10%), marked Chinook salmon (8%), coho salmon (8%), and steelhead trout (ə%). • The densities of juvenile...extract stomach contents from euthanized resident bluegill, pumpkinseed, killifish, and stickleback, we first removed and dissected the anterior digestive

  1. Chemical data for 7 streams in Salmon River Basin - Importance of biotic and abiotic features of salmon habitat implications for juvenile Chinook and steelhead growth and survival

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a large-scale, long-term comparative study that includes many streams (20+ streams in the Salmon River Basin, Idaho, including a few non-salmon streams for...

  2. Genetic differentiation and trade among populations of Peach Palm (Bactris gasipaes Kunth) in the Peruvian Amazon - implications for genetic resource management

    NARCIS (Netherlands)

    Adin, A.; Weber, J.C.; Sotelo Montes, C.; Vidaurre, H.; Vosman, B.J.; Smulders, M.J.M.

    2004-01-01

    Peach palm (Bactris gasipaes Kunth) is cultivated for fruit and 'heart of palm', and is an important component of agroforestry systems in the Peruvian Amazon. In this study, AFLP was used to compare genetic diversity among domesticated populations along the Paranapura and Cuiparillo rivers, which

  3. Genetic polymorphisms in AS3MT and arsenic metabolism in residents of the Red River Delta, Vietnam

    International Nuclear Information System (INIS)

    Agusa, Tetsuro; Iwata, Hisato; Fujihara, Junko; Kunito, Takashi; Takeshita, Haruo; Minh, Tu Binh; Trang, Pham Thi Kim; Viet, Pham Hung; Tanabe, Shinsuke

    2009-01-01

    To elucidate the role of genetic factors in arsenic (As) metabolism, we studied associations of single nucleotide polymorphisms (SNPs) in As (+ 3 oxidation state) methyltransferase (AS3MT) with the As concentrations in hair and urine, and urinary As profile in residents in the Red River Delta, Vietnam. Concentrations of total As in groundwater were 0.7-502 μg/l. Total As levels in groundwater drastically decreased by using sand filter, indicating that the filter could be effective to remove As from raw groundwater. Concentrations of inorganic As (IAs) in urine and total As in hair of males were higher than those of females. A significant positive correlation between monomethylarsonic acid (MMA)/IAs and age in females indicates that older females have higher methylation capacity from IAs to MMA. Body mass index negatively correlated with urinary As concentrations in males. Homozygote for SNPs 4602AA, 35991GG, and 37853GG, which showed strong linkage disequilibrium (LD), had higher percentage (%) of dimethylarsinic acid (DMA) in urine. SNPs 4740 and 12590 had strong LD and associated with urinary %DMA. Although SNPs 6144, 12390, 14215, and 35587 comprised LD cluster, homozygotes in SNPs 12390GG and 35587CC had lower DMA/MMA in urine, suggesting low methylation capacity from MMA to DMA in homo types for these SNPs. SNPs 5913 and 8973 correlated with %MMA and %DMA, respectively. Heterozygote for SNP 14458TC had higher MMA/IAs in urine than TT homozygote, indicating that the heterozygote may have stronger methylation ability of IAs. To our knowledge, this is the first study on the association of genetic factors with As metabolism in Vietnamese.

  4. Spatial extent of analysis influences observed patterns of population genetic structure in a widespread darter species (Percidae)

    Science.gov (United States)

    Argentina, Jane E.; Angermeier, Paul L.; Hallerman, Eric M.; Welsh, Stuart A.

    2018-01-01

    Connectivity among stream fish populations allows for exchange of genetic material and helps maintain genetic diversity, adaptive potential and population stability over time. Changes in species demographics and population connectivity have the potential to permanently alter the genetic patterns of stream fish, although these changes through space and time are variable and understudied in small‐bodied freshwater fish.As a spatially widespread, common species of benthic freshwater fish, the variegate darter (Etheostoma variatum) is a model species for documenting how patterns of genetic structure and diversity respond to increasing isolation due to large dams and how scale of study may shape our understanding of these patterns. We sampled variegate darters from 34 sites across their range in the North American Ohio River basin and examined how patterns of genetic structure and diversity within and between populations responded to historical population changes and dams within and between populations.Spatial scale and configuration of genetic structure varied across the eight identified populations, from tributaries within a watershed, to a single watershed, to multiple watersheds that encompass Ohio River mainstem habitats. This multiwatershed pattern of population structuring suggests genetic dispersal across large distances was and may continue to be common, although some populations remain isolated despite no apparent structural dispersal barriers. Populations with low effective population sizes and evidence of past population bottlenecks showed low allelic richness, but diversity patterns were not related to watershed size, a surrogate for habitat availability. Pairwise genetic differentiation (FST) increased with fluvial distance and was related to both historic and contemporary processes. Genetic diversity changes were influenced by underlying population size and stability, and while instream barriers were not strong determinants of genetic structuring or

  5. Population genetics of the aquatic fungus Tetracladium marchalianum over space and time.

    OpenAIRE

    Jennifer L Anderson; Carol A Shearer

    2011-01-01

    Aquatic hyphomycete fungi are fundamental mediators of energy flow and nutrient spiraling in rivers. These microscopic fungi are primarily dispersed in river currents, undergo substantial annual fluctuations in abundance, and reproduce either predominantly or exclusively asexually. These aspects of aquatic hyphomycete biology are expected to influence levels and distributions of genetic diversity over both spatial and temporal scales. In this study, we investigated the spatiotemporal distribu...

  6. Snohomish Estuary Wetlands Study. Volume II. Basic Information and Evaluation

    Science.gov (United States)

    1978-08-01

    and Monte Cristo Railroad was completed to Lowell in 1892 and shortly thereafter joined the Great Northern tracks near Preston Point. As with the...Waterfowl 241 Counts VI-16 Commercial Catch and Escapement of Salmon 248 in the Vicinity of the Snohomish River VI-17 Annual Cutthroat and Steelhead...Snohomish Basin are primarily waterfowl counts such as those performed by the U.S. Fish and Wildlife Service and Washington State Department of Game

  7. Population genetics of the aquatic fungus Tetracladium marchalianum over space and time.

    Science.gov (United States)

    Anderson, Jennifer L; Shearer, Carol A

    2011-01-14

    Aquatic hyphomycete fungi are fundamental mediators of energy flow and nutrient spiraling in rivers. These microscopic fungi are primarily dispersed in river currents, undergo substantial annual fluctuations in abundance, and reproduce either predominantly or exclusively asexually. These aspects of aquatic hyphomycete biology are expected to influence levels and distributions of genetic diversity over both spatial and temporal scales. In this study, we investigated the spatiotemporal distribution of genotypic diversity in the representative aquatic hyphomycete Tetracladium marchalianum. We sampled populations of this fungus from seven sites, three sites each in two rivers in Illinois, USA, and one site in a Wisconsin river, USA, and repeatedly sampled one population over two years to track population genetic parameters through two seasonal cycles. The resulting fungal isolates (N = 391) were genotyped at eight polymorphic microsatellite loci. In spite of seasonal reductions in the abundance of this species, genotypic diversity was consistently very high and allele frequencies remarkably stable over time. Likewise, genotypic diversity was very high at all sites. Genetic differentiation was only observed between the most distant rivers (∼450 km). Clear evidence that T. marchalianum reproduces sexually in nature was not observed. Additionally, we used phylogenetic analysis of partial β-tubulin gene sequences to confirm that the fungal isolates studied here represent a single species. These results suggest that populations of T. marchalianum may be very large and highly connected at local scales. We speculate that large population sizes and colonization of alternate substrates in both terrestrial and aquatic environments may effectively buffer the aquatic populations from in-stream population fluctuations and facilitate stability in allele frequencies over time. These data also suggest that overland dispersal is more important for structuring populations of T

  8. Population genetics of the aquatic fungus Tetracladium marchalianum over space and time.

    Directory of Open Access Journals (Sweden)

    Jennifer L Anderson

    2011-01-01

    Full Text Available Aquatic hyphomycete fungi are fundamental mediators of energy flow and nutrient spiraling in rivers. These microscopic fungi are primarily dispersed in river currents, undergo substantial annual fluctuations in abundance, and reproduce either predominantly or exclusively asexually. These aspects of aquatic hyphomycete biology are expected to influence levels and distributions of genetic diversity over both spatial and temporal scales. In this study, we investigated the spatiotemporal distribution of genotypic diversity in the representative aquatic hyphomycete Tetracladium marchalianum. We sampled populations of this fungus from seven sites, three sites each in two rivers in Illinois, USA, and one site in a Wisconsin river, USA, and repeatedly sampled one population over two years to track population genetic parameters through two seasonal cycles. The resulting fungal isolates (N = 391 were genotyped at eight polymorphic microsatellite loci. In spite of seasonal reductions in the abundance of this species, genotypic diversity was consistently very high and allele frequencies remarkably stable over time. Likewise, genotypic diversity was very high at all sites. Genetic differentiation was only observed between the most distant rivers (∼450 km. Clear evidence that T. marchalianum reproduces sexually in nature was not observed. Additionally, we used phylogenetic analysis of partial β-tubulin gene sequences to confirm that the fungal isolates studied here represent a single species. These results suggest that populations of T. marchalianum may be very large and highly connected at local scales. We speculate that large population sizes and colonization of alternate substrates in both terrestrial and aquatic environments may effectively buffer the aquatic populations from in-stream population fluctuations and facilitate stability in allele frequencies over time. These data also suggest that overland dispersal is more important for structuring

  9. Enhancing Accuracy of Sediment Total Load Prediction Using Evolutionary Algorithms (Case Study: Gotoorchay River

    Directory of Open Access Journals (Sweden)

    K. Roshangar

    2016-09-01

    Full Text Available Introduction: Exact prediction of transported sediment rate by rivers in water resources projects is of utmost importance. Basically erosion and sediment transport process is one of the most complexes hydrodynamic. Although different studies have been developed on the application of intelligent models based on neural, they are not widely used because of lacking explicitness and complexity governing on choosing and architecting of proper network. In this study, a Genetic expression programming model (as an important branches of evolutionary algorithems for predicting of sediment load is selected and investigated as an intelligent approach along with other known classical and imperical methods such as Larsen´s equation, Engelund-Hansen´s equation and Bagnold´s equation. Materials and Methods: In this study, in order to improve explicit prediction of sediment load of Gotoorchay, located in Aras catchment, Northwestern Iran latitude: 38°24´33.3˝ and longitude: 44°46´13.2˝, genetic programming (GP and Genetic Algorithm (GA were applied. Moreover, the semi-empirical models for predicting of total sediment load and rating curve have been used. Finally all the methods were compared and the best ones were introduced. Two statistical measures were used to compare the performance of the different models, namely root mean square error (RMSE and determination coefficient (DC. RMSE and DC indicate the discrepancy between the observed and computed values. Results and Discussions: The statistical characteristics results obtained from the analysis of genetic programming method for both selected model groups indicated that the model 4 including the only discharge of the river, relative to other studied models had the highest DC and the least RMSE in the testing stage (DC= 0.907, RMSE= 0.067. Although there were several parameters applied in other models, these models were complicated and had weak results of prediction. Our results showed that the model 9

  10. Isozyme-based genetic fingerprinting of Manihot sp

    African Journals Online (AJOL)

    Prof. Ogunji

    1973-06-22

    Jun 22, 1973 ... Isozyme-based genetic fingerprinting of Manihot sp. Efisue, A. A.. Development of Crop & Soil Science, University of Port Harcourt P.M.B. 5323 Choba, Port Harcourt,. Rivers State, Nigeria. (Received 29:10:13, Accepted 20:12:13). Abstract. Many cassava varieties have been released into farmers' fields in ...

  11. Freshwater gastropods diversity hotspots: three new species from the Uruguay River (South America

    Directory of Open Access Journals (Sweden)

    Diego E. Gutiérrez Gregoric

    2016-06-01

    Full Text Available Background: The Atlantic Forest is globally one of the priority ecoregions for biodiversity conservation. In Argentina, it is represented by the Paranense Forest, which covers a vast area of Misiones Province between the Paraná and Uruguay rivers. The Uruguay River is a global hotspot of freshwater gastropod diversity, here mainly represented by Tateidae (genus Potamolithus and to a lesser extent Chilinidae. The family Chilinidae (Gastropoda, Hygrophila includes 21 species currently recorded in Argentina, and three species in the Uruguay River. The species of Chilinidae occur in quite different types of habitats, but generally in clean oxygenated water recording variable temperature ranges. Highly oxygenated freshwater environments (waterfalls and rapids are the most vulnerable continental environments. We provide here novel information on three new species of Chilinidae from environments containing waterfalls and rapids in the Uruguay River malacological province of Argentina. Materials and Methods: The specimens were collected in 2010. We analyzed shell, radula, and nervous and reproductive systems, and determined the molecular genetics. The genetic distance was calculated for two mitochondrial markers (cytochrome c oxidase subunit I–COI- and cytochrome b -Cyt b- for these three new species and the species recorded from the Misionerean, Uruguay River and Lower Paraná-Río de la Plata malacological provinces. In addition, the COI data were analyzed phylogenetically by the neighbor-joining and Bayesian inference techniques. Results: The species described here are different in terms of shell, radula and nervous and reproductive systems, mostly based on the sculpture of the penis sheath. Phylogenetic analyses grouped the three new species with those present in the Lower Paraná-Río de la Plata and Uruguay River malacological provinces. Discussion: Phylogenetic analyses confirm the separation between the Uruguay River and the Misionerean

  12. Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks

    Science.gov (United States)

    Lindy B. Mullen; H. Arthur Woods; Michael K. Schwartz; Adam J. Sepulveda; Winsor H. Lowe

    2010-01-01

    The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho...

  13. Hybridization threatens shoal bass populations in the Upper Chattahoochee River Basin: Chapter 37

    Science.gov (United States)

    Dakin, Elizabeth E; Porter, Brady A.; Freeman, Byron J.; Long, James M.; Tringali, Michael D.; Long, James M.; Birdsong, Timothy W.; Allen, Micheal S.

    2015-01-01

    Shoal bass are native only to the Apalachicola-Chattahoochee-Flint river system of Georgia, Alabama, and Florida, and are vulnerable to extinction as a result of population fragmentation and introduction of non-native species. We assessed the genetic integrity of isolated populations of shoal bass in the upper Chattahoochee River basin (above Lake Lanier, Big Creek, and below Morgan Falls Dam) and sought to identify rates of hybridization with non-native, illegally stocked smallmouth bass and spotted bass.

  14. Pollutant source identification model for water pollution incidents in small straight rivers based on genetic algorithm

    Science.gov (United States)

    Zhang, Shou-ping; Xin, Xiao-kang

    2017-07-01

    Identification of pollutant sources for river pollution incidents is an important and difficult task in the emergency rescue, and an intelligent optimization method can effectively compensate for the weakness of traditional methods. An intelligent model for pollutant source identification has been established using the basic genetic algorithm (BGA) as an optimization search tool and applying an analytic solution formula of one-dimensional unsteady water quality equation to construct the objective function. Experimental tests show that the identification model is effective and efficient: the model can accurately figure out the pollutant amounts or positions no matter single pollution source or multiple sources. Especially when the population size of BGA is set as 10, the computing results are sound agree with analytic results for a single source amount and position identification, the relative errors are no more than 5 %. For cases of multi-point sources and multi-variable, there are some errors in computing results for the reasons that there exist many possible combinations of the pollution sources. But, with the help of previous experience to narrow the search scope, the relative errors of the identification results are less than 5 %, which proves the established source identification model can be used to direct emergency responses.

  15. Cytogenetic and morphological diversity in populations of Astyanax fasciatus (Teleostei, Characidae from Brazilian northeastern river basins

    Directory of Open Access Journals (Sweden)

    Aline Souza Medrado

    2008-01-01

    Full Text Available In the present work, morphometric and cytogenetic analyses were carried out in populations of the fish Astyanax fasciatus (Characidae from Contas and Recôncavo Sul River basins (State of Bahia, Brazil, providing new data on the genetic structure of this species along the region. Based on morphologic measurements, we observed that populations from the same hydrographic basin were more similar to each other (Contas and Preto do Costa Rivers, and remarkably divergent from Recôncavo Sul (Mineiro Stream, as indicated by clustering analysis. Cytogenetic data revealed a same diploid number for all populations (2n = 48, but distinct karyotype formulae (8M+24SM+12ST+4A, FN = 92 in Contas River, 8M+24SM+10ST+6A, FN = 90 in Preto do Costa River, and 8M+18SM+16ST+6A, FN = 90 in Mineiro Stream. Ag-NORs were identified at telomeres on a subtelocentric chromosome pair, although multiple ribosomal sites have been detected in some specimens from Contas River. These results show that A. fasciatus populations from northeastern river basins are well differentiated and present peculiar cytogenetic features when compared to populations from other regions. Therefore, the apparent chromosomal plasticity of this species, likely to represent a complex of cryptic forms, is corroborated. Finally, we demonstrated that morphological features can be successfully used to support other sources of genetic information.

  16. Temporal genetic population structure and interannual variation in migration behavior of Pacific Lamprey Entosphenus tridentatus

    Science.gov (United States)

    Clemens, Benjamin J.; Wyss, Lance A.; McCoun, Rebecca; Courter, Ian; Schwabe, Lawrence; Peery, Christopher; Schreck, Carl B.; Spice, Erin K.; Docker, Margaret F.

    2017-01-01

    Studies using neutral loci suggest that Pacific lamprey, Entosphenus tridentatus, lack strong spatial genetic population structure. However, it is unknown whether temporal genetic population structure exists. We tested whether adult Pacific lamprey: (1) show temporal genetic population structure; and (2) migrate different distances between years. We non-lethally sampled lamprey for DNA in 2009 and 2010 and used eight microsatellite loci to test for genetic population structure. We used telemetry to record the migration behaviors of these fish. Lamprey were assignable to three moderately differentiated genetic clusters (FST = 0.16–0.24 for all pairwise comparisons): one cluster was composed of individuals from 2009, and the other two contained individuals from 2010. The FST value between years was 0.13 and between genetic clusters within 2010 was 0.20. A total of 372 (72.5%) fish were detected multiple times during their migrations. Most fish (69.9%) remained in the mainstem Willamette River; the remaining 30.1% migrated into tributaries. Eighty-two lamprey exhibited multiple back-and-forth movements among tributaries and the mainstem, which may indicate searching behaviors. All migration distances were significantly greater in 2010, when the amplitude of river discharge was greater. Our data suggest genetic structuring between and within years that may reflect different cohorts.

  17. The effects of the pyrethroid insecticide, bifenthrin, on steroid hormone levels and gonadal development of steelhead (Oncorhynchus mykiss) under hypersaline conditions.

    Science.gov (United States)

    Forsgren, Kristy L; Riar, Navneet; Schlenk, Daniel

    2013-06-01

    The San Francisco Bay Estuary and Sacramento-San Joaquin Delta (Bay-Delta) is an important breeding and nursery ground for fish. Of particular interest are salmonids that migrate through fresh and saltwater areas polluted with various contaminants including bifenthrin, a widely used pyrethroid insecticide. Male steelhead (Oncorhynchus mykiss) exposed to bifenthrin (0.1 and 1.5μg/L) for two weeks had a lower gonadosomatic index (GSI) in freshwater but were not affected by concurrent bifenthrin exposure and saltwater acclimation. Plasma estradiol-17β (E2) levels and ovarian follicle diameter of fish exposed to bifenthrin (0.1 and 1.5μg/L) in freshwater significantly increased. Under hypersaline conditions, fish exposed to bifenthrin had significantly reduced E2 levels and smaller follicles, and unhealthy ovarian follicles were observed. Given the occurrence of bifenthrin in surface waters of the Bay Delta, understanding the impact of bifenthrin on wildlife is necessary for improving risk assessments of pyrethroids in this important ecosystem. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Genetic isolation and morphological divergence mediated by high-energy rapids in two cichlid genera from the lower Congo rapids

    Directory of Open Access Journals (Sweden)

    Stiassny Melanie LJ

    2010-05-01

    Full Text Available Abstract Background It is hypothesized that one of the mechanisms promoting diversification in cichlid fishes in the African Great Lakes has been the well-documented pattern of philopatry along shoreline habitats leading to high levels of genetic isolation among populations. However lake habitats are not the only centers of cichlid biodiversity - certain African rivers also contain large numbers of narrowly endemic species. Patterns of isolation and divergence in these systems have tended to be overlooked and are not well understood. Results We examined genetic and morphological divergence among populations of two narrowly endemic cichlid species, Teleogramma depressum and Lamprologus tigripictilis, from a 100 km stretch of the lower Congo River using both nDNA microsatellites and mtDNA markers along with coordinate-based morphological techniques. In L. tigripictilis, the strongest genetic break was concordant with measurable phenotypic divergence but no morphological disjunction was detected for T. depressum despite significant differentiation at mtDNA and nDNA microsatellite markers. Conclusions The genetic markers revealed patterns of philopatry and estimates of genetic isolation that are among the highest reported for any African cichlid species over a comparable geographic scale. We hypothesize that the high levels of philopatry observed are generated and maintained by the extreme hydrology of the lower Congo River.

  19. Monitoring of downstream salmon and steelhead trout at federal hydroelectric facilities, annual report 2001.; ANNUAL

    International Nuclear Information System (INIS)

    United States. Bonneville Power Administration. Division of Fish and Wildlife.

    2002-01-01

    The seaward migration of juvenile salmonids was monitored by the Pacific States Marine Fisheries Commission (PSMFC) at John Day Dam, located at river mile 216, and at Bonneville Dam, located at river mile 145 on the Columbia River (Figure 1). The PSMFC Smolt Monitoring Project is part of a larger Smolt Monitoring Program (SMP) coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Authority. This program is carried out under the auspices of the Northwest Power Planning Council's Fish and Wildlife Program and is funded by the Bonneville Power Administration

  20. Population genetic structure in natural and reintroduced beaver (Castor fiber populations in Central Europe

    Directory of Open Access Journals (Sweden)

    Kautenburger, R.

    2008-12-01

    Full Text Available Castor fiber Linnaeus, 1758 is the only indigenous species of the genus Castor in Europe and Asia. Due to extensive hunting until the beginning of the 20th century, the distribution of the formerly widespread Eurasian beaver was dramatically reduced. Only a few populations remained and these were in isolated locations, such as the region of the German Elbe River. The loss of genetic diversity in small or captive populations throughgenetic drift and inbreeding is a severe conservation problem. However, the reintroduction of beaver populations from several regions in Europe has shown high viability and populations today are growing fast. In the present study we analysed the population genetic structure of a natural and two reintroduced beaver populations in Germany and Austria. Furthermore, we studied the genetic differentiation between two beaver species, C. fiber and the American beaver (C. canadensis, using RAPD (Random Amplified Polymorphic DNA as a genetic marker. The reintroduced beaver populations of different origins and the autochthonous population of the Elbe River showed a similar low genetic heterogeneity. There was an overall high genetic similarity in the species C. fiber, and no evidence was found for a clear subspecific structure in the populations studied.

  1. Genetic diversity, endemism and phylogeny of lampreys within the genus Lampetra sensu stricto (Petromyzontiformes: Petromyzontidae) in western North America.

    Science.gov (United States)

    Boguski, D A; Reid, S B; Goodman, D H; Docker, M F

    2012-11-01

    Phylogenetic structure of four Lampetra species from the Pacific drainage of North America (western brook lamprey Lampetra richardsoni, Pacific brook lamprey Lampetra pacifica, river lamprey Lampetra ayresii and Kern brook lamprey Lampetra hubbsi) and unidentified Lampetra specimens (referred to as Lampetra sp.) from 36 locations was estimated using the mitochondrial cytochrome b gene. Maximum parsimony and Bayesian inferences did not correspond with any taxonomic scheme proposed to date. Rather, although L. richardsoni (from Alaska to California) and L. ayresii (from British Columbia to California) together constituted a well-supported clade distinct from several genetically divergent Lampetra populations in Oregon and California, these two species were not reciprocally monophyletic. The genetically divergent populations included L. pacifica (from the Columbia River basin) and L. hubbsi (from the Kern River basin) and four Lampetra sp. populations in Oregon (Siuslaw River and Fourmile Creek) and California (Kelsey and Mark West Creeks). These four Lampetra sp. populations showed genetic divergence between 2.3 and 5.7% from any known species (and up to 8.0% from each other), and may represent morphologically cryptic and thus previously undescribed species. A fifth population (from Paynes Creek, California) may represent a range extension of L. hubbsi into the Upper Sacramento River. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  2. Seasonal fish and invertebrate communities in three northern California estuaries

    OpenAIRE

    Osborn, Katherine

    2017-01-01

    The majority of Northern California estuaries are small, flooded, river valleys that are largely unstudied due to their small sizes and remote locations. Yet these estuaries serve as important nursery areas for many marine fish species including rockfish, flatfish, smelt, and herring, and they are vital to anadromous species such as Chinook Salmon (Oncorhynchus tshawytscha) and Steelhead (O. mykiss). I sampled the summer and winter fish and invertebrate communities of the Big, Mad, and Ten Mi...

  3. Umatilla Hatchery Monitoring and Evaluation, 1992-1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, MaryLouise; Hayes, Michael C.; Groberg, Jr., Warren J. (Oregon Department of Fish and Wildlife)

    1994-06-01

    The Umatilla Hatchery is the foundation for rehabilitating chinook salmon and enhancing summer steelhead in the Umatilla River and expected to contribute significantly to the Northwest Power Planning Council`s goal of doubling salmonid production in the Columbia Basin. This report covers the second year of comprehensive monitoring and evaluation of the Umatilla Hatchery. As both the hatchery and the evaluation study are in the early stages of implementation, much of the information contained in this report is preliminary.

  4. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Yakima River Basin, 1934-1942, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1996-01-01

    This document contains summary reports of stream habitat surveys, conducted in the Yakima River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1934-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the Bonneville Power Administration

  5. Explore the impacts of river flow and quality on biodiversity for water resources management by AI techniques

    Science.gov (United States)

    Chang, Fi-John; Tsai Tsai, Wen-Ping; Chang, Li-Chiu

    2016-04-01

    Water resources development is very challenging in Taiwan due to her diverse geographic environment and climatic conditions. To pursue sustainable water resources development, rationality and integrity is essential for water resources planning. River water quality and flow regimes are closely related to each other and affect river ecosystems simultaneously. This study aims to explore the complex impacts of water quality and flow regimes on fish community in order to comprehend the situations of the eco-hydrological system in the Danshui River of northern Taiwan. To make an effective and comprehensive strategy for sustainable water resources management, this study first models fish diversity through implementing a hybrid artificial neural network (ANN) based on long-term observational heterogeneity data of water quality, stream flow and fish species in the river. Then we use stream flow to estimate the loss of dissolved oxygen based on back-propagation neural networks (BPNNs). Finally, the non-dominated sorting genetic algorithm II (NSGA-II) is established for river flow management over the Shihmen Reservoir which is the main reservoir in this study area. In addition to satisfying the water demands of human beings and ecosystems, we also consider water quality for river flow management. The ecosystem requirement takes the form of maximizing fish diversity, which can be estimated by the hybrid ANN. The human requirement is to provide a higher satisfaction degree of water supply while the water quality requirement is to reduce the loss of dissolved oxygen in the river among flow stations. The results demonstrate that the proposed methodology can offer diversified alternative strategies for reservoir operation and improve reservoir operation strategies for producing downstream flows that could better meet both human and ecosystem needs as well as maintain river water quality. Keywords: Artificial intelligence (AI), Artificial neural networks (ANNs), Non

  6. Comparative riverscape genetics reveals reservoirs of genetic diversity for conservation and restoration of Great Plains fishes.

    Science.gov (United States)

    Osborne, Megan J; Perkin, Joshuah S; Gido, Keith B; Turner, Thomas F

    2014-12-01

    We used comparative landscape genetics to examine the relative roles of historical events, intrinsic traits and landscape factors in determining the distribution of genetic diversity of river fishes across the North American Great Plains. Spatial patterns of diversity were overlaid on a patch-based graphical model and then compared within and among three species that co-occurred across five Great Plains watersheds. Species differing in reproductive strategy (benthic vs. pelagic-spawning) were hypothesized to have different patterns of genetic diversity, but the overriding factor shaping contemporary patterns of diversity was the signature of past climates and geological history. Allelic diversity was significantly higher at southern latitudes for Cyprinella lutrensis and Hybognathus placitus, consistent with northward expansion from southern Pleistocene refugia. Within the historical context, all species exhibited lowered occupancy and abundance in heavily fragmented and drier upstream reaches, particularly H. placitus; a pelagic-spawning species, suggesting rates of extirpation have outpaced losses of genetic diversity in this species. Within most tributary basins, genetically diverse populations of each species persisted. Hence, reconnecting genetically diverse populations with those characterized by reduced diversity (regardless of their position within the riverine network) would provide populations with greater genetic and demographic resilience. We discuss cases where cross-basin transfer may be appropriate to enhance genetic diversity and mitigate negative effects of climate change. Overall, striking similarities in genetic patterns and in response to fragmentation and dewatering suggest a common strategy for genetic resource management in this unique riverine fish assemblage. © 2014 John Wiley & Sons Ltd.

  7. Umatilla Hatchery Monitoring and Evaluation, 1998-1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Stonecypher, R. Wess; Groberg, Jr., Warren J.; Farman, Brett M. (Oregon Department of Fish and Wildlife, Portland, OR)

    2001-07-01

    The Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program authorized construction of Umatilla Fish Hatchery (UFH) in 1986. Measure 703 of the program amended the original authorization for the hatchery and specified evaluation of the Michigan (MI) raceways using oxygen supplementation to reach production goals of 290,000 lb of chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss). The hatchery was completed in fall 1991. Partial justification for the hatchery was to evaluate new production and supplementation techniques. MI raceways at UFH increase smolt production with a limited water supply. Test results for MI raceways will have systematic application in the Columbia River basin. The UFH is the foundation for rehabilitating chinook salmon and enhancing steelhead in the Umatilla River (CTUIR and ODFW 1990) and is expected to contribute significantly to the Northwest Power Planning Council's goal of doubling salmon production in the Columbia Basin. Hatchery production goals and a comprehensive monitoring and evaluation plan were presented in the Umatilla Hatchery Master Plan (CTUIR and ODFW 1990). The Comprehensive Plan for Monitoring and Evaluation of Umatilla Hatchery (Carmichael 1990) was approved by the Northwest Power Planning Council as a critical adaptive management guide for fisheries rehabilitation in the Umatilla River. Monitoring and evaluation will be used to increase knowledge about uncertainties inherent in the fisheries rehabilitation and will complement the developing systematic monitoring and evaluation program. The monitoring and evaluation goals are: (1) Provide information and recommendations for the culture and release of hatchery fish, harvest regulations, and natural escapement to accomplish long-term natural and hatchery production goals in the Umatilla River basin that are consistent with provisions of the Council's Columbia River Basin Fish and Wildlife Program. (2) Assess the

  8. Umatilla Hatchery monitoring and evaluation : annual report, 1999; ANNUAL

    International Nuclear Information System (INIS)

    2001-01-01

    The Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program authorized construction of Umatilla Fish Hatchery (UFH) in 1986. Measure 703 of the program amended the original authorization for the hatchery and specified evaluation of the Michigan (MI) raceways using oxygen supplementation to reach production goals of 290,000 lb of chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss). The hatchery was completed in fall 1991. Partial justification for the hatchery was to evaluate new production and supplementation techniques. MI raceways at UFH increase smolt production with a limited water supply. Test results for MI raceways will have systematic application in the Columbia River basin. The UFH is the foundation for rehabilitating chinook salmon and enhancing steelhead in the Umatilla River (CTUIR and ODFW 1990) and is expected to contribute significantly to the Northwest Power Planning Council's goal of doubling salmon production in the Columbia Basin. Hatchery production goals and a comprehensive monitoring and evaluation plan were presented in the Umatilla Hatchery Master Plan (CTUIR and ODFW 1990). The Comprehensive Plan for Monitoring and Evaluation of Umatilla Hatchery (Carmichael 1990) was approved by the Northwest Power Planning Council as a critical adaptive management guide for fisheries rehabilitation in the Umatilla River. Monitoring and evaluation will be used to increase knowledge about uncertainties inherent in the fisheries rehabilitation and will complement the developing systematic monitoring and evaluation program. The monitoring and evaluation goals are: (1) Provide information and recommendations for the culture and release of hatchery fish, harvest regulations, and natural escapement to accomplish long-term natural and hatchery production goals in the Umatilla River basin that are consistent with provisions of the Council's Columbia River Basin Fish and Wildlife Program. (2) Assess the success of achieving

  9. Isolation and characterization of rhamnose-binding lectins from eggs of steelhead trout (Oncorhynchus mykiss) homologous to low density lipoprotein receptor superfamily.

    Science.gov (United States)

    Tateno, H; Saneyoshi, A; Ogawa, T; Muramoto, K; Kamiya, H; Saneyoshi, M

    1998-07-24

    Two L-rhamnose-binding lectins named STL1 and STL2 were isolated from eggs of steelhead trout (Oncorhynchus mykiss) by affinity chromatography and ion exchange chromatography. The apparent molecular masses of purified STL1 and STL2 were estimated to be 84 and 68 kDa, respectively, by gel filtration chromatography. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization time of flight mass spectrometry of these lectins revealed that STL1 was composed of noncovalently linked trimer of 31.4-kDa subunits, and STL2 was noncovalently linked trimer of 21.5-kDa subunits. The minimum concentrations of STL1, a major component, and STL2, a minor component, needed to agglutinate rabbit erythrocytes were 9 and 0.2 microg/ml, respectively. The most effective saccharide in the hemagglutination inhibition assay for both STL1 and STL2 was L-rhamnose. Saccharides possessing the same configuration of hydroxyl groups at C2 and C4 as that in L-rhamnose, such as L-arabinose and D-galactose, also inhibited. The amino acid sequence of STL2 was determined by analysis of peptides generated by digestion of the S-carboxamidomethylated protein with Achromobacter protease I or Staphylococcus aureus V8 protease. The STL2 subunit of 195 amino acid residues proved to have a unique polypeptide architecture; that is, it was composed of two tandemly repeated homologous domains (STL2-N and STL2-C) with 52% internal homology. These two domains showed a sequence homology to the subunit (105 amino acid residues) of D-galactoside-specific sea urchin (Anthocidaris crassispina) egg lectin (37% for STL2-N and 46% for STL2-C, respectively). The N terminus of the STL1 subunit was blocked with an acetyl group. However, a partial amino acid sequence of the subunit showed a sequence similarity to STL2. Moreover, STL2 also showed a sequence homology to the ligand binding domain of the vitellogenin receptor. We have also employed surface plasmon resonance biosensor

  10. Trophic ontogeny of fluvial Bull Trout and seasonal predation on Pacific Salmon in a riverine food web

    Science.gov (United States)

    Lowery, Erin D.; Beauchamp, David A.

    2015-01-01

    Bull Trout Salvelinus confluentus are typically top predators in their host ecosystems. The Skagit River in northwestern Washington State contains Bull Trout and Chinook Salmon Oncorhynchus tshawytschapopulations that are among the largest in the Puget Sound region and also contains a regionally large population of steelhead O. mykiss (anadromous Rainbow Trout). All three species are listed as threatened under the Endangered Species Act (ESA). Our objective was to determine the trophic ecology of Bull Trout, especially their role as predators and consumers in the riverine food web. We seasonally sampled distribution, diets, and growth of Bull Trout in main-stem and tributary habitats during 2007 and winter–spring 2008. Consumption rates were estimated with a bioenergetics model to (1) determine the annual and seasonal contributions of different prey types to Bull Trout energy budgets and (2) estimate the potential impacts of Bull Trout predation on juvenile Pacific salmon populations. Salmon carcasses and eggs contributed approximately 50% of the annual energy budget for large Bull Trout in main-stem habitats, whereas those prey types were largely inaccessible to smaller Bull Trout in tributary habitats. The remaining 50% of the energy budget was acquired by eating juvenile salmon, resident fishes, and immature aquatic insects. Predation on listed Chinook Salmon and steelhead/Rainbow Trout was highest during winter and spring (January–June). Predation on juvenile salmon differed between the two study years, likely due to the dominant odd-year spawning cycle for Pink Salmon O. gorbuscha. The population impact on ocean- and stream-type Chinook Salmon was negligible, whereas the impact on steelhead/Rainbow Trout was potentially very high. Due to the ESA-listed status of Bull Trout, steelhead, and Chinook Salmon, the complex trophic interactions in this drainage provide both challenges and opportunities for creative adaptive management strategies.

  11. Genetic diversity in Chilean populations of rainbow trout, Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Claudia B Cárcamo

    2015-03-01

    Full Text Available The rainbow trout Oncorhynchus mykiss, was first introduced in Chile between 1905 and 1920 and is currently widely distributed in Chile from Antofagasta (23°S to Patagonia (55°S. The broad range of the geographic and climatic distributions of this species in Chile offers a unique opportunity to study the effect of naturalization of an introduced species on its genetic variability. It is of particular importance to observe the genetic variability of populations in the northern range of this species distribution, in a transition zone where a Mediterranean-type climate changes to an arid climate. The present study analyzed allozymic variability and distribution within and between populations of O. mykiss from the river basins of Elqui and Limari rivers, and six culture strains, using starch-gel protein electrophoresis. Populations were found to be in Hardy-Weinberg equilibrium and the average values of He (0.045, polymorphism (13.9% and allele per locus (1.19 are similar to rainbow trout in its native distributional range. About 77.8% of the genetic variability was within population, similar to the variability reported for wild populations in the northern hemisphere. However, a marked genetic differentiation between wild populations was also found. This is likely to be the consequence of initial founder effects followed by subsequent introgression of resident populations caused by reseeding with trout of different origins in both basins.

  12. Adaptation of Arabidopsis thaliana to the Yangtze River basin.

    Science.gov (United States)

    Zou, Yu-Pan; Hou, Xing-Hui; Wu, Qiong; Chen, Jia-Fu; Li, Zi-Wen; Han, Ting-Shen; Niu, Xiao-Min; Yang, Li; Xu, Yong-Chao; Zhang, Jie; Zhang, Fu-Min; Tan, Dunyan; Tian, Zhixi; Gu, Hongya; Guo, Ya-Long

    2017-12-28

    Organisms need to adapt to keep pace with a changing environment. Examining recent range expansion aids our understanding of how organisms evolve to overcome environmental constraints. However, how organisms adapt to climate changes is a crucial biological question that is still largely unanswered. The plant Arabidopsis thaliana is an excellent system to study this fundamental question. Its origin is in the Iberian Peninsula and North Africa, but it has spread to the Far East, including the most south-eastern edge of its native habitats, the Yangtze River basin, where the climate is very different. We sequenced 118 A. thaliana strains from the region surrounding the Yangtze River basin. We found that the Yangtze River basin population is a unique population and diverged about 61,409 years ago, with gene flows occurring at two different time points, followed by a population dispersion into the Yangtze River basin in the last few thousands of years. Positive selection analyses revealed that biological regulation processes, such as flowering time, immune and defense response processes could be correlated with the adaptation event. In particular, we found that the flowering time gene SVP has contributed to A. thaliana adaptation to the Yangtze River basin based on genetic mapping. A. thaliana adapted to the Yangtze River basin habitat by promoting the onset of flowering, a finding that sheds light on how a species can adapt to locales with very different climates.

  13. Gene flow and maintenance of genetic diversity in invasive mosquitofish (Gambusia holbrooki.

    Directory of Open Access Journals (Sweden)

    David Díez-del-Molino

    Full Text Available Genetic analyses contribute to studies of biological invasions by mapping the origin and dispersal patterns of invasive species occupying new territories. Using microsatellite loci, we assessed the genetic diversity and spatial population structure of mosquitofish (Gambusia holbrooki that had invaded Spanish watersheds, along with the American locations close to the suspected potential source populations. Mosquitofish populations from the Spanish streams that were studied had similar levels of genetic diversity to the American samples; therefore, these populations did not appear to have undergone substantial losses of genetic diversity during the invasion process. Population structure analyses indicated that the Spanish populations fell into four main clusters, which were primarily associated with hydrography. Dispersal patterns indicated that local populations were highly connected upstream and downstream through active dispersal, with an average of 21.5% fish from other locations in each population. After initially introducing fish to one location in a given basin, such dispersal potential might contribute to the spread and colonization of suitable habitats throughout the entire river basin. The two-dimension isolation-by-distance pattern here obtained, indicated that the human-mediated translocation of mosquitofish among the three study basins is a regular occurrence. Overall, both phenomena, high natural dispersal and human translocation, favor gene flow among river basins and the retention of high genetic diversity, which might help retain the invasive potential of mosquitofish populations.

  14. Genetic population structure in an equatorial sparrow: roles for culture and geography.

    Science.gov (United States)

    Danner, J E; Fleischer, R C; Danner, R M; Moore, I T

    2017-06-01

    Female preference for local cultural traits has been proposed as a barrier to breeding among animal populations. As such, several studies have found correlations between male bird song dialects and population genetics over relatively large distances. To investigate whether female choice for local dialects could act as a barrier to breeding between nearby and contiguous populations, we tested whether variation in male song dialects explains genetic structure among eight populations of rufous-collared sparrows (Zonotrichia capensis) in Ecuador. Our study sites lay along a transect, and adjacent study sites were separated by approximately 25 km, an order of magnitude less than previously examined for this and most other species. This transect crossed an Andean ridge and through the Quijos River Valley, both of which may be barriers to gene flow. Using a variance partitioning approach, we show that song dialect is important in explaining population genetics, independent of the geographic variables: distance, the river valley and the Andean Ridge. This result is consistent with the hypothesis that song acts as a barrier to breeding among populations in close proximity. In addition, songs of contiguous populations differed by the same degree or more than between two populations previously shown to exhibit female preference for local dialect, suggesting that birds from these populations would also breed preferentially with locals. As expected, all geographic variables (distance, the river valley and the Andean Ridge) also predicted population genetic structure. Our results have important implications for the understanding whether, and at what spatial scale, culture can affect population divergence. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  15. Genetic Analysis of Snake River Sockeye Salmon (Oncorhynchus Nerka), 2003 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faler, Joyce; Powell, Madison

    2003-12-01

    A total of 1720 Oncorhynchus nerka tissue samples from 40 populations were characterized using mitochondrial DNA RFLPs (Restriction Fragment Length Polymorphisms). Analysis of anadromous sockeye populations indicated the historical presence of four major maternal lineages. Thirty-five composite mitochondrial haplotypes were observed from the 40 populations of O. nerka sampled throughout the Pacific Northwest. Six of these composite haplotypes ranged in frequency from 7-26% overall and were commonly observed in most populations. The six haplotypes together comprised 90% of the sampled O. nerka. An average of 4.6 composite haplotypes were observed per population. Genetic markers used were satisfactory in separating Redfish Lake anadromous sockeye, residual sockeye and outmigrants from the sympatric kokanee population that spawns in the Fishhook Creek tributary. Outmigrants appear to be primarily composed of progeny from resident residual sockeye, and captively-reared progeny of the captive broodstock program. Thus, residual sockeye may be considered a suitable source of genetic variation to maintain genetic diversity among captive broodstocks of anadromous sockeye. Fishhook Creek kokanee are genetically diverse and during spawning, are temporally and spatially isolated from the residual sockeye population. Eleven composite haplotypes were observed in the kokanee population. The unusually high number of haplotypes is most likely a consequence of periodic stocking of Redfish Lake with kokanee from other sources. Genetic data from Redfish Lake creel samples taken during 1996-1999 putatively indicate the incidental take of a listed resident sockeye.

  16. River water pollution condition in upper part of Brantas River and Bengawan Solo River

    Science.gov (United States)

    Roosmini, D.; Septiono, M. A.; Putri, N. E.; Shabrina, H. M.; Salami, I. R. S.; Ariesyady, H. D.

    2018-01-01

    Wastewater and solid waste from both domestic and industry have been known to give burden on river water quality. Most of river water quality problem in Indonesia has start in the upper part of river due to anthropogenic activities, due to inappropriate land use management including the poor wastewater infrastructure. Base on Upper Citarum River Water pollution problem, it is interesting to study the other main river in Java Island. Bengawan Solo River and Brantas River were chosen as the sample in this study. Parameters assessed in this study are as follows: TSS, TDS, pH, DO, and hexavalent chromium. The status of river water quality are assess using STORET method. Based on (five) parameters, STORET value showed that in Brantas River, Pagerluyung monitoring point had the worst quality relatively compared to other monitoring point in Brantas River with exceeding copper, lead and tin compared to the stream standard in East Java Provincial Regulation No. 2 in 2008. Brantas River was categorized as lightly polluted river based on monitoring period 2011-2015 in 5 monitoring points, namely Pendem, Sengguruh, Kademangan, Meritjan and Kertosono.

  17. Juvenile salmon usage of the Skeena River estuary.

    Science.gov (United States)

    Carr-Harris, Charmaine; Gottesfeld, Allen S; Moore, Jonathan W

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2-8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that

  18. The genetic profiles of two salmonid populations from Romania obtained through nuclear markers analysis

    Directory of Open Access Journals (Sweden)

    Ramona Nechifor

    2017-05-01

    Full Text Available The Salmonidae fish family is well represented in Romanian fauna, with a total of six species in the wild and reared in fish farms. Among them, the brown trout (Salmo trutta fario can be found in all major Romanian river basins. However, anthropogenic activities might disrupt salmonids’ habitats, so that inbreeding and genetic isolation might easily occur in the wild populations. We analyzed two wild brown trout populations from rivers targeted by anthropogenic activities, by using nuclear markers and genotyping in order to observe their genetic structure. We analyzed nine microsatellites and we observed their alleles frequencies, number of private alleles, observed and expected heterozygosity, as well as their population structure. The two populations are not in Hardy-Weinberg equilibrium for most of the loci and the inbreeding coefficient for both populations suggests a heterozygote deficit. Further sequencing data are needed in order to have a better view upon their complete genetic structure.

  19. Three-dimensional migration behavior of juvenile salmonids in reservoirs and near dams

    OpenAIRE

    Li, Xinya; Deng, Zhiqun D.; Fu, Tao; Brown, Richard S.; Martinez, Jayson J.; McMichael, Geoffrey A.; Trumbo, Bradly A.; Ahmann, Martin L.; Renholds, Jon F.; Skalski, John R.; Townsend, Richard L.

    2018-01-01

    To acquire 3-D tracking data on juvenile salmonids, Juvenile Salmon Acoustic Telemetry System (JSATS) cabled hydrophone arrays were deployed in the forebays of two dams on the Snake River and at a mid-reach reservoir between the dams. The depth distributions of fish were estimated by statistical analyses performed on large 3-D tracking data sets from ~33,500 individual acoustic tagged yearling and subyearling Chinook salmon and juvenile steelhead at the two dams in 2012 and subyearling Chinoo...

  20. Idaho Habitat/Natural Production Monitoring Part I, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hall-Griswold, Judy A.; Leitzinger, Eric J.; Petrosky, C.E. (Idaho Department of Fish and Game, Boise, ID

    1995-11-01

    A total of 333 stream sections were sampled in 1994 to monitor in chinook salmon and steelhead trout parr populations in Idaho. Percent carry capacity and density estimates were summarized by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon. These data were also summarized by cells and subbasins as defined in Idaho Department of Fish and Game`s 1992-1996 Anadromous Fish Management Plan.

  1. Tucannon River Spring Chinook Salmon Captive Brood Program, FY 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bumgarner, Joseph D.; Gallinat, Michael P.

    2001-06-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood program from program inception (1997) through April 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will eventually sustain itself. The project goal is to rear captive salmon to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts), and wild production, is expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The Master Plan, Environmental Assessment, and most facility modifications at LFH were completed for the Tucannon River spring chinook captive broodstock program during FY2000 and FY2001. DNA samples collected since 1997 have been sent to the WDFW genetics lab in Olympia for baseline DNA analysis. Results from the genetic analysis are not available at this time. The captive broodstock program is planned to collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2000 BY fish have been selected. As of April 30, 2001, WDFW has 172 BY 1997, 262 BY 1998, 407 BY 1999, and approximately 1,190 BY 2000 fish on hand at LFH. Twelve of 13 mature 97 BY females were spawned in 2000. Total eggtake was 14,813. Mean fecundity was 1,298 eggs/female based on 11 fully spawned females. Egg survival to eye-up was 47.3%. This low survival was expected for three year old captive broodstock females. As of April 30, 2001, WDFW has 4,211 captive broodstock progeny on hand. These fish will be tagged with blank wire tag without fin clips and

  2. Study of the Genetic Diversity of the Ornamental Fish Badis badis (Hamilton-Buchanan, 1822 in the Terai Region of Sub-Himalayan West Bengal, India

    Directory of Open Access Journals (Sweden)

    Tanmay Mukhopadhyay

    2014-01-01

    Full Text Available Dwarf chameleon fish or Badis badis, a lesser known ornamental freshwater fish, has recently been included in the Indian threatened category of fish list. There are insufficient studies with regard to the assessment of genetic background of this ichthyofauna, especially in the western sub-Himalayan region of West Bengal, India, popularly known as the Terai. The present study is the first attempt to investigate the present status of the genetic background of this species in the Mahananda and Balason rivers, major streams of this region. Twenty-one selective RAPD primers generated 53 and 60 polymorphic fragments in the Mahananda and Balason populations, respectively. The proportion of polymorphic loci, Nei’s genetic diversity (H, and Shannon’s index (H′ were 0.4416, 0.1654±0.2023, and 0.2450±0.2907, respectively, in Mahananda river population and were 0.5041, 0.1983±0.2126, and 0.2901±0.3037, respectively, in Balason river population. Inbreeding coefficient and degree of gene differentiation were also calculated. The H and H′ were found to be 0.1601±0.1944 and 0.2363±0.2782, respectively, in overall Mahananda-Balason river system. Our study revealed considerable lack of genetic variation among the individuals of Badis badis. The genetic data obtained from the present study lend support to the view that there is a scope of stock improvement for this ichthyofauna.

  3. Invasion genetics of a freshwater mussel (Dreissena rostriformis bugensis) in eastern Europe: high gene flow and multiple introductions.

    Science.gov (United States)

    Therriault, T W; Orlova, M I; Docker, M F; Macisaac, H J; Heath, D D

    2005-07-01

    In recent years, the quagga mussel, Dreissena rostriformis bugensis, native to the Dnieper and Bug Limans of the northern Black Sea, has been dispersed by human activities across the basin, throughout much of the Volga River system, and to the Laurentian Great Lakes. We used six published microsatellite markers to survey populations throughout its native and introduced range to identify relationships among potential source populations and introduced ones. Mussels from 12 sites in Eurasia, including the central Caspian Sea and one in North America (Lake Erie), were sampled. Field surveys in the Volga River basin suggested that the species first colonized the middle reach of the river near Kubyshev Reservoir, and thereafter spread both upstream and downstream. Evidence of considerable gene flow among populations was observed and genetic diversity was consistent with a larger, metapopulation that has not experienced bottlenecks or founder effects. We propose that high gene flow, possibly due to multiple invasions, has facilitated establishment of quagga mussel populations in the Volga River system. The Caspian Sea population (D. rostriformis rostriformis (=distincta)) was genetically more distinct than other populations, a finding that may be related to habitat differences. The geographical pattern of genetic divergence is not characteristic of isolation-by-distance but, rather, of long-distance dispersal, most likely mediated by commercial ships' ballast water transfer.

  4. Snake River Sockeye Salmon Habitat and Limnological Research; 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Teuscher, David (Shoshone-Bannock Tribes, Fort Hall, ID); Wurtsbaugh, Wayne A. (Utah State University, Department of Fisheries and Wildlife, Ecology Center and Watershed Science Unit); Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID)

    1994-06-01

    In 1990 the Shoshone-Bannock Tribes (SBT) petitioned the National Marine Fisheries Service (NMFS) to list Snake River Sockeye salmon as endangered. As a result, Snake River Sockeye were listed and the Bonneville Power Administration (BPA) began funding efforts to enhance sockeye stocks. Recovery efforts include development of a brood stock program, genetics work, describing fish community dynamics in rearing lakes, and completing limnology studies. The SBT, in cooperation with Idaho Department of Fish and Game (IDFG), are directing fish community and limnology studies. IDFG is managing the brood stock program. The University of Idaho and NMFS are completing genetics work. Part I of this document is the SBT 1993' annual report that describes findings related to fish community research. Part II is a document completed by Utah State University (USU). The SBT subcontracted USU to complete a limnology investigation on the Sawtooth Valley Lakes. Management suggestions in Part II are those of USU and are not endorsed by the SBT and may not reflect the opinions of SBT biologists.

  5. The Use of Genetics for the Management of a Recovering Population: Temporal Assessment of Migratory Peregrine Falcons in North America

    Science.gov (United States)

    2010-11-01

    Alaska; Tanana River, Alaska; Porcupine River, Alaska; Yukon, Canada. 5Quebec, Newfoundland, and Labrador, Canada. 6Patagonia, Argentina. 7significant Fis...population decline. Biology Letters 2: 316–319. 102. Halbert ND, Derr JN (2008) Patterns of genetic variation in US federal bison herds . Molecular Ecology 17

  6. River-corridor habitat dynamics, Lower Missouri River

    Science.gov (United States)

    Jacobson, Robert B.

    2010-01-01

    Intensive management of the Missouri River for navigation, flood control, and power generation has resulted in substantial physical changes to the river corridor. Historically, the Missouri River was characterized by a shifting, multithread channel and abundant unvegetated sandbars. The shifting channel provided a wide variety of hydraulic environments and large areas of connected and unconnected off-channel water bodies.Beginning in the early 1800s and continuing to the present, the channel of the Lower Missouri River (downstream from Sioux City, Iowa) has been trained into a fast, deep, single-thread channel to stabilize banks and maintain commercial navigation. Wing dikes now concentrate the flow, and revetments and levees keep the channel in place and disconnect it from the flood plain. In addition, reservoir regulation of the Missouri River upstream of Yankton, South Dakota, has substantially changed the annual hydrograph, sediment loads, temperature regime, and nutrient budgets.While changes to the Missouri River have resulted in broad social and economic benefits, they have also been associated with loss of river-corridor habitats and diminished populations of native fish and wildlife species. Today, Missouri River stakeholders are seeking ways to restore some natural ecosystem benefits of the Lower Missouri River without compromising traditional economic uses of the river and flood plain.

  7. A stochastic conflict resolution model for trading pollutant discharge permits in river systems.

    Science.gov (United States)

    Niksokhan, Mohammad Hossein; Kerachian, Reza; Amin, Pedram

    2009-07-01

    This paper presents an efficient methodology for developing pollutant discharge permit trading in river systems considering the conflict of interests of involving decision-makers and the stakeholders. In this methodology, a trade-off curve between objectives is developed using a powerful and recently developed multi-objective genetic algorithm technique known as the Nondominated Sorting Genetic Algorithm-II (NSGA-II). The best non-dominated solution on the trade-off curve is defined using the Young conflict resolution theory, which considers the utility functions of decision makers and stakeholders of the system. These utility functions are related to the total treatment cost and a fuzzy risk of violating the water quality standards. The fuzzy risk is evaluated using the Monte Carlo analysis. Finally, an optimization model provides the trading discharge permit policies. The practical utility of the proposed methodology in decision-making is illustrated through a realistic example of the Zarjub River in the northern part of Iran.

  8. Cowlitz Falls fish passage

    International Nuclear Information System (INIS)

    1995-09-01

    The upper Cowlitz was once home to native salmon and steelhead. But the combined impacts of overharvest, farming, logging and road building hammered fish runs. And in the 1960s, a pair of hydroelectric dams blocked the migration path of ocean-returning and ocean-going fish. The lower Cowlitz still supports hatchery runs of chinook, coho and steelhead. But some 200 river miles in the upper river basin--much of it prime spawning and rearing habitat--have been virtually cut off from the ocean for over 26 years. Now the idea is to trap-and-haul salmon and steelhead both ways and bypass previously impassable obstacles in the path of anadromous fish. The plan can be summarized, for the sake of explanation, in three steps: (1) trap and haul adult fish--collect ocean-returning adult fish at the lowermost Cowlitz dam, and truck them upstream; (2) reseed--release the ripe adults above the uppermost dam, and let them spawn naturally, at the same time, supplement these runs with hatchery born fry that are reared and imprinted in ponds and net pens in the watershed; (3) trap and haul smolts--collection the new generation of young fish as they arrive at the uppermost Cowlitz dam, truck them past the three dams, and release them to continue their downstream migration to the sea. The critical part of any fish-collection system is the method of fish attraction. Scientists have to find the best combination of attraction system and screens that will guide young fish to the right spot, away from the turbine intakes. In the spring of 1994 a test was made of a prototype system of baffles and slots on the upriver face of the Cowlitz Falls Dam. The prototype worked at 90% efficiency in early tests, and it worked without the kind of expensive screening devices that have been installed on other dams. Now that the success of the attraction system has been verified, Harza engineers and consultants will design and build the appropriate collection part of the system

  9. Umatilla Basin natural production monitoring and evaluation. Annual progress report, 1994--1995

    International Nuclear Information System (INIS)

    Contor, C.R.; Hoverson, E.; Kissner, P.; Volkman, J.

    1996-04-01

    This report summarizes the activities of the Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPME) from September 30, 1994 to September 29, 1995. This program was funded by Bonneville Power Administration and was managed under the Fisheries Program, Department of Natural Resources, Confederated Tribes of the Umatilla Indian Reservation. An estimated 36.7 km (22.6 miles) of stream habitat were inventoried on the Umatilla River, Moonshine, Mission, Cottonwood and Coonskin Creeks. A total of 384 of 3,652 (10.5%) habitat units were electrofished. The number of juvenile fish captured follows: 2,953 natural summer steelhead (including resident rainbow trout; Oncorhynchus mykiss), one hatchery steelhead, 341 natural chinook salmon (O. tshawytscha), 163 natural coho salmon (O. kisutch), five bull trout (Salvelinus confluentus), 185 mountain whitefish (Prosopium williamsoni), and six northern squawfish (Ptychoicheilus oregonensis). The expanded population estimate for the areas surveyed was 73,716 salmonids with a mean density of 0.38 fish/m 2 . Relative salmonid abundance, seasonal distribution and habitat utilization were monitored at index sites throughout the basin. During index site monitoring, the following species were collected in addition to those listed above: american shad (Alosa sapidissima), smallmouth bass (Micropterus dolomieu), carp (Cyprinus carpio) and chiselmouth (Acrocheilus alutaceus). Thirty-nine sites were electrofished during the spring and summer seasons, while 36 sites were sampled in the fall season. A study of the migration movements and homing requirements of adult salmonids in the Umatilla River was conducted during the 1994-95 return years. Radio telemetry was used to evaluate the movements of adult salmonids past diversion dams in the lower Umatilla River and to determine migrational movements of salmonids following upstream transport

  10. Evaluation of juvenile salmonid behavior near a prototype weir box at Cowlitz Falls Dam, Washington, 2013

    Science.gov (United States)

    Kock, Tobias J.; Liedtke, Theresa L.; Ekstrom, Brian K.; Tomka, Ryan G.; Rondorf, Dennis W.

    2014-01-01

    Collection of juvenile salmonids at Cowlitz Falls Dam is a critical part of the effort to restore salmon in the upper Cowlitz River because the majority of fish that are not collected at the dam pass downstream and enter a large reservoir where they become landlocked and lost to the anadromous fish population. However, the juvenile fish collection system at Cowlitz Falls Dam has failed to achieve annual collection goals since it first began operating in 1996. Since that time, numerous modifications to the fish collection system have been made and several prototype collection structures have been developed and tested, but these efforts have not substantially increased juvenile fish collection. Studies have shown that juvenile steelhead (Oncorhynchus mykiss), coho salmon (Oncorhynchus kisutch), and Chinook salmon (Oncorhynchus tshawytscha) tend to locate the collection entrances effectively, but many of these fish are not collected and eventually pass the dam through turbines or spillways. Tacoma Power developed a prototype weir box in 2009 to increase capture rates of juvenile salmonids at the collection entrances, and this device proved to be successful at retaining those fish that entered the weir. However, because of safety concerns at the dam, the weir box could not be deployed near a spillway gate where the prototype was tested, so the device was altered and re-deployed at a different location, where it was evaluated during 2013. The U.S. Geological Survey conducted an evaluation using radiotelemetry to monitor fish behavior near the weir box and collection flumes. The evaluation was conducted during April–June 2013. Juvenile steelhead and coho salmon (45 per species) were tagged with a radio transmitter and passive integrated transponder (PIT) tag, and released upstream of the dam. All tagged fish moved downstream and entered the forebay of Cowlitz Falls Dam. Median travel times from the release site to the forebay were 0.8 d for steelhead and 1.2 d for coho

  11. Genetic Diversity of the Endangered Neotropical Cichlid Fish (Gymnogeophagus setequedas) in Brazil

    Science.gov (United States)

    Souza-Shibatta, Lenice; Kotelok-Diniz, Thais; Ferreira, Dhiego G.; Shibatta, Oscar A.; Sofia, Silvia H.; de Assumpção, Lucileine; Pini, Suelen F. R.; Makrakis, Sergio; Makrakis, Maristela C.

    2018-01-01

    Gymnogeophagus setequedas is a rare and rheophilic species of tribe Geophagini, considered endangered in Brazilian red lists. Its previously known geographical distribution range was the Paraná River basin, in Paraguay, and a tributary of the Itaipu Reservoir in Brazil. Since its description no specimens have been collected in the original known distribution area. However, recent records of G. setequedas in the lower Iguaçu River, in a region considered highly endemic for the ichthyofauna, extended the known geographical distribution and may represent one of the last remnants of the species. The aim of this study was to estimate the genetic diversity and population structure of G. setequedas, using microsatellite markers and mitochondrial haplotypes, in order to test the hypothesis of low genetic diversity in this restricted population. Muscular tissue samples of 86 specimens were obtained from nine locations in the Lower Iguaçu River basin, between upstream of the Iguaçu Falls and downstream of the Salto Caxias Reservoir. Seven microsatellites loci were examined and a total of 120 different alleles were obtained. The number of alleles per locus (NA) was 17.429, effective alleles (NE) 6.644, expected heterozygosity (HE) 0.675, observed (HO) heterozygosity 0.592, and inbreeding coefficient (FIS) 0.128. Twelve haplotypes in the D-Loop region were revealed, with values of h (0.7642) and π (0.00729), suggesting a large and stable population with a long evolutionary history. Thus, both molecular markers revealed high levels of genetic diversity and indicated the occurrence of a single G. setequedas population distributed along a stretch of approximately 200 km. The pattern of mismatch distribution was multimodal, which is usually ascribed to populations in demographic equilibrium. Nevertheless, the construction of a new hydroelectric power plant, already underway between the Salto Caxias Reservoir and Iguaçu Falls, could fragment this population, causing loss of

  12. Genetic Diversity of the Endangered Neotropical Cichlid Fish (Gymnogeophagus setequedas in Brazil

    Directory of Open Access Journals (Sweden)

    Lenice Souza-Shibatta

    2018-02-01

    Full Text Available Gymnogeophagus setequedas is a rare and rheophilic species of tribe Geophagini, considered endangered in Brazilian red lists. Its previously known geographical distribution range was the Paraná River basin, in Paraguay, and a tributary of the Itaipu Reservoir in Brazil. Since its description no specimens have been collected in the original known distribution area. However, recent records of G. setequedas in the lower Iguaçu River, in a region considered highly endemic for the ichthyofauna, extended the known geographical distribution and may represent one of the last remnants of the species. The aim of this study was to estimate the genetic diversity and population structure of G. setequedas, using microsatellite markers and mitochondrial haplotypes, in order to test the hypothesis of low genetic diversity in this restricted population. Muscular tissue samples of 86 specimens were obtained from nine locations in the Lower Iguaçu River basin, between upstream of the Iguaçu Falls and downstream of the Salto Caxias Reservoir. Seven microsatellites loci were examined and a total of 120 different alleles were obtained. The number of alleles per locus (NA was 17.429, effective alleles (NE 6.644, expected heterozygosity (HE 0.675, observed (HO heterozygosity 0.592, and inbreeding coefficient (FIS 0.128. Twelve haplotypes in the D-Loop region were revealed, with values of h (0.7642 and π (0.00729, suggesting a large and stable population with a long evolutionary history. Thus, both molecular markers revealed high levels of genetic diversity and indicated the occurrence of a single G. setequedas population distributed along a stretch of approximately 200 km. The pattern of mismatch distribution was multimodal, which is usually ascribed to populations in demographic equilibrium. Nevertheless, the construction of a new hydroelectric power plant, already underway between the Salto Caxias Reservoir and Iguaçu Falls, could fragment this population

  13. Genetic Diversity of the Endangered Neotropical Cichlid Fish (Gymnogeophagus setequedas) in Brazil.

    Science.gov (United States)

    Souza-Shibatta, Lenice; Kotelok-Diniz, Thais; Ferreira, Dhiego G; Shibatta, Oscar A; Sofia, Silvia H; de Assumpção, Lucileine; Pini, Suelen F R; Makrakis, Sergio; Makrakis, Maristela C

    2018-01-01

    Gymnogeophagus setequedas is a rare and rheophilic species of tribe Geophagini, considered endangered in Brazilian red lists. Its previously known geographical distribution range was the Paraná River basin, in Paraguay, and a tributary of the Itaipu Reservoir in Brazil. Since its description no specimens have been collected in the original known distribution area. However, recent records of G. setequedas in the lower Iguaçu River, in a region considered highly endemic for the ichthyofauna, extended the known geographical distribution and may represent one of the last remnants of the species. The aim of this study was to estimate the genetic diversity and population structure of G. setequedas , using microsatellite markers and mitochondrial haplotypes, in order to test the hypothesis of low genetic diversity in this restricted population. Muscular tissue samples of 86 specimens were obtained from nine locations in the Lower Iguaçu River basin, between upstream of the Iguaçu Falls and downstream of the Salto Caxias Reservoir. Seven microsatellites loci were examined and a total of 120 different alleles were obtained. The number of alleles per locus ( N A ) was 17.429, effective alleles ( N E ) 6.644, expected heterozygosity ( H E ) 0.675, observed ( H O ) heterozygosity 0.592, and inbreeding coefficient ( F IS ) 0.128. Twelve haplotypes in the D-Loop region were revealed, with values of h (0.7642) and π (0.00729), suggesting a large and stable population with a long evolutionary history. Thus, both molecular markers revealed high levels of genetic diversity and indicated the occurrence of a single G. setequedas population distributed along a stretch of approximately 200 km. The pattern of mismatch distribution was multimodal, which is usually ascribed to populations in demographic equilibrium. Nevertheless, the construction of a new hydroelectric power plant, already underway between the Salto Caxias Reservoir and Iguaçu Falls, could fragment this population

  14. The genetic consequences of exposure

    International Nuclear Information System (INIS)

    Izhewskij, P.W.

    1996-01-01

    The results of the study of genetic consequences of external gamma-irradiation of man and animals to 1 Sv are given. The investigation was performed in 3 groups under different conditions of exposure of the population: (i) among the people of Russia and Belorussia exposed due to the Chernobyl accident, (ii) among the people living on the Tetscha river basing in the South Urals; (iii) among the occupational contingent of 'Mayak' and the members of their families; The experimental estimation of genetic consequences was made on the offsprings of the white male rats. The male rats were irradiated daily for 10-15 days with external gamma- radiation of different dose power. The range of the doses received by the animals was approximated to the conditions of the exposure of man to the interval from 4 to 79 cSv for a year. (author)

  15. Tucannon River spring chinook salmon captive brood program, FY 2000 annual report; ANNUAL

    International Nuclear Information System (INIS)

    Bumgarner, Joseph D.; Gallinat, Michael P.

    2001-01-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood program from program inception (1997) through April 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will eventually sustain itself. The project goal is to rear captive salmon to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts), and wild production, is expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The Master Plan, Environmental Assessment, and most facility modifications at LFH were completed for the Tucannon River spring chinook captive broodstock program during FY2000 and FY2001. DNA samples collected since 1997 have been sent to the WDFW genetics lab in Olympia for baseline DNA analysis. Results from the genetic analysis are not available at this time. The captive broodstock program is planned to collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2000 BY fish have been selected. As of April 30, 2001, WDFW has 172 BY 1997, 262 BY 1998, 407 BY 1999, and approximately 1,190 BY 2000 fish on hand at LFH. Twelve of 13 mature 97 BY females were spawned in 2000. Total eggtake was 14,813. Mean fecundity was 1,298 eggs/female based on 11 fully spawned females. Egg survival to eye-up was 47.3%. This low survival was expected for three year old captive broodstock females. As of April 30, 2001, WDFW has 4,211 captive broodstock progeny on hand. These fish will be tagged with blank wire tag without fin clips and

  16. Columbia River White Sturgeon (Acipenser Transmontanus) Early Life History and Genertics Study, August 1, 1984 to December 31, 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, Ernest L.

    1985-12-01

    Research on Columbia River white sturgeon has been directed at their early life history as it may apply to production and enhancement strategies for management of the species. The river environment in which sturgeon historically migrated, spawned, and reared has changed through development. Habitat changes are expected to precipitate genetic changes in the fish, as well as reduce the fitness in populations. Genetic analysis of samples taken from various locations over the length of the Columbia River have indicated that observed gene frequencies in all areas sampled were not in Hardy-Weinburg equilibrium, which could suggest that the general population is experiencing perturbation in the system. Analysis thus far has exposed few differences between samples from the lower, middle, and upper portions of the system. Allelic differences were identified in fish from the Roosevelt Lake, which may be evidence of unique characteristics among fish from that general area.

  17. Genetic stock identification of Atlantic salmon (Salmo salar populations in the southern part of the European range

    Directory of Open Access Journals (Sweden)

    McGinnity Philip

    2010-04-01

    Full Text Available Abstract Background Anadromous migratory fish species such as Atlantic salmon (Salmo salar have significant economic, cultural and ecological importance, but present a complex case for management and conservation due to the range of their migration. Atlantic salmon exist in rivers across the North Atlantic, returning to their river of birth with a high degree of accuracy; however, despite continuing efforts and improvements in in-river conservation, they are in steep decline across their range. Salmon from rivers across Europe migrate along similar routes, where they have, historically, been subject to commercial netting. This mixed stock exploitation has the potential to devastate weak and declining populations where they are exploited indiscriminately. Despite various tagging and marking studies, the effect of marine exploitation and the marine element of the salmon lifecycle in general, remain the "black-box" of salmon management. In a number of Pacific salmonid species and in several regions within the range of the Atlantic salmon, genetic stock identification and mixed stock analysis have been used successfully to quantify exploitation rates and identify the natal origins of fish outside their home waters - to date this has not been attempted for Atlantic salmon in the south of their European range. Results To facilitate mixed stock analysis (MSA of Atlantic salmon, we have produced a baseline of genetic data for salmon populations originating from the largest rivers from Spain to northern Scotland, a region in which declines have been particularly marked. Using 12 microsatellites, 3,730 individual fish from 57 river catchments have been genotyped. Detailed patterns of population genetic diversity of Atlantic salmon at a sub-continent-wide level have been evaluated, demonstrating the existence of regional genetic signatures. Critically, these appear to be independent of more commonly recognised terrestrial biogeographical and political

  18. Genetic evidence for two species of the genus Pimelodus Lacépède, 1803 (Siluriformes, Pimelodidae in the Iguaçu River (Brazil

    Directory of Open Access Journals (Sweden)

    Renesto Erasmo

    2000-01-01

    Full Text Available The existence of reproductive isolation between two morphs of catfish, endemic to the Iguaçu River (Brazil, was examined by enzyme starch gel electrophoresis. Tissues of 19 catfish (Pimelodus ortmanni and 15 of a similar morph (Pimelodus sp., which differs from P. ortmanni by presenting larger and more scattered dusky spots on its skin, were analyzed. A Nei's (1978 genetic identity of 0.551 was determined by the analysis of 22 enzyme loci. The loci EST*1, EST*2, GDH*1, GPI*1, GPI*2, IDH*1, MDH*1, MDH*2, and PGM*1 were fixed for different alleles in each morph, that is, no heterozygote was found for these loci. The enzymatic patterns observed for the two morphs indicate both that the taxa are reproductively isolated and that they in fact represent separate species.

  19. Fish Passage Center; Columbia Basin Fish and Wildlife Authority, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, Michele; Berggren, Thomas J.; Filardo, Margaret (Columbia Basin Fish and Wildlife Authority, Fish Passage Center, Portland, OR)

    2003-09-01

    The runoff volumes in 2002 were near average for the January to July period above Lower Granite Dam (80%) and The Dalles Dam (97%). The year 2002 hydrosystem operations and runoff conditions resulted in flows that were less than the seasonal Biological Opinion (Opinion) flow objectives at Lower Granite Dam for both the spring and summer period. The seasonal flow objectives for Priest Rapids and McNary dams were exceeded for the spring period, but at McNary Dam summer flow objectives were not met. While seasonal flow objectives were exceeded for the spring at McNary Dam, the 2002 season illustrated that Biological Opinion management to seasonal flow targets can result in conditions where a major portion of the juvenile fish migration migrates in conditions that are less than the flow objectives. The delay in runoff due to cool weather conditions and the inability of reservoirs to augment flows by drafting lower than the flood control elevations, resulted in flows less than the Opinion objectives until May 22, 2002. By this time approximately 73% of the yearling chinook and 56% of steelhead had already passed the project. For the most part, spill in 2002 was managed below the gas waiver limits for total dissolved gas levels and the NMFS action criteria for dissolved gas signs were not exceeded. The exception was at Lower Monumental Dam where no Biological Opinion spill occurred due to the need to conduct repairs in the stilling basin. Survival estimates obtained for PIT tagged juveniles were similar in range to those observed prior to 2001. A multi-year analysis of juvenile survival and the factors that affect it was conducted in 2002. A water transit time and flow relation was demonstrated for spring migrating chinook and steelhead of Snake River and Mid Columbia River origin. Returning numbers of adults observed at Bonneville Dam declined for spring chinook, steelhead and coho, while summer and fall chinook numbers increased. However, all numbers were far greater

  20. Assessing genetic diversity of wild and hatchery samples of the Chinese sucker (Myxocyprinus asiaticus) by the mitochondrial DNA control region.

    Science.gov (United States)

    Wu, Jiayun; Wu, Bo; Hou, Feixia; Chen, Yongbai; Li, Chong; Song, Zhaobin

    2016-01-01

    To restore the natural populations of Chinese sucker (Myxocyprinus asiaticus), a hatchery release program has been underway for nearly 10 years. Using DNA sequences of the mitochondrial control region, we assessed the genetic diversity and genetic structure among samples collected from three sites of the wild population as well as from three hatcheries. The haplotype diversity of the wild samples (h = 0.899-0.975) was significantly higher than that of the hatchery ones (h = 0.296-0.666), but the nucleotide diversity was almost identical between them (π = 0.0170-0.0280). Relatively high gene flow was detected between the hatchery and wild samples. Analysis of effective population size indicated that M. asiaticus living in the Yangtze River has been expanding following a bottleneck in the recent past. Our results suggest the hatchery release programs for M. asiaticus have not reduced the genetic diversity, but have influenced the genetic structure of the species in the upper Yangtze River.