WorldWideScience

Sample records for ritz variation method

  1. Quantum confined Stark effects of single dopant in polarized hemispherical quantum dot: Two-dimensional finite difference approach and Ritz-Hassé variation method

    Science.gov (United States)

    El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi

    2018-05-01

    Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.

  2. Generalized stress field in granular soils heap with Rayleigh–Ritz method

    Directory of Open Access Journals (Sweden)

    Gang Bi

    2017-02-01

    Full Text Available The stress field in granular soils heap (including piled coal will have a non-negligible impact on the settlement of the underlying soils. It is usually obtained by measurements and numerical simulations. Because the former method is not reliable as pressure cells instrumented on the interface between piled coal and the underlying soft soil do not work well, results from numerical methods alone are necessary to be doubly checked with one more method before they are extended to more complex cases. The generalized stress field in granular soils heap is analyzed with Rayleigh–Ritz method. The problem is divided into two cases: case A without horizontal constraint on the base and case B with horizontal constraint on the base. In both cases, the displacement functions u(x, y and v(x, y are assumed to be cubic polynomials with 12 undetermined parameters, which will satisfy the Cauchy's partial differential equations, generalized Hooke's law and boundary equations. A function is built with the Rayleigh–Ritz method according to the principle of minimum potential energy, and the problem is converted into solving two undetermined parameters through the variation of the function, while the other parameters are expressed in terms of these two parameters. By comparison of results from the Rayleigh–Ritz method and numerical simulations, it is demonstrated that the Rayleigh–Ritz method is feasible to study the generalized stress field in granular soils heap. Solutions from numerical methods are verified before being extended to more complicated cases.

  3. Multiple objective optimization of hydro-thermal systems using Ritz's method

    Directory of Open Access Journals (Sweden)

    Arnáu L. Bayón

    1999-01-01

    Full Text Available This paper examines the applicability of the Ritz method to multi-objective optimization of hydro-thermal systems. The algorithm proposed is aimed to minimize an objective functional that incorporates the cost of energy losses, the conventional fuel cost and the production of atmospheric emissions such as NO x and SO 2 caused by the operation of fossil-fueled thermal generation. The formulation includes a general layout of hydro-plants that may form multi-chains of reservoir network. Time-delays are included and the electric network is considered by using the active power balance equation. The volume of water discharge for each hydro-plant is a given constant amount from the optimization interval. The generic minimization algorithm, which is not difficult to construct on the basis of the Ritz method, has certain advantages in comparison with the conventional methods.

  4. Ground-state densities from the Rayleigh-Ritz variation principle and from density-functional theory.

    Science.gov (United States)

    Kvaal, Simen; Helgaker, Trygve

    2015-11-14

    The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh-Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg-Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Having introduced admissible density functionals as functionals that produce the exact ground-state energy for a given external potential by minimizing over densities in the Hohenberg-Kohn variation principle, necessary and sufficient conditions on such functionals are established to ensure that the Rayleigh-Ritz ground-state densities and the Hohenberg-Kohn ground-state densities are identical. We apply the results to molecular systems in the Born-Oppenheimer approximation. For any given potential v ∈ L(3/2)(ℝ(3)) + L(∞)(ℝ(3)), we establish a one-to-one correspondence between the mixed ground-state densities of the Rayleigh-Ritz variation principle and the mixed ground-state densities of the Hohenberg-Kohn variation principle when the Lieb density-matrix constrained-search universal density functional is taken as the admissible functional. A similar one-to-one correspondence is established between the pure ground-state densities of the Rayleigh-Ritz variation principle and the pure ground-state densities obtained using the Hohenberg-Kohn variation principle with the Levy-Lieb pure-state constrained-search functional. In other words, all physical ground-state densities (pure or mixed) are recovered with these functionals and no false densities (i.e., minimizing densities that are not physical) exist. The importance of topology (i.e., choice of Banach space of densities and potentials) is emphasized and illustrated. The relevance of these results for current-density-functional theory is examined.

  5. Multiple objective optimization of hydro-thermal systems using Ritz's method

    Directory of Open Access Journals (Sweden)

    L. Bayón Arnáu

    2000-01-01

    Full Text Available This paper examines the applicability of the Ritz method to multi-objective optimization of hydro-thermal systems. The algorithm proposed is aimed to minimize an objective functional that incorporates the cost of energy losses, the conventional fuel cost and the production of atmospheric emissions such as NOx and SO2 caused by the operation of fossil-fueled thermal generation. The formulation includes a general layout of hydro-plants that may form multi-chains of reservoir network.

  6. Forward and inverse problems for surface acoustic waves in anisotropic media: A Ritz-Rayleigh method based approach

    Czech Academy of Sciences Publication Activity Database

    Stoklasová, Pavla; Sedlák, Petr; Seiner, Hanuš; Landa, Michal

    2015-01-01

    Roč. 56, February 2015 (2015), s. 381-389 ISSN 0041-624X R&D Projects: GA ČR GPP101/12/P428 Institutional support: RVO:61388998 Keywords : surface acoustic waves * anisotropic materials * Ritz-Rayleigh method * inverse problem Subject RIV: BI - Acoustics Impact factor: 1.954, year: 2015 http://www.sciencedirect.com/science/article/pii/S0041624X14002686

  7. A Unified Spectro-Geometric-Ritz Method for Vibration Analysis of Open and Closed Shells with Arbitrary Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Dongyan Shi

    2016-01-01

    Full Text Available This paper presents free vibration analysis of open and closed shells with arbitrary boundary conditions using a spectro-geometric-Ritz method. In this method, regardless of the boundary conditions, each of the displacement components of open and closed shells is represented simultaneously as a standard Fourier cosine series and several auxiliary functions. The auxiliary functions are introduced to accelerate the convergence of the series expansion and eliminate all the relevant discontinuities with the displacement and its derivatives at the boundaries. The boundary conditions are modeled using the spring stiffness technique. All the expansion coefficients are treated equally and independently as the generalized coordinates and determined using Rayleigh-Ritz method. By using this method, a unified vibration analysis model for the open and closed shells with arbitrary boundary conditions can be established without the need of changing either the equations of motion or the expression of the displacement components. The reliability and accuracy of the proposed method are validated with the FEM results and those from the literature.

  8. Various methods of determining the natural frequencies and damping of composite cantilever plates. 3. The Ritz method

    Science.gov (United States)

    Ekel'chik, V. S.; Ryabov, V. M.

    1997-03-01

    The Ritz method was used to determine the frequencies and forms of free vibrations of rectangular cantilever plates made of anisotropic laminated composites. Orthogonal Jacobi and Legendre polynomials were used as coordinate functions. The results of the calculations are in good agreement with the published experimental and calculated data of other authors for plates made of boron and carbon fiber reinforced plastics with different angles of reinforcement of unidirectional layers and different sequence of placing the layers, and also of isotropic plates. The dissipative characteristics in vibrations were determined on the basis of the concept of complex moduli. The solution of the frequency equation with complex coefficients yields a complex frequency; the loss factors are determined from the ratio of the imaginary component of the complex frequency to the real component. For plates of unidirectionally reinforced carbon fiber plastic with different relative length a detailed analysis of the influence of the angle of reinforcement on the interaction and frequency transformation and on the loss factor was carried out. The article shows that the loss factor of a plate depends substantially on the type of vibration mode: bending or torsional. It also examines the asymptotics of the loss factors of plates when their length is increased, and it notes that the binomial model of deformation leads to a noticeable error in the calculation of the loss factor of long plates when the angle of reinforcement lies in the range 20°<φ<70°.

  9. Valter Ritz as a theoretical physicist and his research on atomic spectra theory

    International Nuclear Information System (INIS)

    El'yashevich, M.A.; Kemberovskaya, N.G.; Tomil'chik, L.M.

    1995-01-01

    The article presents a historic-methodological analysis of the scientific heritage of an outstanding Swiss physicist Walter Ritz (1878-1909); the analysis is based on the study of a complete collection of his works published in 1911. In addition to a general description of Ritz's works which comprise publications in spectroscopy, variational method and electrodynamics, the article deals in detail with this fundamental research into atomic spectra theory. Elastic and magnetic model of the atom proposed by Ritz for explaining atomic spectra within the framework of the classical approach are discussed. It is shown that the generalized formulas of Balmer and Rydbery, as well as the combination principle which served later as a basis for formalting Bohr's condition of frequencies, were derived by Ritz as regions corollaries of this models and were out of semiempiric nature, as was assumed. 124 refs

  10. Energies and wave functions of an off-centre donor in hemispherical quantum dot: Two-dimensional finite difference approach and ritz variational principle

    Energy Technology Data Exchange (ETDEWEB)

    Nakra Mohajer, Soukaina; El Harouny, El Hassan [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); Ibral, Asmaa [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); El Khamkhami, Jamal [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); and others

    2016-09-15

    Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.

  11. Energies and wave functions of an off-centre donor in hemispherical quantum dot: Two-dimensional finite difference approach and ritz variational principle

    International Nuclear Information System (INIS)

    Nakra Mohajer, Soukaina; El Harouny, El Hassan; Ibral, Asmaa; El Khamkhami, Jamal

    2016-01-01

    Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.

  12. The electrodynamics of Ritz

    International Nuclear Information System (INIS)

    Waldron, R.A.

    1979-01-01

    An account is given of Ritz's electrodynamics. Ritz's paper is divided into two parts. In the first he criticises the Lorentz-Maxwell theory based on fields, and comments on alternative theories based on particle interactions. In the second he develops his own theory, also based on particle interactions. He starts from a force law which is analogous to a force law derived by Schwarzschild from the Lorentz theory. While the approach is interesting, it leads to results which do not agree with experimental results obtained several decades later, after Ritz's death. A similar approach is applied to gravitation and is shown to be capable of explaining the anomalous precession of the planet Mercury. (Auth.)

  13. Ritz, Einstein, and the Emission Hypothesis

    Science.gov (United States)

    Martínez, Alberto A.

    . Just as Albert Einstein's special theory of relativity was gaining acceptance around 1908, the young Swiss physicist Walter Ritz advanced a competing though preliminary emission theory that sought to explain the phenomena of electrodynamics on the assumption that the speed of light depends on the motion of its source. I survey Ritz's unfinished work in this area and review the reasons why Einstein and other physicists rejected Ritz's and other emission theories. Since Ritz's emission theory attracted renewed attention in the 1960s, I discuss how the earlier observational evidence was misconstrued as telling against it more conclusively than actually was the case. Finally, I contrast the role played by evidence against Ritz's theory with other factors that led to the early rejection of his approach.

  14. Elastic Multibody Dynamics A Direct Ritz Approach

    CERN Document Server

    Bremer, H

    2008-01-01

    This textbook is an introduction to and exploration of a number of core topics in the field of applied mechanics: On the basis of Lagrange's Principle, a Central Equation of Dynamics is presented which yields a unified view on existing methods. From these, the Projection Equation is selected for the derivation of the motion equations of holonomic and of non-holonomic systems. The method is applied to rigid multibody systems where the rigid body is defined such that, by relaxation of the rigidity constraints, one can directly proceed to elastic bodies. A decomposition into subsystems leads to a minimal representation and to a recursive representation, respectively, of the equations of motion. Applied to elastic multibody systems one obtains, along with the use of spatial operators, a straight-on procedure for the interconnected partial and ordinary differential equations and the corresponding boundary conditions. The spatial operators are eventually applied to a RITZ series for approximation. The resulting equ...

  15. Nonlinear Ritz approximation for Fredholm functionals

    Directory of Open Access Journals (Sweden)

    Mudhir A. Abdul Hussain

    2015-11-01

    Full Text Available In this article we use the modify Lyapunov-Schmidt reduction to find nonlinear Ritz approximation for a Fredholm functional. This functional corresponds to a nonlinear Fredholm operator defined by a nonlinear fourth-order differential equation.

  16. Numerical realization of the variational method for generating self-trapped beams.

    Science.gov (United States)

    Duque, Erick I; Lopez-Aguayo, Servando; Malomed, Boris A

    2018-03-19

    We introduce a numerical variational method based on the Rayleigh-Ritz optimization principle for predicting two-dimensional self-trapped beams in nonlinear media. This technique overcomes the limitation of the traditional variational approximation in performing analytical Lagrangian integration and differentiation. Approximate soliton solutions of a generalized nonlinear Schrödinger equation are obtained, demonstrating robustness of the beams of various types (fundamental, vortices, multipoles, azimuthons) in the course of their propagation. The algorithm offers possibilities to produce more sophisticated soliton profiles in general nonlinear models.

  17. Numerical realization of the variational method for generating self-trapped beams

    Science.gov (United States)

    Duque, Erick I.; Lopez-Aguayo, Servando; Malomed, Boris A.

    2018-03-01

    We introduce a numerical variational method based on the Rayleigh-Ritz optimization principle for predicting two-dimensional self-trapped beams in nonlinear media. This technique overcomes the limitation of the traditional variational approximation in performing analytical Lagrangian integration and differentiation. Approximate soliton solutions of a generalized nonlinear Schr\\"odinger equation are obtained, demonstrating robustness of the beams of various types (fundamental, vortices, multipoles, azimuthons) in the course of their propagation. The algorithm offers possibilities to produce more sophisticated soliton profiles in general nonlinear models.

  18. Conformable variational iteration method

    Directory of Open Access Journals (Sweden)

    Omer Acan

    2017-02-01

    Full Text Available In this study, we introduce the conformable variational iteration method based on new defined fractional derivative called conformable fractional derivative. This new method is applied two fractional order ordinary differential equations. To see how the solutions of this method, linear homogeneous and non-linear non-homogeneous fractional ordinary differential equations are selected. Obtained results are compared the exact solutions and their graphics are plotted to demonstrate efficiency and accuracy of the method.

  19. Splines and variational methods

    CERN Document Server

    Prenter, P M

    2008-01-01

    One of the clearest available introductions to variational methods, this text requires only a minimal background in calculus and linear algebra. Its self-contained treatment explains the application of theoretic notions to the kinds of physical problems that engineers regularly encounter. The text's first half concerns approximation theoretic notions, exploring the theory and computation of one- and two-dimensional polynomial and other spline functions. Later chapters examine variational methods in the solution of operator equations, focusing on boundary value problems in one and two dimension

  20. Variational-moment method for computing magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Lao, L.L.

    1983-08-01

    A fast yet accurate method to compute magnetohydrodynamic equilibria is provided by the variational-moment method, which is similar to the classical Rayleigh-Ritz-Galerkin approximation. The equilibrium solution sought is decomposed into a spectral representation. The partial differential equations describing the equilibrium are then recast into their equivalent variational form and systematically reduced to an optimum finite set of coupled ordinary differential equations. An appropriate spectral decomposition can make the series representing the solution coverge rapidly and hence substantially reduces the amount of computational time involved. The moment method was developed first to compute fixed-boundary inverse equilibria in axisymmetric toroidal geometry, and was demonstrated to be both efficient and accurate. The method since has been generalized to calculate free-boundary axisymmetric equilibria, to include toroidal plasma rotation and pressure anisotropy, and to treat three-dimensional toroidal geometry. In all these formulations, the flux surfaces are assumed to be smooth and nested so that the solutions can be decomposed in Fourier series in inverse coordinates. These recent developments and the advantages and limitations of the moment method are reviewed. The use of alternate coordinates for decomposition is discussed

  1. Any Admissible Harmonic Ritz Value Set is Possible for GMRES

    Czech Academy of Sciences Publication Activity Database

    Du, K.; Duintjer Tebbens, Jurjen; Meurant, G.

    2017-01-01

    Roč. 47, September 18 (2017), s. 37-56 ISSN 1068-9613 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : Ritz values * harmonic Ritz values * GMRES convergence * prescribed residual norms * FOM convergence Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.925, year: 2016 http://etna.mcs.kent.edu/volumes/2011-2020/vol47/abstract.php?vol=47&pages=37-56

  2. Any Ritz Value Behavior Is Possible for Arnoldi and for GMRES

    Czech Academy of Sciences Publication Activity Database

    Duintjer Tebbens, Jurjen; Meurant, G.

    2012-01-01

    Roč. 33, č. 3 (2012), s. 958-978 ISSN 0895-4798 R&D Projects: GA AV ČR IAA100300802 Grant - others:GA AV ČR(CZ) M100300901 Institutional research plan: CEZ:AV0Z10300504 Keywords : Ritz values * Arnoldi process * Arnoldi method * GMRES method * prescribed convergence * interlacing properties Subject RIV: BA - General Mathematics Impact factor: 1.342, year: 2012

  3. Hamiltonian lattice field theory: Computer calculations using variational methods

    International Nuclear Information System (INIS)

    Zako, R.L.

    1991-01-01

    I develop a variational method for systematic numerical computation of physical quantities -- bound state energies and scattering amplitudes -- in quantum field theory. An infinite-volume, continuum theory is approximated by a theory on a finite spatial lattice, which is amenable to numerical computation. I present an algorithm for computing approximate energy eigenvalues and eigenstates in the lattice theory and for bounding the resulting errors. I also show how to select basis states and choose variational parameters in order to minimize errors. The algorithm is based on the Rayleigh-Ritz principle and Kato's generalizations of Temple's formula. The algorithm could be adapted to systems such as atoms and molecules. I show how to compute Green's functions from energy eigenvalues and eigenstates in the lattice theory, and relate these to physical (renormalized) coupling constants, bound state energies and Green's functions. Thus one can compute approximate physical quantities in a lattice theory that approximates a quantum field theory with specified physical coupling constants. I discuss the errors in both approximations. In principle, the errors can be made arbitrarily small by increasing the size of the lattice, decreasing the lattice spacing and computing sufficiently long. Unfortunately, I do not understand the infinite-volume and continuum limits well enough to quantify errors due to the lattice approximation. Thus the method is currently incomplete. I apply the method to real scalar field theories using a Fock basis of free particle states. All needed quantities can be calculated efficiently with this basis. The generalization to more complicated theories is straightforward. I describe a computer implementation of the method and present numerical results for simple quantum mechanical systems

  4. Hamiltonian lattice field theory: Computer calculations using variational methods

    International Nuclear Information System (INIS)

    Zako, R.L.

    1991-01-01

    A variational method is developed for systematic numerical computation of physical quantities-bound state energies and scattering amplitudes-in quantum field theory. An infinite-volume, continuum theory is approximated by a theory on a finite spatial lattice, which is amenable to numerical computation. An algorithm is presented for computing approximate energy eigenvalues and eigenstates in the lattice theory and for bounding the resulting errors. It is shown how to select basis states and choose variational parameters in order to minimize errors. The algorithm is based on the Rayleigh-Ritz principle and Kato's generalizations of Temple's formula. The algorithm could be adapted to systems such as atoms and molecules. It is shown how to compute Green's functions from energy eigenvalues and eigenstates in the lattice theory, and relate these to physical (renormalized) coupling constants, bound state energies and Green's functions. Thus one can compute approximate physical quantities in a lattice theory that approximates a quantum field theory with specified physical coupling constants. The author discusses the errors in both approximations. In principle, the errors can be made arbitrarily small by increasing the size of the lattice, decreasing the lattice spacing and computing sufficiently long. Unfortunately, the author does not understand the infinite-volume and continuum limits well enough to quantify errors due to the lattice approximation. Thus the method is currently incomplete. The method is applied to real scalar field theories using a Fock basis of free particle states. All needed quantities can be calculated efficiently with this basis. The generalization to more complicated theories is straightforward. The author describes a computer implementation of the method and present numerical results for simple quantum mechanical systems

  5. Any Admissible Harmonic Ritz Value Set is Possible for GMRES

    Czech Academy of Sciences Publication Activity Database

    Du, K.; Duintjer Tebbens, Jurjen; Meurant, G.

    2017-01-01

    Roč. 47, September 18 (2017), s. 37-56 ISSN 1068-9613 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : Ritz value s * harmonic Ritz value s * GMRES convergence * prescribed residual norms * FOM convergence Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.925, year: 2016 http://etna.mcs.kent.edu/volumes/2011-2020/vol47/abstract.php?vol=47&pages=37-56

  6. On the construction of symmetric nonnegative matrix with prescribed Ritz values

    Directory of Open Access Journals (Sweden)

    Alimohammad Nazari

    2014-09-01

    Full Text Available In this paper for a given prescribed Ritz values that satisfy inthe some  special conditions,  we find a symmetric nonnegativematrix, such that  the given set be its Ritz values.

  7. Krylov-Schur-Type restarts for the two-sided arnoldi method

    NARCIS (Netherlands)

    Zwaan, I.N.; Hochstenbach, M.E.

    2017-01-01

    We consider the two-sided Arnoldi method and propose a two-sided Krylov-Schurtype restarting method. We discuss the restart for standard Rayleigh-Ritz extraction as well as harmonic Rayleigh-Ritz extraction. Additionally, we provide error bounds for Ritz values and Ritz vectors in the context of

  8. Variational linear algebraic equations method

    International Nuclear Information System (INIS)

    Moiseiwitsch, B.L.

    1982-01-01

    A modification of the linear algebraic equations method is described which ensures a variational bound on the phaseshifts for potentials having a definite sign at all points. The method is illustrated by the elastic scattering of s-wave electrons by the static field of atomic hydrogen. (author)

  9. Gauge-invariant variational methods for Hamiltonian lattice gauge theories

    International Nuclear Information System (INIS)

    Horn, D.; Weinstein, M.

    1982-01-01

    This paper develops variational methods for calculating the ground-state and excited-state spectrum of Hamiltonian lattice gauge theories defined in the A 0 = 0 gauge. The scheme introduced in this paper has the advantage of allowing one to convert more familiar tools such as mean-field, Hartree-Fock, and real-space renormalization-group approximation, which are by their very nature gauge-noninvariant methods, into fully gauge-invariant techniques. We show that these methods apply in the same way to both Abelian and non-Abelian theories, and that they are at least powerful enough to describe correctly the physics of periodic quantum electrodynamics (PQED) in (2+1) and (3+1) space-time dimensions. This paper formulates the problem for both Abelian and non-Abelian theories and shows how to reduce the Rayleigh-Ritz problem to that of computing the partition function of a classical spin system. We discuss the evaluation of the effective spin problem which one derives the PQED and then discuss ways of carrying out the evaluation of the partition function for the system equivalent to a non-Abelian theory. The explicit form of the effective partition function for the non-Abelian theory is derived, but because the evaluation of this function is considerably more complicated than the one derived in the Abelian theory no explicit evaluation of this function is presented. However, by comparing the gauge-projected Hartree-Fock wave function for PQED with that of the pure SU(2) gauge theory, we are able to show that extremely interesting differences emerge between these theories even at this simple level. We close with a discussion of fermions and a discussion of how one can extend these ideas to allow the computation of the glueball and hadron spectrum

  10. Variational methods in molecular modeling

    CERN Document Server

    2017-01-01

    This book presents tutorial overviews for many applications of variational methods to molecular modeling. Topics discussed include the Gibbs-Bogoliubov-Feynman variational principle, square-gradient models, classical density functional theories, self-consistent-field theories, phase-field methods, Ginzburg-Landau and Helfrich-type phenomenological models, dynamical density functional theory, and variational Monte Carlo methods. Illustrative examples are given to facilitate understanding of the basic concepts and quantitative prediction of the properties and rich behavior of diverse many-body systems ranging from inhomogeneous fluids, electrolytes and ionic liquids in micropores, colloidal dispersions, liquid crystals, polymer blends, lipid membranes, microemulsions, magnetic materials and high-temperature superconductors. All chapters are written by leading experts in the field and illustrated with tutorial examples for their practical applications to specific subjects. With emphasis placed on physical unders...

  11. Linking numbers and variational method

    International Nuclear Information System (INIS)

    Oda, I.; Yahikozawa, S.

    1989-09-01

    The ordinary and generalized linking numbers for two surfaces of dimension p and n-p-1 in an n dimensional manifold are derived. We use a variational method based on the properties of topological quantum field theory in order to derive them. (author). 13 refs, 2 figs

  12. Strategic planning for hotel operations: The Ritz-Carlton Hotel Company (Part II).

    Science.gov (United States)

    Shriver, S J

    1993-01-01

    The Ritz-Carlton Hotel Company won the Malcolm Baldrige National Quality Award in 1992. One key to its success is its strategic planning process. In this second part of a two-part article, Stephen Shriver concludes his review of the Ritz-Carlton's approach to strategic planning. Shriver begins by outlining some key steps in plan development and goes on to describe how the Ritz-Carlton disseminates, implements, and evaluates the plan.

  13. A solution of the dispersion-convection equation of radial tracer transportation by the finite element variational method

    International Nuclear Information System (INIS)

    Hubert, J.

    1979-01-01

    The variational finite element method (of the Rayleigh-Ritz type) has been applied to solve the standard diffusion-convection equation of radial flow in a dispersive medium. It was shown that the imposing of the boundary condition ΔC/Δx = 0 (=null concentration gradient) introduced great errors in computation results. To remedy it this condition was imposed at the free end of the artifical domain. Its other end joined to the downstream boundary of the investigated domain. The results of calculations compared with the known analytical solutions of the parallel flow show their good accuracy. The method was used to discuss the applicability of the approximate analytical solutions of the radial flow. (author)

  14. Reassessing the Ritz-Einstein debate on the radiation asymmetry in classical electrodynamics

    Science.gov (United States)

    Frisch, Mathias; Pietsch, Wolfgang

    2016-08-01

    We investigate the debate between Walter Ritz and Albert Einstein on the origin and nature of the radiation asymmetry. We argue that Ritz's views on the radiation asymmetry were far richer and nuanced than the oft-cited joint letter with Einstein (Ritz & Einstein, 1909) suggests, and that Einstein's views in 1909 on the asymmetry are far more ambiguous than is commonly recognized. Indeed, there is strong evidence that Einstein ultimately came to agree with Ritz that elementary radiation processes in classical electrodynamics are non-symmetric and fully retarded.

  15. Variational methods for field theories

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Menahem, S.

    1986-09-01

    Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.

  16. The Ritz - Sublaminate Generalized Unified Formulation approach for piezoelectric composite plates

    Science.gov (United States)

    D'Ottavio, Michele; Dozio, Lorenzo; Vescovini, Riccardo; Polit, Olivier

    2018-01-01

    This paper extends to composite plates including piezoelectric plies the variable kinematics plate modeling approach called Sublaminate Generalized Unified Formulation (SGUF). Two-dimensional plate equations are obtained upon defining a priori the through-thickness distribution of the displacement field and electric potential. According to SGUF, independent approximations can be adopted for the four components of these generalized displacements: an Equivalent Single Layer (ESL) or Layer-Wise (LW) description over an arbitrary group of plies constituting the composite plate (the sublaminate) and the polynomial order employed in each sublaminate. The solution of the two-dimensional equations is sought in weak form by means of a Ritz method. In this work, boundary functions are used in conjunction with the domain approximation expressed by an orthogonal basis spanned by Legendre polynomials. The proposed computational tool is capable to represent electroded surfaces with equipotentiality conditions. Free-vibration problems as well as static problems involving actuator and sensor configurations are addressed. Two case studies are presented, which demonstrate the high accuracy of the proposed Ritz-SGUF approach. A model assessment is proposed for showcasing to which extent the SGUF approach allows a reduction of the number of unknowns with a controlled impact on the accuracy of the result.

  17. THE EXPANSION OF THE RITZ-CARLTON® ON FOREIGN MARKETS

    OpenAIRE

    Mihai-Răzvan DOBAI

    2016-01-01

    The spreading of globalization drives the companies’ pursuit to expand on foreign markets for various reasons. In this paper it will be analysed the expansion on non-US markets of the Ritz-Carlton®, a hotel company with tradition, being known for its services quality. The analysis takes into consideration the opening year of the hotels in the Latin American, European, Middle Eastern, Central and South Asian and AsiaPacific market, trying to correlate the expansion on certain areas and l...

  18. Zernike polynomial based Rayleigh-Ritz model of a piezoelectric unimorph deformable mirror

    CSIR Research Space (South Africa)

    Long, CS

    2012-04-01

    Full Text Available , are routinely and conveniently described using Zernike polynomials. A Rayleigh-Ritz structural model, which uses Zernike polynomials directly to describe the displacements, is proposed in this paper. The proposed formulation produces a numerically inexpensive...

  19. Strategic planning for hotel operations: The Ritz-Carlton Hotel Company (Part I).

    Science.gov (United States)

    Shriver, S J

    1993-01-01

    The Ritz-Carlton Hotel Company won the Malcolm Baldridge National Quality Award in 1992. One key to its success is its strategic planning process. This two-part article reviews the Ritz-Carlton's approach to strategic planning. In particular, it describes (1) the role of senior leadership in the planning process and (2) the specific activities that are associated with plan development and implementation.

  20. The adjoint variational nodal method

    International Nuclear Information System (INIS)

    Laurin-Kovitz, K.; Lewis, E.E.

    1993-01-01

    The widespread use of nodal methods for reactor core calculations in both diffusion and transport approximations has created a demand for the corresponding adjoint solutions as a prerequisite for performing perturbation calculations. With some computational methods, however, the solution of the adjoint problem presents a difficulty; the physical adjoint obtained by discretizing the adjoint equation is not the same as the mathematical adjoint obtained by taking the transpose of the coefficient matrix, which results from the discretization of the forward equation. This difficulty arises, in particular, when interface current nodal methods based on quasi-one-dimensional solution of the diffusion or transport equation are employed. The mathematical adjoint is needed to perform perturbation calculations. The utilization of existing nodal computational algorithms, however, requires the physical adjoint. As a result, similarity transforms or related techniques must be utilized to relate physical and mathematical adjoints. Thus far, such techniques have been developed only for diffusion theory

  1. THE EXPANSION OF THE RITZ-CARLTON® ON FOREIGN MARKETS

    Directory of Open Access Journals (Sweden)

    Mihai-Răzvan DOBAI

    2016-12-01

    Full Text Available The spreading of globalization drives the companies’ pursuit to expand on foreign markets for various reasons. In this paper it will be analysed the expansion on non-US markets of the Ritz-Carlton®, a hotel company with tradition, being known for its services quality. The analysis takes into consideration the opening year of the hotels in the Latin American, European, Middle Eastern, Central and South Asian and AsiaPacific market, trying to correlate the expansion on certain areas and locations with the American foreign policy regarding those regions, one of the essential factors being the improvement and development of economic ties which led to an interdependence between the main actors of the current international affairs arena. Under these circumstances, there were created favourable environments for the hotel to expand on foreign markets. Last but not least, by serving international business people conducting their affairs worldwide and contributing in tightening the economic relations among countries, such a hotel chain is indirectly part of the economic and soft power of a country.

  2. Variational method for integrating radial gradient field

    Science.gov (United States)

    Legarda-Saenz, Ricardo; Brito-Loeza, Carlos; Rivera, Mariano; Espinosa-Romero, Arturo

    2014-12-01

    We propose a variational method for integrating information obtained from circular fringe pattern. The proposed method is a suitable choice for objects with radial symmetry. First, we analyze the information contained in the fringe pattern captured by the experimental setup and then move to formulate the problem of recovering the wavefront using techniques from calculus of variations. The performance of the method is demonstrated by numerical experiments with both synthetic and real data.

  3. Heterogeneous treatment in the variational nodal method

    International Nuclear Information System (INIS)

    Fanning, T.H.

    1995-01-01

    The variational nodal transport method is reduced to its diffusion form and generalized for the treatment of heterogeneous nodes while maintaining nodal balances. Adapting variational methods to heterogeneous nodes requires the ability to integrate over a node with discontinuous cross sections. In this work, integrals are evaluated using composite gaussian quadrature rules, which permit accurate integration while minimizing computing time. Allowing structure within a nodal solution scheme avoids some of the necessity of cross section homogenization, and more accurately defines the intra-nodal flux shape. Ideally, any desired heterogeneity can be constructed within the node; but in reality, the finite set of basis functions limits the practical resolution to which fine detail can be defined within the node. Preliminary comparison tests show that the heterogeneous variational nodal method provides satisfactory results even if some improvements are needed for very difficult, configurations

  4. A variational synthesis nodal discrete ordinates method

    International Nuclear Information System (INIS)

    Favorite, J.A.; Stacey, W.M.

    1999-01-01

    A self-consistent nodal approximation method for computing discrete ordinates neutron flux distributions has been developed from a variational functional for neutron transport theory. The advantage of the new nodal method formulation is that it is self-consistent in its definition of the homogenized nodal parameters, the construction of the global nodal equations, and the reconstruction of the detailed flux distribution. The efficacy of the method is demonstrated by two-dimensional test problems

  5. The variational celular method - the code implantation

    International Nuclear Information System (INIS)

    Rosato, A.; Lima, M.A.P.

    1980-12-01

    The process to determine the potential energy curve for diatomic molecules by the Variational Cellular Method is discussed. An analysis of the determination of the electronic eigenenergies and the electrostatic energy of these molecules is made. An explanation of the input data and their meaning is also presented. (Author) [pt

  6. Variational method for lattice spectroscopy with ghosts

    International Nuclear Information System (INIS)

    Burch, Tommy; Hagen, Christian; Gattringer, Christof; Glozman, Leonid Ya.; Lang, C.B.

    2006-01-01

    We discuss the variational method used in lattice spectroscopy calculations. In particular we address the role of ghost contributions which appear in quenched or partially quenched simulations and have a nonstandard euclidean time dependence. We show that the ghosts can be separated from the physical states. Our result is illustrated with numerical data for the scalar meson

  7. Temporal super resolution using variational methods

    DEFF Research Database (Denmark)

    Keller, Sune Høgild; Lauze, Francois Bernard; Nielsen, Mads

    2010-01-01

    Temporal super resolution (TSR) is the ability to convert video from one frame rate to another and is as such a key functionality in modern video processing systems. A higher frame rate than what is recorded is desired for high frame rate displays, for super slow-motion, and for video/film format...... observed when watching video on large and bright displays where the motion of high contrast edges often seem jerky and unnatural. A novel motion compensated (MC) TSR algorithm using variational methods for both optical flow calculation and the actual new frame interpolation is presented. The flow...

  8. Variational methods for chemical and nuclear reactions

    International Nuclear Information System (INIS)

    Crawford, O.H.

    1977-01-01

    All the variational functionals are derived which satisfy certain criteria of suitability for molecular and nuclear scattering, below the threshold energy for three-body breakup. The existence and uniqueness of solutions are proven. The most general suitable functional is specialized, by particular values of its parameters, to Kohn's taneta, Kato's cot(eta-theta), the inverse Kohn coeta, Kohn's S matrix, our S matrix, Lane and Robson's functional, and several new functionals, an infinite number of which are contained in the general expression. Four general ways of deriving algebraic methods from a given functional are discussed, and illustrated with specific algebraic results. These include equations of Lane and Robson and of Kohn, the fundamental R matrix relation, and new equations. The relative configuration space is divided as in the Wigner R matrix theory, and trial wavefunctions are needed for only the region where all the particles are interacting. In addition, a version of the general functional is presented which does not require any division of space

  9. Schroedinger's variational method of quantization revisited

    International Nuclear Information System (INIS)

    Yasue, K.

    1980-01-01

    Schroedinger's original quantization procedure is revisited in the light of Nelson's stochastic framework of quantum mechanics. It is clarified why Schroedinger's proposal of a variational problem led us to a true description of quantum mechanics. (orig.)

  10. SU-F-I-13: Correction Factor Computations for the NIST Ritz Free Air Chamber for Medium-Energy X Rays

    International Nuclear Information System (INIS)

    Bergstrom, P

    2016-01-01

    Purpose: The National Institute of Standards and Technology (NIST) uses 3 free-air chambers to establish primary standards for radiation dosimetry at x-ray energies. For medium-energy × rays, the Ritz free-air chamber is the main measurement device. In order to convert the charge or current collected by the chamber to the radiation quantities air kerma or air kerma rate, a number of correction factors specific to the chamber must be applied. Methods: We used the Monte Carlo codes EGSnrc and PENELOPE. Results: Among these correction factors are the diaphragm correction (which accounts for interactions of photons from the x-ray source in the beam-defining diaphragm of the chamber), the scatter correction (which accounts for the effects of photons scattered out of the primary beam), the electron-loss correction (which accounts for electrons that only partially expend their energy in the collection region), the fluorescence correction (which accounts for ionization due to reabsorption ffluorescence photons and the bremsstrahlung correction (which accounts for the reabsorption of bremsstrahlung photons). We have computed monoenergetic corrections for the NIST Ritz chamber for the 1 cm, 3 cm and 7 cm collection plates. Conclusion: We find good agreement with other’s results for the 7 cm plate. The data used to obtain these correction factors will be used to establish air kerma and it’s uncertainty in the standard NIST x-ray beams.

  11. SU-F-I-13: Correction Factor Computations for the NIST Ritz Free Air Chamber for Medium-Energy X Rays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, P [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 (United States)

    2016-06-15

    Purpose: The National Institute of Standards and Technology (NIST) uses 3 free-air chambers to establish primary standards for radiation dosimetry at x-ray energies. For medium-energy × rays, the Ritz free-air chamber is the main measurement device. In order to convert the charge or current collected by the chamber to the radiation quantities air kerma or air kerma rate, a number of correction factors specific to the chamber must be applied. Methods: We used the Monte Carlo codes EGSnrc and PENELOPE. Results: Among these correction factors are the diaphragm correction (which accounts for interactions of photons from the x-ray source in the beam-defining diaphragm of the chamber), the scatter correction (which accounts for the effects of photons scattered out of the primary beam), the electron-loss correction (which accounts for electrons that only partially expend their energy in the collection region), the fluorescence correction (which accounts for ionization due to reabsorption ffluorescence photons and the bremsstrahlung correction (which accounts for the reabsorption of bremsstrahlung photons). We have computed monoenergetic corrections for the NIST Ritz chamber for the 1 cm, 3 cm and 7 cm collection plates. Conclusion: We find good agreement with other’s results for the 7 cm plate. The data used to obtain these correction factors will be used to establish air kerma and it’s uncertainty in the standard NIST x-ray beams.

  12. Variation and Commonality in Phenomenographic Research Methods

    Science.gov (United States)

    Akerlind, Gerlese S.

    2012-01-01

    This paper focuses on the data analysis stage of phenomenographic research, elucidating what is involved in terms of both commonality and variation in accepted practice. The analysis stage of phenomenographic research is often not well understood. This paper helps to clarify the process, initially by collecting together in one location the more…

  13. Multistep Hybrid Extragradient Method for Triple Hierarchical Variational Inequalities

    Directory of Open Access Journals (Sweden)

    Zhao-Rong Kong

    2013-01-01

    Full Text Available We consider a triple hierarchical variational inequality problem (THVIP, that is, a variational inequality problem defined over the set of solutions of another variational inequality problem which is defined over the intersection of the fixed point set of a strict pseudocontractive mapping and the solution set of the classical variational inequality problem. Moreover, we propose a multistep hybrid extragradient method to compute the approximate solutions of the THVIP and present the convergence analysis of the sequence generated by the proposed method. We also derive a solution method for solving a system of hierarchical variational inequalities (SHVI, that is, a system of variational inequalities defined over the intersection of the fixed point set of a strict pseudocontractive mapping and the solution set of the classical variational inequality problem. Under very mild conditions, it is proven that the sequence generated by the proposed method converges strongly to a unique solution of the SHVI.

  14. Using the Screened Coulomb Potential to Illustrate the Variational Method

    Science.gov (United States)

    Zuniga, Jose; Bastida, Adolfo; Requena, Alberto

    2012-01-01

    The screened Coulomb potential, or Yukawa potential, is used to illustrate the application of the single and linear variational methods. The trial variational functions are expressed in terms of Slater-type functions, for which the integrals needed to carry out the variational calculations are easily evaluated in closed form. The variational…

  15. A multigrid method for variational inequalities

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, S.; Stewart, D.E.; Wu, W.

    1996-12-31

    Multigrid methods have been used with great success for solving elliptic partial differential equations. Penalty methods have been successful in solving finite-dimensional quadratic programs. In this paper these two techniques are combined to give a fast method for solving obstacle problems. A nonlinear penalized problem is solved using Newton`s method for large values of a penalty parameter. Multigrid methods are used to solve the linear systems in Newton`s method. The overall numerical method developed is based on an exterior penalty function, and numerical results showing the performance of the method have been obtained.

  16. Variational iteration method for one dimensional nonlinear thermoelasticity

    International Nuclear Information System (INIS)

    Sweilam, N.H.; Khader, M.M.

    2007-01-01

    This paper applies the variational iteration method to solve the Cauchy problem arising in one dimensional nonlinear thermoelasticity. The advantage of this method is to overcome the difficulty of calculation of Adomian's polynomials in the Adomian's decomposition method. The numerical results of this method are compared with the exact solution of an artificial model to show the efficiency of the method. The approximate solutions show that the variational iteration method is a powerful mathematical tool for solving nonlinear problems

  17. Experimental study of strain prediction on wave induced structures using modal decomposition and quasi static Ritz vectors

    DEFF Research Database (Denmark)

    Skafte, Anders; Kristoffersen, Julie; Vestermark, Jonas

    2017-01-01

    into two parts using complementary filters: Low frequency response caused by the quasi-static effect of the waves acting on the structure, and the high frequency response given by the modal properties of the structure. The high frequency response is then decomposed into modal coordinates using...... the experimental mode shapes. Strain histories are predicted by multiplying the modal coordinates with the expanded strain mode shapes. The low frequency response is decomposed using Ritz-vectors corresponding to the shapes that the structure vibrates with due to the wave loading. Strain Ritz......-vectors are then extracted from the finite element model by applying a load corresponding to a representative wave and the strain history for the low frequency response is found by multiplying the decomposed signal with the strain Ritz-vectors. Finally the combined strain history is found by adding the strain histories from...

  18. Survey Shows Variation in Ph.D. Methods Training.

    Science.gov (United States)

    Steeves, Leslie; And Others

    1983-01-01

    Reports on a 1982 survey of journalism graduate studies indicating considerable variation in research methods requirements and emphases in 23 universities offering doctoral degrees in mass communication. (HOD)

  19. Time dependent variational method in quantum mechanics

    International Nuclear Information System (INIS)

    Torres del Castillo, G.F.

    1987-01-01

    Using the fact that the solutions to the time-dependent Schodinger equation can be obtained from a variational principle, by restricting the evolution of the state vector to some surface in the corresponding Hilbert space, approximations to the exact solutions can be obtained, which are determined by equations similar to Hamilton's equations. It is shown that, in order for the approximate evolution to be well defined on a given surface, the imaginary part of the inner product restricted to the surface must be non-singular. (author)

  20. On Self-Adaptive Method for General Mixed Variational Inequalities

    Directory of Open Access Journals (Sweden)

    Abdellah Bnouhachem

    2008-01-01

    Full Text Available We suggest and analyze a new self-adaptive method for solving general mixed variational inequalities, which can be viewed as an improvement of the method of (Noor 2003. Global convergence of the new method is proved under the same assumptions as Noor's method. Some preliminary computational results are given to illustrate the efficiency of the proposed method. Since the general mixed variational inequalities include general variational inequalities, quasivariational inequalities, and nonlinear (implicit complementarity problems as special cases, results proved in this paper continue to hold for these problems.

  1. A Modified Alternating Direction Method for Variational Inequality Problems

    International Nuclear Information System (INIS)

    Han, D.

    2002-01-01

    The alternating direction method is an attractive method for solving large-scale variational inequality problems whenever the subproblems can be solved efficiently. However, the subproblems are still variational inequality problems, which are as structurally difficult to solve as the original one. To overcome this disadvantage, in this paper we propose a new alternating direction method for solving a class of nonlinear monotone variational inequality problems. In each iteration the method just makes an orthogonal projection to a simple set and some function evaluations. We report some preliminary computational results to illustrate the efficiency of the method

  2. Progress in classical and quantum variational principles

    International Nuclear Information System (INIS)

    Gray, C G; Karl, G; Novikov, V A

    2004-01-01

    We review the development and practical uses of a generalized Maupertuis least action principle in classical mechanics in which the action is varied under the constraint of fixed mean energy for the trial trajectory. The original Maupertuis (Euler-Lagrange) principle constrains the energy at every point along the trajectory. The generalized Maupertuis principle is equivalent to Hamilton's principle. Reciprocal principles are also derived for both the generalized Maupertuis and the Hamilton principles. The reciprocal Maupertuis principle is the classical limit of Schroedinger's variational principle of wave mechanics and is also very useful to solve practical problems in both classical and semiclassical mechanics, in complete analogy with the quantum Rayleigh-Ritz method. Classical, semiclassical and quantum variational calculations are carried out for a number of systems, and the results are compared. Pedagogical as well as research problems are used as examples, which include nonconservative as well as relativistic systems. '... the most beautiful and important discovery of Mechanics.' Lagrange to Maupertuis (November 1756)

  3. Hybrid Steepest-Descent Methods for Triple Hierarchical Variational Inequalities

    Directory of Open Access Journals (Sweden)

    L. C. Ceng

    2015-01-01

    Full Text Available We introduce and analyze a relaxed iterative algorithm by combining Korpelevich’s extragradient method, hybrid steepest-descent method, and Mann’s iteration method. We prove that, under appropriate assumptions, the proposed algorithm converges strongly to a common element of the fixed point set of infinitely many nonexpansive mappings, the solution set of finitely many generalized mixed equilibrium problems (GMEPs, the solution set of finitely many variational inclusions, and the solution set of general system of variational inequalities (GSVI, which is just a unique solution of a triple hierarchical variational inequality (THVI in a real Hilbert space. In addition, we also consider the application of the proposed algorithm for solving a hierarchical variational inequality problem with constraints of finitely many GMEPs, finitely many variational inclusions, and the GSVI. The results obtained in this paper improve and extend the corresponding results announced by many others.

  4. Discrete variational methods and their application to electronic structures

    International Nuclear Information System (INIS)

    Ellis, D.E.

    1987-01-01

    Some general concepts concerning Discrete Variational methods are developed and applied to problems of determination of eletronic spectra, charge densities and bonding of free molecules, surface-chemisorbed species and bulk solids. (M.W.O.) [pt

  5. A convergent overlapping domain decomposition method for total variation minimization

    KAUST Repository

    Fornasier, Massimo; Langer, Andreas; Schö nlieb, Carola-Bibiane

    2010-01-01

    In this paper we are concerned with the analysis of convergent sequential and parallel overlapping domain decomposition methods for the minimization of functionals formed by a discrepancy term with respect to the data and a total variation

  6. Solution of problems in calculus of variations via He's variational iteration method

    International Nuclear Information System (INIS)

    Tatari, Mehdi; Dehghan, Mehdi

    2007-01-01

    In the modeling of a large class of problems in science and engineering, the minimization of a functional is appeared. Finding the solution of these problems needs to solve the corresponding ordinary differential equations which are generally nonlinear. In recent years He's variational iteration method has been attracted a lot of attention of the researchers for solving nonlinear problems. This method finds the solution of the problem without any discretization of the equation. Since this method gives a closed form solution of the problem and avoids the round off errors, it can be considered as an efficient method for solving various kinds of problems. In this research He's variational iteration method will be employed for solving some problems in calculus of variations. Some examples are presented to show the efficiency of the proposed technique

  7. Nucleon matrix elements using the variational method in lattice QCD

    International Nuclear Information System (INIS)

    Dragos, J.; Kamleh, W.; Leinweber, D.B.; Zanotti, J.M.; Rakow, P.E.L.; Young, R.D.; Adelaide Univ., SA

    2016-06-01

    The extraction of hadron matrix elements in lattice QCD using the standard two- and threepoint correlator functions demands careful attention to systematic uncertainties. One of the most commonly studied sources of systematic error is contamination from excited states. We apply the variational method to calculate the axial vector current g_A, the scalar current g_S and the quark momentum fraction left angle x right angle of the nucleon and we compare the results to the more commonly used summation and two-exponential fit methods. The results demonstrate that the variational approach offers a more efficient and robust method for the determination of nucleon matrix elements.

  8. Improved determination of hadron matrix elements using the variational method

    International Nuclear Information System (INIS)

    Dragos, J.; Kamleh, W.; Leinweber, D.B.; Zanotti, J.M.; Rakow, P.E.L.; Young, R.D.; Adelaide Univ.

    2015-11-01

    The extraction of hadron form factors in lattice QCD using the standard two- and three-point correlator functions has its limitations. One of the most commonly studied sources of systematic error is excited state contamination, which occurs when correlators are contaminated with results from higher energy excitations. We apply the variational method to calculate the axial vector current g A and compare the results to the more commonly used summation and two-exponential fit methods. The results demonstrate that the variational approach offers a more efficient and robust method for the determination of nucleon matrix elements.

  9. Use of the Local Variation Methods for Nuclear Design Calculations

    International Nuclear Information System (INIS)

    Zhukov, A.I.

    2006-01-01

    A new problem-solving method for steady-state equations, which describe neutron diffusion, is presented. The method bases on a variation principal for steady-state diffusion equations and direct search the minimum of a corresponding functional. Benchmark problem calculation for power of fuel assemblies show ∼ 2% relative accuracy

  10. Variation Iteration Method for The Approximate Solution of Nonlinear ...

    African Journals Online (AJOL)

    In this study, we considered the numerical solution of the nonlinear Burgers equation using the Variational Iteration Method (VIM). The method seeks to examine the convergence of solutions of the Burgers equation at the expense of the parameters x and t of which the amount of errors depends. Numerical experimentation ...

  11. Some Implicit Methods for Solving Harmonic Variational Inequalities

    Directory of Open Access Journals (Sweden)

    Muhammad Aslam Noor

    2016-08-01

    Full Text Available In this paper, we use the auxiliary principle technique to suggest an implicit method for solving the harmonic variational inequalities. It is shown that the convergence of the proposed method only needs pseudo monotonicity of the operator, which is a weaker condition than monotonicity.

  12. The variational nodal method: history and recent accomplishments

    International Nuclear Information System (INIS)

    Lewis, E.E.

    2004-01-01

    The variational nodal method combines spherical harmonics expansions in angle with hybrid finite element techniques is space to obtain multigroup transport response matrix algorithms applicable to both deep penetration and reactor core physics problems. This survey briefly recounts the method's history and reviews its capabilities. The variational basis for the approach is presented and two methods for obtaining discretized equations in the form of response matrices are detailed. The first is that contained the widely used VARIANT code, while the second incorporates newly developed integral transport techniques into the variational nodal framework. The two approaches are combined with a finite sub element formulation to treat heterogeneous nodes. Applications are presented for both a deep penetration problem and to an OECD benchmark consisting of LWR MOX fuel assemblies. Ongoing work is discussed. (Author)

  13. Application of New Variational Homotopy Perturbation Method For ...

    African Journals Online (AJOL)

    This paper discusses the application of the New Variational Homotopy Perturbation Method (NVHPM) for solving integro-differential equations. The advantage of the new Scheme is that it does not require discretization, linearization or any restrictive assumption of any form be fore it is applied. Several test problems are ...

  14. Discrete gradient methods for solving variational image regularisation models

    International Nuclear Information System (INIS)

    Grimm, V; McLachlan, Robert I; McLaren, David I; Quispel, G R W; Schönlieb, C-B

    2017-01-01

    Discrete gradient methods are well-known methods of geometric numerical integration, which preserve the dissipation of gradient systems. In this paper we show that this property of discrete gradient methods can be interesting in the context of variational models for image processing, that is where the processed image is computed as a minimiser of an energy functional. Numerical schemes for computing minimisers of such energies are desired to inherit the dissipative property of the gradient system associated to the energy and consequently guarantee a monotonic decrease of the energy along iterations, avoiding situations in which more computational work might lead to less optimal solutions. Under appropriate smoothness assumptions on the energy functional we prove that discrete gradient methods guarantee a monotonic decrease of the energy towards stationary states, and we promote their use in image processing by exhibiting experiments with convex and non-convex variational models for image deblurring, denoising, and inpainting. (paper)

  15. Variational iteration method for solving coupled-KdV equations

    International Nuclear Information System (INIS)

    Assas, Laila M.B.

    2008-01-01

    In this paper, the He's variational iteration method is applied to solve the non-linear coupled-KdV equations. This method is based on the use of Lagrange multipliers for identification of optimal value of a parameter in a functional. This technique provides a sequence of functions which converge to the exact solution of the coupled-KdV equations. This procedure is a powerful tool for solving coupled-KdV equations

  16. Molecular photoionization using the complex Kohn variational method

    International Nuclear Information System (INIS)

    Lynch, D.L.; Schneider, B.I.

    1992-01-01

    We have applied the complex Kohn variational method to the study of molecular-photoionization processes. This requires electron-ion scattering calculations enforcing incoming boundary conditions. The sensitivity of these results to the choice of the cutoff function in the Kohn method has been studied and we have demonstrated that a simple matching of the irregular function to a linear combination of regular functions produces accurate scattering phase shifts

  17. Moments of inertia for solids of revolution and variational methods

    International Nuclear Information System (INIS)

    Diaz, Rodolfo A; Herrera, William J; Martinez, R

    2006-01-01

    We present some formulae for the moments of inertia of homogeneous solids of revolution in terms of the functions that generate the solids. The development of these expressions exploits the cylindrical symmetry of these objects and avoids the explicit use of multiple integration, providing an easy and pedagogical approach. The explicit use of the functions that generate the solid gives the possibility of writing the moment of inertia as a functional, which in turn allows us to utilize the calculus of variations to obtain new insight into some properties of this fundamental quantity. In particular, minimization of moments of inertia under certain restrictions is possible by using variational methods

  18. Elastic scattering of positronium: Application of the confined variational method

    KAUST Repository

    Zhang, Junyi

    2012-08-01

    We demonstrate for the first time that the phase shift in elastic positronium-atom scattering can be precisely determined by the confined variational method, in spite of the fact that the Hamiltonian includes an unphysical confining potential acting on the center of mass of the positron and one of the atomic electrons. As an example, we study the S-wave elastic scattering for the positronium-hydrogen scattering system, where the existing 4% discrepancy between the Kohn variational calculation and the R-matrix calculation is resolved. © Copyright EPLA, 2012.

  19. Elastic scattering of positronium: Application of the confined variational method

    KAUST Repository

    Zhang, Junyi; Yan, Zong-Chao; Schwingenschlö gl, Udo

    2012-01-01

    We demonstrate for the first time that the phase shift in elastic positronium-atom scattering can be precisely determined by the confined variational method, in spite of the fact that the Hamiltonian includes an unphysical confining potential acting on the center of mass of the positron and one of the atomic electrons. As an example, we study the S-wave elastic scattering for the positronium-hydrogen scattering system, where the existing 4% discrepancy between the Kohn variational calculation and the R-matrix calculation is resolved. © Copyright EPLA, 2012.

  20. Minimizers with discontinuous velocities for the electromagnetic variational method

    International Nuclear Information System (INIS)

    De Luca, Jayme

    2010-01-01

    The electromagnetic two-body problem has neutral differential delay equations of motion that, for generic boundary data, can have solutions with discontinuous derivatives. If one wants to use these neutral differential delay equations with arbitrary boundary data, solutions with discontinuous derivatives must be expected and allowed. Surprisingly, Wheeler-Feynman electrodynamics has a boundary value variational method for which minimizer trajectories with discontinuous derivatives are also expected, as we show here. The variational method defines continuous trajectories with piecewise defined velocities and accelerations, and electromagnetic fields defined by the Euler-Lagrange equations on trajectory points. Here we use the piecewise defined minimizers with the Lienard-Wierchert formulas to define generalized electromagnetic fields almost everywhere (but on sets of points of zero measure where the advanced/retarded velocities and/or accelerations are discontinuous). Along with this generalization we formulate the generalized absorber hypothesis that the far fields vanish asymptotically almost everywhere and show that localized orbits with far fields vanishing almost everywhere must have discontinuous velocities on sewing chains of breaking points. We give the general solution for localized orbits with vanishing far fields by solving a (linear) neutral differential delay equation for these far fields. We discuss the physics of orbits with discontinuous derivatives stressing the differences to the variational methods of classical mechanics and the existence of a spinorial four-current associated with the generalized variational electrodynamics.

  1. The variational nodal method: some history and recent activity

    International Nuclear Information System (INIS)

    Lewis, E.E.; Smith, M.A.; Palmiotti, G.

    2005-01-01

    The variational nodal method combines spherical harmonics expansions in angle with hybrid finite element techniques in space to obtain multigroup transport response matrix algorithms applicable to a wide variety of reactor physics problems. This survey briefly recounts the method's history and reviews its capabilities. Two methods for obtaining discretized equations in the form of response matrices are compared. The first is that contained the widely used VARIANT code, while the second incorporates more recently developed integral transport techniques into the variational nodal framework. The two approaches are combined with a finite sub-element formulation to treat heterogeneous nodes. Results are presented for application to a deep penetration problem and to an OECD benchmark consisting of LWR Mox fuel assemblies. Ongoing work is discussed. (authors)

  2. Variationally derived coarse mesh methods using an alternative flux representation

    International Nuclear Information System (INIS)

    Wojtowicz, G.; Holloway, J.P.

    1995-01-01

    Investigation of a previously reported variational technique for the solution of the 1-D, 1-group neutron transport equation in reactor lattices has inspired the development of a finite element formulation of the method. Compared to conventional homogenization methods in which node homogenized cross sections are used, the coefficients describing this system take on greater spatial dependence. However, the methods employ an alternative flux representation which allows the transport equation to be cast into a form whose solution has only a slow spatial variation and, hence, requires relatively few variables to describe. This alternative flux representation and the stationary property of a variational principle define a class of coarse mesh discretizations of transport theory capable of achieving order of magnitude reductions of eigenvalue and pointwise scalar flux errors as compared with diffusion theory while retaining diffusion theory's relatively low cost. Initial results of a 1-D spectral element approach are reviewed and used to motivate the finite element implementation which is more efficient and almost as accurate; one and two group results of this method are described

  3. THE CONTROL VARIATIONAL METHOD FOR ELASTIC CONTACT PROBLEMS

    Directory of Open Access Journals (Sweden)

    Mircea Sofonea

    2010-07-01

    Full Text Available We consider a multivalued equation of the form Ay + F(y = fin a real Hilbert space, where A is a linear operator and F represents the (Clarke subdifferential of some function. We prove existence and uniqueness results of the solution by using the control variational method. The main idea in this method is to minimize the energy functional associated to the nonlinear equation by arguments of optimal control theory. Then we consider a general mathematical model describing the contact between a linearly elastic body and an obstacle which leads to a variational formulation as above, for the displacement field. We apply the abstract existence and uniqueness results to prove the unique weak solvability of the corresponding contact problem. Finally, we present examples of contact and friction laws for which our results work.

  4. The variational method in the atomic structure calcularion

    International Nuclear Information System (INIS)

    Tomimura, A.

    1970-01-01

    The importance and limitations of variational methods on the atomic structure calculations is set into relevance. Comparisons are made to the Perturbation Theory. Ilustrating it, the method is applied to the H - , H + and H + 2 simple atomic structure systems, and the results are analysed with basis on the study of the associated essential eigenvalue spectrum. Hydrogenic functions (where the screening constants are replaced by variational parameters) are combined to construct the wave function with proper symmetry for each one of the systems. This shows the existence of a bound state for H - , but no conclusions can be made for the others, where it may or may not be necessary to use more flexible wave functions, i.e., with greater number of terms and parameters. (author) [pt

  5. A variational method in out-of-equilibrium physical systems.

    Science.gov (United States)

    Pinheiro, Mario J

    2013-12-09

    We propose a new variational principle for out-of-equilibrium dynamic systems that are fundamentally based on the method of Lagrange multipliers applied to the total entropy of an ensemble of particles. However, we use the fundamental equation of thermodynamics on differential forms, considering U and S as 0-forms. We obtain a set of two first order differential equations that reveal the same formal symplectic structure shared by classical mechanics, fluid mechanics and thermodynamics. From this approach, a topological torsion current emerges of the form , where Aj and ωk denote the components of the vector potential (gravitational and/or electromagnetic) and where ω denotes the angular velocity of the accelerated frame. We derive a special form of the Umov-Poynting theorem for rotating gravito-electromagnetic systems. The variational method is then applied to clarify the working mechanism of particular devices.

  6. Variational method for magnetic impurities in metals: impurity pairs

    Energy Technology Data Exchange (ETDEWEB)

    Oles, A M [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany, F.R.); Chao, K A [Linkoeping Univ. (Sweden). Dept. of Physics and Measurement Technology

    1980-01-01

    Applying a variational method to the generalized Wolff model, we have investigated the effect of impurity-impurity interaction on the formation of local moments in the ground state. The direct coupling between the impurities is found to be more important than the interaction between the impurities and the host conduction electrons, as far as the formation of local moments is concerned. Under certain conditions we also observe different valences on different impurities.

  7. The variational method in quantum mechanics: an elementary introduction

    Science.gov (United States)

    Borghi, Riccardo

    2018-05-01

    Variational methods in quantum mechanics are customarily presented as invaluable techniques to find approximate estimates of ground state energies. In the present paper a short catalogue of different celebrated potential distributions (both 1D and 3D), for which an exact and complete (energy and wavefunction) ground state determination can be achieved in an elementary way, is illustrated. No previous knowledge of calculus of variations is required. Rather, in all presented cases the exact energy functional minimization is achieved by using only a couple of simple mathematical tricks: ‘completion of square’ and integration by parts. This makes our approach particularly suitable for undergraduates. Moreover, the key role played by particle localization is emphasized through the entire analysis. This gentle introduction to the variational method could also be potentially attractive for more expert students as a possible elementary route toward a rather advanced topic on quantum mechanics: the factorization method. Such an unexpected connection is outlined in the final part of the paper.

  8. The four variational principles of mechanics

    International Nuclear Information System (INIS)

    Gray, C.G.; Karl, G.; Novikov, V.A.

    1996-01-01

    We argue that there are four basic forms of the variational principles of mechanics: Hamilton close-quote s least action principle (HP), the generalized Maupertuis principle (MP), and their two reciprocal principles, RHP and RMP. This set is invariant under reciprocity and Legendre transformations. One of these forms (HP) is in the literature: only special cases of the other three are known. The generalized MP has a weaker constraint compared to the traditional formulation, only the mean energy bar E is kept fixed between virtual paths. This reformulation of MP alleviates several weaknesses of the old version. The reciprocal Maupertuis principle (RMP) is the classical limit of Schroedinger close-quote s variational principle of quantum mechanics, and this connection emphasizes the importance of the reciprocity transformation for variational principles. Two unconstrained formulations (UHP and UMP) of these four principles are also proposed, with completely specified Lagrange multipliers Percival close-quote s variational principle for invariant tori and variational principles for scattering orbits are derived from the RMP. The RMP is very convenient for approximate variational solutions to problems in mechanics using Ritz type methods Examples are provided. Copyright copyright 1996 Academic Press, Inc

  9. O uso estratégico de recursos e capacidades no setor hoteleiro: o caso Ritz Porto Alegre

    Directory of Open Access Journals (Sweden)

    Paulo Hayashi Jr.

    2014-01-01

    Full Text Available This paper tries to elucidate how the Ritz Hotel in Porto Alegre (Brazil compete successfully with its resources and capabilities within the range of the chosen strategy. The research is qualitative, descriptive with semi‑structured interviews and non‑participant observation. All the employees and the owner were interviewed. Among the main conclusions reached were the importance of human capital and organizational culture as competitive and operational resources. In addition, the network of contacts formed by former residents, the internet as well as government agencies contribute in the renovation of hotel guests.

  10. Storm surge model based on variational data assimilation method

    Directory of Open Access Journals (Sweden)

    Shi-li Huang

    2010-06-01

    Full Text Available By combining computation and observation information, the variational data assimilation method has the ability to eliminate errors caused by the uncertainty of parameters in practical forecasting. It was applied to a storm surge model based on unstructured grids with high spatial resolution meant for improving the forecasting accuracy of the storm surge. By controlling the wind stress drag coefficient, the variation-based model was developed and validated through data assimilation tests in an actual storm surge induced by a typhoon. In the data assimilation tests, the model accurately identified the wind stress drag coefficient and obtained results close to the true state. Then, the actual storm surge induced by Typhoon 0515 was forecast by the developed model, and the results demonstrate its efficiency in practical application.

  11. A convergent overlapping domain decomposition method for total variation minimization

    KAUST Repository

    Fornasier, Massimo

    2010-06-22

    In this paper we are concerned with the analysis of convergent sequential and parallel overlapping domain decomposition methods for the minimization of functionals formed by a discrepancy term with respect to the data and a total variation constraint. To our knowledge, this is the first successful attempt of addressing such a strategy for the nonlinear, nonadditive, and nonsmooth problem of total variation minimization. We provide several numerical experiments, showing the successful application of the algorithm for the restoration of 1D signals and 2D images in interpolation/inpainting problems, respectively, and in a compressed sensing problem, for recovering piecewise constant medical-type images from partial Fourier ensembles. © 2010 Springer-Verlag.

  12. Newton-type methods for optimization and variational problems

    CERN Document Server

    Izmailov, Alexey F

    2014-01-01

    This book presents comprehensive state-of-the-art theoretical analysis of the fundamental Newtonian and Newtonian-related approaches to solving optimization and variational problems. A central focus is the relationship between the basic Newton scheme for a given problem and algorithms that also enjoy fast local convergence. The authors develop general perturbed Newtonian frameworks that preserve fast convergence and consider specific algorithms as particular cases within those frameworks, i.e., as perturbations of the associated basic Newton iterations. This approach yields a set of tools for the unified treatment of various algorithms, including some not of the Newton type per se. Among the new subjects addressed is the class of degenerate problems. In particular, the phenomenon of attraction of Newton iterates to critical Lagrange multipliers and its consequences as well as stabilized Newton methods for variational problems and stabilized sequential quadratic programming for optimization. This volume will b...

  13. Investigation on generalized Variational Nodal Methods for heterogeneous nodes

    International Nuclear Information System (INIS)

    Wang, Yongping; Wu, Hongchun; Li, Yunzhao; Cao, Liangzhi; Shen, Wei

    2017-01-01

    Highlights: • We developed two heterogeneous nodal methods based on the Variational Nodal Method. • Four problems were solved to evaluate the two heterogeneous nodal methods. • The function expansion method is good at treating continuous-changing heterogeneity. • The finite sub-element method is good at treating discontinuous-changing heterogeneity. - Abstract: The Variational Nodal Method (VNM) is generalized for heterogeneous nodes and applied to four kinds of problems including Molten Salt Reactor (MSR) core problem with continuous cross section profile, Pressurized Water Reactor (PWR) control rod cusping effect problem, PWR whole-core pin-by-pin problem, and heterogeneous PWR core problem without fuel-coolant homogenization in each pin cell. Two approaches have been investigated for the treatment of the nodal heterogeneity in this paper. To concentrate on spatial heterogeneity, diffusion approximation was adopted for the angular variable in neutron transport equation. To provide demonstrative numerical results, the codes in this paper were developed in slab geometry. The first method, named as function expansion (FE) method, expands nodal flux by orthogonal polynomials and the nodal cross sections are also expressed as spatial depended functions. The second path, named as finite sub-element (FS) method, takes advantage of the finite-element method by dividing each node into numbers of homogeneous sub-elements and expanding nodal flux into the combination of linear sub-element trial functions. Numerical tests have been carried out to evaluate the ability of the two nodal (coarse-mesh) heterogeneous VNMs by comparing with the fine-mesh homogeneous VNM. It has been demonstrated that both heterogeneous approaches can handle heterogeneous nodes. The FE method is good at continuous-changing heterogeneity as in the MSR core problem, while the FS method is good at discontinuous-changing heterogeneity such as the PWR pin-by-pin problem and heterogeneous PWR core

  14. An integral nodal variational method for multigroup criticality calculations

    International Nuclear Information System (INIS)

    Lewis, E.E.; Tsoulfanidis, N.

    2003-01-01

    An integral formulation of the variational nodal method is presented and applied to a series of benchmark critically problems. The method combines an integral transport treatment of the even-parity flux within the spatial node with an odd-parity spherical harmonics expansion of the Lagrange multipliers at the node interfaces. The response matrices that result from this formulation are compatible with those in the VARIANT code at Argonne National Laboratory. Either homogeneous or heterogeneous nodes may be employed. In general, for calculations requiring higher-order angular approximations, the integral method yields solutions with comparable accuracy while requiring substantially less CPU time and memory than the standard spherical harmonics expansion using the same spatial approximations. (author)

  15. Equivalence of the generalized and complex Kohn variational methods

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J N; Armour, E A G [School of Mathematical Sciences, University Park, Nottingham NG7 2RD (United Kingdom); Plummer, M, E-mail: pmxjnc@googlemail.co [STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom)

    2010-04-30

    For Kohn variational calculations on low energy (e{sup +} - H{sub 2}) elastic scattering, we prove that the phase shift approximation, obtained using the complex Kohn method, is precisely equal to a value which can be obtained immediately via the real-generalized Kohn method. Our treatment is sufficiently general to be applied directly to arbitrary potential scattering or single open channel scattering problems, with exchange if required. In the course of our analysis, we develop a framework formally to describe the anomalous behaviour of our generalized Kohn calculations in the regions of the well-known Schwartz singularities. This framework also explains the mathematical origin of the anomaly-free singularities we reported in a previous article. Moreover, we demonstrate a novelty: that explicit solutions of the Kohn equations are not required in order to calculate optimal phase shift approximations. We relate our rigorous framework to earlier descriptions of the Kohn-type methods.

  16. Equivalence of the generalized and complex Kohn variational methods

    International Nuclear Information System (INIS)

    Cooper, J N; Armour, E A G; Plummer, M

    2010-01-01

    For Kohn variational calculations on low energy (e + - H 2 ) elastic scattering, we prove that the phase shift approximation, obtained using the complex Kohn method, is precisely equal to a value which can be obtained immediately via the real-generalized Kohn method. Our treatment is sufficiently general to be applied directly to arbitrary potential scattering or single open channel scattering problems, with exchange if required. In the course of our analysis, we develop a framework formally to describe the anomalous behaviour of our generalized Kohn calculations in the regions of the well-known Schwartz singularities. This framework also explains the mathematical origin of the anomaly-free singularities we reported in a previous article. Moreover, we demonstrate a novelty: that explicit solutions of the Kohn equations are not required in order to calculate optimal phase shift approximations. We relate our rigorous framework to earlier descriptions of the Kohn-type methods.

  17. Image denoising by a direct variational minimization

    Directory of Open Access Journals (Sweden)

    Pilipović Stevan

    2011-01-01

    Full Text Available Abstract In this article we introduce a novel method for the image de-noising which combines a mathematically well-posdenes of the variational modeling with the efficiency of a patch-based approach in the field of image processing. It based on a direct minimization of an energy functional containing a minimal surface regularizer that uses fractional gradient. The minimization is obtained on every predefined patch of the image, independently. By doing so, we avoid the use of an artificial time PDE model with its inherent problems of finding optimal stopping time, as well as the optimal time step. Moreover, we control the level of image smoothing on each patch (and thus on the whole image by adapting the Lagrange multiplier using the information on the level of discontinuities on a particular patch, which we obtain by pre-processing. In order to reduce the average number of vectors in the approximation generator and still to obtain the minimal degradation, we combine a Ritz variational method for the actual minimization on a patch, and a complementary fractional variational principle. Thus, the proposed method becomes computationally feasible and applicable for practical purposes. We confirm our claims with experimental results, by comparing the proposed method with a couple of PDE-based methods, where we get significantly better denoising results specially on the oscillatory regions.

  18. Total variation superiorized conjugate gradient method for image reconstruction

    Science.gov (United States)

    Zibetti, Marcelo V. W.; Lin, Chuan; Herman, Gabor T.

    2018-03-01

    The conjugate gradient (CG) method is commonly used for the relatively-rapid solution of least squares problems. In image reconstruction, the problem can be ill-posed and also contaminated by noise; due to this, approaches such as regularization should be utilized. Total variation (TV) is a useful regularization penalty, frequently utilized in image reconstruction for generating images with sharp edges. When a non-quadratic norm is selected for regularization, as is the case for TV, then it is no longer possible to use CG. Non-linear CG is an alternative, but it does not share the efficiency that CG shows with least squares and methods such as fast iterative shrinkage-thresholding algorithms (FISTA) are preferred for problems with TV norm. A different approach to including prior information is superiorization. In this paper it is shown that the conjugate gradient method can be superiorized. Five different CG variants are proposed, including preconditioned CG. The CG methods superiorized by the total variation norm are presented and their performance in image reconstruction is demonstrated. It is illustrated that some of the proposed variants of the superiorized CG method can produce reconstructions of superior quality to those produced by FISTA and in less computational time, due to the speed of the original CG for least squares problems. In the Appendix we examine the behavior of one of the superiorized CG methods (we call it S-CG); one of its input parameters is a positive number ɛ. It is proved that, for any given ɛ that is greater than the half-squared-residual for the least squares solution, S-CG terminates in a finite number of steps with an output for which the half-squared-residual is less than or equal to ɛ. Importantly, it is also the case that the output will have a lower value of TV than what would be provided by unsuperiorized CG for the same value ɛ of the half-squared residual.

  19. Novel crystal timing calibration method based on total variation

    Science.gov (United States)

    Yu, Xingjian; Isobe, Takashi; Watanabe, Mitsuo; Liu, Huafeng

    2016-11-01

    A novel crystal timing calibration method based on total variation (TV), abbreviated as ‘TV merge’, has been developed for a high-resolution positron emission tomography (PET) system. The proposed method was developed for a system with a large number of crystals, it can provide timing calibration at the crystal level. In the proposed method, the timing calibration process was formulated as a linear problem. To robustly optimize the timing resolution, a TV constraint was added to the linear equation. Moreover, to solve the computer memory problem associated with the calculation of the timing calibration factors for systems with a large number of crystals, the merge component was used for obtaining the crystal level timing calibration values. Compared with other conventional methods, the data measured from a standard cylindrical phantom filled with a radioisotope solution was sufficient for performing a high-precision crystal-level timing calibration. In this paper, both simulation and experimental studies were performed to demonstrate the effectiveness and robustness of the TV merge method. We compare the timing resolutions of a 22Na point source, which was located in the field of view (FOV) of the brain PET system, with various calibration techniques. After implementing the TV merge method, the timing resolution improved from 3.34 ns at full width at half maximum (FWHM) to 2.31 ns FWHM.

  20. A variational Bayesian method to inverse problems with impulsive noise

    KAUST Repository

    Jin, Bangti

    2012-01-01

    We propose a novel numerical method for solving inverse problems subject to impulsive noises which possibly contain a large number of outliers. The approach is of Bayesian type, and it exploits a heavy-tailed t distribution for data noise to achieve robustness with respect to outliers. A hierarchical model with all hyper-parameters automatically determined from the given data is described. An algorithm of variational type by minimizing the Kullback-Leibler divergence between the true posteriori distribution and a separable approximation is developed. The numerical method is illustrated on several one- and two-dimensional linear and nonlinear inverse problems arising from heat conduction, including estimating boundary temperature, heat flux and heat transfer coefficient. The results show its robustness to outliers and the fast and steady convergence of the algorithm. © 2011 Elsevier Inc.

  1. A Total Variation-Based Reconstruction Method for Dynamic MRI

    Directory of Open Access Journals (Sweden)

    Germana Landi

    2008-01-01

    Full Text Available In recent years, total variation (TV regularization has become a popular and powerful tool for image restoration and enhancement. In this work, we apply TV minimization to improve the quality of dynamic magnetic resonance images. Dynamic magnetic resonance imaging is an increasingly popular clinical technique used to monitor spatio-temporal changes in tissue structure. Fast data acquisition is necessary in order to capture the dynamic process. Most commonly, the requirement of high temporal resolution is fulfilled by sacrificing spatial resolution. Therefore, the numerical methods have to address the issue of images reconstruction from limited Fourier data. One of the most successful techniques for dynamic imaging applications is the reduced-encoded imaging by generalized-series reconstruction method of Liang and Lauterbur. However, even if this method utilizes a priori data for optimal image reconstruction, the produced dynamic images are degraded by truncation artifacts, most notably Gibbs ringing, due to the spatial low resolution of the data. We use a TV regularization strategy in order to reduce these truncation artifacts in the dynamic images. The resulting TV minimization problem is solved by the fixed point iteration method of Vogel and Oman. The results of test problems with simulated and real data are presented to illustrate the effectiveness of the proposed approach in reducing the truncation artifacts of the reconstructed images.

  2. The Cluster Variation Method: A Primer for Neuroscientists.

    Science.gov (United States)

    Maren, Alianna J

    2016-09-30

    Effective Brain-Computer Interfaces (BCIs) require that the time-varying activation patterns of 2-D neural ensembles be modelled. The cluster variation method (CVM) offers a means for the characterization of 2-D local pattern distributions. This paper provides neuroscientists and BCI researchers with a CVM tutorial that will help them to understand how the CVM statistical thermodynamics formulation can model 2-D pattern distributions expressing structural and functional dynamics in the brain. The premise is that local-in-time free energy minimization works alongside neural connectivity adaptation, supporting the development and stabilization of consistent stimulus-specific responsive activation patterns. The equilibrium distribution of local patterns, or configuration variables , is defined in terms of a single interaction enthalpy parameter ( h ) for the case of an equiprobable distribution of bistate (neural/neural ensemble) units. Thus, either one enthalpy parameter (or two, for the case of non-equiprobable distribution) yields equilibrium configuration variable values. Modeling 2-D neural activation distribution patterns with the representational layer of a computational engine, we can thus correlate variational free energy minimization with specific configuration variable distributions. The CVM triplet configuration variables also map well to the notion of a M = 3 functional motif. This paper addresses the special case of an equiprobable unit distribution, for which an analytic solution can be found.

  3. The Cluster Variation Method: A Primer for Neuroscientists

    Directory of Open Access Journals (Sweden)

    Alianna J. Maren

    2016-09-01

    Full Text Available Effective Brain–Computer Interfaces (BCIs require that the time-varying activation patterns of 2-D neural ensembles be modelled. The cluster variation method (CVM offers a means for the characterization of 2-D local pattern distributions. This paper provides neuroscientists and BCI researchers with a CVM tutorial that will help them to understand how the CVM statistical thermodynamics formulation can model 2-D pattern distributions expressing structural and functional dynamics in the brain. The premise is that local-in-time free energy minimization works alongside neural connectivity adaptation, supporting the development and stabilization of consistent stimulus-specific responsive activation patterns. The equilibrium distribution of local patterns, or configuration variables, is defined in terms of a single interaction enthalpy parameter (h for the case of an equiprobable distribution of bistate (neural/neural ensemble units. Thus, either one enthalpy parameter (or two, for the case of non-equiprobable distribution yields equilibrium configuration variable values. Modeling 2-D neural activation distribution patterns with the representational layer of a computational engine, we can thus correlate variational free energy minimization with specific configuration variable distributions. The CVM triplet configuration variables also map well to the notion of a M = 3 functional motif. This paper addresses the special case of an equiprobable unit distribution, for which an analytic solution can be found.

  4. Variational principles for Ginzburg-Landau equation by He's semi-inverse method

    International Nuclear Information System (INIS)

    Liu, W.Y.; Yu, Y.J.; Chen, L.D.

    2007-01-01

    Via the semi-inverse method of establishing variational principles proposed by He, a generalized variational principle is established for Ginzburg-Landau equation. The present theory provides a quite straightforward tool to the search for various variational principles for physical problems. This paper aims at providing a more complete theoretical basis for applications using finite element and other direct variational methods

  5. Space-angle approximations in the variational nodal method

    International Nuclear Information System (INIS)

    Lewis, E. E.; Palmiotti, G.; Taiwo, T.

    1999-01-01

    The variational nodal method is formulated such that the angular and spatial approximations maybe examined separately. Spherical harmonic, simplified spherical harmonic, and discrete ordinate approximations are coupled to the primal hybrid finite element treatment of the spatial variables. Within this framework, two classes of spatial trial functions are presented: (1) orthogonal polynomials for the treatment of homogeneous nodes and (2) bilinear finite subelement trial functions for the treatment of fuel assembly sized nodes in which fuel-pin cell cross sections are represented explicitly. Polynomial and subelement trial functions are applied to benchmark water-reactor problems containing MOX fuel using spherical harmonic and simplified spherical harmonic approximations. The resulting accuracy and computing costs are compared

  6. Subspace Correction Methods for Total Variation and $\\ell_1$-Minimization

    KAUST Repository

    Fornasier, Massimo

    2009-01-01

    This paper is concerned with the numerical minimization of energy functionals in Hilbert spaces involving convex constraints coinciding with a seminorm for a subspace. The optimization is realized by alternating minimizations of the functional on a sequence of orthogonal subspaces. On each subspace an iterative proximity-map algorithm is implemented via oblique thresholding, which is the main new tool introduced in this work. We provide convergence conditions for the algorithm in order to compute minimizers of the target energy. Analogous results are derived for a parallel variant of the algorithm. Applications are presented in domain decomposition methods for degenerate elliptic PDEs arising in total variation minimization and in accelerated sparse recovery algorithms based on 1-minimization. We include numerical examples which show e.cient solutions to classical problems in signal and image processing. © 2009 Society for Industrial and Applied Physics.

  7. Variational methods for high-order multiphoton processes

    International Nuclear Information System (INIS)

    Gao, B.; Pan, C.; Liu, C.; Starace, A.F.

    1990-01-01

    Methods for applying the variationally stable procedure for Nth-order perturbative transition matrix elements of Gao and Starace [Phys. Rev. Lett. 61, 404 (1988); Phys. Rev. A 39, 4550 (1989)] to multiphoton processes involving systems other than atomic H are presented. Three specific cases are discussed: one-electron ions or atoms in which the electron--ion interaction is described by a central potential; two-electron ions or atoms in which the electronic states are described by the adiabatic hyperspherical representation; and closed-shell ions or atoms in which the electronic states are described by the multiconfiguration Hartree--Fock representation. Applications are made to the dynamic polarizability of He and the two-photon ionization cross section of Ar

  8. Comment on “Variational Iteration Method for Fractional Calculus Using He’s Polynomials”

    Directory of Open Access Journals (Sweden)

    Ji-Huan He

    2012-01-01

    boundary value problems. This note concludes that the method is a modified variational iteration method using He’s polynomials. A standard variational iteration algorithm for fractional differential equations is suggested.

  9. Spectrographical method for determining temperature variations of cosmic rays

    International Nuclear Information System (INIS)

    Dorman, L.I.; Krest'yannikov, Yu.Ya.; AN SSSR, Irkutsk. Sibirskij Inst. Zemnogo Magnetizma Ionosfery i Rasprostraneniya Radiovoln)

    1977-01-01

    A spectrographic method for determining [sigmaJsup(μ)/Jsup(μ)]sub(T) temperature variations in cosmic rays is proposed. The value of (sigmaJsup(μ)/Jsup(μ)]sub(T) is determined from three equations for neutron supermonitors and the equation for the muon component of cosmic rays. It is assumed that all the observation data include corrections for the barometric effect. No temperature effect is observed in the neutron component. To improve the reliability and accuracy of the results obtained the surface area of the existing devices and the number of spectrographic equations should be increased as compared with that of the unknown values. The value of [sigmaJsup(μ)/Jsup(μ)]sub(T) for time instants when the aerological probing was carried out, was determined from the data of observations of cosmic rays with the aid of a spectrographic complex of devices of Sib IZMIR. The r.m.s. dispersion of the difference is about 0.2%, which agrees with the expected dispersion. The agreement obtained can be regarded as an independent proof of the correctness of the theory of meteorological effects of cosmic rays. With the existing detection accuracy the spectrographic method can be used for determining the hourly values of temperature corrections for the muon component

  10. Variational methods in electron-atom scattering theory

    CERN Document Server

    Nesbet, Robert K

    1980-01-01

    The investigation of scattering phenomena is a major theme of modern physics. A scattered particle provides a dynamical probe of the target system. The practical problem of interest here is the scattering of a low­ energy electron by an N-electron atom. It has been difficult in this area of study to achieve theoretical results that are even qualitatively correct, yet quantitative accuracy is often needed as an adjunct to experiment. The present book describes a quantitative theoretical method, or class of methods, that has been applied effectively to this problem. Quantum mechanical theory relevant to the scattering of an electron by an N-electron atom, which may gain or lose energy in the process, is summarized in Chapter 1. The variational theory itself is presented in Chapter 2, both as currently used and in forms that may facilitate future applications. The theory of multichannel resonance and threshold effects, which provide a rich structure to observed electron-atom scattering data, is presented in Cha...

  11. National Account Energy Alliance Final Report for the Ritz Carlton, San Francisco Combined Heat and Power Project

    Energy Technology Data Exchange (ETDEWEB)

    Rosfjord, Thomas J [UTC Power

    2007-11-01

    Under collaboration between DOE and the Gas Technology Institute (GTI), UTC Power partnered with Host Hotels and Resorts to install and operate a PureComfort 240M Cooling, Heating and Power (CHP) System at the Ritz-Carlton, San Francisco. This packaged CHP system integrated four microturbines, a double-effect absorption chiller, two fuel gas boosters, and the control hardware and software to ensure that the system operated predictably, reliably, and safely. The chiller, directly energized by the recycled hot exhaust from the microturbines, could be configured to provide either chilled or hot water. As installed, the system was capable of providing up to 227 kW of net electrical power and 142 RT of chilled water at a 59F ambient temperature.

  12. Local Fractional Laplace Variational Iteration Method for Solving Linear Partial Differential Equations with Local Fractional Derivative

    Directory of Open Access Journals (Sweden)

    Ai-Min Yang

    2014-01-01

    Full Text Available The local fractional Laplace variational iteration method was applied to solve the linear local fractional partial differential equations. The local fractional Laplace variational iteration method is coupled by the local fractional variational iteration method and Laplace transform. The nondifferentiable approximate solutions are obtained and their graphs are also shown.

  13. The Semianalytical Solutions for Stiff Systems of Ordinary Differential Equations by Using Variational Iteration Method and Modified Variational Iteration Method with Comparison to Exact Solutions

    Directory of Open Access Journals (Sweden)

    Mehmet Tarik Atay

    2013-01-01

    Full Text Available The Variational Iteration Method (VIM and Modified Variational Iteration Method (MVIM are used to find solutions of systems of stiff ordinary differential equations for both linear and nonlinear problems. Some examples are given to illustrate the accuracy and effectiveness of these methods. We compare our results with exact results. In some studies related to stiff ordinary differential equations, problems were solved by Adomian Decomposition Method and VIM and Homotopy Perturbation Method. Comparisons with exact solutions reveal that the Variational Iteration Method (VIM and the Modified Variational Iteration Method (MVIM are easier to implement. In fact, these methods are promising methods for various systems of linear and nonlinear stiff ordinary differential equations. Furthermore, VIM, or in some cases MVIM, is giving exact solutions in linear cases and very satisfactory solutions when compared to exact solutions for nonlinear cases depending on the stiffness ratio of the stiff system to be solved.

  14. Variational lower bound on the scattering length

    International Nuclear Information System (INIS)

    Rosenberg, L.; Spruch, L.

    1975-01-01

    The scattering length A characterizes the zero-energy scattering of one system by another. It was shown some time ago that a variational upper bound on A could be obtained using methods, of the Rayleigh-Ritz type, which are commonly employed to obtain upper bounds on energy eigenvalues. Here we formulate a method for obtaining a variational lower bound on A. Once again the essential idea is to express the scattering length as a variational estimate plus an error term and then to reduce the problem of bounding the error term to one involving bounds on energy eigenvalues. In particular, the variational lower bound on A is rigorously established provided a certin modified Hamiltonian can be shown to have no discrete states lying below the level of the continuum threshold. It is unfortunately true that necessary conditions for the existence of bound states are not available for multiparticle systems in general. However, in the case of positron-atom scattering the adiabatic approximation can be introduced as an (essentially) solvable comparison problem to rigorously establish the nonexistence of bound states of the modified Hamiltonian. It has recently been shown how the validity of the variational upper bound on A can be maintained when the target ground-state wave function is imprecisely known. Similar methods can be used to maintain the variational lower bound on A. Since the bound is variational, the error in the calculated scattering length will be of second order in the error in the wave function. The use of the adiabatic approximation in the present context places no limitation in principle on the accuracy achievable

  15. Free vibration of finite cylindrical shells by the variational method

    International Nuclear Information System (INIS)

    Campen, D.H. van; Huetink, J.

    1975-01-01

    The calculation of the free vibrations of circular cylindrical shells of finite length has been of engineer's interest for a long time. The motive for the present calculations originates from a particular type of construction at the inlet of a sodium heated superheater with helix heating bundle for SNR-Kalkar. The variational analysis is based on a modified energy functional for cylindrical shells, proposed by Koiter and resulting in Morley's equilibrium equations. As usual, the dispacement amplitude is assumed to be distributed harmonically in the circumferential direction of the shell. Following the method of Gontkevich, the dependence between the displacements of the shell middle surface and the axial shell co-ordinate is expressed approximately by a set of eigenfunctions of a free vibrating beam satisfying the desired boundary conditions. Substitution of this displacement expression into the virtual work equation for the complete shell leads to a characteristic equation determining the natural frequencies. The calculations are carried out for a clamped-clamped and a clamped-free cylinder. A comparison is given between the above numerical results and experimental and theoretical results from literature. In addition, the influence of surrounding fluid mass on the above frequencies is analysed for a clamped-clamped shell. The solution for the velocity potential used in this case differs from the solutions used in literature until now in that not only travelling waves in the axial direction are considered. (Auth.)

  16. Variational methods applied to problems of diffusion and reaction

    CERN Document Server

    Strieder, William

    1973-01-01

    This monograph is an account of some problems involving diffusion or diffusion with simultaneous reaction that can be illuminated by the use of variational principles. It was written during a period that included sabbatical leaves of one of us (W. S. ) at the University of Minnesota and the other (R. A. ) at the University of Cambridge and we are grateful to the Petroleum Research Fund for helping to support the former and the Guggenheim Foundation for making possible the latter. We would also like to thank Stephen Prager for getting us together in the first place and for showing how interesting and useful these methods can be. We have also benefitted from correspondence with Dr. A. M. Arthurs of the University of York and from the counsel of Dr. B. D. Coleman the general editor of this series. Table of Contents Chapter 1. Introduction and Preliminaries . 1. 1. General Survey 1 1. 2. Phenomenological Descriptions of Diffusion and Reaction 2 1. 3. Correlation Functions for Random Suspensions 4 1. 4. Mean Free ...

  17. Variational method for infinite nuclear matter with noncentral forces

    International Nuclear Information System (INIS)

    Takano, M.; Yamada, M.

    1998-01-01

    Approximate energy expressions are proposed for infinite zero-temperature nuclear matter by taking into account noncentral forces. They are explicitly expressed as functionals of spin- (isospin-) dependent radial distribution functions, tensor distribution functions and spin-orbit distribution functions, and can be used conveniently in the variational method. A notable feature of these expressions is that they automatically guarantee the necessary conditions on the spin-isospin-dependent structure functions. The Euler-Lagrange equations are derived from these energy expressions and numerically solved for neutron matter and symmetric nuclear matter. The results show that the noncentral forces bring down the total energies too much with too dense saturation densities. Since the main reason for these undesirable results seems to be the long tails of the noncentral distribution functions, an effective theory is proposed by introducing a density-dependent damping function into the noncentral potentials to suppress the long tails of the non-central distribution functions. By adjusting the value of a parameter included in the damping function, we can reproduce the saturation point (both the energy and density) of symmetric nuclear matter with the Hamada-Johnston potential. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  18. Systematic approach to critical phenomena by the extended variational method and coherent-anomaly method

    International Nuclear Information System (INIS)

    Kawashima, N.; Katori, M.; Tsallis, C.; Suzuki, M.

    1989-01-01

    A general procedure to study critical phenomena of magnetic systems is discussed. It consists of systematic series of Landau-like approximations (Extended Variational Method) and the coherent-anomaly method (CAM). As for susceptibility, the present method is equivalent to the power-series CAM theory. On the other hand, the EVM gives a set of new approximants for other physical quantities. Applications to d-dimensional Ising ferromagnets are also described. The critical points and exponents are estimated with high accuracy. (author) [pt

  19. Discrete variational derivative method a structure-preserving numerical method for partial differential equations

    CERN Document Server

    Furihata, Daisuke

    2010-01-01

    Nonlinear Partial Differential Equations (PDEs) have become increasingly important in the description of physical phenomena. Unlike Ordinary Differential Equations, PDEs can be used to effectively model multidimensional systems. The methods put forward in Discrete Variational Derivative Method concentrate on a new class of ""structure-preserving numerical equations"" which improves the qualitative behaviour of the PDE solutions and allows for stable computing. The authors have also taken care to present their methods in an accessible manner, which means that the book will be useful to engineer

  20. Variational methods and effective actions in string models

    International Nuclear Information System (INIS)

    Dereli, T.; Tucker, R.W.

    1987-01-01

    Effective actions motivated by zero-order and first-order actions are examined. Particular attention is devoted to a variational procedure that is consistent with the structure equations involving the Lorentz connection. Attention is drawn to subtleties that can arise in varying higher-order actions and an efficient procedure developed to handle these cases using the calculus of forms. The effect of constrained variations on the field equations is discussed. (author)

  1. Unstructured characteristic method embedded with variational nodal method using domain decomposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Girardi, E.; Ruggieri, J.M. [CEA Cadarache (DER/SPRC/LEPH), 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Reacteurs; Santandrea, S. [CEA Saclay, Dept. Modelisation de Systemes et Structures DM2S/SERMA/LENR, 91 - Gif sur Yvette (France)

    2005-07-01

    This paper describes a recently-developed extension of our 'Multi-methods,multi-domains' (MM-MD) method for the solution of the multigroup transport equation. Based on a domain decomposition technique, our approach allows us to treat the one-group equation by cooperatively employing several numerical methods together. In this work, we describe the coupling between the Method of Characteristics (integro-differential equation, unstructured meshes) with the Variational Nodal Method (even parity equation, cartesian meshes). Then, the coupling method is applied to the benchmark model of the Phebus experimental facility (Cea Cadarache). Our domain decomposition method give us the capability to employ a very fine mesh in describing a particular fuel bundle with an appropriate numerical method (MOC), while using a much large mesh size in the rest of the core, in conjunction with a coarse-mesh method (VNM). This application shows the benefits of our MM-MD approach, in terms of accuracy and computing time: the domain decomposition method allows us to reduce the Cpu time, while preserving a good accuracy of the neutronic indicators: reactivity, core-to-bundle power coupling coefficient and flux error. (authors)

  2. Unstructured characteristic method embedded with variational nodal method using domain decomposition techniques

    International Nuclear Information System (INIS)

    Girardi, E.; Ruggieri, J.M.

    2005-01-01

    This paper describes a recently-developed extension of our 'Multi-methods,multi-domains' (MM-MD) method for the solution of the multigroup transport equation. Based on a domain decomposition technique, our approach allows us to treat the one-group equation by cooperatively employing several numerical methods together. In this work, we describe the coupling between the Method of Characteristics (integro-differential equation, unstructured meshes) with the Variational Nodal Method (even parity equation, cartesian meshes). Then, the coupling method is applied to the benchmark model of the Phebus experimental facility (Cea Cadarache). Our domain decomposition method give us the capability to employ a very fine mesh in describing a particular fuel bundle with an appropriate numerical method (MOC), while using a much large mesh size in the rest of the core, in conjunction with a coarse-mesh method (VNM). This application shows the benefits of our MM-MD approach, in terms of accuracy and computing time: the domain decomposition method allows us to reduce the Cpu time, while preserving a good accuracy of the neutronic indicators: reactivity, core-to-bundle power coupling coefficient and flux error. (authors)

  3. Analysis of spin and gauge models with variational methods

    International Nuclear Information System (INIS)

    Dagotto, E.; Masperi, L.; Moreo, A.; Della Selva, A.; Fiore, R.

    1985-01-01

    Since independent-site (link) or independent-link (plaquette) variational states enhance the order or the disorder, respectively, in the treatment of spin (gauge) models, we prove that mixed states are able to improve the critical coupling while giving the qualitatively correct behavior of the relevant parameters

  4. Perturbative vs. variational methods in the study of carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia; Pedersen, Thomas Garm; Ricaud, Benjamin

    2007-01-01

    Recent two-photon photo-luminescence experiments give accurate data for the ground and first excited excitonic energies at different nanotube radii. In this paper we compare the analytic approximations proved in [CDR], with a standard variational approach. We show an excellent agreement at suffic...

  5. Variational method for inverting the Kohn-Sham procedure

    International Nuclear Information System (INIS)

    Kadantsev, Eugene S.; Stott, M.J.

    2004-01-01

    A procedure based on a variational principle is developed for determining the local Kohn-Sham (KS) potential corresponding to a given ground-state electron density. This procedure is applied to calculate the exchange-correlation part of the effective Kohn-Sham (KS) potential for the neon atom and the methane molecule

  6. Colour based fire detection method with temporal intensity variation filtration

    Science.gov (United States)

    Trambitckii, K.; Anding, K.; Musalimov, V.; Linß, G.

    2015-02-01

    Development of video, computing technologies and computer vision gives a possibility of automatic fire detection on video information. Under that project different algorithms was implemented to find more efficient way of fire detection. In that article colour based fire detection algorithm is described. But it is not enough to use only colour information to detect fire properly. The main reason of this is that in the shooting conditions may be a lot of things having colour similar to fire. A temporary intensity variation of pixels is used to separate them from the fire. These variations are averaged over the series of several frames. This algorithm shows robust work and was realised as a computer program by using of the OpenCV library.

  7. Colour based fire detection method with temporal intensity variation filtration

    International Nuclear Information System (INIS)

    Trambitckii, K; Musalimov, V; Anding, K; Linß, G

    2015-01-01

    Development of video, computing technologies and computer vision gives a possibility of automatic fire detection on video information. Under that project different algorithms was implemented to find more efficient way of fire detection. In that article colour based fire detection algorithm is described. But it is not enough to use only colour information to detect fire properly. The main reason of this is that in the shooting conditions may be a lot of things having colour similar to fire. A temporary intensity variation of pixels is used to separate them from the fire. These variations are averaged over the series of several frames. This algorithm shows robust work and was realised as a computer program by using of the OpenCV library

  8. Some new mathematical methods for variational objective analysis

    Science.gov (United States)

    Wahba, Grace; Johnson, Donald R.

    1994-01-01

    Numerous results were obtained relevant to remote sensing, variational objective analysis, and data assimilation. A list of publications relevant in whole or in part is attached. The principal investigator gave many invited lectures, disseminating the results to the meteorological community as well as the statistical community. A list of invited lectures at meetings is attached, as well as a list of departmental colloquia at various universities and institutes.

  9. Variational methods for crystalline microstructure analysis and computation

    CERN Document Server

    Dolzmann, Georg

    2003-01-01

    Phase transformations in solids typically lead to surprising mechanical behaviour with far reaching technological applications. The mathematical modeling of these transformations in the late 80s initiated a new field of research in applied mathematics, often referred to as mathematical materials science, with deep connections to the calculus of variations and the theory of partial differential equations. This volume gives a brief introduction to the essential physical background, in particular for shape memory alloys and a special class of polymers (nematic elastomers). Then the underlying mathematical concepts are presented with a strong emphasis on the importance of quasiconvex hulls of sets for experiments, analytical approaches, and numerical simulations.

  10. Quantum Monte Carlo diagonalization method as a variational calculation

    International Nuclear Information System (INIS)

    Mizusaki, Takahiro; Otsuka, Takaharu; Honma, Michio.

    1997-01-01

    A stochastic method for performing large-scale shell model calculations is presented, which utilizes the auxiliary field Monte Carlo technique and diagonalization method. This method overcomes the limitation of the conventional shell model diagonalization and can extremely widen the feasibility of shell model calculations with realistic interactions for spectroscopic study of nuclear structure. (author)

  11. Perfect Form: Variational Principles, Methods, and Applications in Elementary Physics

    International Nuclear Information System (INIS)

    Isenberg, C

    1997-01-01

    This short book is concerned with the physical applications of variational principles of the calculus. It is intended for undergraduate students who have taken some introductory lectures on the subject and have been exposed to Lagrangian and Hamiltonian mechanics. Throughout the book the author emphasizes the historical background to the subject and provides numerous problems, mainly from the fields of mechanics and optics. Some of these problems are provided with an answer, while others, regretfully, are not. It would have been an added help to the undergraduate reader if complete solutions could have been provided in an appendix. The introductory chapter is concerned with Fermat's Principle and image formation. This is followed by the derivation of the Euler - Lagrange equation. The third chapter returns to the subject of optical paths without making the link with a mechanical variational principle - that comes later. Chapters on the subjects of minimum potential energy, least action and Hamilton's principle follow. This volume provides an 'easy read' for a student keen to learn more about the subject. It is well illustrated and will make a useful addition to all undergraduate physics libraries. (book review)

  12. Interpretation of biological and mechanical variations between the Lowry versus Bradford method for protein quantification

    OpenAIRE

    Tzong-Shi Lu; Szu-Yu Yiao; Kenneth Lim; Roderick V. Jensen; Li-Li Hsiao

    2010-01-01

    Background: The identification of differences in protein expression resulting from methodical variations is an essential component to the interpretation of true, biologically significant results. Aims: We used the Lowry and Bradford methods- two most commonly used methods for protein quantification, to assess whether differential protein expressions are a result of true biological or methodical variations. Material & Methods: Differential protein expression patterns was assessed by western bl...

  13. Iterative method of the parameter variation for solution of nonlinear functional equations

    International Nuclear Information System (INIS)

    Davidenko, D.F.

    1975-01-01

    The iteration method of parameter variation is used for solving nonlinear functional equations in Banach spaces. The authors consider some methods for numerical integration of ordinary first-order differential equations and construct the relevant iteration methods of parameter variation, both one- and multifactor. They also discuss problems of mathematical substantiation of the method, study the conditions and rate of convergence, estimate the error. The paper considers the application of the method to specific functional equations

  14. An adjoint sensitivity-based data assimilation method and its comparison with existing variational methods

    Directory of Open Access Journals (Sweden)

    Yonghan Choi

    2014-01-01

    Full Text Available An adjoint sensitivity-based data assimilation (ASDA method is proposed and applied to a heavy rainfall case over the Korean Peninsula. The heavy rainfall case, which occurred on 26 July 2006, caused torrential rainfall over the central part of the Korean Peninsula. The mesoscale convective system (MCS related to the heavy rainfall was classified as training line/adjoining stratiform (TL/AS-type for the earlier period, and back building (BB-type for the later period. In the ASDA method, an adjoint model is run backwards with forecast-error gradient as input, and the adjoint sensitivity of the forecast error to the initial condition is scaled by an optimal scaling factor. The optimal scaling factor is determined by minimising the observational cost function of the four-dimensional variational (4D-Var method, and the scaled sensitivity is added to the original first guess. Finally, the observations at the analysis time are assimilated using a 3D-Var method with the improved first guess. The simulated rainfall distribution is shifted northeastward compared to the observations when no radar data are assimilated or when radar data are assimilated using the 3D-Var method. The rainfall forecasts are improved when radar data are assimilated using the 4D-Var or ASDA method. Simulated atmospheric fields such as horizontal winds, temperature, and water vapour mixing ratio are also improved via the 4D-Var or ASDA method. Due to the improvement in the analysis, subsequent forecasts appropriately simulate the observed features of the TL/AS- and BB-type MCSs and the corresponding heavy rainfall. The computational cost associated with the ASDA method is significantly lower than that of the 4D-Var method.

  15. Self-consistent field variational cellular method as applied to the band structure calculation of sodium

    International Nuclear Information System (INIS)

    Lino, A.T.; Takahashi, E.K.; Leite, J.R.; Ferraz, A.C.

    1988-01-01

    The band structure of metallic sodium is calculated, using for the first time the self-consistent field variational cellular method. In order to implement the self-consistency in the variational cellular theory, the crystal electronic charge density was calculated within the muffin-tin approximation. The comparison between our results and those derived from other calculations leads to the conclusion that the proposed self-consistent version of the variational cellular method is fast and accurate. (author) [pt

  16. Laplace transform overcoming principle drawbacks in application of the variational iteration method to fractional heat equations

    Directory of Open Access Journals (Sweden)

    Wu Guo-Cheng

    2012-01-01

    Full Text Available This note presents a Laplace transform approach in the determination of the Lagrange multiplier when the variational iteration method is applied to time fractional heat diffusion equation. The presented approach is more straightforward and allows some simplification in application of the variational iteration method to fractional differential equations, thus improving the convergence of the successive iterations.

  17. Variational, projection methods and Pade approximants in scattering theory

    International Nuclear Information System (INIS)

    Turchetti, G.

    1980-12-01

    Several aspects on the scattering theory are discussed in a perturbative scheme. The Pade approximant method plays an important role in such a scheme. Solitons solutions are also discussed in this same scheme. (L.C.) [pt

  18. Mathematical methods in physics distributions, Hilbert space operators, variational methods, and applications in quantum physics

    CERN Document Server

    Blanchard, Philippe

    2015-01-01

    The second edition of this textbook presents the basic mathematical knowledge and skills that are needed for courses on modern theoretical physics, such as those on quantum mechanics, classical and quantum field theory, and related areas.  The authors stress that learning mathematical physics is not a passive process and include numerous detailed proofs, examples, and over 200 exercises, as well as hints linking mathematical concepts and results to the relevant physical concepts and theories.  All of the material from the first edition has been updated, and five new chapters have been added on such topics as distributions, Hilbert space operators, and variational methods.   The text is divided into three main parts. Part I is a brief introduction to distribution theory, in which elements from the theories of ultradistributions and hyperfunctions are considered in addition to some deeper results for Schwartz distributions, thus providing a comprehensive introduction to the theory of generalized functions. P...

  19. Case Study: Puttin' on the Ritz: How to Put Science into Cases

    Science.gov (United States)

    Herreid, Clyde Freeman

    2017-01-01

    There are multiple ways to put science into a case. This column provides original articles on innovations in case study teaching, assessment of the method, as well as case studies with teaching notes. This month's issue discusses different ways of presenting science in case studies.

  20. A variational Bayesian method to inverse problems with impulsive noise

    KAUST Repository

    Jin, Bangti

    2012-01-01

    We propose a novel numerical method for solving inverse problems subject to impulsive noises which possibly contain a large number of outliers. The approach is of Bayesian type, and it exploits a heavy-tailed t distribution for data noise to achieve

  1. Comparison between the Variational Iteration Method and the Homotopy Perturbation Method for the Sturm-Liouville Differential Equation

    Directory of Open Access Journals (Sweden)

    R. Darzi

    2010-01-01

    Full Text Available We applied the variational iteration method and the homotopy perturbation method to solve Sturm-Liouville eigenvalue and boundary value problems. The main advantage of these methods is the flexibility to give approximate and exact solutions to both linear and nonlinear problems without linearization or discretization. The results show that both methods are simple and effective.

  2. Comparison between the Variational Iteration Method and the Homotopy Perturbation Method for the Sturm-Liouville Differential Equation

    OpenAIRE

    Darzi R; Neamaty A

    2010-01-01

    We applied the variational iteration method and the homotopy perturbation method to solve Sturm-Liouville eigenvalue and boundary value problems. The main advantage of these methods is the flexibility to give approximate and exact solutions to both linear and nonlinear problems without linearization or discretization. The results show that both methods are simple and effective.

  3. VARIATIONS OF THE ENERGY METHOD FOR STUDYING CONSTRUCTION STABILITY

    Directory of Open Access Journals (Sweden)

    A. M. Dibirgadzhiev

    2017-01-01

    Full Text Available Objectives. The aim of the work is to find the most rational form of expression of the potential energy of a nonlinear system with the subsequent use of algebraic means and geometric images of catastrophe theory for studying the behaviour of a construction under load. Various forms of stability criteria for the equilibrium states of constructions are investigated. Some aspects of the using various forms of expression of the system’s total energy are considered, oriented to the subsequent use of the catastrophe theory methods for solving the nonlinear problems of construction calculation associated with discontinuous phenomena.Methods. According to the form of the potential energy expression, the mathematical description of the problem being solved is linked to a specific catastrophe of a universal character from the list of catastrophes. After this, the behaviour of the system can be predicted on the basis of the fundamental propositions formulated in catastrophe theory without integrating the corresponding system of nonlinear differential equations of high order in partial derivatives, to which the solution of such problems is reduced.Results. The result is presented in the form of uniform geometric images containing all the necessary qualitative and quantitative information about the deformation of whole construction classes under load for a wide range of changes in the values of external (control and internal (behavioural parameters.Conclusion. Methods based on catastrophe theory are an effective mathematical tool for solving non-linear boundary-value problems with parameters associated with discontinuous phenomena, which are poorly analysable by conventional methods. However, they have not yet received due attention from researchers, especially in the field of stability calculations, which remains a complex, relevant and attractive problem within structural mechanics. To solve a concrete nonlinear boundary value problem for calculating

  4. Iterative and variational homogenization methods for filled elastomers

    Science.gov (United States)

    Goudarzi, Taha

    Elastomeric composites have increasingly proved invaluable in commercial technological applications due to their unique mechanical properties, especially their ability to undergo large reversible deformation in response to a variety of stimuli (e.g., mechanical forces, electric and magnetic fields, changes in temperature). Modern advances in organic materials science have revealed that elastomeric composites hold also tremendous potential to enable new high-end technologies, especially as the next generation of sensors and actuators featured by their low cost together with their biocompatibility, and processability into arbitrary shapes. This potential calls for an in-depth investigation of the macroscopic mechanical/physical behavior of elastomeric composites directly in terms of their microscopic behavior with the objective of creating the knowledge base needed to guide their bottom-up design. The purpose of this thesis is to generate a mathematical framework to describe, explain, and predict the macroscopic nonlinear elastic behavior of filled elastomers, arguably the most prominent class of elastomeric composites, directly in terms of the behavior of their constituents --- i.e., the elastomeric matrix and the filler particles --- and their microstructure --- i.e., the content, size, shape, and spatial distribution of the filler particles. This will be accomplished via a combination of novel iterative and variational homogenization techniques capable of accounting for interphasial phenomena and finite deformations. Exact and approximate analytical solutions for the fundamental nonlinear elastic response of dilute suspensions of rigid spherical particles (either firmly bonded or bonded through finite size interphases) in Gaussian rubber are first generated. These results are in turn utilized to construct approximate solutions for the nonlinear elastic response of non-Gaussian elastomers filled with a random distribution of rigid particles (again, either firmly

  5. Variational method for objective analysis of scalar variable and its ...

    Indian Academy of Sciences (India)

    e-mail: sinha@tropmet.res.in. In this study real time data have been used to compare the standard and triangle method by ... The work presented in this paper is about a vari- ... But when the balance is needed ..... tred at 17:30h IST of 11 June within half a degree of ..... Ogura Y and Chen Y L 1977 A life history of an intense.

  6. Comparison of variations detection between whole-genome amplification methods used in single-cell resequencing

    DEFF Research Database (Denmark)

    Hou, Yong; Wu, Kui; Shi, Xulian

    2015-01-01

    methods, focusing particularly on variations detection. Low-coverage whole-genome sequencing revealed that DOP-PCR had the highest duplication ratio, but an even read distribution and the best reproducibility and accuracy for detection of copy-number variations (CNVs). However, MDA had significantly...... performance using SCRS amplified by different WGA methods. It will guide researchers to determine which WGA method is best suited to individual experimental needs at single-cell level....

  7. Variational configuration interaction methods and comparison with perturbation theory

    International Nuclear Information System (INIS)

    Pople, J.A.; Seeger, R.; Krishnan, R.

    1977-01-01

    A configuration interaction (CI) procedure which includes all single and double substitutions from an unrestricted Hartree-Fock single determinant is described. This has the feature that Moller-Plesset perturbation results to second and third order are obtained in the first CI iterative cycle. The procedure also avoids the necessity of a full two-electron integral transformation. A simple expression for correcting the final CI energy for lack of size consistency is proposed. Finally, calculations on a series of small molecules are presented to compare these CI methods with perturbation theory

  8. Total error components - isolation of laboratory variation from method performance

    International Nuclear Information System (INIS)

    Bottrell, D.; Bleyler, R.; Fisk, J.; Hiatt, M.

    1992-01-01

    The consideration of total error across sampling and analytical components of environmental measurements is relatively recent. The U.S. Environmental Protection Agency (EPA), through the Contract Laboratory Program (CLP), provides complete analyses and documented reports on approximately 70,000 samples per year. The quality assurance (QA) functions of the CLP procedures provide an ideal data base-CLP Automated Results Data Base (CARD)-to evaluate program performance relative to quality control (QC) criteria and to evaluate the analysis of blind samples. Repetitive analyses of blind samples within each participating laboratory provide a mechanism to separate laboratory and method performance. Isolation of error sources is necessary to identify effective options to establish performance expectations, and to improve procedures. In addition, optimized method performance is necessary to identify significant effects that result from the selection among alternative procedures in the data collection process (e.g., sampling device, storage container, mode of sample transit, etc.). This information is necessary to evaluate data quality; to understand overall quality; and to provide appropriate, cost-effective information required to support a specific decision

  9. Microscopic description of nuclear few-body systems with the stochastic variational method

    International Nuclear Information System (INIS)

    Suzuki, Yasuyuki

    2000-01-01

    A simple gambling procedure called the stochastic variational method can be applied, together with appropriate variational trial functions, to solve a few-body system where the correlation between the constituents plays an important role in determining its structure. The usefulness of the method is tested by comparing to other accurate solutions for Coulombic systems. Examples of application shown here include few-nucleon systems interacting with realistic forces and few-cluster systems with the Pauli principle being taken into account properly. These examples confirm the power of the stochastic variational method. There still remain many problems for extending to a system consisting of more particles. (author)

  10. Large-scale atomic calculations using variational methods

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, Per

    1995-01-01

    Atomic properties, such as radiative lifetimes, hyperfine structures and isotope shift, have been studied both theoretically and experimentally. Computer programs which calculate these properties from multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) wave functions have been developed and tested. To study relativistic effects, a program which calculates hyperfine structures from multiconfiguration Dirac-Fock (MCDF) wave functions has also been written. A new method of dealing with radial non-orthogonalities in transition matrix elements has been investigated. This method allows two separate orbital sets to be used for the initial and final states, respectively. It is shown that, once the usual orthogonality restrictions have been overcome, systematic MCHF calculations are able to predict oscillator strengths in light atoms with high accuracy. In connection with recent high-power laser experiments, time-dependent calculations of the atomic response to intense laser fields have been performed. Using the frozen-core approximation, where the atom is modeled as an active electron moving in the average field of the core electrons and the nucleus, the active electron has been propagated in time under the influence of the laser field. Radiative lifetimes and hyperfine structures of excited states in sodium and silver have been experimentally determined using time-resolved laser spectroscopy. By recording the fluorescence light decay following laser excitation in the vacuum ultraviolet spectral region, the radiative lifetimes and hyperfine structures of the 7p{sup 2}P states in silver have been measured. The delayed-coincidence technique has been used to make very accurate measurements of the radiative lifetimes and hyperfine structures of the lowest 2P states in sodium and silver. 77 refs, 2 figs, 14 tabs.

  11. Large-scale atomic calculations using variational methods

    International Nuclear Information System (INIS)

    Joensson, Per.

    1995-01-01

    Atomic properties, such as radiative lifetimes, hyperfine structures and isotope shift, have been studied both theoretically and experimentally. Computer programs which calculate these properties from multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) wave functions have been developed and tested. To study relativistic effects, a program which calculates hyperfine structures from multiconfiguration Dirac-Fock (MCDF) wave functions has also been written. A new method of dealing with radial non-orthogonalities in transition matrix elements has been investigated. This method allows two separate orbital sets to be used for the initial and final states, respectively. It is shown that, once the usual orthogonality restrictions have been overcome, systematic MCHF calculations are able to predict oscillator strengths in light atoms with high accuracy. In connection with recent high-power laser experiments, time-dependent calculations of the atomic response to intense laser fields have been performed. Using the frozen-core approximation, where the atom is modeled as an active electron moving in the average field of the core electrons and the nucleus, the active electron has been propagated in time under the influence of the laser field. Radiative lifetimes and hyperfine structures of excited states in sodium and silver have been experimentally determined using time-resolved laser spectroscopy. By recording the fluorescence light decay following laser excitation in the vacuum ultraviolet spectral region, the radiative lifetimes and hyperfine structures of the 7p 2 P states in silver have been measured. The delayed-coincidence technique has been used to make very accurate measurements of the radiative lifetimes and hyperfine structures of the lowest 2P states in sodium and silver. 77 refs, 2 figs, 14 tabs

  12. Interpretation of biological and mechanical variations between the Lowry versus Bradford method for protein quantification.

    Science.gov (United States)

    Lu, Tzong-Shi; Yiao, Szu-Yu; Lim, Kenneth; Jensen, Roderick V; Hsiao, Li-Li

    2010-07-01

    The identification of differences in protein expression resulting from methodical variations is an essential component to the interpretation of true, biologically significant results. We used the Lowry and Bradford methods- two most commonly used methods for protein quantification, to assess whether differential protein expressions are a result of true biological or methodical variations. MATERIAL #ENTITYSTARTX00026; Differential protein expression patterns was assessed by western blot following protein quantification by the Lowry and Bradford methods. We have observed significant variations in protein concentrations following assessment with the Lowry versus Bradford methods, using identical samples. Greater variations in protein concentration readings were observed over time and in samples with higher concentrations, with the Bradford method. Identical samples quantified using both methods yielded significantly different expression patterns on Western blot. We show for the first time that methodical variations observed in these protein assay techniques, can potentially translate into differential protein expression patterns, that can be falsely taken to be biologically significant. Our study therefore highlights the pivotal need to carefully consider methodical approaches to protein quantification in techniques that report quantitative differences.

  13. Theoretical study of the F2 molecule using the variational cellular method

    International Nuclear Information System (INIS)

    Lima, M.A.P.; Leite, J.R.; Fazzio, A.

    1981-02-01

    Variational Cellular Method calculations for F 2 have been carried out at several internuclear distances. The ground and excited state potential curves are presented. The overall agreement between the VCM results and ab initio calculations is fairly good. (Author) [pt

  14. Complementary variational principle method applied to thermal conductivities of a plasma in a uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, A K; Gupta, S C [Punjabi Univ., Patiala (India). Dept. of Physics

    1982-12-14

    The complementary variational principles method (CVP) is applied to the thermal conductivities of a plasma in a uniform magnetic field. The results of computations show that the CVP derived results are very useful.

  15. Variational Homotopy Perturbation Method for Solving Higher Dimensional Initial Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Muhammad Aslam Noor

    2008-01-01

    Full Text Available We suggest and analyze a technique by combining the variational iteration method and the homotopy perturbation method. This method is called the variational homotopy perturbation method (VHPM. We use this method for solving higher dimensional initial boundary value problems with variable coefficients. The developed algorithm is quite efficient and is practically well suited for use in these problems. The proposed scheme finds the solution without any discritization, transformation, or restrictive assumptions and avoids the round-off errors. Several examples are given to check the reliability and efficiency of the proposed technique.

  16. Partial differential equations with variable exponents variational methods and qualitative analysis

    CERN Document Server

    Radulescu, Vicentiu D

    2015-01-01

    Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis provides researchers and graduate students with a thorough introduction to the theory of nonlinear partial differential equations (PDEs) with a variable exponent, particularly those of elliptic type. The book presents the most important variational methods for elliptic PDEs described by nonhomogeneous differential operators and containing one or more power-type nonlinearities with a variable exponent. The authors give a systematic treatment of the basic mathematical theory and constructive meth

  17. Quantum mechanical algebraic variational methods for inelastic and reactive molecular collisions

    Science.gov (United States)

    Schwenke, David W.; Haug, Kenneth; Zhao, Meishan; Truhlar, Donald G.; Sun, Yan

    1988-01-01

    The quantum mechanical problem of reactive or nonreactive scattering of atoms and molecules is formulated in terms of square-integrable basis sets with variational expressions for the reactance matrix. Several formulations involving expansions of the wave function (the Schwinger variational principle) or amplitude density (a generalization of the Newton variational principle), single-channel or multichannel distortion potentials, and primitive or contracted basis functions are presented and tested. The test results, for inelastic and reactive atom-diatom collisions, suggest that the methods may be useful for a variety of collision calculations and may allow the accurate quantal treatment of systems for which other available methods would be prohibitively expensive.

  18. Variational methods for problems from plasticity theory and for generalized Newtonian fluids

    CERN Document Server

    Fuchs, Martin

    2000-01-01

    Variational methods are applied to prove the existence of weak solutions for boundary value problems from the deformation theory of plasticity as well as for the slow, steady state flow of generalized Newtonian fluids including the Bingham and Prandtl-Eyring model. For perfect plasticity the role of the stress tensor is emphasized by studying the dual variational problem in appropriate function spaces. The main results describe the analytic properties of weak solutions, e.g. differentiability of velocity fields and continuity of stresses. The monograph addresses researchers and graduate students interested in applications of variational and PDE methods in the mechanics of solids and fluids.

  19. Analysis of Diffusion Problems using Homotopy Perturbation and Variational Iteration Methods

    DEFF Research Database (Denmark)

    Barari, Amin; Poor, A. Tahmasebi; Jorjani, A.

    2010-01-01

    In this paper, variational iteration method and homotopy perturbation method are applied to different forms of diffusion equation. The diffusion equations have found wide applications in heat transfer problems, theory of consolidation and many other problems in engineering. The methods proposed...

  20. Application of He's variational iteration method to the fifth-order boundary value problems

    International Nuclear Information System (INIS)

    Shen, S

    2008-01-01

    Variational iteration method is introduced to solve the fifth-order boundary value problems. This method provides an efficient approach to solve this type of problems without discretization and the computation of the Adomian polynomials. Numerical results demonstrate that this method is a promising and powerful tool for solving the fifth-order boundary value problems

  1. Solution of Nonlinear Partial Differential Equations by New Laplace Variational Iteration Method

    Directory of Open Access Journals (Sweden)

    Eman M. A. Hilal

    2014-01-01

    Full Text Available The aim of this study is to give a good strategy for solving some linear and nonlinear partial differential equations in engineering and physics fields, by combining Laplace transform and the modified variational iteration method. This method is based on the variational iteration method, Laplace transforms, and convolution integral, introducing an alternative Laplace correction functional and expressing the integral as a convolution. Some examples in physical engineering are provided to illustrate the simplicity and reliability of this method. The solutions of these examples are contingent only on the initial conditions.

  2. Variational methods in the kinetic modeling of nuclear reactors: Recent advances

    International Nuclear Information System (INIS)

    Dulla, S.; Picca, P.; Ravetto, P.

    2009-01-01

    The variational approach can be very useful in the study of approximate methods, giving a sound mathematical background to numerical algorithms and computational techniques. The variational approach has been applied to nuclear reactor kinetic equations, to obtain a formulation of standard methods such as point kinetics and quasi-statics. more recently, the multipoint method has also been proposed for the efficient simulation of space-energy transients in nuclear reactors and in source-driven subcritical systems. The method is now founded on a variational basis that allows a consistent definition of integral parameters. The mathematical structure of multipoint and modal methods is also investigated, evidencing merits and shortcomings of both techniques. Some numerical results for simple systems are presented and the errors with respect to reference calculations are reported and discussed. (authors)

  3. A variationally coupled FE-BE method for elasticity and fracture mechanics

    Science.gov (United States)

    Lu, Y. Y.; Belytschko, T.; Liu, W. K.

    1991-01-01

    A new method for coupling finite element and boundary element subdomains in elasticity and fracture mechanics problems is described. The essential feature of this new method is that a single variational statement is obtained for the entire domain, and in this process the terms associated with tractions on the interfaces between the subdomains are eliminated. This provides the additional advantage that the ambiguities associated with the matching of discontinuous tractions are circumvented. The method leads to a direct procedure for obtaining the discrete equations for the coupled problem without any intermediate steps. In order to evaluate this method and compare it with previous methods, a patch test for coupled procedures has been devised. Evaluation of this variationally coupled method and other methods, such as stiffness coupling and constraint traction matching coupling, shows that this method is substantially superior. Solutions for a series of fracture mechanics problems are also reported to illustrate the effectiveness of this method.

  4. Using spectral element method to solve variational inequalities with applications in finance

    International Nuclear Information System (INIS)

    Moradipour, M.; Yousefi, S.A.

    2015-01-01

    Under the Black–Scholes model, the value of an American option solves a time dependent variational inequality problem (VIP). In this paper, first we discretize the variational inequality of American option in temporal direction by applying the Rannacher time stepping and achieve a sequence of elliptic variational inequalities. Second we discretize the spatial domain of variational inequalities by using spectral element methods with high order Lagrangian polynomials introduced on Gauss–Legendre–Lobatto points. Also by computing integrals by the Gauss–Legendre–Lobatto quadrature rule we derive a sequence of the linear complementarity problems (LCPs) having a positive definite sparse coefficient matrix. To find the unique solutions of the LCPs, we use the projected successive over-relaxation (PSOR) algorithm. Furthermore we present some existence and uniqueness theorems for the variational inequalities and LCPs. Finally, theoretical results are verified on the relevant numerical examples.

  5. A New Approximation Method for Solving Variational Inequalities and Fixed Points of Nonexpansive Mappings

    Directory of Open Access Journals (Sweden)

    Klin-eam Chakkrid

    2009-01-01

    Full Text Available Abstract A new approximation method for solving variational inequalities and fixed points of nonexpansive mappings is introduced and studied. We prove strong convergence theorem of the new iterative scheme to a common element of the set of fixed points of nonexpansive mapping and the set of solutions of the variational inequality for the inverse-strongly monotone mapping which solves some variational inequalities. Moreover, we apply our main result to obtain strong convergence to a common fixed point of nonexpansive mapping and strictly pseudocontractive mapping in a Hilbert space.

  6. The use of Adomian decomposition method for solving problems in calculus of variations

    Directory of Open Access Journals (Sweden)

    Mehdi Dehghan

    2006-01-01

    Full Text Available In this paper, a numerical method is presented for finding the solution of some variational problems. The main objective is to find the solution of an ordinary differential equation which arises from the variational problem. This work is done using Adomian decomposition method which is a powerful tool for solving large amount of problems. In this approach, the solution is found in the form of a convergent power series with easily computed components. To show the efficiency of the method, numerical results are presented.

  7. Experiences with the quadratic Korringa-Kohn-Rostoker band theory method

    International Nuclear Information System (INIS)

    Faulkner, J.S.

    1992-01-01

    This paper reports on the Quadratic Korriga-Kohn-Rostoker method which is a fast band theory method in the sense that all eigenvalues for a given k are obtained from one matrix diagonalization, but it differs from other fast band theory methods in that it is derived entirely from multiple-scattering theory, without the introduction of a Rayleigh-Ritz variations step. In this theory, the atomic potentials are shifted by Δσ(r) with Δ equal to E-E 0 and σ(r) equal to one when r is inside the Wigner-Seitz cell and zero otherwise, and it turns out that the matrix of coefficients is an entire function of Δ. This matrix can be terminated to give a linear KKR, quadratic KKR, cubic KKR,..., or not terminated at all to give the pivoted multiple-scattering equations. Full potential are no harder to deal with than potentials with a shape approximation

  8. Study of the Cl2 molecule by the variational cellular method

    International Nuclear Information System (INIS)

    Rosato, A.; Lima, M.A.P.

    1984-01-01

    A self-consistent calculation based on the Variational Cellular Method is performed on the Cl 2 molecule. The results obtained for the ground state potential curve and the first excited state, the dissociation energy, the molecular orbital energies and other related parameters are compared with other methods of calculations and with available data and the agreement is satisfatory. (Author) [pt

  9. A variation method in the optimization problem of the minority game model

    International Nuclear Information System (INIS)

    Blazhyijevs'kij, L.; Yanyishevs'kij, V.

    2009-01-01

    This article contains the results of applying a variation method in the investigation of the optimization problem in the minority game model. That suggested approach is shown to give relevant results about phase transition in the model. Other methods pertinent to the problem have also been assessed.

  10. A study on linear and nonlinear Schrodinger equations by the variational iteration method

    International Nuclear Information System (INIS)

    Wazwaz, Abdul-Majid

    2008-01-01

    In this work, we introduce a framework to obtain exact solutions to linear and nonlinear Schrodinger equations. The He's variational iteration method (VIM) is used for analytic treatment of these equations. Numerical examples are tested to show the pertinent features of this method

  11. Modified variational iteration method for an El Niño Southern Oscillation delayed oscillator

    International Nuclear Information System (INIS)

    Cao Xiao-Qun; Song Jun-Qiang; Zhu Xiao-Qian; Zhang Li-Lun; Zhang Wei-Min; Zhao Jun

    2012-01-01

    This paper studies a delayed air—sea coupled oscillator describing the physical mechanism of El Niño Southern Oscillation. The approximate expansions of the delayed differential equation's solution are obtained successfully by the modified variational iteration method. The numerical results illustrate the effectiveness and correctness of the method by comparing with the exact solution of the reduced model. (general)

  12. Introduction to the Special Issue on Advancing Methods for Analyzing Dialect Variation.

    Science.gov (United States)

    Clopper, Cynthia G

    2017-07-01

    Documenting and analyzing dialect variation is traditionally the domain of dialectology and sociolinguistics. However, modern approaches to acoustic analysis of dialect variation have their roots in Peterson and Barney's [(1952). J. Acoust. Soc. Am. 24, 175-184] foundational work on the acoustic analysis of vowels that was published in the Journal of the Acoustical Society of America (JASA) over 6 decades ago. Although Peterson and Barney (1952) were not primarily concerned with dialect variation, their methods laid the groundwork for the acoustic methods that are still used by scholars today to analyze vowel variation within and across languages. In more recent decades, a number of methodological advances in the study of vowel variation have been published in JASA, including work on acoustic vowel overlap and vowel normalization. The goal of this special issue was to honor that tradition by bringing together a set of papers describing the application of emerging acoustic, articulatory, and computational methods to the analysis of dialect variation in vowels and beyond.

  13. Own-wage labor supply elasticities: variation across time and estimation methods

    Directory of Open Access Journals (Sweden)

    Olivier Bargain

    2016-10-01

    Full Text Available Abstract There is a huge variation in the size of labor supply elasticities in the literature, which hampers policy analysis. While recent studies show that preference heterogeneity across countries explains little of this variation, we focus on two other important features: observation period and estimation method. We start with a thorough survey of existing evidence for both Western Europe and the USA, over a long period and from different empirical approaches. Then, our meta-analysis attempts to disentangle the role of time changes and estimation methods. We highlight the key role of time changes, documenting the incredible fall in labor supply elasticities since the 1980s not only for the USA but also in the EU. In contrast, we find no compelling evidence that the choice of estimation method explains variation in elasticity estimates. From our analysis, we derive important guidelines for policy simulations.

  14. An historical survey of computational methods in optimal control.

    Science.gov (United States)

    Polak, E.

    1973-01-01

    Review of some of the salient theoretical developments in the specific area of optimal control algorithms. The first algorithms for optimal control were aimed at unconstrained problems and were derived by using first- and second-variation methods of the calculus of variations. These methods have subsequently been recognized as gradient, Newton-Raphson, or Gauss-Newton methods in function space. A much more recent addition to the arsenal of unconstrained optimal control algorithms are several variations of conjugate-gradient methods. At first, constrained optimal control problems could only be solved by exterior penalty function methods. Later algorithms specifically designed for constrained problems have appeared. Among these are methods for solving the unconstrained linear quadratic regulator problem, as well as certain constrained minimum-time and minimum-energy problems. Differential-dynamic programming was developed from dynamic programming considerations. The conditional-gradient method, the gradient-projection method, and a couple of feasible directions methods were obtained as extensions or adaptations of related algorithms for finite-dimensional problems. Finally, the so-called epsilon-methods combine the Ritz method with penalty function techniques.

  15. A parametric method for assessing diversification-rate variation in phylogenetic trees.

    Science.gov (United States)

    Shah, Premal; Fitzpatrick, Benjamin M; Fordyce, James A

    2013-02-01

    Phylogenetic hypotheses are frequently used to examine variation in rates of diversification across the history of a group. Patterns of diversification-rate variation can be used to infer underlying ecological and evolutionary processes responsible for patterns of cladogenesis. Most existing methods examine rate variation through time. Methods for examining differences in diversification among groups are more limited. Here, we present a new method, parametric rate comparison (PRC), that explicitly compares diversification rates among lineages in a tree using a variety of standard statistical distributions. PRC can identify subclades of the tree where diversification rates are at variance with the remainder of the tree. A randomization test can be used to evaluate how often such variance would appear by chance alone. The method also allows for comparison of diversification rate among a priori defined groups. Further, the application of the PRC method is not restricted to monophyletic groups. We examined the performance of PRC using simulated data, which showed that PRC has acceptable false-positive rates and statistical power to detect rate variation. We apply the PRC method to the well-studied radiation of North American Plethodon salamanders, and support the inference that the large-bodied Plethodon glutinosus clade has a higher historical rate of diversification compared to other Plethodon salamanders. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  16. A constrained Hartree-Fock-Bogoliubov equation derived from the double variational method

    International Nuclear Information System (INIS)

    Onishi, Naoki; Horibata, Takatoshi.

    1980-01-01

    The double variational method is applied to the intrinsic state of the generalized BCS wave function. A constrained Hartree-Fock-Bogoliubov equation is derived explicitly in the form of an eigenvalue equation. A method of obtaining approximate overlap and energy overlap integrals is proposed. This will help development of numerical calculations of the angular momentum projection method, especially for general intrinsic wave functions without any symmetry restrictions. (author)

  17. Laplace transform homotopy perturbation method for the approximation of variational problems.

    Science.gov (United States)

    Filobello-Nino, U; Vazquez-Leal, H; Rashidi, M M; Sedighi, H M; Perez-Sesma, A; Sandoval-Hernandez, M; Sarmiento-Reyes, A; Contreras-Hernandez, A D; Pereyra-Diaz, D; Hoyos-Reyes, C; Jimenez-Fernandez, V M; Huerta-Chua, J; Castro-Gonzalez, F; Laguna-Camacho, J R

    2016-01-01

    This article proposes the application of Laplace Transform-Homotopy Perturbation Method and some of its modifications in order to find analytical approximate solutions for the linear and nonlinear differential equations which arise from some variational problems. As case study we will solve four ordinary differential equations, and we will show that the proposed solutions have good accuracy, even we will obtain an exact solution. In the sequel, we will see that the square residual error for the approximate solutions, belongs to the interval [0.001918936920, 0.06334882582], which confirms the accuracy of the proposed methods, taking into account the complexity and difficulty of variational problems.

  18. Enlargement of induced variations by combined method of chronic irradiations with callus culture in sugarcane

    International Nuclear Information System (INIS)

    Nagatomi, Shigeki

    1993-01-01

    The present study was conducted to elucidate the effects of gamma ray irradiation and callus culture upon induced variation of the regeneratives. The populations regenerated from young leaf tissue of chronic irradiated plnats grown under a gamma field receiving a total dose of 300 and 100 Gy, showed rather wider variation on quantitative characters than plants from populations of the non-irradiated. This variation extended in both negative and positive directions. Analysis of variance also revealed that variation and heritability in broad sense of most agronomic characters increased significantly among the subclones as the irradiation done rose. Principal component analysis also indicated that the subclones from the irradiated population were more variable than the non-irradiated. Such variation with higher heritability could be transmitted to the following generations by clonal propagation and utilized as genetic sources in mutation breeding. The combined method with chronic irradiation followed by tissue culture is evaluated as an effective method of widening mutation spectrum and increasing mutation frequency in regenerated plants. In addition, this method is valid to improve any crop species which can regenerate plants through callus culture. (author)

  19. An Improved Variational Method for Hyperspectral Image Pansharpening with the Constraint of Spectral Difference Minimization

    Science.gov (United States)

    Huang, Z.; Chen, Q.; Shen, Y.; Chen, Q.; Liu, X.

    2017-09-01

    Variational pansharpening can enhance the spatial resolution of a hyperspectral (HS) image using a high-resolution panchromatic (PAN) image. However, this technology may lead to spectral distortion that obviously affect the accuracy of data analysis. In this article, we propose an improved variational method for HS image pansharpening with the constraint of spectral difference minimization. We extend the energy function of the classic variational pansharpening method by adding a new spectral fidelity term. This fidelity term is designed following the definition of spectral angle mapper, which means that for every pixel, the spectral difference value of any two bands in the HS image is in equal proportion to that of the two corresponding bands in the pansharpened image. Gradient descent method is adopted to find the optimal solution of the modified energy function, and the pansharpened image can be reconstructed. Experimental results demonstrate that the constraint of spectral difference minimization is able to preserve the original spectral information well in HS images, and reduce the spectral distortion effectively. Compared to original variational method, our method performs better in both visual and quantitative evaluation, and achieves a good trade-off between spatial and spectral information.

  20. Variational Iteration Method for Fifth-Order Boundary Value Problems Using He's Polynomials

    Directory of Open Access Journals (Sweden)

    Muhammad Aslam Noor

    2008-01-01

    Full Text Available We apply the variational iteration method using He's polynomials (VIMHP for solving the fifth-order boundary value problems. The proposed method is an elegant combination of variational iteration and the homotopy perturbation methods and is mainly due to Ghorbani (2007. The suggested algorithm is quite efficient and is practically well suited for use in these problems. The proposed iterative scheme finds the solution without any discritization, linearization, or restrictive assumptions. Several examples are given to verify the reliability and efficiency of the method. The fact that the proposed technique solves nonlinear problems without using Adomian's polynomials can be considered as a clear advantage of this algorithm over the decomposition method.

  1. Variational Multi-Scale method with spectral approximation of the sub-scales.

    KAUST Repository

    Dia, Ben Mansour; Chá con-Rebollo, Tomas

    2015-01-01

    A variational multi-scale method where the sub-grid scales are computed by spectral approximations is presented. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base

  2. An error estimate for Tremolieres method for the discretization of parabolic variational inequalities

    International Nuclear Information System (INIS)

    Uko, L.U.

    1990-02-01

    We study a scheme for the time-discretization of parabolic variational inequalities that is often easier to use than the classical method of Rothe. We show that if the data are compatible in a certain sense, then this scheme is of order ≥1/2. (author). 10 refs

  3. Reactive power control methods for improved reliability of wind power inverters under wind speed variations

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2012-01-01

    method to relieve the thermal cycling of power switching devices under severe wind speed variations, by circulating reactive power among the parallel power converters in a WTS or among the WTS's in a wind park. The amount of reactive power is adjusted to limit the junction temperature fluctuation...

  4. Variation in Measurements of Transtibial Stump Model Volume A Comparison of Five Methods

    NARCIS (Netherlands)

    Bolt, A.; de Boer-Wilzing, V. G.; Geertzen, J. H. B.; Emmelot, C. H.; Baars, E. C. T.; Dijkstra, P. U.

    Objective: To determine the right moment for fitting the first prosthesis, it is necessary to know when the volume of the stump has stabilized. The aim of this study is to analyze variation in measurements of transtibial stump model volumes using the water immersion method, the Design TT system, the

  5. Systematic Convergence in Applying Variational Method to Double-Well Potential

    Science.gov (United States)

    Mei, Wai-Ning

    2016-01-01

    In this work, we demonstrate the application of the variational method by computing the ground- and first-excited state energies of a double-well potential. We start with the proper choice of the trial wave functions using optimized parameters, and notice that accurate expectation values in excellent agreement with the numerical results can be…

  6. Variational and penalization methods for studying connecting orbits of Hamiltonian systems

    Directory of Open Access Journals (Sweden)

    Chao-Nien Chen

    2000-08-01

    Full Text Available In this article, we consider a class of second order Hamiltonian systems that possess infinite or finite number of equilibria. Variational arguments will be used to study the existence of connecting orbits joining pairs of equilibria. Applying penalization methods, we obtain various patterns for multibump homoclinics and heteroclinics of Hamiltonian systems.

  7. Interactively Applying the Variational Method to the Dihydrogen Molecule: Exploring Bonding and Antibonding

    Science.gov (United States)

    Cruzeiro, Vinícius Wilian D.; Roitberg, Adrian; Polfer, Nicolas C.

    2016-01-01

    In this work we are going to present how an interactive platform can be used as a powerful tool to allow students to better explore a foundational problem in quantum chemistry: the application of the variational method to the dihydrogen molecule using simple Gaussian trial functions. The theoretical approach for the hydrogen atom is quite…

  8. Variational formulation and projectional methods for the second order transport equation

    International Nuclear Information System (INIS)

    Borysiewicz, M.; Stankiewicz, R.

    1979-01-01

    Herein the variational problem for a second-order boundary value problem for the neutron transport equation is formulated. The projectional methods solving the problem are examined. The approach is compared with that based on the original untransformed form of the neutron transport equation

  9. Antidepressant prescribing in five European countries: application of common methods to assess the variation in prevalence.

    NARCIS (Netherlands)

    Abbing-Karahagopian, V.; Huerta, C.; Souverein, P.C.; Abajo, F. de; Leufkens, H.G.M.; Slattery, J.; Alvarez, Y.; Montserrat, M.; Gill, M.; Hesse, U.; Requena, G.; Vries, F. de; Rottenkolber, M.; Schmiedl, S.; Reynolds, R.; Schlinger, R.; Groot, M. de; Klungel, O.H.; Staa, T.P. van; Dijk, L. van; Egberts, A.C.G.; Gardarsdottir, H.; Bruin, M.L. de

    2013-01-01

    Background: Drug utilization studies have applied different methods on various data types to describe medication use which may hamper comparisons across populations. Objectives: The aim of this study was to describe the variation in the prevalence of antidepressant prescribing, applying standard

  10. Evaluation of methods to determine the spectral variations of aerosol optical thickness

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Talaulikar, M.; Rodrigues, A.; Desa, E.; Chauhan, P.

    The methods used to derive spectral variations of aerosol optical thickness, AOT are evaluated. For our analysis we have used the AOT measured using a hand held sunphotometer at the coastal station on the west coast of India, Dona-Paula, Goa...

  11. Solving Ratio-Dependent Predatorprey System with Constant Effort Harvesting Using Variational Iteration Method

    DEFF Research Database (Denmark)

    Ghotbi, Abdoul R; Barari, Amin

    2009-01-01

    Due to wide range of interest in use of bio-economic models to gain insight in to the scientific management of renewable resources like fisheries and forestry, variational iteration method (VIM) is employed to approximate the solution of the ratio-dependent predator-prey system with constant effort...

  12. A novel variational method for deriving Lagrangian and Hamiltonian models of inductor-capacitor circuits

    NARCIS (Netherlands)

    Moreau, L.; Aeyels, D.

    2004-01-01

    We study the dynamical equations of nonlinear inductor-capacitor circuits. We present a novel Lagrangian description of the dynamics and provide a variational interpretation, which is based on the maximum principle of optimal control theory. This gives rise to an alternative method for deriving the

  13. Total variation regularization for seismic waveform inversion using an adaptive primal dual hybrid gradient method

    Science.gov (United States)

    Yong, Peng; Liao, Wenyuan; Huang, Jianping; Li, Zhenchuan

    2018-04-01

    Full waveform inversion is an effective tool for recovering the properties of the Earth from seismograms. However, it suffers from local minima caused mainly by the limited accuracy of the starting model and the lack of a low-frequency component in the seismic data. Because of the high velocity contrast between salt and sediment, the relation between the waveform and velocity perturbation is strongly nonlinear. Therefore, salt inversion can easily get trapped in the local minima. Since the velocity of salt is nearly constant, we can make the most of this characteristic with total variation regularization to mitigate the local minima. In this paper, we develop an adaptive primal dual hybrid gradient method to implement total variation regularization by projecting the solution onto a total variation norm constrained convex set, through which the total variation norm constraint is satisfied at every model iteration. The smooth background velocities are first inverted and the perturbations are gradually obtained by successively relaxing the total variation norm constraints. Numerical experiment of the projection of the BP model onto the intersection of the total variation norm and box constraints has demonstrated the accuracy and efficiency of our adaptive primal dual hybrid gradient method. A workflow is designed to recover complex salt structures in the BP 2004 model and the 2D SEG/EAGE salt model, starting from a linear gradient model without using low-frequency data below 3 Hz. The salt inversion processes demonstrate that wavefield reconstruction inversion with a total variation norm and box constraints is able to overcome local minima and inverts the complex salt velocity layer by layer.

  14. Adaptive variational mode decomposition method for signal processing based on mode characteristic

    Science.gov (United States)

    Lian, Jijian; Liu, Zhuo; Wang, Haijun; Dong, Xiaofeng

    2018-07-01

    Variational mode decomposition is a completely non-recursive decomposition model, where all the modes are extracted concurrently. However, the model requires a preset mode number, which limits the adaptability of the method since a large deviation in the number of mode set will cause the discard or mixing of the mode. Hence, a method called Adaptive Variational Mode Decomposition (AVMD) was proposed to automatically determine the mode number based on the characteristic of intrinsic mode function. The method was used to analyze the simulation signals and the measured signals in the hydropower plant. Comparisons have also been conducted to evaluate the performance by using VMD, EMD and EWT. It is indicated that the proposed method has strong adaptability and is robust to noise. It can determine the mode number appropriately without modulation even when the signal frequencies are relatively close.

  15. Variational Multi-Scale method with spectral approximation of the sub-scales.

    KAUST Repository

    Dia, Ben Mansour

    2015-01-07

    A variational multi-scale method where the sub-grid scales are computed by spectral approximations is presented. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a nite number of modes.

  16. Study of rare-gas dimer ions by the variational cellular method

    International Nuclear Information System (INIS)

    Wentzcovitch, R.M.M.

    1982-01-01

    The Variational Cellular Method to study ionized molecules in their ground and excited states with the scope of testing the validity of such method in these cases have been used. The ions studied are Ne +2 , Ar +2 , where the latter is the system with the largest number of electrons tested by VCM so far. The electronic transitions in these systems are important mechanisms of efficiency decay for the noble gas halide lasers ('excimer lasers'). (Author) [pt

  17. A Method of Flow-Shop Re-Scheduling Dealing with Variation of Productive Capacity

    Directory of Open Access Journals (Sweden)

    Kenzo KURIHARA

    2005-02-01

    Full Text Available We can make optimum scheduling results using various methods that are proposed by many researchers. However, it is very difficult to process the works on time without delaying the schedule. There are two major causes that disturb the planned optimum schedules; they are (1the variation of productive capacity, and (2the variation of products' quantities themselves. In this paper, we deal with the former variation, or productive capacities, at flow-shop works. When production machines in a shop go out of order at flow-shops, we cannot continue to operate the productions and we have to stop the production line. To the contrary, we can continue to operate the shops even if some workers absent themselves. Of course, in this case, the production capacities become lower, because workers need to move from a machine to another to overcome the shortage of workers and some shops cannot be operated because of the worker shortage. We developed a new re-scheduling method based on Branch-and Bound method. We proposed an equation for calculating the lower bound for our Branch-and Bound method in a practical time. Some evaluation experiments are done using practical data of real flow-shop works. We compared our results with those of another simple scheduling method, and we confirmed the total production time of our result is shorter than that of another method by 4%.

  18. Identifying an unknown function in a parabolic equation with overspecified data via He's variational iteration method

    International Nuclear Information System (INIS)

    Dehghan, Mehdi; Tatari, Mehdi

    2008-01-01

    In this research, the He's variational iteration technique is used for computing an unknown time-dependent parameter in an inverse quasilinear parabolic partial differential equation. Parabolic partial differential equations with overspecified data play a crucial role in applied mathematics and physics, as they appear in various engineering models. The He's variational iteration method is an analytical procedure for finding solutions of differential equations, is based on the use of Lagrange multipliers for identification of an optimal value of a parameter in a functional. To show the efficiency of the new approach, several test problems are presented for one-, two- and three-dimensional cases

  19. Uniqueness theorems for variational problems by the method of transformation groups

    CERN Document Server

    Reichel, Wolfgang

    2004-01-01

    A classical problem in the calculus of variations is the investigation of critical points of functionals {\\cal L} on normed spaces V. The present work addresses the question: Under what conditions on the functional {\\cal L} and the underlying space V does {\\cal L} have at most one critical point? A sufficient condition for uniqueness is given: the presence of a "variational sub-symmetry", i.e., a one-parameter group G of transformations of V, which strictly reduces the values of {\\cal L}. The "method of transformation groups" is applied to second-order elliptic boundary value problems on Riemannian manifolds. Further applications include problems of geometric analysis and elasticity.

  20. Digital Image Stabilization Method Based on Variational Mode Decomposition and Relative Entropy

    Directory of Open Access Journals (Sweden)

    Duo Hao

    2017-11-01

    Full Text Available Cameras mounted on vehicles frequently suffer from image shake due to the vehicles’ motions. To remove jitter motions and preserve intentional motions, a hybrid digital image stabilization method is proposed that uses variational mode decomposition (VMD and relative entropy (RE. In this paper, the global motion vector (GMV is initially decomposed into several narrow-banded modes by VMD. REs, which exhibit the difference of probability distribution between two modes, are then calculated to identify the intentional and jitter motion modes. Finally, the summation of the jitter motion modes constitutes jitter motions, whereas the subtraction of the resulting sum from the GMV represents the intentional motions. The proposed stabilization method is compared with several known methods, namely, medium filter (MF, Kalman filter (KF, wavelet decomposition (MD method, empirical mode decomposition (EMD-based method, and enhanced EMD-based method, to evaluate stabilization performance. Experimental results show that the proposed method outperforms the other stabilization methods.

  1. Methods for determining the wall thickness variation of tubular heaters used in thermalhydraulic studies

    International Nuclear Information System (INIS)

    Cubizolles, G.; Garnier, J.; Groeneveld, D.; Tanase, A.

    2009-01-01

    Fuel bundle simulators used in thermalhydraulic studies typically consist of bundles of directly heated tubes. It is usually assumed that the heater tubes have a uniform circumferential heat flux distribution. In practice, this heat flux distribution is never exactly uniform because of wall thickness variations and bore eccentricity. Ignoring the non-uniformity in wall thickness can lead to under-estimating the local heat transfer coefficients. During nucleate boiling tests in a 5x5 PWR-type bundle subassembly at CEA-Grenoble, a sinusoidal temperature distribution was observed around the inside circumference of the heater rods. These heater rods were equipped with high-accuracy sliding thermocouple probes that permit the detailed measurement of the internal wall temperature distribution, both axially and circumferentially. The sinusoidal temperature distribution strongly suggests a variation in wall thickness. A methodology was subsequently derived to determine the circumferential wall thickness variation. The method is based on the principle that for directly heated fuel-element simulators, the nucleate boiling wall superheat at high pressures is nearly uniform around the heater rod circumference. The results show wall thickness variations of up to ±4% which was confirmed by subsequent ultrasonic wall-thickness measurements performed after bundle disassembly. Non-uniformities in circumferential temperature distributions were also observed during parallel thermalhydraulic tests at the University of Ottawa (UofO) on an electrically heated tube cooled internally by R-134a and equipped with fixed thermocouples on the outside. From the measured wall temperatures and knowledge of the inside heat transfer coefficient or wall temperature distribution, the variations in wall thickness and surface heat flux to the coolant were evaluated by solving conduction equations using three separate sets of data (1) single phase heat transfer data, (2) nucleate boiling data, and (3

  2. Quality of the restricted variation after projection method with angular momentum projection

    International Nuclear Information System (INIS)

    Rodriguez, Tomas R.; Egido, J.L.; Robledo, L.M.; Rodriguez-Guzman, R.

    2005-01-01

    Recently, the restricted angular momentum variation after projection method, using the quadrupole degree of freedom as a variational coordinate in conjunction with effective interactions of the Skyrme or Gogny type, has been used very successfully to study a variety of phenomena concerning the quadrupole degree of freedom. In this paper, we study the quality of such an approach by considering additional degrees of freedom as variational coordinates: the hexadecapole moment and the fluctuations on the quadrupole moment, particle number, and angular momentum operators. The study has been performed with the Gogny interaction (D1S parametrization) for the nuclei 32 Mg and 34 Mg. The results of the angular momentum projection and the subsequent generator coordinate calculations show that the extra degrees of freedom considered are irrelevant for the description of the lowest lying states for each angular momentum

  3. Variational method for the minimization of entropy generation in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Smit, Sjoerd; Kessels, W. M. M., E-mail: w.m.m.kessels@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2015-04-07

    In this work, a method is presented to extend traditional solar cell simulation tools to make it possible to calculate the most efficient design of practical solar cells. The method is based on the theory of nonequilibrium thermodynamics, which is used to derive an expression for the local entropy generation rate in the solar cell, making it possible to quantify all free energy losses on the same scale. The framework of non-equilibrium thermodynamics can therefore be combined with the calculus of variations and existing solar cell models to minimize the total entropy generation rate in the cell to find the most optimal design. The variational method is illustrated by applying it to a homojunction solar cell. The optimization results in a set of differential algebraic equations, which determine the optimal shape of the doping profile for given recombination and transport models.

  4. Dynamic analysis of clustered building structures using substructures methods

    International Nuclear Information System (INIS)

    Leimbach, K.R.; Krutzik, N.J.

    1989-01-01

    The dynamic substructure approach to the building cluster on a common base mat starts with the generation of Ritz-vectors for each building on a rigid foundation. The base mat plus the foundation soil is subjected to kinematic constraint modes, for example constant, linear, quadratic or cubic constraints. These constraint modes are also imposed on the buildings. By enforcing kinematic compatibility of the complete structural system on the basis of the constraint modes a reduced Ritz model of the complete cluster is obtained. This reduced model can now be analyzed by modal time history or response spectrum methods

  5. The interpolation method of stochastic functions and the stochastic variational principle

    International Nuclear Information System (INIS)

    Liu Xianbin; Chen Qiu

    1993-01-01

    Uncertainties have been attaching more importance to increasingly in modern engineering structural design. Viewed on an appropriate scale, the inherent physical attributes (material properties) of many structural systems always exhibit some patterns of random variation in space and time, generally the random variation shows a small parameter fluctuation. For a linear mechanical system, the random variation is modeled as a random one of a linear partial differential operator and, in stochastic finite element method, a random variation of a stiffness matrix. Besides the stochasticity of the structural physical properties, the influences of random loads which always represent themselves as the random boundary conditions bring about much more complexities in structural analysis. Now the stochastic finite element method or the probabilistic finite element method is used to study the structural systems with random physical parameters, whether or not the loads are random. Differing from the general finite element theory, the main difficulty which the stochastic finite element method faces is the inverse operation of stochastic operators and stochastic matrices, since the inverse operators and the inverse matrices are statistically correlated to the random parameters and random loads. So far, many efforts have been made to obtain the reasonably approximate expressions of the inverse operators and inverse matrices, such as Perturbation Method, Neumann Expansion Method, Galerkin Method (in appropriate Hilbert Spaces defined for random functions), Orthogonal Expansion Method. Among these methods, Perturbation Method appear to be the most available. The advantage of these methods is that the fairly accurate response statistics can be obtained under the condition of the finite information of the input. However, the second-order statistics obtained by use of Perturbation Method and Neumann Expansion Method are not always the appropriate ones, because the relevant second

  6. ``Use of perturbative methods to break down the variation of reactivity between two systems``; ``Decomposition par methodes perturbatives de la variation de reactivite de deux systemes``

    Energy Technology Data Exchange (ETDEWEB)

    Perruchot-Triboulet, S.; Sanchez, R.

    1997-12-01

    The modification of the isotopic composition, the temperature or even accounting for across section uncertainties in one part of a nuclear reactor core, affects the value of the effective multiplication factor. A new tool allows the analysis of the reactivity effect generated by the modification of the system. With the help of the direct and adjoint fluxes, a detailed balance of reactivity, between the compared systems, is done for each isotopic cross section. After the presentation of the direct and adjoint transport equations in the context of the multigroup code transport APOLLO2, this note describes the method, based on perturbation theory, for the analysis of the reactivity variation. An example application is also given. (author).

  7. A variational nodal diffusion method of high accuracy; Varijaciona nodalna difuziona metoda visoke tachnosti

    Energy Technology Data Exchange (ETDEWEB)

    Tomasevic, Dj; Altiparmarkov, D [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)

    1988-07-01

    A variational nodal diffusion method with accurate treatment of transverse leakage shape is developed and presented in this paper. Using Legendre expansion in transverse coordinates higher order quasi-one-dimensional nodal equations are formulated. Numerical solution has been carried out using analytical solutions in alternating directions assuming Legendre expansion of the RHS term. The method has been tested against 2D and 3D IAEA benchmark problem, as well as 2D CANDU benchmark problem. The results are highly accurate. The first order approximation yields to the same order of accuracy as the standard nodal methods with quadratic leakage approximation, while the second order reaches reference solution. (author)

  8. Prospects of hydrocarbon deposits exploration using the method of induced polarization during geomagnetic-variation profiling

    Directory of Open Access Journals (Sweden)

    К. М. Ермохин

    2017-10-01

    Full Text Available Traditionally it is believed that the effect of induced polarization is an interfering factor for the measurement of electromagnetic fields and their interpretation during conducting works using magnetotelluric sounding and geomag-netic-variation profiling methods. A new method is proposed for isolating the effects of induced polarization during geomagnetic-variation profiling aimed at searching for hydrocarbon deposits on the basis of phase measurements during the conduct of geomagnetic-variation profiling. The phenomenon of induced polarization is proposed to be used as a special exploration mark for deep-lying hydrocarbon deposits. The traditional method of induced polarization uses artificial field sources, the powers of which are principally insufficient to reach depths of 3-5 km, which leads to the need to search for alternative - natural sources in the form of telluric and magnetotelluric fields. The proposed method makes it possible to detect and interpret the effects of induced polarization from deep-seated oil and gas reservoirs directly, without relying on indirect signs.

  9. He's variational iteration method applied to the solution of the prey and predator problem with variable coefficients

    International Nuclear Information System (INIS)

    Yusufoglu, Elcin; Erbas, Baris

    2008-01-01

    In this Letter, a mathematical model of the problem of prey and predator is presented and He's variational iteration method is employed to compute an approximation to the solution of the system of nonlinear differential equations governing the problem. The results are compared with the results obtained by Adomian decomposition method and homotopy perturbation method. Comparison of the methods show that He's variational iteration method is a powerful method for obtaining approximate solutions to nonlinear equations and their systems

  10. Variational methods for eigenvalue problems an introduction to the weinstein method of intermediate problems

    CERN Document Server

    Gould, S H

    1966-01-01

    The first edition of this book gave a systematic exposition of the Weinstein method of calculating lower bounds of eigenvalues by means of intermediate problems. This second edition presents new developments in the framework of the material contained in the first edition, which is retained in somewhat modified form.

  11. Performance analysis of pin fins with temperature dependent thermal parameters using the variation of parameters method

    Directory of Open Access Journals (Sweden)

    Cihat Arslantürk

    2016-08-01

    Full Text Available The performance of pin fins transferring heat by convection and radiation and having variable thermal conductivity, variable emissivity and variable heat transfer coefficient was investigated in the present paper. Nondimensionalizing the fin equation, the problem parameters which affect the fin performance were obtained. Dimensionless nonlinear fin equation was solved with the variation of parameters method, which is quite new in the solution of nonlinear heat transfer problems. The solution of variation of parameters method was compared with known analytical solutions and some numerical solution. The comparisons showed that the solutions are seen to be perfectly compatible. The effects of problem parameters were investigated on the heat transfer rate and fin efficiency and results were presented graphically.

  12. Predictive Distribution of the Dirichlet Mixture Model by the Local Variational Inference Method

    DEFF Research Database (Denmark)

    Ma, Zhanyu; Leijon, Arne; Tan, Zheng-Hua

    2014-01-01

    the predictive likelihood of the new upcoming data, especially when the amount of training data is small. The Bayesian estimation of a Dirichlet mixture model (DMM) is, in general, not analytically tractable. In our previous work, we have proposed a global variational inference-based method for approximately...... calculating the posterior distributions of the parameters in the DMM analytically. In this paper, we extend our previous study for the DMM and propose an algorithm to calculate the predictive distribution of the DMM with the local variational inference (LVI) method. The true predictive distribution of the DMM...... is analytically intractable. By considering the concave property of the multivariate inverse beta function, we introduce an upper-bound to the true predictive distribution. As the global minimum of this upper-bound exists, the problem is reduced to seek an approximation to the true predictive distribution...

  13. Variation method for optimization of Raman fiber amplifier pumped by continuous-spectrum radiation

    International Nuclear Information System (INIS)

    Ghasempour Ardekani, A.; Bahrampour, A. R.; Feizpour, A.

    2007-01-01

    In Raman fiber amplifiers, reduction of gain ripple versus frequency has a great importance. In this article using variational method and continuous pump, gain ripple is optimized. It is shown here that for a 40 km line the average gain is 1.3dB and the gain ripple is 0.12 dB, that is lower than the latest published data.

  14. Application of the variational iteration method for system of initial value problems delay differential equations

    Science.gov (United States)

    Yousef, Hamood. M.; Ismail, A. I. B. MD.

    2017-08-01

    Many attempts have been presented to solve the system of Delay Differential Equations (DDE) with Initial Value Problem. As a result, it has shown difficulties when getting the solution or cannot be solved. In this paper, a Variational Iteration Method is employed to find out an approximate solution for the system of DDE with initial value problems. The example illustrates convenient and an efficiency comparison with the exact solution.

  15. Small angle neutron scattering in polyelectrolyte solutions: investigation of polymethacrylic acid solutions by contrast variation method

    International Nuclear Information System (INIS)

    Glavata, D.; Pleshtil, I.; Kunchenko, A.B.; Ostanevich, Yu.M.

    1982-01-01

    Neutron experiments performed by the contrast (background) variation method allows to understand better the role that hydration plays in the study of macromolecules and to draw the connection between the excess scattering amplitude of hydrated molecule with its partial volume. The observed dependence of the compensation point on the degree of neutralization apparently plays an important role in the investigation of polyelectrolytes of biological origin

  16. Multiplication factor evaluation of bare and reflected small fast assemblies using variational methods

    International Nuclear Information System (INIS)

    Dwivedi, S.R.; Jain, D.

    1979-01-01

    The multigroup collision probability equations were solved by the variational method to derive a simple relation between the multiplication factor and the size of a small spherical bare or reflected fast reactor. This relation was verified by a number of 26-group, S 4 , transport theory calculations in one-dimensional spherical geometry for enriched uranium and plutonium systems. It has been shown that further approximations to the above relation lead to the universal empirical relation obtained by Anil Kumar. (orig.) [de

  17. Assessing the performance of variational methods for mixed logistic regression models

    Czech Academy of Sciences Publication Activity Database

    Rijmen, F.; Vomlel, Jiří

    2008-01-01

    Roč. 78, č. 8 (2008), s. 765-779 ISSN 0094-9655 R&D Projects: GA MŠk 1M0572 Grant - others:GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : Mixed models * Logistic regression * Variational methods * Lower bound approximation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.353, year: 2008

  18. Finite-Temperature Variational Monte Carlo Method for Strongly Correlated Electron Systems

    Science.gov (United States)

    Takai, Kensaku; Ido, Kota; Misawa, Takahiro; Yamaji, Youhei; Imada, Masatoshi

    2016-03-01

    A new computational method for finite-temperature properties of strongly correlated electrons is proposed by extending the variational Monte Carlo method originally developed for the ground state. The method is based on the path integral in the imaginary-time formulation, starting from the infinite-temperature state that is well approximated by a small number of certain random initial states. Lower temperatures are progressively reached by the imaginary-time evolution. The algorithm follows the framework of the quantum transfer matrix and finite-temperature Lanczos methods, but we extend them to treat much larger system sizes without the negative sign problem by optimizing the truncated Hilbert space on the basis of the time-dependent variational principle (TDVP). This optimization algorithm is equivalent to the stochastic reconfiguration (SR) method that has been frequently used for the ground state to optimally truncate the Hilbert space. The obtained finite-temperature states allow an interpretation based on the thermal pure quantum (TPQ) state instead of the conventional canonical-ensemble average. Our method is tested for the one- and two-dimensional Hubbard models and its accuracy and efficiency are demonstrated.

  19. Exact solitary wave solution for higher order nonlinear Schrodinger equation using He's variational iteration method

    Science.gov (United States)

    Rani, Monika; Bhatti, Harbax S.; Singh, Vikramjeet

    2017-11-01

    In optical communication, the behavior of the ultrashort pulses of optical solitons can be described through nonlinear Schrodinger equation. This partial differential equation is widely used to contemplate a number of physically important phenomena, including optical shock waves, laser and plasma physics, quantum mechanics, elastic media, etc. The exact analytical solution of (1+n)-dimensional higher order nonlinear Schrodinger equation by He's variational iteration method has been presented. Our proposed solutions are very helpful in studying the solitary wave phenomena and ensure rapid convergent series and avoid round off errors. Different examples with graphical representations have been given to justify the capability of the method.

  20. Sound recovery via intensity variations of speckle pattern pixels selected with variance-based method

    Science.gov (United States)

    Zhu, Ge; Yao, Xu-Ri; Qiu, Peng; Mahmood, Waqas; Yu, Wen-Kai; Sun, Zhi-Bin; Zhai, Guang-Jie; Zhao, Qing

    2018-02-01

    In general, the sound waves can cause the vibration of the objects that are encountered in the traveling path. If we make a laser beam illuminate the rough surface of an object, it will be scattered into a speckle pattern that vibrates with these sound waves. Here, an efficient variance-based method is proposed to recover the sound information from speckle patterns captured by a high-speed camera. This method allows us to select the proper pixels that have large variances of the gray-value variations over time, from a small region of the speckle patterns. The gray-value variations of these pixels are summed together according to a simple model to recover the sound with a high signal-to-noise ratio. Meanwhile, our method will significantly simplify the computation compared with the traditional digital-image-correlation technique. The effectiveness of the proposed method has been verified by applying a variety of objects. The experimental results illustrate that the proposed method is robust to the quality of the speckle patterns and costs more than one-order less time to perform the same number of the speckle patterns. In our experiment, a sound signal of time duration 1.876 s is recovered from various objects with time consumption of 5.38 s only.

  1. Numerical Methods for the Optimization of Nonlinear Residual-Based Sungrid-Scale Models Using the Variational Germano Identity

    NARCIS (Netherlands)

    Maher, G.D.; Hulshoff, S.J.

    2014-01-01

    The Variational Germano Identity [1, 2] is used to optimize the coefficients of residual-based subgrid-scale models that arise from the application of a Variational Multiscale Method [3, 4]. It is demonstrated that numerical iterative methods can be used to solve the Germano relations to obtain

  2. Convergence Properties of Projection and Contraction Methods for Variational Inequality Problems

    International Nuclear Information System (INIS)

    Xiu, N.; Wang, C.; Zhang, J.

    2001-01-01

    In this paper we develop the convergence theory of a general class of projection and contraction algorithms (PC method), where an extended stepsize rule is used, for solving variational inequality (VI) problems. It is shown that, by defining a scaled projection residue, the PC method forces the sequence of the residues to zero. It is also shown that, by defining a projected function, the PC method forces the sequence of projected functions to zero. A consequence of this result is that if the PC method converges to a nondegenerate solution of the VI problem, then after a finite number of iterations, the optimal face is identified. Finally, we study local convergence behavior of the extragradient algorithm for solving the KKT system of the inequality constrained VI problem

  3. A Dictionary Learning Method with Total Generalized Variation for MRI Reconstruction.

    Science.gov (United States)

    Lu, Hongyang; Wei, Jingbo; Liu, Qiegen; Wang, Yuhao; Deng, Xiaohua

    2016-01-01

    Reconstructing images from their noisy and incomplete measurements is always a challenge especially for medical MR image with important details and features. This work proposes a novel dictionary learning model that integrates two sparse regularization methods: the total generalized variation (TGV) approach and adaptive dictionary learning (DL). In the proposed method, the TGV selectively regularizes different image regions at different levels to avoid oil painting artifacts largely. At the same time, the dictionary learning adaptively represents the image features sparsely and effectively recovers details of images. The proposed model is solved by variable splitting technique and the alternating direction method of multiplier. Extensive simulation experimental results demonstrate that the proposed method consistently recovers MR images efficiently and outperforms the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.

  4. A Dictionary Learning Method with Total Generalized Variation for MRI Reconstruction

    Directory of Open Access Journals (Sweden)

    Hongyang Lu

    2016-01-01

    Full Text Available Reconstructing images from their noisy and incomplete measurements is always a challenge especially for medical MR image with important details and features. This work proposes a novel dictionary learning model that integrates two sparse regularization methods: the total generalized variation (TGV approach and adaptive dictionary learning (DL. In the proposed method, the TGV selectively regularizes different image regions at different levels to avoid oil painting artifacts largely. At the same time, the dictionary learning adaptively represents the image features sparsely and effectively recovers details of images. The proposed model is solved by variable splitting technique and the alternating direction method of multiplier. Extensive simulation experimental results demonstrate that the proposed method consistently recovers MR images efficiently and outperforms the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.

  5. Matrix-variational method: an efficient approach to bound state eigenproblems

    International Nuclear Information System (INIS)

    Gerck, E.; d'Oliveira, A.B.

    1978-11-01

    A new matrix-variational method for solving the radial Schroedinger equation is described. It consists in obtaining an adjustable matrix formulation for the boundary value differential equation, using a set of three functions that obey the boundary conditions. These functions are linearly combined at every three adjacents points to fit the true unknown eigenfunction by a variational technique. With the use of a new class of central differences, the exponential differences, tridiagonal or bidiagonal matrices are obtained. In the bidiagonal case, closed form expressions for the eigenvalues are given for the Coulomb, harmonic, linear, square-root and logarithmic potentials. The values obtained are within 0.1% of the true numerical value. The eigenfunction can be calculated using the eigenvectors to reconstruct the linear combination of the set functions [pt

  6. Variational Methods for Discontinuous Structures : Applications to Image Segmentation, Continuum Mechanics

    CERN Document Server

    Tomarelli, Franco

    1996-01-01

    In recent years many researchers in material science have focused their attention on the study of composite materials, equilibrium of crystals and crack distribution in continua subject to loads. At the same time several new issues in computer vision and image processing have been studied in depth. The understanding of many of these problems has made significant progress thanks to new methods developed in calculus of variations, geometric measure theory and partial differential equations. In particular, new technical tools have been introduced and successfully applied. For example, in order to describe the geometrical complexity of unknown patterns, a new class of problems in calculus of variations has been introduced together with a suitable functional setting: the free-discontinuity problems and the special BV and BH functions. The conference held at Villa Olmo on Lake Como in September 1994 spawned successful discussion of these topics among mathematicians, experts in computer science and material scientis...

  7. Iterative ensemble variational methods for nonlinear data assimilation: Application to transport and atmospheric chemistry

    International Nuclear Information System (INIS)

    Haussaire, Jean-Matthieu

    2017-01-01

    Data assimilation methods are constantly evolving to adapt to the various application domains. In atmospheric sciences, each new algorithm has first been implemented on numerical weather prediction models before being ported to atmospheric chemistry models. It has been the case for 4D variational methods and ensemble Kalman filters for instance. The new 4D ensemble variational methods (4D EnVar) are no exception. They were developed to take advantage of both variational and ensemble approaches and they are starting to be used in operational weather prediction centers, but have yet to be tested on operational atmospheric chemistry models. The validation of new data assimilation methods on these models is indeed difficult because of the complexity of such models. It is hence necessary to have at our disposal low-order models capable of synthetically reproducing key physical phenomena from operational models while limiting some of their hardships. Such a model, called L95-GRS, has therefore been developed. Il combines the simple meteorology from the Lorenz-95 model to a tropospheric ozone chemistry module with 7 chemical species. Even though it is of low dimension, it reproduces some of the physical and chemical phenomena observable in real situations. A data assimilation method, the iterative ensemble Kalman smoother (IEnKS), has been applied to this model. It is an iterative 4D EnVar method which solves the full non-linear variational problem. This application validates 4D EnVar methods in the context of non-linear atmospheric chemistry, but also raises the first limits of such methods, most noticeably when they are applied to weakly coupled stable models. After this experiment, results have been extended to a realistic atmospheric pollution prediction model. 4D EnVar methods, via the IEnKS, have once again shown their potential to take into account the non-linearity of the chemistry model in a controlled environment, with synthetic observations. However, the

  8. Variational methods for direct/inverse problems of atmospheric dynamics and chemistry

    Science.gov (United States)

    Penenko, Vladimir; Penenko, Alexey; Tsvetova, Elena

    2013-04-01

    We present a variational approach for solving direct and inverse problems of atmospheric hydrodynamics and chemistry. It is important that the accurate matching of numerical schemes has to be provided in the chain of objects: direct/adjoint problems - sensitivity relations - inverse problems, including assimilation of all available measurement data. To solve the problems we have developed a new enhanced set of cost-effective algorithms. The matched description of the multi-scale processes is provided by a specific choice of the variational principle functionals for the whole set of integrated models. Then all functionals of variational principle are approximated in space and time by splitting and decomposition methods. Such approach allows us to separately consider, for example, the space-time problems of atmospheric chemistry in the frames of decomposition schemes for the integral identity sum analogs of the variational principle at each time step and in each of 3D finite-volumes. To enhance the realization efficiency, the set of chemical reactions is divided on the subsets related to the operators of production and destruction. Then the idea of the Euler's integrating factors is applied in the frames of the local adjoint problem technique [1]-[3]. The analytical solutions of such adjoint problems play the role of integrating factors for differential equations describing atmospheric chemistry. With their help, the system of differential equations is transformed to the equivalent system of integral equations. As a result we avoid the construction and inversion of preconditioning operators containing the Jacobi matrixes which arise in traditional implicit schemes for ODE solution. This is the main advantage of our schemes. At the same time step but on the different stages of the "global" splitting scheme, the system of atmospheric dynamic equations is solved. For convection - diffusion equations for all state functions in the integrated models we have developed the

  9. direct method of analysis of an isotropic rectangular plate direct

    African Journals Online (AJOL)

    eobe

    This work evaluates the static analysis of an isotropic rectangular plate with various the static analysis ... method according to Ritz is used to obtain the total potential energy of the plate by employing the used to ..... for rectangular plates analysis, as the behavior of the ... results obtained by previous research work that used.

  10. A Control Variate Method for Probabilistic Performance Assessment. Improved Estimates for Mean Performance Quantities of Interest

    Energy Technology Data Exchange (ETDEWEB)

    MacKinnon, Robert J.; Kuhlman, Kristopher L

    2016-05-01

    We present a method of control variates for calculating improved estimates for mean performance quantities of interest, E(PQI) , computed from Monte Carlo probabilistic simulations. An example of a PQI is the concentration of a contaminant at a particular location in a problem domain computed from simulations of transport in porous media. To simplify the presentation, the method is described in the setting of a one- dimensional elliptical model problem involving a single uncertain parameter represented by a probability distribution. The approach can be easily implemented for more complex problems involving multiple uncertain parameters and in particular for application to probabilistic performance assessment of deep geologic nuclear waste repository systems. Numerical results indicate the method can produce estimates of E(PQI)having superior accuracy on coarser meshes and reduce the required number of simulations needed to achieve an acceptable estimate.

  11. EFFECTS OF PARAMETRIC VARIATIONS ON SEISMIC ANALYSIS METHODS FOR NON-CLASSICALLY DAMPED COUPLED SYSTEMS

    International Nuclear Information System (INIS)

    XU, J.; DEGRASSI, G.

    2000-01-01

    A comprehensive benchmark program was developed by Brookhaven National Laboratory (BNL) to perform an evaluation of state-of-the-art methods and computer programs for performing seismic analyses of coupled systems with non-classical damping. The program, which was sponsored by the US Nuclear Regulatory Commission (NRC), was designed to address various aspects of application and limitations of these state-of-the-art analysis methods to typical coupled nuclear power plant (NPP) structures with non-classical damping, and was carried out through analyses of a set of representative benchmark problems. One objective was to examine the applicability of various analysis methods to problems with different dynamic characteristics unique to coupled systems. The examination was performed using parametric variations for three simple benchmark models. This paper presents the comparisons and evaluation of the program participants' results to the BNL exact solutions for the applicable ranges of modeling dynamic characteristic parameters

  12. Preferences for partner notification method: variation in responses between respondents as index patients and contacts.

    Science.gov (United States)

    Apoola, A; Radcliffe, K W; Das, S; Robshaw, V; Gilleran, G; Kumari, B S; Boothby, M; Rajakumar, R

    2007-07-01

    There have been very few studies focusing on what form of communication patients would find acceptable from a clinic. This study looks at the differences in preferences for various partner notification methods when the respondents were index patients compared with when they had to be contacted because a partner had a sexually transmitted infection (STI). There were 2544 respondents. When the clinic had to notify partners, respondents were more likely to report the method as good when a partner had an STI and they were being contacted compared with when the respondents had an infection and the partner was being contacted. The opposite was true for patient referral partner notification. Therefore, there are variations in the preferences of respondents for partner notification method, which depend on whether they see themselves as index patients or contacts.

  13. General formulation of the variational cellular method for molecules and crystals

    International Nuclear Information System (INIS)

    Ferreira, L.G.; Leite, J.R.

    A variational form of the cellular method is proposed as a new model to solve the one-electron Schroedinger equation for molecules and crystals. The model keeps the good features of the traditional cellular method, as the arbitrary partition of space, and eliminates its main drawback, the slow convergency of the cellular expansion series. With the aid of a criterion of precision on the trial wave functions, we discuss the possibilities offered by the method for more accurate calculations of the electronic structures of molecules and solids. As an example of the accuracy and fast convergency of the model, computation of the energy spectrum of the hydrogen molecular ion H 2 + is presented

  14. A New Variational Method for Bias Correction and Its Applications to Rodent Brain Extraction.

    Science.gov (United States)

    Chang, Huibin; Huang, Weimin; Wu, Chunlin; Huang, Su; Guan, Cuntai; Sekar, Sakthivel; Bhakoo, Kishore Kumar; Duan, Yuping

    2017-03-01

    Brain extraction is an important preprocessing step for further analysis of brain MR images. Significant intensity inhomogeneity can be observed in rodent brain images due to the high-field MRI technique. Unlike most existing brain extraction methods that require bias corrected MRI, we present a high-order and L 0 regularized variational model for bias correction and brain extraction. The model is composed of a data fitting term, a piecewise constant regularization and a smooth regularization, which is constructed on a 3-D formulation for medical images with anisotropic voxel sizes. We propose an efficient multi-resolution algorithm for fast computation. At each resolution layer, we solve an alternating direction scheme, all subproblems of which have the closed-form solutions. The method is tested on three T2 weighted acquisition configurations comprising a total of 50 rodent brain volumes, which are with the acquisition field strengths of 4.7 Tesla, 9.4 Tesla and 17.6 Tesla, respectively. On one hand, we compare the results of bias correction with N3 and N4 in terms of the coefficient of variations on 20 different tissues of rodent brain. On the other hand, the results of brain extraction are compared against manually segmented gold standards, BET, BSE and 3-D PCNN based on a number of metrics. With the high accuracy and efficiency, our proposed method can facilitate automatic processing of large-scale brain studies.

  15. Accelerated gradient methods for total-variation-based CT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Jakob H.; Hansen, Per Christian [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Informatics and Mathematical Modeling; Jensen, Tobias L.; Jensen, Soeren H. [Aalborg Univ. (Denmark). Dept. of Electronic Systems; Sidky, Emil Y.; Pan, Xiaochuan [Chicago Univ., Chicago, IL (United States). Dept. of Radiology

    2011-07-01

    Total-variation (TV)-based CT image reconstruction has shown experimentally to be capable of producing accurate reconstructions from sparse-view data. In particular TV-based reconstruction is well suited for images with piecewise nearly constant regions. Computationally, however, TV-based reconstruction is demanding, especially for 3D imaging, and the reconstruction from clinical data sets is far from being close to real-time. This is undesirable from a clinical perspective, and thus there is an incentive to accelerate the solution of the underlying optimization problem. The TV reconstruction can in principle be found by any optimization method, but in practice the large scale of the systems arising in CT image reconstruction preclude the use of memory-intensive methods such as Newton's method. The simple gradient method has much lower memory requirements, but exhibits prohibitively slow convergence. In the present work we address the question of how to reduce the number of gradient method iterations needed to achieve a high-accuracy TV reconstruction. We consider the use of two accelerated gradient-based methods, GPBB and UPN, to solve the 3D-TV minimization problem in CT image reconstruction. The former incorporates several heuristics from the optimization literature such as Barzilai-Borwein (BB) step size selection and nonmonotone line search. The latter uses a cleverly chosen sequence of auxiliary points to achieve a better convergence rate. The methods are memory efficient and equipped with a stopping criterion to ensure that the TV reconstruction has indeed been found. An implementation of the methods (in C with interface to Matlab) is available for download from http://www2.imm.dtu.dk/~pch/TVReg/. We compare the proposed methods with the standard gradient method, applied to a 3D test problem with synthetic few-view data. We find experimentally that for realistic parameters the proposed methods significantly outperform the standard gradient method. (orig.)

  16. Application of the variational method for calculation of neutron spectra and group constants - Master thesis

    International Nuclear Information System (INIS)

    Milosevic, M.

    1979-01-01

    One-dimensional variational method for cylindrical configuration was applied for calculating group constants, together with effects of elastic slowing down, anisotropic elastic scattering, inelastic scattering, heterogeneous resonance absorption with the aim to include the presence of a number of different isotopes and effects of neutron leakage from the reactor core. Neutron flux shape P 3 and adjoint function are proposed in order to enable calculation of smaller size reactors and inclusion of heterogeneity effects by cell calculations. Microscopic multigroup constants were prepared based on the UKNDL data library. Analytical-numerical approach was applied for solving the equations of the P 3 approximation to obtain neutron flux moments and adjoint functions

  17. Variational Iteration Method for Volterra Functional Integrodifferential Equations with Vanishing Linear Delays

    Directory of Open Access Journals (Sweden)

    Ali Konuralp

    2014-01-01

    Full Text Available Application process of variational iteration method is presented in order to solve the Volterra functional integrodifferential equations which have multi terms and vanishing delays where the delay function θ(t vanishes inside the integral limits such that θ(t=qt for 0

  18. Static and dynamic polarizabilities of Na- within a variationally stable coupled-channel hyperspherical method

    International Nuclear Information System (INIS)

    Masili, Mauro; Groote, J.J. de

    2004-01-01

    Using a model potential representation combined with a variationally stable method, we present a precise calculation of the electric dipole polarizabilities of the sodium negative ion (Na - ). The effective two-electron eigensolutions for Na - are obtained from a hyperspherical coupled-channel calculation. This approach allows efficient error control and insight into the system's properties through one-dimensional potential curves. Our result of 1018.3 a.u. for the static dipole polarizability is in agreement with previous calculations and supports our results for the dynamic polarizability, which has scarcely been investigated hitherto

  19. Mixed Total Variation and L1 Regularization Method for Optical Tomography Based on Radiative Transfer Equation

    Directory of Open Access Journals (Sweden)

    Jinping Tang

    2017-01-01

    Full Text Available Optical tomography is an emerging and important molecular imaging modality. The aim of optical tomography is to reconstruct optical properties of human tissues. In this paper, we focus on reconstructing the absorption coefficient based on the radiative transfer equation (RTE. It is an ill-posed parameter identification problem. Regularization methods have been broadly applied to reconstruct the optical coefficients, such as the total variation (TV regularization and the L1 regularization. In order to better reconstruct the piecewise constant and sparse coefficient distributions, TV and L1 norms are combined as the regularization. The forward problem is discretized with the discontinuous Galerkin method on the spatial space and the finite element method on the angular space. The minimization problem is solved by a Jacobian-based Levenberg-Marquardt type method which is equipped with a split Bregman algorithms for the L1 regularization. We use the adjoint method to compute the Jacobian matrix which dramatically improves the computation efficiency. By comparing with the other imaging reconstruction methods based on TV and L1 regularizations, the simulation results show the validity and efficiency of the proposed method.

  20. A Position Sensorless Control Method for SRM Based on Variation of Phase Inductance

    Science.gov (United States)

    Komatsuzaki, Akitomo; Miki, Ichiro

    Switched reluctance motor (SRM) drives are suitable for variable speed industrial applications because of the simple structure and high-speed capability. However, it is necessary to detect the rotor position with a position sensor attached to the motor shaft. The use of the sensor increases the cost of the drive system and machine size, and furthermore the reliability of the system is reduced. Therefore, several approaches to eliminate the position sensor have already been reported. In this paper, a position sensorless control method based on the variation of the phase inductance is described. The phase inductance regularly varies with the rotor position. The SRM is controlled without the position sensor using the de-fluxing period and the phase inductance. The turn-off timing is determined by computing the difference of angle between the sampling point and the aligned point and the variation of angle during the de-fluxing period. In the magnetic saturation region, the phase inductance at the current when the effect of the saturation starts is computed and the sensorless control can be carried out using this inductance. Experimental results show that the SRM is well controlled without the position sensor using the proposed method.

  1. An Optimal DEM Reconstruction Method for Linear Array Synthetic Aperture Radar Based on Variational Model

    Directory of Open Access Journals (Sweden)

    Shi Jun

    2015-02-01

    Full Text Available Downward-looking Linear Array Synthetic Aperture Radar (LASAR has many potential applications in the topographic mapping, disaster monitoring and reconnaissance applications, especially in the mountainous area. However, limited by the sizes of platforms, its resolution in the linear array direction is always far lower than those in the range and azimuth directions. This disadvantage leads to the blurring of Three-Dimensional (3D images in the linear array direction, and restricts the application of LASAR. To date, the research on 3D SAR image enhancement has focused on the sparse recovery technique. In this case, the one-to-one mapping of Digital Elevation Model (DEM brakes down. To overcome this, an optimal DEM reconstruction method for LASAR based on the variational model is discussed in an effort to optimize the DEM and the associated scattering coefficient map, and to minimize the Mean Square Error (MSE. Using simulation experiments, it is found that the variational model is more suitable for DEM enhancement applications to all kinds of terrains compared with the Orthogonal Matching Pursuit (OMPand Least Absolute Shrinkage and Selection Operator (LASSO methods.

  2. Nuclear reactor control method for maintaining an appreciably constant axial distribution of power with load variations

    International Nuclear Information System (INIS)

    Morita, Toshio.

    1975-01-01

    A nuclear reactor control method is described in which the power variations of the reactor are controlled partly by varying the concentration of the neutron absorbing element and partly by varying the positions of the control rods, in order to maintain the axial distribution of power appreciably symmetrical during the normal operation of the reactor. The control points are located in the upper and lower halves of the core. The controls are operated to maintain the output power difference between the upper and lower halves of the core, based on the total output power (axial deviation) significantly equal to a predetermined optimum figure during the entire running of the reactor, including when there are power variations. The optimum value is obtained by determining the axial deviation at full power with the xenon in balance and all the control rods withdrawn from the fuel area of the core. This optimum value is recalculated after a period appreciably equal to that of a month's operation at full power. This method applies in particular to PWR type reactors [fr

  3. Perturbation theory corrections to the two-particle reduced density matrix variational method.

    Science.gov (United States)

    Juhasz, Tamas; Mazziotti, David A

    2004-07-15

    In the variational 2-particle-reduced-density-matrix (2-RDM) method, the ground-state energy is minimized with respect to the 2-particle reduced density matrix, constrained by N-representability conditions. Consider the N-electron Hamiltonian H(lambda) as a function of the parameter lambda where we recover the Fock Hamiltonian at lambda=0 and we recover the fully correlated Hamiltonian at lambda=1. We explore using the accuracy of perturbation theory at small lambda to correct the 2-RDM variational energies at lambda=1 where the Hamiltonian represents correlated atoms and molecules. A key assumption in the correction is that the 2-RDM method will capture a fairly constant percentage of the correlation energy for lambda in (0,1] because the nonperturbative 2-RDM approach depends more significantly upon the nature rather than the strength of the two-body Hamiltonian interaction. For a variety of molecules we observe that this correction improves the 2-RDM energies in the equilibrium bonding region, while the 2-RDM energies at stretched or nearly dissociated geometries, already highly accurate, are not significantly changed. At equilibrium geometries the corrected 2-RDM energies are similar in accuracy to those from coupled-cluster singles and doubles (CCSD), but at nonequilibrium geometries the 2-RDM energies are often dramatically more accurate as shown in the bond stretching and dissociation data for water and nitrogen. (c) 2004 American Institute of Physics.

  4. Strong convergence with a modified iterative projection method for hierarchical fixed point problems and variational inequalities

    Directory of Open Access Journals (Sweden)

    Ibrahim Karahan

    2016-04-01

    Full Text Available Let C be a nonempty closed convex subset of a real Hilbert space H. Let {T_{n}}:C›H be a sequence of nearly nonexpansive mappings such that F:=?_{i=1}^{?}F(T_{i}?Ø. Let V:C›H be a ?-Lipschitzian mapping and F:C›H be a L-Lipschitzian and ?-strongly monotone operator. This paper deals with a modified iterative projection method for approximating a solution of the hierarchical fixed point problem. It is shown that under certain approximate assumptions on the operators and parameters, the modified iterative sequence {x_{n}} converges strongly to x^{*}?F which is also the unique solution of the following variational inequality: ?0, ?x?F. As a special case, this projection method can be used to find the minimum norm solution of above variational inequality; namely, the unique solution x^{*} to the quadratic minimization problem: x^{*}=argmin_{x?F}?x?². The results here improve and extend some recent corresponding results of other authors.

  5. Hybrid variational principles and synthesis method for finite element neutron transport calculations

    International Nuclear Information System (INIS)

    Ackroyd, R.T.; Nanneh, M.M.

    1990-01-01

    A family of hybrid variational principles is derived using a generalised least squares method. Neutron conservation is automatically satisfied for the hybrid principles employing two trial functions. No interfaces or reflection conditions need to be imposed on the independent even-parity trial function. For some hybrid principles a single trial function can be employed by relating one parity trial function to the other, using one of the parity transport equation in relaxed form. For other hybrid principles the trial functions can be employed sequentially. Synthesis of transport solutions, starting with the diffusion theory approximation, has been used as a way of reducing the scale of the computation that arises with established finite element methods for neutron transport. (author)

  6. Lowest-order constrained variational method for simple many-fermion systems

    International Nuclear Information System (INIS)

    Alexandrov, I.; Moszkowski, S.A.; Wong, C.W.

    1975-01-01

    The authors study the potential energy of many-fermion systems calculated by the lowest-order constrained variational (LOCV) method of Pandharipande. Two simple two-body interactions are used. For a simple hard-core potential in a dilute Fermi gas, they find that the Huang-Yang exclusion correction can be used to determine a healing distance. The result is close to the older Pandharipande prescription for the healing distance. For a hard core plus attractive exponential potential, the LOCV result agrees closely with the lowest-order separation method of Moszkowski and Scott. They find that the LOCV result has a shallow minimum as a function of the healing distance at the Moszkowski-Scott separation distance. The significance of the absence of a Brueckner dispersion correction in the LOCV result is discussed. (Auth.)

  7. Studying the properties of Variational Data Assimilation Methods by Applying a Set of Test-Examples

    DEFF Research Database (Denmark)

    Thomsen, Per Grove; Zlatev, Zahari

    2007-01-01

    and backward computations are carried out by using the model under consideration and its adjoint equations (both the model and its adjoint are defined by systems of differential equations). The major difficulty is caused by the huge increase of the computational load (normally by a factor more than 100...... assimilation method (numerical algorithms for solving differential equations, splitting procedures and optimization algorithms) have been studied by using these tests. The presentation will include results from testing carried out in the study.......he variational data assimilation methods can successfully be used in different fields of science and engineering. An attempt to utilize available sets of observations in the efforts to improve (i) the models used to study different phenomena (ii) the model results is systematically carried out when...

  8. IMF-Slices for GPR Data Processing Using Variational Mode Decomposition Method

    Directory of Open Access Journals (Sweden)

    Xuebing Zhang

    2018-03-01

    Full Text Available Using traditional time-frequency analysis methods, it is possible to delineate the time-frequency structures of ground-penetrating radar (GPR data. A series of applications based on time-frequency analysis were proposed for the GPR data processing and imaging. With respect to signal processing, GPR data are typically non-stationary, which limits the applications of these methods moving forward. Empirical mode decomposition (EMD provides alternative solutions with a fresh perspective. With EMD, GPR data are decomposed into a set of sub-components, i.e., the intrinsic mode functions (IMFs. However, the mode-mixing effect may also bring some negatives. To utilize the IMFs’ benefits, and avoid the negatives of the EMD, we introduce a new decomposition scheme termed variational mode decomposition (VMD for GPR data processing for imaging. Based on the decomposition results of the VMD, we propose a new method which we refer as “the IMF-slice”. In the proposed method, the IMFs are generated by the VMD trace by trace, and then each IMF is sorted and recorded into different profiles (i.e., the IMF-slices according to its center frequency. Using IMF-slices, the GPR data can be divided into several IMF-slices, each of which delineates a main vibration mode, and some subsurface layers and geophysical events can be identified more clearly. The effectiveness of the proposed method is tested using synthetic benchmark signals, laboratory data and the field dataset.

  9. A variational multiscale method for particle-cloud tracking in turbomachinery flows

    Science.gov (United States)

    Corsini, A.; Rispoli, F.; Sheard, A. G.; Takizawa, K.; Tezduyar, T. E.; Venturini, P.

    2014-11-01

    We present a computational method for simulation of particle-laden flows in turbomachinery. The method is based on a stabilized finite element fluid mechanics formulation and a finite element particle-cloud tracking method. We focus on induced-draft fans used in process industries to extract exhaust gases in the form of a two-phase fluid with a dispersed solid phase. The particle-laden flow causes material wear on the fan blades, degrading their aerodynamic performance, and therefore accurate simulation of the flow would be essential in reliable computational turbomachinery analysis and design. The turbulent-flow nature of the problem is dealt with a Reynolds-Averaged Navier-Stokes model and Streamline-Upwind/Petrov-Galerkin/Pressure-Stabilizing/Petrov-Galerkin stabilization, the particle-cloud trajectories are calculated based on the flow field and closure models for the turbulence-particle interaction, and one-way dependence is assumed between the flow field and particle dynamics. We propose a closure model utilizing the scale separation feature of the variational multiscale method, and compare that to the closure utilizing the eddy viscosity model. We present computations for axial- and centrifugal-fan configurations, and compare the computed data to those obtained from experiments, analytical approaches, and other computational methods.

  10. Optimization of phase-variation measurements in low-coherence methods: implications for OCE

    Science.gov (United States)

    Zaitsev, Vladimir Y.; Matveyev, Alexandr L.; Matveev, Lev A.; Gelikonov, Grigory V.; Sovetsky, Alexander A.; Vitkin, Alex

    2016-04-01

    Phase-resolved measurements found numerous applications in low-coherence methods, in particular in OCT-based compressional elastography, where phase-variation gradients are used for estimating strains produced by the OCT probe pressed onto the tissue. Conventionally, for the reference and deformed pixelated OCT scans, one performs comparison of phases taken from pixels with the same coordinates. This is reasonable in regions of sufficiently small sub-pixel displacements, for which the so-compared pixels contain the same scatterers. Furthermore, to avoid error-prone multiple phase unwrapping for reconstructing displacements, one have to ensure even smaller sub-wavelength displacements. This limits the allowable strains to less than ~10-4-10-3, although such weak phase gradients can be strongly corrupted by measurement noises. Here, we discuss how creation of an order of magnitude greater strains can be used for increasing the signal-to noise ratio in estimating phase gradients by obviating the phase-unwrapping procedures and reducing the influence of decorrelation noise for supra-pixel displacements. This optimized phase-variation measurement makes it possible to perform strain mapping in optical coherence elastography with exceptionally high tolerance to noises due to possibility of using significantly increased strains. We also discuss the effect of "frozen-phase zones" associated with displaced strong scatterers. This effect can result in appearance of artifacts in the form of false stiff inclusions in elastograms in the vicinity of bright scatterers in OCT scans. We present analytical arguments, numerical simulations and experimental examples illustrating the above-mentioned features of the "frozen-phase" effect and advantages of using the proposed optimized phase-variation measurement with pixel-scale displacement compensation in the compared OCT scans.

  11. Sensitivity analysis and parameter estimation for distributed hydrological modeling: potential of variational methods

    Directory of Open Access Journals (Sweden)

    W. Castaings

    2009-04-01

    Full Text Available Variational methods are widely used for the analysis and control of computationally intensive spatially distributed systems. In particular, the adjoint state method enables a very efficient calculation of the derivatives of an objective function (response function to be analysed or cost function to be optimised with respect to model inputs.

    In this contribution, it is shown that the potential of variational methods for distributed catchment scale hydrology should be considered. A distributed flash flood model, coupling kinematic wave overland flow and Green Ampt infiltration, is applied to a small catchment of the Thoré basin and used as a relatively simple (synthetic observations but didactic application case.

    It is shown that forward and adjoint sensitivity analysis provide a local but extensive insight on the relation between the assigned model parameters and the simulated hydrological response. Spatially distributed parameter sensitivities can be obtained for a very modest calculation effort (~6 times the computing time of a single model run and the singular value decomposition (SVD of the Jacobian matrix provides an interesting perspective for the analysis of the rainfall-runoff relation.

    For the estimation of model parameters, adjoint-based derivatives were found exceedingly efficient in driving a bound-constrained quasi-Newton algorithm. The reference parameter set is retrieved independently from the optimization initial condition when the very common dimension reduction strategy (i.e. scalar multipliers is adopted.

    Furthermore, the sensitivity analysis results suggest that most of the variability in this high-dimensional parameter space can be captured with a few orthogonal directions. A parametrization based on the SVD leading singular vectors was found very promising but should be combined with another regularization strategy in order to prevent overfitting.

  12. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences.

    Science.gov (United States)

    Wagner Mackenzie, Brett; Waite, David W; Taylor, Michael W

    2015-01-01

    The human gut contains dense and diverse microbial communities which have profound influences on human health. Gaining meaningful insights into these communities requires provision of high quality microbial nucleic acids from human fecal samples, as well as an understanding of the sources of variation and their impacts on the experimental model. We present here a systematic analysis of commonly used microbial DNA extraction methods, and identify significant sources of variation. Five extraction methods (Human Microbiome Project protocol, MoBio PowerSoil DNA Isolation Kit, QIAamp DNA Stool Mini Kit, ZR Fecal DNA MiniPrep, phenol:chloroform-based DNA isolation) were evaluated based on the following criteria: DNA yield, quality and integrity, and microbial community structure based on Illumina amplicon sequencing of the V4 region of bacterial and archaeal 16S rRNA genes. Our results indicate that the largest portion of variation within the model was attributed to differences between subjects (biological variation), with a smaller proportion of variation associated with DNA extraction method (technical variation) and intra-subject variation. A comprehensive understanding of the potential impact of technical variation on the human gut microbiota will help limit preventable bias, enabling more accurate diversity estimates.

  13. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences

    Directory of Open Access Journals (Sweden)

    Brett eWagner Mackenzie

    2015-02-01

    Full Text Available The human gut contains dense and diverse microbial communities which have profound influences on human health. Gaining meaningful insights into these communities requires provision of high quality microbial nucleic acids from human fecal samples, as well as an understanding of the sources of variation and their impacts on the experimental model. We present here a systematic analysis of commonly used microbial DNA extraction methods, and identify significant sources of variation. Five extraction methods (Human Microbiome Project protocol, MoBio PowerSoil DNA Isolation Kit, QIAamp DNA Stool Mini Kit, ZR Fecal DNA MiniPrep, phenol:chloroform-based DNA isolation were evaluated based on the following criteria: DNA yield, quality and integrity, and microbial community structure based on Illumina amplicon sequencing of the V4 region of bacterial and archaeal 16S rRNA genes. Our results indicate that the largest portion of variation within the model was attributed to differences between subjects (biological variation, with a smaller proportion of variation associated with DNA extraction method (technical variation and intra-subject variation. A comprehensive understanding of the potential impact of technical variation on the human gut microbiota will help limit preventable bias, enabling more accurate diversity estimates.

  14. Efficacy of variational iteration method for chaotic Genesio system - Classical and multistage approach

    International Nuclear Information System (INIS)

    Goh, S.M.; Noorani, M.S.M.; Hashim, I.

    2009-01-01

    This is a case study of solving the Genesio system by using the classical variational iteration method (VIM) and a newly modified version called the multistage VIM (MVIM). VIM is an analytical technique that grants us a continuous representation of the approximate solution, which allows better information of the solution over the time interval. Unlike its counterpart, numerical techniques, such as the Runge-Kutta method, provide solutions only at two ends of the time interval (with condition that the selected time interval is adequately small for convergence). Furthermore, it offers approximate solutions in a discretized form, making it complicated in achieving a continuous representation. The explicit solutions through VIM and MVIM are compared with the numerical analysis of the fourth-order Runge-Kutta method (RK4). VIM had been successfully applied to linear and nonlinear systems of non-chaotic in nature and this had been testified by numerous scientists lately. Our intention is to determine whether VIM is also a feasible method in solving a chaotic system like Genesio. At the same time, MVIM will be applied to gauge its accuracy compared to VIM and RK4. Since, for most situations, the validity domain of the solutions is often an issue, we will consider a reasonably large time frame in our work.

  15. Variational Level Set Method for Two-Stage Image Segmentation Based on Morphological Gradients

    Directory of Open Access Journals (Sweden)

    Zemin Ren

    2014-01-01

    Full Text Available We use variational level set method and transition region extraction techniques to achieve image segmentation task. The proposed scheme is done by two steps. We first develop a novel algorithm to extract transition region based on the morphological gradient. After this, we integrate the transition region into a variational level set framework and develop a novel geometric active contour model, which include an external energy based on transition region and fractional order edge indicator function. The external energy is used to drive the zero level set toward the desired image features, such as object boundaries. Due to this external energy, the proposed model allows for more flexible initialization. The fractional order edge indicator function is incorporated into the length regularization term to diminish the influence of noise. Moreover, internal energy is added into the proposed model to penalize the deviation of the level set function from a signed distance function. The results evolution of the level set function is the gradient flow that minimizes the overall energy functional. The proposed model has been applied to both synthetic and real images with promising results.

  16. ''Use of perturbative methods to break down the variation of reactivity between two systems''

    International Nuclear Information System (INIS)

    Perruchot-Triboulet, S.; Sanchez, R.

    1997-01-01

    The modification of the isotopic composition, the temperature or even accounting for across section uncertainties in one part of a nuclear reactor core, affects the value of the effective multiplication factor. A new tool allows the analysis of the reactivity effect generated by the modification of the system. With the help of the direct and adjoint fluxes, a detailed balance of reactivity, between the compared systems, is done for each isotopic cross section. After the presentation of the direct and adjoint transport equations in the context of the multigroup code transport APOLLO2, this note describes the method, based on perturbation theory, for the analysis of the reactivity variation. An example application is also given. (author)

  17. Approximate method in estimation sensitivity responses to variations in delayed neutron energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Shin, H. S.; Song, T. Y.; Park, W. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Previous our numerical results in computing point kinetics equations show a possibility in developing approximations to estimate sensitivity responses of nuclear reactor. We recalculate sensitivity responses by maintaining the corrections with first order of sensitivity parameter. We present a method for computing sensitivity responses of nuclear reactor based on an approximation derived from point kinetics equations. Exploiting this approximation, we found that the first order approximation works to estimate variations in the time to reach peak power because of their linear dependence on a sensitivity parameter, and that there are errors in estimating the peak power in the first order approximation for larger sensitivity parameters. To confirm legitimacy of out approximation, these approximate results are compared with exact results obtained from out previous numerical study. 4 refs., 2 figs., 3 tabs. (Author)

  18. Approximate method in estimation sensitivity responses to variations in delayed neutron energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J; Shin, H S; Song, T Y; Park, W S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Previous our numerical results in computing point kinetics equations show a possibility in developing approximations to estimate sensitivity responses of nuclear reactor. We recalculate sensitivity responses by maintaining the corrections with first order of sensitivity parameter. We present a method for computing sensitivity responses of nuclear reactor based on an approximation derived from point kinetics equations. Exploiting this approximation, we found that the first order approximation works to estimate variations in the time to reach peak power because of their linear dependence on a sensitivity parameter, and that there are errors in estimating the peak power in the first order approximation for larger sensitivity parameters. To confirm legitimacy of out approximation, these approximate results are compared with exact results obtained from out previous numerical study. 4 refs., 2 figs., 3 tabs. (Author)

  19. Structural variation study of cobalt nanoparticles synthesized by co-precipitation method using 59Co NMR

    Science.gov (United States)

    Manjunatha, M.; Kumar, Rajeev; B. M., Siddesh; Sahoo, Balaram; Damle, R.; Ramesh, K. P.

    2018-04-01

    We have synthesized cobalt nanoparticles using co-precipitation method. Further, the two phases of the cobalt is monitored by varying the synthesis parameters. 59Co NMR and XRD are used as characterization tools to study the phase variation in the cobalt samples. XRD and NMR results show a remarkable correlation in the two samples (Co-1 and Co-2). Co-2 has predominant fcc and hcp phases, whereas, Co-1 has fcc phase with lower amount of hcp. Both the samples show same saturation magnetization (Ms) but there is a remarkable difference in the phase composition. Thus, 59Co NMR appears to be a good tool to identify the phase purity of the ferromagnetic cobalt samples.

  20. Application of Stochastic variational method with correlated Ground States to coulombic systems

    Energy Technology Data Exchange (ETDEWEB)

    Usukura, Junko; Suzuki, Yasuyuki [Niigata Univ. (Japan); Varga, K.

    1998-07-01

    Positronium molecule, Ps{sub 2} has not been found experimentally yet, and it has been believed theoretically that Ps{sub 2} has only one bound state with L = 0. We predicted the existence of new bound state of Ps{sub 2}, which is the excited state with L = 1 and comes from Pauli principle, by Stochastic variational method. There are two decay mode with respect to Ps{sub 2}(P); one is pair annihilation and another is electric dipole (E1) transition to the ground state. While it is difficult to tell {gamma}-ray caused by annihilation of Ps{sub 2} from that of Ps since both of them have same energy, Energy (4.94 eV) of the photon emitted in E1 transition is specific enough to distinguish from other spectra. Then the excited state is one of clues to observe Ps{sub 2}. (author)

  1. Application of the cluster variation method to ordering in an interstitital solid solution

    DEFF Research Database (Denmark)

    Pekelharing, Marjon I.; Böttger, Amarante; Somers, Marcel A. J.

    1999-01-01

    The tetrahedron approximation of the cluster variation method (CVM) was applied to describe the ordering on the fcc interstitial sublattice of gamma-Fe[N] and gamma'-Fe4N1-x. A Lennard-Jones potential was used to describe the dominantly strain-induced interactions, caused by misfitting of the N...... atoms in the interstitial octahedral sites. The gamma-Fe[N]/gamma'-Fe4N1-x miscibility gap, short range ordering (SRO), and long-range ordering (LRO) of nitrogen in gamma-Fe[N] and gamma'-Fe4N1-x, respectively, and lattice parameters of gamma and gamm' were calculated. For the first time, N distribution...... parameters,as calculated by CVM, were compared directly to Mössbauer data for specific surroundings of Fe atoms....

  2. Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method

    International Nuclear Information System (INIS)

    Guerrero-Contreras, Jesus; Caballero-Briones, F.

    2015-01-01

    Graphene oxide (GO) powders with different oxidation degree estimated through the relative intensity of the infrared absorption bands related to oxygen containing groups were prepared through variations of the Hummers method. The GO powders were analyzed by Transmission Electron Microscopy, Energy dispersive spectroscopy, X-ray Photoelectron Spectroscopy, Fourier Transform Infrared Spectroscopy, Raman spectroscopy, X-ray Diffraction, UV–VIS spectroscopy and Electrical Resistance measurements. Several square micron GO sheets with low wrinkling were obtained. Oxygen to carbon ratio is around 0.2 in all the samples although a strong variance in the relative intensity of the oxygen related infrared bands is evident. Thus, the oxidation degree was estimated from the FTIR measurements using the quotient between the C–O related bands area to the total area under the spectra. FTIR shows presence of hydroxyl (–OH), epoxy (C–O–C), carboxyl (–COOH) and carbonyl (C=O) moieties and evidence of intermolecular interactions between adjacent groups. These interactions influence the exfoliation degree, the absorbance of the GO suspensions, as well as the electrical resistance, while the crystalline domain sizes, estimated from XRD and Raman do not show a noticeable behavior related with the composition and molecular structure. The results indicate that the electrical resistance is influenced mainly by the surface chemistry of the GO powders and not only by the O/C ratio. The control of the surface chemistry of GO powders would allow their use as additives in organic bulk heterojunction solar cells with enhanced photoconversion efficiency. - Highlights: • Powders of graphene oxide with different oxidation degree were prepared through variations of the Hummers method. • Raman spectroscopy and XRD demonstrated similar crystallite domain size in the samples. • Electrical resistance, exfoliation degree and optical absorption depend on the molecular structure.

  3. Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Contreras, Jesus; Caballero-Briones, F., E-mail: fcaballero@ipn.mx

    2015-03-01

    Graphene oxide (GO) powders with different oxidation degree estimated through the relative intensity of the infrared absorption bands related to oxygen containing groups were prepared through variations of the Hummers method. The GO powders were analyzed by Transmission Electron Microscopy, Energy dispersive spectroscopy, X-ray Photoelectron Spectroscopy, Fourier Transform Infrared Spectroscopy, Raman spectroscopy, X-ray Diffraction, UV–VIS spectroscopy and Electrical Resistance measurements. Several square micron GO sheets with low wrinkling were obtained. Oxygen to carbon ratio is around 0.2 in all the samples although a strong variance in the relative intensity of the oxygen related infrared bands is evident. Thus, the oxidation degree was estimated from the FTIR measurements using the quotient between the C–O related bands area to the total area under the spectra. FTIR shows presence of hydroxyl (–OH), epoxy (C–O–C), carboxyl (–COOH) and carbonyl (C=O) moieties and evidence of intermolecular interactions between adjacent groups. These interactions influence the exfoliation degree, the absorbance of the GO suspensions, as well as the electrical resistance, while the crystalline domain sizes, estimated from XRD and Raman do not show a noticeable behavior related with the composition and molecular structure. The results indicate that the electrical resistance is influenced mainly by the surface chemistry of the GO powders and not only by the O/C ratio. The control of the surface chemistry of GO powders would allow their use as additives in organic bulk heterojunction solar cells with enhanced photoconversion efficiency. - Highlights: • Powders of graphene oxide with different oxidation degree were prepared through variations of the Hummers method. • Raman spectroscopy and XRD demonstrated similar crystallite domain size in the samples. • Electrical resistance, exfoliation degree and optical absorption depend on the molecular structure.

  4. Tailoring the Variational Implicit Solvent Method for New Challenges: Biomolecular Recognition and Assembly

    Directory of Open Access Journals (Sweden)

    Clarisse Gravina Ricci

    2018-02-01

    Full Text Available Predicting solvation free energies and describing the complex water behavior that plays an important role in essentially all biological processes is a major challenge from the computational standpoint. While an atomistic, explicit description of the solvent can turn out to be too expensive in large biomolecular systems, most implicit solvent methods fail to capture “dewetting” effects and heterogeneous hydration by relying on a pre-established (i.e., guessed solvation interface. Here we focus on the Variational Implicit Solvent Method, an implicit solvent method that adds water “plasticity” back to the picture by formulating the solvation free energy as a functional of all possible solvation interfaces. We survey VISM's applications to the problem of molecular recognition and report some of the most recent efforts to tailor VISM for more challenging scenarios, with the ultimate goal of including thermal fluctuations into the framework. The advances reported herein pave the way to make VISM a uniquely successful approach to characterize complex solvation properties in the recognition and binding of large-scale biomolecular complexes.

  5. Tailoring the Variational Implicit Solvent Method for New Challenges: Biomolecular Recognition and Assembly

    Science.gov (United States)

    Ricci, Clarisse Gravina; Li, Bo; Cheng, Li-Tien; Dzubiella, Joachim; McCammon, J. Andrew

    2018-01-01

    Predicting solvation free energies and describing the complex water behavior that plays an important role in essentially all biological processes is a major challenge from the computational standpoint. While an atomistic, explicit description of the solvent can turn out to be too expensive in large biomolecular systems, most implicit solvent methods fail to capture “dewetting” effects and heterogeneous hydration by relying on a pre-established (i.e., guessed) solvation interface. Here we focus on the Variational Implicit Solvent Method, an implicit solvent method that adds water “plasticity” back to the picture by formulating the solvation free energy as a functional of all possible solvation interfaces. We survey VISM's applications to the problem of molecular recognition and report some of the most recent efforts to tailor VISM for more challenging scenarios, with the ultimate goal of including thermal fluctuations into the framework. The advances reported herein pave the way to make VISM a uniquely successful approach to characterize complex solvation properties in the recognition and binding of large-scale biomolecular complexes. PMID:29484300

  6. An exact variational method to calculate rovibrational spectra of polyatomic molecules with large amplitude motion

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hua-Gen, E-mail: hgy@bnl.gov [Division of Chemistry, Department of Energy and Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2016-08-28

    We report a new full-dimensional variational algorithm to calculate rovibrational spectra of polyatomic molecules using an exact quantum mechanical Hamiltonian. The rovibrational Hamiltonian of system is derived in a set of orthogonal polyspherical coordinates in the body-fixed frame. It is expressed in an explicitly Hermitian form. The Hamiltonian has a universal formulation regardless of the choice of orthogonal polyspherical coordinates and the number of atoms in molecule, which is suitable for developing a general program to study the spectra of many polyatomic systems. An efficient coupled-state approach is also proposed to solve the eigenvalue problem of the Hamiltonian using a multi-layer Lanczos iterative diagonalization approach via a set of direct product basis set in three coordinate groups: radial coordinates, angular variables, and overall rotational angles. A simple set of symmetric top rotational functions is used for the overall rotation whereas a potential-optimized discrete variable representation method is employed in radial coordinates. A set of contracted vibrationally diabatic basis functions is adopted in internal angular variables. Those diabatic functions are first computed using a neural network iterative diagonalization method based on a reduced-dimension Hamiltonian but only once. The final rovibrational energies are computed using a modified Lanczos method for a given total angular momentum J, which is usually fast. Two numerical applications to CH{sub 4} and H{sub 2}CO are given, together with a comparison with previous results.

  7. A relative variation-based method to unraveling gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Yali Wang

    Full Text Available Gene regulatory network (GRN reconstruction is essential in understanding the functioning and pathology of a biological system. Extensive models and algorithms have been developed to unravel a GRN. The DREAM project aims to clarify both advantages and disadvantages of these methods from an application viewpoint. An interesting yet surprising observation is that compared with complicated methods like those based on nonlinear differential equations, etc., methods based on a simple statistics, such as the so-called Z-score, usually perform better. A fundamental problem with the Z-score, however, is that direct and indirect regulations can not be easily distinguished. To overcome this drawback, a relative expression level variation (RELV based GRN inference algorithm is suggested in this paper, which consists of three major steps. Firstly, on the basis of wild type and single gene knockout/knockdown experimental data, the magnitude of RELV of a gene is estimated. Secondly, probability for the existence of a direct regulation from a perturbed gene to a measured gene is estimated, which is further utilized to estimate whether a gene can be regulated by other genes. Finally, the normalized RELVs are modified to make genes with an estimated zero in-degree have smaller RELVs in magnitude than the other genes, which is used afterwards in queuing possibilities of the existence of direct regulations among genes and therefore leads to an estimate on the GRN topology. This method can in principle avoid the so-called cascade errors under certain situations. Computational results with the Size 100 sub-challenges of DREAM3 and DREAM4 show that, compared with the Z-score based method, prediction performances can be substantially improved, especially the AUPR specification. Moreover, it can even outperform the best team of both DREAM3 and DREAM4. Furthermore, the high precision of the obtained most reliable predictions shows that the suggested algorithm may be

  8. Stiffeners in variational-difference method for calculating shells with complex geometry

    Directory of Open Access Journals (Sweden)

    Ivanov Vyacheslav Nikolaevich

    2014-05-01

    Full Text Available We have already considered an introduction of reinforcements in the variational-difference method (VDM of shells analysis with complex shape. At the moment only ribbed shells of revolution and shallow shells can be calculated with the help of developed analytical and finite-difference methods. Ribbed shells of arbitrary shape can be calculated only using the finite element method (FEM. However there are problems, when using FEM, which are absent in finite- and variational-difference methods: rigid body motion; conforming trial functions; parameterization of a surface; independent stress strain state. In this regard stiffeners are entered in VDM. VDM is based on the Lagrange principle - the principle of minimum total potential energy. Stress-strain state of ribs is described by the Kirchhoff-Clebsch theory of curvilinear bars: tension, bending and torsion of ribs are taken into account. Stress-strain state of shells is described by the Kirchhoff-Love theory of thin elastic shells. A position of points of the middle surface is defined by curvilinear orthogonal coordinates α, β. Curved ribs are situated along coordinate lines. Strain energy of ribs is added into the strain energy to account for ribs. A matrix form of strain energy of ribs is formed similar to a matrix form of the strain energy of the shell. A matrix of geometrical characteristics of a rib is formed from components of matrices of geometric characteristics of a shell. A matrix of mechanical characteristics of a rib contains rib’s eccentricity and geometrical characteristics of a rib’s section. Derivatives of displacements in the strain vector are replaced with finite-difference relations after the middle surface of a shell gets covered with a grid (grid lines coincide with the coordinate lines of principal curvatures. By this case the total potential energy functional becomes a function of strain nodal displacements. Partial derivatives of unknown nodal displacements are

  9. METHOD OF SOFTWARE-BASED COMPENSATION OF TECHNOLOGICAL VARIATION IN CHROMATICITY COORDINATES OF LCD PANELS

    Directory of Open Access Journals (Sweden)

    I. O. Zharinov

    2015-05-01

    Full Text Available Subject of research. The problem of software-based compensation of technological variation in chromaticity coordinates of liquid crystal panels is considered. A method of software-based compensation of technological variation in chromaticity coordinates is proposed. The method provides the color reproduction characteristics of the series-produced samples on-board indication equipment corresponding to the sample equipment, which is taken as the standard. Method. Mathematical calculation of the profile is performed for the given model of the liquid crystal panel. The coefficients that correspond to the typical values of the chromaticity coordinates for the vertices of the triangle color coverage constitute a reference mathematical model of the plate LCD panel from a specific manufacturer. At the stage of incoming inspection the sample of the liquid crystal panel, that is to be implemented within indication equipment, is mounted on the lighting test unit, where Nokia-Test control is provided by the formation of the RGB codes for display the image of a homogeneous field in the red, green, blue and white. The measurement of the (x,y-chromaticity coordinates in red, green, blue and white colors is performed using a colorimeter with the known value of absolute error. Instead of using lighting equipment, such measurements may be carried out immediately on the sample indication equipment during customizing procedure. The measured values are used to calculate individual LCD-panel profile coefficients through the use of Grassman's transformation, establishing mutual relations between the XYZ-color coordinates and RGB codes to be used for displaying the image on the liquid crystal panel. The obtained coefficients are to be set into the memory of the graphics controller together with the functional software and then used for image displaying. Main results. The efficiency of the proposed method of software-based compensation for technological variation of

  10. Application of Method of Variation to Analyze and Predict Human Induced Modifications of Water Resource Systems

    Science.gov (United States)

    Dessu, S. B.; Melesse, A. M.; Mahadev, B.; McClain, M.

    2010-12-01

    Water resource systems have often used gravitational surface and subsurface flows because of their practicality in hydrological modeling and prediction. Activities such as inter/intra-basin water transfer, the use of small pumps and the construction of micro-ponds challenge the tradition of natural rivers as water resource management unit. On the contrary, precipitation is barely affected by topography and plot harvesting in wet regions can be more manageable than diverting from rivers. Therefore, it is indicative to attend to systems where precipitation drives the dynamics while the internal mechanics constitutes spectrum of human activity and decision in a network of plots. The trade-in volume and path of harvested precipitation depends on water balance, energy balance and the kinematics of supply and demand. Method of variation can be used to understand and predict the implication of local excess precipitation harvest and exchange on the natural water system. A system model was developed using the variational form of Euler-Bernoulli’s equation for the Kenyan Mara River basin. Satellite derived digital elevation models, precipitation estimates, and surface properties such as fractional impervious surface area, are used to estimate the available water resource. Four management conditions are imposed in the model: gravitational flow, open water extraction and high water use investment at upstream and downstream respectively. According to the model, the first management maintains the basin status quo while the open source management could induce externality. The high water market at the upstream in the third management offers more than 50% of the basin-wide total revenue to the upper third section of the basin thus may promote more harvesting. The open source and upstream exploitation suggest potential drop of water availability to downstream. The model exposed the latent potential of economic gradient to reconfigure the flow network along the direction where the

  11. Minimum current principle and variational method in theory of space charge limited flow

    Energy Technology Data Exchange (ETDEWEB)

    Rokhlenko, A. [Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854-8019 (United States)

    2015-10-21

    In spirit of the principle of least action, which means that when a perturbation is applied to a physical system, its reaction is such that it modifies its state to “agree” with the perturbation by “minimal” change of its initial state. In particular, the electron field emission should produce the minimum current consistent with boundary conditions. It can be found theoretically by solving corresponding equations using different techniques. We apply here the variational method for the current calculation, which can be quite effective even when involving a short set of trial functions. The approach to a better result can be monitored by the total current that should decrease when we on the right track. Here, we present only an illustration for simple geometries of devices with the electron flow. The development of these methods can be useful when the emitter and/or anode shapes make difficult the use of standard approaches. Though direct numerical calculations including particle-in-cell technique are very effective, but theoretical calculations can provide an important insight for understanding general features of flow formation and even sometimes be realized by simpler routines.

  12. Solving variational problems and partial differential equations that map between manifolds via the closest point method

    Science.gov (United States)

    King, Nathan D.; Ruuth, Steven J.

    2017-05-01

    Maps from a source manifold M to a target manifold N appear in liquid crystals, color image enhancement, texture mapping, brain mapping, and many other areas. A numerical framework to solve variational problems and partial differential equations (PDEs) that map between manifolds is introduced within this paper. Our approach, the closest point method for manifold mapping, reduces the problem of solving a constrained PDE between manifolds M and N to the simpler problems of solving a PDE on M and projecting to the closest points on N. In our approach, an embedding PDE is formulated in the embedding space using closest point representations of M and N. This enables the use of standard Cartesian numerics for general manifolds that are open or closed, with or without orientation, and of any codimension. An algorithm is presented for the important example of harmonic maps and generalized to a broader class of PDEs, which includes p-harmonic maps. Improved efficiency and robustness are observed in convergence studies relative to the level set embedding methods. Harmonic and p-harmonic maps are computed for a variety of numerical examples. In these examples, we denoise texture maps, diffuse random maps between general manifolds, and enhance color images.

  13. An interior-point method for total variation regularized positron emission tomography image reconstruction

    Science.gov (United States)

    Bai, Bing

    2012-03-01

    There has been a lot of work on total variation (TV) regularized tomographic image reconstruction recently. Many of them use gradient-based optimization algorithms with a differentiable approximation of the TV functional. In this paper we apply TV regularization in Positron Emission Tomography (PET) image reconstruction. We reconstruct the PET image in a Bayesian framework, using Poisson noise model and TV prior functional. The original optimization problem is transformed to an equivalent problem with inequality constraints by adding auxiliary variables. Then we use an interior point method with logarithmic barrier functions to solve the constrained optimization problem. In this method, a series of points approaching the solution from inside the feasible region are found by solving a sequence of subproblems characterized by an increasing positive parameter. We use preconditioned conjugate gradient (PCG) algorithm to solve the subproblems directly. The nonnegativity constraint is enforced by bend line search. The exact expression of the TV functional is used in our calculations. Simulation results show that the algorithm converges fast and the convergence is insensitive to the values of the regularization and reconstruction parameters.

  14. Assessing the stability of free-energy perturbation calculations by performing variations in the method

    Science.gov (United States)

    Manzoni, Francesco; Ryde, Ulf

    2018-03-01

    We have calculated relative binding affinities for eight tetrafluorophenyl-triazole-thiogalactoside inhibitors of galectin-3 with the alchemical free-energy perturbation approach. We obtain a mean absolute deviation from experimental estimates of only 2-3 kJ/mol and a correlation coefficient (R 2) of 0.5-0.8 for seven relative affinities spanning a range of up to 11 kJ/mol. We also studied the effect of using different methods to calculate the charges of the inhibitor and different sizes of the perturbed group (the atoms that are described by soft-core potentials and are allowed to have differing coordinates). However, the various approaches gave rather similar results and it is not possible to point out one approach as consistently and significantly better than the others. Instead, we suggest that such small and reasonable variations in the computational method can be used to check how stable the calculated results are and to obtain a more accurate estimate of the uncertainty than if performing only one calculation with a single computational setup.

  15. Prevalence of antibiotic residues in commercial milk and its variation by season and thermal processing methods

    Directory of Open Access Journals (Sweden)

    Fathollah Aalipour

    2013-01-01

    Full Text Available Aims: In this study, the prevalence of antibiotic residues in pasteurized and sterilized commercial milk available in Shahre-kourd, Iran, was investigated. In addition, the influence of seasonal temperature changes on the prevalence of contamination was studied. Materials and Methods: Commercial milk samples of 187, including 154 pasteurized and 33 sterilized, milk samples were collected from the market between early January 2012 and late July of the same year. The presence of antibiotic residues was detected using the microbiological detection test kit, Eclipse 100, as a semi-quantitative method. Results: The results showed that 37 of the samples (19.8% have contained antibiotic residues above the European Union Maximum Residues Limits (EU-MRLs, of which 28 samples (14.97% were found to be contaminated but at the concentrations below the EU-MRLs. There was no significant difference between the contamination rate of pasteurized and Ultra High Temperature (UHT-sterilized samples. Similarly, variation of weather temperature with seasons had no effect on the contamination prevalence of milk samples ( P > 0.05. Conclusion: Based on the result of this study, antibiotics residues were present in the majority of milk samples. Neither the season nor the type of thermal processing of the commercial milks had noticeable impact on the prevalence level of the milk samples. However, an increasing trend of prevalence level for antibiotic residues was observed with increasing the temperature through the warm season.

  16. A preliminary discussion of angiographic anatomy and variations of rabbit hepatic vessels and catheterization methods of hepatic artery

    International Nuclear Information System (INIS)

    Wang Diaodong; Yang Renjie; Zhang Hongzhi; Sun Hongliang

    2006-01-01

    Objective: To study the normal angiographic anatomy and variations of rabbit hepatic vessels, and explore the optimal method for hepatic artery catheterization. Methods: 30 rabbits were divided into two groups randomly. Modified surgical method and interventional method were used to catheterize hepatic artery respectively, and followed by angiography to demonstrate the normal anatomy and variations of rabbit celiac artery, hepatic artery and portal vein. Results: The route and distribution of rabbit celiac artery and hepatic artery were very different from human's. The commonly seen variation showed the differences in branching bifurcation of hepatic-gastric artery, with the incidence of 13.3%. The rates of successfully hepatic artery catheterization with surgical and interventional methods were 86.6%(13/15) and 80%(12/15) respectively (P>0.05). The surgical method will not be successful, whenever there's variation. Conclusion: The normal anatomy and variation of rabbit celiac artery and hepatic artery are quite different from human's. Both surgical and interventional catheterizations could be rather successful but possessing advantages and disadvantages of each its own. (authors)

  17. Effect of culture methods on individual variation in the growth of sea cucumber Apostichopus japonicus within a cohort and family

    Science.gov (United States)

    Qiu, Tianlong; Zhang, Libin; Zhang, Tao; Bai, Yucen; Yang, Hongsheng

    2014-07-01

    There is substantial individual variation in the growth rates of sea cucumber Apostichopus japonicus individuals. This necessitates additional work to grade the seed stock and lengthens the production period. We evaluated the influence of three culture methods (free-mixed, isolated-mixed, isolated-alone) on individual variation in growth and assessed the relationship between feeding, energy conversion efficiency, and individual growth variation in individually cultured sea cucumbers. Of the different culture methods, animals grew best when reared in the isolated-mixed treatment (i.e., size classes were held separately), though there was no difference in individual variation in growth between rearing treatment groups. The individual variation in growth was primarily attributed to genetic factors. The difference in food conversion efficiency caused by genetic differences among individuals was thought to be the origin of the variance. The level of individual growth variation may be altered by interactions among individuals and environmental heterogeneity. Our results suggest that, in addition to traditional seed grading, design of a new kind of substrate that changes the spatial distribution of sea cucumbers would effectively enhance growth and reduce individual variation in growth of sea cucumbers in culture.

  18. A Bayesian method and its variational approximation for prediction of genomic breeding values in multiple traits

    Directory of Open Access Journals (Sweden)

    Hayashi Takeshi

    2013-01-01

    Full Text Available Abstract Background Genomic selection is an effective tool for animal and plant breeding, allowing effective individual selection without phenotypic records through the prediction of genomic breeding value (GBV. To date, genomic selection has focused on a single trait. However, actual breeding often targets multiple correlated traits, and, therefore, joint analysis taking into consideration the correlation between traits, which might result in more accurate GBV prediction than analyzing each trait separately, is suitable for multi-trait genomic selection. This would require an extension of the prediction model for single-trait GBV to multi-trait case. As the computational burden of multi-trait analysis is even higher than that of single-trait analysis, an effective computational method for constructing a multi-trait prediction model is also needed. Results We described a Bayesian regression model incorporating variable selection for jointly predicting GBVs of multiple traits and devised both an MCMC iteration and variational approximation for Bayesian estimation of parameters in this multi-trait model. The proposed Bayesian procedures with MCMC iteration and variational approximation were referred to as MCBayes and varBayes, respectively. Using simulated datasets of SNP genotypes and phenotypes for three traits with high and low heritabilities, we compared the accuracy in predicting GBVs between multi-trait and single-trait analyses as well as between MCBayes and varBayes. The results showed that, compared to single-trait analysis, multi-trait analysis enabled much more accurate GBV prediction for low-heritability traits correlated with high-heritability traits, by utilizing the correlation structure between traits, while the prediction accuracy for uncorrelated low-heritability traits was comparable or less with multi-trait analysis in comparison with single-trait analysis depending on the setting for prior probability that a SNP has zero

  19. Variation in Results of Volume Measurements of Stumps of Lower-Limb Amputees : A Comparison of 4 Methods

    NARCIS (Netherlands)

    de Boer-Wilzing, Vera G.; Bolt, Arjen; Geertzen, Jan H.; Emmelot, Cornelis H.; Baars, Erwin C.; Dijkstra, Pieter U.

    de Boer-Wilzing VG, Bolt A, Geertzen JH, Emmelot CH, Baars EC, Dijkstra PU. Variation in results of volume measurements of stumps of lower-limb amputees: a comparison of 4 methods. Arch Phys Med Rehabil 2011;92:941-6. Objective: To analyze the reliability of 4 methods (water immersion,

  20. Application of the Variational Iteration Method to the Initial Value Problems of Q-difference Equations-Some Examples

    Directory of Open Access Journals (Sweden)

    Yu Xiang Zeng

    2013-12-01

    Full Text Available The q-difference equations are a class of important models both in q-calculus and applied sciences. The variational iteration method is extended to approximately solve the initial value problems of q-difference equations. A q-analogue of the Lagrange multiplier is presented and three examples are illustrated to show the method's efficiency.

  1. [Assessment of ecosystem in giant panda distribution area based on entropy method and coefficient of variation].

    Science.gov (United States)

    Yan, Zhi Gang; Li, Jun Qing

    2017-12-01

    The areas of the habitat and bamboo forest, and the size of the giant panda wild population have greatly increased, while habitat fragmentation and local population isolation have also intensified in recent years. Accurate evaluation of ecosystem status of the panda in the giant panda distribution area is important for giant panda conservation. The ecosystems of the distribution area and six mountain ranges were subdivided into habitat and population subsystems based on the hie-rarchical system theory. Using the panda distribution area as the study area and the three national surveys as the time node, the evolution laws of ecosystems were studied using the entropy method, coefficient of variation, and correlation analysis. We found that with continuous improvement, some differences existed in the evolution and present situation of the ecosystems of six mountain ranges could be divided into three groups. Ecosystems classified into the same group showed many commonalities, and difference between the groups was considerable. Problems of habitat fragmentation and local population isolation became more serious, resulting in ecosystem degradation. Individuali-zed ecological protection measures should be formulated and implemented in accordance with the conditions in each mountain system to achieve the best results.

  2. Centrally Determined Standardization of Flow Cytometry Methods Reduces Interlaboratory Variation in a Prospective Multicenter Study.

    Science.gov (United States)

    Westera, Liset; van Viegen, Tanja; Jeyarajah, Jenny; Azad, Azar; Bilsborough, Janine; van den Brink, Gijs R; Cremer, Jonathan; Danese, Silvio; D'Haens, Geert; Eckmann, Lars; Faubion, William; Filice, Melissa; Korf, Hannelie; McGovern, Dermot; Panes, Julian; Salas, Azucena; Sandborn, William J; Silverberg, Mark S; Smith, Michelle I; Vermeire, Severine; Vetrano, Stefania; Shackelton, Lisa M; Stitt, Larry; Jairath, Vipul; Levesque, Barrett G; Spencer, David M; Feagan, Brian G; Vande Casteele, Niels

    2017-11-02

    Flow cytometry (FC) aids in characterization of cellular and molecular factors involved in pathologic immune responses. Although FC has potential to facilitate early drug development in inflammatory bowel disease, interlaboratory variability limits its use in multicenter trials. Standardization of methods may address this limitation. We compared variability in FC-aided quantitation of T-cell responses across international laboratories using three analytical strategies. Peripheral blood mononuclear cells (PBMCs) were isolated from three healthy donors, stimulated with phorbol 12-myristate 13-acetate and ionomycin at a central laboratory, fixed, frozen, and shipped to seven international laboratories. Permeabilization and staining was performed in triplicate at each laboratory using a common protocol and centrally provided reagents. Gating was performed using local gating with a local strategy (LGLS), local gating with a central strategy (LGCS), and central gating (CG). Median cell percentages were calculated across triplicates and donors, and reported for each condition and strategy. The coefficient of variation (CV) was calculated across laboratories. Between-strategy comparisons were made using a two-way analysis of variance adjusting for donor. Mean interlaboratory CV ranged from 1.8 to 102.1% depending on cell population and gating strategy (LGLS, 4.4-102.1%; LGCS, 10.9-65.6%; CG, 1.8-20.9%). Mean interlaboratory CV differed significantly across strategies and was consistently lower with CG. Central gating was the only strategy with mean CVs consistently lower than 25%, which is a proposed standard for pharmacodynamic and exploratory biomarker assays.

  3. Inverse Problem and Variation Method to Optimize Cascade Heat Exchange Network in Central Heating System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yin; WEI Zhiyuan; ZHANG Yinping; WANG Xin

    2017-01-01

    Urban heating in northern China accounts for 40% of total building energy usage.In central heating systems,heat is often transfened from heat source to users by the heat network where several heat exchangers arc installed at heat source,substations and terminals respectively.For given overall heating capacity and heat source temperarure,increasing the terminal fluid temperature is an effective way to improve the thermal performance of such cascade heat exchange network for energy saving.In this paper,the mathematical optimization model of the cascade heat exchange network with three-stage heat exchangers in series is established.Aim at maximizing the cold fluid temperature for given hot fluid temperature and overall heating capacity,the optimal heat exchange area distribution and the medium fluids' flow rates are determined through inverse problem and variation method.The preliminary results show that the heat exchange areas should be distributed equally for each heat exchanger.It also indicates that in order to improve the thernmal performance of the whole system,more heat exchange areas should be allocated to the heat exchanger where flow rate difference between two fluids is relatively small.This work is important for guiding the optimization design of practical cascade heating systems.

  4. Pregnancy and variations of carbohydrate-deficient transferrin levels measured by the candidate reference HPLC method.

    Science.gov (United States)

    Bianchi, Vincenza; Ivaldi, Alessandra; Raspagni, Alessia; Arfini, Carlo; Vidali, Matteo

    2011-01-01

    Contrasting data are available on the diagnostic accuracy of carbohydrate-deficient transferrin (CDT) during pregnancy. These differences may depend in part on how CDT was evaluated and expressed. Here, we report on variations of CDT levels in pregnant women using the high performance liquid chromatography (HPLC) candidate reference method. Alanine aminotransferase, aspartate aminotransferase, gamma-glutamyltransferase, mean corpuscular volume, serum transferrin, urine and serum ethyl glucuronide and CDT were measured in 64 women, self-reporting as non-alcohol abusers (age: median 34, IQR: 28-38), at different stages of normal pregnancy (gestational weeks: median 28, IQR: 8-33). CDT was expressed as percentage of disialotransferrin to total transferrin (%CDT). Transferrin was associated with both %CDT (r = 0.66; P pregnancy trimester (first trimester: mean 1.01% (SD 0.19); second trimester: 1.30% (SD 0.14); third trimester: 1.53% (SD 0.22); ANOVA P pregnancy trimesters (P pregnancy and CDT could be more complex. The diagnostic accuracy of CDT for detecting alcohol abuse in a legal context may be limited in pregnant women and the effect of gestational age should be considered.

  5. Nonlinear evolution-type equations and their exact solutions using inverse variational methods

    International Nuclear Information System (INIS)

    Kara, A H; Khalique, C M

    2005-01-01

    We present the role of invariants in obtaining exact solutions of differential equations. Firstly, conserved vectors of a partial differential equation (p.d.e.) allow us to obtain reduced forms of the p.d.e. for which some of the Lie point symmetries (in vector field form) are easily concluded and, therefore, provide a mechanism for further reduction. Secondly, invariants of reduced forms of a p.d.e. are obtainable from a variational principle even though the p.d.e. itself does not admit a Lagrangian. In this latter case, the reductions carry all the usual advantages regarding Noether symmetries and double reductions. The examples we consider are nonlinear evolution-type equations such as the Korteweg-deVries equation, but a detailed analysis is made on the Fisher equation (which describes reaction-diffusion waves in biology, inter alia). Other diffusion-type equations lend themselves well to the method we describe (e.g., the Fitzhugh Nagumo equation, which is briefly discussed). Some aspects of Painleve properties are also suggested

  6. Variational multiscale enrichment method with mixed boundary conditions for elasto-viscoplastic problems

    Science.gov (United States)

    Zhang, Shuhai; Oskay, Caglar

    2015-04-01

    This manuscript presents the formulation and implementation of the variational multiscale enrichment (VME) method for the analysis of elasto-viscoplastic problems. VME is a global-local approach that allows accurate fine scale representation at small subdomains, where important physical phenomena are likely to occur. The response within far-fields is idealized using a coarse scale representation. The fine scale representation not only approximates the coarse grid residual, but also accounts for the material heterogeneity. A one-parameter family of mixed boundary conditions that range from Dirichlet to Neumann is employed to study the effect of the choice of the boundary conditions at the fine scale on accuracy. The inelastic material behavior is modeled using Perzyna type viscoplasticity coupled with flow stress evolution idealized by the Johnson-Cook model. Numerical verifications are performed to assess the performance of the proposed approach against the direct finite element simulations. The results of verification studies demonstrate that VME with proper boundary conditions accurately model the inelastic response accounting for material heterogeneity.

  7. Study on the Seismic Active Earth Pressure by Variational Limit Equilibrium Method

    Directory of Open Access Journals (Sweden)

    Jiangong Chen

    2016-01-01

    Full Text Available In the framework of limit equilibrium theory, the isoperimetric model of functional extremum regarding the seismic active earth pressure is deduced according to the variational method. On this basis, Lagrange multipliers are introduced to convert the problem of seismic active earth pressure into the problem on the functional extremum of two undetermined function arguments. Based on the necessary conditions required for the existence of functional extremum, the function of the slip surface and the normal stress distribution on the slip surface is obtained, and the functional extremum problem is further converted into a function optimization problem with two undetermined Lagrange multipliers. The calculated results show that the slip surface is a plane and the seismic active earth pressure is minimal when the action point is at the lower limit position. As the action point moves upward, the slip surface becomes a logarithmic spiral and the corresponding value of seismic active earth pressure increases in a nonlinear manner. And the seismic active earth pressure is maximal at the upper limit position. The interval estimation constructed by the minimum and maximum values of seismic active earth pressure can provide a reference for the aseismic design of gravity retaining walls.

  8. New method for remote and repeatable monitoring of intraocular pressure variations.

    Science.gov (United States)

    Margalit, Israel; Beiderman, Yevgeny; Skaat, Alon; Rosenfeld, Elkanah; Belkin, Michael; Tornow, Ralf-Peter; Mico, Vicente; Garcia, Javier; Zalevsky, Zeev

    2014-02-01

    We present initial steps toward a new measurement device enabling high-precision, noncontact remote and repeatable monitoring of intraocular pressure (IOP)-based on an innovative measurement principle. Using only a camera and a laser source, the device measures IOP by tracking the secondary speckle pattern trajectories produced by the reflection of an illuminating laser beam from the iris or the sclera. The device was tested on rabbit eyes using two different methods to modify IOP: via an infusion bag and via mechanical pressure. In both cases, the eyes were stimulated with increasing and decreasing ramps of the IOP. As IOP variations changed the speckle distributions reflected back from the eye, data were recorded under various optical configurations to define and optimize the best experimental configuration for the IOP extraction. The association between the data provided by our proposed device and that resulting from controlled modification of the IOP was assessed, revealing high correlation (R2=0.98) and sensitivity and providing a high-precision measurement (5% estimated error) for the best experimental configuration. Future steps will be directed toward applying the proposed measurement principle in clinical trials for monitoring IOP with human subjects.

  9. Micro-CT image reconstruction based on alternating direction augmented Lagrangian method and total variation.

    Science.gov (United States)

    Gopi, Varun P; Palanisamy, P; Wahid, Khan A; Babyn, Paul; Cooper, David

    2013-01-01

    Micro-computed tomography (micro-CT) plays an important role in pre-clinical imaging. The radiation from micro-CT can result in excess radiation exposure to the specimen under test, hence the reduction of radiation from micro-CT is essential. The proposed research focused on analyzing and testing an alternating direction augmented Lagrangian (ADAL) algorithm to recover images from random projections using total variation (TV) regularization. The use of TV regularization in compressed sensing problems makes the recovered image quality sharper by preserving the edges or boundaries more accurately. In this work TV regularization problem is addressed by ADAL which is a variant of the classic augmented Lagrangian method for structured optimization. The per-iteration computational complexity of the algorithm is two fast Fourier transforms, two matrix vector multiplications and a linear time shrinkage operation. Comparison of experimental results indicate that the proposed algorithm is stable, efficient and competitive with the existing algorithms for solving TV regularization problems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Centrally Determined Standardization of Flow Cytometry Methods Reduces Interlaboratory Variation in a Prospective Multicenter Study

    Science.gov (United States)

    Westera, Liset; van Viegen, Tanja; Jeyarajah, Jenny; Azad, Azar; Bilsborough, Janine; van den Brink, Gijs R; Cremer, Jonathan; Danese, Silvio; D'Haens, Geert; Eckmann, Lars; Faubion, William; Filice, Melissa; Korf, Hannelie; McGovern, Dermot; Panes, Julian; Salas, Azucena; Sandborn, William J; Silverberg, Mark S; Smith, Michelle I; Vermeire, Severine; Vetrano, Stefania; Shackelton, Lisa M; Stitt, Larry; Jairath, Vipul; Levesque, Barrett G; Spencer, David M; Feagan, Brian G; Vande Casteele, Niels

    2017-01-01

    Objectives: Flow cytometry (FC) aids in characterization of cellular and molecular factors involved in pathologic immune responses. Although FC has potential to facilitate early drug development in inflammatory bowel disease, interlaboratory variability limits its use in multicenter trials. Standardization of methods may address this limitation. We compared variability in FC-aided quantitation of T-cell responses across international laboratories using three analytical strategies. Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from three healthy donors, stimulated with phorbol 12-myristate 13-acetate and ionomycin at a central laboratory, fixed, frozen, and shipped to seven international laboratories. Permeabilization and staining was performed in triplicate at each laboratory using a common protocol and centrally provided reagents. Gating was performed using local gating with a local strategy (LGLS), local gating with a central strategy (LGCS), and central gating (CG). Median cell percentages were calculated across triplicates and donors, and reported for each condition and strategy. The coefficient of variation (CV) was calculated across laboratories. Between-strategy comparisons were made using a two-way analysis of variance adjusting for donor. Results: Mean interlaboratory CV ranged from 1.8 to 102.1% depending on cell population and gating strategy (LGLS, 4.4–102.1% LGCS, 10.9–65.6% CG, 1.8–20.9%). Mean interlaboratory CV differed significantly across strategies and was consistently lower with CG. Conclusions: Central gating was the only strategy with mean CVs consistently lower than 25%, which is a proposed standard for pharmacodynamic and exploratory biomarker assays. PMID:29095427

  11. Analytical Investigation of Beam Deformation Equation using Perturbation, Homotopy Perturbation, Variational Iteration and Optimal Homotopy Asymptotic Methods

    DEFF Research Database (Denmark)

    Farrokhzad, F.; Mowlaee, P.; Barari, Amin

    2011-01-01

    The beam deformation equation has very wide applications in structural engineering. As a differential equation, it has its own problem concerning existence, uniqueness and methods of solutions. Often, original forms of governing differential equations used in engineering problems are simplified...... Method (OHAM). The comparisons of the results reveal that these methods are very effective, convenient and quite accurate to systems of non-linear differential equation......., and this process produces noise in the obtained answers. This paper deals with solution of second order of differential equation governing beam deformation using four analytical approximate methods, namely the Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM) and Optimal Homotopy Asymptotic...

  12. Solvent effects in time-dependent self-consistent field methods. II. Variational formulations and analytical gradients

    International Nuclear Information System (INIS)

    Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.

    2015-01-01

    This study describes variational energy expressions and analytical excited state energy gradients for time-dependent self-consistent field methods with polarizable solvent effects. Linear response, vertical excitation, and state-specific solventmodels are examined. Enforcing a variational ground stateenergy expression in the state-specific model is found to reduce it to the vertical excitation model. Variational excited state energy expressions are then provided for the linear response and vertical excitation models and analytical gradients are formulated. Using semiempiricalmodel chemistry, the variational expressions are verified by numerical and analytical differentiation with respect to a static external electric field. Lastly, analytical gradients are further tested by performing microcanonical excited state molecular dynamics with p-nitroaniline

  13. Vitamin D status assessed by a validated HPLC method: within and between variation in subjects supplemented with vitamin D3

    DEFF Research Database (Denmark)

    Jakobsen, Jette; Bysted, Anette; Andersen, Rikke

    2009-01-01

    Objective. The aim of this study was to develop and validate a high-pressure liquid chromatography (HPLC) method for assessing vitamin D status as 25-hydroxyvitamin D2 (S-25OHD2) and 25-hydroxyvitamin D3 (S-25OHD3) in serum. Material and methods. We assessed the within- and between-subject variat......Objective. The aim of this study was to develop and validate a high-pressure liquid chromatography (HPLC) method for assessing vitamin D status as 25-hydroxyvitamin D2 (S-25OHD2) and 25-hydroxyvitamin D3 (S-25OHD3) in serum. Material and methods. We assessed the within- and between......-subject variation of vitamin D status in serum samples from four different dietary intervention studies in which subjects (n=92) were supplemented with different doses of vitamin D3 (5-12 g/day) and for different durations (4-20 months). Results. The HPLC method was applicable for 4.0-200 nmol S-25OHD/L, while...... the within-day and between-days variations were 3.8 % and 5.7 %, respectively. There was a concentration-dependent difference between results obtained by a commercial radioimmunoassay and results from the HPLC method of -5 to 20 nmol 25OHD/L in the range 10-100 nmol 25OHD/L. The between-subject variation...

  14. Solar-cycle Variations of Meridional Flows in the Solar Convection Zone Using Helioseismic Methods

    Science.gov (United States)

    Lin, Chia-Hsien; Chou, Dean-Yi

    2018-06-01

    The solar meridional flow is an axisymmetric flow in solar meridional planes, extending through the convection zone. Here we study its solar-cycle variations in the convection zone using SOHO/MDI helioseismic data from 1996 to 2010, including two solar minima and one maximum. The travel-time difference between northward and southward acoustic waves is related to the meridional flow along the wave path. Applying the ray approximation and the SOLA inversion method to the travel-time difference measured in a previous study, we obtain the meridional flow distributions in 0.67 ≤ r ≤ 0.96R ⊙ at the minimum and maximum. At the minimum, the flow has a three-layer structure: poleward in the upper convection zone, equatorward in the middle convection zone, and poleward again in the lower convection zone. The flow speed is close to zero within the error bar near the base of the convection zone. The flow distribution changes significantly from the minimum to the maximum. The change above 0.9R ⊙ shows two phenomena: first, the poleward flow speed is reduced at the maximum; second, an additional convergent flow centered at the active latitudes is generated at the maximum. These two phenomena are consistent with the surface meridional flow reported in previous studies. The change in flow extends all the way down to the base of the convection zone, and the pattern of the change below 0.9R ⊙ is more complicated. However, it is clear that the active latitudes play a role in the flow change: the changes in flow speed below and above the active latitudes have opposite signs. This suggests that magnetic fields could be responsible for the flow change.

  15. A HIGH ORDER SOLUTION OF THREE DIMENSIONAL TIME DEPENDENT NONLINEAR CONVECTIVE-DIFFUSIVE PROBLEM USING MODIFIED VARIATIONAL ITERATION METHOD

    Directory of Open Access Journals (Sweden)

    Pratibha Joshi

    2014-12-01

    Full Text Available In this paper, we have achieved high order solution of a three dimensional nonlinear diffusive-convective problem using modified variational iteration method. The efficiency of this approach has been shown by solving two examples. All computational work has been performed in MATHEMATICA.

  16. Application of He’s Variational Iteration Method to Nonlinear Helmholtz Equation and Fifth-Order KDV Equation

    DEFF Research Database (Denmark)

    Miansari, Mo; Miansari, Me; Barari, Amin

    2009-01-01

    In this article, He’s variational iteration method (VIM), is implemented to solve the linear Helmholtz partial differential equation and some nonlinear fifth-order Korteweg-de Vries (FKdV) partial differential equations with specified initial conditions. The initial approximations can be freely c...

  17. Calculation of the ground and excited states of the Ne2 molecule by the variational cellular method

    International Nuclear Information System (INIS)

    Dias, A.M.; Rosato, A.

    1981-07-01

    The potential curves for the ground state 1 Σ + sub(g) and for the first singlet excited state 1 Σ + sub (u) of the Ne 2 molecule are determined by the Variational Cellular Method. From these curves some spectroscopical constants are obtained. Ionization energies of the excited state 1 Σ + sub (u) are calculated. (Author) [pt

  18. Calculation of the ground and excited states of the Ne2 molecule by the Variational Cellular Method

    International Nuclear Information System (INIS)

    Dias, A.M.; Rosato, A.

    1982-01-01

    The potential curves for the ground 1 μ + sub(g) and for the first singlet excited state 1 μ + sub(u) of the Ne 2 molecule are determined by the Variational Cellular Method. From these curves some spectroscopical constants are obtained. Ionization energies of the excited state 1 μ + sub(u) are calculated. (Author) [pt

  19. A cost-effective method to characterize variation in clinical practice.

    Science.gov (United States)

    Chang, K; Sauereisen, S; Dlutowski, M; Veloski, J J; Nash, D B

    1999-06-01

    This study's objective was to measure variation in physicians' practice styles and policies. Family physicians and general internists were surveyed about evidence-based medicine in the areas of asthma, congestive heart failure, and diabetes mellitus. They were asked about clinical recommendations where standards of practice were uncertain, controversial, or changing in response to published guidelines. Also included were items dealing with managed care. Although there was wide variation in responses to 20 of 36 items, some responses were consistent with practice guidelines. Responses to several items indicated a tendency to overuse expensive tests. Overall, the results indicate that a brief, open-ended survey can assess practice variation quickly and economically, as contrasted with more expensive analyses of medical records or claims data. With proper validation such assessments can be used as baselines to guide interventions, as well as measures of the outcomes of these interventions to change practice styles.

  20. Calculations of wavefunctions and energies of electron system in Coulomb potential by variational method without a basis set

    International Nuclear Information System (INIS)

    Bykov, V.P.; Gerasimov, A.V.

    1992-08-01

    A new variational method without a basis set for calculation of the eigenvalues and eigenfunctions of Hamiltonians is suggested. The expansion of this method for the Coulomb potentials is given. Calculation of the energy and charge distribution in the two-electron system for different values of the nuclear charge Z is made. It is shown that at small Z the Coulomb forces disintegrate the electron cloud into two clots. (author). 3 refs, 4 figs, 1 tab

  1. Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem

    Directory of Open Access Journals (Sweden)

    Liu Chun-Feng

    2013-01-01

    Full Text Available A reconstructive scheme for variational iteration method using the Yang-Laplace transform is proposed and developed with the Yang-Laplace transform. The identification of fractal Lagrange multiplier is investigated by the Yang-Laplace transform. The method is exemplified by a fractal heat conduction equation with local fractional derivative. The results developed are valid for a compact solution domain with high accuracy.

  2. Imaging Seismic Source Variations Using Back-Projection Methods at El Tatio Geyser Field, Northern Chile

    Science.gov (United States)

    Kelly, C. L.; Lawrence, J. F.

    2014-12-01

    During October 2012, 51 geophones and 6 broadband seismometers were deployed in an ~50x50m region surrounding a periodically erupting columnar geyser in the El Tatio Geyser Field, Chile. The dense array served as the seismic framework for a collaborative project to study the mechanics of complex hydrothermal systems. Contemporaneously, complementary geophysical measurements (including down-hole temperature and pressure, discharge rates, thermal imaging, water chemistry, and video) were also collected. Located on the western flanks of the Andes Mountains at an elevation of 4200m, El Tatio is the third largest geyser field in the world. Its non-pristine condition makes it an ideal location to perform minutely invasive geophysical studies. The El Jefe Geyser was chosen for its easily accessible conduit and extremely periodic eruption cycle (~120s). During approximately 2 weeks of continuous recording, we recorded ~2500 nighttime eruptions which lack cultural noise from tourism. With ample data, we aim to study how the source varies spatially and temporally during each phase of the geyser's eruption cycle. We are developing a new back-projection processing technique to improve source imaging for diffuse signals. Our method was previously applied to the Sierra Negra Volcano system, which also exhibits repeating harmonic and diffuse seismic sources. We back-project correlated seismic signals from the receivers back to their sources, assuming linear source to receiver paths and a known velocity model (obtained from ambient noise tomography). We apply polarization filters to isolate individual and concurrent geyser energy associated with P and S phases. We generate 4D, time-lapsed images of the geyser source field that illustrate how the source distribution changes through the eruption cycle. We compare images for pre-eruption, co-eruption, post-eruption and quiescent periods. We use our images to assess eruption mechanics in the system (i.e. top-down vs. bottom-up) and

  3. A neural network method for solving a system of linear variational inequalities

    International Nuclear Information System (INIS)

    Lan Hengyou; Cui Yishun

    2009-01-01

    In this paper, we transmute the solution for a new system of linear variational inequalities to an equilibrium point of neural networks, and by using analytic technique, some sufficient conditions are presented. Further, the estimation of the exponential convergence rates of the neural networks is investigated. The new and useful results obtained in this paper generalize and improve the corresponding results of recent works.

  4. Source Distribution Method for Unsteady One-Dimensional Flows With Small Mass, Momentum, and Heat Addition and Small Area Variation

    Science.gov (United States)

    Mirels, Harold

    1959-01-01

    A source distribution method is presented for obtaining flow perturbations due to small unsteady area variations, mass, momentum, and heat additions in a basic uniform (or piecewise uniform) one-dimensional flow. First, the perturbations due to an elemental area variation, mass, momentum, and heat addition are found. The general solution is then represented by a spatial and temporal distribution of these elemental (source) solutions. Emphasis is placed on discussing the physical nature of the flow phenomena. The method is illustrated by several examples. These include the determination of perturbations in basic flows consisting of (1) a shock propagating through a nonuniform tube, (2) a constant-velocity piston driving a shock, (3) ideal shock-tube flows, and (4) deflagrations initiated at a closed end. The method is particularly applicable for finding the perturbations due to relatively thin wall boundary layers.

  5. Hourly Variation in the Flow Measurements in the Jesus Maria Watershed with the Cup-type Current Meter Method

    Directory of Open Access Journals (Sweden)

    José Pablo Bonilla Valverde

    2017-12-01

    Full Text Available Conducting punctual gauging measurements in Costa Rica constitutes a common practice for the evaluation of water resources for drinking water supply.  The country has a database composed of punctual measurements made in most of the rivers of Costa Rica with almost forty years of information. Within this database, a single data (punctual gauging is used to characterize the whole month in which it was gauged. In order to corroborate the validity of this characterization, punctual gauging was performed every hour to confirm that the hourly variation is minimal.  The hourly gauging was carried out during the flow measurement campaign in the Jesus Maria watershed conducted on April 9th and 10th, 2013.  The flow measurements were performed using cup-type current meter method according to the ISO 2537: 2007 standard.  One third of the measurements showed less than ±1% variation and more than three quarters were in the range of ±5% variation. In all cases, excluding the lower basin of the Jesus Maria River, variations in the measurements are less than 10% relative to the median.  It is concluded that the hour variation is relatively small, and therefore, the database is validated – for the months at the end of the dry season.  This experience should be repeated in the same basin at other times of the year and on other basins to ensure that the temporal variability do not represent large differences in the flow.

  6. The codes WAV3BDY and WAV4BDY and the variational Monte Carlo method

    International Nuclear Information System (INIS)

    Schiavilla, R.

    1987-01-01

    A description of the codes WAV3BDY and WAV4BDY, which generate the variational ground state wave functions of the A=3 and 4 nuclei, is given, followed by a discussion of the Monte Carlo integration technique, which is used to calculate expectation values and transition amplitudes of operators, and for whose implementation WAV3BDY and WAV4BDY are well suited

  7. Absolute 22Na radioactivity measurement by gamma efficiency variation of 4πβ-γ coincidence method

    International Nuclear Information System (INIS)

    Hino, Yoshio; Kawada, Yasusi.

    1994-01-01

    The absolute radioactivity of 22 Na was obtained by gamma efficiency variation of 4πβ-γ coincidence method. Some other previous techniques, such as sum peak gate method based on the positron emission rate, relative measurement with calibrated ionization chambers, and gamma spectrometry with a HPGe detector, were also tried to ensure the present result. The results of these methods were in reasonable agreement with the present absolute measurement. The assayed source solution of this experiment was transferred to NBS type ampoules, and sealed ampoules were sent to the SIR (International Reference System) in BIPM, Taiwan and Indonesia for the international comparison. (author)

  8. Measurement of time series variation of thermal diffusivity of magnetic fluid under magnetic field by forced Rayleigh scattering method

    Energy Technology Data Exchange (ETDEWEB)

    Motozawa, Masaaki, E-mail: motozawa.masaaki@shizuoka.ac.jp [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan); Muraoka, Takashi [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan); Motosuke, Masahiro, E-mail: mot@rs.tus.ac.jp [Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 (Japan); Fukuta, Mitsuhiro, E-mail: fukuta.mitsuhiro@shizuoka.ac.jp [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan)

    2017-04-15

    It can be expected that the thermal diffusivity of a magnetic fluid varies from time to time after applying a magnetic field because of the growth of the inner structure of a magnetic fluid such as chain-like clusters. In this study, time series variation of the thermal diffusivity of a magnetic fluid caused by applying a magnetic field was investigated experimentally. For the measurement of time series variation of thermal diffusivity, we attempted to apply the forced Rayleigh scattering method (FRSM), which has high temporal and high spatial resolution. We set up an optical system for the FRSM and measured the thermal diffusivity. A magnetic field was applied to a magnetic fluid in parallel and perpendicular to the heat flux direction, and the magnetic field intensity was 70 mT. The FRSM was successfully applied to measurement of the time series variation of the magnetic fluid from applying a magnetic field. The results show that a characteristic configuration in the time series variation of the thermal diffusivity of magnetic fluid was obtained in the case of applying a magnetic field parallel to the heat flux direction. In contrast, in the case of applying a magnetic field perpendicular to the heat flux, the thermal diffusivity of the magnetic fluid hardly changed during measurement. - Highlights: • Thermal diffusivity was measured by forced Rayleigh scattering method (FRSM). • FRSM has high temporal and high spatial resolutions for measurement. • We attempted to apply FRSM to magnetic fluid (MF). • Time series variation of thermal diffusivity of MF was successfully measured by FRSM. • Anisotropic thermal diffusivity of magnetic fluid was also successfully confirmed.

  9. Repeatability and variation of region-of-interest methods using quantitative diffusion tensor MR imaging of the brain

    International Nuclear Information System (INIS)

    Hakulinen, Ullamari; Brander, Antti; Ryymin, Pertti; Öhman, Juha; Soimakallio, Seppo; Helminen, Mika; Dastidar, Prasun; Eskola, Hannu

    2012-01-01

    Diffusion tensor imaging (DTI) is increasingly used in various diseases as a clinical tool for assessing the integrity of the brain’s white matter. Reduced fractional anisotropy (FA) and an increased apparent diffusion coefficient (ADC) are nonspecific findings in most pathological processes affecting the brain’s parenchyma. At present, there is no gold standard for validating diffusion measures, which are dependent on the scanning protocols, methods of the softwares and observers. Therefore, the normal variation and repeatability effects on commonly-derived measures should be carefully examined. Thirty healthy volunteers (mean age 37.8 years, SD 11.4) underwent DTI of the brain with 3T MRI. Region-of-interest (ROI) -based measurements were calculated at eleven anatomical locations in the pyramidal tracts, corpus callosum and frontobasal area. Two ROI-based methods, the circular method (CM) and the freehand method (FM), were compared. Both methods were also compared by performing measurements on a DTI phantom. The intra- and inter-observer variability (coefficient of variation, or CV%) and repeatability (intra-class correlation coefficient, or ICC) were assessed for FA and ADC values obtained using both ROI methods. The mean FA values for all of the regions were 0.663 with the CM and 0.621 with the FM. For both methods, the FA was highest in the splenium of the corpus callosum. The mean ADC value was 0.727 ×10 -3 mm 2 /s with the CM and 0.747 ×10 -3 mm 2 /s with the FM, and both methods found the ADC to be lowest in the corona radiata. The CV percentages of the derived measures were < 13% with the CM and < 10% with the FM. In most of the regions, the ICCs were excellent or moderate for both methods. With the CM, the highest ICC for FA was in the posterior limb of the internal capsule (0.90), and with the FM, it was in the corona radiata (0.86). For ADC, the highest ICC was found in the genu of the corpus callosum (0.93) with the CM and in the uncinate

  10. Simulation of laminar and turbulent concentric pipe flows with the isogeometric variational multiscale method

    KAUST Repository

    Ghaffari Motlagh, Yousef; Ahn, Hyungtaek; Hughes, Thomas Jr R; Calo, Victor M.

    2013-01-01

    We present an application of the residual-based variational multiscale modeling methodology to the computation of laminar and turbulent concentric annular pipe flows. Isogeometric analysis is utilized for higher-order approximation of the solution using Non-Uniform Rational B-Splines (NURBS). The ability of NURBS to exactly represent curved geometries makes NURBS-based isogeometric analysis attractive for the application to the flow through annular channels. We demonstrate the applicability of the methodology to both laminar and turbulent flow regimes. © 2012 Elsevier Ltd.

  11. Enhancement of Efficiency and Reduction of Grid Thickness Variation on Casting Process with Lean Six Sigma Method

    Science.gov (United States)

    Witantyo; Setyawan, David

    2018-03-01

    In a lead acid battery industry, grid casting is a process that has high defect and thickness variation level. DMAIC (Define-Measure-Analyse-Improve-Control) method and its tools will be used to improve the casting process. In the Define stage, it is used project charter and SIPOC (Supplier Input Process Output Customer) method to map the existent problem. In the Measure stage, it is conducted a data retrieval related to the types of defect and the amount of it, also the grid thickness variation that happened. And then the retrieved data is processed and analyzed by using 5 Why’s and FMEA method. In the Analyze stage, it is conducted a grid observation that experience fragile and crack type of defect by using microscope showing the amount of oxide Pb inclusion in the grid. Analysis that is used in grid casting process shows the difference of temperature that is too high between the metal fluid and mold temperature, also the corking process that doesn’t have standard. The Improve stage is conducted a fixing process which generates the reduction of grid variation thickness level and defect/unit level from 9,184% to 0,492%. In Control stage, it is conducted a new working standard determination and already fixed control process.

  12. Solution of linear ordinary differential equations by means of the method of variation of arbitrary constants

    DEFF Research Database (Denmark)

    Mejlbro, Leif

    1997-01-01

    An alternative formula for the solution of linear differential equations of order n is suggested. When applicable, the suggested method requires fewer and simpler computations than the well-known method using Wronskians.......An alternative formula for the solution of linear differential equations of order n is suggested. When applicable, the suggested method requires fewer and simpler computations than the well-known method using Wronskians....

  13. Variational method for the derivative nonlinear Schroedinger equation with computational applications

    Energy Technology Data Exchange (ETDEWEB)

    Helal, M A [Mathematics Department, Faculty of Science, Cairo University (Egypt); Seadawy, A R [Mathematics Department, Faculty of Science, Beni-Suef University (Egypt)], E-mail: mahelal@yahoo.com, E-mail: aly742001@yahoo.com

    2009-09-15

    The derivative nonlinear Schroedinger equation (DNLSE) arises as a physical model for ultra-short pulse propagation. In this paper, the existence of a Lagrangian and the invariant variational principle (i.e. in the sense of the inverse problem of calculus of variations through deriving the functional integral corresponding to a given coupled nonlinear partial differential equations) for two-coupled equations describing the nonlinear evolution of the Alfven wave with magnetosonic waves at a much larger scale are given and the functional integral corresponding to those equations is derived. We found the solutions of DNLSE by choice of a trial function in a region of a rectangular box in two cases, and using this trial function, we find the functional integral and the Lagrangian of the system without loss. Solution of the general case for the two-box potential can be obtained on the basis of a different ansatz where we approximate the Jost function using polynomials of order n instead of the piecewise linear function. An example for the third order is given for illustrating the general case.

  14. Revealing metabolomic variations in Cortex Moutan from different root parts using HPLC-MS method.

    Science.gov (United States)

    Xiao, Chaoni; Wu, Man; Chen, Yongyong; Zhang, Yajun; Zhao, Xinfeng; Zheng, Xiaohui

    2015-01-01

    The distribution of metabolites in the different root parts of Cortex Moutan (the root bark of Paeonia suffruticosa Andrews) is not well understood, therefore, scientific evidence is not available for quality assessment of Cortex Moutan. To reveal metabolomic variations in Cortex Moutan in order to gain deeper insights to enable quality control. Metabolomic variations in the different root parts of Cortex Moutan were characterised using high-performance liquid chromatography combined with mass spectrometry (HPLC-MS) and multivariate data analysis. The discriminating metabolites in different root parts were evaluated by the one-way analysis of variance and a fold change parameter. The metabolite profiles of Cortex Moutan were largely dominated by five primary and 41 secondary metabolites . Higher levels of malic acid, gallic acid and mudanoside-B were mainly observed in the second lateral roots, whereas dihydroxyacetophenone, benzoyloxypaeoniflorin, suffruticoside-A, kaempferol dihexoside, mudanpioside E and mudanpioside J accumulated in the first lateral and axial roots. The highest contents of paeonol, galloyloxypaeoniflorin and procyanidin B were detected in the axial roots. Accordingly, metabolite compositions of Cortex Moutan were found to vary among different root parts. The axial roots have higher quality than the lateral roots in Cortex Moutan due to the accumulation of bioactive secondary metabolites associated with plant physiology. These findings provided important scientific evidence for grading Cortex Moutan on the general market. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Accelerated gradient methods for total-variation-based CT image reconstruction

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Heide; Jensen, Tobias Lindstrøm; Hansen, Per Christian

    2011-01-01

    incorporates several heuristics from the optimization literature such as Barzilai-Borwein (BB) step size selection and nonmonotone line search. The latter uses a cleverly chosen sequence of auxiliary points to achieve a better convergence rate. The methods are memory efficient and equipped with a stopping...... reconstruction can in principle be found by any optimization method, but in practice the large scale of the systems arising in CT image reconstruction preclude the use of memory-demanding methods such as Newton’s method. The simple gradient method has much lower memory requirements, but exhibits slow convergence...

  16. 222Rn in water: A comparison of two sample collection methods and two sample transport methods, and the determination of temporal variation in North Carolina ground water

    International Nuclear Information System (INIS)

    Hightower, J.H. III

    1994-01-01

    Objectives of this field experiment were: (1) determine whether there was a statistically significant difference between the radon concentrations of samples collected by EPA's standard method, using a syringe, and an alternative, slow-flow method; (2) determine whether there was a statistically significant difference between the measured radon concentrations of samples mailed vs samples not mailed; and (3) determine whether there was a temporal variation of water radon concentration over a 7-month period. The field experiment was conducted at 9 sites, 5 private wells, and 4 public wells, at various locations in North Carolina. Results showed that a syringe is not necessary for sample collection, there was generally no significant radon loss due to mailing samples, and there was statistically significant evidence of temporal variations in water radon concentrations

  17. A variational EM method for pole-zero modeling of speech with mixed block sparse and Gaussian excitation

    DEFF Research Database (Denmark)

    Shi, Liming; Nielsen, Jesper Kjær; Jensen, Jesper Rindom

    2017-01-01

    The modeling of speech can be used for speech synthesis and speech recognition. We present a speech analysis method based on pole-zero modeling of speech with mixed block sparse and Gaussian excitation. By using a pole-zero model, instead of the all-pole model, a better spectral fitting can...... be expected. Moreover, motivated by the block sparse glottal flow excitation during voiced speech and the white noise excitation for unvoiced speech, we model the excitation sequence as a combination of block sparse signals and white noise. A variational EM (VEM) method is proposed for estimating...... in reconstructing of the block sparse excitation....

  18. Low energy elastic scattering of positrons by CO: An application of continued fractions and Schwinger variational iterative methods

    Energy Technology Data Exchange (ETDEWEB)

    Arretche, F. [Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, Santa Catarina (Brazil)], E-mail: farretche@hotmail.com; Mazon, K.T.; Michelin, S.E. [Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, Santa Catarina (Brazil); Fujimoto, M.M. [Departamento de Fisica, Universidade Federal do Parana, 81531-990, Curitiba, Parana (Brazil); Iga, I.; Lee, M.-T. [Departamento de Quimica, Universidade Federal de Sao Carlos, 13565-905, Sao Paulo (Brazil)

    2008-02-15

    Iterative Schwinger variational methods and the method of continued fractions, widely used for electron-molecule scattering, are applied for the first time to investigate positron-molecule interactions. Specifically, integral and differential cross sections for elastic positron scattering by CO in the (0.5-20) eV energy range are calculated and reported. In our calculation, a static plus correlation-polarization potential is used to represent the collisional dynamics. Our calculated results are in general agreement with the theoretical and experimental data available in the literature.

  19. An investigation of natural genetic variation in the circadian system of Drosophila melanogaster: rhythm characteristics and methods of quantification.

    Science.gov (United States)

    Emery, P T; Morgan, E; Birley, A J

    1994-04-01

    Variation in four characteristics of the circadian locomotor activity rhythm was investigated in 24 true-breeding strains of Drosophila melanogaster with a view to establishing methods of phenotypic measurement sufficiently robust to allow subsequent biometric analysis. Between them, these strains formed a representative sample of the genetic variability of a natural population. Period, phase, definition (the degree to which a rhythmic signal was obscured by noise), and rhythm waveform were all found to vary continuously among the strains, although within each strain the rhythm phenotype was remarkably consistent. Each characteristic was found to be sufficiently robust to permit objective measurement using several different methods of quantification, which were then compared.

  20. Theoretical methods for neutronics calculations of core-blanket and core-reflector systems in fast reactors

    International Nuclear Information System (INIS)

    Corcuera, Roberto.

    1975-12-01

    The present work is a contribution to the neutronics calculational methods of fast neutron reactors. The first step is devoted to the analysis of the validity of the few-groups (of the order of 25) multigroup scheme, and of the transport-correction approximation for the treatment of the scattering anisotropy. This analysis includes both the reactor core, where the usual approximations are found to be satisfactory, and the reflector, where it turns out that the rapid variations of the neutron flux and of it's spectrum necessitate the improvement of the multigroup cross-sections' generation. Therefore, a zero-dimensional simple and accurate model for the average spectrum in the reflector is developed by the space-energy synthesis method. Finally using the Rayleigh-Ritz method, a model is developed in which the flux is spatially represented by an analytical function. This model is applied to the analysis of the sensitivity of reflector neutronics parameters to the variations of the cross sections [fr

  1. A model-based clustering method to detect infectious disease transmission outbreaks from sequence variation.

    Directory of Open Access Journals (Sweden)

    Rosemary M McCloskey

    2017-11-01

    Full Text Available Clustering infections by genetic similarity is a popular technique for identifying potential outbreaks of infectious disease, in part because sequences are now routinely collected for clinical management of many infections. A diverse number of nonparametric clustering methods have been developed for this purpose. These methods are generally intuitive, rapid to compute, and readily scale with large data sets. However, we have found that nonparametric clustering methods can be biased towards identifying clusters of diagnosis-where individuals are sampled sooner post-infection-rather than the clusters of rapid transmission that are meant to be potential foci for public health efforts. We develop a fundamentally new approach to genetic clustering based on fitting a Markov-modulated Poisson process (MMPP, which represents the evolution of transmission rates along the tree relating different infections. We evaluated this model-based method alongside five nonparametric clustering methods using both simulated and actual HIV sequence data sets. For simulated clusters of rapid transmission, the MMPP clustering method obtained higher mean sensitivity (85% and specificity (91% than the nonparametric methods. When we applied these clustering methods to published sequences from a study of HIV-1 genetic clusters in Seattle, USA, we found that the MMPP method categorized about half (46% as many individuals to clusters compared to the other methods. Furthermore, the mean internal branch lengths that approximate transmission rates were significantly shorter in clusters extracted using MMPP, but not by other methods. We determined that the computing time for the MMPP method scaled linearly with the size of trees, requiring about 30 seconds for a tree of 1,000 tips and about 20 minutes for 50,000 tips on a single computer. This new approach to genetic clustering has significant implications for the application of pathogen sequence analysis to public health, where

  2. Using the method of judgement analysis to address variations in diagnostic decision making

    OpenAIRE

    Hancock, Helen C; Mason, James M; Murphy, Jerry J

    2012-01-01

    Abstract Background Heart failure is not a clear-cut diagnosis but a complex clinical syndrome with consequent diagnostic uncertainty. Judgment analysis is a method to help clinical teams to understand how they make complex decisions. The method of judgment analysis was used to determine the factors that influence clinicians' diagnostic decisions about heart failure. Methods Three consultants, three middle grade doctors, and two junior doctors each evaluated 45 patient scenarios. The main out...

  3. Functional-analytic and numerical issues in splitting methods for total variation-based image reconstruction

    International Nuclear Information System (INIS)

    Hintermüller, Michael; Rautenberg, Carlos N; Hahn, Jooyoung

    2014-01-01

    Variable splitting schemes for the function space version of the image reconstruction problem with total variation regularization (TV-problem) in its primal and pre-dual formulations are considered. For the primal splitting formulation, while existence of a solution cannot be guaranteed, it is shown that quasi-minimizers of the penalized problem are asymptotically related to the solution of the original TV-problem. On the other hand, for the pre-dual formulation, a family of parametrized problems is introduced and a parameter dependent contraction of an associated fixed point iteration is established. Moreover, the theory is validated by numerical tests. Additionally, the augmented Lagrangian approach is studied, details on an implementation on a staggered grid are provided and numerical tests are shown. (paper)

  4. Special Semester titled Geometric mechanics : variational and stochastic methods : CIB, Lausanne, Switzerland, January-June 2015

    CERN Document Server

    Cruzeiro, Ana; Holm, Darryl

    2017-01-01

    Collecting together contributed lectures and mini-courses, this book details the research presented in a special semester titled “Geometric mechanics – variational and stochastic methods” run in the first half of 2015 at the Centre Interfacultaire Bernoulli (CIB) of the Ecole Polytechnique Fédérale de Lausanne. The aim of the semester was to develop a common language needed to handle the wide variety of problems and phenomena occurring in stochastic geometric mechanics. It gathered mathematicians and scientists from several different areas of mathematics (from analysis, probability, numerical analysis and statistics, to algebra, geometry, topology, representation theory, and dynamical systems theory) and also areas of mathematical physics, control theory, robotics, and the life sciences, with the aim of developing the new research area in a concentrated joint effort, both from the theoretical and applied points of view. The lectures were given by leading specialists in different areas of mathematics a...

  5. A General Iterative Method of Fixed Points for Mixed Equilibrium Problems and Variational Inclusion Problems

    Directory of Open Access Journals (Sweden)

    Phayap Katchang

    2010-01-01

    Full Text Available The purpose of this paper is to investigate the problem of finding a common element of the set of solutions for mixed equilibrium problems, the set of solutions of the variational inclusions with set-valued maximal monotone mappings and inverse-strongly monotone mappings, and the set of fixed points of a family of finitely nonexpansive mappings in the setting of Hilbert spaces. We propose a new iterative scheme for finding the common element of the above three sets. Our results improve and extend the corresponding results of the works by Zhang et al. (2008, Peng et al. (2008, Peng and Yao (2009, as well as Plubtieng and Sriprad (2009 and some well-known results in the literature.

  6. An improved method for detecting genetic variation in DNA using denaturing gradient gel electrophoresis

    International Nuclear Information System (INIS)

    Takahashi, Norio; Hiyama, Keiko; Kodaira, Mieko; Satoh, Chiyoko.

    1990-05-01

    We have examined the feasibility of denaturing gradient gel electrophoresis (DGGE) of RNA:DNA duplexes to detect variations in genomic and cloned DNAs. The result has demonstrated that use of RNA:DNA duplexes makes DGGE much more practical for screening a large number of samples than use of DNA:DNA heteroduplexes, because preparation of RNA probes is easier than that of DNA probes. Three different 32 P-labeled RNA probes were produced. Genomic or cloned DNAs were digested with restriction enzymes and hybridized to labeled RNA probes, and resulting RNA:DNA duplexes were examined by DGGE. The presence of a mismatch(es) was detected as a difference in the mobility of bands on the gel. The experimental conditions were determined using DNA segments from cloned normal and three thalassemic human β-globin genes. The results from experiments on the cloned DNAs suggest that DGGE of RNA:DNA duplexes will detect nucleotide substitutions and deletions in DNA. In the course of these studies, a polymorphism due to a single-base substitution at position 666 of IVS2 (IVS2-666) of the human β-globin gene was directly identified using genomic DNA samples. A study of 59 unrelated Japanese from Hiroshima was undertaken in which the frequency of the allele with C at IVS2-666 was 0.48 and that of the allele with T was 0.52. This approach was found to be very effective for detecting heritable variation and should be a powerful tool for detecting fresh mutations in DNA, which occur outside the known restriction sites. (author)

  7. Determining individual variation in growth and its implication for life-history and population processes using the empirical Bayes method.

    Directory of Open Access Journals (Sweden)

    Simone Vincenzi

    2014-09-01

    Full Text Available The differences in demographic and life-history processes between organisms living in the same population have important consequences for ecological and evolutionary dynamics. Modern statistical and computational methods allow the investigation of individual and shared (among homogeneous groups determinants of the observed variation in growth. We use an Empirical Bayes approach to estimate individual and shared variation in somatic growth using a von Bertalanffy growth model with random effects. To illustrate the power and generality of the method, we consider two populations of marble trout Salmo marmoratus living in Slovenian streams, where individually tagged fish have been sampled for more than 15 years. We use year-of-birth cohort, population density during the first year of life, and individual random effects as potential predictors of the von Bertalanffy growth function's parameters k (rate of growth and L∞ (asymptotic size. Our results showed that size ranks were largely maintained throughout marble trout lifetime in both populations. According to the Akaike Information Criterion (AIC, the best models showed different growth patterns for year-of-birth cohorts as well as the existence of substantial individual variation in growth trajectories after accounting for the cohort effect. For both populations, models including density during the first year of life showed that growth tended to decrease with increasing population density early in life. Model validation showed that predictions of individual growth trajectories using the random-effects model were more accurate than predictions based on mean size-at-age of fish.

  8. Determining individual variation in growth and its implication for life-history and population processes using the empirical Bayes method.

    Science.gov (United States)

    Vincenzi, Simone; Mangel, Marc; Crivelli, Alain J; Munch, Stephan; Skaug, Hans J

    2014-09-01

    The differences in demographic and life-history processes between organisms living in the same population have important consequences for ecological and evolutionary dynamics. Modern statistical and computational methods allow the investigation of individual and shared (among homogeneous groups) determinants of the observed variation in growth. We use an Empirical Bayes approach to estimate individual and shared variation in somatic growth using a von Bertalanffy growth model with random effects. To illustrate the power and generality of the method, we consider two populations of marble trout Salmo marmoratus living in Slovenian streams, where individually tagged fish have been sampled for more than 15 years. We use year-of-birth cohort, population density during the first year of life, and individual random effects as potential predictors of the von Bertalanffy growth function's parameters k (rate of growth) and L∞ (asymptotic size). Our results showed that size ranks were largely maintained throughout marble trout lifetime in both populations. According to the Akaike Information Criterion (AIC), the best models showed different growth patterns for year-of-birth cohorts as well as the existence of substantial individual variation in growth trajectories after accounting for the cohort effect. For both populations, models including density during the first year of life showed that growth tended to decrease with increasing population density early in life. Model validation showed that predictions of individual growth trajectories using the random-effects model were more accurate than predictions based on mean size-at-age of fish.

  9. Dynamic re-weighted total variation technique and statistic Iterative reconstruction method for x-ray CT metal artifact reduction

    Science.gov (United States)

    Peng, Chengtao; Qiu, Bensheng; Zhang, Cheng; Ma, Changyu; Yuan, Gang; Li, Ming

    2017-07-01

    Over the years, the X-ray computed tomography (CT) has been successfully used in clinical diagnosis. However, when the body of the patient to be examined contains metal objects, the image reconstructed would be polluted by severe metal artifacts, which affect the doctor's diagnosis of disease. In this work, we proposed a dynamic re-weighted total variation (DRWTV) technique combined with the statistic iterative reconstruction (SIR) method to reduce the artifacts. The DRWTV method is based on the total variation (TV) and re-weighted total variation (RWTV) techniques, but it provides a sparser representation than TV and protects the tissue details better than RWTV. Besides, the DRWTV can suppress the artifacts and noise, and the SIR convergence speed is also accelerated. The performance of the algorithm is tested on both simulated phantom dataset and clinical dataset, which are the teeth phantom with two metal implants and the skull with three metal implants, respectively. The proposed algorithm (SIR-DRWTV) is compared with two traditional iterative algorithms, which are SIR and SIR constrained by RWTV regulation (SIR-RWTV). The results show that the proposed algorithm has the best performance in reducing metal artifacts and protecting tissue details.

  10. Variational method for the minimization of entropy generation in solar cells

    NARCIS (Netherlands)

    Smit, S.; Kessels, W.M.M.

    2015-01-01

    In this work, a method is presented to extend traditional solar cell simulation tools to make it possible to calculate the most efficient design of practical solar cells. The method is based on the theory of nonequilibrium thermodynamics, which is used to derive an expression for the local entropy

  11. Systematic differences in the response of genetic variation to pedigree and genome-based selection methods

    NARCIS (Netherlands)

    Heidaritabar, M.; Vereijken, A.; Muir, W.M.; Meuwissen, T.H.E.; Cheng, H.; Megens, H.J.W.C.; Groenen, M.; Bastiaansen, J.W.M.

    2014-01-01

    Genomic selection (GS) is a DNA-based method of selecting for quantitative traits in animal and plant breeding, and offers a potentially superior alternative to traditional breeding methods that rely on pedigree and phenotype information. Using a 60¿K SNP chip with markers spaced throughout the

  12. Investigation of variation of additional enthalpy of proteins with respect to pH by statistical mechanical methods

    International Nuclear Information System (INIS)

    Oylumoglu, G.

    2005-01-01

    In this study variation of additional enthalpy with respect to pH has been investigated by the statistical mechanical methods.. To bring up the additional effect, the partition function of the proteins are calculated by single protein molecule approximation. From the partition function, free energies of the proteins are obtained and by this way additional free energy has been used in the calculation of the terms in the thermodynamical quantity. Additional enthalpy H D has been obtained by taking effective electric field E and constant dipole moment M as thermodynamical variables and using Maxwell Equations. In the presented semi phenomenological theory, necessary data are taken from the experimental study of P.L. Privalov. The variation in the additional enthalpy H D has been investigated in the pH interval of 1-5 and the results of the calculations are discussed for Lysozyme

  13. Nonlinearly preconditioned semismooth Newton methods for variational inequality solution of two-phase flow in porous media

    KAUST Repository

    Yang, Haijian

    2016-12-10

    Most existing methods for solving two-phase flow problems in porous media do not take the physically feasible saturation fractions between 0 and 1 into account, which often destroys the numerical accuracy and physical interpretability of the simulation. To calculate the solution without the loss of this basic requirement, we introduce a variational inequality formulation of the saturation equilibrium with a box inequality constraint, and use a conservative finite element method for the spatial discretization and a backward differentiation formula with adaptive time stepping for the temporal integration. The resulting variational inequality system at each time step is solved by using a semismooth Newton algorithm. To accelerate the Newton convergence and improve the robustness, we employ a family of adaptive nonlinear elimination methods as a nonlinear preconditioner. Some numerical results are presented to demonstrate the robustness and efficiency of the proposed algorithm. A comparison is also included to show the superiority of the proposed fully implicit approach over the classical IMplicit Pressure-Explicit Saturation (IMPES) method in terms of the time step size and the total execution time measured on a parallel computer.

  14. Nonlinearly preconditioned semismooth Newton methods for variational inequality solution of two-phase flow in porous media

    KAUST Repository

    Yang, Haijian; Sun, Shuyu; Yang, Chao

    2016-01-01

    Most existing methods for solving two-phase flow problems in porous media do not take the physically feasible saturation fractions between 0 and 1 into account, which often destroys the numerical accuracy and physical interpretability of the simulation. To calculate the solution without the loss of this basic requirement, we introduce a variational inequality formulation of the saturation equilibrium with a box inequality constraint, and use a conservative finite element method for the spatial discretization and a backward differentiation formula with adaptive time stepping for the temporal integration. The resulting variational inequality system at each time step is solved by using a semismooth Newton algorithm. To accelerate the Newton convergence and improve the robustness, we employ a family of adaptive nonlinear elimination methods as a nonlinear preconditioner. Some numerical results are presented to demonstrate the robustness and efficiency of the proposed algorithm. A comparison is also included to show the superiority of the proposed fully implicit approach over the classical IMplicit Pressure-Explicit Saturation (IMPES) method in terms of the time step size and the total execution time measured on a parallel computer.

  15. TU-CD-BRA-12: Coupling PET Image Restoration and Segmentation Using Variational Method with Multiple Regularizations

    Energy Technology Data Exchange (ETDEWEB)

    Li, L; Tan, S [Huazhong University of Science and Technology, Wuhan, Hubei (China); Lu, W [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: To propose a new variational method which couples image restoration with tumor segmentation for PET images using multiple regularizations. Methods: Partial volume effect (PVE) is a major degrading factor impacting tumor segmentation accuracy in PET imaging. The existing segmentation methods usually need to take prior calibrations to compensate PVE and they are highly system-dependent. Taking into account that image restoration and segmentation can promote each other and they are tightly coupled, we proposed a variational method to solve the two problems together. Our method integrated total variation (TV) semi-blind deconvolution and Mumford-Shah (MS) segmentation. The TV norm was used on edges to protect the edge information, and the L{sub 2} norm was used to avoid staircase effect in the no-edge area. The blur kernel was constrained to the Gaussian model parameterized by its variance and we assumed that the variances in the X-Y and Z directions are different. The energy functional was iteratively optimized by an alternate minimization algorithm. Segmentation performance was tested on eleven patients with non-Hodgkin’s lymphoma, and evaluated by Dice similarity index (DSI) and classification error (CE). For comparison, seven other widely used methods were also tested and evaluated. Results: The combination of TV and L{sub 2} regularizations effectively improved the segmentation accuracy. The average DSI increased by around 0.1 than using either the TV or the L{sub 2} norm. The proposed method was obviously superior to other tested methods. It has an average DSI and CE of 0.80 and 0.41, while the FCM method — the second best one — has only an average DSI and CE of 0.66 and 0.64. Conclusion: Coupling image restoration and segmentation can handle PVE and thus improves tumor segmentation accuracy in PET. Alternate use of TV and L2 regularizations can further improve the performance of the algorithm. This work was supported in part by National Natural

  16. Luminescence variations in europium-doped silicon-substituted hydroxyapatite nanobiophosphor via three different methods

    Energy Technology Data Exchange (ETDEWEB)

    Thang, Cao Xuan; Pham, Vuong-Hung, E-mail: vuong.phamhung@hust.edu.vn

    2015-07-15

    Highlights: • Europium doped silicon-substituted hydroxyapatite was synthesized by wet chemical synthesis method. • Morphology of nanoparticles depended on the synthesized method. • Photoluminescence intensity of the sample increases with the increasing of Si substitutions, Eu dopants and thermal annealing. - Abstract: This paper reports the first attempt for the synthesis of europium-doped Si-substituted hydroxyapatite (HA) nanostructure to achieve strong and stable luminescence of nanobiophosphor, particularly, by addition of different Eu dopants, Si substitutions, and application of optimum annealing temperatures of up to 1000 °C. The nanobiophosphor was synthesized by the coprecipitation, microwave, and hydrothermal methods. The nanoparticles demonstrated a nanowire to a spindle-like morphology, which was dependent on the method of synthesis. The photoluminescence (PL) intensity of the sample increases with the increase in Si substitutions and Eu dopants. The luminescent nanoparticles also showed the typical luminescence of Eu{sup 3+} centered at 610 nm, which was more efficient for the annealed Eu-doped Si-HA nanoparticles than for the as-synthesized nanoparticles. Among the different synthesis methods, the hydrothermal method reveals the best light emission represented by high PL intensity and narrow PL spectra. These results suggest the potential application of Eu-doped Si-HA in stable and biocompatible nanophosphors for light emission and nanomedicine.

  17. An integration of minimum local feature representation methods to recognize large variation of foods

    Science.gov (United States)

    Razali, Mohd Norhisham bin; Manshor, Noridayu; Halin, Alfian Abdul; Mustapha, Norwati; Yaakob, Razali

    2017-10-01

    Local invariant features have shown to be successful in describing object appearances for image classification tasks. Such features are robust towards occlusion and clutter and are also invariant against scale and orientation changes. This makes them suitable for classification tasks with little inter-class similarity and large intra-class difference. In this paper, we propose an integrated representation of the Speeded-Up Robust Feature (SURF) and Scale Invariant Feature Transform (SIFT) descriptors, using late fusion strategy. The proposed representation is used for food recognition from a dataset of food images with complex appearance variations. The Bag of Features (BOF) approach is employed to enhance the discriminative ability of the local features. Firstly, the individual local features are extracted to construct two kinds of visual vocabularies, representing SURF and SIFT. The visual vocabularies are then concatenated and fed into a Linear Support Vector Machine (SVM) to classify the respective food categories. Experimental results demonstrate impressive overall recognition at 82.38% classification accuracy based on the challenging UEC-Food100 dataset.

  18. Variational method enabling simplified solutions to the linearized Boltzmann equation for oscillatory gas flows

    Science.gov (United States)

    Ladiges, Daniel R.; Sader, John E.

    2018-05-01

    Nanomechanical resonators and sensors, operated in ambient conditions, often generate low-Mach-number oscillating rarefied gas flows. Cercignani [C. Cercignani, J. Stat. Phys. 1, 297 (1969), 10.1007/BF01007482] proposed a variational principle for the linearized Boltzmann equation, which can be used to derive approximate analytical solutions of steady (time-independent) flows. Here we extend and generalize this principle to unsteady oscillatory rarefied flows and thus accommodate resonating nanomechanical devices. This includes a mathematical approach that facilitates its general use and allows for systematic improvements in accuracy. This formulation is demonstrated for two canonical flow problems: oscillatory Couette flow and Stokes' second problem. Approximate analytical formulas giving the bulk velocity and shear stress, valid for arbitrary oscillation frequency, are obtained for Couette flow. For Stokes' second problem, a simple system of ordinary differential equations is derived which may be solved to obtain the desired flow fields. Using this framework, a simple and accurate formula is provided for the shear stress at the oscillating boundary, again for arbitrary frequency, which may prove useful in application. These solutions are easily implemented on any symbolic or numerical package, such as Mathematica or matlab, facilitating the characterization of flows produced by nanomechanical devices and providing insight into the underlying flow physics.

  19. Solution of the diffusion equations for several groups by the finite elements method

    International Nuclear Information System (INIS)

    Arredondo S, C.

    1975-01-01

    The code DELFIN has been implemented for the solution of the neutrons diffusion equations in two dimensions obtained by applying the approximation of several groups of energy. The code works with any number of groups and regions, and can be applied to thermal reactors as well as fast reactor. Providing it with the diffusion coefficients, the effective sections and the fission spectrum we obtain the results for the systems multiplying constant and the flows of each groups. The code was established using the method of finite elements, which is a form of resolution of the variational formulation of the equations applying the Ritz-Galerkin method with continuous polynomial functions by parts, in one case of the Lagrange type with rectangular geometry and up to the third grade. The obtained results and the comparison with the results in the literature, permit to reach the conclusion that it is convenient, to use the rectangular elements in all the cases where the geometry permits it, and demonstrate also that the finite elements method is better than the finite differences method. (author)

  20. Overlapping domain decomposition preconditioners for the generalized Davidson method for the eigenvalue problem

    Energy Technology Data Exchange (ETDEWEB)

    Stathopoulos, A.; Fischer, C.F. [Vanderbilt Univ., Nashville, TN (United States); Saad, Y.

    1994-12-31

    The solution of the large, sparse, symmetric eigenvalue problem, Ax = {lambda}x, is central to many scientific applications. Among many iterative methods that attempt to solve this problem, the Lanczos and the Generalized Davidson (GD) are the most widely used methods. The Lanczos method builds an orthogonal basis for the Krylov subspace, from which the required eigenvectors are approximated through a Rayleigh-Ritz procedure. Each Lanczos iteration is economical to compute but the number of iterations may grow significantly for difficult problems. The GD method can be considered a preconditioned version of Lanczos. In each step the Rayleigh-Ritz procedure is solved and explicit orthogonalization of the preconditioned residual ((M {minus} {lambda}I){sup {minus}1}(A {minus} {lambda}I)x) is performed. Therefore, the GD method attempts to improve convergence and robustness at the expense of a more complicated step.

  1. Tensor-optimized antisymmetrized molecular dynamics as a successive variational method in nuclear many-body system

    Energy Technology Data Exchange (ETDEWEB)

    Myo, Takayuki, E-mail: takayuki.myo@oit.ac.jp [General Education, Faculty of Engineering, Osaka Institute of Technology, Osaka 535-8585 (Japan); Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047 (Japan); Toki, Hiroshi [Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047 (Japan); Ikeda, Kiyomi [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Horiuchi, Hisashi [Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047 (Japan); Suhara, Tadahiro [Matsue College of Technology, Matsue 690-8518 (Japan)

    2017-06-10

    We study the tensor-optimized antisymmetrized molecular dynamics (TOAMD) as a successive variational method in many-body systems with strong interaction for nuclei. In TOAMD, the correlation functions for the tensor force and the short-range repulsion and their multiples are operated to the AMD state as the variational wave function. The total wave function is expressed as the sum of all the components and the variational space can be increased successively with the multiple correlation functions to achieve convergence. All the necessary matrix elements of many-body operators, consisting of the multiple correlation functions and the Hamiltonian, are expressed analytically using the Gaussian integral formula. In this paper we show the results of TOAMD with up to the double products of the correlation functions for the s-shell nuclei, {sup 3}H and {sup 4}He, using the nucleon–nucleon interaction AV8′. It is found that the energies and Hamiltonian components of two nuclei converge rapidly with respect to the multiple of correlation functions. This result indicates the efficiency of TOAMD for the power series expansion in terms of the tensor and short-range correlation functions.

  2. A Study of Variations of the Branching Patterns of right Upper Lobar Bronchus by Corrosive Cast Method

    Directory of Open Access Journals (Sweden)

    SV Solanki

    2015-06-01

    Full Text Available Introduction: Respiratory system is the basic prerequisite for living organisms. So precise knowledge of normal anatomy and various dimensions of human respiratory tract is inevitable. The right upper lobe bronchus is prevailingly trifurcates into apical, anterior and posterior segmental bronchi. Material and Methods: The present study was done on 28 tracheo-bronchial casts prepared by corrosive cast method in the anatomy department of B. J. medical college of Ahmedabad, Gujarat, India from 2011 to 2013. Result and Observation: In 16 specimens (57% normal trifurcate branching pattern was seen in right upper lobar bronchus. Most common variation observed was bifurcate pattern in right upper lobar bronchus in 36% of specimens. In 7% specimens quadrivial pattern was seen in right upper lobar bronchus in which it divided into four bronchi. Conclusion: The knowledge of anatomy and variation in branching pattern of the tracheo-bronchial tree enables the physicians to recognize clinical picture and pathology of human lungs, as well as the application of therapeutic and diagnostic methods like tracheal intubation, bronchoscopy, bronchography and postural drainage etc.

  3. Development of a Method to Compensate for Signal Quality Variations in Repeated Auditory Event-Related Potential Recordings

    Science.gov (United States)

    Paukkunen, Antti K. O.; Leminen, Miika M.; Sepponen, Raimo

    2010-01-01

    Reliable measurements are mandatory in clinically relevant auditory event-related potential (AERP)-based tools and applications. The comparability of the results gets worse as a result of variations in the remaining measurement error. A potential method is studied that allows optimization of the length of the recording session according to the concurrent quality of the recorded data. In this way, the sufficiency of the trials can be better guaranteed, which enables control of the remaining measurement error. The suggested method is based on monitoring the signal-to-noise ratio (SNR) and remaining measurement error which are compared to predefined threshold values. The SNR test is well defined, but the criterion for the measurement error test still requires further empirical testing in practice. According to the results, the reproducibility of average AERPs in repeated experiments is improved in comparison to a case where the number of recorded trials is constant. The test-retest reliability is not significantly changed on average but the between-subject variation in the value is reduced by 33–35%. The optimization of the number of trials also prevents excessive recordings which might be of practical interest especially in the clinical context. The efficiency of the method may be further increased by implementing online tools that improve data consistency. PMID:20407635

  4. Spatial variation of ground motion in a regional crystal structure using 3-d propagator matrix method and Haskell source model

    International Nuclear Information System (INIS)

    Jaekwan Kim; Jhinwung Kim; Koh, H.M.; Kwon, K.

    1993-01-01

    Variation of seismic wave field in a multi-layered attenuating elastic half space is studied by the propagator matrix method and a point source model with the fault slip function of Haskell type. Accelerations, displacements and their frequency contents due to a vertical dip-slip point source buried in the underlain half space are presented. Also included are responses of the same layered half space model to the plane wave obliquely incident from the half space for the purpose of comparison with those due to a dip-slip point source. (author)

  5. Application of the stochastic variational method to the calculation of 3α- and 4α-systems

    International Nuclear Information System (INIS)

    Kukulin, V.I.; Krasnopol'skii, V.M.

    1975-01-01

    The results of calculations of the properties of 3α- and 4α-systems carried out within the framework of the recently suggested stochastic variational method are presented. As the α-α potentials, two different types of potentials are used: the Ali-Bodmer repulsive core potential and the deep attractive α-α potential with forbidden states. In the latter case the pseudopotential approach we have earlier suggested is used. The energies of levels, (r 2 ) and form-factors of the ground state F(q 2 ) are calculated

  6. General filtering method for electronic speckle pattern interferometry fringe images with various densities based on variational image decomposition.

    Science.gov (United States)

    Li, Biyuan; Tang, Chen; Gao, Guannan; Chen, Mingming; Tang, Shuwei; Lei, Zhenkun

    2017-06-01

    Filtering off speckle noise from a fringe image is one of the key tasks in electronic speckle pattern interferometry (ESPI). In general, ESPI fringe images can be divided into three categories: low-density fringe images, high-density fringe images, and variable-density fringe images. In this paper, we first present a general filtering method based on variational image decomposition that can filter speckle noise for ESPI fringe images with various densities. In our method, a variable-density ESPI fringe image is decomposed into low-density fringes, high-density fringes, and noise. A low-density fringe image is decomposed into low-density fringes and noise. A high-density fringe image is decomposed into high-density fringes and noise. We give some suitable function spaces to describe low-density fringes, high-density fringes, and noise, respectively. Then we construct several models and numerical algorithms for ESPI fringe images with various densities. And we investigate the performance of these models via our extensive experiments. Finally, we compare our proposed models with the windowed Fourier transform method and coherence enhancing diffusion partial differential equation filter. These two methods may be the most effective filtering methods at present. Furthermore, we use the proposed method to filter a collection of the experimentally obtained ESPI fringe images with poor quality. The experimental results demonstrate the performance of our proposed method.

  7. Variational Multiscale Finite Element Method for Flows in Highly Porous Media

    KAUST Repository

    Iliev, O.; Lazarov, R.; Willems, J.

    2011-01-01

    We present a two-scale finite element method (FEM) for solving Brinkman's and Darcy's equations. These systems of equations model fluid flows in highly porous and porous media, respectively. The method uses a recently proposed discontinuous Galerkin FEM for Stokes' equations by Wang and Ye and the concept of subgrid approximation developed by Arbogast for Darcy's equations. In order to reduce the "resonance error" and to ensure convergence to the global fine solution, the algorithm is put in the framework of alternating Schwarz iterations using subdomains around the coarse-grid boundaries. The discussed algorithms are implemented using the Deal.II finite element library and are tested on a number of model problems. © 2011 Society for Industrial and Applied Mathematics.

  8. Variational Multiscale Finite Element Method for Flows in Highly Porous Media

    KAUST Repository

    Iliev, O.

    2011-10-01

    We present a two-scale finite element method (FEM) for solving Brinkman\\'s and Darcy\\'s equations. These systems of equations model fluid flows in highly porous and porous media, respectively. The method uses a recently proposed discontinuous Galerkin FEM for Stokes\\' equations by Wang and Ye and the concept of subgrid approximation developed by Arbogast for Darcy\\'s equations. In order to reduce the "resonance error" and to ensure convergence to the global fine solution, the algorithm is put in the framework of alternating Schwarz iterations using subdomains around the coarse-grid boundaries. The discussed algorithms are implemented using the Deal.II finite element library and are tested on a number of model problems. © 2011 Society for Industrial and Applied Mathematics.

  9. Systematic differences in the response of genetic variation to pedigree and genome-based selection methods.

    Science.gov (United States)

    Heidaritabar, M; Vereijken, A; Muir, W M; Meuwissen, T; Cheng, H; Megens, H-J; Groenen, M A M; Bastiaansen, J W M

    2014-12-01

    Genomic selection (GS) is a DNA-based method of selecting for quantitative traits in animal and plant breeding, and offers a potentially superior alternative to traditional breeding methods that rely on pedigree and phenotype information. Using a 60 K SNP chip with markers spaced throughout the entire chicken genome, we compared the impact of GS and traditional BLUP (best linear unbiased prediction) selection methods applied side-by-side in three different lines of egg-laying chickens. Differences were demonstrated between methods, both at the level and genomic distribution of allele frequency changes. In all three lines, the average allele frequency changes were larger with GS, 0.056 0.064 and 0.066, compared with BLUP, 0.044, 0.045 and 0.036 for lines B1, B2 and W1, respectively. With BLUP, 35 selected regions (empirical P selected regions were identified. Empirical thresholds for local allele frequency changes were determined from gene dropping, and differed considerably between GS (0.167-0.198) and BLUP (0.105-0.126). Between lines, the genomic regions with large changes in allele frequencies showed limited overlap. Our results show that GS applies selection pressure much more locally than BLUP, resulting in larger allele frequency changes. With these results, novel insights into the nature of selection on quantitative traits have been gained and important questions regarding the long-term impact of GS are raised. The rapid changes to a part of the genetic architecture, while another part may not be selected, at least in the short term, require careful consideration, especially when selection occurs before phenotypes are observed.

  10. Variational and PDE-Based Methods for Big Data Analysis, Classification and Image Processing Using Graphs

    Science.gov (United States)

    2015-01-01

    Assistant for Calculus (winter 2011) xii CHAPTER 1 Introduction We present several methods, outlined in Chapters 3-5, for image processing and data...local calculus formulation [103] to generalize the continuous formulation to a (non-local) discrete setting, while other non-local versions for...graph-based model based on the Ginzburg-Landau functional in their work [9]. To define the functional on a graph, the spatial gradient is replaced by a

  11. Sensitivity Variation on Low Cycle Fatigue Cracks Using Level 4/Method B Penetrant

    Energy Technology Data Exchange (ETDEWEB)

    FULWOOD,HARRY; MOORE,DAVID G.

    1999-09-02

    The Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) is currently conducting experiments with Level 4, Method B penetrant on low cycle fatigue specimens. The main focus of these experiments is to document the affect on penetrant brightness readings by varying inspection parameters. This paper discusses the results of changing drying temperature, drying time, and dwell time of both penetrant and emulsifier on low cycle fatigue specimens.

  12. Estimation of Staphylococcus aureus growth parameters from turbidity data: characterization of strain variation and comparison of methods.

    Science.gov (United States)

    Lindqvist, R

    2006-07-01

    Turbidity methods offer possibilities for generating data required for addressing microorganism variability in risk modeling given that the results of these methods correspond to those of viable count methods. The objectives of this study were to identify the best approach for determining growth parameters based on turbidity data and use of a Bioscreen instrument and to characterize variability in growth parameters of 34 Staphylococcus aureus strains of different biotypes isolated from broiler carcasses. Growth parameters were estimated by fitting primary growth models to turbidity growth curves or to detection times of serially diluted cultures either directly or by using an analysis of variance (ANOVA) approach. The maximum specific growth rates in chicken broth at 17 degrees C estimated by time to detection methods were in good agreement with viable count estimates, whereas growth models (exponential and Richards) underestimated growth rates. Time to detection methods were selected for strain characterization. The variation of growth parameters among strains was best described by either the logistic or lognormal distribution, but definitive conclusions require a larger data set. The distribution of the physiological state parameter ranged from 0.01 to 0.92 and was not significantly different from a normal distribution. Strain variability was important, and the coefficient of variation of growth parameters was up to six times larger among strains than within strains. It is suggested to apply a time to detection (ANOVA) approach using turbidity measurements for convenient and accurate estimation of growth parameters. The results emphasize the need to consider implications of strain variability for predictive modeling and risk assessment.

  13. Experimental study on variations in Charpy impact energies of low carbon steel, depending on welding and specimen cutting method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaorui; Kang, Hansaem; Lee, Young Seog [Chung-Ang University, Seoul (Korea, Republic of)

    2016-05-15

    This paper presents an experimental study that examines variations of Charpy impact energy of a welded steel plate, depending upon the welding method and the method for obtaining the Charpy specimens. Flux cored arc welding (FCAW) and Gas tungsten arc welding (GTAW) were employed to weld an SA516 Gr. 70 steel plate. The methods of wire cutting and water-jet cutting were adopted to take samples from the welded plate. The samples were machined according to the recommendations of ASTM SEC. II SA370, in order to fit the specimen dimension that the Charpy impact test requires. An X-ray diffraction (XRD) method was used to measure the as-weld residual stress and its redistribution after the samples were cut. The Charpy impact energy of specimens was considerably dependent on the cutting methods and locations in the welded plate where the specimens were taken. The specimens that were cut by water jet followed by FCAW have the greatest resistance-to-fracture (Charpy impact energy). Regardless of which welding method was used, redistributed transverse residual stress becomes compressive when the specimens are prepared using water-jet cutting. Meanwhile, redistributed transverse residual stress becomes tensile when the specimens are prepared using wire cutting.

  14. A Simple PV Inverter Power Factor Control Method Based on Solar Irradiance Variation

    DEFF Research Database (Denmark)

    Gökmen, Nuri; Hu, Weihao; Chen, Zhe

    2017-01-01

    There has been a significant rise in photovoltaic (PV) system installations throughout the last decade. This has posed some technical challenges to the distribution grid operators. Unfamiliar impacts of these relatively new energy sources now should be handled more comprehensively. The rigidity...... of these impacts mostly depends on PV penetration level, grid and weather characteristics as well as the interaction of load and generation. In this study, a reactive power control method is proposed benefitting from solar irradiance measurements in weather stations. Accordingly, power factors of PV inverters...

  15. Unitary Dynamics of Strongly Interacting Bose Gases with the Time-Dependent Variational Monte Carlo Method in Continuous Space

    Science.gov (United States)

    Carleo, Giuseppe; Cevolani, Lorenzo; Sanchez-Palencia, Laurent; Holzmann, Markus

    2017-07-01

    We introduce the time-dependent variational Monte Carlo method for continuous-space Bose gases. Our approach is based on the systematic expansion of the many-body wave function in terms of multibody correlations and is essentially exact up to adaptive truncation. The method is benchmarked by comparison to an exact Bethe ansatz or existing numerical results for the integrable Lieb-Liniger model. We first show that the many-body wave function achieves high precision for ground-state properties, including energy and first-order as well as second-order correlation functions. Then, we study the out-of-equilibrium, unitary dynamics induced by a quantum quench in the interaction strength. Our time-dependent variational Monte Carlo results are benchmarked by comparison to exact Bethe ansatz results available for a small number of particles, and are also compared to quench action results available for noninteracting initial states. Moreover, our approach allows us to study large particle numbers and general quench protocols, previously inaccessible beyond the mean-field level. Our results suggest that it is possible to find correlated initial states for which the long-term dynamics of local density fluctuations is close to the predictions of a simple Boltzmann ensemble.

  16. CNV-RF Is a Random Forest-Based Copy Number Variation Detection Method Using Next-Generation Sequencing.

    Science.gov (United States)

    Onsongo, Getiria; Baughn, Linda B; Bower, Matthew; Henzler, Christine; Schomaker, Matthew; Silverstein, Kevin A T; Thyagarajan, Bharat

    2016-11-01

    Simultaneous detection of small copy number variations (CNVs) (<0.5 kb) and single-nucleotide variants in clinically significant genes is of great interest for clinical laboratories. The analytical variability in next-generation sequencing (NGS) and artifacts in coverage data because of issues with mappability along with lack of robust bioinformatics tools for CNV detection have limited the utility of targeted NGS data to identify CNVs. We describe the development and implementation of a bioinformatics algorithm, copy number variation-random forest (CNV-RF), that incorporates a machine learning component to identify CNVs from targeted NGS data. Using CNV-RF, we identified 12 of 13 deletions in samples with known CNVs, two cases with duplications, and identified novel deletions in 22 additional cases. Furthermore, no CNVs were identified among 60 genes in 14 cases with normal copy number and no CNVs were identified in another 104 patients with clinical suspicion of CNVs. All positive deletions and duplications were confirmed using a quantitative PCR method. CNV-RF also detected heterozygous deletions and duplications with a specificity of 50% across 4813 genes. The ability of CNV-RF to detect clinically relevant CNVs with a high degree of sensitivity along with confirmation using a low-cost quantitative PCR method provides a framework for providing comprehensive NGS-based CNV/single-nucleotide variant detection in a clinical molecular diagnostics laboratory. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  17. A note on variational multiscale methods for high-contrast heterogeneous porous media flows with rough source terms

    KAUST Repository

    Calo, Victor M.

    2011-09-01

    In this short note, we discuss variational multiscale methods for solving porous media flows in high-contrast heterogeneous media with rough source terms. Our objective is to separate, as much as possible, subgrid effects induced by the media properties from those due to heterogeneous source terms. For this reason, enriched coarse spaces designed for high-contrast multiscale problems are used to represent the effects of heterogeneities of the media. Furthermore, rough source terms are captured via auxiliary correction equations that appear in the formulation of variational multiscale methods [23]. These auxiliary equations are localized and one can use additive or multiplicative constructions for the subgrid corrections as discussed in the current paper. Our preliminary numerical results show that one can capture the effects due to both spatial heterogeneities in the coefficients (such as permeability field) and source terms (e.g., due to singular well terms) in one iteration. We test the cases for both smooth source terms and rough source terms and show that with the multiplicative correction, the numerical approximations are more accurate compared to the additive correction. © 2010 Elsevier Ltd.

  18. Variation of strain rate sensitivity index of a superplastic aluminum alloy in different testing methods

    Science.gov (United States)

    Majidi, Omid; Jahazi, Mohammad; Bombardier, Nicolas; Samuel, Ehab

    2017-10-01

    The strain rate sensitivity index, m-value, is being applied as a common tool to evaluate the impact of the strain rate on the viscoplastic behaviour of materials. The m-value, as a constant number, has been frequently taken into consideration for modeling material behaviour in the numerical simulation of superplastic forming processes. However, the impact of the testing variables on the measured m-values has not been investigated comprehensively. In this study, the m-value for a superplastic grade of an aluminum alloy (i.e., AA5083) has been investigated. The conditions and the parameters that influence the strain rate sensitivity for the material are compared with three different testing methods, i.e., monotonic uniaxial tension test, strain rate jump test and stress relaxation test. All tests were conducted at elevated temperature (470°C) and at strain rates up to 0.1 s-1. The results show that the m-value is not constant and is highly dependent on the applied strain rate, strain level and testing method.

  19. A mathematical framework for multiscale science and engineering: the variational multiscale method and interscale transfer operators

    International Nuclear Information System (INIS)

    Shadid, John Nicolas; Lehoucq, Richard B.; Christon, Mark Allen; Slepoy, Alexander; Bochev, Pavel Blagoveston; Collis, Samuel Scott; Wagner, Gregory John

    2004-01-01

    Existing approaches in multiscale science and engineering have evolved from a range of ideas and solutions that are reflective of their original problem domains. As a result, research in multiscale science has followed widely diverse and disjoint paths, which presents a barrier to cross pollination of ideas and application of methods outside their application domains. The status of the research environment calls for an abstract mathematical framework that can provide a common language to formulate and analyze multiscale problems across a range of scientific and engineering disciplines. In such a framework, critical common issues arising in multiscale problems can be identified, explored and characterized in an abstract setting. This type of overarching approach would allow categorization and clarification of existing models and approximations in a landscape of seemingly disjoint, mutually exclusive and ad hoc methods. More importantly, such an approach can provide context for both the development of new techniques and their critical examination. As with any new mathematical framework, it is necessary to demonstrate its viability on problems of practical importance. At Sandia, lab-centric, prototype application problems in fluid mechanics, reacting flows, magnetohydrodynamics (MHD), shock hydrodynamics and materials science span an important subset of DOE Office of Science applications and form an ideal proving ground for new approaches in multiscale science.

  20. A New Calculation Method of Dynamic Kill Fluid Density Variation during Deep Water Drilling

    Directory of Open Access Journals (Sweden)

    Honghai Fan

    2017-01-01

    Full Text Available There are plenty of uncertainties and enormous challenges in deep water drilling due to complicated shallow flow and deep strata of high temperature and pressure. This paper investigates density of dynamic kill fluid and optimum density during the kill operation process in which dynamic kill process can be divided into two stages, that is, dynamic stable stage and static stable stage. The dynamic kill fluid consists of a single liquid phase and different solid phases. In addition, liquid phase is a mixture of water and oil. Therefore, a new method in calculating the temperature and pressure field of deep water wellbore is proposed. The paper calculates the changing trend of kill fluid density under different temperature and pressure by means of superposition method, nonlinear regression, and segment processing technique. By employing the improved model of kill fluid density, deep water kill operation in a well is investigated. By comparison, the calculated density results are in line with the field data. The model proposed in this paper proves to be satisfactory in optimizing dynamic kill operations to ensure the safety in deep water.

  1. Quantum statistical field theory an introduction to Schwinger's variational method with Green's function nanoapplications, graphene and superconductivity

    CERN Document Server

    Morgenstern Horing, Norman J

    2017-01-01

    This book provides an introduction to the methods of coupled quantum statistical field theory and Green's functions. The methods of coupled quantum field theory have played a major role in the extensive development of nonrelativistic quantum many-particle theory and condensed matter physics. This introduction to the subject is intended to facilitate delivery of the material in an easily digestible form to advanced undergraduate physics majors at a relatively early stage of their scientific development. The main mechanism to accomplish this is the early introduction of variational calculus and the Schwinger Action Principle, accompanied by Green's functions. Important achievements of the theory in condensed matter and quantum statistical physics are reviewed in detail to help develop research capability. These include the derivation of coupled field Green's function equations-of-motion for a model electron-hole-phonon system, extensive discussions of retarded, thermodynamic and nonequilibrium Green's functions...

  2. A variation of the Davis-Smith method for in-flight determination of spacecraft magnetic fields.

    Science.gov (United States)

    Belcher, J. W.

    1973-01-01

    A variation of a procedure developed by Davis and Smith (1968) is presented for the in-flight determination of spacecraft magnetic fields. Both methods take statistical advantage of the observation that fluctuations in the interplanetary magnetic field over short periods of time are primarily changes in direction rather than in magnitude. During typical solar wind conditions between 0.8 and 1.0 AU, a statistical analysis of 2-3 days of continuous interplanetary field measurements yields an estimate of a constant spacecraft field with an uncertainty of plus or minus 0.25 gamma in the direction radial to the sun and plus or minus 15 gammas in the directions transverse to the radial. The method is also of use in estimating variable spacecraft fields with gradients of the order of 0.1 gamma/day and less and in other special circumstances.

  3. Electrochemical and mass variation behaviour of rhodium oxide electrodes prepared by the polymeric precursor method

    International Nuclear Information System (INIS)

    Santos, M.C.; Oliveira, R.T.S.; Pereira, E.C.; Bulhoes, L.O.S.

    2005-01-01

    This paper describes an investigation of the charging processes of Rh 2 O 3 electrodes in acidic medium using Electrochemical Quartz Crystal Microbalance. The Rh 2 O 3 was prepared by the Pechini method. The microstructural characterization of the rhodium oxide was performed using Scanning Electron Microscopy and the structure was determined by X-ray diffraction. The Rh 2 O 3 oxidizes at potentials higher than 0.8 V. A mass loss of 60 ng was observed during the anodic sweep. The same amount is gained during the cathodic sweep indicating that the process is reversible. From the mass versus charge plots a slope of 8.5 g mol -1 is calculated. Considering a process that involves a two-electron transfer, the oxidation of Rh 2 O 3 to RhO 2 with the loss of a water molecule (18 g mol -1 ) is proposed

  4. Fitting of two and three variate polynomials from experimental data through the least squares method

    International Nuclear Information System (INIS)

    Sanchez-Miro, J.J.; Sanz-Martin, J.C.

    1994-01-01

    Obtaining polynomial fittings from observational data in two and three dimensions is an interesting and practical task. Such an arduous problem suggests the development of an automatic code. The main novelty we provide lies in the generalization of the classical least squares method in three FORTRAN 77 programs usable in any sampling problem. Furthermore, we introduce the orthogonal 2D-Legendre function in the fitting process. These FORTRAN 77 programs are equipped with the options to calculate the approximation quality standard indicators, obviously generalized to two and three dimensions (correlation nonlinear factor, confidence intervals, cuadratic mean error, and so on). The aim of this paper is to rectify the absence of fitting algorithms for more than one independent variable in mathematical libraries

  5. Cycle-Based Cluster Variational Method for Direct and Inverse Inference

    Science.gov (United States)

    Furtlehner, Cyril; Decelle, Aurélien

    2016-08-01

    Large scale inference problems of practical interest can often be addressed with help of Markov random fields. This requires to solve in principle two related problems: the first one is to find offline the parameters of the MRF from empirical data (inverse problem); the second one (direct problem) is to set up the inference algorithm to make it as precise, robust and efficient as possible. In this work we address both the direct and inverse problem with mean-field methods of statistical physics, going beyond the Bethe approximation and associated belief propagation algorithm. We elaborate on the idea that loop corrections to belief propagation can be dealt with in a systematic way on pairwise Markov random fields, by using the elements of a cycle basis to define regions in a generalized belief propagation setting. For the direct problem, the region graph is specified in such a way as to avoid feed-back loops as much as possible by selecting a minimal cycle basis. Following this line we are led to propose a two-level algorithm, where a belief propagation algorithm is run alternatively at the level of each cycle and at the inter-region level. Next we observe that the inverse problem can be addressed region by region independently, with one small inverse problem per region to be solved. It turns out that each elementary inverse problem on the loop geometry can be solved efficiently. In particular in the random Ising context we propose two complementary methods based respectively on fixed point equations and on a one-parameter log likelihood function minimization. Numerical experiments confirm the effectiveness of this approach both for the direct and inverse MRF inference. Heterogeneous problems of size up to 10^5 are addressed in a reasonable computational time, notably with better convergence properties than ordinary belief propagation.

  6. The feasibility of using explicit method for linear correction of the particle size variation using NIR Spectroscopy combined with PLS2regression method

    Science.gov (United States)

    Yulia, M.; Suhandy, D.

    2018-03-01

    NIR spectra obtained from spectral data acquisition system contains both chemical information of samples as well as physical information of the samples, such as particle size and bulk density. Several methods have been established for developing calibration models that can compensate for sample physical information variations. One common approach is to include physical information variation in the calibration model both explicitly and implicitly. The objective of this study was to evaluate the feasibility of using explicit method to compensate the influence of different particle size of coffee powder in NIR calibration model performance. A number of 220 coffee powder samples with two different types of coffee (civet and non-civet) and two different particle sizes (212 and 500 µm) were prepared. Spectral data was acquired using NIR spectrometer equipped with an integrating sphere for diffuse reflectance measurement. A discrimination method based on PLS-DA was conducted and the influence of different particle size on the performance of PLS-DA was investigated. In explicit method, we add directly the particle size as predicted variable results in an X block containing only the NIR spectra and a Y block containing the particle size and type of coffee. The explicit inclusion of the particle size into the calibration model is expected to improve the accuracy of type of coffee determination. The result shows that using explicit method the quality of the developed calibration model for type of coffee determination is a little bit superior with coefficient of determination (R2) = 0.99 and root mean square error of cross-validation (RMSECV) = 0.041. The performance of the PLS2 calibration model for type of coffee determination with particle size compensation was quite good and able to predict the type of coffee in two different particle sizes with relatively high R2 pred values. The prediction also resulted in low bias and RMSEP values.

  7. Variation of ratio kinetic profiles as a simple and novel spectrophotometric method for the simultaneous kinetic analysis of binary mixtures

    Directory of Open Access Journals (Sweden)

    Naseri Abdolhossein

    2012-01-01

    Full Text Available In this paper, a new and very simple kinetic - spectrophotometric method is developed for the simultaneous determination of binary mixtures without prior separational steps. The method is based on the calculation of the variation of ratio kinetic profiles. The mathematical explanation of the procedure is also illustrated. The proposed method can be used for simultaneous determination of two analytes A and B that react with the same reagent to give the same absorbing species. In order to evaluate the applicability of the method, a model data as well as an experimental data were tested. The results from experimental data relating to the simultaneous spectrophotometric determination of Co (II and V (IV based on their oxidation reactions with Fe (III in the presence 1, 10- Phenanthroline (Phen in micellar media were presented as a real model for resolution of the binary systems. The applicability of the method in tap water and synthesized alloy samples was also assessed by spiking experiments with different amount of Co (II and V (IV.

  8. Methods for identifying SNP interactions: a review on variations of Logic Regression, Random Forest and Bayesian logistic regression.

    Science.gov (United States)

    Chen, Carla Chia-Ming; Schwender, Holger; Keith, Jonathan; Nunkesser, Robin; Mengersen, Kerrie; Macrossan, Paula

    2011-01-01

    Due to advancements in computational ability, enhanced technology and a reduction in the price of genotyping, more data are being generated for understanding genetic associations with diseases and disorders. However, with the availability of large data sets comes the inherent challenges of new methods of statistical analysis and modeling. Considering a complex phenotype may be the effect of a combination of multiple loci, various statistical methods have been developed for identifying genetic epistasis effects. Among these methods, logic regression (LR) is an intriguing approach incorporating tree-like structures. Various methods have built on the original LR to improve different aspects of the model. In this study, we review four variations of LR, namely Logic Feature Selection, Monte Carlo Logic Regression, Genetic Programming for Association Studies, and Modified Logic Regression-Gene Expression Programming, and investigate the performance of each method using simulated and real genotype data. We contrast these with another tree-like approach, namely Random Forests, and a Bayesian logistic regression with stochastic search variable selection.

  9. Determining mineralogical variations of aeolian deposits using thermal infrared emissivity and linear deconvolution methods

    Science.gov (United States)

    Hubbard, Bernard E.; Hooper, Donald M.; Solano, Federico; Mars, John C.

    2018-01-01

    We apply linear deconvolution methods to derive mineral and glass proportions for eight field sample training sites at seven dune fields: (1) Algodones, California; (2) Big Dune, Nevada; (3) Bruneau, Idaho; (4) Great Kobuk Sand Dunes, Alaska; (5) Great Sand Dunes National Park and Preserve, Colorado; (6) Sunset Crater, Arizona; and (7) White Sands National Monument, New Mexico. These dune fields were chosen because they represent a wide range of mineral grain mixtures and allow us to gauge a better understanding of both compositional and sorting effects within terrestrial and extraterrestrial dune systems. We also use actual ASTER TIR emissivity imagery to map the spatial distribution of these minerals throughout the seven dune fields and evaluate the effects of degraded spectral resolution on the accuracy of mineral abundances retrieved. Our results show that hyperspectral data convolutions of our laboratory emissivity spectra outperformed multispectral data convolutions of the same data with respect to the mineral, glass and lithic abundances derived. Both the number and wavelength position of spectral bands greatly impacts the accuracy of linear deconvolution retrieval of feldspar proportions (e.g. K-feldspar vs. plagioclase) especially, as well as the detection of certain mafic and carbonate minerals. In particular, ASTER mapping results show that several of the dune sites display patterns such that less dense minerals typically have higher abundances near the center of the active and most evolved dunes in the field, while more dense minerals and glasses appear to be more abundant along the margins of the active dune fields.

  10. Determining mineralogical variations of aeolian deposits using thermal infrared emissivity and linear deconvolution methods

    Science.gov (United States)

    Hubbard, Bernard E.; Hooper, Donald M.; Solano, Federico; Mars, John C.

    2018-02-01

    We apply linear deconvolution methods to derive mineral and glass proportions for eight field sample training sites at seven dune fields: (1) Algodones, California; (2) Big Dune, Nevada; (3) Bruneau, Idaho; (4) Great Kobuk Sand Dunes, Alaska; (5) Great Sand Dunes National Park and Preserve, Colorado; (6) Sunset Crater, Arizona; and (7) White Sands National Monument, New Mexico. These dune fields were chosen because they represent a wide range of mineral grain mixtures and allow us to gauge a better understanding of both compositional and sorting effects within terrestrial and extraterrestrial dune systems. We also use actual ASTER TIR emissivity imagery to map the spatial distribution of these minerals throughout the seven dune fields and evaluate the effects of degraded spectral resolution on the accuracy of mineral abundances retrieved. Our results show that hyperspectral data convolutions of our laboratory emissivity spectra outperformed multispectral data convolutions of the same data with respect to the mineral, glass and lithic abundances derived. Both the number and wavelength position of spectral bands greatly impacts the accuracy of linear deconvolution retrieval of feldspar proportions (e.g. K-feldspar vs. plagioclase) especially, as well as the detection of certain mafic and carbonate minerals. In particular, ASTER mapping results show that several of the dune sites display patterns such that less dense minerals typically have higher abundances near the center of the active and most evolved dunes in the field, while more dense minerals and glasses appear to be more abundant along the margins of the active dune fields.

  11. A center-median filtering method for detection of temporal variation in coronal images

    Directory of Open Access Journals (Sweden)

    Plowman Joseph

    2016-01-01

    Full Text Available Events in the solar corona are often widely separated in their timescales, which can allow them to be identified when they would otherwise be confused with emission from other sources in the corona. Methods for cleanly separating such events based on their timescales are thus desirable for research in the field. This paper develops a technique for identifying time-varying signals in solar coronal image sequences which is based on a per-pixel running median filter and an understanding of photon-counting statistics. Example applications to “EIT waves” (named after EIT, the EUV Imaging Telescope on the Solar and Heliospheric Observatory and small-scale dynamics are shown, both using 193 Å data from the Atmospheric Imaging Assembly (AIA on the Solar Dynamics Observatory. The technique is found to discriminate EIT waves more cleanly than the running and base difference techniques most commonly used. It is also demonstrated that there is more signal in the data than is commonly appreciated, finding that the waves can be traced to the edge of the AIA field of view when the data are rebinned to increase the signal-to-noise ratio.

  12. Intraocular pressure in a cohort of healthy eastern European schoolchildren: variations in method and corneal thickness

    Science.gov (United States)

    2012-01-01

    Background Intraocular pressure (IOP) in the developing eye of a child is not always easy to measure and there is no technique that is known to be the most accurate for the young eye. Measurements are needed on many cohorts of children with different tonometers to determine how the values correlate between instruments, whether corneal parameters affect readings and whether correlations between age and IOP values can be discerned. The aim of this study was to undertake a comparative analysis of three different tonometers on a group of healthy children to see whether differences exist and whether these may be related to central corneal thickness and/or radius of curvature. In addition, the study adds to the relatively small body of literature on IOP in the growing eye which will collectively allow trends to be identified and ultimately norms to be established. Methods IOP was measured on 115 eyes in a group of Polish children, aged between 5–17 years (mean ± standard deviation [SD] 11.3 ± 3.0 years) using three different tonometers: non-contact (NCT), the ICare and Goldmann applanation (GAT). Readings obtained were compared between instruments and with central corneal thickness and radius of curvature. Results The ICare tonometer provided statistically higher IOP values (16.9 ± 3.4 mmHg) than the GAT (14.7 ± 2.9 mmHg) regardless of corneal thickness and whether or not a correction factor was applied. A correlation was found between central corneal thickness (CCT) and IOP values obtained with all three tonometers but only the IOP values detected with the ICare tonometer showed a statistically significant correlation with radius of curvature (p < 0.004). No correlations with age or gender were found for IOP values measured with any of the instruments. Conclusions IOP measurements on children vary significantly between instruments and correlations are affected by the corneal thickness. Further studies on children are needed to determine which

  13. Intraocular pressure in a cohort of healthy eastern European schoolchildren: variations in method and corneal thickness

    Directory of Open Access Journals (Sweden)

    Krzyżanowska-Berkowska Patrycja

    2012-12-01

    Full Text Available Abstract Background Intraocular pressure (IOP in the developing eye of a child is not always easy to measure and there is no technique that is known to be the most accurate for the young eye. Measurements are needed on many cohorts of children with different tonometers to determine how the values correlate between instruments, whether corneal parameters affect readings and whether correlations between age and IOP values can be discerned. The aim of this study was to undertake a comparative analysis of three different tonometers on a group of healthy children to see whether differences exist and whether these may be related to central corneal thickness and/or radius of curvature. In addition, the study adds to the relatively small body of literature on IOP in the growing eye which will collectively allow trends to be identified and ultimately norms to be established. Methods IOP was measured on 115 eyes in a group of Polish children, aged between 5–17 years (mean ± standard deviation [SD] 11.3 ± 3.0 years using three different tonometers: non-contact (NCT, the ICare and Goldmann applanation (GAT. Readings obtained were compared between instruments and with central corneal thickness and radius of curvature. Results The ICare tonometer provided statistically higher IOP values (16.9 ± 3.4 mmHg than the GAT (14.7 ± 2.9 mmHg regardless of corneal thickness and whether or not a correction factor was applied. A correlation was found between central corneal thickness (CCT and IOP values obtained with all three tonometers but only the IOP values detected with the ICare tonometer showed a statistically significant correlation with radius of curvature (p  Conclusions IOP measurements on children vary significantly between instruments and correlations are affected by the corneal thickness. Further studies on children are needed to determine which instrument is most appropriate and to derive a normative IOP scale for the growing eye.

  14. Critical study of the dispersive n- 90Zr mean field by means of a new variational method

    Science.gov (United States)

    Mahaux, C.; Sartor, R.

    1994-02-01

    A new variational method is developed for the construction of the dispersive nucleon-nucleus mean field at negative and positive energies. Like the variational moment approach that we had previously proposed, the new method only uses phenomenological optical-model potentials as input. It is simpler and more flexible than the previous approach. It is applied to a critical investigation of the n- 90Zr mean field between -25 and +25 MeV. This system is of particular interest because conflicting results had recently been obtained by two different groups. While the imaginary parts of the phenomenological optical-model potentials provided by these two groups are similar, their real parts are quite different. Nevertheless, we demonstrate that these two sets of phenomenological optical-model potentials are both compatible with the dispersion relation which connects the real and imaginary parts of the mean field. Previous hints to the contrary, by one of the two other groups, are shown to be due to unjustified approximations. A striking outcome of the present study is that it is important to explicitly introduce volume absorption in the dispersion relation, although volume absorption is negligible in the energy domain investigated here. Because of the existence of two sets of phenomenological optical-model potentials, our variational method yields two dispersive mean fields whose real parts are quite different at small or negative energies. No preference for one of the two dispersive mean fields can be expressed on purely empirical grounds since they both yield fair agreement with the experimental cross sections as well as with the observed energies of the bound single-particle states. However, we argue that one of these two mean fields is physically more meaningful, because the radial shape of its Hartree-Fock type component is independent of energy, as expected on theoretical grounds. This preferred mean field is very close to the one which had been obtained by the Ohio

  15. The method of separation for evolutionary spectral density estimation of multi-variate and multi-dimensional non-stationary stochastic processes

    KAUST Repository

    Schillinger, Dominik; Stefanov, Dimitar; Stavrev, Atanas

    2013-01-01

    -variate geometric imperfection models from strongly narrow-band measurements in I-beams and cylindrical shells. Finally, the application of the method of separation based estimates for the stochastic buckling analysis of the example structures is briefly discussed

  16. A variational numerical method based on finite elements for the nonlinear solution characteristics of the periodically forced Chen system

    Science.gov (United States)

    Khan, Sabeel M.; Sunny, D. A.; Aqeel, M.

    2017-09-01

    Nonlinear dynamical systems and their solutions are very sensitive to initial conditions and therefore need to be approximated carefully. In this article, we present and analyze nonlinear solution characteristics of the periodically forced Chen system with the application of a variational method based on the concept of finite time-elements. Our approach is based on the discretization of physical time space into finite elements where each time-element is mapped to a natural time space. The solution of the system is then determined in natural time space using a set of suitable basis functions. The numerical algorithm is presented and implemented to compute and analyze nonlinear behavior at different time-step sizes. The obtained results show an excellent agreement with the classical RK-4 and RK-5 methods. The accuracy and convergence of the method is shown by comparing numerically computed results with the exact solution for a test problem. The presented method has shown a great potential in dealing with the solutions of nonlinear dynamical systems and thus can be utilized in delineating different features and characteristics of their solutions.

  17. The structure of carbon black-elastomer composites by small-angle neutron scattering and the method of contrast variation

    International Nuclear Information System (INIS)

    Hjelm, R.P.; Wampler, W.; Gerspacher, M.

    1996-01-01

    We have been exploring the use of small-angle neutron scattering and the method of contrast variation to give a new look at a very old problem: reinforcement of elastomers by carbon black in durable rubber products. Carbon black has a hierarchy of structures consisting of particles covalently bound into aggregates, which in turn associate by weak interactions into agglomerates. We found that in one carbon black, HSA, the aggregates are rodlike, containing an average of 4-6 particles. The aggregates have an outer graphitic shell and an inner core of lower density carbon. The core is continuous throughout the carbon black aggregate. Contrast variation of swollen HSA-polyisoprene gels shows that the HSA is completely embedded in polyisoprene and that the agglomerates are formed predominantly by end on associations of the rodlike aggregates. The surface structure of the carbon black appears smooth over length scales above about 10 angstrom. Further studies using production carbon blacks suggest that these structural characteristics are generally present in commercial rubber composites

  18. Solid hydrogen and deuterium. I. Ground-state energy calculated by a lowest order constrained-variation method

    International Nuclear Information System (INIS)

    Pettersen, G.; Oestgaard, E.

    1988-01-01

    The ground-state energy of solid hydrogen and deuterium is calculated by means of a modified variational lowest order constrained-variation (LOCV) method. Both fcc and hcp H 2 and D 2 are considered, and the calculations are done for five different two-body potentials. For solid H 2 we obtain theoretical results for the ground-state binding energy per particle from -74.9 K at an equilibrium particle density of 0.700 σ -3 or a molar volume of 22.3 cm 3 /mole to -91.3 K at a particle density of 0.725 σ -3 or a molar volume of 21.5 cm 3 /mole, where σ = 2.958 A. The corresponding experimental result is -92.3 K at a particle density of 0.688 σ -3 or a molar volume of 22.7 cm 3 /mole. For solid D 2 we obtain theoretical results for the ground-state binding energy per particle from -125.7 K at an equilibrium particle density of 0.830 σ -3 or a molar volume of 18.8 cm 3 /mole to -140.1 K at a particle density of 0.843 σ -3 or a molar volume of 18.5 cm 3 /mole. The corresponding experimental result is -137.9 K at a particle density of 0.797 σ -3 or a molar volume of 19.6 cm 3 /mole

  19. New successive variational method of tensor-optimized antisymmetrized molecular dynamics for nuclear many-body systems

    Science.gov (United States)

    Myo, Takayuki; Toki, Hiroshi; Ikeda, Kiyomi; Horiuchi, Hisashi; Suhara, Tadahiro

    2017-07-01

    We recently proposed a new variational theory of “tensor-optimized antisymmetrized molecular dynamics” (TOAMD), which treats the strong interaction explicitly for finite nuclei [T. Myo et al., Prog. Theor. Exp. Phys. 2015, 073D02 (2015)]. In TOAMD, the correlation functions for the tensor force and the short-range repulsion and their multiple products are successively operated to the AMD state. The correlated Hamiltonian is expanded into many-body operators by using the cluster expansion and all the resulting operators are taken into account in the calculation without any truncation. We show detailed results for TOAMD with the nucleon-nucleon interaction AV8‧ for s-shell nuclei. The binding energy and the Hamiltonian components are successively converged to exact values of the few-body calculations. We also apply TOAMD to the Malfliet-Tjon central potential having a strong short-range repulsion. TOAMD can treat the short-range correlation and provided accurate energies of s-shell nuclei, reproducing the results of few-body calculations. It turns out that the numerical accuracy of TOAMD with double products of the correlation functions is beyond the variational Monte Carlo method with Jastrow's product-type correlation functions.

  20. Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: method and comparison with synthesis inversion

    Directory of Open Access Journals (Sweden)

    J. F. Meirink

    2008-11-01

    Full Text Available A four-dimensional variational (4D-Var data assimilation system for inverse modelling of atmospheric methane emissions is presented. The system is based on the TM5 atmospheric transport model. It can be used for assimilating large volumes of measurements, in particular satellite observations and quasi-continuous in-situ observations, and at the same time it enables the optimization of a large number of model parameters, specifically grid-scale emission rates. Furthermore, the variational method allows to estimate uncertainties in posterior emissions. Here, the system is applied to optimize monthly methane emissions over a 1-year time window on the basis of surface observations from the NOAA-ESRL network. The results are rigorously compared with an analogous inversion by Bergamaschi et al. (2007, which was based on the traditional synthesis approach. The posterior emissions as well as their uncertainties obtained in both inversions show a high degree of consistency. At the same time we illustrate the advantage of 4D-Var in reducing aggregation errors by optimizing emissions at the grid scale of the transport model. The full potential of the assimilation system is exploited in Meirink et al. (2008, who use satellite observations of column-averaged methane mixing ratios to optimize emissions at high spatial resolution, taking advantage of the zooming capability of the TM5 model.

  1. Numerical doubly-periodic solution of the (2+1)-dimensional Boussinesq equation with initial conditions by the variational iteration method

    International Nuclear Information System (INIS)

    Inc, Mustafa

    2007-01-01

    In this Letter, a scheme is developed to study numerical doubly-periodic solutions of the (2+1)-dimensional Boussinesq equation with initial condition by the variational iteration method. As a result, the approximate and exact doubly-periodic solutions are obtained. For different modulus m, comparison between the approximate solution and the exact solution is made graphically, revealing that the variational iteration method is a powerful and effective tool to non-linear problems

  2. Calculus of variations

    CERN Document Server

    Elsgolc, L E; Stark, M

    1961-01-01

    Calculus of Variations aims to provide an understanding of the basic notions and standard methods of the calculus of variations, including the direct methods of solution of the variational problems. The wide variety of applications of variational methods to different fields of mechanics and technology has made it essential for engineers to learn the fundamentals of the calculus of variations. The book begins with a discussion of the method of variation in problems with fixed boundaries. Subsequent chapters cover variational problems with movable boundaries and some other problems; sufficiency

  3. Theoretical study of annealed proton-exchanged Nd $LiNbO_{3}$ channel waveguide lasers with variational method

    CERN Document Server

    De Long Zhang; Yuan Guo Xie; Guilan, Ding; Yuming, Cui; Cai He Chen

    2001-01-01

    The controllable fabrication parameters, including anneal time, initial exchange time, channel width, dependences of TM/sub 00/ mode size, corresponding effective refractive index, effective pump area, and coupling efficiency between pump and laser modes in z-cut annealed proton-exchanged (APE) Nd:LiNbO/sub 3/ channel waveguide lasers were studied by using variational method. The effect of channel width on the surface index increment and the waveguide depth was taken into account. The features of mode size and effective refractive index were summarized, discussed, and compared with previously published experimental results. The effective pump area, which is directly proportional to threshold pump power, increases strongly, slightly, and very slightly with the increase of anneal time, channel width, and initial exchange time, respectively. However, the coupling efficiency, which is directly proportional to slope efficiency, remains constant (around 0.82) no matter what changes made to these parameters. The var...

  4. Electronic structure simulation of chromium aluminum oxynitride by discrete variational-X{alpha} method and X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Youngmin; Chang, Hyunju; Lee, Jae Do [Korea Research Inst. of Chemical Technology, Taejon (Korea); Kim, Eunah; No, Kwangsoo [Korea Advanced Inst. of Science and Technology, Taejon (Korea)

    2002-09-01

    We use a first-principles discrete variational (DV)-X{alpha} method to investigate the electronic structure of chromium aluminum oxynitride. When nitrogen is substituted for oxygen in the Cr-Al-O system, the N2p level appears in the energy range between O2p and Cr3d levels. Consequently, the valence band of chromium aluminum oxynitride becomes broader and the band gap becomes smaller than that of chromium aluminum oxide, which is consistent with the photoelectron spectra for the valence band using X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). We expect that this valence band structure of chromium aluminum oxynitride will modify the transmittance slope which is a requirement for photomask application. (author)

  5. The Study of Radio Flux Density Variations of the Quasar OJ 287 by the Wavelet and the Singular Spectrum Methods

    Directory of Open Access Journals (Sweden)

    Donskykh Ganna

    2016-06-01

    Full Text Available Flux density variations of the extragalactic radio source OJ 287 are studied by applying the wavelet and the singular spectrum methods to the long-term monitoring data at 14.5, 8.0 and 4.8 GHz acquired at the University of Michigan Radio Astronomy Observatory during 40 years. This monitoring significantly supplements the episodic VLBI data. The wavelet analysis at all three frequencies revealed the presence of quasiperiods within the intervals 6.0–7.4 and 1.2–1.8 years. The singular spectrum analysis revealed the presence of quasiperiods within the intervals 6–10 and 1.6–4.0 years. For each quasiperiod the time interval of its existence was determined.

  6. Electronic structure simulation of chromium aluminum oxynitride by discrete variational-Xα method and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Choi, Youngmin; Chang, Hyunju; Lee, Jae Do; Kim, Eunah; No, Kwangsoo

    2002-01-01

    We use a first-principles discrete variational (DV)-Xα method to investigate the electronic structure of chromium aluminum oxynitride. When nitrogen is substituted for oxygen in the Cr-Al-O system, the N2p level appears in the energy range between O2p and Cr3d levels. Consequently, the valence band of chromium aluminum oxynitride becomes broader and the band gap becomes smaller than that of chromium aluminum oxide, which is consistent with the photoelectron spectra for the valence band using X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). We expect that this valence band structure of chromium aluminum oxynitride will modify the transmittance slope which is a requirement for photomask application. (author)

  7. Application of EOF/PCA-based methods in the post-processing of GRACE derived water variations

    Science.gov (United States)

    Forootan, Ehsan; Kusche, Jürgen

    2010-05-01

    Two problems that users of monthly GRACE gravity field solutions face are 1) the presence of correlated noise in the Stokes coefficients that increases with harmonic degree and causes ‘striping', and 2) the fact that different physical signals are overlaid and difficult to separate from each other in the data. These problems are termed the signal-noise separation problem and the signal-signal separation problem. Methods that are based on principal component analysis and empirical orthogonal functions (PCA/EOF) have been frequently proposed to deal with these problems for GRACE. However, different strategies have been applied to different (spatial: global/regional, spectral: global/order-wise, geoid/equivalent water height) representations of the GRACE level 2 data products, leading to differing results and a general feeling that PCA/EOF-based methods are to be applied ‘with care'. In addition, it is known that conventional EOF/PCA methods force separated modes to be orthogonal, and that, on the other hand, to either EOFs or PCs an arbitrary orthogonal rotation can be applied. The aim of this paper is to provide a common theoretical framework and to study the application of PCA/EOF-based methods as a signal separation tool due to post-process GRACE data products. In order to investigate and illustrate the applicability of PCA/EOF-based methods, we have employed them on GRACE level 2 monthly solutions based on the Center for Space Research, University of Texas (CSR/UT) RL04 products and on the ITG-GRACE03 solutions from the University of Bonn, and on various representations of them. Our results show that EOF modes do reveal the dominating annual, semiannual and also long-periodic signals in the global water storage variations, but they also show how choosing different strategies changes the outcome and may lead to unexpected results.

  8. Reform-based science teaching: A mixed-methods approach to explaining variation in secondary science teacher practice

    Science.gov (United States)

    Jetty, Lauren E.

    The purpose of this two-phase, sequential explanatory mixed-methods study was to understand and explain the variation seen in secondary science teachers' enactment of reform-based instructional practices. Utilizing teacher socialization theory, this mixed-methods analysis was conducted to determine the relative influence of secondary science teachers' characteristics, backgrounds and experiences across their teacher development to explain the range of teaching practices exhibited by graduates from three reform-oriented teacher preparation programs. Data for this study were obtained from the Investigating the Meaningfulness of Preservice Programs Across the Continuum of Teaching (IMPPACT) Project, a multi-university, longitudinal study funded by NSF. In the first quantitative phase of the study, data for the sample (N=120) were collected from three surveys from the IMPPACT Project database. Hierarchical multiple regression analysis was used to examine the separate as well as the combined influence of factors such as teachers' personal and professional background characteristics, beliefs about reform-based science teaching, feelings of preparedness to teach science, school context, school culture and climate of professional learning, and influences of the policy environment on the teachers' use of reform-based instructional practices. Findings indicate three blocks of variables, professional background, beliefs/efficacy, and local school context added significant contribution to explaining nearly 38% of the variation in secondary science teachers' use of reform-based instructional practices. The five variables that significantly contributed to explaining variation in teachers' use of reform-based instructional practices in the full model were, university of teacher preparation, sense of preparation for teaching science, the quality of professional development, science content focused professional, and the perceived level of professional autonomy. Using the results

  9. Bias Correction Methods Explain Much of the Variation Seen in Breast Cancer Risks of BRCA1/2 Mutation Carriers.

    Science.gov (United States)

    Vos, Janet R; Hsu, Li; Brohet, Richard M; Mourits, Marian J E; de Vries, Jakob; Malone, Kathleen E; Oosterwijk, Jan C; de Bock, Geertruida H

    2015-08-10

    Recommendations for treating patients who carry a BRCA1/2 gene are mainly based on cumulative lifetime risks (CLTRs) of breast cancer determined from retrospective cohorts. These risks vary widely (27% to 88%), and it is important to understand why. We analyzed the effects of methods of risk estimation and bias correction and of population factors on CLTRs in this retrospective clinical cohort of BRCA1/2 carriers. The following methods to estimate the breast cancer risk of BRCA1/2 carriers were identified from the literature: Kaplan-Meier, frailty, and modified segregation analyses with bias correction consisting of including or excluding index patients combined with including or excluding first-degree relatives (FDRs) or different conditional likelihoods. These were applied to clinical data of BRCA1/2 families derived from our family cancer clinic for whom a simulation was also performed to evaluate the methods. CLTRs and 95% CIs were estimated and compared with the reference CLTRs. CLTRs ranged from 35% to 83% for BRCA1 and 41% to 86% for BRCA2 carriers at age 70 years width of 95% CIs: 10% to 35% and 13% to 46%, respectively). Relative bias varied from -38% to +16%. Bias correction with inclusion of index patients and untested FDRs gave the smallest bias: +2% (SD, 2%) in BRCA1 and +0.9% (SD, 3.6%) in BRCA2. Much of the variation in breast cancer CLTRs in retrospective clinical BRCA1/2 cohorts is due to the bias-correction method, whereas a smaller part is due to population differences. Kaplan-Meier analyses with bias correction that includes index patients and a proportion of untested FDRs provide suitable CLTRs for carriers counseled in the clinic. © 2015 by American Society of Clinical Oncology.

  10. Solid hydrogen and deuterium. II. Pressure and compressibility calculated by a lowest-order constrained-variation method

    International Nuclear Information System (INIS)

    Pettersen, G.; Ostgaard, E.

    1988-01-01

    The pressure and the compressibility of solid H 2 and D 2 are obtained from ground-state energies calculated by means of a modified variational lowest order constrained-variation (LOCV) method. Both fcc and hcp structures are considered, but results are given for the fcc structure only. The pressure and the compressibility are calculated or estimated from the dependence of the ground-state energy on density or molar volume, generally in a density region of 0.65σ -3 to 1.3σ -3 , corresponding to a molar volume of 0.65σ -3 to 1.3σ -3 , corresponding to a molar volume of 12-24 cm 3 mole, where σ = 2.958 angstrom, and the calculations are done for five different two-body potentials. Theoretical results for the pressure are 340-460 atm for solid H 2 at a particle density of 0.82σ -3 or a molar volume of 19 cm 3 /mole, and 370-490 atm for solid 4 He at a particle density of 0.92σ -3 or a molar volume of 17 cm 3 /mole. The corresponding experimental results are 650 and 700 atm, respectively. Theoretical results for the compressibility are 210 times 10 -6 to 260 times 10 -6 atm -1 for solid H 2 at a particle density of 0.82σ -3 or a molar volume of 19 cm 3 /mole, and 150 times 10 -6 to 180 times 10 -6 atm -1 for solid D 2 at a particle density of 0.92σ -3 or a molar volume of 17 cm 3 mole. The corresponding experimental results are 180 times 10 -6 and 140 times 10 -6 atm -1 , respectively. The agreement with experimental results is better for higher densities

  11. An accurate method for quantifying and analyzing copy number variation in porcine KIT by an oligonucleotide ligation assay

    Directory of Open Access Journals (Sweden)

    Cho In-Cheol

    2007-11-01

    Full Text Available Abstract Background Aside from single nucleotide polymorphisms, copy number variations (CNVs are the most important factors in susceptibility to genetic disorders because they affect expression levels of genes. In previous studies, pyrosequencing, mini-sequencing, real-time PCR, invader assays and other techniques have been used to detect CNVs. However, the higher the copy number in a genome, the more difficult it is to resolve the copies, so a more accurate method for measuring CNVs and assigning genotype is needed. Results PCR followed by a quantitative oligonucleotide ligation assay (qOLA was developed for quantifying CNVs. The accuracy and precision of the assay were evaluated for porcine KIT, which was selected as a model locus. Overall, the root mean squares of bias and standard deviation of qOLA were 2.09 and 0.45, respectively. These values are less than half of those in the published pyrosequencing assay for analyzing CNV in porcine KIT. Using a combined method of qOLA and another pyrosequencing for quantitative analysis of KIT copies with spliced forms, we confirmed the segregation of KIT alleles in 145 F1 animals with pedigree information and verified the correct assignment of genotypes. In a diagnostic test on 100 randomly sampled commercial pigs, there was perfect agreement between the genotypes obtained by grouping observations on a scatter plot and by clustering using the nearest centroid sorting method implemented in PROC FASTCLUS of the SAS package. In a test on 159 Large White pigs, there were only two discrepancies between genotypes assigned by the two clustering methods (98.7% agreement, confirming that the quantitative ligation assay established here makes genotyping possible through the accurate measurement of high KIT copy numbers (>4 per diploid genome. Moreover, the assay is sensitive enough for use on DNA from hair follicles, indicating that DNA from various sources could be used. Conclusion We have established a high

  12. Research on choices of methods of internet of things pricing based on variation of perceived value of service

    Directory of Open Access Journals (Sweden)

    Wei Li

    2013-03-01

    Full Text Available Purpose: With the rapid progress of Internet of Things technology, the information service of IoT has got unprecedented development, and plays an increasingly important role in real life. For the increasing demand of information service, the pricing of information service becomes more important. This paper aims to analyze the strategic options and payoff function between information provider and intermediaries based on Stackelberg game. Firstly, we describe information service delivery method based on the Internet of Things specific function. Secondly, we calculate the consumer demand for the information service. Finally, we explain two kinds of strategic options by the game theory, and then discuss the optimal pricing method of information services based on profit maximization.Design/methodology/approach: To achieve this objective, Considering the consumer perceived value of Internet of Things Service changing, we establish a Stackelberg model in which the supplier is the leader followed by the middleman. Then, we compare the advantages of using individual pricing with that of bundling pricing.Findings: The results show that whether information providers adopt bundling pricing strategy or individual pricing strategy depends on the cost of perception equipment, if information providers want to adopt individual pricing strategy, the variation of consumers’ perception value of information services must meet certain conditions.Research limitations/implications: the providers make price for the information service, in addition to continuously improve the quality of information service, it also devotes resources to tapping and understanding market information, such as the sensor device price, the variation of perception value of information services and so on, so as to create competitive advantage. This paper is just a preliminary model, it does not take into account the effect of mixed bundling.Originality/value: In this research, a new model for

  13. A method for the fast estimation of a battery entropy-variation high-resolution curve - Application on a commercial LiFePO4/graphite cell

    Science.gov (United States)

    Damay, Nicolas; Forgez, Christophe; Bichat, Marie-Pierre; Friedrich, Guy

    2016-11-01

    The entropy-variation of a battery is responsible for heat generation or consumption during operation and its prior measurement is mandatory for developing a thermal model. It is generally done through the potentiometric method which is considered as a reference. However, it requires several days or weeks to get a look-up table with a 5 or 10% SoC (State of Charge) resolution. In this study, a calorimetric method based on the inversion of a thermal model is proposed for the fast estimation of a nearly continuous curve of entropy-variation. This is achieved by separating the heats produced while charging and discharging the battery. The entropy-variation is then deduced from the extracted entropic heat. The proposed method is validated by comparing the results obtained with several current rates to measurements made with the potentiometric method.

  14. Calculus of variations

    CERN Document Server

    Elsgolc, Lev D

    2007-01-01

    This concise text offers both professionals and students an introduction to the fundamentals and standard methods of the calculus of variations. In addition to surveys of problems with fixed and movable boundaries, it explores highly practical direct methods for the solution of variational problems.Topics include the method of variation in problems with fixed boundaries; variational problems with movable boundaries and other problems; sufficiency conditions for an extremum; variational problems of constrained extrema; and direct methods of solving variational problems. Each chapter features nu

  15. An Efficient Power Regeneration and Drive Method of an Induction Motor by Means of an Optimal Torque Derived by Variational Method

    Science.gov (United States)

    Inoue, Kaoru; Ogata, Kenji; Kato, Toshiji

    When the motor speed is reduced by using a regenerative brake, the mechanical energy of rotation is converted to the electrical energy. When the regenerative torque is large, the corresponding current increases so that the copper loss also becomes large. On the other hand, the damping effect of rotation increases according to the time elapse when the regenerative torque is small. In order to use the limited energy effectively, an optimal regenerative torque should be discussed in order to regenerate electrical energy as much as possible. This paper proposes a design methodology of a regenerative torque for an induction motor to maximize the regenerative electric energy by means of the variational method. Similarly, an optimal torque for acceleration is derived in order to minimize the energy to drive. Finally, an efficient motor drive system with the proposed optimal torque and the power storage system stabilizing the DC link voltage will be proposed. The effectiveness of the proposed methods are illustrated by both simulations and experiments.

  16. BaSnF4 fast ion conductor: Variations versus the method of preparation and anomalous temperature variation of the quadrupole splitting

    International Nuclear Information System (INIS)

    Hantash, Jamil; Bartlett, Alan; Denes, Georges; Muntasar, Abdualhafeed; Oldfield, Philip

    2005-01-01

    A new method of preparation of high performance fluoride ion conductor, BaSnF 4 , by water leaching of newly discovered barium tin(II) chloride fluorides, has been designed, and the materials have been studied and compared to the solid prepared by the usual dry method. The unit-cell parameters and crystallite dimensions were found to vary with the method of preparation. In addition, the crystallite dimensions were found to be highly anisotropic for the samples obtained by the wet method. The Moessbauer spectrum is made of a large tin(II) quadrupole doublet, and a broad tin(IV) oxide peak due to surface oxidation. The tin(II) spectrum is in agreement with covalently bonded tin(II) having a strongly stereoactive lone pair. An unusually high dependence of the quadrupole splitting at low temperatures was observed (5.8 times larger than for α-SnF 2 ).

  17. A Systematic Approach for Computing Zero-Point Energy, Quantum Partition Function, and Tunneling Effect Based on Kleinert's Variational Perturbation Theory.

    Science.gov (United States)

    Wong, Kin-Yiu; Gao, Jiali

    2008-09-09

    of the KP theory is further examined in comparison with results from the traditional Rayleigh-Ritz variational approach and Rayleigh-Schrödinger perturbation theory in wave mechanics. The present method can be used for thermodynamic and quantum dynamic calculations, including to systematically determine the exact value of zero-point energy and to study kinetic isotope effects for chemical reactions in solution and in enzymes.

  18. Using Check-All-That-Apply (CATA) method for determining product temperature-dependent sensory-attribute variations: A case study of cooked rice.

    Science.gov (United States)

    Pramudya, Ragita C; Seo, Han-Seok

    2018-03-01

    Temperatures of most hot or cold meal items change over the period of consumption, possibly influencing sensory perception of those items. Unlike temporal variations in sensory attributes, product temperature-induced variations have not received much attention. Using a Check-All-That-Apply (CATA) method, this study aimed to characterize variations in sensory attributes over a wide range of temperatures at which hot or cold foods and beverages may be consumed. Cooked milled rice, typically consumed at temperatures between 70 and 30°C in many rice-eating countries, was used as a target sample in this study. Two brands of long-grain milled rice were cooked and randomly presented at 70, 60, 50, 40, and 30°C. Thirty-five CATA terms for cooked milled rice were generated. Eighty-eight untrained panelists were asked to quickly select all the CATA terms that they considered appropriate to characterize sensory attributes of cooked rice samples presented at each temperature. Proportions of selection by panelists for 13 attributes significantly differed among the five temperature conditions. "Product temperature-dependent sensory-attribute variations" differed with two brands of milled rice grains. Such variations in sensory attributes, resulted from both product temperature and rice brand, were more pronounced among panelists who more frequently consumed rice. In conclusion, the CATA method can be useful for characterizing "product temperature-dependent sensory attribute variations" in cooked milled-rice samples. Further study is needed to examine whether the CATA method is also effective in capturing "product temperature-dependent sensory-attribute variations" in other hot or cold foods and beverages. Published by Elsevier Ltd.

  19. The method of separation for evolutionary spectral density estimation of multi-variate and multi-dimensional non-stationary stochastic processes

    KAUST Repository

    Schillinger, Dominik

    2013-07-01

    The method of separation can be used as a non-parametric estimation technique, especially suitable for evolutionary spectral density functions of uniformly modulated and strongly narrow-band stochastic processes. The paper at hand provides a consistent derivation of method of separation based spectrum estimation for the general multi-variate and multi-dimensional case. The validity of the method is demonstrated by benchmark tests with uniformly modulated spectra, for which convergence to the analytical solution is demonstrated. The key advantage of the method of separation is the minimization of spectral dispersion due to optimum time- or space-frequency localization. This is illustrated by the calibration of multi-dimensional and multi-variate geometric imperfection models from strongly narrow-band measurements in I-beams and cylindrical shells. Finally, the application of the method of separation based estimates for the stochastic buckling analysis of the example structures is briefly discussed. © 2013 Elsevier Ltd.

  20. A Note on the Semi-Inverse Method and a Variational Principle for the Generalized KdV-mKdV Equation

    Directory of Open Access Journals (Sweden)

    Li Yao

    2013-01-01

    Full Text Available Ji-Huan He systematically studied the inverse problem of calculus of variations. This note reveals that the semi-inverse method also works for a generalized KdV-mKdV equation with nonlinear terms of any orders.

  1. The variational cellular method for quantum mechanical applications : calculations of the ground and excited states of F2 and Ne2 molecules

    International Nuclear Information System (INIS)

    Leite, J.R.; Fazzio, A.; Lima, M.A.P.; Dias, A.M.; Rosato, A.; Segre, E.R.A.

    1980-12-01

    A self-consistent calculation based on the Variational Cellular Method is performed on the F 2 and Ne 2 molecules. The potential curve for the group state and for excited states of these molecules are determined. Spectroscopic constants related to the potential curves are also obtained. (Author) [pt

  2. Variational boundary conditions based on the Nitsche method for fitted and unfitted isogeometric discretizations of the mechanically coupled Cahn-Hilliard equation

    Science.gov (United States)

    Zhao, Ying; Schillinger, Dominik; Xu, Bai-Xiang

    2017-07-01

    The primal variational formulation of the fourth-order Cahn-Hilliard equation requires C1-continuous finite element discretizations, e.g., in the context of isogeometric analysis. In this paper, we explore the variational imposition of essential boundary conditions that arise from the thermodynamic derivation of the Cahn-Hilliard equation in primal variables. Our formulation is based on the symmetric variant of Nitsche's method, does not introduce additional degrees of freedom and is shown to be variationally consistent. In contrast to strong enforcement, the new boundary condition formulation can be naturally applied to any mapped isogeometric parametrization of any polynomial degree. In addition, it preserves full accuracy, including higher-order rates of convergence, which we illustrate for boundary-fitted discretizations of several benchmark tests in one, two and three dimensions. Unfitted Cartesian B-spline meshes constitute an effective alternative to boundary-fitted isogeometric parametrizations for constructing C1-continuous discretizations, in particular for complex geometries. We combine our variational boundary condition formulation with unfitted Cartesian B-spline meshes and the finite cell method to simulate chemical phase segregation in a composite electrode. This example, involving coupling of chemical fields with mechanical stresses on complex domains and coupling of different materials across complex interfaces, demonstrates the flexibility of variational boundary conditions in the context of higher-order unfitted isogeometric discretizations.

  3. Generalized Hartree-Fock method for electron-atom scattering

    International Nuclear Information System (INIS)

    Rosenberg, L.

    1997-01-01

    In the widely used Hartree-Fock procedure for atomic structure calculations, trial functions in the form of linear combinations of Slater determinants are constructed and the Rayleigh-Ritz minimum principle is applied to determine the best in that class. A generalization of this approach, applicable to low-energy electron-atom scattering, is developed here. The method is based on a unique decomposition of the scattering wave function into open- and closed-channel components, so chosen that an approximation to the closed-channel component may be obtained by adopting it as a trial function in a minimum principle, whose rigor can be maintained even when the target wave functions are imprecisely known. Given a closed-channel trial function, the full scattering function may be determined from the solution of an effective one-body Schroedinger equation. Alternatively, in a generalized Hartree-Fock approach, the minimum principle leads to coupled integrodifferential equations to be satisfied by the basis functions appearing in a Slater-determinant representation of the closed-channel wave function; it also provides a procedure for optimizing the choice of nonlinear parameters in a variational determination of these basis functions. Inclusion of additional Slater determinants in the closed-channel trial function allows for systematic improvement of that function, as well as the calculated scattering parameters, with the possibility of spurious singularities avoided. Electron-electron correlations can be important in accounting for long-range forces and resonances. These correlation effects can be included explicitly by suitable choice of one component of the closed-channel wave function; the remaining component may then be determined by the generalized Hartree-Fock procedure. As a simple test, the method is applied to s-wave scattering of positrons by hydrogen. copyright 1997 The American Physical Society

  4. Estimation of biological variation and reference change value of glycated hemoglobin (HbA(1c)) when two analytical methods are used.

    Science.gov (United States)

    Ucar, Fatma; Erden, Gonul; Ginis, Zeynep; Ozturk, Gulfer; Sezer, Sevilay; Gurler, Mukaddes; Guneyk, Ahmet

    2013-10-01

    Available data on biological variation of HbA1c revealed marked heterogeneity. We therefore investigated and estimated the components of biological variation for HbA1c in a group of healthy individuals by applying a recommended and strictly designed study protocol using two different assay methods. Each month, samples were derived on the same day, for three months. Four EDTA whole blood samples were collected from each individual (20 women, 9 men; 20-45 years of age) and stored at -80°C until analysis. HbA1c values were measured by both high performance liquid chromatography (HPLC) (Shimadzu, Prominence, Japan) and boronate affinity chromatography methods (Trinity Biotech, Premier Hb9210, Ireland). All samples were assayed in duplicate in a single batch for each assay method. Estimations were calculated according to the formulas described by Fraser and Harris. The within subject (CV(I))-between subject (CV(G)) biological variations were 1.17% and 5.58%, respectively for HPLC. The calculated CV(I) and CV(G) were 2.15% and 4.03%, respectively for boronate affinity chromatography. Reference change value (RCV) for HPLC and boronate affinity chromatography was 5.4% and 10.4% respectively and individuality index of HbA(1c) was 0.35 and 0.93 respectively. This study for the first time described the components of biological variation for HbA1c in healthy individuals by two different assay methods. Obtained findings showed that the difference between CV(A) values of the methods might considerably affect RCV. These data regarding biological variation of HbA(1c) could be useful for a better evaluation of HbA(1c) test results in clinical interpretation. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  5. Application of low background liquid scintillation counting method to pharmacy. Variation of endogenous 14C in human urine

    International Nuclear Information System (INIS)

    Horie, Masanobu; Yanagi, Mashiho; Baba, Shigeo; Kato, Yuka; Yoshimura, Tomoyuki

    2010-01-01

    The intra-day, inter-day and individual variations in endogenous 14 C radioactivity of human urine were studied by use of 5 mL urine. The endogenous 14 C radioactivity of human urine is relatively constant (approximately 1.5 dpm/mL urine). In order to eliminate the effect of endogenous 40 K it is of the greatest importance to count 14 C signal with the optimal window. Since these variations are relatively small, we can estimate correctly the net 14 C activity from the BG value of the same time zone of the day before dosing. (author)

  6. The effects of variations in dose and method of administration on glucagon like peptide-2 activity in the rat

    DEFF Research Database (Denmark)

    Kaji, Tatsuru; Tanaka, Hiroaki; Holst, Jens Juul

    2008-01-01

    Glucagon-like peptide-2 (GLP-2) is a potent, intestinal-specific trophic hormone. However, the relationship between the dose and timing of GLP-2 administration and these trophic effects is not clear. We investigated the effects of variations in the dose and timing of GLP-2 administration on its...

  7. Inter-laboratory variation in in vitro gas production profiles of some selected feeds, using both manual and automated methods

    NARCIS (Netherlands)

    Rymer, C.; Williams, B.A.; Brooks, A.E.; Davies, D.R.; Givens, D.I.

    2005-01-01

    A study was conducted to estimate variation among laboratories and between manual and automated techniques of measuring pressure on the resulting gas production profiles (GPP). Eight feeds (molassed sugarbeet feed, grass silage, maize silage, soyabean hulls, maize gluten feed, whole crop wheat

  8. Short-term variations in core surface flow resolved from an improved method of calculating observatory monthly means

    Science.gov (United States)

    Olsen, Nils; Whaler, Kathryn A.; Finlay, Christopher C.

    2014-05-01

    Monthly means of the magnetic field measurements taken by ground observatories are a useful data source for studying temporal changes of the core magnetic field and the underlying core flow. However, the usual way of calculating monthly means as the arithmetic mean of all days (geomagnetic quiet as well as disturbed) and all local times (day and night) may result in contributions from external (magnetospheric and ionospheric) origin in the (ordinary, omm) monthly means. Such contamination makes monthly means less favourable for core studies. We calculated revised monthly means (rmm), and their uncertainties, from observatory hourly means using robust means and after removal of external field predictions, using an improved method for characterising the magnetospheric ring current. The utility of the new method for calculating observatory monthly means is demonstrated by inverting their first differences for core surface advective flows. The flow is assumed steady over three consecutive months to ensure uniqueness; the effects of more rapid changes should be attenuated by the weakly conducting mantle. Observatory data are inverted directly for a regularised core flow, rather than deriving it from a secular variation spherical harmonic model. The main field is specified by the CHAOS-4 model. Data from up to 128 observatories between 1997 and 2013 were used to calculate 185 flow models from the omm and rmm, for each possible set of three consecutive months. The full 3x3 (non-diagonal) data covariance matrix was used, and two-norm (least squares) minimisation performed. We are able to fit the data to the target (weighted) misfit of 1, for both omm and rmm inversions, provided we incorporate the full data covariance matrix, and produce consistent, plausible flows. Fits are better for rmm flows. The flows exhibit noticeable changes over timescales of a few months. However, they follow rapid excursions in the omm that we suspect result from external field contamination

  9. 《像丽思酒店一样大的钻石》之商业伦理叙事%The Narrative of Business Ethics in The Diamond as Big as the Ritz

    Institute of Scientific and Technical Information of China (English)

    王广

    2017-01-01

    菲茨杰拉德的短篇小说《像丽思酒店一样大的钻石》讲述了一段奇幻的传奇冒险故事,但却并非不关注社会现实.在小说绚丽的文字和狂野的想象之下,蕴藏着作者对当时美国社会商业伦理的映射、洞察与评判.小说分别以约翰·昂戈和华盛顿家族的故事线为纲,重点聚焦于两个伦理问题,即人与财富的纠葛关系和保守商业秘密引发的伦理困境.同时,作者依托情节、语言、叙述渗透、结局设计等手段或明或暗地表达了自己的伦理评判;总体而言,小说的伦理评判表现出一种既批判又神往的双重性,反映出作者在伦理上的双重人格.%Fitzgerald`s short story The Diamond as Big as the Ritz is a fantasy of bizarre romance and adventure;however, it is not without social concerns.Under the lyrical words and wild imagination is hidden the author`s representation of, insight into, and judgment upon the American business ethics of his time.The story focuses on two ethical issues-the entangled relation between man and wealth, and the ethical dilemma induced by keeping business secrets-through the respective story lines of John T.Unger and the Washington family.Meanwhile, the author expresses, overtly or covertly, his ethical judgment by means of plot, language, narrative penetration, and ending design.Generally, the story conveys a dualism of criticism and fascination in terms of ethical judgment, reflecting the author`s dual personality in ethics.

  10. A quasi-experimental design based on regional variations: discussion of a method for evaluating outcomes of medical practice

    DEFF Research Database (Denmark)

    Loft, A; Andersen, T F; Madsen, Mette

    1989-01-01

    A large proportion of common medical practices are subject to substantial regional variation resulting in numerous natural experiments. Opportunities are thereby provided for outcome evaluation through quasi-experimental design. If patients treated in different regions were comparable a natural...... experiment involving alternative treatments could be regarded as 'pseudo randomised', but empirical investigations are needed to verify this prerequisite. This paper discusses the role of quasi-experimental designs in assessment of medical care with evaluation of outcomes after hysterectomy in Denmark...... groups are elicited from administrative data. We conclude that it is possible to establish a quasi-experimental design based on regional variations and that the comparability of the groups included may be assessed through registry data. The importance of technology diffusion for the prospects...

  11. Application of a generalisation of the Kohn variational method to the calculation of cross sections for low-energy positron-hydrogen-molecule scattering

    International Nuclear Information System (INIS)

    Armour, E.A.G.

    1984-01-01

    The phaseshift corresponding to the lowest partial wave and the associated approximation to the total cross section are calculated for low-energy positron-hydrogen-molecule scattering using a generalisation of the Kohn variational method. The trial wavefunction is expressed in terms of confocal elliptical coordinates. Except at incident positron energies below about 2 eV, reasonable agreement with experiment is obtained below the positronium formation threshold at 8.63 eV. (author)

  12. Evaluation of the standard normal variate method for Laser-Induced Breakdown Spectroscopy data treatment applied to the discrimination of painting layers

    Science.gov (United States)

    Syvilay, D.; Wilkie-Chancellier, N.; Trichereau, B.; Texier, A.; Martinez, L.; Serfaty, S.; Detalle, V.

    2015-12-01

    Nowadays, Laser-Induced Breakdown Spectroscopy (LIBS) is frequently used for in situ analyses to identify pigments from mural paintings. Nonetheless, in situ analyses require a robust instrumentation in order to face to hard experimental conditions. This may imply variation of fluencies and thus inducing variation of LIBS signal, which degrades spectra and then results. Usually, to overcome these experimental errors, LIBS signal is processed. Signal processing methods most commonly used are the baseline subtraction and the normalization by using a spectral line. However, the latter suggests that this chosen element is a constant component of the material, which may not be the case in paint layers organized in stratigraphic layers. For this reason, it is sometimes difficult to apply this normalization. In this study, another normalization will be carried out to throw off these signal variations. Standard normal variate (SNV) is a normalization designed for these conditions. It is sometimes implemented in Diffuse Reflectance Infrared Fourier Transform Spectroscopy and in Raman Spectroscopy but rarely in LIBS. The SNV transformation is not newly applied on LIBS data, but for the first time the effect of SNV on LIBS spectra was evaluated in details (energy of laser, shot by shot, quantification). The aim of this paper is the quick visualization of the different layers of a stratigraphic painting sample by simple data representations (3D or 2D) after SNV normalization. In this investigation, we showed the potential power of SNV transformation to overcome undesired LIBS signal variations but also its limit of application. This method appears as a promising way to normalize LIBS data, which may be interesting for in-situ depth analyses.

  13. Hybrid Proximal-Point Methods for Zeros of Maximal Monotone Operators, Variational Inequalities and Mixed Equilibrium Problems

    Directory of Open Access Journals (Sweden)

    Kriengsak Wattanawitoon

    2011-01-01

    Full Text Available We prove strong and weak convergence theorems of modified hybrid proximal-point algorithms for finding a common element of the zero point of a maximal monotone operator, the set of solutions of equilibrium problems, and the set of solution of the variational inequality operators of an inverse strongly monotone in a Banach space under different conditions. Moreover, applications to complementarity problems are given. Our results modify and improve the recently announced ones by Li and Song (2008 and many authors.

  14. Influence of variation of etching conditions on the sensitivity of PADC detectors with a new evaluation method

    International Nuclear Information System (INIS)

    Fiechtner-Scharrer, A.; Mayer, S.; Boschung, M.; Whitelaw, A.

    2011-01-01

    At the Paul Scherrer Institut, a personal neutron dosimetry system based on chemically etched poly allyl diglycol carbonate (PADC) detectors and an automatic track counting (Autoscan 60) for neutron dose evaluations has been in routine use since 1998. Today, the hardware and the software of the Autoscan 60 are out of date, no spare components are available anymore and more sophisticated image-analysis systems are already developed. Therefore, a new evaluation system, the 'TASLIMAGE', was tested thoroughly in 2009 for linearity, reproducibility, influence of etching conditions and so forth, with the intention of replacing the Autoscan 60 in routine evaluations. The TASLIMAGE system is based on a microscope (high-quality Nikon optics) and an ultra-fast three-axis motorised control for scanning the detectors. In this paper, the TASLIMAGE system and its possibilities for neutron dose calculation are explained in more detail and the study of the influence of the variation of etching conditions on the sensitivity and background of the PADC detectors is described. The etching temperature and etching duration were varied, which showed that the etching conditions do not have a significant influence on the results of non-irradiated detectors. However, the sensitivity of irradiated detectors decreases by 5 % per 1 deg. C when increasing the etching temperature. For the variation of the etching duration, the influence on the sensitivity of irradiated detectors is less pronounced. (authors)

  15. Method of determining the variation of concentration of the potential alpha energy of radon daughters with time without changing the filter

    International Nuclear Information System (INIS)

    Feddersen, C.

    1979-01-01

    Considering the drawbacks of sample measurement of radon daughter concentration or potential alpha energy concentration, a method is described allowing to determine the variation with time of the measuring quantities mentioned. For this purpose, the same filter is exposed in defined time intervals and the decay curve is evaluated using Markov's method. Residual activity of preceding measurements is estimated as a function of the density of measuring points. A practicable technique is given for taking into account residual activity together with the background. An apparatus consisting of commercial devices and special accessories of own manufacture is described. The results obtained with this apparatus are illustrated and discussed using two examples. (author)

  16. The finite element method scheme for a solution of an evolution variational inequality with a nonlocal space operator

    Science.gov (United States)

    Glazyrina, O. V.; Pavlova, M. F.

    2016-11-01

    We consider the parabolic inequality with monotone with respect to a gradient space operator, which is depended on integral with respect to space variables solution characteristic. We construct a two-layer differential scheme for this problem with use of penalty method, semidiscretization with respect to time variable method and the finite element method (FEM) with respect to space variables. We proved a convergence of constructed mothod.

  17. Strong correlation in acene sheets from the active-space variational two-electron reduced density matrix method: effects of symmetry and size.

    Science.gov (United States)

    Pelzer, Kenley; Greenman, Loren; Gidofalvi, Gergely; Mazziotti, David A

    2011-06-09

    Polyaromatic hydrocarbons (PAHs) are a class of organic molecules with importance in several branches of science, including medicine, combustion chemistry, and materials science. The delocalized π-orbital systems in PAHs require highly accurate electronic structure methods to capture strong electron correlation. Treating correlation in PAHs has been challenging because (i) traditional wave function methods for strong correlation have not been applicable since they scale exponentially in the number of strongly correlated orbitals, and (ii) alternative methods such as the density-matrix renormalization group and variational two-electron reduced density matrix (2-RDM) methods have not been applied beyond linear acene chains. In this paper we extend the earlier results from active-space variational 2-RDM theory [Gidofalvi, G.; Mazziotti, D. A. J. Chem. Phys. 2008, 129, 134108] to the more general two-dimensional arrangement of rings--acene sheets--to study the relationship between geometry and electron correlation in PAHs. The acene-sheet calculations, if performed with conventional wave function methods, would require wave function expansions with as many as 1.5 × 10(17) configuration state functions. To measure electron correlation, we employ several RDM-based metrics: (i) natural-orbital occupation numbers, (ii) the 1-RDM von Neumann entropy, (iii) the correlation energy per carbon atom, and (iv) the squared Frobenius norm of the cumulant 2-RDM. The results confirm a trend of increasing polyradical character with increasing molecular size previously observed in linear PAHs and reveal a corresponding trend in two-dimensional (arch-shaped) PAHs. Furthermore, in PAHs of similar size they show significant variations in correlation with geometry. PAHs with the strictly linear geometry (chains) exhibit more electron correlation than PAHs with nonlinear geometries (sheets).

  18. Local Fractional Variational Iteration and Decomposition Methods for Wave Equation on Cantor Sets within Local Fractional Operators

    Directory of Open Access Journals (Sweden)

    Dumitru Baleanu

    2014-01-01

    Full Text Available We perform a comparison between the fractional iteration and decomposition methods applied to the wave equation on Cantor set. The operators are taken in the local sense. The results illustrate the significant features of the two methods which are both very effective and straightforward for solving the differential equations with local fractional derivative.

  19. Understanding Variation in Treatment Effects in Education Impact Evaluations: An Overview of Quantitative Methods. NCEE 2014-4017

    Science.gov (United States)

    Schochet, Peter Z.; Puma, Mike; Deke, John

    2014-01-01

    This report summarizes the complex research literature on quantitative methods for assessing how impacts of educational interventions on instructional practices and student learning differ across students, educators, and schools. It also provides technical guidance about the use and interpretation of these methods. The research topics addressed…

  20. Measurement method for determining the magnetic hysteresis effects of reluctance actuators by evaluation of the force and flux variation

    NARCIS (Netherlands)

    Vrijsen, N.H.; Jansen, J.W.; Compter, J.C.; Lomonova, E.

    2013-01-01

    A measurement method is presented which identifies the magnetic hysteresis effects present in the force of linear reluctance actuators. The measurement method is applied to determine the magnetic hysteresis in the force of an E-core reluctance actuator, with and without pre-biasing permanent magnet.

  1. Trends and regional variations in provision of contraception methods in a commercially insured population in the United States based on nationally proposed measures.

    Science.gov (United States)

    Law, A; Yu, J S; Wang, W; Lin, J; Lynen, R

    2017-09-01

    Three measures to assess the provision of effective contraception methods among reproductive-aged women have recently been endorsed for national public reporting. Based on these measures, this study examined real-world trends and regional variations of contraceptive provision in a commercially insured population in the United States. Women 15-44years old with continuous enrollment in each year from 2005 to 2014 were identified from a commercial claims database. In accordance with the proposed measures, percentages of women (a) provided most effective or moderately effective (MEME) methods of contraception and (b) provided a long-acting reversible contraceptive (LARC) method were calculated in two populations: women at risk for unintended pregnancy and women who had a live birth within 3 and 60days of delivery. During the 10-year period, the percentages of women at risk for unintended pregnancy provided MEME contraceptive methods increased among 15-20-year-olds (24.5%-35.9%) and 21-44-year-olds (26.2%-31.5%), and those provided a LARC method also increased among 15-20-year-olds (0.1%-2.4%) and 21-44-year-olds (0.8%-3.9%). Provision of LARC methods increased most in the North Central and West among both age groups of women. Provision of MEME contraceptives and LARC methods to women who had a live birth within 60days postpartum also increased across age groups and regions. This assessment indicates an overall trend of increasing provision of MEME contraceptive methods in the commercial sector, albeit with age group and regional variations. If implemented, these proposed measures may have impacts on health plan contraceptive access policy. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Investigating the Variation of Volatile Compound Composition in Maotai-Flavoured Liquor During Its Multiple Fermentation Steps Using Statistical Methods

    Directory of Open Access Journals (Sweden)

    Zheng-Yun Wu

    2016-01-01

    Full Text Available The use of multiple fermentations is one of the most specific characteristics of Maotai-flavoured liquor production. In this research, the variation of volatile composition of Maotai-flavoured liquor during its multiple fermentations is investigated using statistical approaches. Cluster analysis shows that the obtained samples are grouped mainly according to the fermentation steps rather than the distillery they originate from, and the samples from the first two fermentation steps show the greatest difference, suggesting that multiple fermentation and distillation steps result in the end in similar volatile composition of the liquor. Back-propagation neural network (BNN models were developed that satisfactorily predict the number of fermentation steps and the organoleptic evaluation scores of liquor samples from their volatile compositions. Mean impact value (MIV analysis shows that ethyl lactate, furfural and some high-boiling-point acids play important roles, while pyrazine contributes much less to the improvement of the flavour and taste of Maotai-flavoured liquor during its production. This study contributes to further understanding of the mechanisms of Maotai-flavoured liquor production.

  3. Configuring calendar variation based on time series regression method for forecasting of monthly currency inflow and outflow in Central Java

    Science.gov (United States)

    Setiawan, Suhartono, Ahmad, Imam Safawi; Rahmawati, Noorgam Ika

    2015-12-01

    Bank Indonesia (BI) as the central bank of Republic Indonesiahas a single overarching objective to establish and maintain rupiah stability. This objective could be achieved by monitoring traffic of inflow and outflow money currency. Inflow and outflow are related to stock and distribution of money currency around Indonesia territory. It will effect of economic activities. Economic activities of Indonesia,as one of Moslem country, absolutely related to Islamic Calendar (lunar calendar), that different with Gregorian calendar. This research aims to forecast the inflow and outflow money currency of Representative Office (RO) of BI Semarang Central Java region. The results of the analysis shows that the characteristics of inflow and outflow money currency influenced by the effects of the calendar variations, that is the day of Eid al-Fitr (moslem holyday) as well as seasonal patterns. In addition, the period of a certain week during Eid al-Fitr also affect the increase of inflow and outflow money currency. The best model based on the value of the smallestRoot Mean Square Error (RMSE) for inflow data is ARIMA model. While the best model for predicting the outflow data in RO of BI Semarang is ARIMAX model or Time Series Regression, because both of them have the same model. The results forecast in a period of 2015 shows an increase of inflow money currency happened in August, while the increase in outflow money currency happened in July.

  4. Asian couples in negotiation: a mixed-method observational study of cultural variations across five Asian regions.

    Science.gov (United States)

    Lee, Wai-Yung; Nakamura, Shin-Ichi; Chung, Moon Ja; Chun, Young Ju; Fu, Meng; Liang, Shu-Chuan; Liu, Cui-Lian

    2013-09-01

    The purpose of this study was to explore variations in how contemporary couples from five different Asian regions negotiate disagreements. Video recordings of 50 couples (10 each from Japan, Korea, Mainland China, Taiwan, and Hong Kong) discussing unresolved disagreements provided raw data for quantitative and qualitative analyses. First, teams of coders from each region used a common protocol to make quantitative ratings of content themes and interaction patterns for couples from their own region. An interregional panel of investigators then performed in-depth qualitative reviews for half of these cases, noting cultural differences not only in observed patterns of couple behavior but also in their own perceptions of these patterns. Both quantitative and qualitative analyses revealed clear regional differences on dimensions such as overt negativity, demand-withdraw interaction, and collaboration. The qualitative results also provided a richer, more nuanced view of other (e.g., gender-linked) conflict management patterns that the quantitative analyses did not capture. Inconsistencies between qualitative and quantitative data and between the qualitative observations of investigators from different regions were most pronounced for couples from Korea and Japan, whose conflict styles were subtler and less direct than those of couples from the other regions. © FPI, Inc.

  5. Variations Method to Solve Terminal Problems for the Second Order Systems of Canonical Form with State Constraints

    Directory of Open Access Journals (Sweden)

    T. S. Kasatkina

    2015-01-01

    Full Text Available Terminal control problem with fixed finite time for the second order affine systems with state constraints is considered. A solution of such terminal problem is suggested for the systems with scalar control of regular canonical form.In this article it is shown that the initial terminal problem is equivalent to the problem of auxiliary function search. This function should satisfy some conditions. Such function design consists of two stages. The first stage includes search of function which corresponds the solution of the terminal control problem without state constraints. This function is designed as polynom of the fifth power which depends on time variable. Coefficients of the polynom are defined by boundary conditions. The second stage includes modification of designed function if corresponding to that function trajectory is not satisfied constraints. Modification process is realized by adding to the current function supplementary polynom. Influence of that polynom handles by variation of a parameter value. Modification process can include a few iterations. After process termination continuous control is found. This control is the solution of the initial terminal prUsing presented scheme the terminal control problem for system, which describes oscillations of the mathematical pendulum, is solved. This approach can be used for the solution of terminal control problems with state constraints for affine systems with multi-dimensional control.

  6. Spatial and temporal variation of water quality of a segment of Marikina River using multivariate statistical methods.

    Science.gov (United States)

    Chounlamany, Vanseng; Tanchuling, Maria Antonia; Inoue, Takanobu

    2017-09-01

    Payatas landfill in Quezon City, Philippines, releases leachate to the Marikina River through a creek. Multivariate statistical techniques were applied to study temporal and spatial variations in water quality of a segment of the Marikina River. The data set included 12 physico-chemical parameters for five monitoring stations over a year. Cluster analysis grouped the monitoring stations into four clusters and identified January-May as dry season and June-September as wet season. Principal components analysis showed that three latent factors are responsible for the data set explaining 83% of its total variance. The chemical oxygen demand, biochemical oxygen demand, total dissolved solids, Cl - and PO 4 3- are influenced by anthropogenic impact/eutrophication pollution from point sources. Total suspended solids, turbidity and SO 4 2- are influenced by rain and soil erosion. The highest state of pollution is at the Payatas creek outfall from March to May, whereas at downstream stations it is in May. The current study indicates that the river monitoring requires only four stations, nine water quality parameters and testing over three specific months of the year. The findings of this study imply that Payatas landfill requires a proper leachate collection and treatment system to reduce its impact on the Marikina River.

  7. Evaluation of quantitative imaging methods for organ activity and residence time estimation using a population of phantoms having realistic variations in anatomy and uptake

    International Nuclear Information System (INIS)

    He Bin; Du Yong; Segars, W. Paul; Wahl, Richard L.; Sgouros, George; Jacene, Heather; Frey, Eric C.

    2009-01-01

    Estimating organ residence times is an essential part of patient-specific dosimetry for radioimmunotherapy (RIT). Quantitative imaging methods for RIT are often evaluated using a single physical or simulated phantom but are intended to be applied clinically where there is variability in patient anatomy, biodistribution, and biokinetics. To provide a more relevant evaluation, the authors have thus developed a population of phantoms with realistic variations in these factors and applied it to the evaluation of quantitative imaging methods both to find the best method and to demonstrate the effects of these variations. Using whole body scans and SPECT/CT images, organ shapes and time-activity curves of 111In ibritumomab tiuxetan were measured in dosimetrically important organs in seven patients undergoing a high dose therapy regimen. Based on these measurements, we created a 3D NURBS-based cardiac-torso (NCAT)-based phantom population. SPECT and planar data at realistic count levels were then simulated using previously validated Monte Carlo simulation tools. The projections from the population were used to evaluate the accuracy and variation in accuracy of residence time estimation methods that used a time series of SPECT and planar scans. Quantitative SPECT (QSPECT) reconstruction methods were used that compensated for attenuation, scatter, and the collimator-detector response. Planar images were processed with a conventional (CPlanar) method that used geometric mean attenuation and triple-energy window scatter compensation and a quantitative planar (QPlanar) processing method that used model-based compensation for image degrading effects. Residence times were estimated from activity estimates made at each of five time points. The authors also evaluated hybrid methods that used CPlanar or QPlanar time-activity curves rescaled to the activity estimated from a single QSPECT image. The methods were evaluated in terms of mean relative error and standard deviation of the

  8. A variational multi-scale method with spectral approximation of the sub-scales: Application to the 1D advection-diffusion equations

    KAUST Repository

    Chacó n Rebollo, Tomá s; Dia, Ben Mansour

    2015-01-01

    This paper introduces a variational multi-scale method where the sub-grid scales are computed by spectral approximations. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. This allows to element-wise calculate the sub-grid scales by means of the associated spectral expansion. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a finite number of modes. We apply this general framework to the convection-diffusion equation, by analytically computing the family of eigenfunctions. We perform a convergence and error analysis. We also present some numerical tests that show the stability of the method for an odd number of spectral modes, and an improvement of accuracy in the large resolved scales, due to the adding of the sub-grid spectral scales.

  9. An extended algebraic variational multiscale-multigrid-multifractal method (XAVM4) for large-eddy simulation of turbulent two-phase flow

    Science.gov (United States)

    Rasthofer, U.; Wall, W. A.; Gravemeier, V.

    2018-04-01

    A novel and comprehensive computational method, referred to as the eXtended Algebraic Variational Multiscale-Multigrid-Multifractal Method (XAVM4), is proposed for large-eddy simulation of the particularly challenging problem of turbulent two-phase flow. The XAVM4 involves multifractal subgrid-scale modeling as well as a Nitsche-type extended finite element method as an approach for two-phase flow. The application of an advanced structural subgrid-scale modeling approach in conjunction with a sharp representation of the discontinuities at the interface between two bulk fluids promise high-fidelity large-eddy simulation of turbulent two-phase flow. The high potential of the XAVM4 is demonstrated for large-eddy simulation of turbulent two-phase bubbly channel flow, that is, turbulent channel flow carrying a single large bubble of the size of the channel half-width in this particular application.

  10. A variational multi-scale method with spectral approximation of the sub-scales: Application to the 1D advection-diffusion equations

    KAUST Repository

    Chacón Rebollo, Tomás

    2015-03-01

    This paper introduces a variational multi-scale method where the sub-grid scales are computed by spectral approximations. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. This allows to element-wise calculate the sub-grid scales by means of the associated spectral expansion. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a finite number of modes. We apply this general framework to the convection-diffusion equation, by analytically computing the family of eigenfunctions. We perform a convergence and error analysis. We also present some numerical tests that show the stability of the method for an odd number of spectral modes, and an improvement of accuracy in the large resolved scales, due to the adding of the sub-grid spectral scales.

  11. A new nonlinear blind source separation method with chaos indicators for decoupling diagnosis of hybrid failures: A marine propulsion gearbox case with a large speed variation

    International Nuclear Information System (INIS)

    Li, Zhixiong; Peng, Z

    2016-01-01

    The normal operation of propulsion gearboxes ensures the ship safety. Chaos indicators could efficiently indicate the state change of the gearboxes. However, accurate detection of gearbox hybrid faults using Chaos indicators is a challenging task and the detection under speed variation conditions is attracting considerable attentions. Literature review suggests that the gearbox vibration is a kind of nonlinear mixture of variant vibration sources and the blind source separation (BSS) is reported to be a promising technique for fault vibration analysis, but very limited work has addressed the nonlinear BSS approach for hybrid faults decoupling diagnosis. Aiming to enhance the fault detection performance of Chaos indicators, this work presents a new nonlinear BSS algorithm for gearbox hybrid faults detection under a speed variation condition. This new method appropriately introduces the kernel spectral regression (KSR) framework into the morphological component analysis (MCA). The original vibration data are projected into the reproducing kernel Hilbert space (RKHS) where the instinct nonlinear structure in the original data can be linearized by KSR. Thus the MCA is able to deal with nonlinear BSS in the KSR space. Reliable hybrid faults decoupling is then achieved by this new nonlinear MCA (NMCA). Subsequently, by calculating the Chaos indicators of the decoupled fault components and comparing them with benchmarks, the hybrid faults can be precisely identified. Two specially designed case studies were implemented to evaluate the proposed NMCA-Chaos method on hybrid gear faults decoupling diagnosis. The performance of the NMCA-Chaos was compared with state of art techniques. The analysis results show high performance of the proposed method on hybrid faults detection in a marine propulsion gearbox with large speed variations.

  12. Assimilation of total lightning data using the three-dimensional variational method at convection-allowing resolution

    Science.gov (United States)

    Zhang, Rong; Zhang, Yijun; Xu, Liangtao; Zheng, Dong; Yao, Wen

    2017-08-01

    A large number of observational analyses have shown that lightning data can be used to indicate areas of deep convection. It is important to assimilate observed lightning data into numerical models, so that more small-scale information can be incorporated to improve the quality of the initial condition and the subsequent forecasts. In this study, the empirical relationship between flash rate, water vapor mixing ratio, and graupel mixing ratio was used to adjust the model relative humidity, which was then assimilated by using the three-dimensional variational data assimilation system of the Weather Research and Forecasting model in cycling mode at 10-min intervals. To find the appropriate assimilation time-window length that yielded significant improvement in both the initial conditions and subsequent forecasts, four experiments with different assimilation time-window lengths were conducted for a squall line case that occurred on 10 July 2007 in North China. It was found that 60 min was the appropriate assimilation time-window length for this case, and longer assimilation window length was unnecessary since no further improvement was present. Forecasts of 1-h accumulated precipitation during the assimilation period and the subsequent 3-h accumulated precipitation were significantly improved compared with the control experiment without lightning data assimilation. The simulated reflectivity was optimal after 30 min of the forecast, it remained optimal during the following 42 min, and the positive effect from lightning data assimilation began to diminish after 72 min of the forecast. Overall, the improvement from lightning data assimilation can be maintained for about 3 h.

  13. The calculation of the contributions to low energy e+H2 scattering from sigma u+ and pion u symmetries using the Kohn variational method

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Baker, D.J.; Plummer, M.

    1990-01-01

    Above incident energies of about 2 eV, the contribution to the total cross section in positron+H2 scattering from the sigma g+ symmetry is insufficient to account for the experimental value. Calculations carried out of the lowest partial waves of sigma u+ symmetry and Pion u symmetry using the Kohn variational method are described. The contributions to the total cross section from the two equivalent partial waves of Pion u symmetry significantly reduce the discrepancy with experiment up to incident energies of 4 to 5 eV. Comparisons are made with recent R-matrix calculations performed by Danby and Tennyson

  14. The calculation of the contributions to low energy e+H2 scattering from sigma u+ and Pion u symmetries using the Kohn variational method

    Science.gov (United States)

    Armour, E. A. G.; Baker, D. J.; Plummer, M.

    1990-01-01

    Above incident energies of about 2 eV, the contribution to the total cross section in positron+H2 scattering from the sigma g+ symmetry is insufficient to account for the experimental value. Calculations carried out of the lowest partial waves of sigma u+ symmetry and Pion u symmetry using the Kohn variational method are described. The contributions to the total cross section from the two equivalent partial waves of Pion u symmetry significantly reduce the discrepancy with experiment up to incident energies of 4 to 5 eV. Comparisons are made with recent R-matrix calculations performed by Danby and Tennyson.

  15. Bias Correction Methods Explain Much of the Variation Seen in Breast Cancer Risks of BRCA1/2 Mutation Carriers

    NARCIS (Netherlands)

    Vos, Janet R.; Hsu, Li; Brohet, Richard M.; Mourits, Marian J. E.; de Vries, Jakob; Malone, Kathleen E.; Oosterwijk, Jan C.; de Bock, Geertruida H.

    2015-01-01

    Purpose Recommendations for treating patients who carry a BRCA1/2 gene are mainly based on cumulative lifetime risks (CLTRs) of breast cancer determined from retrospective cohorts. These risks vary widely (27% to 88%), and it is important to understand why. We analyzed the effects of methods of risk

  16. A variational approach to multi-phase motion of gas, liquid and solid based on the level set method

    Science.gov (United States)

    Yokoi, Kensuke

    2009-07-01

    We propose a simple and robust numerical algorithm to deal with multi-phase motion of gas, liquid and solid based on the level set method [S. Osher, J.A. Sethian, Front propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation, J. Comput. Phys. 79 (1988) 12; M. Sussman, P. Smereka, S. Osher, A level set approach for capturing solution to incompressible two-phase flow, J. Comput. Phys. 114 (1994) 146; J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press, 1999; S. Osher, R. Fedkiw, Level Set Methods and Dynamics Implicit Surface, Applied Mathematical Sciences, vol. 153, Springer, 2003]. In Eulerian framework, to simulate interaction between a moving solid object and an interfacial flow, we need to define at least two functions (level set functions) to distinguish three materials. In such simulations, in general two functions overlap and/or disagree due to numerical errors such as numerical diffusion. In this paper, we resolved the problem using the idea of the active contour model [M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, International Journal of Computer Vision 1 (1988) 321; V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours, International Journal of Computer Vision 22 (1997) 61; G. Sapiro, Geometric Partial Differential Equations and Image Analysis, Cambridge University Press, 2001; R. Kimmel, Numerical Geometry of Images: Theory, Algorithms, and Applications, Springer-Verlag, 2003] introduced in the field of image processing.

  17. When one size does not fit all: a simple statistical method to deal with across-individual variations of effects.

    Science.gov (United States)

    Vindras, Philippe; Desmurget, Michel; Baraduc, Pierre

    2012-01-01

    In science, it is a common experience to discover that although the investigated effect is very clear in some individuals, statistical tests are not significant because the effect is null or even opposite in other individuals. Indeed, t-tests, Anovas and linear regressions compare the average effect with respect to its inter-individual variability, so that they can fail to evidence a factor that has a high effect in many individuals (with respect to the intra-individual variability). In such paradoxical situations, statistical tools are at odds with the researcher's aim to uncover any factor that affects individual behavior, and not only those with stereotypical effects. In order to go beyond the reductive and sometimes illusory description of the average behavior, we propose a simple statistical method: applying a Kolmogorov-Smirnov test to assess whether the distribution of p-values provided by individual tests is significantly biased towards zero. Using Monte-Carlo studies, we assess the power of this two-step procedure with respect to RM Anova and multilevel mixed-effect analyses, and probe its robustness when individual data violate the assumption of normality and homoscedasticity. We find that the method is powerful and robust even with small sample sizes for which multilevel methods reach their limits. In contrast to existing methods for combining p-values, the Kolmogorov-Smirnov test has unique resistance to outlier individuals: it cannot yield significance based on a high effect in one or two exceptional individuals, which allows drawing valid population inferences. The simplicity and ease of use of our method facilitates the identification of factors that would otherwise be overlooked because they affect individual behavior in significant but variable ways, and its power and reliability with small sample sizes (<30-50 individuals) suggest it as a tool of choice in exploratory studies.

  18. When one size does not fit all: a simple statistical method to deal with across-individual variations of effects.

    Directory of Open Access Journals (Sweden)

    Philippe Vindras

    Full Text Available In science, it is a common experience to discover that although the investigated effect is very clear in some individuals, statistical tests are not significant because the effect is null or even opposite in other individuals. Indeed, t-tests, Anovas and linear regressions compare the average effect with respect to its inter-individual variability, so that they can fail to evidence a factor that has a high effect in many individuals (with respect to the intra-individual variability. In such paradoxical situations, statistical tools are at odds with the researcher's aim to uncover any factor that affects individual behavior, and not only those with stereotypical effects. In order to go beyond the reductive and sometimes illusory description of the average behavior, we propose a simple statistical method: applying a Kolmogorov-Smirnov test to assess whether the distribution of p-values provided by individual tests is significantly biased towards zero. Using Monte-Carlo studies, we assess the power of this two-step procedure with respect to RM Anova and multilevel mixed-effect analyses, and probe its robustness when individual data violate the assumption of normality and homoscedasticity. We find that the method is powerful and robust even with small sample sizes for which multilevel methods reach their limits. In contrast to existing methods for combining p-values, the Kolmogorov-Smirnov test has unique resistance to outlier individuals: it cannot yield significance based on a high effect in one or two exceptional individuals, which allows drawing valid population inferences. The simplicity and ease of use of our method facilitates the identification of factors that would otherwise be overlooked because they affect individual behavior in significant but variable ways, and its power and reliability with small sample sizes (<30-50 individuals suggest it as a tool of choice in exploratory studies.

  19. Short-term variations in core surface flow resolved from an improved method of calculating observatory monthly means

    DEFF Research Database (Denmark)

    Olsen, Nils; Whaler, K. A.; Finlay, Chris

    2014-01-01

    Monthly means of the magnetic field measurements taken by ground observatories are a useful data source for studying temporal changes of the core magnetic field and the underlying core flow. However, the usual way of calculating monthly means as the arithmetic mean of all days (geomagnetic quiet...... as well as disturbed) and all local times (day and night) may result in contributions from external (magnetospheric and ionospheric) origin in the (ordinary, omm) monthly means. Such contamination makes monthly means less favourable for core studies. We calculated revised monthly means (rmm......), and their uncertainties, from observatory hourly means using robust means and after removal of external field predictions, using an improved method for characterising the magnetospheric ring current. The utility of the new method for calculating observatory monthly means is demonstrated by inverting their first...

  20. Experimental assessment of the purity of α-cellulose produced by variations of the Brendel method: Implications for stable isotope (δ13C, δ18O) dendroclimatology

    Science.gov (United States)

    Brookman, Tom; Whittaker, Thomas

    2012-09-01

    Stable isotope dendroclimatology using α-cellulose has unique potential to deliver multimillennial-scale, sub-annually resolved, terrestrial climate records. However, lengthy processing and analytical methods often preclude such reconstructions. Variants of the Brendel extraction method have reduced these limitations, providing fast, easy methods of isolating α-cellulose in some species. Here, we investigate application of Standard Brendel (SBrendel) variants to resinous soft-woods by treating samples of kauri (Agathis australis), ponderosa pine (Pinus ponderosa) and huon pine (Lagarastrobus franklinii), varying reaction vessel, temperature, boiling time and reagent volume. Numerous samples were visibly `under-processed' and Fourier Transform infrared spectroscopic (FTIR) investigation showed absorption peaks at 1520 cm-1 and ˜1600 cm-1 in those fibers suggesting residual lignin and retained resin respectively. Replicate analyses of all samples processed at high temperature yielded consistent δ13C and δ18O despite color and spectral variations. Spectra and isotopic data revealed that α-cellulose δ13C can be altered during processing, most likely due to chemical contamination from insufficient acetone removal, but is not systematically affected by methodological variation. Reagent amount, temperature and extraction time all influence δ18O, however, and our results demonstrate that different species may require different processing methods. FTIR prior to isotopic analysis is a fast and cost effective way to determine α-cellulose extract purity. Furthermore, a systematic isotopic test such as we present here can also determine sensitivity of isotopic values to methodological variables. Without these tests, isotopic variability introduced by the method could obscure or `create' climatic signals within a data set.

  1. Variational Monte Carlo Method with Dirichlet Boundary Conditions: Application to the Study of Confined Systems by Impenetrable Surfaces with Different Symmetries.

    Science.gov (United States)

    Sarsa, Antonio; Le Sech, Claude

    2011-09-13

    Variational Monte Carlo method is a powerful tool to determine approximate wave functions of atoms, molecules, and solids up to relatively large systems. In the present work, we extend the variational Monte Carlo approach to study confined systems. Important properties of the atoms, such as the spatial distribution of the electronic charge, the energy levels, or the filling of electronic shells, are modified under confinement. An expression of the energy very similar to the estimator used for free systems is derived. This opens the possibility to study confined systems with little changes in the solution of the corresponding free systems. This is illustrated by the study of helium atom in its ground state (1)S and the first (3)S excited state confined by spherical, cylindrical, and plane impenetrable surfaces. The average interelectronic distances are also calculated. They decrease in general when the confinement is stronger; however, it is seen that they present a minimum for excited states under confinement by open surfaces (cylindrical, planes) around the radii values corresponding to ionization. The ground (2)S and the first (2)P and (2)D excited states of the lithium atom are calculated under spherical constraints for different confinement radii. A crossing between the (2)S and (2)P states is observed around rc = 3 atomic units, illustrating the modification of the atomic energy level under confinement. Finally the carbon atom is studied in the spherical symmetry by using both variational and diffusion Monte Carlo methods. It is shown that the hybridized state sp(3) becomes lower in energy than the ground state (3)P due to a modification and a mixing of the atomic orbitals s, p under strong confinement. This result suggests a model, at least of pedagogical interest, to interpret the basic properties of carbon atom in chemistry.

  2. A Variational Method to Retrieve the Extinction Profile in Liquid Clouds Using Multiple Field-of-View Lidar

    Science.gov (United States)

    Pounder, Nicola L.; Hogan, Robin J.; Varnai, Tamas; Battaglia, Alessandro; Cahalan, Robert F.

    2011-01-01

    While liquid clouds playa very important role in the global radiation budget, it's been very difficult to remotely determine their internal cloud structure. Ordinary lidar instruments (similar to radars but using visible light pulses) receive strong signals from such clouds, but the information is limited to a thin layer near the cloud boundary. Multiple field-of-view (FOV) lidars offer some new hope as they are able to isolate photons that were scattered many times by cloud droplets and penetrated deep into a cloud before returning to the instrument. Their data contains new information on cloud structure, although the lack of fast simulation methods made it challenging to interpret the observations. This paper describes a fast new technique that can simulate multiple-FOV lidar signals and can even estimate the way the signals would change in response to changes in cloud properties-an ability that allows quick refinements in our initial guesses of cloud structure. Results for a hypothetical airborne three-FOV lidar suggest that this approach can help determine cloud structure for a deeper layer in clouds, and can reliably determine the optical thickness of even fairly thick liquid clouds. The algorithm is also applied to stratocumulus observations by the 8-FOV airborne "THOR" lidar. These tests demonstrate that the new method can determine the depth to which a lidar provides useful information on vertical cloud structure. This work opens the way to exploit data from spaceborne lidar and radar more rigorously than has been possible up to now.

  3. On the Use of Biomineral Oxygen Isotope Data to Identify Human Migrants in the Archaeological Record: Intra-Sample Variation, Statistical Methods and Geographical Considerations.

    Directory of Open Access Journals (Sweden)

    Emma Lightfoot

    Full Text Available Oxygen isotope analysis of archaeological skeletal remains is an increasingly popular tool to study past human migrations. It is based on the assumption that human body chemistry preserves the δ18O of precipitation in such a way as to be a useful technique for identifying migrants and, potentially, their homelands. In this study, the first such global survey, we draw on published human tooth enamel and bone bioapatite data to explore the validity of using oxygen isotope analyses to identify migrants in the archaeological record. We use human δ18O results to show that there are large variations in human oxygen isotope values within a population sample. This may relate to physiological factors influencing the preservation of the primary isotope signal, or due to human activities (such as brewing, boiling, stewing, differential access to water sources and so on causing variation in ingested water and food isotope values. We compare the number of outliers identified using various statistical methods. We determine that the most appropriate method for identifying migrants is dependent on the data but is likely to be the IQR or median absolute deviation from the median under most archaeological circumstances. Finally, through a spatial assessment of the dataset, we show that the degree of overlap in human isotope values from different locations across Europe is such that identifying individuals' homelands on the basis of oxygen isotope analysis alone is not possible for the regions analysed to date. Oxygen isotope analysis is a valid method for identifying first-generation migrants from an archaeological site when used appropriately, however it is difficult to identify migrants using statistical methods for a sample size of less than c. 25 individuals. In the absence of local previous analyses, each sample should be treated as an individual dataset and statistical techniques can be used to identify migrants, but in most cases pinpointing a specific

  4. The power of gene-based rare variant methods to detect disease-associated variation and test hypotheses about complex disease.

    Directory of Open Access Journals (Sweden)

    Loukas Moutsianas

    2015-04-01

    Full Text Available Genome and exome sequencing in large cohorts enables characterization of the role of rare variation in complex diseases. Success in this endeavor, however, requires investigators to test a diverse array of genetic hypotheses which differ in the number, frequency and effect sizes of underlying causal variants. In this study, we evaluated the power of gene-based association methods to interrogate such hypotheses, and examined the implications for study design. We developed a flexible simulation approach, using 1000 Genomes data, to (a generate sequence variation at human genes in up to 10K case-control samples, and (b quantify the statistical power of a panel of widely used gene-based association tests under a variety of allelic architectures, locus effect sizes, and significance thresholds. For loci explaining ~1% of phenotypic variance underlying a common dichotomous trait, we find that all methods have low absolute power to achieve exome-wide significance (~5-20% power at α = 2.5 × 10(-6 in 3K individuals; even in 10K samples, power is modest (~60%. The combined application of multiple methods increases sensitivity, but does so at the expense of a higher false positive rate. MiST, SKAT-O, and KBAC have the highest individual mean power across simulated datasets, but we observe wide architecture-dependent variability in the individual loci detected by each test, suggesting that inferences about disease architecture from analysis of sequencing studies can differ depending on which methods are used. Our results imply that tens of thousands of individuals, extensive functional annotation, or highly targeted hypothesis testing will be required to confidently detect or exclude rare variant signals at complex disease loci.

  5. Variation of the Pseudomonas community structure on oak leaf lettuce during storage detected by culture-dependent and -independent methods.

    Science.gov (United States)

    Nübling, Simone; Schmidt, Herbert; Weiss, Agnes

    2016-01-04

    The genus Pseudomonas plays an important role in the lettuce leaf microbiota and certain species can induce spoilage. The aim of this study was to investigate the occurrence and diversity of Pseudomonas spp. on oak leaf lettuce and to follow their community shift during a six day cold storage with culture-dependent and culture-independent methods. In total, 21 analysed partial Pseudomonas 16S rRNA gene sequences matched closely (> 98.3%) to the different reference strain sequences, which were distributed among 13 different phylogenetic groups or subgroups within the genus Pseudomonas. It could be shown that all detected Pseudomonas species belonged to the P. fluorescens lineage. In the culture-dependent analysis, 73% of the isolates at day 0 and 79% of the isolates at day 6 belonged to the P. fluorescens subgroup. The second most frequent group, with 12% of the isolates, was the P. koreensis subgroup. This subgroup was only detected at day 0. In the culture-independent analysis the P. fluorescens subgroup and P. extremaustralis could not be differentiated by RFLP. Both groups were most abundant and amounted to approximately 46% at day 0 and 79% at day 6. The phytopathogenic species P. salmonii, P. viridiflava and P. marginalis increased during storage. Both approaches identified the P. fluorescens group as the main phylogenetic group. The results of the present study suggest that pseudomonads found by plating methods indeed represent the most abundant part of the Pseudomonas community on oak leaf lettuce. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Mixed-Methods Research in a Complex Multisite VA Health Services Study: Variations in the Implementation and Characteristics of Chiropractic Services in VA

    Directory of Open Access Journals (Sweden)

    Raheleh Khorsan

    2013-01-01

    Full Text Available Maximizing the quality and benefits of newly established chiropractic services represents an important policy and practice goal for the US Department of Veterans Affairs’ healthcare system. Understanding the implementation process and characteristics of new chiropractic clinics and the determinants and consequences of these processes and characteristics is a critical first step in guiding quality improvement. This paper reports insights and lessons learned regarding the successful application of mixed methods research approaches—insights derived from a study of chiropractic clinic implementation and characteristics, Variations in the Implementation and Characteristics of Chiropractic Services in VA (VICCS. Challenges and solutions are presented in areas ranging from selection and recruitment of sites and participants to the collection and analysis of varied data sources. The VICCS study illustrates the importance of several factors in successful mixed-methods approaches, including (1 the importance of a formal, fully developed logic model to identify and link data sources, variables, and outcomes of interest to the study’s analysis plan and its data collection instruments and codebook and (2 ensuring that data collection methods, including mixed-methods, match study aims. Overall, successful application of a mixed-methods approach requires careful planning, frequent trade-offs, and complex coding and analysis.

  7. Measurement of Internal Friction for Tungsten by the Curve Vibrating Method with Variation of Voltage and Temperature

    Directory of Open Access Journals (Sweden)

    Elin Yusibani

    2013-12-01

    Full Text Available Application of a curved vibrating wire method (CVM to measure gas viscosity has been widely used. A fine Tungsten wire with 50 mm of diameter is bent into a semi-circular shape and arranged symmetrically in a magnetic field of about 0.2 T. The frequency domain is used for calculating the viscosity as a response for forced oscillation of the wire. Internal friction is one of the parameter in the CVM which is has to be measured beforeahead. Internal friction coefficien for the wire material which is the inverse of the quality factor has to be measured in a vacuum condition. The term involving internal friction actually represents the effective resistance of motion due to all non-viscous damping phenomena including internal friction and magnetic damping. The testing of internal friction measurement shows that at different induced voltage and elevated temperature at a vacuum condition, it gives the value of internal friction for Tungsten is around 1 to 4 10-4.

  8. Effect of mesh-peel ply variation on mechanical properties of E-glas composite by infusion vacuum method

    Science.gov (United States)

    Abdurohman, K.; Siahaan, Mabe

    2018-04-01

    Composite materials made of glass fiber EW-135 with epoxy lycal resin with vacuum infusion method have been performed. The dried glass fiber is arranged in a mold then connected to a vacuum machine and a resin tube. Then, the vacuum machine is turned on and at the same time the resin is sucked and flowed into the mold. This paper reports on the effect of using mesh- peel ply singles on upper-side laminates called A and the effect of using double mesh-peel ply on upper and lower-side laminates call B with glass fiber arrangement is normal and ± 450 in vacuum infusion process. Followed by the manufacture of tensile test specimen and tested its tensile strength with universal test machine 100kN Tensilon RTF 2410, at room temperature with constant crosshead speed. From tensile test results using single and double layers showed that double mesh-peel ply can increase tensile strength 14% and Young modulus 17%.

  9. Calcification in the staghorn coral Acropora acuminata: variations in apparent skeletal incorporation of radioisotopes due to different methods of processing

    International Nuclear Information System (INIS)

    Crossland, C.J.; Barnes, D.J.

    1977-01-01

    Pieces of branch from the staghorn coral Acropora acuminata were incubated with 45 CaCl 2 and NaH 14 CO 3 under identical conditions in the light or in the dark. Specimens were then processed in different ways. All specimens were placed in N KOH to digest tissues. Some were placed in KOH immediately after incubation; others were placed in KOH after 2 h washing, or after 2 h extraction with methanol-chloroform-water. Specimens were washed in running fresh water or running seawater; some were killed in liquid N 2 before washing. Radioactivity associated with skeleton and tissues was determined. The method of processing profoundly affected the results. In dark incubations, there was up to a four-fold difference in apparent skeletal incorporation of 45 Ca ++ between average values obtained for the different treatments. For 14 C incorporation, there was a difference of up to 2.5 times. In light incubations, skeletal incorporation of both radioisotopes showed a two-fold difference between high and low average values obtained for the different treatments. (orig.) [de

  10. A variational principle for the axisymmetric stability of rotating relativistic stars

    International Nuclear Information System (INIS)

    Prabhu, Kartik; Wald, Robert M; Schiffrin, Joshua S

    2016-01-01

    It is well known that all rotating perfect fluid stars in general relativity are unstable to certain non-axisymmetric perturbations via the Chandrasekhar–Friedman–Schutz (CFS) instability. However, the mechanism of the CFS instability requires, in an essential way, the loss of angular momentum by gravitational radiation and, in many instances, it acts on too long a timescale to be physically/astrophysically relevant. It is therefore of interest to examine the stability of rotating, relativistic stars to axisymmetric perturbations, where the CFS instability does not occur. In this paper, we provide a Rayleigh–Ritz-type variational principle for testing the stability of perfect fluid stars to axisymmetric perturbations, which generalizes to axisymmetric perturbations of rotating stars a variational principle given by Chandrasekhar for spherical perturbations of static, spherical stars. Our variational principle provides a lower bound to the rate of exponential growth in the case of instability. The derivation closely parallels the derivation of a recently obtained variational principle for analyzing the axisymmetric stability of black holes. (paper)

  11. Studying temporal and spatial variations of groundwater-surface water exchange flux for the Slootbeek (Belgium) using the LPML method

    Science.gov (United States)

    Anibas, Christian; Schneideweind, Uwe; Vandersteen, Gerd; Huysmans, Marijke; Batelaan, Okke

    2015-04-01

    Knowledge of groundwater-surface water interaction is important for the assessment of water resources and for the investigation of fate and transport of contaminants and nutrients. In streams and rivers exchange fluxes of water are sensitive to local and regional factors such as riverbed hydraulic conductivity and hydraulic gradients. Field monitoring in time and space is therefore indispensible for assessing the variability of groundwater-surface water interaction. Not only the complexity of the examined processes demand novel data processing and characterization tools, the amount of acquired data also urges for new modeling tools. These tools should be easily applicable, allow for a fast computation, and utilize the maximum amount of available data for detailed analysis, including uncertainties. Such analytical tools should be combined with modern field equipment, data processing tools, geographical information systems and geostatistics for best results. A simple and cost effective methodology to estimate groundwater-surface water interaction is the use of temperature as an environmental tracer (ANDERSON, 2005). LPML (VANDERSTEEN et al., 2014) is one of the most advanced analytical 1D coupled water flow and heat transport models, combining a local polynomial method with a maximum likelihood estimator. It is flexible, fast and able to create time series of exchange fluxes, as well as model quality and parameter uncertainty. LPML determines frequency response functions from measured temperature time series and an analytical model, and applies a non-linear optimization technique. With this tool the variability of groundwater-surface water interaction of the Belgian stream Slootbeek was assessed. Multilevel temperature sensors were placed in seven locations to obtain temperature-time series. Located at the streambed top and at six depths below, several months worth of data was collected and analyzed. Results identified a high spatial and temporal variability of

  12. Assessment of the variations in fat content in normal liver using a fast MR imaging method in comparison with results obtained by spectroscopic imaging

    International Nuclear Information System (INIS)

    Irwan, Roy; Edens, Mireille A.; Sijens, Paul E.

    2008-01-01

    A recently published Dixon-based MRI method for quantifying liver fat content using dual-echo breath-hold gradient echo imaging was validated by phantom experiments and compared with results of biopsy in two patients (Radiology 2005;237:1048-1055). We applied this method in ten healthy volunteers and compared the outcomes with the results of MR spectroscopy (MRS), the gold standard in quantifying liver fat content. Novel was the use of spectroscopic imaging yielding the variations in fat content across the liver rather than a single value obtained by single voxel MRS. Compared with the results of MRS, liver fat content according to MRI was too high in nine subjects (range 3.3-10.7% vs. 0.9-7.7%) and correct in one (21.1 vs. 21.3%). Furthermore, in one of the ten subjects the MRI fat content according to the Dixon-based MRI method was incorrect due to a (100-x) versus x percent lipid content mix-up. The second problem was fixed by a minor adjustment of the MRI algorithm. Despite systematic overestimation of liver fat contents by MRI, Spearman's correlation between the adjusted MRI liver fat contents with MRS was high (r = 0.927, P < 0.001). Even after correction of the algorithm, the problem remaining with the Dixon-based MRI method for the assessment of liver fat content,is that, at the lower end range, liver fat content is systematically overestimated by 4%. (orig.)

  13. Methods of contrast variation by nuclear polarisation in small-angle neutron scattering: Observation of domains of nuclear polarisation by neutron scattering

    International Nuclear Information System (INIS)

    Leymarie, E.

    2002-11-01

    In this thesis we study the theoretical and experimental aspects of Contrast Variation by Nuclear Polarization (CVNP) applied to small-angle neutron scattering. The basics of neutron scattering theory is developed by highlighting the origin of the CVNP method: the strong spin dependence of thermal neutron scattering, especially on protons. We also present the principles of NMR with a special attention on the method of dynamic nuclear polarization by the solid effect which makes it possible to control the proton polarization and therefore the contrast for neutron scattering. We present a theoretical study of the CVNP method called static which supposes that the nuclear polarization is homogeneous in the sample and constant during the experiment. We show that it allows one to obtain partial structure functions of systems with multiple components, by carrying out several acquisitions with different polarizations on a single sample. For this purpose, we tested a simple device to stabilize the nuclear polarization. We describe finally a new application of the CVNP method called dynamic. In a solution of deuterated glycerol-water containing a small concentration of paramagnetic centres, we showed the existence of domains of polarized protons at the onset of dynamic polarization. This reinforces considerably the coherent scattering of paramagnetic centres. We describe the theoretical reasons explaining the appearance of these domains of polarization, as well as the various techniques used to observe them by neutron scattering. (author)

  14. Application of the variational method for calculation of neutron spectra and group constants - Master thesis; Primena varijacione metode na odredjivanje spektra neutrona i grupnih konstanti - Magistarski rad

    Energy Technology Data Exchange (ETDEWEB)

    Milosevic, M [Institute of Nuclear Sciences Vinca, Beograd (Serbia and Montenegro)

    1979-07-01

    One-dimensional variational method for cylindrical configuration was applied for calculating group constants, together with effects of elastic slowing down, anisotropic elastic scattering, inelastic scattering, heterogeneous resonance absorption with the aim to include the presence of a number of different isotopes and effects of neutron leakage from the reactor core. Neutron flux shape P{sub 3} and adjoint function are proposed in order to enable calculation of smaller size reactors and inclusion of heterogeneity effects by cell calculations. Microscopic multigroup constants were prepared based on the UKNDL data library. Analytical-numerical approach was applied for solving the equations of the P{sub 3} approximation to obtain neutron flux moments and adjoint functions.

  15. A variation of the housing unit method for estimating the age and gender distribution of small, rural areas: A case study of the local expert procedure

    International Nuclear Information System (INIS)

    Carlson, J.F.; Roe, L.K.; Williams, C.A.; Swanson, D.A.

    1993-01-01

    This paper describes the methodologies used in the development of a demographic data base established in support of the Yucca Mountain Site Characterization Project Radiological Monitoring Plan (RadMP). It also examines the suitability of a survey-based procedure for estimating population in small, rural areas. The procedure is a variation of the Housing Unit Method. It employs the use of local experts enlisted to provide information about the demographic characteristics of households randomly selected from residential units sample frames developed from utility records. The procedure is nonintrusive and less costly than traditional survey data collection efforts. Because the procedure is based on random sampling, confidence intervals can be constructed around the population estimated by the technique. The results of a case study are provided in which the total population, and age and gender of the population, is estimated for three unincorporated communities in rural, southern Nevada

  16. A Method to Quantify the Wind and Non-wind Contribution to Year-to-year Air Quality Variation and its Application in China

    Science.gov (United States)

    LI, Y.; Lau, A. K. H.; Wong, A.; Fung, J. C. H.

    2017-12-01

    Changes in emissions and wind are often identified as the two dominant factors contributing to year-to-year variations in the concentration of primary pollutants. However, because changes in wind and emissions are intertwined, it has been difficult to quantitatively differentiate their effects on air quality directly from observed data. In particular, if the annual mean concentration of pollutants is higher than the previous year, it is difficult to identify whether the deterioration in air quality is caused by wind blowing from more polluted regions or an increase in contributing emissions. In this paper, based on wind and pollution roses, we propose a method to differentiate the effects of wind and non-wind (e.g., emissions) changes using direct observation. An index (L) is first defined to quantify the validity of the linear decomposition. The method is then validated by idealized experiments, numerical experiments and a two-year observation dataset from an actual emissions control program. Finally, we demonstrate the proposed method by studying long-term PM10 variations in Hong Kong during 2000-2011. We find that for most of the period, the linear decomposition of the changes in annual PM10 is valid (up to 90% confidence) and is dominated by the change in non-wind effects (e.g., emissions), whereas the average absolute effect from the wind variability is about 20%. Sensitivity analyses also suggest that our method should work in any location as long as the observed wind and pollution data have sufficient duration and resolution to resolve the corresponding wind and pollution roses. The method is applied for estimating the control effectiveness of the intervention programs in the Shanghai Expo, the longest socioeconomic international event held in China. The results show that integrated effect of control policies taken for improving the air quality in Shanghai are significantly effective for PM10 reduction and also effective for SO2 reduction, whereas the

  17. Measurement methods and accuracy in copy number variation: failure to replicate associations of beta-defensin copy number with Crohn's disease

    Science.gov (United States)

    Aldhous, Marian C.; Abu Bakar, Suhaili; Prescott, Natalie J.; Palla, Raquel; Soo, Kimberley; Mansfield, John C.; Mathew, Christopher G.; Satsangi, Jack; Armour, John A.L.

    2010-01-01

    The copy number variation in beta-defensin genes on human chromosome 8 has been proposed to underlie susceptibility to inflammatory disorders, but presents considerable challenges for accurate typing on the scale required for adequately powered case–control studies. In this work, we have used accurate methods of copy number typing based on the paralogue ratio test (PRT) to assess beta-defensin copy number in more than 1500 UK DNA samples including more than 1000 cases of Crohn's disease. A subset of 625 samples was typed using both PRT-based methods and standard real-time PCR methods, from which direct comparisons highlight potentially serious shortcomings of a real-time PCR assay for typing this variant. Comparing our PRT-based results with two previous studies based only on real-time PCR, we find no evidence to support the reported association of Crohn's disease with either low or high beta-defensin copy number; furthermore, it is noteworthy that there are disagreements between different studies on the observed frequency distribution of copy number states among European controls. We suggest safeguards to be adopted in assessing and reporting the accuracy of copy number measurement, with particular emphasis on integer clustering of results, to avoid reporting of spurious associations in future case–control studies. PMID:20858604

  18. Variation in Sexual Identification Among Behaviorally Bisexual Women in the Midwestern United States: Challenging the Established Methods for Collecting Data on Sexual Identity and Orientation.

    Science.gov (United States)

    Baldwin, Aleta; Schick, Vanessa R; Dodge, Brian; van Der Pol, Barbara; Herbenick, Debby; Sanders, Stephanie A; Fortenberry, J Dennis

    2017-07-01

    Collecting information on sexual identity is critical to ensuring the visibility of minority populations who face stigmatization and discrimination related to sexual identities. However, it is challenging to capture the nuances of sexual identity with traditional survey research methods. Using a mixed-methods approach, we gathered data on the sexual identities of 80 behaviorally bisexual women in the Midwestern United States through an online survey. When provided different types of measures (e.g., open ended and fixed response) and different contexts in which to identify (e.g., private and public), participants varied in how they reported their sexual identities. Qualitative analysis of participant narratives around identity change finds partitioning and ranking of attraction is a key component in understanding behaviorally bisexual women's identities. We further identify a division regarding the desired outcomes of identity development processes. Given the multiple ways in which participants identified depending upon the type of measure and the context specified, and the variation in identification over time, results support reconsidering the capability of typical measures and methods used in survey research to capture sexual identity information. Additionally, findings highlight the utility of including multiple, context-specific measures of sexual identities in future research.

  19. Measurement methods and accuracy in copy number variation: failure to replicate associations of beta-defensin copy number with Crohn's disease.

    Science.gov (United States)

    Aldhous, Marian C; Abu Bakar, Suhaili; Prescott, Natalie J; Palla, Raquel; Soo, Kimberley; Mansfield, John C; Mathew, Christopher G; Satsangi, Jack; Armour, John A L

    2010-12-15

    The copy number variation in beta-defensin genes on human chromosome 8 has been proposed to underlie susceptibility to inflammatory disorders, but presents considerable challenges for accurate typing on the scale required for adequately powered case-control studies. In this work, we have used accurate methods of copy number typing based on the paralogue ratio test (PRT) to assess beta-defensin copy number in more than 1500 UK DNA samples including more than 1000 cases of Crohn's disease. A subset of 625 samples was typed using both PRT-based methods and standard real-time PCR methods, from which direct comparisons highlight potentially serious shortcomings of a real-time PCR assay for typing this variant. Comparing our PRT-based results with two previous studies based only on real-time PCR, we find no evidence to support the reported association of Crohn's disease with either low or high beta-defensin copy number; furthermore, it is noteworthy that there are disagreements between different studies on the observed frequency distribution of copy number states among European controls. We suggest safeguards to be adopted in assessing and reporting the accuracy of copy number measurement, with particular emphasis on integer clustering of results, to avoid reporting of spurious associations in future case-control studies.

  20. TU-H-CAMPUS-IeP3-01: Simultaneous PET Restoration and PET/CT Co-Segmentation Using a Variational Method

    International Nuclear Information System (INIS)

    Li, L; Tan, S; Lu, W

    2016-01-01

    Purpose: PET images are usually blurred due to the finite spatial resolution, while CT images suffer from low contrast. Segment a tumor from either a single PET or CT image is thus challenging. To make full use of the complementary information between PET and CT, we propose a novel variational method for simultaneous PET image restoration and PET/CT images co-segmentation. Methods: The proposed model was constructed based on the Γ-convergence approximation of Mumford-Shah (MS) segmentation model for PET/CT co-segmentation. Moreover, a PET de-blur process was integrated into the MS model to improve the segmentation accuracy. An interaction edge constraint term over the two modalities were specially designed to share the complementary information. The energy functional was iteratively optimized using an alternate minimization (AM) algorithm. The performance of the proposed method was validated on ten lung cancer cases and five esophageal cancer cases. The ground truth were manually delineated by an experienced radiation oncologist using the complementary visual features of PET and CT. The segmentation accuracy was evaluated by Dice similarity index (DSI) and volume error (VE). Results: The proposed method achieved an expected restoration result for PET image and satisfactory segmentation results for both PET and CT images. For lung cancer dataset, the average DSI (0.72) increased by 0.17 and 0.40 than single PET and CT segmentation. For esophageal cancer dataset, the average DSI (0.85) increased by 0.07 and 0.43 than single PET and CT segmentation. Conclusion: The proposed method took full advantage of the complementary information from PET and CT images. This work was supported in part by the National Cancer Institute Grants R01CA172638. Shan Tan and Laquan Li were supported in part by the National Natural Science Foundation of China, under Grant Nos. 60971112 and 61375018.

  1. Multicritical phase diagrams of the ferromagnetic spin-3/2 Blume-Emery-Griffiths model with repulsive biquadratic coupling including metastable phases: The cluster variation method and the path probability method with the point distribution

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2008-01-15

    We study the thermal variations of the ferromagnetic spin-3/2 Blume-Emery-Griffiths (BEG) model with repulsive biquadratic coupling by using the lowest approximation of the cluster variation method (LACVM) in the absence and presence of the external magnetic field. We obtain metastable and unstable branches of the order parameters besides the stable branches and phase transitions of these branches are investigated extensively. The classification of the stable, metastable and unstable states is made by comparing the free energy values of these states. We also study the dynamics of the model by using the path probability method (PPM) with the point distribution in order to make sure that we find and define the metastable and unstable branches of the order parameters completely and correctly. We present the metastable phase diagrams in addition to the equilibrium phase diagrams in the (kT/J, K/J) and (kT/J, D/J) planes. It is found that the metastable phase diagrams always exist at the low temperatures, which are consistent with experimental and theoretical works.

  2. Multicritical phase diagrams of the ferromagnetic spin-3/2 Blume-Emery-Griffiths model with repulsive biquadratic coupling including metastable phases: The cluster variation method and the path probability method with the point distribution

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Canko, Osman

    2008-01-01

    We study the thermal variations of the ferromagnetic spin-3/2 Blume-Emery-Griffiths (BEG) model with repulsive biquadratic coupling by using the lowest approximation of the cluster variation method (LACVM) in the absence and presence of the external magnetic field. We obtain metastable and unstable branches of the order parameters besides the stable branches and phase transitions of these branches are investigated extensively. The classification of the stable, metastable and unstable states is made by comparing the free energy values of these states. We also study the dynamics of the model by using the path probability method (PPM) with the point distribution in order to make sure that we find and define the metastable and unstable branches of the order parameters completely and correctly. We present the metastable phase diagrams in addition to the equilibrium phase diagrams in the (kT/J, K/J) and (kT/J, D/J) planes. It is found that the metastable phase diagrams always exist at the low temperatures, which are consistent with experimental and theoretical works

  3. Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods

    International Nuclear Information System (INIS)

    Zhang, Yachao; Liu, Kaipei; Qin, Liang; An, Xueli

    2016-01-01

    Highlights: • Variational mode decomposition is adopted to process original wind power series. • A novel combined model based on machine learning methods is established. • An improved differential evolution algorithm is proposed for weight adjustment. • Probabilistic interval prediction is performed by quantile regression averaging. - Abstract: Due to the increasingly significant energy crisis nowadays, the exploitation and utilization of new clean energy gains more and more attention. As an important category of renewable energy, wind power generation has become the most rapidly growing renewable energy in China. However, the intermittency and volatility of wind power has restricted the large-scale integration of wind turbines into power systems. High-precision wind power forecasting is an effective measure to alleviate the negative influence of wind power generation on the power systems. In this paper, a novel combined model is proposed to improve the prediction performance for the short-term wind power forecasting. Variational mode decomposition is firstly adopted to handle the instability of the raw wind power series, and the subseries can be reconstructed by measuring sample entropy of the decomposed modes. Then the base models can be established for each subseries respectively. On this basis, the combined model is developed based on the optimal virtual prediction scheme, the weight matrix of which is dynamically adjusted by a self-adaptive multi-strategy differential evolution algorithm. Besides, a probabilistic interval prediction model based on quantile regression averaging and variational mode decomposition-based hybrid models is presented to quantify the potential risks of the wind power series. The simulation results indicate that: (1) the normalized mean absolute errors of the proposed combined model from one-step to three-step forecasting are 4.34%, 6.49% and 7.76%, respectively, which are much lower than those of the base models and the hybrid

  4. Laser ablation-combustion-GC-IRMS--a new method for online analysis of intra-annual variation of delta13C in tree rings.

    Science.gov (United States)

    Schulze, Brigit; Wirth, Christian; Linke, Petra; Brand, Willi A; Kuhlmann, Iris; Horna, Viviana; Schulze, Ernst-Detlef

    2004-11-01

    We present a new, rapid method for high-resolution online determination of delta13C in tree rings, combining laser ablation (LA), combustion (C), gas chromatography (GC) and isotope ratio mass spectrometry (IRMS) (LA-C-GC-IRMS). Sample material was extracted every 6 min with a UV-laser from a tree core, leaving 40-microm-wide holes. Ablated wood dust was combusted to CO2 at 700 degrees C, separated from other gases on a GC column and injected into an isotope ratio mass spectrometer after removal of water vapor. The measurements were calibrated against an internal and an external standard. The tree core remained intact and could be used for subsequent dendrochronological and dendrochemical analyses. Cores from two Scots pine trees (Pinus sylvestris spp. sibirica Lebed.) from central Siberia were sampled. Inter- and intra-annual patterns of delta13C in whole-wood and lignin-extracted cores were indistinguishable apart from a constant offset, suggesting that lignin extraction is unnecessary for our method. Comparison with the conventional method (microtome slicing, elemental analysis and IRMS) indicated high accuracy of the LA-C-GC-IRMS measurements. Patterns of delta13C along three parallel ablation lines on the same core showed high congruence. A conservative estimate of the precision was +/- 0.24 per thousand. Isotopic patterns of the two Scots pine trees were broadly similar, indicating a signal related to the forest stand's climate history. The maximum variation in delta13C over 22 years was about 5 per thousand, ranging from -27 to -22.3 per thousand. The most obvious pattern was a sharp decline in delta13C during latewood formation and a rapid increase with spring early growth. We conclude that the LA-C-GC-IRMS method will be useful in elucidating short-term climate effects on the delta13C signal in tree rings.

  5. Correction of Excessive Precipitation over Steep and High Mountains in a GCM: A Simple Method of Parameterizing the Thermal Effects of Subgrid Topographic Variation

    Science.gov (United States)

    Chao, Winston C.

    2015-01-01

    The excessive precipitation over steep and high mountains (EPSM) in GCMs and meso-scale models is due to a lack of parameterization of the thermal effects of the subgrid-scale topographic variation. These thermal effects drive subgrid-scale heated slope induced vertical circulations (SHVC). SHVC provide a ventilation effect of removing heat from the boundary layer of resolvable-scale mountain slopes and depositing it higher up. The lack of SHVC parameterization is the cause of EPSM. The author has previously proposed a method of parameterizing SHVC, here termed SHVC.1. Although this has been successful in avoiding EPSM, the drawback of SHVC.1 is that it suppresses convective type precipitation in the regions where it is applied. In this article we propose a new method of parameterizing SHVC, here termed SHVC.2. In SHVC.2 the potential temperature and mixing ratio of the boundary layer are changed when used as input to the cumulus parameterization scheme over mountainous regions. This allows the cumulus parameterization to assume the additional function of SHVC parameterization. SHVC.2 has been tested in NASA Goddard's GEOS-5 GCM. It achieves the primary goal of avoiding EPSM while also avoiding the suppression of convective-type precipitation in regions where it is applied.

  6. Size variation and collapse of emphysema holes at inspiration and expiration CT scan: evaluation with modified length scale method and image co-registration.

    Science.gov (United States)

    Oh, Sang Young; Lee, Minho; Seo, Joon Beom; Kim, Namkug; Lee, Sang Min; Lee, Jae Seung; Oh, Yeon Mok

    2017-01-01

    A novel approach of size-based emphysema clustering has been developed, and the size variation and collapse of holes in emphysema clusters are evaluated at inspiratory and expiratory computed tomography (CT). Thirty patients were visually evaluated for the size-based emphysema clustering technique and a total of 72 patients were evaluated for analyzing collapse of the emphysema hole in this study. A new approach for the size differentiation of emphysema holes was developed using the length scale, Gaussian low-pass filtering, and iteration approach. Then, the volumetric CT results of the emphysema patients were analyzed using the new method, and deformable registration was carried out between inspiratory and expiratory CT. Blind visual evaluations of EI by two readers had significant correlations with the classification using the size-based emphysema clustering method ( r -values of reader 1: 0.186, 0.890, 0.915, and 0.941; reader 2: 0.540, 0.667, 0.919, and 0.942). The results of collapse of emphysema holes using deformable registration were compared with the pulmonary function test (PFT) parameters using the Pearson's correlation test. The mean extents of low-attenuation area (LAA), E1 (holes may be useful for understanding the dynamic collapse of emphysema and its functional relation.

  7. A variational model for propagation time, volumetric and synchronicity optimization in the spinal cord axon network, and a method for testing it

    Science.gov (United States)

    Mota, Bruno

    2014-03-01

    Most information in the central nervous system in general and the (simpler) spinal cord in particular, is transmitted along bundles of parallel axons. Each axon's transmission time increases linearly with length and decreases as a power law of caliber. Therefore, evolution must find a distribution of axonal numbers, lengths and calibers that balances the various tradeoffs between gains in propagation time, signal throughput and synchronicity, against volumetric and metabolic costs. Here I apply a variational method to calculate the distribution of axonal caliber in the spinal cord as a function of axonal length, that minimizes the average axonal signal propagation time, subject to the constraints of white matter total volume and the variance of propagation times, and allowing for arbitrary fiber priorities and end-points. The Lagrange multipliers obtained thereof can be naturally interpreted as 'exchange rates', e.g., how much evolution is willing to pay, in white matter added volume, per unit time decrease of propagation time. This is, to my knowledge, the first model that quantifies explicitly these evolutionary tradeoffs, and can obtain them empirically by measuring the distribution of axonal calibers. We are in the process of doing so using the isotropic fractionator method. I thank FAPERJ for financial support.

  8. Explanation of observable secular variations of gravity and alternative methods of determination of drift of the center of mass of the Earth

    Science.gov (United States)

    Barkin, Yury

    2010-05-01

    The summary. On the basis of geodynamic model of the forced relative displacement of the centers of mass of the core and the mantle of the Earth the secular variations of a gravity and heights of some gravimetry stations on a surface of the Earth have ben studied. At the account of secular drift of the center of mass of the Earth which on our geodynamic model is caused by the unidirectional drift of the core of the Earth relatively to the mantle, the full explanation is given to observable secular variations of a gravity at stations Ny-Alesund (Norway), Churchill (Canada), Medicine (Italy), Sayowa (Antarctica), Strastburg (France), Membach (Belgium), Wuhan (China) and Metsahovi (Finland). Two new methods of determination of secular drift of the center of mass of the Earth, alternative to classical method of a space geodesy are offered: 1) on the basis of gravimetry data about secular trends of a gravity at the stations located on all basic regions of the Earth; 2) on the basis of the comparative analysis of altimetry and coastal data about secular changes of sea level also in basic regions of ocean. 1. Secular drift of the center of mass of the core and the center of mass of the Earth. A secular drift of the center of mass of the Earth to the North relatively to special center O on an axis of rotation of the Earth for which the coefficient of third zonal harmonic J3' = 0, has been predicted in the author work [1]. A drift in a direction to a geographical point (pole P) 70°0 N and 104°3 E has been established for the first time theoretically - as a result of the analysis of the global directed redistribution of masses of the Earth, explaining the observed secular drift of the pole of an axis of rotation of the Earth and not tidal acceleration of its axial rotation [2]. In [1] velocity of drift it has been estimated in 1-2 cm/yr. For specified center O the figure of a planet is as though deprived of pure-shaped form (J3' = 0). And in this sense the point O can be

  9. H I, galaxy counts, and reddening: Variation in the gas-to-dust ratio, the extinction at high galactic latitudes, and a new method for determining galactic reddening

    International Nuclear Information System (INIS)

    Burstein, D.; Heiles, C.

    1978-01-01

    We reanalyze the interrelationships among Shane-Wirtanen galaxy counts, H I column densities, and reddenings, and resolve many of the problems raised by Heiles. These problems were caused by two factors: subtle biases in the reddening data and a variable gas-to-dust ratio in the galaxy. We present a compilation of reddenings for RR Lyrae stars and globular clusters which are on the same system and which we believe to be relatively free of biases. The extinction at the galactic poles, as determined by galaxy counts, is reexamined by using a new method to analyze galaxy counts. This new method partially accounts for the nonrandom clustering of galaxies and permits a reasonable estimate of the error in log N/sub gal/ as a function of latitude. The analysis shows that the galaxy counts (or galaxy cluster counts) are too noisy to allow direct determination of the extinction, or variation in extinction, near the galactic poles. From all available data, we conclude that the reddening at the poles is small [< or =0.02 mag in E (B--V) over much of the north galactic pole] and irregularly distributed. We find that there are zero offsets in the relations between E (B--V) and H I, and between galaxy counts and H I, which are at least partly the result of an instrumental effect in the radio data. We also show that the gas-to-dust ratio can vary by a factor of 2 from the average, and we present two methods for correcting for this variability in predicting the reddening of objects which are located outside of the galactic absorbing layer. We present a prescription for predicting these reddenings; in the area of sky covered by the Shane-Wirtanen galaxy counts, the error in these predictions is, on average, less than 0.03 mag in E

  10. Variational principles

    CERN Document Server

    Moiseiwitsch, B L

    2004-01-01

    This graduate-level text's primary objective is to demonstrate the expression of the equations of the various branches of mathematical physics in the succinct and elegant form of variational principles (and thereby illuminate their interrelationship). Its related intentions are to show how variational principles may be employed to determine the discrete eigenvalues for stationary state problems and to illustrate how to find the values of quantities (such as the phase shifts) that arise in the theory of scattering. Chapter-by-chapter treatment consists of analytical dynamics; optics, wave mecha

  11. Investigating the Influence of Box-Constraints on the Solution of a Total Variation Model via an Efficient Primal-Dual Method

    Directory of Open Access Journals (Sweden)

    Andreas Langer

    2018-01-01

    Full Text Available In this paper, we investigate the usefulness of adding a box-constraint to the minimization of functionals consisting of a data-fidelity term and a total variation regularization term. In particular, we show that in certain applications an additional box-constraint does not effect the solution at all, i.e., the solution is the same whether a box-constraint is used or not. On the contrary, i.e., for applications where a box-constraint may have influence on the solution, we investigate how much it effects the quality of the restoration, especially when the regularization parameter, which weights the importance of the data term and the regularizer, is chosen suitable. In particular, for such applications, we consider the case of a squared L 2 data-fidelity term. For computing a minimizer of the respective box-constrained optimization problems a primal-dual semi-smooth Newton method is presented, which guarantees superlinear convergence.

  12. Temporal and spatial variation in the status of acid rivers and potential prevention methods of AS soil-related leaching in peatland forestry

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, T.

    2013-06-01

    This thesis examines temporal and spatial variations in the status of different rivers and streams of western Finland in terms of acidity and sources of acid load derived from the catchment area. It also examines the monitoring of acid runoff water derived from maintenance drainage in peatland forestry and suggests potential mitigation methods. A total of 17 river basins of different sizes in western Finland were selected for study, including rivers affected by both drainage of agricultural AS soils and forested peatlands. Old data from 1911-1931 were available, but most data were from the 1960s onwards and were taken from the HERTTA database. During 2009-2011, pH and conductivity measurements and water sampling were conducted. Biological monitoring for ecological classification was conducted in the Sanginjoki river system during 2008 and 2009. Three peatland forestry sites were selected to study acid leaching via pH and EC measurements and water sampling. Fluctuations in groundwater level in different drainage conditions were simulated and acid leaching was investigated in laboratory experiments in order to replicate a situation where the groundwater level drops and allows oxidation of sulphidic materials. It was found that river pH decreased and metal concentrations increased with runoff. The highest acidity observed coincided with periods of intense drainage in the 1970s and after dry summers in the past decade. Together with pH, electric conductivity and sulphate in river water were identified as suitable indicators of AS soils in a catchment, because they directly respond to acid leaching derived from AS soils. Acidity derived from organic acids was clearly observed in catchments dominated by forested peatlands and wetlands. Temporal and spatial variations in ecological status were observed, but monitoring at whole-catchment scale and during consecutive years is needed to increase the reliability of the results. Simulations on the potential effects of

  13. Variational principles in physics

    CERN Document Server

    Basdevant, Jean-Louis

    2007-01-01

    Optimization under constraints is an essential part of everyday life. Indeed, we routinely solve problems by striking a balance between contradictory interests, individual desires and material contingencies. This notion of equilibrium was dear to thinkers of the enlightenment, as illustrated by Montesquieu’s famous formulation: "In all magistracies, the greatness of the power must be compensated by the brevity of the duration." Astonishingly, natural laws are guided by a similar principle. Variational principles have proven to be surprisingly fertile. For example, Fermat used variational methods to demonstrate that light follows the fastest route from one point to another, an idea which came to be known as Fermat’s principle, a cornerstone of geometrical optics. Variational Principles in Physics explains variational principles and charts their use throughout modern physics. The heart of the book is devoted to the analytical mechanics of Lagrange and Hamilton, the basic tools of any physicist. Prof. Basdev...

  14. Introduction to global variational geometry

    CERN Document Server

    Krupka, Demeter

    2015-01-01

    The book is devoted to recent research in the global variational theory on smooth manifolds. Its main objective is an extension of the classical variational calculus on Euclidean spaces to (topologically nontrivial) finite-dimensional smooth manifolds; to this purpose the methods of global analysis of differential forms are used. Emphasis is placed on the foundations of the theory of variational functionals on fibered manifolds - relevant geometric structures for variational principles in geometry, physical field theory and higher-order fibered mechanics. The book chapters include: - foundations of jet bundles and analysis of differential forms and vector fields on jet bundles, - the theory of higher-order integral variational functionals for sections of a fibred space, the (global) first variational formula in infinitesimal and integral forms- extremal conditions and the discussion of Noether symmetries and generalizations,- the inverse problems of the calculus of variations of Helmholtz type- variational se...

  15. Ensembl variation resources

    Directory of Open Access Journals (Sweden)

    Marin-Garcia Pablo

    2010-05-01

    Full Text Available Abstract Background The maturing field of genomics is rapidly increasing the number of sequenced genomes and producing more information from those previously sequenced. Much of this additional information is variation data derived from sampling multiple individuals of a given species with the goal of discovering new variants and characterising the population frequencies of the variants that are already known. These data have immense value for many studies, including those designed to understand evolution and connect genotype to phenotype. Maximising the utility of the data requires that it be stored in an accessible manner that facilitates the integration of variation data with other genome resources such as gene annotation and comparative genomics. Description The Ensembl project provides comprehensive and integrated variation resources for a wide variety of chordate genomes. This paper provides a detailed description of the sources of data and the methods for creating the Ensembl variation databases. It also explores the utility of the information by explaining the range of query options available, from using interactive web displays, to online data mining tools and connecting directly to the data servers programmatically. It gives a good overview of the variation resources and future plans for expanding the variation data within Ensembl. Conclusions Variation data is an important key to understanding the functional and phenotypic differences between individuals. The development of new sequencing and genotyping technologies is greatly increasing the amount of variation data known for almost all genomes. The Ensembl variation resources are integrated into the Ensembl genome browser and provide a comprehensive way to access this data in the context of a widely used genome bioinformatics system. All Ensembl data is freely available at http://www.ensembl.org and from the public MySQL database server at ensembldb.ensembl.org.

  16. Size variation and collapse of emphysema holes at inspiration and expiration CT scan: evaluation with modified length scale method and image co-registration

    Directory of Open Access Journals (Sweden)

    Oh SY

    2017-07-01

    Full Text Available Sang Young Oh,1,* Minho Lee,1,* Joon Beom Seo,1,* Namkug Kim,1,2,* Sang Min Lee,1 Jae Seung Lee,3 Yeon Mok Oh3 1Department of Radiology, 2Department of Convergence Medicine, 3Department of Pulmonology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea *These authors contributed equally to this work Abstract: A novel approach of size-based emphysema clustering has been developed, and the size variation and collapse of holes in emphysema clusters are evaluated at inspiratory and expiratory computed tomography (CT. Thirty patients were visually evaluated for the size-based emphysema clustering technique and a total of 72 patients were evaluated for analyzing collapse of the emphysema hole in this study. A new approach for the size differentiation of emphysema holes was developed using the length scale, Gaussian low-pass filtering, and iteration approach. Then, the volumetric CT results of the emphysema patients were analyzed using the new method, and deformable registration was carried out between inspiratory and expiratory CT. Blind visual evaluations of EI by two readers had significant correlations with the classification using the size-based emphysema clustering method (r-values of reader 1: 0.186, 0.890, 0.915, and 0.941; reader 2: 0.540, 0.667, 0.919, and 0.942. The results of collapse of emphysema holes using deformable registration were compared with the pulmonary function test (PFT parameters using the Pearson’s correlation test. The mean extents of low-attenuation area (LAA, E1 (<1.5 mm, E2 (<7 mm, E3 (<15 mm, and E4 (≥15 mm were 25.9%, 3.0%, 11.4%, 7.6%, and 3.9%, respectively, at the inspiratory CT, and 15.3%, 1.4%, 6.9%, 4.3%, and 2.6%, respectively at the expiratory CT. The extents of LAA, E2, E3, and E4 were found to be significantly correlated with the PFT ­parameters (r=−0.53, −0.43, −0.48, and −0.25, with forced expiratory volume in 1 second (FEV1; −0.81, −0.62, −0.75, and

  17. SU-G-201-13: Investigation of Dose Variation Induced by HDR Ir-192 Source Global Shift Within the Varian Ring Applicator Using Monte Carlo Methods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y; Cai, J; Meltsner, S; Chang, Z; Craciunescu, O [Duke University Medical Center, Durham, NC (United States)

    2016-06-15

    Purpose: The Varian tandem and ring applicators are used to deliver HDR Ir-192 brachytherapy for cervical cancer. The source path within the ring is hard to predict due to the larger interior ring lumen. Some studies showed the source could be several millimeters different from planned positions, while other studies demonstrated minimal dosimetric impact. A global shift can be applied to limit the effect of positioning offsets. The purpose of this study was to assess the necessities of implementing a global source shift using Monte Carlo (MC) simulations. Methods: The MCNP5 radiation transport code was used for all MC simulations. To accommodate TG-186 guidelines and eliminate inter-source attenuation, a BrachyVision plan with 10 dwell positions (0.5cm step sizes) was simulated as the summation of 10 individual sources with equal dwell times for simplification. To simplify the study, the tandem was also excluded from the MC model. Global shifts of ±0.1, ±0.3, ±0.5 cm were then simulated as distal and proximal from the reference positions. Dose was scored in water for all MC simulations and was normalized to 100% at the normalization point 0.5 cm from the cap in the ring plane. For dose comparison, Point A was 2 cm caudal from the buildup cap and 2 cm lateral on either side of the ring axis. With seventy simulations, 108 photon histories gave a statistical uncertainties (k=1) <2% for (0.1 cm)3 voxels. Results: Compared to no global shift, average Point A doses were 0.0%, 0.4%, and 2.2% higher for distal global shifts, and 0.4%, 2.8%, and 5.1% higher for proximal global shifts, respectively. The MC Point A doses differed by < 1% when compared to BrachyVision. Conclusion: Dose variations were not substantial for ±0.3 cm global shifts, which is common in clinical practice.

  18. SU-G-201-13: Investigation of Dose Variation Induced by HDR Ir-192 Source Global Shift Within the Varian Ring Applicator Using Monte Carlo Methods

    International Nuclear Information System (INIS)

    Yang, Y; Cai, J; Meltsner, S; Chang, Z; Craciunescu, O

    2016-01-01

    Purpose: The Varian tandem and ring applicators are used to deliver HDR Ir-192 brachytherapy for cervical cancer. The source path within the ring is hard to predict due to the larger interior ring lumen. Some studies showed the source could be several millimeters different from planned positions, while other studies demonstrated minimal dosimetric impact. A global shift can be applied to limit the effect of positioning offsets. The purpose of this study was to assess the necessities of implementing a global source shift using Monte Carlo (MC) simulations. Methods: The MCNP5 radiation transport code was used for all MC simulations. To accommodate TG-186 guidelines and eliminate inter-source attenuation, a BrachyVision plan with 10 dwell positions (0.5cm step sizes) was simulated as the summation of 10 individual sources with equal dwell times for simplification. To simplify the study, the tandem was also excluded from the MC model. Global shifts of ±0.1, ±0.3, ±0.5 cm were then simulated as distal and proximal from the reference positions. Dose was scored in water for all MC simulations and was normalized to 100% at the normalization point 0.5 cm from the cap in the ring plane. For dose comparison, Point A was 2 cm caudal from the buildup cap and 2 cm lateral on either side of the ring axis. With seventy simulations, 108 photon histories gave a statistical uncertainties (k=1) <2% for (0.1 cm)3 voxels. Results: Compared to no global shift, average Point A doses were 0.0%, 0.4%, and 2.2% higher for distal global shifts, and 0.4%, 2.8%, and 5.1% higher for proximal global shifts, respectively. The MC Point A doses differed by < 1% when compared to BrachyVision. Conclusion: Dose variations were not substantial for ±0.3 cm global shifts, which is common in clinical practice.

  19. Study of the monopole interaction between the nucleus and its electronic environment using the method of the variations in decay rate of a radioactive isotope

    International Nuclear Information System (INIS)

    Auric, Pierette.

    1975-01-01

    The electron structure of certain elements was studied by nuclear and chemical techniques. Two main problems were dealt with: one concerning the chemical nature and properties of an impurity M present in very small concentrations in a molecular compound M.R., more precisely the recoil atoms obtained after (n,γ) reaction on copper phthalocyanine (CuPc); the other relating to the electron density at the nucleus present in stoechiometric quantities in various compounds, in this case zirconium in PbZrO 3 and ZrO 2 under variable physico-chemical conditions. In the case of CuPc the reactions of the recoil atom with its surroundings were analyzed by chemical kinetic studies. The recoil atom is considered as an impurity in the semiconductor in the same way as oxygen. An electron transfer process gives it enough energy for an exchange to take place with a CuPc molecule. The method of half-life variations showed that the copper making up the atoms has nuclear electron density lower that that of the copper belonging to a CuPc molecule. Calculations of the Hartree-Fock and Hartree-Fock-Slater type reflect the general change in the electron density between one configuration and another, and a 3d 10 4s 0 type configuration was hence adopted for the recoil atom. In the case of 89 Zr the influence of physico-chemical factors such as temperature, crystal phase and strong electric fields on the nuclear electron density was measured with good precision [fr

  20. Evaluation of Normalization Methods on GeLC-MS/MS Label-Free Spectral Counting Data to Correct for Variation during Proteomic Workflows

    Science.gov (United States)

    Gokce, Emine; Shuford, Christopher M.; Franck, William L.; Dean, Ralph A.; Muddiman, David C.

    2011-12-01

    Normalization of spectral counts (SpCs) in label-free shotgun proteomic approaches is important to achieve reliable relative quantification. Three different SpC normalization methods, total spectral count (TSpC) normalization, normalized spectral abundance factor (NSAF) normalization, and normalization to selected proteins (NSP) were evaluated based on their ability to correct for day-to-day variation between gel-based sample preparation and chromatographic performance. Three spectral counting data sets obtained from the same biological conidia sample of the rice blast fungus Magnaporthe oryzae were analyzed by 1D gel and liquid chromatography-tandem mass spectrometry (GeLC-MS/MS). Equine myoglobin and chicken ovalbumin were spiked into the protein extracts prior to 1D-SDS- PAGE as internal protein standards for NSP. The correlation between SpCs of the same proteins across the different data sets was investigated. We report that TSpC normalization and NSAF normalization yielded almost ideal slopes of unity for normalized SpC versus average normalized SpC plots, while NSP did not afford effective corrections of the unnormalized data. Furthermore, when utilizing TSpC normalization prior to relative protein quantification, t-testing and fold-change revealed the cutoff limits for determining real biological change to be a function of the absolute number of SpCs. For instance, we observed the variance decreased as the number of SpCs increased, which resulted in a higher propensity for detecting statistically significant, yet artificial, change for highly abundant proteins. Thus, we suggest applying higher confidence level and lower fold-change cutoffs for proteins with higher SpCs, rather than using a single criterion for the entire data set. By choosing appropriate cutoff values to maintain a constant false positive rate across different protein levels (i.e., SpC levels), it is expected this will reduce the overall false negative rate, particularly for proteins with

  1. Metaleptic Variations

    OpenAIRE

    Pernot, Dominique

    2014-01-01

    Les derniers romans de Gabriel Josipovici offrent beaucoup de variété, allant de la parodie, de la fiction comique légère, dans Only Joking et Making Mistakes, à des sujets plus graves, plus personnels, ontologiques. Dans un court roman, Everything Passes, et dans un roman majeur, Goldberg: Variations, le lecteur est amené à se poser des questions sur la nature mystérieuse de la réalité, qui est, trop souvent, acceptée sans conteste par de nombreux roma...

  2. Numerical Analysis of Residual Stress and Distortion Use Finite Element Method on Inner Bottom Construction of Geomarin IV Survey Ship with Welding Sequence Variations

    Science.gov (United States)

    Syahroni, N.; Hartono, A. B. W.; Murtedjo, M.

    2018-03-01

    In the ship fabrication industry, welding is the most critical stage. If the quality of welding on ship fabrication is not good, then it will affect the strength and overall appearance of the structure. One of the factors that affect the quality of welding is residual stress and distortion. In this research welding simulation is performed on the inner bottom construction of Geomarin IV Ship Survey using shell element and has variation to welding sequence. In this study, welding simulations produced peak temperatures at 2490 K at variation 4. While the lowest peak temperature was produced by variation 2 with a temperature of 2339 K. After welding simulation, it continued simulating residual stresses and distortion. The smallest maximum tensile residual stress found in the inner bottom construction is 375.23 MPa, and the maximum tensile pressure is -20.18 MPa. The residual stress is obtained from variation 3. The distortion occurring in the inner bottom construction for X=720 mm is 4.2 mm and for X=-720 mm, the distortion is 4.92 mm. The distortion is obtained from the variation 3. Near the welding area, distortion value reaches its minimum point. This is because the stiffeners in the form of frames serves as anchoring.

  3. Seasonal Variation in Epidemiology

    Science.gov (United States)

    Marrero, Osvaldo

    2013-01-01

    Seasonality analyses are important in medical research. If the incidence of a disease shows a seasonal pattern, then an environmental factor must be considered in its etiology. We discuss a method for the simultaneous analysis of seasonal variation in multiple groups. The nuts and bolts are explained using simple trigonometry, an elementary…

  4. A survey of variational principles

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1993-01-01

    In this article survey of variational principles has been given. Variational principles play a significant role in mathematical theory with emphasis on the physical aspects. There are two principals used i.e. to represent the equation of the system in a succinct way and to enable a particular computation in the system to be carried out with greater accuracy. The survey of variational principles has ranged widely from its starting point in the Lagrange multiplier to optimisation principles. In an age of digital computation, these classic methods can be adapted to improve such calculations. We emphasize particularly the advantage of basic finite element methods on variational principles. (A.B.)

  5. Experiencing variation

    DEFF Research Database (Denmark)

    Kobayashi, Sofie; Berge, Maria; Grout, Brian William Wilson

    2017-01-01

    This study contributes towards a better understanding of learning dynamics in doctoral supervision by analysing how learning opportunities are created in the interaction between supervisors and PhD students, using the notion of experiencing variation as a key to learning. Empirically, we have based...... the study on four video-recorded sessions, with four different PhD students and their supervisors, all from life sciences. Our analysis revealed that learning opportunities in the supervision sessions concerned either the content matter of research (for instance, understanding soil structure......), or the research methods— more specifically how to produce valid results. Our results illustrate how supervisors and PhD students create a space of learning together in their particular discipline by varying critical aspects of their research in their discussions. Situations where more openended research issues...

  6. Resonances, cusp effects and a virtual state in e/sup -/-He scattering near the n = 3 thresholds. [Variational methods, resonance, threshold structures

    Energy Technology Data Exchange (ETDEWEB)

    Nesbet, R K [International Business Machines Corp., San Jose, Calif. (USA). Research Lab.

    1978-01-14

    Variational calculations locate and identify resonances and new threshold structures in electron impact excitation of He metastable states, in the region of the 3/sup 3/S and 3/sup 1/S excitation thresholds. A virtual state is found at the 3/sup 3/S threshold.

  7. A Novel Mobile Phone Application for Pulse Pressure Variation Monitoring Based on Feature Extraction Technology: A Method Comparison Study in a Simulated Environment.

    Science.gov (United States)

    Desebbe, Olivier; Joosten, Alexandre; Suehiro, Koichi; Lahham, Sari; Essiet, Mfonobong; Rinehart, Joseph; Cannesson, Maxime

    2016-07-01

    Pulse pressure variation (PPV) can be used to assess fluid status in the operating room. This measurement, however, is time consuming when done manually and unreliable through visual assessment. Moreover, its continuous monitoring requires the use of expensive devices. Capstesia™ is a novel Android™/iOS™ application, which calculates PPV from a digital picture of the arterial pressure waveform obtained from any monitor. The application identifies the peaks and troughs of the arterial curve, determines maximum and minimum pulse pressures, and computes PPV. In this study, we compared the accuracy of PPV generated with the smartphone application Capstesia (PPVapp) against the reference method that is the manual determination of PPV (PPVman). The Capstesia application was loaded onto a Samsung Galaxy S4 phone. A physiologic simulator including PPV was used to display arterial waveforms on a computer screen. Data were obtained with different sweep speeds (6 and 12 mm/s) and randomly generated PPV values (from 2% to 24%), pulse pressure (30, 45, and 60 mm Hg), heart rates (60-80 bpm), and respiratory rates (10-15 breaths/min) on the simulator. Each metric was recorded 5 times at an arterial height scale X1 (PPV5appX1) and 5 times at an arterial height scale X3 (PPV5appX3). Reproducibility of PPVapp and PPVman was determined from the 5 pictures of the same hemodynamic profile. The effect of sweep speed, arterial waveform scale (X1 or X3), and number of images captured was assessed by a Bland-Altman analysis. The measurement error (ME) was calculated for each pair of data. A receiver operating characteristic curve analysis determined the ability of PPVapp to discriminate a PPVman > 13%. Four hundred eight pairs of PPVapp and PPVman were analyzed. The reproducibility of PPVapp and PPVman was 10% (interquartile range, 7%-14%) and 6% (interquartile range, 3%-10%), respectively, allowing a threshold ME of 12%. The overall mean bias for PPVappX1 was 1.1% within limits of

  8. Determination of the speed of gases in the subsoil by means of method based on the variations of the concentration of the gas radon

    International Nuclear Information System (INIS)

    Garcia Vindas, J.R.

    2001-01-01

    In this paper a theoretic model is proposed to calculate the gas velocity in the subsoil based on radon concentration variations. The general transport equation for radon in a homogeneous soil with constant porosity is assumed. The diffusion coefficient and the gas velocity being constant. In order to illustrate the model, three geological areas were considered: the Irazu and Arenal volcanoes, situated in the volcanic range in costa Rica, and the Agua Caliente fault located in San Jose, Costa Rica. (Author) [es

  9. Dynamics of nonholonomic systems from variational principles embedded variation identity

    International Nuclear Information System (INIS)

    Guo Yongxin; Liu Shixing; Liu Chang; Chang Peng

    2009-01-01

    Nondeterminacy of dynamics, i.e., the nonholonomic or the vakonomic, fundamental variational principles, e.g., the Lagrange-d'Alembert or Hamiltonian, and variational operators, etc., of nonholonomic mechanical systems can be attributed to the non-uniqueness of ways how to realize nonholonomic constraints. Making use of a variation identity of nonholonomic constraints embedded into the Hamilton's principle with the method of Lagrange undetermined multipliers, three kinds of dynamics for the nonholonomic systems including the vakonomic and nonholonomic ones and a new one are obtained if the variation is respectively reduced to three conditional variations: vakonomic variation, Hoelder's variation and Suslov's variation, defined by the identity. Therefore, different dynamics of nonholonomic systems can be derived from an integral variational principle, utilizing one way of embedding constraints into the principle, with different variations. It is verified that the similar embedding of the identity into the Lagrange-d'Alembert principle gives rise to the nonholonomic dynamics but fails to give the vakonomic one unless the constraints are integrable.

  10. Dynamics of nonholonomic systems from variational principles embedded variation identity

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yongxin, E-mail: yxguo@lnu.edu.c [College of Physics, Liaoning University, Shenyang 110036 (China); Liu Shixing [College of Physics, Liaoning University, Shenyang 110036 (China); Liu Chang; Chang Peng [Department of Applied Mechanics, Beijing Institute of Technology, Beijing 100081 (China)

    2009-10-19

    Nondeterminacy of dynamics, i.e., the nonholonomic or the vakonomic, fundamental variational principles, e.g., the Lagrange-d'Alembert or Hamiltonian, and variational operators, etc., of nonholonomic mechanical systems can be attributed to the non-uniqueness of ways how to realize nonholonomic constraints. Making use of a variation identity of nonholonomic constraints embedded into the Hamilton's principle with the method of Lagrange undetermined multipliers, three kinds of dynamics for the nonholonomic systems including the vakonomic and nonholonomic ones and a new one are obtained if the variation is respectively reduced to three conditional variations: vakonomic variation, Hoelder's variation and Suslov's variation, defined by the identity. Therefore, different dynamics of nonholonomic systems can be derived from an integral variational principle, utilizing one way of embedding constraints into the principle, with different variations. It is verified that the similar embedding of the identity into the Lagrange-d'Alembert principle gives rise to the nonholonomic dynamics but fails to give the vakonomic one unless the constraints are integrable.

  11. Variational transition state theory

    International Nuclear Information System (INIS)

    Truhlar, D.G.

    1986-01-01

    This project is concerned with the development and applications of generalized transition state theory and multidimensional tunneling approximations to chemical reaction rates. They have developed and implemented several practical versions of variational transition state theory (VTST), namely canonical variational theory (CVT), improved canonical variational theory (ICVT), and microcanonical variational theory (μVT). They have also developed and implemented several accurate multidimensional semiclassical tunneling approximations, the most accurate of which are the small-curvature semiclassical adiabatic (SCSA), large-curvature version-3 (LC3), and least-action (LA) approximations. They have applied the methods to thermal rate constants, using transmission coefficients based on ground-state tunneling, and they have also presented and applied adiabatic and diabatic extensions to calculated rate constants for vibrationally excited reactants. Their general goal is to develop accurate methods for calculating chemical reaction rate constants that remain practical even for reasonably complicated molecules. The approximations mentioned above yield rate constants for systems whose potential energy surface is known or assumed. Thus a second, equally important aspect of their work is the determination or modeling, semi-empirically and/or from electronic structure calculations, of potential energy surfaces

  12. Spatial variation of N-2-fixation in field pea (Pisum sativum L.) at the field scale determined by the N-15 natural abundance method

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Holdensen, Lars; Wulfsohn, D.

    2010-01-01

    variability could be explained by the variability in selected abiotic soil properties. All measured soil variables showed substantial variability across the field and the pea dry matter production ranged between 4.9 and 13.8 Mg ha−1 at maturity. The percent of total N derived from the atmosphere (%Ndfa...... dry matter production and N2-fixation. A number of other models were tested, but the best was only able to explain less than 40% of the variance in %Ndfa using seven soil properties. Together with the use of interpolated soil data, high spatial variation of soil 15N natural abundance, a mean increase...

  13. Calculation of the inter-nuclei separation of HD+

    International Nuclear Information System (INIS)

    Zhu Zhousen; Shi Miangong; Tang Ayou; Yang Baifang; Miao Jingwei

    1993-01-01

    With the Ritz variational principle, the authors calculate the inter nuclei separation of the HD + molecular ion, and introduces a method to calculate the inter nuclei separations of other simple non-symmetry two-atom molecular ions. One way to work out the trial wave function is provided

  14. Discrimination Method of the Volatiles from Fresh Mushrooms by an Electronic Nose Using a Trapping System and Statistical Standardization to Reduce Sensor Value Variation

    Directory of Open Access Journals (Sweden)

    Kouki Fujioka

    2013-11-01

    Full Text Available Electronic noses have the benefit of obtaining smell information in a simple and objective manner, therefore, many applications have been developed for broad analysis areas such as food, drinks, cosmetics, medicine, and agriculture. However, measurement values from electronic noses have a tendency to vary under humidity or alcohol exposure conditions, since several types of sensors in the devices are affected by such variables. Consequently, we show three techniques for reducing the variation of sensor values: (1 using a trapping system to reduce the infering components; (2 performing statistical standardization (calculation of z-score; and (3 selecting suitable sensors. With these techniques, we discriminated the volatiles of four types of fresh mushrooms: golden needle (Flammulina velutipes, white mushroom (Agaricus bisporus, shiitake (Lentinus edodes, and eryngii (Pleurotus eryngii among six fresh mushrooms (hen of the woods (Grifola frondosa, shimeji (Hypsizygus marmoreus plus the above mushrooms. Additionally, we succeeded in discrimination of white mushroom, only comparing with artificial mushroom flavors, such as champignon flavor and truffle flavor. In conclusion, our techniques will expand the options to reduce variations in sensor values.

  15. Evaluation of variational approximations

    International Nuclear Information System (INIS)

    Trevisan, L.A.

    1991-01-01

    In Feynman's approach to quantum statistical mechanics, the partition function can e represented as a path integral. A recently proposed variation method of Feynman-Kleinert is able to transform the path integral into an integral in phase space, in which the quantum fluctuations have been taken care of by introducing the effective classical potential. This method has been testes with succeed for the smooth potentials and for the singular potential of delta. The method to the strong singular potentials is applied: a quadratic potential and a linear potential both with a rigid wall at the origin. By satisfying the condition that the density of the particle be vanish at the origin, and adapted method of Feynman-Kleinert in order to improve the method is introduced. (author)

  16. Synthesis and characterization of NaCo(1-x)MnxO2 solid electrolyte using sol-gel method: the effect of milling speed variations

    Science.gov (United States)

    Suyati, L.; Widyayanti, O. A.; Qushoyyi, M.; Darmawan, A.; Nuryanto, R.

    2018-04-01

    Battery is a device that converts chemical energy into electrical energy through electrochemical process. Further research on the synthesis of cathode of Na-ion battery that has good conductivity to maximize the battery performance needs to be conducted. One of the production steps of the NaCo(1-x)NaCo cathode synthesis in the Na-Ion battery was a ball-milling process, in which by the ball-milling process, the crystal size of NaCo(1-x)MnxO2 cathode can be minimized. The purpose of this study was to determine the effect of variation of ball-milling speed to the characteristics of resulting product including the oxide types composing NaCo(1-x)MnxO2 cathode, surface morphology, and conductivity. The main ingredients used were sodium acetate, manganese acetate, cobalt acetate with molar ratio of 0.7: 0.66: 0.22, respectively and citric acid as chelating agent with the M/CA ratio of 1: 1. The variations of milling speed were 0, 300, 400, 500, 600 and 700 rpm. Characterization of the product was conducted using XRD, SEM-EDS, and conductivity meter (LCR-meter). The result showed that a solid electrolyte of NaCo(1-x)MnxO2 consisting of NaMnO2, NaO2, CoO, Co2O3, MnO2 components was successfully synthesized. The observation on the milling speed at 400 rpm showed that the solid electrolyte produced had the highest conductivity i.e. 4.08 x 10-6 Scm-1 with a homogeneous surface morphology and had a spinel formula NaCo0,65Mn0,35O2.

  17. The nonholonomic variational principle

    Energy Technology Data Exchange (ETDEWEB)

    Krupkova, Olga [Department of Algebra and Geometry, Faculty of Science, Palacky University, Tomkova 40, 779 00 Olomouc (Czech Republic); Department of Mathematics, La Trobe University, Bundoora, Victoria 3086 (Australia)], E-mail: krupkova@inf.upol.cz

    2009-05-08

    A variational principle for mechanical systems and fields subject to nonholonomic constraints is found, providing Chetaev-reduced equations as equations for extremals. Investigating nonholonomic variations of the Chetaev type and their properties, we develop foundations of the calculus of variations on constraint manifolds, modelled as fibred submanifolds in jet bundles. This setting is appropriate to study general first-order 'nonlinear nonitegrable constraints' that locally are given by a system of first-order ordinary or partial differential equations. We obtain an invariant constrained first variation formula and constrained Euler-Lagrange equations both in intrinsic and coordinate forms, and show that the equations are the same as Chetaev equations 'without Lagrange multipliers', introduced recently by other methods. We pay attention to two possible settings: first, when the constrained system arises from an unconstrained Lagrangian system defined in a neighbourhood of the constraint, and second, more generally, when an 'internal' constrained system on the constraint manifold is given. In the latter case a corresponding unconstrained system need not be a Lagrangian, nor even exist. We also study in detail an important particular case: nonholonomic constraints that can be alternatively modelled by means of (co)distributions in the total space of the fibred manifold; in nonholonomic mechanics this happens whenever constraints affine in velocities are considered. It becomes clear that (and why) if the distribution is completely integrable (= the constraints are semiholonomic), the principle of virtual displacements holds and can be used to obtain the constrained first variational formula by a more or less standard procedure, traditionally used when unconstrained or holonomic systems are concerned. If, however, the constraint is nonintegrable, no significant simplifications are available. Among others, some properties of nonholonomic

  18. Method

    Directory of Open Access Journals (Sweden)

    Ling Fiona W.M.

    2017-01-01

    Full Text Available Rapid prototyping of microchannel gain lots of attention from researchers along with the rapid development of microfluidic technology. The conventional methods carried few disadvantages such as high cost, time consuming, required high operating pressure and temperature and involve expertise in operating the equipment. In this work, new method adapting xurography method is introduced to replace the conventional method of fabrication of microchannels. The novelty in this study is replacing the adhesion film with clear plastic film which was used to cut the design of the microchannel as the material is more suitable for fabricating more complex microchannel design. The microchannel was then mold using polymethyldisiloxane (PDMS and bonded with a clean glass to produce a close microchannel. The microchannel produced had a clean edge indicating good master mold was produced using the cutting plotter and the bonding between the PDMS and glass was good where no leakage was observed. The materials used in this method is cheap and the total time consumed is less than 5 hours where this method is suitable for rapid prototyping of microchannel.

  19. Predicting location-specific extreme coastal floods in the future climate by introducing a probabilistic method to calculate maximum elevation of the continuous water mass caused by a combination of water level variations and wind waves

    Science.gov (United States)

    Leijala, Ulpu; Björkqvist, Jan-Victor; Johansson, Milla M.; Pellikka, Havu

    2017-04-01

    Future coastal management continuously strives for more location-exact and precise methods to investigate possible extreme sea level events and to face flooding hazards in the most appropriate way. Evaluating future flooding risks by understanding the behaviour of the joint effect of sea level variations and wind waves is one of the means to make more comprehensive flooding hazard analysis, and may at first seem like a straightforward task to solve. Nevertheless, challenges and limitations such as availability of time series of the sea level and wave height components, the quality of data, significant locational variability of coastal wave height, as well as assumptions to be made depending on the study location, make the task more complicated. In this study, we present a statistical method for combining location-specific probability distributions of water level variations (including local sea level observations and global mean sea level rise) and wave run-up (based on wave buoy measurements). The goal of our method is to obtain a more accurate way to account for the waves when making flooding hazard analysis on the coast compared to the approach of adding a separate fixed wave action height on top of sea level -based flood risk estimates. As a result of our new method, we gain maximum elevation heights with different return periods of the continuous water mass caused by a combination of both phenomena, "the green water". We also introduce a sensitivity analysis to evaluate the properties and functioning of our method. The sensitivity test is based on using theoretical wave distributions representing different alternatives of wave behaviour in relation to sea level variations. As these wave distributions are merged with the sea level distribution, we get information on how the different wave height conditions and shape of the wave height distribution influence the joint results. Our method presented here can be used as an advanced tool to minimize over- and

  20. Variation of the Phytochemical Constituents and Antioxidant Activities of Zingiber officinale var. rubrum Theilade Associated with Different Drying Methods and Polyphenol Oxidase Activity.

    Science.gov (United States)

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah

    2016-06-17

    The effects of different drying methods (freeze drying, vacuum oven drying, and shade drying) on the phytochemical constituents associated with the antioxidant activities of Z. officinale var. rubrum Theilade were evaluated to determine the optimal drying process for these rhizomes. Total flavonoid content (TFC), total phenolic content (TPC), and polyphenol oxidase (PPO) activity were measured using the spectrophotometric method. Individual phenolic acids and flavonoids, 6- and 8-gingerol and shogaol were identified by ultra-high performance liquid chromatography method. Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used for the evaluation of antioxidant activities. The highest reduction in moisture content was observed after freeze drying (82.97%), followed by vacuum oven drying (80.43%) and shade drying (72.65%). The highest TPC, TFC, and 6- and 8-shogaol contents were observed in samples dried by the vacuum oven drying method compared to other drying methods. The highest content of 6- and 8-gingerol was observed after freeze drying, followed by vacuum oven drying and shade drying methods. Fresh samples had the highest PPO activity and lowest content of flavonoid and phenolic acid compounds compared to dried samples. Rhizomes dried by the vacuum oven drying method represent the highest DPPH (52.9%) and FRAP activities (566.5 μM of Fe (II)/g DM), followed by freeze drying (48.3% and 527.1 μM of Fe (II)/g DM, respectively) and shade drying methods (37.64% and 471.8 μM of Fe (II)/g DM, respectively) with IC50 values of 27.2, 29.1, and 34.8 μg/mL, respectively. Negative and significant correlations were observed between PPO and antioxidant activity of rhizomes. Vacuum oven dried rhizomes can be utilized as an ingredient for the development of value-added food products as they contain high contents of phytochemicals with valuable antioxidant potential.