WorldWideScience

Sample records for risk prediction error

  1. Threat and error management for anesthesiologists: a predictive risk taxonomy

    Science.gov (United States)

    Ruskin, Keith J.; Stiegler, Marjorie P.; Park, Kellie; Guffey, Patrick; Kurup, Viji; Chidester, Thomas

    2015-01-01

    Purpose of review Patient care in the operating room is a dynamic interaction that requires cooperation among team members and reliance upon sophisticated technology. Most human factors research in medicine has been focused on analyzing errors and implementing system-wide changes to prevent them from recurring. We describe a set of techniques that has been used successfully by the aviation industry to analyze errors and adverse events and explain how these techniques can be applied to patient care. Recent findings Threat and error management (TEM) describes adverse events in terms of risks or challenges that are present in an operational environment (threats) and the actions of specific personnel that potentiate or exacerbate those threats (errors). TEM is a technique widely used in aviation, and can be adapted for the use in a medical setting to predict high-risk situations and prevent errors in the perioperative period. A threat taxonomy is a novel way of classifying and predicting the hazards that can occur in the operating room. TEM can be used to identify error-producing situations, analyze adverse events, and design training scenarios. Summary TEM offers a multifaceted strategy for identifying hazards, reducing errors, and training physicians. A threat taxonomy may improve analysis of critical events with subsequent development of specific interventions, and may also serve as a framework for training programs in risk mitigation. PMID:24113268

  2. Measurement error and timing of predictor values for multivariable risk prediction models are poorly reported.

    Science.gov (United States)

    Whittle, Rebecca; Peat, George; Belcher, John; Collins, Gary S; Riley, Richard D

    2018-05-18

    Measurement error in predictor variables may threaten the validity of clinical prediction models. We sought to evaluate the possible extent of the problem. A secondary objective was to examine whether predictors are measured at the intended moment of model use. A systematic search of Medline was used to identify a sample of articles reporting the development of a clinical prediction model published in 2015. After screening according to a predefined inclusion criteria, information on predictors, strategies to control for measurement error and intended moment of model use were extracted. Susceptibility to measurement error for each predictor was classified into low and high risk. Thirty-three studies were reviewed, including 151 different predictors in the final prediction models. Fifty-one (33.7%) predictors were categorised as high risk of error, however this was not accounted for in the model development. Only 8 (24.2%) studies explicitly stated the intended moment of model use and when the predictors were measured. Reporting of measurement error and intended moment of model use is poor in prediction model studies. There is a need to identify circumstances where ignoring measurement error in prediction models is consequential and whether accounting for the error will improve the predictions. Copyright © 2018. Published by Elsevier Inc.

  3. The Human Bathtub: Safety and Risk Predictions Including the Dynamic Probability of Operator Errors

    International Nuclear Information System (INIS)

    Duffey, Romney B.; Saull, John W.

    2006-01-01

    Reactor safety and risk are dominated by the potential and major contribution for human error in the design, operation, control, management, regulation and maintenance of the plant, and hence to all accidents. Given the possibility of accidents and errors, now we need to determine the outcome (error) probability, or the chance of failure. Conventionally, reliability engineering is associated with the failure rate of components, or systems, or mechanisms, not of human beings in and interacting with a technological system. The probability of failure requires a prior knowledge of the total number of outcomes, which for any predictive purposes we do not know or have. Analysis of failure rates due to human error and the rate of learning allow a new determination of the dynamic human error rate in technological systems, consistent with and derived from the available world data. The basis for the analysis is the 'learning hypothesis' that humans learn from experience, and consequently the accumulated experience defines the failure rate. A new 'best' equation has been derived for the human error, outcome or failure rate, which allows for calculation and prediction of the probability of human error. We also provide comparisons to the empirical Weibull parameter fitting used in and by conventional reliability engineering and probabilistic safety analysis methods. These new analyses show that arbitrary Weibull fitting parameters and typical empirical hazard function techniques cannot be used to predict the dynamics of human errors and outcomes in the presence of learning. Comparisons of these new insights show agreement with human error data from the world's commercial airlines, the two shuttle failures, and from nuclear plant operator actions and transient control behavior observed in transients in both plants and simulators. The results demonstrate that the human error probability (HEP) is dynamic, and that it may be predicted using the learning hypothesis and the minimum

  4. Neural prediction errors reveal a risk-sensitive reinforcement-learning process in the human brain.

    Science.gov (United States)

    Niv, Yael; Edlund, Jeffrey A; Dayan, Peter; O'Doherty, John P

    2012-01-11

    Humans and animals are exquisitely, though idiosyncratically, sensitive to risk or variance in the outcomes of their actions. Economic, psychological, and neural aspects of this are well studied when information about risk is provided explicitly. However, we must normally learn about outcomes from experience, through trial and error. Traditional models of such reinforcement learning focus on learning about the mean reward value of cues and ignore higher order moments such as variance. We used fMRI to test whether the neural correlates of human reinforcement learning are sensitive to experienced risk. Our analysis focused on anatomically delineated regions of a priori interest in the nucleus accumbens, where blood oxygenation level-dependent (BOLD) signals have been suggested as correlating with quantities derived from reinforcement learning. We first provide unbiased evidence that the raw BOLD signal in these regions corresponds closely to a reward prediction error. We then derive from this signal the learned values of cues that predict rewards of equal mean but different variance and show that these values are indeed modulated by experienced risk. Moreover, a close neurometric-psychometric coupling exists between the fluctuations of the experience-based evaluations of risky options that we measured neurally and the fluctuations in behavioral risk aversion. This suggests that risk sensitivity is integral to human learning, illuminating economic models of choice, neuroscientific models of affective learning, and the workings of the underlying neural mechanisms.

  5. Dopamine reward prediction error coding

    OpenAIRE

    Schultz, Wolfram

    2016-01-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards?an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less...

  6. Dopamine reward prediction error coding.

    Science.gov (United States)

    Schultz, Wolfram

    2016-03-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.

  7. Reward positivity: Reward prediction error or salience prediction error?

    Science.gov (United States)

    Heydari, Sepideh; Holroyd, Clay B

    2016-08-01

    The reward positivity is a component of the human ERP elicited by feedback stimuli in trial-and-error learning and guessing tasks. A prominent theory holds that the reward positivity reflects a reward prediction error signal that is sensitive to outcome valence, being larger for unexpected positive events relative to unexpected negative events (Holroyd & Coles, 2002). Although the theory has found substantial empirical support, most of these studies have utilized either monetary or performance feedback to test the hypothesis. However, in apparent contradiction to the theory, a recent study found that unexpected physical punishments also elicit the reward positivity (Talmi, Atkinson, & El-Deredy, 2013). The authors of this report argued that the reward positivity reflects a salience prediction error rather than a reward prediction error. To investigate this finding further, in the present study participants navigated a virtual T maze and received feedback on each trial under two conditions. In a reward condition, the feedback indicated that they would either receive a monetary reward or not and in a punishment condition the feedback indicated that they would receive a small shock or not. We found that the feedback stimuli elicited a typical reward positivity in the reward condition and an apparently delayed reward positivity in the punishment condition. Importantly, this signal was more positive to the stimuli that predicted the omission of a possible punishment relative to stimuli that predicted a forthcoming punishment, which is inconsistent with the salience hypothesis. © 2016 Society for Psychophysiological Research.

  8. Notes on human error analysis and prediction

    International Nuclear Information System (INIS)

    Rasmussen, J.

    1978-11-01

    The notes comprise an introductory discussion of the role of human error analysis and prediction in industrial risk analysis. Following this introduction, different classes of human errors and role in industrial systems are mentioned. Problems related to the prediction of human behaviour in reliability and safety analysis are formulated and ''criteria for analyzability'' which must be met by industrial systems so that a systematic analysis can be performed are suggested. The appendices contain illustrative case stories and a review of human error reports for the task of equipment calibration and testing as found in the US Licensee Event Reports. (author)

  9. Soil pH Errors Propagation from Measurements to Spatial Predictions - Cost Benefit Analysis and Risk Assessment Implications for Practitioners and Modelers

    Science.gov (United States)

    Owens, P. R.; Libohova, Z.; Seybold, C. A.; Wills, S. A.; Peaslee, S.; Beaudette, D.; Lindbo, D. L.

    2017-12-01

    The measurement errors and spatial prediction uncertainties of soil properties in the modeling community are usually assessed against measured values when available. However, of equal importance is the assessment of errors and uncertainty impacts on cost benefit analysis and risk assessments. Soil pH was selected as one of the most commonly measured soil properties used for liming recommendations. The objective of this study was to assess the error size from different sources and their implications with respect to management decisions. Error sources include measurement methods, laboratory sources, pedotransfer functions, database transections, spatial aggregations, etc. Several databases of measured and predicted soil pH were used for this study including the United States National Cooperative Soil Survey Characterization Database (NCSS-SCDB), the US Soil Survey Geographic (SSURGO) Database. The distribution of errors among different sources from measurement methods to spatial aggregation showed a wide range of values. The greatest RMSE of 0.79 pH units was from spatial aggregation (SSURGO vs Kriging), while the measurement methods had the lowest RMSE of 0.06 pH units. Assuming the order of data acquisition based on the transaction distance i.e. from measurement method to spatial aggregation the RMSE increased from 0.06 to 0.8 pH units suggesting an "error propagation". This has major implications for practitioners and modeling community. Most soil liming rate recommendations are based on 0.1 pH unit increments, while the desired soil pH level increments are based on 0.4 to 0.5 pH units. Thus, even when the measured and desired target soil pH are the same most guidelines recommend 1 ton ha-1 lime, which translates in 111 ha-1 that the farmer has to factor in the cost-benefit analysis. However, this analysis need to be based on uncertainty predictions (0.5-1.0 pH units) rather than measurement errors (0.1 pH units) which would translate in 555-1,111 investment that

  10. Comparison of Prediction-Error-Modelling Criteria

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Jørgensen, Sten Bay

    2007-01-01

    Single and multi-step prediction-error-methods based on the maximum likelihood and least squares criteria are compared. The prediction-error methods studied are based on predictions using the Kalman filter and Kalman predictors for a linear discrete-time stochastic state space model, which is a r...

  11. Prediction-error of Prediction Error (PPE)-based Reversible Data Hiding

    OpenAIRE

    Wu, Han-Zhou; Wang, Hong-Xia; Shi, Yun-Qing

    2016-01-01

    This paper presents a novel reversible data hiding (RDH) algorithm for gray-scaled images, in which the prediction-error of prediction error (PPE) of a pixel is used to carry the secret data. In the proposed method, the pixels to be embedded are firstly predicted with their neighboring pixels to obtain the corresponding prediction errors (PEs). Then, by exploiting the PEs of the neighboring pixels, the prediction of the PEs of the pixels can be determined. And, a sorting technique based on th...

  12. Signed reward prediction errors drive declarative learning

    NARCIS (Netherlands)

    De Loof, E.; Ergo, K.; Naert, L.; Janssens, C.; Talsma, D.; van Opstal, F.; Verguts, T.

    2018-01-01

    Reward prediction errors (RPEs) are thought to drive learning. This has been established in procedural learning (e.g., classical and operant conditioning). However, empirical evidence on whether RPEs drive declarative learning–a quintessentially human form of learning–remains surprisingly absent. We

  13. Signed reward prediction errors drive declarative learning.

    Directory of Open Access Journals (Sweden)

    Esther De Loof

    Full Text Available Reward prediction errors (RPEs are thought to drive learning. This has been established in procedural learning (e.g., classical and operant conditioning. However, empirical evidence on whether RPEs drive declarative learning-a quintessentially human form of learning-remains surprisingly absent. We therefore coupled RPEs to the acquisition of Dutch-Swahili word pairs in a declarative learning paradigm. Signed RPEs (SRPEs; "better-than-expected" signals during declarative learning improved recognition in a follow-up test, with increasingly positive RPEs leading to better recognition. In addition, classic declarative memory mechanisms such as time-on-task failed to explain recognition performance. The beneficial effect of SRPEs on recognition was subsequently affirmed in a replication study with visual stimuli.

  14. Signed reward prediction errors drive declarative learning.

    Science.gov (United States)

    De Loof, Esther; Ergo, Kate; Naert, Lien; Janssens, Clio; Talsma, Durk; Van Opstal, Filip; Verguts, Tom

    2018-01-01

    Reward prediction errors (RPEs) are thought to drive learning. This has been established in procedural learning (e.g., classical and operant conditioning). However, empirical evidence on whether RPEs drive declarative learning-a quintessentially human form of learning-remains surprisingly absent. We therefore coupled RPEs to the acquisition of Dutch-Swahili word pairs in a declarative learning paradigm. Signed RPEs (SRPEs; "better-than-expected" signals) during declarative learning improved recognition in a follow-up test, with increasingly positive RPEs leading to better recognition. In addition, classic declarative memory mechanisms such as time-on-task failed to explain recognition performance. The beneficial effect of SRPEs on recognition was subsequently affirmed in a replication study with visual stimuli.

  15. Working Memory Load Strengthens Reward Prediction Errors.

    Science.gov (United States)

    Collins, Anne G E; Ciullo, Brittany; Frank, Michael J; Badre, David

    2017-04-19

    Reinforcement learning (RL) in simple instrumental tasks is usually modeled as a monolithic process in which reward prediction errors (RPEs) are used to update expected values of choice options. This modeling ignores the different contributions of different memory and decision-making systems thought to contribute even to simple learning. In an fMRI experiment, we investigated how working memory (WM) and incremental RL processes interact to guide human learning. WM load was manipulated by varying the number of stimuli to be learned across blocks. Behavioral results and computational modeling confirmed that learning was best explained as a mixture of two mechanisms: a fast, capacity-limited, and delay-sensitive WM process together with slower RL. Model-based analysis of fMRI data showed that striatum and lateral prefrontal cortex were sensitive to RPE, as shown previously, but, critically, these signals were reduced when the learning problem was within capacity of WM. The degree of this neural interaction related to individual differences in the use of WM to guide behavioral learning. These results indicate that the two systems do not process information independently, but rather interact during learning. SIGNIFICANCE STATEMENT Reinforcement learning (RL) theory has been remarkably productive at improving our understanding of instrumental learning as well as dopaminergic and striatal network function across many mammalian species. However, this neural network is only one contributor to human learning and other mechanisms such as prefrontal cortex working memory also play a key role. Our results also show that these other players interact with the dopaminergic RL system, interfering with its key computation of reward prediction errors. Copyright © 2017 the authors 0270-6474/17/374332-11$15.00/0.

  16. Dopamine reward prediction error responses reflect marginal utility.

    Science.gov (United States)

    Stauffer, William R; Lak, Armin; Schultz, Wolfram

    2014-11-03

    Optimal choices require an accurate neuronal representation of economic value. In economics, utility functions are mathematical representations of subjective value that can be constructed from choices under risk. Utility usually exhibits a nonlinear relationship to physical reward value that corresponds to risk attitudes and reflects the increasing or decreasing marginal utility obtained with each additional unit of reward. Accordingly, neuronal reward responses coding utility should robustly reflect this nonlinearity. In two monkeys, we measured utility as a function of physical reward value from meaningful choices under risk (that adhered to first- and second-order stochastic dominance). The resulting nonlinear utility functions predicted the certainty equivalents for new gambles, indicating that the functions' shapes were meaningful. The monkeys were risk seeking (convex utility function) for low reward and risk avoiding (concave utility function) with higher amounts. Critically, the dopamine prediction error responses at the time of reward itself reflected the nonlinear utility functions measured at the time of choices. In particular, the reward response magnitude depended on the first derivative of the utility function and thus reflected the marginal utility. Furthermore, dopamine responses recorded outside of the task reflected the marginal utility of unpredicted reward. Accordingly, these responses were sufficient to train reinforcement learning models to predict the behaviorally defined expected utility of gambles. These data suggest a neuronal manifestation of marginal utility in dopamine neurons and indicate a common neuronal basis for fundamental explanatory constructs in animal learning theory (prediction error) and economic decision theory (marginal utility). Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. SHERPA: A systematic human error reduction and prediction approach

    International Nuclear Information System (INIS)

    Embrey, D.E.

    1986-01-01

    This paper describes a Systematic Human Error Reduction and Prediction Approach (SHERPA) which is intended to provide guidelines for human error reduction and quantification in a wide range of human-machine systems. The approach utilizes as its basic current cognitive models of human performance. The first module in SHERPA performs task and human error analyses, which identify likely error modes, together with guidelines for the reduction of these errors by training, procedures and equipment redesign. The second module uses a SARAH approach to quantify the probability of occurrence of the errors identified earlier, and provides cost benefit analyses to assist in choosing the appropriate error reduction approaches in the third module

  18. Learning from sensory and reward prediction errors during motor adaptation.

    Science.gov (United States)

    Izawa, Jun; Shadmehr, Reza

    2011-03-01

    Voluntary motor commands produce two kinds of consequences. Initially, a sensory consequence is observed in terms of activity in our primary sensory organs (e.g., vision, proprioception). Subsequently, the brain evaluates the sensory feedback and produces a subjective measure of utility or usefulness of the motor commands (e.g., reward). As a result, comparisons between predicted and observed consequences of motor commands produce two forms of prediction error. How do these errors contribute to changes in motor commands? Here, we considered a reach adaptation protocol and found that when high quality sensory feedback was available, adaptation of motor commands was driven almost exclusively by sensory prediction errors. This form of learning had a distinct signature: as motor commands adapted, the subjects altered their predictions regarding sensory consequences of motor commands, and generalized this learning broadly to neighboring motor commands. In contrast, as the quality of the sensory feedback degraded, adaptation of motor commands became more dependent on reward prediction errors. Reward prediction errors produced comparable changes in the motor commands, but produced no change in the predicted sensory consequences of motor commands, and generalized only locally. Because we found that there was a within subject correlation between generalization patterns and sensory remapping, it is plausible that during adaptation an individual's relative reliance on sensory vs. reward prediction errors could be inferred. We suggest that while motor commands change because of sensory and reward prediction errors, only sensory prediction errors produce a change in the neural system that predicts sensory consequences of motor commands.

  19. Error-related anterior cingulate cortex activity and the prediction of conscious error awareness

    Directory of Open Access Journals (Sweden)

    Catherine eOrr

    2012-06-01

    Full Text Available Research examining the neural mechanisms associated with error awareness has consistently identified dorsal anterior cingulate activity (ACC as necessary but not predictive of conscious error detection. Two recent studies (Steinhauser and Yeung, 2010; Wessel et al. 2011 have found a contrary pattern of greater dorsal ACC activity (in the form of the error-related negativity during detected errors, but suggested that the greater activity may instead reflect task influences (e.g., response conflict, error probability and or individual variability (e.g., statistical power. We re-analyzed fMRI BOLD data from 56 healthy participants who had previously been administered the Error Awareness Task, a motor Go/No-go response inhibition task in which subjects make errors of commission of which they are aware (Aware errors, or unaware (Unaware errors. Consistent with previous data, the activity in a number of cortical regions was predictive of error awareness, including bilateral inferior parietal and insula cortices, however in contrast to previous studies, including our own smaller sample studies using the same task, error-related dorsal ACC activity was significantly greater during aware errors when compared to unaware errors. While the significantly faster RT for aware errors (compared to unaware was consistent with the hypothesis of higher response conflict increasing ACC activity, we could find no relationship between dorsal ACC activity and the error RT difference. The data suggests that individual variability in error awareness is associated with error-related dorsal ACC activity, and therefore this region may be important to conscious error detection, but it remains unclear what task and individual factors influence error awareness.

  20. Critical evidence for the prediction error theory in associative learning.

    Science.gov (United States)

    Terao, Kanta; Matsumoto, Yukihisa; Mizunami, Makoto

    2015-03-10

    In associative learning in mammals, it is widely accepted that the discrepancy, or error, between actual and predicted reward determines whether learning occurs. Complete evidence for the prediction error theory, however, has not been obtained in any learning systems: Prediction error theory stems from the finding of a blocking phenomenon, but blocking can also be accounted for by other theories, such as the attentional theory. We demonstrated blocking in classical conditioning in crickets and obtained evidence to reject the attentional theory. To obtain further evidence supporting the prediction error theory and rejecting alternative theories, we constructed a neural model to match the prediction error theory, by modifying our previous model of learning in crickets, and we tested a prediction from the model: the model predicts that pharmacological intervention of octopaminergic transmission during appetitive conditioning impairs learning but not formation of reward prediction itself, and it thus predicts no learning in subsequent training. We observed such an "auto-blocking", which could be accounted for by the prediction error theory but not by other competitive theories to account for blocking. This study unambiguously demonstrates validity of the prediction error theory in associative learning.

  1. Scaling prediction errors to reward variability benefits error-driven learning in humans.

    Science.gov (United States)

    Diederen, Kelly M J; Schultz, Wolfram

    2015-09-01

    Effective error-driven learning requires individuals to adapt learning to environmental reward variability. The adaptive mechanism may involve decays in learning rate across subsequent trials, as shown previously, and rescaling of reward prediction errors. The present study investigated the influence of prediction error scaling and, in particular, the consequences for learning performance. Participants explicitly predicted reward magnitudes that were drawn from different probability distributions with specific standard deviations. By fitting the data with reinforcement learning models, we found scaling of prediction errors, in addition to the learning rate decay shown previously. Importantly, the prediction error scaling was closely related to learning performance, defined as accuracy in predicting the mean of reward distributions, across individual participants. In addition, participants who scaled prediction errors relative to standard deviation also presented with more similar performance for different standard deviations, indicating that increases in standard deviation did not substantially decrease "adapters'" accuracy in predicting the means of reward distributions. However, exaggerated scaling beyond the standard deviation resulted in impaired performance. Thus efficient adaptation makes learning more robust to changing variability. Copyright © 2015 the American Physiological Society.

  2. Predicting Error Bars for QSAR Models

    International Nuclear Information System (INIS)

    Schroeter, Timon; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Mueller, Klaus-Robert

    2007-01-01

    Unfavorable physicochemical properties often cause drug failures. It is therefore important to take lipophilicity and water solubility into account early on in lead discovery. This study presents log D 7 models built using Gaussian Process regression, Support Vector Machines, decision trees and ridge regression algorithms based on 14556 drug discovery compounds of Bayer Schering Pharma. A blind test was conducted using 7013 new measurements from the last months. We also present independent evaluations using public data. Apart from accuracy, we discuss the quality of error bars that can be computed by Gaussian Process models, and ensemble and distance based techniques for the other modelling approaches

  3. Human medial frontal cortex activity predicts learning from errors.

    Science.gov (United States)

    Hester, Robert; Barre, Natalie; Murphy, Kevin; Silk, Tim J; Mattingley, Jason B

    2008-08-01

    Learning from errors is a critical feature of human cognition. It underlies our ability to adapt to changing environmental demands and to tune behavior for optimal performance. The posterior medial frontal cortex (pMFC) has been implicated in the evaluation of errors to control behavior, although it has not previously been shown that activity in this region predicts learning from errors. Using functional magnetic resonance imaging, we examined activity in the pMFC during an associative learning task in which participants had to recall the spatial locations of 2-digit targets and were provided with immediate feedback regarding accuracy. Activity within the pMFC was significantly greater for errors that were subsequently corrected than for errors that were repeated. Moreover, pMFC activity during recall errors predicted future responses (correct vs. incorrect), despite a sizeable interval (on average 70 s) between an error and the next presentation of the same recall probe. Activity within the hippocampus also predicted future performance and correlated with error-feedback-related pMFC activity. A relationship between performance expectations and pMFC activity, in the absence of differing reinforcement value for errors, is consistent with the idea that error-related pMFC activity reflects the extent to which an outcome is "worse than expected."

  4. A causal link between prediction errors, dopamine neurons and learning.

    Science.gov (United States)

    Steinberg, Elizabeth E; Keiflin, Ronald; Boivin, Josiah R; Witten, Ilana B; Deisseroth, Karl; Janak, Patricia H

    2013-07-01

    Situations in which rewards are unexpectedly obtained or withheld represent opportunities for new learning. Often, this learning includes identifying cues that predict reward availability. Unexpected rewards strongly activate midbrain dopamine neurons. This phasic signal is proposed to support learning about antecedent cues by signaling discrepancies between actual and expected outcomes, termed a reward prediction error. However, it is unknown whether dopamine neuron prediction error signaling and cue-reward learning are causally linked. To test this hypothesis, we manipulated dopamine neuron activity in rats in two behavioral procedures, associative blocking and extinction, that illustrate the essential function of prediction errors in learning. We observed that optogenetic activation of dopamine neurons concurrent with reward delivery, mimicking a prediction error, was sufficient to cause long-lasting increases in cue-elicited reward-seeking behavior. Our findings establish a causal role for temporally precise dopamine neuron signaling in cue-reward learning, bridging a critical gap between experimental evidence and influential theoretical frameworks.

  5. Prediction Error During Functional and Non-Functional Action Sequences

    DEFF Research Database (Denmark)

    Nielbo, Kristoffer Laigaard; Sørensen, Jesper

    2013-01-01

    recurrent networks were made and the results are presented in this article. The simulations show that non-functional action sequences do indeed increase prediction error, but that context representations, such as abstract goal information, can modulate the error signal considerably. It is also shown...... that the networks are sensitive to boundaries between sequences in both functional and non-functional actions....

  6. Radiation risk estimation based on measurement error models

    CERN Document Server

    Masiuk, Sergii; Shklyar, Sergiy; Chepurny, Mykola; Likhtarov, Illya

    2017-01-01

    This monograph discusses statistics and risk estimates applied to radiation damage under the presence of measurement errors. The first part covers nonlinear measurement error models, with a particular emphasis on efficiency of regression parameter estimators. In the second part, risk estimation in models with measurement errors is considered. Efficiency of the methods presented is verified using data from radio-epidemiological studies.

  7. Mean Bias in Seasonal Forecast Model and ENSO Prediction Error.

    Science.gov (United States)

    Kim, Seon Tae; Jeong, Hye-In; Jin, Fei-Fei

    2017-07-20

    This study uses retrospective forecasts made using an APEC Climate Center seasonal forecast model to investigate the cause of errors in predicting the amplitude of El Niño Southern Oscillation (ENSO)-driven sea surface temperature variability. When utilizing Bjerknes coupled stability (BJ) index analysis, enhanced errors in ENSO amplitude with forecast lead times are found to be well represented by those in the growth rate estimated by the BJ index. ENSO amplitude forecast errors are most strongly associated with the errors in both the thermocline slope response and surface wind response to forcing over the tropical Pacific, leading to errors in thermocline feedback. This study concludes that upper ocean temperature bias in the equatorial Pacific, which becomes more intense with increasing lead times, is a possible cause of forecast errors in the thermocline feedback and thus in ENSO amplitude.

  8. Prediction and error of baldcypress stem volume from stump diameter

    Science.gov (United States)

    Bernard R. Parresol

    1998-01-01

    The need to estimate the volume of removals occurs for many reasons, such as in trespass cases, severance tax reports, and post-harvest assessments. A logarithmic model is presented for prediction of baldcypress total stem cubic foot volume using stump diameter as the independent variable. Because the error of prediction is as important as the volume estimate, the...

  9. The Pupillary Orienting Response Predicts Adaptive Behavioral Adjustment after Errors.

    Directory of Open Access Journals (Sweden)

    Peter R Murphy

    Full Text Available Reaction time (RT is commonly observed to slow down after an error. This post-error slowing (PES has been thought to arise from the strategic adoption of a more cautious response mode following deployment of cognitive control. Recently, an alternative account has suggested that PES results from interference due to an error-evoked orienting response. We investigated whether error-related orienting may in fact be a pre-cursor to adaptive post-error behavioral adjustment when the orienting response resolves before subsequent trial onset. We measured pupil dilation, a prototypical measure of autonomic orienting, during performance of a choice RT task with long inter-stimulus intervals, and found that the trial-by-trial magnitude of the error-evoked pupil response positively predicted both PES magnitude and the likelihood that the following response would be correct. These combined findings suggest that the magnitude of the error-related orienting response predicts an adaptive change of response strategy following errors, and thereby promote a reconciliation of the orienting and adaptive control accounts of PES.

  10. Prediction error, ketamine and psychosis: An updated model.

    Science.gov (United States)

    Corlett, Philip R; Honey, Garry D; Fletcher, Paul C

    2016-11-01

    In 2007, we proposed an explanation of delusion formation as aberrant prediction error-driven associative learning. Further, we argued that the NMDA receptor antagonist ketamine provided a good model for this process. Subsequently, we validated the model in patients with psychosis, relating aberrant prediction error signals to delusion severity. During the ensuing period, we have developed these ideas, drawing on the simple principle that brains build a model of the world and refine it by minimising prediction errors, as well as using it to guide perceptual inferences. While previously we focused on the prediction error signal per se, an updated view takes into account its precision, as well as the precision of prior expectations. With this expanded perspective, we see several possible routes to psychotic symptoms - which may explain the heterogeneity of psychotic illness, as well as the fact that other drugs, with different pharmacological actions, can produce psychotomimetic effects. In this article, we review the basic principles of this model and highlight specific ways in which prediction errors can be perturbed, in particular considering the reliability and uncertainty of predictions. The expanded model explains hallucinations as perturbations of the uncertainty mediated balance between expectation and prediction error. Here, expectations dominate and create perceptions by suppressing or ignoring actual inputs. Negative symptoms may arise due to poor reliability of predictions in service of action. By mapping from biology to belief and perception, the account proffers new explanations of psychosis. However, challenges remain. We attempt to address some of these concerns and suggest future directions, incorporating other symptoms into the model, building towards better understanding of psychosis. © The Author(s) 2016.

  11. Competition between learned reward and error outcome predictions in anterior cingulate cortex.

    Science.gov (United States)

    Alexander, William H; Brown, Joshua W

    2010-02-15

    The anterior cingulate cortex (ACC) is implicated in performance monitoring and cognitive control. Non-human primate studies of ACC show prominent reward signals, but these are elusive in human studies, which instead show mainly conflict and error effects. Here we demonstrate distinct appetitive and aversive activity in human ACC. The error likelihood hypothesis suggests that ACC activity increases in proportion to the likelihood of an error, and ACC is also sensitive to the consequence magnitude of the predicted error. Previous work further showed that error likelihood effects reach a ceiling as the potential consequences of an error increase, possibly due to reductions in the average reward. We explored this issue by independently manipulating reward magnitude of task responses and error likelihood while controlling for potential error consequences in an Incentive Change Signal Task. The fMRI results ruled out a modulatory effect of expected reward on error likelihood effects in favor of a competition effect between expected reward and error likelihood. Dynamic causal modeling showed that error likelihood and expected reward signals are intrinsic to the ACC rather than received from elsewhere. These findings agree with interpretations of ACC activity as signaling both perceptions of risk and predicted reward. Copyright 2009 Elsevier Inc. All rights reserved.

  12. Medication Errors: New EU Good Practice Guide on Risk Minimisation and Error Prevention.

    Science.gov (United States)

    Goedecke, Thomas; Ord, Kathryn; Newbould, Victoria; Brosch, Sabine; Arlett, Peter

    2016-06-01

    A medication error is an unintended failure in the drug treatment process that leads to, or has the potential to lead to, harm to the patient. Reducing the risk of medication errors is a shared responsibility between patients, healthcare professionals, regulators and the pharmaceutical industry at all levels of healthcare delivery. In 2015, the EU regulatory network released a two-part good practice guide on medication errors to support both the pharmaceutical industry and regulators in the implementation of the changes introduced with the EU pharmacovigilance legislation. These changes included a modification of the 'adverse reaction' definition to include events associated with medication errors, and the requirement for national competent authorities responsible for pharmacovigilance in EU Member States to collaborate and exchange information on medication errors resulting in harm with national patient safety organisations. To facilitate reporting and learning from medication errors, a clear distinction has been made in the guidance between medication errors resulting in adverse reactions, medication errors without harm, intercepted medication errors and potential errors. This distinction is supported by an enhanced MedDRA(®) terminology that allows for coding all stages of the medication use process where the error occurred in addition to any clinical consequences. To better understand the causes and contributing factors, individual case safety reports involving an error should be followed-up with the primary reporter to gather information relevant for the conduct of root cause analysis where this may be appropriate. Such reports should also be summarised in periodic safety update reports and addressed in risk management plans. Any risk minimisation and prevention strategy for medication errors should consider all stages of a medicinal product's life-cycle, particularly the main sources and types of medication errors during product development. This article

  13. Error analysis in predictive modelling demonstrated on mould data.

    Science.gov (United States)

    Baranyi, József; Csernus, Olívia; Beczner, Judit

    2014-01-17

    The purpose of this paper was to develop a predictive model for the effect of temperature and water activity on the growth rate of Aspergillus niger and to determine the sources of the error when the model is used for prediction. Parallel mould growth curves, derived from the same spore batch, were generated and fitted to determine their growth rate. The variances of replicate ln(growth-rate) estimates were used to quantify the experimental variability, inherent to the method of determining the growth rate. The environmental variability was quantified by the variance of the respective means of replicates. The idea is analogous to the "within group" and "between groups" variability concepts of ANOVA procedures. A (secondary) model, with temperature and water activity as explanatory variables, was fitted to the natural logarithm of the growth rates determined by the primary model. The model error and the experimental and environmental errors were ranked according to their contribution to the total error of prediction. Our method can readily be applied to analysing the error structure of predictive models of bacterial growth models, too. © 2013.

  14. Prospective detection of large prediction errors: a hypothesis testing approach

    International Nuclear Information System (INIS)

    Ruan, Dan

    2010-01-01

    Real-time motion management is important in radiotherapy. In addition to effective monitoring schemes, prediction is required to compensate for system latency, so that treatment can be synchronized with tumor motion. However, it is difficult to predict tumor motion at all times, and it is critical to determine when large prediction errors may occur. Such information can be used to pause the treatment beam or adjust monitoring/prediction schemes. In this study, we propose a hypothesis testing approach for detecting instants corresponding to potentially large prediction errors in real time. We treat the future tumor location as a random variable, and obtain its empirical probability distribution with the kernel density estimation-based method. Under the null hypothesis, the model probability is assumed to be a concentrated Gaussian centered at the prediction output. Under the alternative hypothesis, the model distribution is assumed to be non-informative uniform, which reflects the situation that the future position cannot be inferred reliably. We derive the likelihood ratio test (LRT) for this hypothesis testing problem and show that with the method of moments for estimating the null hypothesis Gaussian parameters, the LRT reduces to a simple test on the empirical variance of the predictive random variable. This conforms to the intuition to expect a (potentially) large prediction error when the estimate is associated with high uncertainty, and to expect an accurate prediction when the uncertainty level is low. We tested the proposed method on patient-derived respiratory traces. The 'ground-truth' prediction error was evaluated by comparing the prediction values with retrospective observations, and the large prediction regions were subsequently delineated by thresholding the prediction errors. The receiver operating characteristic curve was used to describe the performance of the proposed hypothesis testing method. Clinical implication was represented by miss

  15. Estimation of genetic connectedness diagnostics based on prediction errors without the prediction error variance-covariance matrix.

    Science.gov (United States)

    Holmes, John B; Dodds, Ken G; Lee, Michael A

    2017-03-02

    An important issue in genetic evaluation is the comparability of random effects (breeding values), particularly between pairs of animals in different contemporary groups. This is usually referred to as genetic connectedness. While various measures of connectedness have been proposed in the literature, there is general agreement that the most appropriate measure is some function of the prediction error variance-covariance matrix. However, obtaining the prediction error variance-covariance matrix is computationally demanding for large-scale genetic evaluations. Many alternative statistics have been proposed that avoid the computational cost of obtaining the prediction error variance-covariance matrix, such as counts of genetic links between contemporary groups, gene flow matrices, and functions of the variance-covariance matrix of estimated contemporary group fixed effects. In this paper, we show that a correction to the variance-covariance matrix of estimated contemporary group fixed effects will produce the exact prediction error variance-covariance matrix averaged by contemporary group for univariate models in the presence of single or multiple fixed effects and one random effect. We demonstrate the correction for a series of models and show that approximations to the prediction error matrix based solely on the variance-covariance matrix of estimated contemporary group fixed effects are inappropriate in certain circumstances. Our method allows for the calculation of a connectedness measure based on the prediction error variance-covariance matrix by calculating only the variance-covariance matrix of estimated fixed effects. Since the number of fixed effects in genetic evaluation is usually orders of magnitudes smaller than the number of random effect levels, the computational requirements for our method should be reduced.

  16. Prediction-error identification of LPV systems : present and beyond

    NARCIS (Netherlands)

    Toth, R.; Heuberger, P.S.C.; Hof, Van den P.M.J.; Mohammadpour, J.; Scherer, C. W.

    2012-01-01

    The proposed chapter aims at presenting a unified framework of prediction-error based identification of LPV systems using freshly developed theoretical results. Recently, these methods have got a considerable attention as they have certain advantages in terms of computational complexity, optimality

  17. Testing the prediction error difference between two predictors

    NARCIS (Netherlands)

    van de Wiel, M.A.; Berkhof, J.; van Wieringen, W.N.

    2009-01-01

    We develop an inference framework for the difference in errors between 2 prediction procedures. The 2 procedures may differ in any aspect and possibly utilize different sets of covariates. We apply training and testing on the same data set, which is accommodated by sample splitting. For each split,

  18. Model-free and model-based reward prediction errors in EEG.

    Science.gov (United States)

    Sambrook, Thomas D; Hardwick, Ben; Wills, Andy J; Goslin, Jeremy

    2018-05-24

    Learning theorists posit two reinforcement learning systems: model-free and model-based. Model-based learning incorporates knowledge about structure and contingencies in the world to assign candidate actions with an expected value. Model-free learning is ignorant of the world's structure; instead, actions hold a value based on prior reinforcement, with this value updated by expectancy violation in the form of a reward prediction error. Because they use such different learning mechanisms, it has been previously assumed that model-based and model-free learning are computationally dissociated in the brain. However, recent fMRI evidence suggests that the brain may compute reward prediction errors to both model-free and model-based estimates of value, signalling the possibility that these systems interact. Because of its poor temporal resolution, fMRI risks confounding reward prediction errors with other feedback-related neural activity. In the present study, EEG was used to show the presence of both model-based and model-free reward prediction errors and their place in a temporal sequence of events including state prediction errors and action value updates. This demonstration of model-based prediction errors questions a long-held assumption that model-free and model-based learning are dissociated in the brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Differing Air Traffic Controller Responses to Similar Trajectory Prediction Errors

    Science.gov (United States)

    Mercer, Joey; Hunt-Espinosa, Sarah; Bienert, Nancy; Laraway, Sean

    2016-01-01

    A Human-In-The-Loop simulation was conducted in January of 2013 in the Airspace Operations Laboratory at NASA's Ames Research Center. The simulation airspace included two en route sectors feeding the northwest corner of Atlanta's Terminal Radar Approach Control. The focus of this paper is on how uncertainties in the study's trajectory predictions impacted the controllers ability to perform their duties. Of particular interest is how the controllers interacted with the delay information displayed in the meter list and data block while managing the arrival flows. Due to wind forecasts with 30-knot over-predictions and 30-knot under-predictions, delay value computations included errors of similar magnitude, albeit in opposite directions. However, when performing their duties in the presence of these errors, did the controllers issue clearances of similar magnitude, albeit in opposite directions?

  20. Vulnerability Identification Errors in Security Risk Assessments

    OpenAIRE

    Taubenberger, Stefan

    2014-01-01

    At present, companies rely on information technology systems to achieve their business objectives, making them vulnerable to cybersecurity threats. Information security risk assessments help organisations to identify their risks and vulnerabilities. An accurate identification of risks and vulnerabilities is a challenge, because the input data is uncertain. So-called ’vulnerability identification errors‘ can occur if false positive vulnerabilities are identified, or if vulnerabilities remain u...

  1. How to Avoid Errors in Error Propagation: Prediction Intervals and Confidence Intervals in Forest Biomass

    Science.gov (United States)

    Lilly, P.; Yanai, R. D.; Buckley, H. L.; Case, B. S.; Woollons, R. C.; Holdaway, R. J.; Johnson, J.

    2016-12-01

    Calculations of forest biomass and elemental content require many measurements and models, each contributing uncertainty to the final estimates. While sampling error is commonly reported, based on replicate plots, error due to uncertainty in the regression used to estimate biomass from tree diameter is usually not quantified. Some published estimates of uncertainty due to the regression models have used the uncertainty in the prediction of individuals, ignoring uncertainty in the mean, while others have propagated uncertainty in the mean while ignoring individual variation. Using the simple case of the calcium concentration of sugar maple leaves, we compare the variation among individuals (the standard deviation) to the uncertainty in the mean (the standard error) and illustrate the declining importance in the prediction of individual concentrations as the number of individuals increases. For allometric models, the analogous statistics are the prediction interval (or the residual variation in the model fit) and the confidence interval (describing the uncertainty in the best fit model). The effect of propagating these two sources of error is illustrated using the mass of sugar maple foliage. The uncertainty in individual tree predictions was large for plots with few trees; for plots with 30 trees or more, the uncertainty in individuals was less important than the uncertainty in the mean. Authors of previously published analyses have reanalyzed their data to show the magnitude of these two sources of uncertainty in scales ranging from experimental plots to entire countries. The most correct analysis will take both sources of uncertainty into account, but for practical purposes, country-level reports of uncertainty in carbon stocks, as required by the IPCC, can ignore the uncertainty in individuals. Ignoring the uncertainty in the mean will lead to exaggerated estimates of confidence in estimates of forest biomass and carbon and nutrient contents.

  2. Nonlinear Uncertainty Propagation of Satellite State Error for Tracking and Conjunction Risk Assessment

    Science.gov (United States)

    2017-12-18

    AFRL-RV-PS- AFRL-RV-PS- TR-2017-0177 TR-2017-0177 NONLINEAR UNCERTAINTY PROPAGATION OF SATELLITE STATE ERROR FOR TRACKING AND CONJUNCTION RISK...Uncertainty Propagation of Satellite State Error for Tracking and Conjunction Risk Assessment 5a. CONTRACT NUMBER FA9453-16-1-0084 5b. GRANT NUMBER...prediction and satellite conjunction analysis. Statistical approach utilizes novel methods to build better uncertainty state characterization in the context

  3. Climbing fibers predict movement kinematics and performance errors.

    Science.gov (United States)

    Streng, Martha L; Popa, Laurentiu S; Ebner, Timothy J

    2017-09-01

    Requisite for understanding cerebellar function is a complete characterization of the signals provided by complex spike (CS) discharge of Purkinje cells, the output neurons of the cerebellar cortex. Numerous studies have provided insights into CS function, with the most predominant view being that they are evoked by error events. However, several reports suggest that CSs encode other aspects of movements and do not always respond to errors or unexpected perturbations. Here, we evaluated CS firing during a pseudo-random manual tracking task in the monkey ( Macaca mulatta ). This task provides extensive coverage of the work space and relative independence of movement parameters, delivering a robust data set to assess the signals that activate climbing fibers. Using reverse correlation, we determined feedforward and feedback CSs firing probability maps with position, velocity, and acceleration, as well as position error, a measure of tracking performance. The direction and magnitude of the CS modulation were quantified using linear regression analysis. The major findings are that CSs significantly encode all three kinematic parameters and position error, with acceleration modulation particularly common. The modulation is not related to "events," either for position error or kinematics. Instead, CSs are spatially tuned and provide a linear representation of each parameter evaluated. The CS modulation is largely predictive. Similar analyses show that the simple spike firing is modulated by the same parameters as the CSs. Therefore, CSs carry a broader array of signals than previously described and argue for climbing fiber input having a prominent role in online motor control. NEW & NOTEWORTHY This article demonstrates that complex spike (CS) discharge of cerebellar Purkinje cells encodes multiple parameters of movement, including motor errors and kinematics. The CS firing is not driven by error or kinematic events; instead it provides a linear representation of each

  4. Risk Management and the Concept of Human Error

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1995-01-01

    by a stochastic coincidence of faults and human errors, but by a systemic erosion of the defenses due to decision making under competitive pressure in a dynamic environment. The presentation will discuss the nature of human error and the risk management problems found in a dynamic, competitive society facing...

  5. Error analysis of short term wind power prediction models

    International Nuclear Information System (INIS)

    De Giorgi, Maria Grazia; Ficarella, Antonio; Tarantino, Marco

    2011-01-01

    The integration of wind farms in power networks has become an important problem. This is because the electricity produced cannot be preserved because of the high cost of storage and electricity production must follow market demand. Short-long-range wind forecasting over different lengths/periods of time is becoming an important process for the management of wind farms. Time series modelling of wind speeds is based upon the valid assumption that all the causative factors are implicitly accounted for in the sequence of occurrence of the process itself. Hence time series modelling is equivalent to physical modelling. Auto Regressive Moving Average (ARMA) models, which perform a linear mapping between inputs and outputs, and Artificial Neural Networks (ANNs) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS), which perform a non-linear mapping, provide a robust approach to wind power prediction. In this work, these models are developed in order to forecast power production of a wind farm with three wind turbines, using real load data and comparing different time prediction periods. This comparative analysis takes in the first time, various forecasting methods, time horizons and a deep performance analysis focused upon the normalised mean error and the statistical distribution hereof in order to evaluate error distribution within a narrower curve and therefore forecasting methods whereby it is more improbable to make errors in prediction. (author)

  6. Error analysis of short term wind power prediction models

    Energy Technology Data Exchange (ETDEWEB)

    De Giorgi, Maria Grazia; Ficarella, Antonio; Tarantino, Marco [Dipartimento di Ingegneria dell' Innovazione, Universita del Salento, Via per Monteroni, 73100 Lecce (Italy)

    2011-04-15

    The integration of wind farms in power networks has become an important problem. This is because the electricity produced cannot be preserved because of the high cost of storage and electricity production must follow market demand. Short-long-range wind forecasting over different lengths/periods of time is becoming an important process for the management of wind farms. Time series modelling of wind speeds is based upon the valid assumption that all the causative factors are implicitly accounted for in the sequence of occurrence of the process itself. Hence time series modelling is equivalent to physical modelling. Auto Regressive Moving Average (ARMA) models, which perform a linear mapping between inputs and outputs, and Artificial Neural Networks (ANNs) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS), which perform a non-linear mapping, provide a robust approach to wind power prediction. In this work, these models are developed in order to forecast power production of a wind farm with three wind turbines, using real load data and comparing different time prediction periods. This comparative analysis takes in the first time, various forecasting methods, time horizons and a deep performance analysis focused upon the normalised mean error and the statistical distribution hereof in order to evaluate error distribution within a narrower curve and therefore forecasting methods whereby it is more improbable to make errors in prediction. (author)

  7. Measurement Error Correction for Predicted Spatiotemporal Air Pollution Exposures.

    Science.gov (United States)

    Keller, Joshua P; Chang, Howard H; Strickland, Matthew J; Szpiro, Adam A

    2017-05-01

    Air pollution cohort studies are frequently analyzed in two stages, first modeling exposure then using predicted exposures to estimate health effects in a second regression model. The difference between predicted and unobserved true exposures introduces a form of measurement error in the second stage health model. Recent methods for spatial data correct for measurement error with a bootstrap and by requiring the study design ensure spatial compatibility, that is, monitor and subject locations are drawn from the same spatial distribution. These methods have not previously been applied to spatiotemporal exposure data. We analyzed the association between fine particulate matter (PM2.5) and birth weight in the US state of Georgia using records with estimated date of conception during 2002-2005 (n = 403,881). We predicted trimester-specific PM2.5 exposure using a complex spatiotemporal exposure model. To improve spatial compatibility, we restricted to mothers residing in counties with a PM2.5 monitor (n = 180,440). We accounted for additional measurement error via a nonparametric bootstrap. Third trimester PM2.5 exposure was associated with lower birth weight in the uncorrected (-2.4 g per 1 μg/m difference in exposure; 95% confidence interval [CI]: -3.9, -0.8) and bootstrap-corrected (-2.5 g, 95% CI: -4.2, -0.8) analyses. Results for the unrestricted analysis were attenuated (-0.66 g, 95% CI: -1.7, 0.35). This study presents a novel application of measurement error correction for spatiotemporal air pollution exposures. Our results demonstrate the importance of spatial compatibility between monitor and subject locations and provide evidence of the association between air pollution exposure and birth weight.

  8. Breast cancer risks and risk prediction models.

    Science.gov (United States)

    Engel, Christoph; Fischer, Christine

    2015-02-01

    BRCA1/2 mutation carriers have a considerably increased risk to develop breast and ovarian cancer. The personalized clinical management of carriers and other at-risk individuals depends on precise knowledge of the cancer risks. In this report, we give an overview of the present literature on empirical cancer risks, and we describe risk prediction models that are currently used for individual risk assessment in clinical practice. Cancer risks show large variability between studies. Breast cancer risks are at 40-87% for BRCA1 mutation carriers and 18-88% for BRCA2 mutation carriers. For ovarian cancer, the risk estimates are in the range of 22-65% for BRCA1 and 10-35% for BRCA2. The contralateral breast cancer risk is high (10-year risk after first cancer 27% for BRCA1 and 19% for BRCA2). Risk prediction models have been proposed to provide more individualized risk prediction, using additional knowledge on family history, mode of inheritance of major genes, and other genetic and non-genetic risk factors. User-friendly software tools have been developed that serve as basis for decision-making in family counseling units. In conclusion, further assessment of cancer risks and model validation is needed, ideally based on prospective cohort studies. To obtain such data, clinical management of carriers and other at-risk individuals should always be accompanied by standardized scientific documentation.

  9. Uncertainties of predictions from parton distributions 1, experimental errors

    CERN Document Server

    Martin, A D; Stirling, William James; Thorne, R S; CERN. Geneva

    2003-01-01

    We determine the uncertainties on observables arising from the errors on the experimental data that are fitted in the global MRST2001 parton analysis. By diagonalizing the error matrix we produce sets of partons suitable for use within the framework of linear propagation of errors, which is the most convenient method for calculating the uncertainties. Despite the potential limitations of this approach we find that it can be made to work well in practice. This is confirmed by our alternative approach of using the more rigorous Lagrange multiplier method to determine the errors on physical quantities directly. As particular examples we determine the uncertainties on the predictions of the charged-current deep-inelastic structure functions, on the cross-sections for W production and for Higgs boson production via gluon--gluon fusion at the Tevatron and the LHC, on the ratio of W-minus to W-plus production at the LHC and on the moments of the non-singlet quark distributions. We discuss the corresponding uncertain...

  10. Early behavioral inhibition and increased error monitoring predict later social phobia symptoms in childhood.

    Science.gov (United States)

    Lahat, Ayelet; Lamm, Connie; Chronis-Tuscano, Andrea; Pine, Daniel S; Henderson, Heather A; Fox, Nathan A

    2014-04-01

    Behavioral inhibition (BI) is an early childhood temperament characterized by fearful responses to novelty and avoidance of social interactions. During adolescence, a subset of children with stable childhood BI develop social anxiety disorder and concurrently exhibit increased error monitoring. The current study examines whether increased error monitoring in 7-year-old, behaviorally inhibited children prospectively predicts risk for symptoms of social phobia at age 9 years. A total of 291 children were characterized on BI at 24 and 36 months of age. Children were seen again at 7 years of age, when they performed a Flanker task, and event-related potential (ERP) indices of response monitoring were generated. At age 9, self- and maternal-report of social phobia symptoms were obtained. Children high in BI, compared to those low in BI, displayed increased error monitoring at age 7, as indexed by larger (i.e., more negative) error-related negativity (ERN) amplitudes. In addition, early BI was related to later childhood social phobia symptoms at age 9 among children with a large difference in amplitude between ERN and correct-response negativity (CRN) at age 7. Heightened error monitoring predicts risk for later social phobia symptoms in children with high BI. Research assessing response monitoring in children with BI may refine our understanding of the mechanisms underlying risk for later anxiety disorders and inform prevention efforts. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. All rights reserved.

  11. Cardiovascular risk prediction

    DEFF Research Database (Denmark)

    Graversen, Peter; Abildstrøm, Steen Z.; Jespersen, Lasse

    2016-01-01

    Aim European society of cardiology (ESC) guidelines recommend that cardiovascular disease (CVD) risk stratification in asymptomatic individuals is based on the Systematic Coronary Risk Evaluation (SCORE) algorithm, which estimates individual 10-year risk of death from CVD. We assessed the potential...

  12. CREME96 and Related Error Rate Prediction Methods

    Science.gov (United States)

    Adams, James H., Jr.

    2012-01-01

    Predicting the rate of occurrence of single event effects (SEEs) in space requires knowledge of the radiation environment and the response of electronic devices to that environment. Several analytical models have been developed over the past 36 years to predict SEE rates. The first error rate calculations were performed by Binder, Smith and Holman. Bradford and Pickel and Blandford, in their CRIER (Cosmic-Ray-Induced-Error-Rate) analysis code introduced the basic Rectangular ParallelePiped (RPP) method for error rate calculations. For the radiation environment at the part, both made use of the Cosmic Ray LET (Linear Energy Transfer) spectra calculated by Heinrich for various absorber Depths. A more detailed model for the space radiation environment within spacecraft was developed by Adams and co-workers. This model, together with a reformulation of the RPP method published by Pickel and Blandford, was used to create the CR ME (Cosmic Ray Effects on Micro-Electronics) code. About the same time Shapiro wrote the CRUP (Cosmic Ray Upset Program) based on the RPP method published by Bradford. It was the first code to specifically take into account charge collection from outside the depletion region due to deformation of the electric field caused by the incident cosmic ray. Other early rate prediction methods and codes include the Single Event Figure of Merit, NOVICE, the Space Radiation code and the effective flux method of Binder which is the basis of the SEFA (Scott Effective Flux Approximation) model. By the early 1990s it was becoming clear that CREME and the other early models needed Revision. This revision, CREME96, was completed and released as a WWW-based tool, one of the first of its kind. The revisions in CREME96 included improved environmental models and improved models for calculating single event effects. The need for a revision of CREME also stimulated the development of the CHIME (CRRES/SPACERAD Heavy Ion Model of the Environment) and MACREE (Modeling and

  13. Error sensitivity analysis in 10-30-day extended range forecasting by using a nonlinear cross-prediction error model

    Science.gov (United States)

    Xia, Zhiye; Xu, Lisheng; Chen, Hongbin; Wang, Yongqian; Liu, Jinbao; Feng, Wenlan

    2017-06-01

    Extended range forecasting of 10-30 days, which lies between medium-term and climate prediction in terms of timescale, plays a significant role in decision-making processes for the prevention and mitigation of disastrous meteorological events. The sensitivity of initial error, model parameter error, and random error in a nonlinear crossprediction error (NCPE) model, and their stability in the prediction validity period in 10-30-day extended range forecasting, are analyzed quantitatively. The associated sensitivity of precipitable water, temperature, and geopotential height during cases of heavy rain and hurricane is also discussed. The results are summarized as follows. First, the initial error and random error interact. When the ratio of random error to initial error is small (10-6-10-2), minor variation in random error cannot significantly change the dynamic features of a chaotic system, and therefore random error has minimal effect on the prediction. When the ratio is in the range of 10-1-2 (i.e., random error dominates), attention should be paid to the random error instead of only the initial error. When the ratio is around 10-2-10-1, both influences must be considered. Their mutual effects may bring considerable uncertainty to extended range forecasting, and de-noising is therefore necessary. Second, in terms of model parameter error, the embedding dimension m should be determined by the factual nonlinear time series. The dynamic features of a chaotic system cannot be depicted because of the incomplete structure of the attractor when m is small. When m is large, prediction indicators can vanish because of the scarcity of phase points in phase space. A method for overcoming the cut-off effect ( m > 4) is proposed. Third, for heavy rains, precipitable water is more sensitive to the prediction validity period than temperature or geopotential height; however, for hurricanes, geopotential height is most sensitive, followed by precipitable water.

  14. Sensitivity of risk parameters to human errors for a PWR

    International Nuclear Information System (INIS)

    Samanta, P.; Hall, R.E.; Kerr, W.

    1980-01-01

    Sensitivities of the risk parameters, emergency safety system unavailabilities, accident sequence probabilities, release category probabilities and core melt probability were investigated for changes in the human error rates within the general methodological framework of the Reactor Safety Study for a Pressurized Water Reactor (PWR). Impact of individual human errors were assessed both in terms of their structural importance to core melt and reliability importance on core melt probability. The Human Error Sensitivity Assessment of a PWR (HESAP) computer code was written for the purpose of this study

  15. Estimating Model Prediction Error: Should You Treat Predictions as Fixed or Random?

    Science.gov (United States)

    Wallach, Daniel; Thorburn, Peter; Asseng, Senthold; Challinor, Andrew J.; Ewert, Frank; Jones, James W.; Rotter, Reimund; Ruane, Alexander

    2016-01-01

    Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEP fixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEP uncertain( X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEP uncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEP uncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation.

  16. Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error.

    Science.gov (United States)

    Faber, Felix A; Hutchison, Luke; Huang, Bing; Gilmer, Justin; Schoenholz, Samuel S; Dahl, George E; Vinyals, Oriol; Kearnes, Steven; Riley, Patrick F; von Lilienfeld, O Anatole

    2017-11-14

    evidence that ML model predictions deviate from DFT (B3LYP) less than DFT (B3LYP) deviates from experiment for all properties. Furthermore, out-of-sample prediction errors with respect to hybrid DFT reference are on par with, or close to, chemical accuracy. The results suggest that ML models could be more accurate than hybrid DFT if explicitly electron correlated quantum (or experimental) data were available.

  17. Does the sensorimotor system minimize prediction error or select the most likely prediction during object lifting?

    Science.gov (United States)

    McGregor, Heather R.; Pun, Henry C. H.; Buckingham, Gavin; Gribble, Paul L.

    2016-01-01

    The human sensorimotor system is routinely capable of making accurate predictions about an object's weight, which allows for energetically efficient lifts and prevents objects from being dropped. Often, however, poor predictions arise when the weight of an object can vary and sensory cues about object weight are sparse (e.g., picking up an opaque water bottle). The question arises, what strategies does the sensorimotor system use to make weight predictions when one is dealing with an object whose weight may vary? For example, does the sensorimotor system use a strategy that minimizes prediction error (minimal squared error) or one that selects the weight that is most likely to be correct (maximum a posteriori)? In this study we dissociated the predictions of these two strategies by having participants lift an object whose weight varied according to a skewed probability distribution. We found, using a small range of weight uncertainty, that four indexes of sensorimotor prediction (grip force rate, grip force, load force rate, and load force) were consistent with a feedforward strategy that minimizes the square of prediction errors. These findings match research in the visuomotor system, suggesting parallels in underlying processes. We interpret our findings within a Bayesian framework and discuss the potential benefits of using a minimal squared error strategy. NEW & NOTEWORTHY Using a novel experimental model of object lifting, we tested whether the sensorimotor system models the weight of objects by minimizing lifting errors or by selecting the statistically most likely weight. We found that the sensorimotor system minimizes the square of prediction errors for object lifting. This parallels the results of studies that investigated visually guided reaching, suggesting an overlap in the underlying mechanisms between tasks that involve different sensory systems. PMID:27760821

  18. Melanoma Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing melanoma cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  19. Identification of proteomic biomarkers predicting prostate cancer aggressiveness and lethality despite biopsy-sampling error

    OpenAIRE

    Shipitsin, M; Small, C; Choudhury, S; Giladi, E; Friedlander, S; Nardone, J; Hussain, S; Hurley, A D; Ernst, C; Huang, Y E; Chang, H; Nifong, T P; Rimm, D L; Dunyak, J; Loda, M

    2014-01-01

    Background: Key challenges of biopsy-based determination of prostate cancer aggressiveness include tumour heterogeneity, biopsy-sampling error, and variations in biopsy interpretation. The resulting uncertainty in risk assessment leads to significant overtreatment, with associated costs and morbidity. We developed a performance-based strategy to identify protein biomarkers predictive of prostate cancer aggressiveness and lethality regardless of biopsy-sampling variation. Methods: Prostatectom...

  20. Identification of proteomic biomarkers predicting prostate cancer aggressiveness and lethality despite biopsy-sampling error.

    Science.gov (United States)

    Shipitsin, M; Small, C; Choudhury, S; Giladi, E; Friedlander, S; Nardone, J; Hussain, S; Hurley, A D; Ernst, C; Huang, Y E; Chang, H; Nifong, T P; Rimm, D L; Dunyak, J; Loda, M; Berman, D M; Blume-Jensen, P

    2014-09-09

    Key challenges of biopsy-based determination of prostate cancer aggressiveness include tumour heterogeneity, biopsy-sampling error, and variations in biopsy interpretation. The resulting uncertainty in risk assessment leads to significant overtreatment, with associated costs and morbidity. We developed a performance-based strategy to identify protein biomarkers predictive of prostate cancer aggressiveness and lethality regardless of biopsy-sampling variation. Prostatectomy samples from a large patient cohort with long follow-up were blindly assessed by expert pathologists who identified the tissue regions with the highest and lowest Gleason grade from each patient. To simulate biopsy-sampling error, a core from a high- and a low-Gleason area from each patient sample was used to generate a 'high' and a 'low' tumour microarray, respectively. Using a quantitative proteomics approach, we identified from 160 candidates 12 biomarkers that predicted prostate cancer aggressiveness (surgical Gleason and TNM stage) and lethal outcome robustly in both high- and low-Gleason areas. Conversely, a previously reported lethal outcome-predictive marker signature for prostatectomy tissue was unable to perform under circumstances of maximal sampling error. Our results have important implications for cancer biomarker discovery in general and development of a sampling error-resistant clinical biopsy test for prediction of prostate cancer aggressiveness.

  1. Quantifying prognosis with risk predictions.

    Science.gov (United States)

    Pace, Nathan L; Eberhart, Leopold H J; Kranke, Peter R

    2012-01-01

    Prognosis is a forecast, based on present observations in a patient, of their probable outcome from disease, surgery and so on. Research methods for the development of risk probabilities may not be familiar to some anaesthesiologists. We briefly describe methods for identifying risk factors and risk scores. A probability prediction rule assigns a risk probability to a patient for the occurrence of a specific event. Probability reflects the continuum between absolute certainty (Pi = 1) and certified impossibility (Pi = 0). Biomarkers and clinical covariates that modify risk are known as risk factors. The Pi as modified by risk factors can be estimated by identifying the risk factors and their weighting; these are usually obtained by stepwise logistic regression. The accuracy of probabilistic predictors can be separated into the concepts of 'overall performance', 'discrimination' and 'calibration'. Overall performance is the mathematical distance between predictions and outcomes. Discrimination is the ability of the predictor to rank order observations with different outcomes. Calibration is the correctness of prediction probabilities on an absolute scale. Statistical methods include the Brier score, coefficient of determination (Nagelkerke R2), C-statistic and regression calibration. External validation is the comparison of the actual outcomes to the predicted outcomes in a new and independent patient sample. External validation uses the statistical methods of overall performance, discrimination and calibration and is uniformly recommended before acceptance of the prediction model. Evidence from randomised controlled clinical trials should be obtained to show the effectiveness of risk scores for altering patient management and patient outcomes.

  2. Error-related brain activity predicts cocaine use after treatment at 3-month follow-up.

    Science.gov (United States)

    Marhe, Reshmi; van de Wetering, Ben J M; Franken, Ingmar H A

    2013-04-15

    Relapse after treatment is one of the most important problems in drug dependency. Several studies suggest that lack of cognitive control is one of the causes of relapse. In this study, a relative new electrophysiologic index of cognitive control, the error-related negativity, is investigated to examine its suitability as a predictor of relapse. The error-related negativity was measured in 57 cocaine-dependent patients during their first week in detoxification treatment. Data from 49 participants were used to predict cocaine use at 3-month follow-up. Cocaine use at follow-up was measured by means of self-reported days of cocaine use in the last month verified by urine screening. A multiple hierarchical regression model was used to examine the predictive value of the error-related negativity while controlling for addiction severity and self-reported craving in the week before treatment. The error-related negativity was the only significant predictor in the model and added 7.4% of explained variance to the control variables, resulting in a total of 33.4% explained variance in the prediction of days of cocaine use at follow-up. A reduced error-related negativity measured during the first week of treatment was associated with more days of cocaine use at 3-month follow-up. Moreover, the error-related negativity was a stronger predictor of recent cocaine use than addiction severity and craving. These results suggest that underactive error-related brain activity might help to identify patients who are at risk of relapse as early as in the first week of detoxification treatment. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Detection of Patients at High Risk of Medication Errors

    DEFF Research Database (Denmark)

    Sædder, Eva Aggerholm; Lisby, Marianne; Nielsen, Lars Peter

    2016-01-01

    Medication errors (MEs) are preventable and can result in patient harm and increased expenses in the healthcare system in terms of hospitalization, prolonged hospitalizations and even death. We aimed to develop a screening tool to detect acutely admitted patients at low or high risk of MEs...

  4. Error estimation for CFD aeroheating prediction under rarefied flow condition

    Science.gov (United States)

    Jiang, Yazhong; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian

    2014-12-01

    Both direct simulation Monte Carlo (DSMC) and Computational Fluid Dynamics (CFD) methods have become widely used for aerodynamic prediction when reentry vehicles experience different flow regimes during flight. The implementation of slip boundary conditions in the traditional CFD method under Navier-Stokes-Fourier (NSF) framework can extend the validity of this approach further into transitional regime, with the benefit that much less computational cost is demanded compared to DSMC simulation. Correspondingly, an increasing error arises in aeroheating calculation as the flow becomes more rarefied. To estimate the relative error of heat flux when applying this method for a rarefied flow in transitional regime, theoretical derivation is conducted and a dimensionless parameter ɛ is proposed by approximately analyzing the ratio of the second order term to first order term in the heat flux expression in Burnett equation. DSMC simulation for hypersonic flow over a cylinder in transitional regime is performed to test the performance of parameter ɛ, compared with two other parameters, Knρ and MaṡKnρ.

  5. Dopamine reward prediction errors reflect hidden state inference across time

    Science.gov (United States)

    Starkweather, Clara Kwon; Babayan, Benedicte M.; Uchida, Naoshige; Gershman, Samuel J.

    2017-01-01

    Midbrain dopamine neurons signal reward prediction error (RPE), or actual minus expected reward. The temporal difference (TD) learning model has been a cornerstone in understanding how dopamine RPEs could drive associative learning. Classically, TD learning imparts value to features that serially track elapsed time relative to observable stimuli. In the real world, however, sensory stimuli provide ambiguous information about the hidden state of the environment, leading to the proposal that TD learning might instead compute a value signal based on an inferred distribution of hidden states (a ‘belief state’). In this work, we asked whether dopaminergic signaling supports a TD learning framework that operates over hidden states. We found that dopamine signaling exhibited a striking difference between two tasks that differed only with respect to whether reward was delivered deterministically. Our results favor an associative learning rule that combines cached values with hidden state inference. PMID:28263301

  6. Social learning through prediction error in the brain

    Science.gov (United States)

    Joiner, Jessica; Piva, Matthew; Turrin, Courtney; Chang, Steve W. C.

    2017-06-01

    Learning about the world is critical to survival and success. In social animals, learning about others is a necessary component of navigating the social world, ultimately contributing to increasing evolutionary fitness. How humans and nonhuman animals represent the internal states and experiences of others has long been a subject of intense interest in the developmental psychology tradition, and, more recently, in studies of learning and decision making involving self and other. In this review, we explore how psychology conceptualizes the process of representing others, and how neuroscience has uncovered correlates of reinforcement learning signals to explore the neural mechanisms underlying social learning from the perspective of representing reward-related information about self and other. In particular, we discuss self-referenced and other-referenced types of reward prediction errors across multiple brain structures that effectively allow reinforcement learning algorithms to mediate social learning. Prediction-based computational principles in the brain may be strikingly conserved between self-referenced and other-referenced information.

  7. The Attraction Effect Modulates Reward Prediction Errors and Intertemporal Choices.

    Science.gov (United States)

    Gluth, Sebastian; Hotaling, Jared M; Rieskamp, Jörg

    2017-01-11

    Classical economic theory contends that the utility of a choice option should be independent of other options. This view is challenged by the attraction effect, in which the relative preference between two options is altered by the addition of a third, asymmetrically dominated option. Here, we leveraged the attraction effect in the context of intertemporal choices to test whether both decisions and reward prediction errors (RPE) in the absence of choice violate the independence of irrelevant alternatives principle. We first demonstrate that intertemporal decision making is prone to the attraction effect in humans. In an independent group of participants, we then investigated how this affects the neural and behavioral valuation of outcomes using a novel intertemporal lottery task and fMRI. Participants' behavioral responses (i.e., satisfaction ratings) were modulated systematically by the attraction effect and this modulation was correlated across participants with the respective change of the RPE signal in the nucleus accumbens. Furthermore, we show that, because exponential and hyperbolic discounting models are unable to account for the attraction effect, recently proposed sequential sampling models might be more appropriate to describe intertemporal choices. Our findings demonstrate for the first time that the attraction effect modulates subjective valuation even in the absence of choice. The findings also challenge the prospect of using neuroscientific methods to measure utility in a context-free manner and have important implications for theories of reinforcement learning and delay discounting. Many theories of value-based decision making assume that people first assess the attractiveness of each option independently of each other and then pick the option with the highest subjective value. The attraction effect, however, shows that adding a new option to a choice set can change the relative value of the existing options, which is a violation of the independence

  8. Chronology of prescribing error during the hospital stay and prediction of pharmacist's alerts overriding: a prospective analysis

    Directory of Open Access Journals (Sweden)

    Bruni Vanida

    2010-01-01

    Full Text Available Abstract Background Drug prescribing errors are frequent in the hospital setting and pharmacists play an important role in detection of these errors. The objectives of this study are (1 to describe the drug prescribing errors rate during the patient's stay, (2 to find which characteristics for a prescribing error are the most predictive of their reproduction the next day despite pharmacist's alert (i.e. override the alert. Methods We prospectively collected all medication order lines and prescribing errors during 18 days in 7 medical wards' using computerized physician order entry. We described and modelled the errors rate according to the chronology of hospital stay. We performed a classification and regression tree analysis to find which characteristics of alerts were predictive of their overriding (i.e. prescribing error repeated. Results 12 533 order lines were reviewed, 117 errors (errors rate 0.9% were observed and 51% of these errors occurred on the first day of the hospital stay. The risk of a prescribing error decreased over time. 52% of the alerts were overridden (i.e error uncorrected by prescribers on the following day. Drug omissions were the most frequently taken into account by prescribers. The classification and regression tree analysis showed that overriding pharmacist's alerts is first related to the ward of the prescriber and then to either Anatomical Therapeutic Chemical class of the drug or the type of error. Conclusions Since 51% of prescribing errors occurred on the first day of stay, pharmacist should concentrate his analysis of drug prescriptions on this day. The difference of overriding behavior between wards and according drug Anatomical Therapeutic Chemical class or type of error could also guide the validation tasks and programming of electronic alerts.

  9. Mini-review: Prediction errors, attention and associative learning.

    Science.gov (United States)

    Holland, Peter C; Schiffino, Felipe L

    2016-05-01

    Most modern theories of associative learning emphasize a critical role for prediction error (PE, the difference between received and expected events). One class of theories, exemplified by the Rescorla-Wagner (1972) model, asserts that PE determines the effectiveness of the reinforcer or unconditioned stimulus (US): surprising reinforcers are more effective than expected ones. A second class, represented by the Pearce-Hall (1980) model, argues that PE determines the associability of conditioned stimuli (CSs), the rate at which they may enter into new learning: the surprising delivery or omission of a reinforcer enhances subsequent processing of the CSs that were present when PE was induced. In this mini-review we describe evidence, mostly from our laboratory, for PE-induced changes in the associability of both CSs and USs, and the brain systems involved in the coding, storage and retrieval of these altered associability values. This evidence favors a number of modifications to behavioral models of how PE influences event processing, and suggests the involvement of widespread brain systems in animals' responses to PE. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Hierarchical prediction errors in midbrain and septum during social learning.

    Science.gov (United States)

    Diaconescu, Andreea O; Mathys, Christoph; Weber, Lilian A E; Kasper, Lars; Mauer, Jan; Stephan, Klaas E

    2017-04-01

    Social learning is fundamental to human interactions, yet its computational and physiological mechanisms are not well understood. One prominent open question concerns the role of neuromodulatory transmitters. We combined fMRI, computational modelling and genetics to address this question in two separate samples (N = 35, N = 47). Participants played a game requiring inference on an adviser's intentions whose motivation to help or mislead changed over time. Our analyses suggest that hierarchically structured belief updates about current advice validity and the adviser's trustworthiness, respectively, depend on different neuromodulatory systems. Low-level prediction errors (PEs) about advice accuracy not only activated regions known to support 'theory of mind', but also the dopaminergic midbrain. Furthermore, PE responses in ventral striatum were influenced by the Met/Val polymorphism of the Catechol-O-Methyltransferase (COMT) gene. By contrast, high-level PEs ('expected uncertainty') about the adviser's fidelity activated the cholinergic septum. These findings, replicated in both samples, have important implications: They suggest that social learning rests on hierarchically related PEs encoded by midbrain and septum activity, respectively, in the same manner as other forms of learning under volatility. Furthermore, these hierarchical PEs may be broadcast by dopaminergic and cholinergic projections to induce plasticity specifically in cortical areas known to represent beliefs about others. © The Author (2017). Published by Oxford University Press.

  11. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors

    Science.gov (United States)

    Carlson, Joel N. K.; Park, Jong Min; Park, So-Yeon; In Park, Jong; Choi, Yunseok; Ye, Sung-Joon

    2016-03-01

    Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD  =  1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be

  12. Developmental dyslexia: predicting individual risk.

    Science.gov (United States)

    Thompson, Paul A; Hulme, Charles; Nash, Hannah M; Gooch, Debbie; Hayiou-Thomas, Emma; Snowling, Margaret J

    2015-09-01

    Causal theories of dyslexia suggest that it is a heritable disorder, which is the outcome of multiple risk factors. However, whether early screening for dyslexia is viable is not yet known. The study followed children at high risk of dyslexia from preschool through the early primary years assessing them from age 3 years and 6 months (T1) at approximately annual intervals on tasks tapping cognitive, language, and executive-motor skills. The children were recruited to three groups: children at family risk of dyslexia, children with concerns regarding speech, and language development at 3;06 years and controls considered to be typically developing. At 8 years, children were classified as 'dyslexic' or not. Logistic regression models were used to predict the individual risk of dyslexia and to investigate how risk factors accumulate to predict poor literacy outcomes. Family-risk status was a stronger predictor of dyslexia at 8 years than low language in preschool. Additional predictors in the preschool years include letter knowledge, phonological awareness, rapid automatized naming, and executive skills. At the time of school entry, language skills become significant predictors, and motor skills add a small but significant increase to the prediction probability. We present classification accuracy using different probability cutoffs for logistic regression models and ROC curves to highlight the accumulation of risk factors at the individual level. Dyslexia is the outcome of multiple risk factors and children with language difficulties at school entry are at high risk. Family history of dyslexia is a predictor of literacy outcome from the preschool years. However, screening does not reach an acceptable clinical level until close to school entry when letter knowledge, phonological awareness, and RAN, rather than family risk, together provide good sensitivity and specificity as a screening battery. © 2015 The Authors. Journal of Child Psychology and Psychiatry published by

  13. Basic considerations in predicting error probabilities in human task performance

    International Nuclear Information System (INIS)

    Fleishman, E.A.; Buffardi, L.C.; Allen, J.A.; Gaskins, R.C. III

    1990-04-01

    It is well established that human error plays a major role in the malfunctioning of complex systems. This report takes a broad look at the study of human error and addresses the conceptual, methodological, and measurement issues involved in defining and describing errors in complex systems. In addition, a review of existing sources of human reliability data and approaches to human performance data base development is presented. Alternative task taxonomies, which are promising for establishing the comparability on nuclear and non-nuclear tasks, are also identified. Based on such taxonomic schemes, various data base prototypes for generalizing human error rates across settings are proposed. 60 refs., 3 figs., 7 tabs

  14. Seasonal prediction of Indian summer monsoon rainfall in NCEP CFSv2: forecast and predictability error

    Science.gov (United States)

    Pokhrel, Samir; Saha, Subodh Kumar; Dhakate, Ashish; Rahman, Hasibur; Chaudhari, Hemantkumar S.; Salunke, Kiran; Hazra, Anupam; Sujith, K.; Sikka, D. R.

    2016-04-01

    A detailed analysis of sensitivity to the initial condition for the simulation of the Indian summer monsoon using retrospective forecast by the latest version of the Climate Forecast System version-2 (CFSv2) is carried out. This study primarily focuses on the tropical region of Indian and Pacific Ocean basin, with special emphasis on the Indian land region. The simulated seasonal mean and the inter-annual standard deviations of rainfall, upper and lower level atmospheric circulations and Sea Surface Temperature (SST) tend to be more skillful as the lead forecast time decreases (5 month lead to 0 month lead time i.e. L5-L0). In general spatial correlation (bias) increases (decreases) as forecast lead time decreases. This is further substantiated by their averaged value over the selected study regions over the Indian and Pacific Ocean basins. The tendency of increase (decrease) of model bias with increasing (decreasing) forecast lead time also indicates the dynamical drift of the model. Large scale lower level circulation (850 hPa) shows enhancement of anomalous westerlies (easterlies) over the tropical region of the Indian Ocean (Western Pacific Ocean), which indicates the enhancement of model error with the decrease in lead time. At the upper level circulation (200 hPa) biases in both tropical easterly jet and subtropical westerlies jet tend to decrease as the lead time decreases. Despite enhancement of the prediction skill, mean SST bias seems to be insensitive to the initialization. All these biases are significant and together they make CFSv2 vulnerable to seasonal uncertainties in all the lead times. Overall the zeroth lead (L0) seems to have the best skill, however, in case of Indian summer monsoon rainfall (ISMR), the 3 month lead forecast time (L3) has the maximum ISMR prediction skill. This is valid using different independent datasets, wherein these maximum skill scores are 0.64, 0.42 and 0.57 with respect to the Global Precipitation Climatology Project

  15. Harsh parenting and fearfulness in toddlerhood interact to predict amplitudes of preschool error-related negativity

    Directory of Open Access Journals (Sweden)

    Rebecca J. Brooker

    2014-07-01

    Full Text Available Temperamentally fearful children are at increased risk for the development of anxiety problems relative to less-fearful children. This risk is even greater when early environments include high levels of harsh parenting behaviors. However, the mechanisms by which harsh parenting may impact fearful children's risk for anxiety problems are largely unknown. Recent neuroscience work has suggested that punishment is associated with exaggerated error-related negativity (ERN, an event-related potential linked to performance monitoring, even after the threat of punishment is removed. In the current study, we examined the possibility that harsh parenting interacts with fearfulness, impacting anxiety risk via neural processes of performance monitoring. We found that greater fearfulness and harsher parenting at 2 years of age predicted greater fearfulness and greater ERN amplitudes at age 4. Supporting the role of cognitive processes in this association, greater fearfulness and harsher parenting also predicted less efficient neural processing during preschool. This study provides initial evidence that performance monitoring may be a candidate process by which early parenting interacts with fearfulness to predict risk for anxiety problems.

  16. Harsh parenting and fearfulness in toddlerhood interact to predict amplitudes of preschool error-related negativity.

    Science.gov (United States)

    Brooker, Rebecca J; Buss, Kristin A

    2014-07-01

    Temperamentally fearful children are at increased risk for the development of anxiety problems relative to less-fearful children. This risk is even greater when early environments include high levels of harsh parenting behaviors. However, the mechanisms by which harsh parenting may impact fearful children's risk for anxiety problems are largely unknown. Recent neuroscience work has suggested that punishment is associated with exaggerated error-related negativity (ERN), an event-related potential linked to performance monitoring, even after the threat of punishment is removed. In the current study, we examined the possibility that harsh parenting interacts with fearfulness, impacting anxiety risk via neural processes of performance monitoring. We found that greater fearfulness and harsher parenting at 2 years of age predicted greater fearfulness and greater ERN amplitudes at age 4. Supporting the role of cognitive processes in this association, greater fearfulness and harsher parenting also predicted less efficient neural processing during preschool. This study provides initial evidence that performance monitoring may be a candidate process by which early parenting interacts with fearfulness to predict risk for anxiety problems. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Development of a prototype system for prediction of the group error at the maintenance work

    International Nuclear Information System (INIS)

    Yoshino, Kenji; Hirotsu, Yuuko

    2001-01-01

    This paper described on development and performance evaluation of a prototype system for prediction of the group error at the maintenance work. The results so far are as follows. (1) When a user inputs the existence and the grade of the feature factor of the maintenance work as a prediction object, an organization and an organization factor and a group PSF put into the system. The maintenance group error to target can be predicted through the prediction model which consists of a class of seven stages. (2) This system by utilizing the information on a prediction result database, it can be use not only for prediction of a maintenance group but for various safe Activity, such as KYT(Kiken Yochi Training) and TBM(Tool Box Meeting). (3) This system predicts a cooperation error at highest rate, and subsequently. Predicts the detection error at a high rate. and to the decision-making. Error, the transfer error and the state cognitive error, and state error, it has the characteristics predicted at almost same rate. (4) if it has full knowledge even if the feature, such as the enforcement conditions of maintenance work, and organization, even if the user has neither the knowledge about a human factor, users experience, anyone of this system is slight about the extent, generating of a maintenance group error made difficult from the former logically and systematically, it can predict with business time for about 15 minutes. (author)

  18. Uncertainty in predictions of forest carbon dynamics: separating driver error from model error.

    Science.gov (United States)

    Spadavecchia, L; Williams, M; Law, B E

    2011-07-01

    We present an analysis of the relative magnitude and contribution of parameter and driver uncertainty to the confidence intervals on estimates of net carbon fluxes. Model parameters may be difficult or impractical to measure, while driver fields are rarely complete, with data gaps due to sensor failure and sparse observational networks. Parameters are generally derived through some optimization method, while driver fields may be interpolated from available data sources. For this study, we used data from a young ponderosa pine stand at Metolius, Central Oregon, and a simple daily model of coupled carbon and water fluxes (DALEC). An ensemble of acceptable parameterizations was generated using an ensemble Kalman filter and eddy covariance measurements of net C exchange. Geostatistical simulations generated an ensemble of meteorological driving variables for the site, consistent with the spatiotemporal autocorrelations inherent in the observational data from 13 local weather stations. Simulated meteorological data were propagated through the model to derive the uncertainty on the CO2 flux resultant from driver uncertainty typical of spatially extensive modeling studies. Furthermore, the model uncertainty was partitioned between temperature and precipitation. With at least one meteorological station within 25 km of the study site, driver uncertainty was relatively small ( 10% of the total net flux), while parameterization uncertainty was larger, 50% of the total net flux. The largest source of driver uncertainty was due to temperature (8% of the total flux). The combined effect of parameter and driver uncertainty was 57% of the total net flux. However, when the nearest meteorological station was > 100 km from the study site, uncertainty in net ecosystem exchange (NEE) predictions introduced by meteorological drivers increased by 88%. Precipitation estimates were a larger source of bias in NEE estimates than were temperature estimates, although the biases partly

  19. BANKRUPTCY PREDICTION MODEL WITH ZETAc OPTIMAL CUT-OFF SCORE TO CORRECT TYPE I ERRORS

    Directory of Open Access Journals (Sweden)

    Mohamad Iwan

    2005-06-01

    This research has successfully attained the following results: (1 type I error is in fact 59,83 times more costly compared to type II error, (2 22 ratios distinguish between bankrupt and non-bankrupt groups, (3 2 financial ratios proved to be effective in predicting bankruptcy, (4 prediction using ZETAc optimal cut-off score predicts more companies filing for bankruptcy within one year compared to prediction using Hair et al. optimum cutting score, (5 Although prediction using Hair et al. optimum cutting score is more accurate, prediction using ZETAc optimal cut-off score proved to be able to minimize cost incurred from classification errors.

  20. A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM.

    Science.gov (United States)

    Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei; Song, Houbing

    2018-01-15

    Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model's performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM's parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models' performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors.

  1. Learning about Expectation Violation from Prediction Error Paradigms – A Meta-Analysis on Brain Processes Following a Prediction Error

    Directory of Open Access Journals (Sweden)

    Lisa D’Astolfo

    2017-07-01

    Full Text Available Modifying patients’ expectations by exposing them to expectation violation situations (thus maximizing the difference between the expected and the actual situational outcome is proposed to be a crucial mechanism for therapeutic success for a variety of different mental disorders. However, clinical observations suggest that patients often maintain their expectations regardless of experiences contradicting their expectations. It remains unclear which information processing mechanisms lead to modification or persistence of patients’ expectations. Insight in the processing could be provided by Neuroimaging studies investigating prediction error (PE, i.e., neuronal reactions to non-expected stimuli. Two methods are often used to investigate the PE: (1 paradigms, in which participants passively observe PEs (”passive” paradigms and (2 paradigms, which encourage a behavioral adaptation following a PE (“active” paradigms. These paradigms are similar to the methods used to induce expectation violations in clinical settings: (1 the confrontation with an expectation violation situation and (2 an enhanced confrontation in which the patient actively challenges his expectation. We used this similarity to gain insight in the different neuronal processing of the two PE paradigms. We performed a meta-analysis contrasting neuronal activity of PE paradigms encouraging a behavioral adaptation following a PE and paradigms enforcing passiveness following a PE. We found more neuronal activity in the striatum, the insula and the fusiform gyrus in studies encouraging behavioral adaptation following a PE. Due to the involvement of reward assessment and avoidance learning associated with the striatum and the insula we propose that the deliberate execution of action alternatives following a PE is associated with the integration of new information into previously existing expectations, therefore leading to an expectation change. While further research is needed

  2. Predicting positional error of MLC using volumetric analysis

    International Nuclear Information System (INIS)

    Hareram, E.S.

    2008-01-01

    IMRT normally using multiple beamlets (small width of the beam) for a particular field to deliver so that it is imperative to maintain the positional accuracy of the MLC in order to deliver integrated computed dose accurately. Different manufacturers have reported high precession on MLC devices with leaf positional accuracy nearing 0.1 mm but measuring and rectifying the error in this accuracy is very difficult. Various methods are used to check MLC position and among this volumetric analysis is one of the technique. Volumetric approach was adapted in our method using primus machine and 0.6cc chamber at 5 cm depth In perspex. MLC of 1 mm error introduces an error of 20%, more sensitive to other methods

  3. The conditions that promote fear learning: prediction error and Pavlovian fear conditioning.

    Science.gov (United States)

    Li, Susan Shi Yuan; McNally, Gavan P

    2014-02-01

    A key insight of associative learning theory is that learning depends on the actions of prediction error: a discrepancy between the actual and expected outcomes of a conditioning trial. When positive, such error causes increments in associative strength and, when negative, such error causes decrements in associative strength. Prediction error can act directly on fear learning by determining the effectiveness of the aversive unconditioned stimulus or indirectly by determining the effectiveness, or associability, of the conditioned stimulus. Evidence from a variety of experimental preparations in human and non-human animals suggest that discrete neural circuits code for these actions of prediction error during fear learning. Here we review the circuits and brain regions contributing to the neural coding of prediction error during fear learning and highlight areas of research (safety learning, extinction, and reconsolidation) that may profit from this approach to understanding learning. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  4. Some Results on Mean Square Error for Factor Score Prediction

    Science.gov (United States)

    Krijnen, Wim P.

    2006-01-01

    For the confirmatory factor model a series of inequalities is given with respect to the mean square error (MSE) of three main factor score predictors. The eigenvalues of these MSE matrices are a monotonic function of the eigenvalues of the matrix gamma[subscript rho] = theta[superscript 1/2] lambda[subscript rho] 'psi[subscript rho] [superscript…

  5. Hierarchical learning induces two simultaneous, but separable, prediction errors in human basal ganglia.

    Science.gov (United States)

    Diuk, Carlos; Tsai, Karin; Wallis, Jonathan; Botvinick, Matthew; Niv, Yael

    2013-03-27

    Studies suggest that dopaminergic neurons report a unitary, global reward prediction error signal. However, learning in complex real-life tasks, in particular tasks that show hierarchical structure, requires multiple prediction errors that may coincide in time. We used functional neuroimaging to measure prediction error signals in humans performing such a hierarchical task involving simultaneous, uncorrelated prediction errors. Analysis of signals in a priori anatomical regions of interest in the ventral striatum and the ventral tegmental area indeed evidenced two simultaneous, but separable, prediction error signals corresponding to the two levels of hierarchy in the task. This result suggests that suitably designed tasks may reveal a more intricate pattern of firing in dopaminergic neurons. Moreover, the need for downstream separation of these signals implies possible limitations on the number of different task levels that we can learn about simultaneously.

  6. Prebiotic Competition between Information Variants, With Low Error Catastrophe Risks

    Directory of Open Access Journals (Sweden)

    Radu Popa

    2015-07-01

    Full Text Available During competition for resources in primitive networks increased fitness of an information variant does not necessarily equate with successful elimination of its competitors. If variability is added fast to a system, speedy replacement of pre-existing and less-efficient forms of order is required as novel information variants arrive. Otherwise, the information capacity of the system fills up with information variants (an effect referred as “error catastrophe”. As the cost for managing the system’s exceeding complexity increases, the correlation between performance capabilities of information variants and their competitive success decreases, and evolution of such systems toward increased efficiency slows down. This impasse impedes the understanding of evolution in prebiotic networks. We used the simulation platform Biotic Abstract Dual Automata (BiADA to analyze how information variants compete in a resource-limited space. We analyzed the effect of energy-related features (differences in autocatalytic efficiency, energy cost of order, energy availability, transformation rates and stability of order on this competition. We discuss circumstances and controllers allowing primitive networks acquire novel information with minimal “error catastrophe” risks. We present a primitive mechanism for maximization of energy flux in dynamic networks. This work helps evaluate controllers of evolution in prebiotic networks and other systems where information variants compete.

  7. A second study of the prediction of cognitive errors using the 'CREAM' technique

    International Nuclear Information System (INIS)

    Collier, Steve; Andresen, Gisle

    2000-03-01

    Some human errors, such as errors of commission and knowledge-based errors, are not adequately modelled in probabilistic safety assessments. Even qualitative methods for handling these sorts of errors are comparatively underdeveloped. The 'Cognitive Reliability and Error Analysis Method' (CREAM) was recently developed for prediction of cognitive error modes. It has not yet been comprehensively established how reliable, valid and generally useful it could be to researchers and practitioners. A previous study of CREAM at Halden was promising, showing a relationship between errors predicted in advance and those that actually occurred in simulated fault scenarios. The present study continues this work. CREAM was used to make predictions of cognitive error modes throughout two rather difficult fault scenarios. Predictions were made of the most likely cognitive error mode, were one to occur at all, at several points throughout the expected scenarios, based upon the scenario design and description. Each scenario was then run 15 times with different operators. Error modes occurring during simulations were later scored using the task description for the scenario, videotapes of operator actions, eye-track recording, operators' verbal protocols and an expert's concurrent commentary. The scoring team had no previous substantive knowledge of the experiment or the techniques used, so as to provide a more stringent test of the data and knowledge needed for scoring. The scored error modes were then compared with the CREAM predictions to assess the degree of agreement. Some cognitive error modes were predicted successfully, but the results were generally not so encouraging as the previous study. Several problems were found with both the CREAM technique and the data needed to complete the analysis. It was felt that further development was needed before this kind of analysis can be reliable and valid, either in a research setting or as a practitioner's tool in a safety assessment

  8. Evidence Report: Risk of Performance Errors Due to Training Deficiencies

    Science.gov (United States)

    Barshi, Immanuel; Dempsey, Donna L.

    2016-01-01

    Substantial evidence supports the claim that inadequate training leads to performance errors. Barshi and Loukopoulos (2012) demonstrate that even a task as carefully developed and refined over many years as operating an aircraft can be significantly improved by a systematic analysis, followed by improved procedures and improved training (see also Loukopoulos, Dismukes, & Barshi, 2009a). Unfortunately, such a systematic analysis of training needs rarely occurs during the preliminary design phase, when modifications are most feasible. Training is often seen as a way to compensate for deficiencies in task and system design, which in turn increases the training load. As a result, task performance often suffers, and with it, the operators suffer and so does the mission. On the other hand, effective training can indeed compensate for such design deficiencies, and can even go beyond to compensate for failures of our imagination to anticipate all that might be needed when we send our crew members to go where no one else has gone before. Much of the research literature on training is motivated by current training practices aimed at current training needs. Although there is some experience with operations in extreme environments on Earth, there is no experience with long-duration space missions where crews must practice semi-autonomous operations, where ground support must accommodate significant communication delays, and where so little is known about the environment. Thus, we must develop robust methodologies and tools to prepare our crews for the unknown. The research necessary to support such an endeavor does not currently exist, but existing research does reveal general challenges that are relevant to long-duration, high-autonomy missions. The evidence presented here describes issues related to the risk of performance errors due to training deficiencies. Contributing factors regarding training deficiencies may pertain to organizational process and training programs for

  9. Surprised at all the entropy: hippocampal, caudate and midbrain contributions to learning from prediction errors.

    Directory of Open Access Journals (Sweden)

    Anne-Marike Schiffer

    Full Text Available Influential concepts in neuroscientific research cast the brain a predictive machine that revises its predictions when they are violated by sensory input. This relates to the predictive coding account of perception, but also to learning. Learning from prediction errors has been suggested for take place in the hippocampal memory system as well as in the basal ganglia. The present fMRI study used an action-observation paradigm to investigate the contributions of the hippocampus, caudate nucleus and midbrain dopaminergic system to different types of learning: learning in the absence of prediction errors, learning from prediction errors, and responding to the accumulation of prediction errors in unpredictable stimulus configurations. We conducted analyses of the regions of interests' BOLD response towards these different types of learning, implementing a bootstrapping procedure to correct for false positives. We found both, caudate nucleus and the hippocampus to be activated by perceptual prediction errors. The hippocampal responses seemed to relate to the associative mismatch between a stored representation and current sensory input. Moreover, its response was significantly influenced by the average information, or Shannon entropy of the stimulus material. In accordance with earlier results, the habenula was activated by perceptual prediction errors. Lastly, we found that the substantia nigra was activated by the novelty of sensory input. In sum, we established that the midbrain dopaminergic system, the hippocampus, and the caudate nucleus were to different degrees significantly involved in the three different types of learning: acquisition of new information, learning from prediction errors and responding to unpredictable stimulus developments. We relate learning from perceptual prediction errors to the concept of predictive coding and related information theoretic accounts.

  10. Surprised at all the entropy: hippocampal, caudate and midbrain contributions to learning from prediction errors.

    Science.gov (United States)

    Schiffer, Anne-Marike; Ahlheim, Christiane; Wurm, Moritz F; Schubotz, Ricarda I

    2012-01-01

    Influential concepts in neuroscientific research cast the brain a predictive machine that revises its predictions when they are violated by sensory input. This relates to the predictive coding account of perception, but also to learning. Learning from prediction errors has been suggested for take place in the hippocampal memory system as well as in the basal ganglia. The present fMRI study used an action-observation paradigm to investigate the contributions of the hippocampus, caudate nucleus and midbrain dopaminergic system to different types of learning: learning in the absence of prediction errors, learning from prediction errors, and responding to the accumulation of prediction errors in unpredictable stimulus configurations. We conducted analyses of the regions of interests' BOLD response towards these different types of learning, implementing a bootstrapping procedure to correct for false positives. We found both, caudate nucleus and the hippocampus to be activated by perceptual prediction errors. The hippocampal responses seemed to relate to the associative mismatch between a stored representation and current sensory input. Moreover, its response was significantly influenced by the average information, or Shannon entropy of the stimulus material. In accordance with earlier results, the habenula was activated by perceptual prediction errors. Lastly, we found that the substantia nigra was activated by the novelty of sensory input. In sum, we established that the midbrain dopaminergic system, the hippocampus, and the caudate nucleus were to different degrees significantly involved in the three different types of learning: acquisition of new information, learning from prediction errors and responding to unpredictable stimulus developments. We relate learning from perceptual prediction errors to the concept of predictive coding and related information theoretic accounts.

  11. A Generalized Process Model of Human Action Selection and Error and its Application to Error Prediction

    Science.gov (United States)

    2014-07-01

    Macmillan & Creelman , 2005). This is a quite high degree of discriminability and it means that when the decision model predicts a probability of...ROC analysis. Pattern Recognition Letters, 27(8), 861-874. Retrieved from Google Scholar. Macmillan, N. A., & Creelman , C. D. (2005). Detection

  12. Physical predictions from lattice QCD. Reducing systematic errors

    International Nuclear Information System (INIS)

    Pittori, C.

    1994-01-01

    Some recent developments in the theoretical understanding of lattice quantum chromodynamics and of its possible sources of systematic errors are reported, and a review of some of the latest Monte Carlo results for light quarks phenomenology is presented. A very general introduction on a quantum field theory on a discrete spacetime lattice is given, and the Monte Carlo methods which allow to compute many interesting physical quantities in the non-perturbative domain of strong interactions, is illustrated. (author). 17 refs., 3 figs., 3 tabs

  13. A predictive model for dimensional errors in fused deposition modeling

    DEFF Research Database (Denmark)

    Stolfi, A.

    2015-01-01

    This work concerns the effect of deposition angle (a) and layer thickness (L) on the dimensional performance of FDM parts using a predictive model based on the geometrical description of the FDM filament profile. An experimental validation over the whole a range from 0° to 177° at 3° steps and two...... values of L (0.254 mm, 0.330 mm) was produced by comparing predicted values with external face-to-face measurements. After removing outliers, the results show that the developed two-parameter model can serve as tool for modeling the FDM dimensional behavior in a wide range of deposition angles....

  14. Estimation of Separation Buffers for Wind-Prediction Error in an Airborne Separation Assistance System

    Science.gov (United States)

    Consiglio, Maria C.; Hoadley, Sherwood T.; Allen, B. Danette

    2009-01-01

    Wind prediction errors are known to affect the performance of automated air traffic management tools that rely on aircraft trajectory predictions. In particular, automated separation assurance tools, planned as part of the NextGen concept of operations, must be designed to account and compensate for the impact of wind prediction errors and other system uncertainties. In this paper we describe a high fidelity batch simulation study designed to estimate the separation distance required to compensate for the effects of wind-prediction errors throughout increasing traffic density on an airborne separation assistance system. These experimental runs are part of the Safety Performance of Airborne Separation experiment suite that examines the safety implications of prediction errors and system uncertainties on airborne separation assurance systems. In this experiment, wind-prediction errors were varied between zero and forty knots while traffic density was increased several times current traffic levels. In order to accurately measure the full unmitigated impact of wind-prediction errors, no uncertainty buffers were added to the separation minima. The goal of the study was to measure the impact of wind-prediction errors in order to estimate the additional separation buffers necessary to preserve separation and to provide a baseline for future analyses. Buffer estimations from this study will be used and verified in upcoming safety evaluation experiments under similar simulation conditions. Results suggest that the strategic airborne separation functions exercised in this experiment can sustain wind prediction errors up to 40kts at current day air traffic density with no additional separation distance buffer and at eight times the current day with no more than a 60% increase in separation distance buffer.

  15. Analysts’ forecast error: A robust prediction model and its short term trading profitability

    NARCIS (Netherlands)

    Boudt, K.M.R.; de Goei, P.; Thewissen, J.; van Campenhout, G.

    2015-01-01

    This paper contributes to the empirical evidence on the investment horizon salient to trading based on predicting the error in analysts' earnings forecasts. An econometric framework is proposed that accommodates the stylized fact of extreme values in the forecast error series. We find that between

  16. Analysts forecast error : A robust prediction model and its short term trading

    NARCIS (Netherlands)

    Boudt, Kris; de Goeij, Peter; Thewissen, James; Van Campenhout, Geert

    We examine the profitability of implementing a short term trading strategy based on predicting the error in analysts' earnings per share forecasts using publicly available information. Since large earnings surprises may lead to extreme values in the forecast error series that disrupt their smooth

  17. Reward Prediction Errors in Drug Addiction and Parkinson's Disease: from Neurophysiology to Neuroimaging.

    Science.gov (United States)

    García-García, Isabel; Zeighami, Yashar; Dagher, Alain

    2017-06-01

    Surprises are important sources of learning. Cognitive scientists often refer to surprises as "reward prediction errors," a parameter that captures discrepancies between expectations and actual outcomes. Here, we integrate neurophysiological and functional magnetic resonance imaging (fMRI) results addressing the processing of reward prediction errors and how they might be altered in drug addiction and Parkinson's disease. By increasing phasic dopamine responses, drugs might accentuate prediction error signals, causing increases in fMRI activity in mesolimbic areas in response to drugs. Chronic substance dependence, by contrast, has been linked with compromised dopaminergic function, which might be associated with blunted fMRI responses to pleasant non-drug stimuli in mesocorticolimbic areas. In Parkinson's disease, dopamine replacement therapies seem to induce impairments in learning from negative outcomes. The present review provides a holistic overview of reward prediction errors across different pathologies and might inform future clinical strategies targeting impulsive/compulsive disorders.

  18. Curiosity and reward: Valence predicts choice and information prediction errors enhance learning.

    Science.gov (United States)

    Marvin, Caroline B; Shohamy, Daphna

    2016-03-01

    Curiosity drives many of our daily pursuits and interactions; yet, we know surprisingly little about how it works. Here, we harness an idea implied in many conceptualizations of curiosity: that information has value in and of itself. Reframing curiosity as the motivation to obtain reward-where the reward is information-allows one to leverage major advances in theoretical and computational mechanisms of reward-motivated learning. We provide new evidence supporting 2 predictions that emerge from this framework. First, we find an asymmetric effect of positive versus negative information, with positive information enhancing both curiosity and long-term memory for information. Second, we find that it is not the absolute value of information that drives learning but, rather, the gap between the reward expected and reward received, an "information prediction error." These results support the idea that information functions as a reward, much like money or food, guiding choices and driving learning in systematic ways. (c) 2016 APA, all rights reserved).

  19. Artificial neural network implementation of a near-ideal error prediction controller

    Science.gov (United States)

    Mcvey, Eugene S.; Taylor, Lynore Denise

    1992-01-01

    A theory has been developed at the University of Virginia which explains the effects of including an ideal predictor in the forward loop of a linear error-sampled system. It has been shown that the presence of this ideal predictor tends to stabilize the class of systems considered. A prediction controller is merely a system which anticipates a signal or part of a signal before it actually occurs. It is understood that an exact prediction controller is physically unrealizable. However, in systems where the input tends to be repetitive or limited, (i.e., not random) near ideal prediction is possible. In order for the controller to act as a stability compensator, the predictor must be designed in a way that allows it to learn the expected error response of the system. In this way, an unstable system will become stable by including the predicted error in the system transfer function. Previous and current prediction controller include pattern recognition developments and fast-time simulation which are applicable to the analysis of linear sampled data type systems. The use of pattern recognition techniques, along with a template matching scheme, has been proposed as one realizable type of near-ideal prediction. Since many, if not most, systems are repeatedly subjected to similar inputs, it was proposed that an adaptive mechanism be used to 'learn' the correct predicted error response. Once the system has learned the response of all the expected inputs, it is necessary only to recognize the type of input with a template matching mechanism and then to use the correct predicted error to drive the system. Suggested here is an alternate approach to the realization of a near-ideal error prediction controller, one designed using Neural Networks. Neural Networks are good at recognizing patterns such as system responses, and the back-propagation architecture makes use of a template matching scheme. In using this type of error prediction, it is assumed that the system error

  20. Estimation of Mechanical Signals in Induction Motors using the Recursive Prediction Error Method

    DEFF Research Database (Denmark)

    Børsting, H.; Knudsen, Morten; Rasmussen, Henrik

    1993-01-01

    Sensor feedback of mechanical quantities for control applications in induction motors is troublesome and relative expensive. In this paper a recursive prediction error (RPE) method has successfully been used to estimate the angular rotor speed ........Sensor feedback of mechanical quantities for control applications in induction motors is troublesome and relative expensive. In this paper a recursive prediction error (RPE) method has successfully been used to estimate the angular rotor speed .....

  1. An MEG signature corresponding to an axiomatic model of reward prediction error.

    Science.gov (United States)

    Talmi, Deborah; Fuentemilla, Lluis; Litvak, Vladimir; Duzel, Emrah; Dolan, Raymond J

    2012-01-02

    Optimal decision-making is guided by evaluating the outcomes of previous decisions. Prediction errors are theoretical teaching signals which integrate two features of an outcome: its inherent value and prior expectation of its occurrence. To uncover the magnetic signature of prediction errors in the human brain we acquired magnetoencephalographic (MEG) data while participants performed a gambling task. Our primary objective was to use formal criteria, based upon an axiomatic model (Caplin and Dean, 2008a), to determine the presence and timing profile of MEG signals that express prediction errors. We report analyses at the sensor level, implemented in SPM8, time locked to outcome onset. We identified, for the first time, a MEG signature of prediction error, which emerged approximately 320 ms after an outcome and expressed as an interaction between outcome valence and probability. This signal followed earlier, separate signals for outcome valence and probability, which emerged approximately 200 ms after an outcome. Strikingly, the time course of the prediction error signal, as well as the early valence signal, resembled the Feedback-Related Negativity (FRN). In simultaneously acquired EEG data we obtained a robust FRN, but the win and loss signals that comprised this difference wave did not comply with the axiomatic model. Our findings motivate an explicit examination of the critical issue of timing embodied in computational models of prediction errors as seen in human electrophysiological data. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Roles of dopamine neurons in mediating the prediction error in aversive learning in insects.

    Science.gov (United States)

    Terao, Kanta; Mizunami, Makoto

    2017-10-31

    In associative learning in mammals, it is widely accepted that the discrepancy, or error, between actual and predicted reward determines whether learning occurs. The prediction error theory has been proposed to account for the finding of a blocking phenomenon, in which pairing of a stimulus X with an unconditioned stimulus (US) could block subsequent association of a second stimulus Y to the US when the two stimuli were paired in compound with the same US. Evidence for this theory, however, has been imperfect since blocking can also be accounted for by competitive theories. We recently reported blocking in classical conditioning of an odor with water reward in crickets. We also reported an "auto-blocking" phenomenon in appetitive learning, which supported the prediction error theory and rejected alternative theories. The presence of auto-blocking also suggested that octopamine neurons mediate reward prediction error signals. Here we show that blocking and auto-blocking occur in aversive learning to associate an odor with salt water (US) in crickets, and our results suggest that dopamine neurons mediate aversive prediction error signals. We conclude that the prediction error theory is applicable to both appetitive learning and aversive learning in insects.

  3. Prediction-error variance in Bayesian model updating: a comparative study

    Science.gov (United States)

    Asadollahi, Parisa; Li, Jian; Huang, Yong

    2017-04-01

    In Bayesian model updating, the likelihood function is commonly formulated by stochastic embedding in which the maximum information entropy probability model of prediction error variances plays an important role and it is Gaussian distribution subject to the first two moments as constraints. The selection of prediction error variances can be formulated as a model class selection problem, which automatically involves a trade-off between the average data-fit of the model class and the information it extracts from the data. Therefore, it is critical for the robustness in the updating of the structural model especially in the presence of modeling errors. To date, three ways of considering prediction error variances have been seem in the literature: 1) setting constant values empirically, 2) estimating them based on the goodness-of-fit of the measured data, and 3) updating them as uncertain parameters by applying Bayes' Theorem at the model class level. In this paper, the effect of different strategies to deal with the prediction error variances on the model updating performance is investigated explicitly. A six-story shear building model with six uncertain stiffness parameters is employed as an illustrative example. Transitional Markov Chain Monte Carlo is used to draw samples of the posterior probability density function of the structure model parameters as well as the uncertain prediction variances. The different levels of modeling uncertainty and complexity are modeled through three FE models, including a true model, a model with more complexity, and a model with modeling error. Bayesian updating is performed for the three FE models considering the three aforementioned treatments of the prediction error variances. The effect of number of measurements on the model updating performance is also examined in the study. The results are compared based on model class assessment and indicate that updating the prediction error variances as uncertain parameters at the model

  4. Tail Risk Premia and Return Predictability

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Todorov, Viktor; Xu, Lai

    The variance risk premium, defined as the difference between actual and risk-neutralized expectations of the forward aggregate market variation, helps predict future market returns. Relying on new essentially model-free estimation procedure, we show that much of this predictability may be attribu......The variance risk premium, defined as the difference between actual and risk-neutralized expectations of the forward aggregate market variation, helps predict future market returns. Relying on new essentially model-free estimation procedure, we show that much of this predictability may......-varying economic uncertainty and changes in risk aversion, or market fears, respectively....

  5. Comparison of risk sensitivity to human errors in the Oconee and LaSalle PRAs

    International Nuclear Information System (INIS)

    Wong, S.; Higgins, J.

    1991-01-01

    This paper describes the comparative analyses of plant risk sensitivity to human errors in the Oconee and La Salle Probabilistic Risk Assessment (PRAs). These analyses were performed to determine the reasons for the observed differences in the sensitivity of core melt frequency (CMF) to changes in human error probabilities (HEPs). Plant-specific design features, PRA methods, and the level of detail and assumptions in the human error modeling were evaluated to assess their influence risk estimates and sensitivities

  6. Period, epoch, and prediction errors of ephemerides from continuous sets of timing measurements

    Science.gov (United States)

    Deeg, H. J.

    2015-06-01

    Space missions such as Kepler and CoRoT have led to large numbers of eclipse or transit measurements in nearly continuous time series. This paper shows how to obtain the period error in such measurements from a basic linear least-squares fit, and how to correctly derive the timing error in the prediction of future transit or eclipse events. Assuming strict periodicity, a formula for the period error of these time series is derived, σP = σT (12 / (N3-N))1 / 2, where σP is the period error, σT the timing error of a single measurement, and N the number of measurements. Compared to the iterative method for period error estimation by Mighell & Plavchan (2013), this much simpler formula leads to smaller period errors, whose correctness has been verified through simulations. For the prediction of times of future periodic events, usual linear ephemeris were epoch errors are quoted for the first time measurement, are prone to an overestimation of the error of that prediction. This may be avoided by a correction for the duration of the time series. An alternative is the derivation of ephemerides whose reference epoch and epoch error are given for the centre of the time series. For long continuous or near-continuous time series whose acquisition is completed, such central epochs should be the preferred way for the quotation of linear ephemerides. While this work was motivated from the analysis of eclipse timing measures in space-based light curves, it should be applicable to any other problem with an uninterrupted sequence of discrete timings for which the determination of a zero point, of a constant period and of the associated errors is needed.

  7. Glutamatergic model psychoses: prediction error, learning, and inference.

    Science.gov (United States)

    Corlett, Philip R; Honey, Garry D; Krystal, John H; Fletcher, Paul C

    2011-01-01

    Modulating glutamatergic neurotransmission induces alterations in conscious experience that mimic the symptoms of early psychotic illness. We review studies that use intravenous administration of ketamine, focusing on interindividual variability in the profundity of the ketamine experience. We will consider this individual variability within a hypothetical model of brain and cognitive function centered upon learning and inference. Within this model, the brains, neural systems, and even single neurons specify expectations about their inputs and responding to violations of those expectations with new learning that renders future inputs more predictable. We argue that ketamine temporarily deranges this ability by perturbing both the ways in which prior expectations are specified and the ways in which expectancy violations are signaled. We suggest that the former effect is predominantly mediated by NMDA blockade and the latter by augmented and inappropriate feedforward glutamatergic signaling. We suggest that the observed interindividual variability emerges from individual differences in neural circuits that normally underpin the learning and inference processes described. The exact source for that variability is uncertain, although it is likely to arise not only from genetic variation but also from subjects' previous experiences and prior learning. Furthermore, we argue that chronic, unlike acute, NMDA blockade alters the specification of expectancies more profoundly and permanently. Scrutinizing individual differences in the effects of acute and chronic ketamine administration in the context of the Bayesian brain model may generate new insights about the symptoms of psychosis; their underlying cognitive processes and neurocircuitry.

  8. Mismatch Negativity Encoding of Prediction Errors Predicts S-ketamine-Induced Cognitive Impairments

    Science.gov (United States)

    Schmidt, André; Bachmann, Rosilla; Kometer, Michael; Csomor, Philipp A; Stephan, Klaas E; Seifritz, Erich; Vollenweider, Franz X

    2012-01-01

    Psychotomimetics like the N-methyl--aspartate receptor (NMDAR) antagonist ketamine and the 5-hydroxytryptamine2A receptor (5-HT2AR) agonist psilocybin induce psychotic symptoms in healthy volunteers that resemble those of schizophrenia. Recent theories of psychosis posit that aberrant encoding of prediction errors (PE) may underlie the expression of psychotic symptoms. This study used a roving mismatch negativity (MMN) paradigm to investigate whether the encoding of PE is affected by pharmacological manipulation of NMDAR or 5-HT2AR, and whether the encoding of PE under placebo can be used to predict drug-induced symptoms. Using a double-blind within-subject placebo-controlled design, S-ketamine and psilocybin, respectively, were administrated to two groups of healthy subjects. Psychological alterations were assessed using a revised version of the Altered States of Consciousness (ASC-R) questionnaire. As an index of PE, we computed changes in MMN amplitudes as a function of the number of preceding standards (MMN memory trace effect) during a roving paradigm. S-ketamine, but not psilocybin, disrupted PE processing as expressed by a frontally disrupted MMN memory trace effect. Although both drugs produced positive-like symptoms, the extent of PE processing under placebo only correlated significantly with the severity of cognitive impairments induced by S-ketamine. Our results suggest that the NMDAR, but not the 5-HT2AR system, is implicated in PE processing during the MMN paradigm, and that aberrant PE signaling may contribute to the formation of cognitive impairments. The assessment of the MMN memory trace in schizophrenia may allow detecting early phases of the illness and might also serve to assess the efficacy of novel pharmacological treatments, in particular of cognitive impairments. PMID:22030715

  9. Risk of Rare Disasters, Euler Equation Errors and the Performance of the C-CAPM

    DEFF Research Database (Denmark)

    Posch, Olaf; Schrimpf, Andreas

    pricing errors in the C-CAPM. We also show (analytically and in a Monte Carlo study) that implausible estimates of risk aversion and time preference are not puzzling in this framework and emerge as a result of rational pricing errors. While this bias essentially removes the pricing error...

  10. Association of Elevated Reward Prediction Error Response With Weight Gain in Adolescent Anorexia Nervosa.

    Science.gov (United States)

    DeGuzman, Marisa; Shott, Megan E; Yang, Tony T; Riederer, Justin; Frank, Guido K W

    2017-06-01

    Anorexia nervosa is a psychiatric disorder of unknown etiology. Understanding associations between behavior and neurobiology is important in treatment development. Using a novel monetary reward task during functional magnetic resonance brain imaging, the authors tested how brain reward learning in adolescent anorexia nervosa changes with weight restoration. Female adolescents with anorexia nervosa (N=21; mean age, 16.4 years [SD=1.9]) underwent functional MRI (fMRI) before and after treatment; similarly, healthy female control adolescents (N=21; mean age, 15.2 years [SD=2.4]) underwent fMRI on two occasions. Brain function was tested using the reward prediction error construct, a computational model for reward receipt and omission related to motivation and neural dopamine responsiveness. Compared with the control group, the anorexia nervosa group exhibited greater brain response 1) for prediction error regression within the caudate, ventral caudate/nucleus accumbens, and anterior and posterior insula, 2) to unexpected reward receipt in the anterior and posterior insula, and 3) to unexpected reward omission in the caudate body. Prediction error and unexpected reward omission response tended to normalize with treatment, while unexpected reward receipt response remained significantly elevated. Greater caudate prediction error response when underweight was associated with lower weight gain during treatment. Punishment sensitivity correlated positively with ventral caudate prediction error response. Reward system responsiveness is elevated in adolescent anorexia nervosa when underweight and after weight restoration. Heightened prediction error activity in brain reward regions may represent a phenotype of adolescent anorexia nervosa that does not respond well to treatment. Prediction error response could be a neurobiological marker of illness severity that can indicate individual treatment needs.

  11. Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.

    Science.gov (United States)

    Limongi, Roberto; Silva, Angélica M

    2016-11-01

    The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.

  12. Using lexical variables to predict picture-naming errors in jargon aphasia

    Directory of Open Access Journals (Sweden)

    Catherine Godbold

    2015-04-01

    Full Text Available Introduction Individuals with jargon aphasia produce fluent output which often comprises high proportions of non-word errors (e.g., maf for dog. Research has been devoted to identifying the underlying mechanisms behind such output. Some accounts posit a reduced flow of spreading activation between levels in the lexical network (e.g., Robson et al., 2003. If activation level differences across the lexical network are a cause of non-word outputs, we would predict improved performance when target items reflect an increased flow of activation between levels (e.g. more frequently-used words are often represented by higher resting levels of activation. This research investigates the effect of lexical properties of targets (e.g., frequency, imageability on accuracy, error type (real word vs. non-word and target-error overlap of non-word errors in a picture naming task by individuals with jargon aphasia. Method Participants were 17 individuals with Wernicke’s aphasia, who produced a high proportion of non-word errors (>20% of errors on the Philadelphia Naming Test (PNT; Roach et al., 1996. The data were retrieved from the Moss Aphasic Psycholinguistic Database Project (MAPPD, Mirman et al., 2010. We used a series of mixed models to test whether lexical variables predicted accuracy, error type (real word vs. non-word and target-error overlap for the PNT data. As lexical variables tend to be highly correlated, we performed a principal components analysis to reduce the variables into five components representing variables associated with phonology (length, phonotactic probability, neighbourhood density and neighbourhood frequency, semantics (imageability and concreteness, usage (frequency and age-of-acquisition, name agreement and visual complexity. Results and Discussion Table 1 shows the components that made a significant contribution to each model. Individuals with jargon aphasia produced more correct responses and fewer non-word errors relative to

  13. Interaction of Instrumental and Goal-Directed Learning Modulates Prediction Error Representations in the Ventral Striatum.

    Science.gov (United States)

    Guo, Rong; Böhmer, Wendelin; Hebart, Martin; Chien, Samson; Sommer, Tobias; Obermayer, Klaus; Gläscher, Jan

    2016-12-14

    Goal-directed and instrumental learning are both important controllers of human behavior. Learning about which stimulus event occurs in the environment and the reward associated with them allows humans to seek out the most valuable stimulus and move through the environment in a goal-directed manner. Stimulus-response associations are characteristic of instrumental learning, whereas response-outcome associations are the hallmark of goal-directed learning. Here we provide behavioral, computational, and neuroimaging results from a novel task in which stimulus-response and response-outcome associations are learned simultaneously but dominate behavior at different stages of the experiment. We found that prediction error representations in the ventral striatum depend on which type of learning dominates. Furthermore, the amygdala tracks the time-dependent weighting of stimulus-response versus response-outcome learning. Our findings suggest that the goal-directed and instrumental controllers dynamically engage the ventral striatum in representing prediction errors whenever one of them is dominating choice behavior. Converging evidence in human neuroimaging studies has shown that the reward prediction errors are correlated with activity in the ventral striatum. Our results demonstrate that this region is simultaneously correlated with a stimulus prediction error. Furthermore, the learning system that is currently dominating behavioral choice dynamically engages the ventral striatum for computing its prediction errors. This demonstrates that the prediction error representations are highly dynamic and influenced by various experimental context. This finding points to a general role of the ventral striatum in detecting expectancy violations and encoding error signals regardless of the specific nature of the reinforcer itself. Copyright © 2016 the authors 0270-6474/16/3612650-11$15.00/0.

  14. Seismic attenuation relationship with homogeneous and heterogeneous prediction-error variance models

    Science.gov (United States)

    Mu, He-Qing; Xu, Rong-Rong; Yuen, Ka-Veng

    2014-03-01

    Peak ground acceleration (PGA) estimation is an important task in earthquake engineering practice. One of the most well-known models is the Boore-Joyner-Fumal formula, which estimates the PGA using the moment magnitude, the site-to-fault distance and the site foundation properties. In the present study, the complexity for this formula and the homogeneity assumption for the prediction-error variance are investigated and an efficiency-robustness balanced formula is proposed. For this purpose, a reduced-order Monte Carlo simulation algorithm for Bayesian model class selection is presented to obtain the most suitable predictive formula and prediction-error model for the seismic attenuation relationship. In this approach, each model class (a predictive formula with a prediction-error model) is evaluated according to its plausibility given the data. The one with the highest plausibility is robust since it possesses the optimal balance between the data fitting capability and the sensitivity to noise. A database of strong ground motion records in the Tangshan region of China is obtained from the China Earthquake Data Center for the analysis. The optimal predictive formula is proposed based on this database. It is shown that the proposed formula with heterogeneous prediction-error variance is much simpler than the attenuation model suggested by Boore, Joyner and Fumal (1993).

  15. Cognitive emotion regulation enhances aversive prediction error activity while reducing emotional responses.

    Science.gov (United States)

    Mulej Bratec, Satja; Xie, Xiyao; Schmid, Gabriele; Doll, Anselm; Schilbach, Leonhard; Zimmer, Claus; Wohlschläger, Afra; Riedl, Valentin; Sorg, Christian

    2015-12-01

    Cognitive emotion regulation is a powerful way of modulating emotional responses. However, despite the vital role of emotions in learning, it is unknown whether the effect of cognitive emotion regulation also extends to the modulation of learning. Computational models indicate prediction error activity, typically observed in the striatum and ventral tegmental area, as a critical neural mechanism involved in associative learning. We used model-based fMRI during aversive conditioning with and without cognitive emotion regulation to test the hypothesis that emotion regulation would affect prediction error-related neural activity in the striatum and ventral tegmental area, reflecting an emotion regulation-related modulation of learning. Our results show that cognitive emotion regulation reduced emotion-related brain activity, but increased prediction error-related activity in a network involving ventral tegmental area, hippocampus, insula and ventral striatum. While the reduction of response activity was related to behavioral measures of emotion regulation success, the enhancement of prediction error-related neural activity was related to learning performance. Furthermore, functional connectivity between the ventral tegmental area and ventrolateral prefrontal cortex, an area involved in regulation, was specifically increased during emotion regulation and likewise related to learning performance. Our data, therefore, provide first-time evidence that beyond reducing emotional responses, cognitive emotion regulation affects learning by enhancing prediction error-related activity, potentially via tegmental dopaminergic pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Haptic Data Processing for Teleoperation Systems: Prediction, Compression and Error Correction

    OpenAIRE

    Lee, Jae-young

    2013-01-01

    This thesis explores haptic data processing methods for teleoperation systems, including prediction, compression, and error correction. In the proposed haptic data prediction method, unreliable network conditions, such as time-varying delay and packet loss, are detected by a transport layer protocol. Given the information from the transport layer, a Bayesian approach is introduced to predict position and force data in haptic teleoperation systems. Stability of the proposed method within stoch...

  17. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.

    Science.gov (United States)

    Krigolson, Olav E; Hassall, Cameron D; Handy, Todd C

    2014-03-01

    Our ability to make decisions is predicated upon our knowledge of the outcomes of the actions available to us. Reinforcement learning theory posits that actions followed by a reward or punishment acquire value through the computation of prediction errors-discrepancies between the predicted and the actual reward. A multitude of neuroimaging studies have demonstrated that rewards and punishments evoke neural responses that appear to reflect reinforcement learning prediction errors [e.g., Krigolson, O. E., Pierce, L. J., Holroyd, C. B., & Tanaka, J. W. Learning to become an expert: Reinforcement learning and the acquisition of perceptual expertise. Journal of Cognitive Neuroscience, 21, 1833-1840, 2009; Bayer, H. M., & Glimcher, P. W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47, 129-141, 2005; O'Doherty, J. P. Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14, 769-776, 2004; Holroyd, C. B., & Coles, M. G. H. The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679-709, 2002]. Here, we used the brain ERP technique to demonstrate that not only do rewards elicit a neural response akin to a prediction error but also that this signal rapidly diminished and propagated to the time of choice presentation with learning. Specifically, in a simple, learnable gambling task, we show that novel rewards elicited a feedback error-related negativity that rapidly decreased in amplitude with learning. Furthermore, we demonstrate the existence of a reward positivity at choice presentation, a previously unreported ERP component that has a similar timing and topography as the feedback error-related negativity that increased in amplitude with learning. The pattern of results we observed mirrored the output of a computational model that we implemented to compute reward

  18. Correction for Measurement Error from Genotyping-by-Sequencing in Genomic Variance and Genomic Prediction Models

    DEFF Research Database (Denmark)

    Ashraf, Bilal; Janss, Luc; Jensen, Just

    sample). The GBSeq data can be used directly in genomic models in the form of individual SNP allele-frequency estimates (e.g., reference reads/total reads per polymorphic site per individual), but is subject to measurement error due to the low sequencing depth per individual. Due to technical reasons....... In the current work we show how the correction for measurement error in GBSeq can also be applied in whole genome genomic variance and genomic prediction models. Bayesian whole-genome random regression models are proposed to allow implementation of large-scale SNP-based models with a per-SNP correction...... for measurement error. We show correct retrieval of genomic explained variance, and improved genomic prediction when accounting for the measurement error in GBSeq data...

  19. Human error prediction and countermeasures based on CREAM in spent nuclear fuel (SNF) transportation

    International Nuclear Information System (INIS)

    Kim, Jae San

    2007-02-01

    Since the 1980s, in order to secure the storage capacity of spent nuclear fuel (SNF) at NPPs, SNF assemblies have been transported on-site from one unit to another unit nearby. However in the future the amount of the spent fuel will approach capacity in the areas used, and some of these SNFs will have to be transported to an off-site spent fuel repository. Most SNF materials used at NPPs will be transported by general cargo ships from abroad, and these SNFs will be stored in an interim storage facility. In the process of transporting SNF, human interactions will involve inspecting and preparing the cask and spent fuel, loading the cask onto the vehicle or ship, transferring the cask as well as storage or monitoring the cask. The transportation of SNF involves a number of activities that depend on reliable human performance. In the case of the transport of a cask, human errors may include spent fuel bundle misidentification or cask transport accidents among others. Reviews of accident events when transporting the Radioactive Material (RAM) throughout the world indicate that human error is the major causes for more than 65% of significant events. For the safety of SNF transportation, it is very important to predict human error and to deduce a method that minimizes the human error. This study examines the human factor effects on the safety of transporting spent nuclear fuel (SNF). It predicts and identifies the possible human errors in the SNF transport process (loading, transfer and storage of the SNF). After evaluating the human error mode in each transport process, countermeasures to minimize the human error are deduced. The human errors in SNF transportation were analyzed using Hollnagel's Cognitive Reliability and Error Analysis Method (CREAM). After determining the important factors for each process, countermeasures to minimize human error are provided in three parts: System design, Operational environment, and Human ability

  20. Human Factors Risk Analyses of a Doffing Protocol for Ebola-Level Personal Protective Equipment: Mapping Errors to Contamination.

    Science.gov (United States)

    Mumma, Joel M; Durso, Francis T; Ferguson, Ashley N; Gipson, Christina L; Casanova, Lisa; Erukunuakpor, Kimberly; Kraft, Colleen S; Walsh, Victoria L; Zimring, Craig; DuBose, Jennifer; Jacob, Jesse T

    2018-03-05

    Doffing protocols for personal protective equipment (PPE) are critical for keeping healthcare workers (HCWs) safe during care of patients with Ebola virus disease. We assessed the relationship between errors and self-contamination during doffing. Eleven HCWs experienced with doffing Ebola-level PPE participated in simulations in which HCWs donned PPE marked with surrogate viruses (ɸ6 and MS2), completed a clinical task, and were assessed for contamination after doffing. Simulations were video recorded, and a failure modes and effects analysis and fault tree analyses were performed to identify errors during doffing, quantify their risk (risk index), and predict contamination data. Fifty-one types of errors were identified, many having the potential to spread contamination. Hand hygiene and removing the powered air purifying respirator (PAPR) hood had the highest total risk indexes (111 and 70, respectively) and number of types of errors (9 and 13, respectively). ɸ6 was detected on 10% of scrubs and the fault tree predicted a 10.4% contamination rate, likely occurring when the PAPR hood inadvertently contacted scrubs during removal. MS2 was detected on 10% of hands, 20% of scrubs, and 70% of inner gloves and the predicted rates were 7.3%, 19.4%, 73.4%, respectively. Fault trees for MS2 and ɸ6 contamination suggested similar pathways. Ebola-level PPE can both protect and put HCWs at risk for self-contamination throughout the doffing process, even among experienced HCWs doffing with a trained observer. Human factors methodologies can identify error-prone steps, delineate the relationship between errors and self-contamination, and suggest remediation strategies.

  1. Advanced error-prediction LDPC with temperature compensation for highly reliable SSDs

    Science.gov (United States)

    Tokutomi, Tsukasa; Tanakamaru, Shuhei; Iwasaki, Tomoko Ogura; Takeuchi, Ken

    2015-09-01

    To improve the reliability of NAND Flash memory based solid-state drives (SSDs), error-prediction LDPC (EP-LDPC) has been proposed for multi-level-cell (MLC) NAND Flash memory (Tanakamaru et al., 2012, 2013), which is effective for long retention times. However, EP-LDPC is not as effective for triple-level cell (TLC) NAND Flash memory, because TLC NAND Flash has higher error rates and is more sensitive to program-disturb error. Therefore, advanced error-prediction LDPC (AEP-LDPC) has been proposed for TLC NAND Flash memory (Tokutomi et al., 2014). AEP-LDPC can correct errors more accurately by precisely describing the error phenomena. In this paper, the effects of AEP-LDPC are investigated in a 2×nm TLC NAND Flash memory with temperature characterization. Compared with LDPC-with-BER-only, the SSD's data-retention time is increased by 3.4× and 9.5× at room-temperature (RT) and 85 °C, respectively. Similarly, the acceptable BER is increased by 1.8× and 2.3×, respectively. Moreover, AEP-LDPC can correct errors with pre-determined tables made at higher temperatures to shorten the measurement time before shipping. Furthermore, it is found that one table can cover behavior over a range of temperatures in AEP-LDPC. As a result, the total table size can be reduced to 777 kBytes, which makes this approach more practical.

  2. The effectiveness of risk management program on pediatric nurses' medication error.

    Science.gov (United States)

    Dehghan-Nayeri, Nahid; Bayat, Fariba; Salehi, Tahmineh; Faghihzadeh, Soghrat

    2013-09-01

    Medication therapy is one of the most complex and high-risk clinical processes that nurses deal with. Medication error is the most common type of error that brings about damage and death to patients, especially pediatric ones. However, these errors are preventable. Identifying and preventing undesirable events leading to medication errors are the main risk management activities. The aim of this study was to investigate the effectiveness of a risk management program on the pediatric nurses' medication error rate. This study is a quasi-experimental one with a comparison group. In this study, 200 nurses were recruited from two main pediatric hospitals in Tehran. In the experimental hospital, we applied the risk management program for a period of 6 months. Nurses of the control hospital did the hospital routine schedule. A pre- and post-test was performed to measure the frequency of the medication error events. SPSS software, t-test, and regression analysis were used for data analysis. After the intervention, the medication error rate of nurses at the experimental hospital was significantly lower (P error-reporting rate was higher (P medical environment, applying the quality-control programs such as risk management can effectively prevent the occurrence of the hospital undesirable events. Nursing mangers can reduce the medication error rate by applying risk management programs. However, this program cannot succeed without nurses' cooperation.

  3. Lipoprotein metabolism indicators improve cardiovascular risk prediction.

    Directory of Open Access Journals (Sweden)

    Daniël B van Schalkwijk

    Full Text Available BACKGROUND: Cardiovascular disease risk increases when lipoprotein metabolism is dysfunctional. We have developed a computational model able to derive indicators of lipoprotein production, lipolysis, and uptake processes from a single lipoprotein profile measurement. This is the first study to investigate whether lipoprotein metabolism indicators can improve cardiovascular risk prediction and therapy management. METHODS AND RESULTS: We calculated lipoprotein metabolism indicators for 1981 subjects (145 cases, 1836 controls from the Framingham Heart Study offspring cohort in which NMR lipoprotein profiles were measured. We applied a statistical learning algorithm using a support vector machine to select conventional risk factors and lipoprotein metabolism indicators that contributed to predicting risk for general cardiovascular disease. Risk prediction was quantified by the change in the Area-Under-the-ROC-Curve (ΔAUC and by risk reclassification (Net Reclassification Improvement (NRI and Integrated Discrimination Improvement (IDI. Two VLDL lipoprotein metabolism indicators (VLDLE and VLDLH improved cardiovascular risk prediction. We added these indicators to a multivariate model with the best performing conventional risk markers. Our method significantly improved both CVD prediction and risk reclassification. CONCLUSIONS: Two calculated VLDL metabolism indicators significantly improved cardiovascular risk prediction. These indicators may help to reduce prescription of unnecessary cholesterol-lowering medication, reducing costs and possible side-effects. For clinical application, further validation is required.

  4. Predictive error detection in pianists: A combined ERP and motion capture study

    Directory of Open Access Journals (Sweden)

    Clemens eMaidhof

    2013-09-01

    Full Text Available Performing a piece of music involves the interplay of several cognitive and motor processes and requires extensive training to achieve a high skill level. However, even professional musicians commit errors occasionally. Previous event-related potential (ERP studies have investigated the neurophysiological correlates of pitch errors during piano performance, and reported pre-error negativity already occurring approximately 70-100 ms before the error had been committed and audible. It was assumed that this pre-error negativity reflects predictive control processes that compare predicted consequences with actual consequences of one’s own actions. However, in previous investigations, correct and incorrect pitch events were confounded by their different tempi. In addition, no data about the underlying movements were available. In the present study, we exploratively recorded the ERPs and 3D movement data of pianists’ fingers simultaneously while they performed fingering exercises from memory. Results showed a pre-error negativity for incorrect keystrokes when both correct and incorrect keystrokes were performed with comparable tempi. Interestingly, even correct notes immediately preceding erroneous keystrokes elicited a very similar negativity. In addition, we explored the possibility of computing ERPs time-locked to a kinematic landmark in the finger motion trajectories defined by when a finger makes initial contact with the key surface, that is, at the onset of tactile feedback. Results suggest that incorrect notes elicited a small difference after the onset of tactile feedback, whereas correct notes preceding incorrect ones elicited negativity before the onset of tactile feedback. The results tentatively suggest that tactile feedback plays an important role in error-monitoring during piano performance, because the comparison between predicted and actual sensory (tactile feedback may provide the information necessary for the detection of an

  5. Prostate Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing prostate cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  6. Colorectal Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing colorectal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  7. Esophageal Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing esophageal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  8. Bladder Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing bladder cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  9. Lung Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing lung cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  10. Breast Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing breast cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  11. Pancreatic Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing pancreatic cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  12. Ovarian Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing ovarian cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  13. Developmental Dyslexia: Predicting Individual Risk

    Science.gov (United States)

    Thompson, Paul A.; Hulme, Charles; Nash, Hannah M.; Gooch, Debbie; Hayiou-Thomas, Emma; Snowling, Margaret J.

    2015-01-01

    Background: Causal theories of dyslexia suggest that it is a heritable disorder, which is the outcome of multiple risk factors. However, whether early screening for dyslexia is viable is not yet known. Methods: The study followed children at high risk of dyslexia from preschool through the early primary years assessing them from age 3 years and 6…

  14. Liver Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing liver cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  15. Testicular Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of testicular cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  16. Cervical Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  17. Cardiovascular risk prediction in the Netherlands

    NARCIS (Netherlands)

    Dis, van S.J.

    2011-01-01

    Background: In clinical practice, Systematic COronary Risk Evaluation (SCORE) risk prediction functions and charts are used to identify persons at high risk for cardiovascular diseases (CVD), who are considered eligible for drug treatment of elevated blood pressure and serum cholesterol. These

  18. Prevalence, Nature, Severity and Risk Factors for Prescribing Errors in Hospital Inpatients: Prospective Study in 20 UK Hospitals.

    Science.gov (United States)

    Ashcroft, Darren M; Lewis, Penny J; Tully, Mary P; Farragher, Tracey M; Taylor, David; Wass, Valerie; Williams, Steven D; Dornan, Tim

    2015-09-01

    It has been suggested that doctors in their first year of post-graduate training make a disproportionate number of prescribing errors. This study aimed to compare the prevalence of prescribing errors made by first-year post-graduate doctors with that of errors by senior doctors and non-medical prescribers and to investigate the predictors of potentially serious prescribing errors. Pharmacists in 20 hospitals over 7 prospectively selected days collected data on the number of medication orders checked, the grade of prescriber and details of any prescribing errors. Logistic regression models (adjusted for clustering by hospital) identified factors predicting the likelihood of prescribing erroneously and the severity of prescribing errors. Pharmacists reviewed 26,019 patients and 124,260 medication orders; 11,235 prescribing errors were detected in 10,986 orders. The mean error rate was 8.8 % (95 % confidence interval [CI] 8.6-9.1) errors per 100 medication orders. Rates of errors for all doctors in training were significantly higher than rates for medical consultants. Doctors who were 1 year (odds ratio [OR] 2.13; 95 % CI 1.80-2.52) or 2 years in training (OR 2.23; 95 % CI 1.89-2.65) were more than twice as likely to prescribe erroneously. Prescribing errors were 70 % (OR 1.70; 95 % CI 1.61-1.80) more likely to occur at the time of hospital admission than when medication orders were issued during the hospital stay. No significant differences in severity of error were observed between grades of prescriber. Potentially serious errors were more likely to be associated with prescriptions for parenteral administration, especially for cardiovascular or endocrine disorders. The problem of prescribing errors in hospitals is substantial and not solely a problem of the most junior medical prescribers, particularly for those errors most likely to cause significant patient harm. Interventions are needed to target these high-risk errors by all grades of staff and hence

  19. Brain negativity as an indicator of predictive error processing: the contribution of visual action effect monitoring.

    Science.gov (United States)

    Joch, Michael; Hegele, Mathias; Maurer, Heiko; Müller, Hermann; Maurer, Lisa Katharina

    2017-07-01

    The error (related) negativity (Ne/ERN) is an event-related potential in the electroencephalogram (EEG) correlating with error processing. Its conditions of appearance before terminal external error information suggest that the Ne/ERN is indicative of predictive processes in the evaluation of errors. The aim of the present study was to specifically examine the Ne/ERN in a complex motor task and to particularly rule out other explaining sources of the Ne/ERN aside from error prediction processes. To this end, we focused on the dependency of the Ne/ERN on visual monitoring about the action outcome after movement termination but before result feedback (action effect monitoring). Participants performed a semi-virtual throwing task by using a manipulandum to throw a virtual ball displayed on a computer screen to hit a target object. Visual feedback about the ball flying to the target was masked to prevent action effect monitoring. Participants received a static feedback about the action outcome (850 ms) after each trial. We found a significant negative deflection in the average EEG curves of the error trials peaking at ~250 ms after ball release, i.e., before error feedback. Furthermore, this Ne/ERN signal did not depend on visual ball-flight monitoring after release. We conclude that the Ne/ERN has the potential to indicate error prediction in motor tasks and that it exists even in the absence of action effect monitoring. NEW & NOTEWORTHY In this study, we are separating different kinds of possible contributors to an electroencephalogram (EEG) error correlate (Ne/ERN) in a throwing task. We tested the influence of action effect monitoring on the Ne/ERN amplitude in the EEG. We used a task that allows us to restrict movement correction and action effect monitoring and to control the onset of result feedback. We ascribe the Ne/ERN to predictive error processing where a conscious feeling of failure is not a prerequisite. Copyright © 2017 the American Physiological

  20. Prediction of eyespot infection risks

    Directory of Open Access Journals (Sweden)

    M. Váòová

    2012-12-01

    Full Text Available The objective of the study was to design a prediction model for eyespot (Tapesia yallundae infection based on climatic factors (temperature, precipitation, air humidity. Data from experiment years 1994-2002 were used to study correlations between the eyespot infection index and individual weather characteristics. The model of prediction was constructed using multiple regression when a separate parameter is assigned to each factor, i.e. the frequency of days with optimum temperatures, humidity, and precipitation. The correlation between relative air humidity and precipitation and the infection index is significant.

  1. Predicting risk and human reliability: a new approach

    International Nuclear Information System (INIS)

    Duffey, R.; Ha, T.-S.

    2009-01-01

    Learning from experience describes human reliability and skill acquisition, and the resulting theory has been validated by comparison against millions of outcome data from multiple industries and technologies worldwide. The resulting predictions were used to benchmark the classic first generation human reliability methods adopted in probabilistic risk assessments. The learning rate, probabilities and response times are also consistent with the existing psychological models for human learning and error correction. The new approach also implies a finite lower bound probability that is not predicted by empirical statistical distributions that ignore the known and fundamental learning effects. (author)

  2. On the improvement of neural cryptography using erroneous transmitted information with error prediction.

    Science.gov (United States)

    Allam, Ahmed M; Abbas, Hazem M

    2010-12-01

    Neural cryptography deals with the problem of "key exchange" between two neural networks using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between the two communicating parties is eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process. Therefore, diminishing the probability of such a threat improves the reliability of exchanging the output bits through a public channel. The synchronization with feedback algorithm is one of the existing algorithms that enhances the security of neural cryptography. This paper proposes three new algorithms to enhance the mutual learning process. They mainly depend on disrupting the attacker confidence in the exchanged outputs and input patterns during training. The first algorithm is called "Do not Trust My Partner" (DTMP), which relies on one party sending erroneous output bits, with the other party being capable of predicting and correcting this error. The second algorithm is called "Synchronization with Common Secret Feedback" (SCSFB), where inputs are kept partially secret and the attacker has to train its network on input patterns that are different from the training sets used by the communicating parties. The third algorithm is a hybrid technique combining the features of the DTMP and SCSFB. The proposed approaches are shown to outperform the synchronization with feedback algorithm in the time needed for the parties to synchronize.

  3. Predictive error dependencies when using pilot points and singular value decomposition in groundwater model calibration

    DEFF Research Database (Denmark)

    Christensen, Steen; Doherty, John

    2008-01-01

    super parameters), and that the structural errors caused by using pilot points and super parameters to parameterize the highly heterogeneous log-transmissivity field can be significant. For the test case much effort is put into studying how the calibrated model's ability to make accurate predictions...

  4. Prediction error demarcates the transition from retrieval, to reconsolidation, to new learning

    NARCIS (Netherlands)

    Sevenster, Dieuwke|info:eu-repo/dai/nl/375491104; Beckers, Tom; Kindt, Merel

    2014-01-01

    Although disrupting reconsolidation is promising in targeting emotional memories, the conditions under which memory becomes labile are still unclear. The current study showed that post-retrieval changes in expectancy as an index for prediction error may serve as a read-out for the underlying

  5. Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modeling heteroscedastic residual errors

    Science.gov (United States)

    McInerney, David; Thyer, Mark; Kavetski, Dmitri; Lerat, Julien; Kuczera, George

    2017-03-01

    Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. This study focuses on approaches for representing error heteroscedasticity with respect to simulated streamflow, i.e., the pattern of larger errors in higher streamflow predictions. We evaluate eight common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter λ) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and the United States, and two lumped hydrological models. Performance is quantified using predictive reliability, precision, and volumetric bias metrics. We find the choice of heteroscedastic error modeling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with λ of 0.2 and 0.5, and the log scheme (λ = 0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Paradoxically, calibration of λ is often counterproductive: in perennial catchments, it tends to overfit low flows at the expense of abysmal precision in high flows. The log-sinh transformation is dominated by the simpler Pareto optimal schemes listed above. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.

  6. Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modelling heteroscedastic residual errors

    Science.gov (United States)

    David, McInerney; Mark, Thyer; Dmitri, Kavetski; George, Kuczera

    2017-04-01

    This study provides guidance to hydrological researchers which enables them to provide probabilistic predictions of daily streamflow with the best reliability and precision for different catchment types (e.g. high/low degree of ephemerality). Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. It is commonly known that hydrological model residual errors are heteroscedastic, i.e. there is a pattern of larger errors in higher streamflow predictions. Although multiple approaches exist for representing this heteroscedasticity, few studies have undertaken a comprehensive evaluation and comparison of these approaches. This study fills this research gap by evaluating 8 common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter, lambda) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and USA, and two lumped hydrological models. We find the choice of heteroscedastic error modelling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with lambda of 0.2 and 0.5, and the log scheme (lambda=0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.

  7. Self-reported medical, medication and laboratory error in eight countries: risk factors for chronically ill adults.

    Science.gov (United States)

    Scobie, Andrea

    2011-04-01

    To identify risk factors associated with self-reported medical, medication and laboratory error in eight countries. The Commonwealth Fund's 2008 International Health Policy Survey of chronically ill patients in eight countries. None. A multi-country telephone survey was conducted between 3 March and 30 May 2008 with patients in Australia, Canada, France, Germany, the Netherlands, New Zealand, the UK and the USA who self-reported being chronically ill. A bivariate analysis was performed to determine significant explanatory variables of medical, medication and laboratory error (P error: age 65 and under, education level of some college or less, presence of two or more chronic conditions, high prescription drug use (four+ drugs), four or more doctors seen within 2 years, a care coordination problem, poor doctor-patient communication and use of an emergency department. Risk factors with the greatest ability to predict experiencing an error encompassed issues with coordination of care and provider knowledge of a patient's medical history. The identification of these risk factors could help policymakers and organizations to proactively reduce the likelihood of error through greater examination of system- and organization-level practices.

  8. Control of Human Error and comparison Level risk after correction action With the SHERPA Method in a control Room of petrochemical industry

    Directory of Open Access Journals (Sweden)

    A. Zakerian

    2011-12-01

    Full Text Available Background and aims Today in many jobs like nuclear, military and chemical industries, human errors may result in a disaster. Accident in different places of the world emphasizes this subject and we indicate for example, Chernobyl disaster in (1986, tree Mile accident in (1974 and Flixborough explosion in (1974.So human errors identification especially in important and intricate systems is necessary and unavoidable for predicting control methods.   Methods Recent research is a case study and performed in Zagross Methanol Company in Asalouye (South pars.   Walking –Talking through method with process expert and control room operators, inspecting technical documents are used for collecting required information and completing Systematic Human Error Reductive and Predictive Approach (SHERPA worksheets.   Results analyzing SHERPA worksheet indicated that, were accepting capable invertebrate errors % 71.25, % 26.75 undesirable errors, % 2 accepting capable(with change errors, % 0 accepting capable errors, and after correction action forecast Level risk to this arrangement, accepting capable invertebrate errors % 0, % 4.35 undesirable errors , % 58.55 accepting capable(with change errors, % 37.1 accepting capable errors .   ConclusionFinally this result is comprehension that this method in different industries especially in chemical industries is enforceable and useful for human errors identification that may lead to accident and adventures.

  9. Clinical relevance of and risk factors associated with medication administration time errors

    NARCIS (Netherlands)

    Teunissen, R.; Bos, J.; Pot, H.; Pluim, M.; Kramers, C.

    2013-01-01

    PURPOSE: The clinical relevance of and risk factors associated with errors related to medication administration time were studied. METHODS: In this explorative study, 66 medication administration rounds were studied on two wards (surgery and neurology) of a hospital. Data on medication errors were

  10. Reversible Watermarking Using Prediction-Error Expansion and Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Guangyong Gao

    2015-01-01

    Full Text Available Currently, the research for reversible watermarking focuses on the decreasing of image distortion. Aiming at this issue, this paper presents an improvement method to lower the embedding distortion based on the prediction-error expansion (PE technique. Firstly, the extreme learning machine (ELM with good generalization ability is utilized to enhance the prediction accuracy for image pixel value during the watermarking embedding, and the lower prediction error results in the reduction of image distortion. Moreover, an optimization operation for strengthening the performance of ELM is taken to further lessen the embedding distortion. With two popular predictors, that is, median edge detector (MED predictor and gradient-adjusted predictor (GAP, the experimental results for the classical images and Kodak image set indicate that the proposed scheme achieves improvement for the lowering of image distortion compared with the classical PE scheme proposed by Thodi et al. and outperforms the improvement method presented by Coltuc and other existing approaches.

  11. Practical guidance on representing the heteroscedasticity of residual errors of hydrological predictions

    Science.gov (United States)

    McInerney, David; Thyer, Mark; Kavetski, Dmitri; Kuczera, George

    2016-04-01

    Appropriate representation of residual errors in hydrological modelling is essential for accurate and reliable probabilistic streamflow predictions. In particular, residual errors of hydrological predictions are often heteroscedastic, with large errors associated with high runoff events. Although multiple approaches exist for representing this heteroscedasticity, few if any studies have undertaken a comprehensive evaluation and comparison of these approaches. This study fills this research gap by evaluating a range of approaches for representing heteroscedasticity in residual errors. These approaches include the 'direct' weighted least squares approach and 'transformational' approaches, such as logarithmic, Box-Cox (with and without fitting the transformation parameter), logsinh and the inverse transformation. The study reports (1) theoretical comparison of heteroscedasticity approaches, (2) empirical evaluation of heteroscedasticity approaches using a range of multiple catchments / hydrological models / performance metrics and (3) interpretation of empirical results using theory to provide practical guidance on the selection of heteroscedasticity approaches. Importantly, for hydrological practitioners, the results will simplify the choice of approaches to represent heteroscedasticity. This will enhance their ability to provide hydrological probabilistic predictions with the best reliability and precision for different catchment types (e.g. high/low degree of ephemerality).

  12. Pupil dilation indicates the coding of past prediction errors: Evidence for attentional learning theory.

    Science.gov (United States)

    Koenig, Stephan; Uengoer, Metin; Lachnit, Harald

    2018-04-01

    The attentional learning theory of Pearce and Hall () predicts more attention to uncertain cues that have caused a high prediction error in the past. We examined how the cue-elicited pupil dilation during associative learning was linked to such error-driven attentional processes. In three experiments, participants were trained to acquire associations between different cues and their appetitive (Experiment 1), motor (Experiment 2), or aversive (Experiment 3) outcomes. All experiments were designed to examine differences in the processing of continuously reinforced cues (consistently followed by the outcome) versus partially reinforced, uncertain cues (randomly followed by the outcome). We measured the pupil dilation elicited by the cues in anticipation of the outcome and analyzed how this conditioned pupil response changed over the course of learning. In all experiments, changes in pupil size complied with the same basic pattern: During early learning, consistently reinforced cues elicited greater pupil dilation than uncertain, randomly reinforced cues, but this effect gradually reversed to yield a greater pupil dilation for uncertain cues toward the end of learning. The pattern of data accords with the changes in prediction error and error-driven attention formalized by the Pearce-Hall theory. © 2017 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.

  13. Predicting diagnostic error in Radiology via eye-tracking and image analytics: Application in mammography

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, Sophie [ORNL; Pinto, Frank M [ORNL; Morin-Ducote, Garnetta [University of Tennessee, Knoxville (UTK); Hudson, Kathy [University of Tennessee, Knoxville (UTK); Tourassi, Georgia [ORNL

    2013-01-01

    Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels. Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from 4 Radiology residents and 2 breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADs images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated. Results: Diagnostic error can be predicted reliably by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model (AUC=0.79). Personalized user modeling was far more accurate for the more experienced readers (average AUC of 0.837 0.029) than for the less experienced ones (average AUC of 0.667 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features. Conclusions: Diagnostic errors in mammography can be predicted reliably by leveraging the radiologists gaze behavior and image content.

  14. Predicting diagnostic error in radiology via eye-tracking and image analytics: Preliminary investigation in mammography

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, Sophie; Tourassi, Georgia D. [Biomedical Science and Engineering Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Pinto, Frank [School of Engineering, Science, and Technology, Virginia State University, Petersburg, Virginia 23806 (United States); Morin-Ducote, Garnetta; Hudson, Kathleen B. [Department of Radiology, University of Tennessee Medical Center at Knoxville, Knoxville, Tennessee 37920 (United States)

    2013-10-15

    Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists’ gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels.Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from four Radiology residents and two breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADS images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated.Results: Machine learning can be used to predict diagnostic error by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model [area under the ROC curve (AUC) = 0.792 ± 0.030]. Personalized user modeling was far more accurate for the more experienced readers (AUC = 0.837 ± 0.029) than for the less experienced ones (AUC = 0.667 ± 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features.Conclusions: Diagnostic errors in mammography can be predicted to a good extent by leveraging the radiologists’ gaze behavior and image content.

  15. Predicting diagnostic error in radiology via eye-tracking and image analytics: Preliminary investigation in mammography

    International Nuclear Information System (INIS)

    Voisin, Sophie; Tourassi, Georgia D.; Pinto, Frank; Morin-Ducote, Garnetta; Hudson, Kathleen B.

    2013-01-01

    Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists’ gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels.Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from four Radiology residents and two breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADS images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated.Results: Machine learning can be used to predict diagnostic error by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model [area under the ROC curve (AUC) = 0.792 ± 0.030]. Personalized user modeling was far more accurate for the more experienced readers (AUC = 0.837 ± 0.029) than for the less experienced ones (AUC = 0.667 ± 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features.Conclusions: Diagnostic errors in mammography can be predicted to a good extent by leveraging the radiologists’ gaze behavior and image content

  16. Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors

    Energy Technology Data Exchange (ETDEWEB)

    Nelms, Benjamin E.; Zhen Heming; Tome, Wolfgang A. [Canis Lupus LLC and Department of Human Oncology, University of Wisconsin, Merrimac, Wisconsin 53561 (United States); Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705 (United States); Departments of Human Oncology, Medical Physics, and Biomedical Engineering, University of Wisconsin, Madison, Wisconsin 53792 (United States)

    2011-02-15

    Purpose: The purpose of this work is to determine the statistical correlation between per-beam, planar IMRT QA passing rates and several clinically relevant, anatomy-based dose errors for per-patient IMRT QA. The intent is to assess the predictive power of a common conventional IMRT QA performance metric, the Gamma passing rate per beam. Methods: Ninety-six unique data sets were created by inducing four types of dose errors in 24 clinical head and neck IMRT plans, each planned with 6 MV Varian 120-leaf MLC linear accelerators using a commercial treatment planning system and step-and-shoot delivery. The error-free beams/plans were used as ''simulated measurements'' (for generating the IMRT QA dose planes and the anatomy dose metrics) to compare to the corresponding data calculated by the error-induced plans. The degree of the induced errors was tuned to mimic IMRT QA passing rates that are commonly achieved using conventional methods. Results: Analysis of clinical metrics (parotid mean doses, spinal cord max and D1cc, CTV D95, and larynx mean) vs IMRT QA Gamma analysis (3%/3 mm, 2/2, 1/1) showed that in all cases, there were only weak to moderate correlations (range of Pearson's r-values: -0.295 to 0.653). Moreover, the moderate correlations actually had positive Pearson's r-values (i.e., clinically relevant metric differences increased with increasing IMRT QA passing rate), indicating that some of the largest anatomy-based dose differences occurred in the cases of high IMRT QA passing rates, which may be called ''false negatives.'' The results also show numerous instances of false positives or cases where low IMRT QA passing rates do not imply large errors in anatomy dose metrics. In none of the cases was there correlation consistent with high predictive power of planar IMRT passing rates, i.e., in none of the cases did high IMRT QA Gamma passing rates predict low errors in anatomy dose metrics or vice versa

  17. A Conceptual Framework for Predicting Error in Complex Human-Machine Environments

    Science.gov (United States)

    Freed, Michael; Remington, Roger; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    We present a Goals, Operators, Methods, and Selection Rules-Model Human Processor (GOMS-MHP) style model-based approach to the problem of predicting human habit capture errors. Habit captures occur when the model fails to allocate limited cognitive resources to retrieve task-relevant information from memory. Lacking the unretrieved information, decision mechanisms act in accordance with implicit default assumptions, resulting in error when relied upon assumptions prove incorrect. The model helps interface designers identify situations in which such failures are especially likely.

  18. Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors

    International Nuclear Information System (INIS)

    Nelms, Benjamin E.; Zhen Heming; Tome, Wolfgang A.

    2011-01-01

    Purpose: The purpose of this work is to determine the statistical correlation between per-beam, planar IMRT QA passing rates and several clinically relevant, anatomy-based dose errors for per-patient IMRT QA. The intent is to assess the predictive power of a common conventional IMRT QA performance metric, the Gamma passing rate per beam. Methods: Ninety-six unique data sets were created by inducing four types of dose errors in 24 clinical head and neck IMRT plans, each planned with 6 MV Varian 120-leaf MLC linear accelerators using a commercial treatment planning system and step-and-shoot delivery. The error-free beams/plans were used as ''simulated measurements'' (for generating the IMRT QA dose planes and the anatomy dose metrics) to compare to the corresponding data calculated by the error-induced plans. The degree of the induced errors was tuned to mimic IMRT QA passing rates that are commonly achieved using conventional methods. Results: Analysis of clinical metrics (parotid mean doses, spinal cord max and D1cc, CTV D95, and larynx mean) vs IMRT QA Gamma analysis (3%/3 mm, 2/2, 1/1) showed that in all cases, there were only weak to moderate correlations (range of Pearson's r-values: -0.295 to 0.653). Moreover, the moderate correlations actually had positive Pearson's r-values (i.e., clinically relevant metric differences increased with increasing IMRT QA passing rate), indicating that some of the largest anatomy-based dose differences occurred in the cases of high IMRT QA passing rates, which may be called ''false negatives.'' The results also show numerous instances of false positives or cases where low IMRT QA passing rates do not imply large errors in anatomy dose metrics. In none of the cases was there correlation consistent with high predictive power of planar IMRT passing rates, i.e., in none of the cases did high IMRT QA Gamma passing rates predict low errors in anatomy dose metrics or vice versa. Conclusions: There is a lack of correlation between

  19. Motivational state controls the prediction error in Pavlovian appetitive-aversive interactions.

    Science.gov (United States)

    Laurent, Vincent; Balleine, Bernard W; Westbrook, R Frederick

    2018-01-01

    Contemporary theories of learning emphasize the role of a prediction error signal in driving learning, but the nature of this signal remains hotly debated. Here, we used Pavlovian conditioning in rats to investigate whether primary motivational and emotional states interact to control prediction error. We initially generated cues that positively or negatively predicted an appetitive food outcome. We then assessed how these cues modulated aversive conditioning when a novel cue was paired with a foot shock. We found that a positive predictor of food enhances, whereas a negative predictor of that same food impairs, aversive conditioning. Critically, we also showed that the enhancement produced by the positive predictor is removed by reducing the value of its associated food. In contrast, the impairment triggered by the negative predictor remains insensitive to devaluation of its associated food. These findings provide compelling evidence that the motivational value attributed to a predicted food outcome can directly control appetitive-aversive interactions and, therefore, that motivational processes can modulate emotional processes to generate the final error term on which subsequent learning is based. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Different populations of subthalamic neurons encode cocaine vs. sucrose reward and predict future error.

    Science.gov (United States)

    Lardeux, Sylvie; Paleressompoulle, Dany; Pernaud, Remy; Cador, Martine; Baunez, Christelle

    2013-10-01

    The search for treatment of cocaine addiction raises the challenge to find a way to diminish motivation for the drug without decreasing it for natural rewards. Subthalamic nucleus (STN) inactivation decreases motivation for cocaine while increasing motivation for food, suggesting that STN can dissociate different rewards. Here, we investigated how rat STN neurons respond to cues predicting cocaine or sucrose and to reward delivery while rats are performing a discriminative stimuli task. We show that different neuronal populations of STN neurons encode cocaine and sucrose. In addition, we show that STN activity at the cue onset predicts future error. When changing the reward predicted unexpectedly, STN neurons show capacities of adaptation, suggesting a role in reward-prediction error. Furthermore, some STN neurons show a response to executive error (i.e., "oops neurons") that is specific to the missed reward. These results position the STN as a nexus where natural rewards and drugs of abuse are coded differentially and can influence the performance. Therefore, STN can be viewed as a structure where action could be taken for the treatment of cocaine addiction.

  1. Dopamine prediction errors in reward learning and addiction: from theory to neural circuitry

    Science.gov (United States)

    Keiflin, Ronald; Janak, Patricia H.

    2015-01-01

    Summary Midbrain dopamine (DA) neurons are proposed to signal reward prediction error (RPE), a fundamental parameter in associative learning models. This RPE hypothesis provides a compelling theoretical framework for understanding DA function in reward learning and addiction. New studies support a causal role for DA-mediated RPE activity in promoting learning about natural reward; however, this question has not been explicitly tested in the context of drug addiction. In this review, we integrate theoretical models with experimental findings on the activity of DA systems, and on the causal role of specific neuronal projections and cell types, to provide a circuit-based framework for probing DA-RPE function in addiction. By examining error-encoding DA neurons in the neural network in which they are embedded, hypotheses regarding circuit-level adaptations that possibly contribute to pathological error-signaling and addiction can be formulated and tested. PMID:26494275

  2. Dopamine Prediction Errors in Reward Learning and Addiction: From Theory to Neural Circuitry.

    Science.gov (United States)

    Keiflin, Ronald; Janak, Patricia H

    2015-10-21

    Midbrain dopamine (DA) neurons are proposed to signal reward prediction error (RPE), a fundamental parameter in associative learning models. This RPE hypothesis provides a compelling theoretical framework for understanding DA function in reward learning and addiction. New studies support a causal role for DA-mediated RPE activity in promoting learning about natural reward; however, this question has not been explicitly tested in the context of drug addiction. In this review, we integrate theoretical models with experimental findings on the activity of DA systems, and on the causal role of specific neuronal projections and cell types, to provide a circuit-based framework for probing DA-RPE function in addiction. By examining error-encoding DA neurons in the neural network in which they are embedded, hypotheses regarding circuit-level adaptations that possibly contribute to pathological error signaling and addiction can be formulated and tested. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Errors and risks of urological X-ray diagnostics

    International Nuclear Information System (INIS)

    Blech, M.; Truss, F.

    1987-01-01

    Classical methods of radiologic diagnosis like excretory urogram, retrograde ureteropyelography or urethrography - only to mention a few - are as much as ever corner pillars of the whole urologic diagnosis. Similar to other diagnostic methods certain risks and complications, which is intented to summarize, also exist in this area. Problems related to intravenous infusion of contrast medium or radioprotection are not discussed in this article. (orig.) [de

  4. Development and performance evaluation of a prototype system for prediction of the group error at the maintenance work

    International Nuclear Information System (INIS)

    Yoshino, Kenji; Hirotsu, Yuko

    2000-01-01

    In order to attain zero-izing of much more error rather than it can set to a nuclear power plant, Authors development and its system-izing of the error prediction causal model which predicts group error action at the time of maintenance work were performed. This prototype system has the following feature. (1) When a user inputs the existence and the grade of the existence of the 'feature factor of the maintenance work' as a prediction object, 'an organization and an organization factor', and a 'group PSF (Performance Shaping Factor) factor' into this system. The maintenance group error to target can be predicted through the prediction model which consists of a class of seven stages. (2) This system by utilizing the information on a prediction result database, it can use not only for prediction of a maintenance group error but for various safe activity, such as KYT (dangerous forecast training) and TBM (Tool Box Meeting). (3) This system predicts a cooperation error' at highest rate, and, subsequently predicts the detection error' at a high rate. And to the 'decision-making error', the transfer error' and the 'state cognitive error', it has the characteristic predicted at almost same rate. (4) If it has full knowledge even of the features, such as the enforcement conditions of maintenance work, and organization, even if the user has neither the knowledge about a human factor, nor experience, anyone of this system is slight about the existence, its extent, etc. of generating of a maintenance group error made difficult from the former logically and systematically easily, it can predict in business time for about 15 minutes. (author)

  5. Mindfulness meditation modulates reward prediction errors in the striatum in a passive conditioning task

    Directory of Open Access Journals (Sweden)

    Ulrich eKirk

    2015-02-01

    Full Text Available Reinforcement learning models have demonstrated that phasic activity of dopamine neurons during reward expectation encodes information about the predictability of rewards and cues that predict reward. Evidence indicates that mindfulness-based approaches reduce reward anticipation signal in the striatum to negative and positive incentives suggesting the hypothesis that such training influence basic reward processing. Using a passive conditioning task and fMRI in a group of experienced mindfulness meditators and age-matched controls, we tested the hypothesis that mindfulness meditation influence reward and reward prediction error signals. We found diminished positive and negative prediction error-related blood-oxygen level-dependent (BOLD responses in the putamen in meditators compared with controls. In the meditators, this decrease in striatal BOLD responses to reward prediction was paralleled by increased activity in posterior insula, a primary interoceptive region. Critically, responses in the putamen during early trials of the conditioning procedure (run 1 were elevated in both meditators and controls. These results provide evidence that experienced mindfulness meditators show attenuated reward prediction signals to valenced stimuli, which may be related to interoceptive processes encoded in the posterior insula.

  6. Influence of precision of emission characteristic parameters on model prediction error of VOCs/formaldehyde from dry building material.

    Directory of Open Access Journals (Sweden)

    Wenjuan Wei

    Full Text Available Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C 0, the diffusion coefficient (D, and the partition coefficient (K, can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C 0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C 0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C.

  7. Predicting areas of sustainable error growth in quasigeostrophic flows using perturbation alignment properties

    Science.gov (United States)

    Rivière, G.; Hua, B. L.

    2004-10-01

    A new perturbation initialization method is used to quantify error growth due to inaccuracies of the forecast model initial conditions in a quasigeostrophic box ocean model describing a wind-driven double gyre circulation. This method is based on recent analytical results on Lagrangian alignment dynamics of the perturbation velocity vector in quasigeostrophic flows. More specifically, it consists in initializing a unique perturbation from the sole knowledge of the control flow properties at the initial time of the forecast and whose velocity vector orientation satisfies a Lagrangian equilibrium criterion. This Alignment-based Initialization method is hereafter denoted as the AI method.In terms of spatial distribution of the errors, we have compared favorably the AI error forecast with the mean error obtained with a Monte-Carlo ensemble prediction. It is shown that the AI forecast is on average as efficient as the error forecast initialized with the leading singular vector for the palenstrophy norm, and significantly more efficient than that for total energy and enstrophy norms. Furthermore, a more precise examination shows that the AI forecast is systematically relevant for all control flows whereas the palenstrophy singular vector forecast leads sometimes to very good scores and sometimes to very bad ones.A principal component analysis at the final time of the forecast shows that the AI mode spatial structure is comparable to that of the first eigenvector of the error covariance matrix for a "bred mode" ensemble. Furthermore, the kinetic energy of the AI mode grows at the same constant rate as that of the "bred modes" from the initial time to the final time of the forecast and is therefore characterized by a sustained phase of error growth. In this sense, the AI mode based on Lagrangian dynamics of the perturbation velocity orientation provides a rationale of the "bred mode" behavior.

  8. Analysis of human error and organizational deficiency in events considering risk significance

    International Nuclear Information System (INIS)

    Lee, Yong Suk; Kim, Yoonik; Kim, Say Hyung; Kim, Chansoo; Chung, Chang Hyun; Jung, Won Dea

    2004-01-01

    In this study, we analyzed human and organizational deficiencies in the trip events of Korean nuclear power plants. K-HPES items were used in human error analysis, and the organizational factors by Jacobs and Haber were used for organizational deficiency analysis. We proposed the use of CCDP as a risk measure to consider risk information in prioritizing K-HPES items and organizational factors. Until now, the risk significance of events has not been considered in human error and organizational deficiency analysis. Considering the risk significance of events in the process of analysis is necessary for effective enhancement of nuclear power plant safety by focusing on causes of human error and organizational deficiencies that are associated with significant risk

  9. Predicting the outcomes of performance error indicators on accreditation status in the nuclear power industry

    International Nuclear Information System (INIS)

    Wilson, P.A.

    1986-01-01

    The null hypothesis for this study suggested that there was no significant difference in the types of performance error indicators between accredited and non-accredited programs on the following types of indicators: (1) number of significant event reports per unit, (2) number of forced outages per unit, (3) number of unplanned automatic scrams per unit, and (4) amount of equivalent availability per unit. A sample of 90 nuclear power plants was selected for this study. Data were summarized from two data bases maintained by the Institute of Nuclear Power Operations. Results of this study did not support the research hypothesis. There was no significant difference between the accredited and non-accredited programs on any of the four performance error indicators. The primary conclusions of this include the following: (1) The four selected performance error indicators cannot be used individually or collectively to predict accreditation status in the nuclear power industry. (2) Annual performance error indicator ratings cannot be used to determine the effects of performance-based training on plant performance. (3) The four selected performance error indicators cannot be used to measure the effect of operator job performance on plant effectiveness

  10. Prediction of Monte Carlo errors by a theory generalized to treat track-length estimators

    International Nuclear Information System (INIS)

    Booth, T.E.; Amster, H.J.

    1978-01-01

    Present theories for predicting expected Monte Carlo errors in neutron transport calculations apply to estimates of flux-weighted integrals sampled directly by scoring individual collisions. To treat track-length estimators, the recent theory of Amster and Djomehri is generalized to allow the score distribution functions to depend on the coordinates of two successive collisions. It has long been known that the expected track length in a region of phase space equals the expected flux integrated over that region, but that the expected statistical error of the Monte Carlo estimate of the track length is different from that of the flux integral obtained by sampling the sum of the reciprocals of the cross sections for all collisions in the region. These conclusions are shown to be implied by the generalized theory, which provides explicit equations for the expected values and errors of both types of estimators. Sampling expected contributions to the track-length estimator is also treated. Other general properties of the errors for both estimators are derived from the equations and physically interpreted. The actual values of these errors are then obtained and interpreted for a simple specific example

  11. PRA (probabilistic risk analysis) in the nuclear sector. Quantifying human error and human malice

    International Nuclear Information System (INIS)

    Heyes, A.G.

    1995-01-01

    Regardless of the regulatory style chosen ('command and control' or 'functional') a vital prerequisite for coherent safety regulations in the nuclear power industry is the ability to assess accident risk. In this paper we present a critical analysis of current techniques of probabilistic risk analysis applied in the industry, with particular regard to the problems of quantifying risks arising from, or exacerbated by, human risk and/or human error. (Author)

  12. Safety analysis methodology with assessment of the impact of the prediction errors of relevant parameters

    International Nuclear Information System (INIS)

    Galia, A.V.

    2011-01-01

    The best estimate plus uncertainty approach (BEAU) requires the use of extensive resources and therefore it is usually applied for cases in which the available safety margin obtained with a conservative methodology can be questioned. Outside the BEAU methodology, there is not a clear approach on how to deal with the issue of considering the uncertainties resulting from prediction errors in the safety analyses performed for licensing submissions. However, the regulatory document RD-310 mentions that the analysis method shall account for uncertainties in the analysis data and models. A possible approach is presented, that is simple and reasonable, representing just the author's views, to take into account the impact of prediction errors and other uncertainties when performing safety analysis in line with regulatory requirements. The approach proposes taking into account the prediction error of relevant parameters. Relevant parameters would be those plant parameters that are surveyed and are used to initiate the action of a mitigating system or those that are representative of the most challenging phenomena for the integrity of a fission barrier. Examples of the application of the methodology are presented involving a comparison between the results with the new approach and a best estimate calculation during the blowdown phase for two small breaks in a generic CANDU 6 station. The calculations are performed with the CATHENA computer code. (author)

  13. Dissociable neural representations of reinforcement and belief prediction errors underlie strategic learning.

    Science.gov (United States)

    Zhu, Lusha; Mathewson, Kyle E; Hsu, Ming

    2012-01-31

    Decision-making in the presence of other competitive intelligent agents is fundamental for social and economic behavior. Such decisions require agents to behave strategically, where in addition to learning about the rewards and punishments available in the environment, they also need to anticipate and respond to actions of others competing for the same rewards. However, whereas we know much about strategic learning at both theoretical and behavioral levels, we know relatively little about the underlying neural mechanisms. Here, we show using a multi-strategy competitive learning paradigm that strategic choices can be characterized by extending the reinforcement learning (RL) framework to incorporate agents' beliefs about the actions of their opponents. Furthermore, using this characterization to generate putative internal values, we used model-based functional magnetic resonance imaging to investigate neural computations underlying strategic learning. We found that the distinct notions of prediction errors derived from our computational model are processed in a partially overlapping but distinct set of brain regions. Specifically, we found that the RL prediction error was correlated with activity in the ventral striatum. In contrast, activity in the ventral striatum, as well as the rostral anterior cingulate (rACC), was correlated with a previously uncharacterized belief-based prediction error. Furthermore, activity in rACC reflected individual differences in degree of engagement in belief learning. These results suggest a model of strategic behavior where learning arises from interaction of dissociable reinforcement and belief-based inputs.

  14. Sensitivity of risk parameters to human errors in reactor safety study for a PWR

    International Nuclear Information System (INIS)

    Samanta, P.K.; Hall, R.E.; Swoboda, A.L.

    1981-01-01

    Sensitivities of the risk parameters, emergency safety system unavailabilities, accident sequence probabilities, release category probabilities and core melt probability were investigated for changes in the human error rates within the general methodological framework of the Reactor Safety Study (RSS) for a Pressurized Water Reactor (PWR). Impact of individual human errors were assessed both in terms of their structural importance to core melt and reliability importance on core melt probability. The Human Error Sensitivity Assessment of a PWR (HESAP) computer code was written for the purpose of this study. The code employed point estimate approach and ignored the smoothing technique applied in RSS. It computed the point estimates for the system unavailabilities from the median values of the component failure rates and proceeded in terms of point values to obtain the point estimates for the accident sequence probabilities, core melt probability, and release category probabilities. The sensitivity measure used was the ratio of the top event probability before and after the perturbation of the constituent events. Core melt probability per reactor year showed significant increase with the increase in the human error rates, but did not show similar decrease with the decrease in the human error rates due to the dominance of the hardware failures. When the Minimum Human Error Rate (M.H.E.R.) used is increased to 10 -3 , the base case human error rates start sensitivity to human errors. This effort now allows the evaluation of new error rate data along with proposed changes in the man machine interface

  15. A Systems Modeling Approach for Risk Management of Command File Errors

    Science.gov (United States)

    Meshkat, Leila

    2012-01-01

    The main cause of commanding errors is often (but not always) due to procedures. Either lack of maturity in the processes, incompleteness of requirements or lack of compliance to these procedures. Other causes of commanding errors include lack of understanding of system states, inadequate communication, and making hasty changes in standard procedures in response to an unexpected event. In general, it's important to look at the big picture prior to making corrective actions. In the case of errors traced back to procedures, considering the reliability of the process as a metric during its' design may help to reduce risk. This metric is obtained by using data from Nuclear Industry regarding human reliability. A structured method for the collection of anomaly data will help the operator think systematically about the anomaly and facilitate risk management. Formal models can be used for risk based design and risk management. A generic set of models can be customized for a broad range of missions.

  16. Effect of heteroscedasticity treatment in residual error models on model calibration and prediction uncertainty estimation

    Science.gov (United States)

    Sun, Ruochen; Yuan, Huiling; Liu, Xiaoli

    2017-11-01

    The heteroscedasticity treatment in residual error models directly impacts the model calibration and prediction uncertainty estimation. This study compares three methods to deal with the heteroscedasticity, including the explicit linear modeling (LM) method and nonlinear modeling (NL) method using hyperbolic tangent function, as well as the implicit Box-Cox transformation (BC). Then a combined approach (CA) combining the advantages of both LM and BC methods has been proposed. In conjunction with the first order autoregressive model and the skew exponential power (SEP) distribution, four residual error models are generated, namely LM-SEP, NL-SEP, BC-SEP and CA-SEP, and their corresponding likelihood functions are applied to the Variable Infiltration Capacity (VIC) hydrologic model over the Huaihe River basin, China. Results show that the LM-SEP yields the poorest streamflow predictions with the widest uncertainty band and unrealistic negative flows. The NL and BC methods can better deal with the heteroscedasticity and hence their corresponding predictive performances are improved, yet the negative flows cannot be avoided. The CA-SEP produces the most accurate predictions with the highest reliability and effectively avoids the negative flows, because the CA approach is capable of addressing the complicated heteroscedasticity over the study basin.

  17. An assessment of the risk significance of human errors in selected PSAs and operating events

    International Nuclear Information System (INIS)

    Palla, R.L. Jr.; El-Bassioni, A.

    1991-01-01

    Sensitivity studies based on Probabilistic Safety Assessments (PSAs) for a pressurized water reactor and a boiling water reactor are described. In each case human errors modeled in the PSAs were categorized according to such factors as error type, location, timing, and plant personnel involved. Sensitivity studies were then conducted by varying the error rates in each category and evaluating the corresponding change in total core damage frequency and accident sequence frequency. Insights obtained are discussed and reasons for differences in risk sensitivity between plants are explored. A separate investigation into the role of human error in risk-important operating events is also described. This investigation involved the analysis of data from the USNRC Accident Sequence Precursor program to determine the effect of operator-initiated events on accident precursor trends, and to determine whether improved training can be correlated to current trends. The findings of this study are also presented. 5 refs., 15 figs., 1 tab

  18. Learning Similar Actions by Reinforcement or Sensory-Prediction Errors Rely on Distinct Physiological Mechanisms.

    Science.gov (United States)

    Uehara, Shintaro; Mawase, Firas; Celnik, Pablo

    2017-09-14

    Humans can acquire knowledge of new motor behavior via different forms of learning. The two forms most commonly studied have been the development of internal models based on sensory-prediction errors (error-based learning) and success-based feedback (reinforcement learning). Human behavioral studies suggest these are distinct learning processes, though the neurophysiological mechanisms that are involved have not been characterized. Here, we evaluated physiological markers from the cerebellum and the primary motor cortex (M1) using noninvasive brain stimulations while healthy participants trained finger-reaching tasks. We manipulated the extent to which subjects rely on error-based or reinforcement by providing either vector or binary feedback about task performance. Our results demonstrated a double dissociation where learning the task mainly via error-based mechanisms leads to cerebellar plasticity modifications but not long-term potentiation (LTP)-like plasticity changes in M1; while learning a similar action via reinforcement mechanisms elicited M1 LTP-like plasticity but not cerebellar plasticity changes. Our findings indicate that learning complex motor behavior is mediated by the interplay of different forms of learning, weighing distinct neural mechanisms in M1 and the cerebellum. Our study provides insights for designing effective interventions to enhance human motor learning. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Quantifying the predictive consequences of model error with linear subspace analysis

    Science.gov (United States)

    White, Jeremy T.; Doherty, John E.; Hughes, Joseph D.

    2014-01-01

    All computer models are simplified and imperfect simulators of complex natural systems. The discrepancy arising from simplification induces bias in model predictions, which may be amplified by the process of model calibration. This paper presents a new method to identify and quantify the predictive consequences of calibrating a simplified computer model. The method is based on linear theory, and it scales efficiently to the large numbers of parameters and observations characteristic of groundwater and petroleum reservoir models. The method is applied to a range of predictions made with a synthetic integrated surface-water/groundwater model with thousands of parameters. Several different observation processing strategies and parameterization/regularization approaches are examined in detail, including use of the Karhunen-Loève parameter transformation. Predictive bias arising from model error is shown to be prediction specific and often invisible to the modeler. The amount of calibration-induced bias is influenced by several factors, including how expert knowledge is applied in the design of parameterization schemes, the number of parameters adjusted during calibration, how observations and model-generated counterparts are processed, and the level of fit with observations achieved through calibration. Failure to properly implement any of these factors in a prediction-specific manner may increase the potential for predictive bias in ways that are not visible to the calibration and uncertainty analysis process.

  20. Risk terrain modeling predicts child maltreatment.

    Science.gov (United States)

    Daley, Dyann; Bachmann, Michael; Bachmann, Brittany A; Pedigo, Christian; Bui, Minh-Thuy; Coffman, Jamye

    2016-12-01

    As indicated by research on the long-term effects of adverse childhood experiences (ACEs), maltreatment has far-reaching consequences for affected children. Effective prevention measures have been elusive, partly due to difficulty in identifying vulnerable children before they are harmed. This study employs Risk Terrain Modeling (RTM), an analysis of the cumulative effect of environmental factors thought to be conducive for child maltreatment, to create a highly accurate prediction model for future substantiated child maltreatment cases in the City of Fort Worth, Texas. The model is superior to commonly used hotspot predictions and more beneficial in aiding prevention efforts in a number of ways: 1) it identifies the highest risk areas for future instances of child maltreatment with improved precision and accuracy; 2) it aids the prioritization of risk-mitigating efforts by informing about the relative importance of the most significant contributing risk factors; 3) since predictions are modeled as a function of easily obtainable data, practitioners do not have to undergo the difficult process of obtaining official child maltreatment data to apply it; 4) the inclusion of a multitude of environmental risk factors creates a more robust model with higher predictive validity; and, 5) the model does not rely on a retrospective examination of past instances of child maltreatment, but adapts predictions to changing environmental conditions. The present study introduces and examines the predictive power of this new tool to aid prevention efforts seeking to improve the safety, health, and wellbeing of vulnerable children. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Medication reconciliation errors in a tertiary care hospital in Saudi Arabia: admission discrepancies and risk factors

    Directory of Open Access Journals (Sweden)

    Mazhar F

    2017-03-01

    Full Text Available Background: Medication reconciliation is a major component of safe patient care. One of the main problems in the implementation of a medication reconciliation process is the lack of human resources. With limited resources, it is better to target medication reconciliation resources to patients who will derive the most benefit from it. Objective: The primary objective of this study was to determine the frequency and types of medication reconciliation errors identified by pharmacists performing medication reconciliation at admission. Each medication error was rated for its potential to cause patient harm during hospitalization. A secondary objective was to determine risk factors associated with medication reconciliation errors. Methods: This was a prospective, single-center pilot study conducted in the internal medicine and surgical wards of a tertiary care teaching hospital in the Eastern province of Saudi Arabia. A clinical pharmacist took the best possible medication history of patients admitted to medical and surgical services and compared with the medication orders at hospital admission; any identified discrepancies were noted and analyzed for reconciliation errors. Multivariate logistic regression was performed to determine the risk factors related to reconciliation errors. Results: A total of 328 patients (138 in surgical and 198 in medical were included in the study. For the 1419 medications recorded, 1091 discrepancies were discovered out of which 491 (41.6% were reconciliation errors. The errors affected 177 patients (54%. The incidence of reconciliation errors in the medical patient group was 25.1% and 32.0% in the surgical group (p<0.001. In both groups, the most frequent reconciliation error was the omission (43.5% and 51.2%. Lipid-lowering (12.4% and antihypertensive agents were most commonly involved. If undetected, 43.6% of order errors were rated as potentially requiring increased monitoring or intervention to preclude harm; 17

  2. Subclinical organ damage and cardiovascular risk prediction

    DEFF Research Database (Denmark)

    Sehestedt, Thomas; Olsen, Michael H

    2010-01-01

    Traditional cardiovascular risk factors have poor prognostic value for individuals and screening for subclinical organ damage has been recommended in hypertension in recent guidelines. The aim of this review was to investigate the clinical impact of the additive prognostic information provided...... by measuring subclinical organ damage. We have (i) reviewed recent studies linking markers of subclinical organ damage in the heart, blood vessels and kidney to cardiovascular risk; (ii) discussed the evidence for improvement in cardiovascular risk prediction using markers of subclinical organ damage; (iii...

  3. Uncertainty estimation and risk prediction in air quality

    International Nuclear Information System (INIS)

    Garaud, Damien

    2011-01-01

    This work is about uncertainty estimation and risk prediction in air quality. Firstly, we build a multi-model ensemble of air quality simulations which can take into account all uncertainty sources related to air quality modeling. Ensembles of photochemical simulations at continental and regional scales are automatically generated. Then, these ensemble are calibrated with a combinatorial optimization method. It selects a sub-ensemble which is representative of uncertainty or shows good resolution and reliability for probabilistic forecasting. This work shows that it is possible to estimate and forecast uncertainty fields related to ozone and nitrogen dioxide concentrations or to improve the reliability of threshold exceedance predictions. The approach is compared with Monte Carlo simulations, calibrated or not. The Monte Carlo approach appears to be less representative of the uncertainties than the multi-model approach. Finally, we quantify the observational error, the representativeness error and the modeling errors. The work is applied to the impact of thermal power plants, in order to quantify the uncertainty on the impact estimates. (author) [fr

  4. Study on the methodology for predicting and preventing errors to improve reliability of maintenance task in nuclear power plant

    International Nuclear Information System (INIS)

    Hanafusa, Hidemitsu; Iwaki, Toshio; Embrey, D.

    2000-01-01

    The objective of this study was to develop and effective methodology for predicting and preventing errors in nuclear power plant maintenance tasks. A method was established by which chief maintenance personnel can predict and reduce errors when reviewing the maintenance procedures and while referring to maintenance supporting systems and methods in other industries including aviation and chemical plant industries. The method involves the following seven steps: 1. Identification of maintenance tasks. 2. Specification of important tasks affecting safety. 3. Assessment of human errors occurring during important tasks. 4. Identification of Performance Degrading Factors. 5. Dividing important tasks into sub-tasks. 6. Extraction of errors using Predictive Human Error Analysis (PHEA). 7. Development of strategies for reducing errors and for recovering from errors. By way of a trial, this method was applied to the pump maintenance procedure in nuclear power plants. This method is believed to be capable of identifying the expected errors in important tasks and supporting the development of error reduction measures. By applying this method, the number of accidents resulting form human errors during maintenance can be reduced. Moreover, the maintenance support base using computers was developed. (author)

  5. Recursive prediction error methods for online estimation in nonlinear state-space models

    Directory of Open Access Journals (Sweden)

    Dag Ljungquist

    1994-04-01

    Full Text Available Several recursive algorithms for online, combined state and parameter estimation in nonlinear state-space models are discussed in this paper. Well-known algorithms such as the extended Kalman filter and alternative formulations of the recursive prediction error method are included, as well as a new method based on a line-search strategy. A comparison of the algorithms illustrates that they are very similar although the differences can be important for the online tracking capabilities and robustness. Simulation experiments on a simple nonlinear process show that the performance under certain conditions can be improved by including a line-search strategy.

  6. Suppressing my memories by listening to yours: The effect of socially triggered context-based prediction error on memory.

    Science.gov (United States)

    Vlasceanu, Madalina; Drach, Rae; Coman, Alin

    2018-05-03

    The mind is a prediction machine. In most situations, it has expectations as to what might happen. But when predictions are invalidated by experience (i.e., prediction errors), the memories that generate these predictions are suppressed. Here, we explore the effect of prediction error on listeners' memories following social interaction. We find that listening to a speaker recounting experiences similar to one's own triggers prediction errors on the part of the listener that lead to the suppression of her memories. This effect, we show, is sensitive to a perspective-taking manipulation, such that individuals who are instructed to take the perspective of the speaker experience memory suppression, whereas individuals who undergo a low-perspective-taking manipulation fail to show a mnemonic suppression effect. We discuss the relevance of these findings for our understanding of the bidirectional influences between cognition and social contexts, as well as for the real-world situations that involve memory-based predictions.

  7. Nuclear power plant personnel errors in decision-making as an object of probabilistic risk assessment

    International Nuclear Information System (INIS)

    Reer, B.

    1993-09-01

    The integration of human error - also called man-machine system analysis (MMSA) - is an essential part of probabilistic risk assessment (PRA). A new method is presented which allows for a systematic and comprehensive PRA inclusions of decision-based errors due to conflicts or similarities. For the error identification procedure, new question techniques are developed. These errors are shown to be identified by looking at retroactions caused by subordinate goals as components of the overall safety relevant goal. New quantification methods for estimating situation-specific probabilities are developed. The factors conflict and similarity are operationalized in a way that allows their quantification based on informations which are usually available in PRA. The quantification procedure uses extrapolations and interpolations based on a poor set of data related to decision-based errors. Moreover, for passive errors in decision-making a completely new approach is presented where errors are quantified via a delay initiating the required action rather than via error probabilities. The practicability of this dynamic approach is demonstrated by a probabilistic analysis of the actions required during the total loss of feedwater event at the Davis-Besse plant 1985. The extensions of the ''classical'' PRA method developed in this work are applied to a MMSA of the decay heat removal (DHR) of the ''HTR-500''. Errors in decision-making - as potential roots of extraneous acts - are taken into account in a comprehensive and systematic manner. Five additional errors are identified. However, the probabilistic quantification results a nonsignificant increase of the DHR failure probability. (orig.) [de

  8. Random measurement error: Why worry? An example of cardiovascular risk factors.

    Science.gov (United States)

    Brakenhoff, Timo B; van Smeden, Maarten; Visseren, Frank L J; Groenwold, Rolf H H

    2018-01-01

    With the increased use of data not originally recorded for research, such as routine care data (or 'big data'), measurement error is bound to become an increasingly relevant problem in medical research. A common view among medical researchers on the influence of random measurement error (i.e. classical measurement error) is that its presence leads to some degree of systematic underestimation of studied exposure-outcome relations (i.e. attenuation of the effect estimate). For the common situation where the analysis involves at least one exposure and one confounder, we demonstrate that the direction of effect of random measurement error on the estimated exposure-outcome relations can be difficult to anticipate. Using three example studies on cardiovascular risk factors, we illustrate that random measurement error in the exposure and/or confounder can lead to underestimation as well as overestimation of exposure-outcome relations. We therefore advise medical researchers to refrain from making claims about the direction of effect of measurement error in their manuscripts, unless the appropriate inferential tools are used to study or alleviate the impact of measurement error from the analysis.

  9. Random measurement error: Why worry? An example of cardiovascular risk factors.

    Directory of Open Access Journals (Sweden)

    Timo B Brakenhoff

    Full Text Available With the increased use of data not originally recorded for research, such as routine care data (or 'big data', measurement error is bound to become an increasingly relevant problem in medical research. A common view among medical researchers on the influence of random measurement error (i.e. classical measurement error is that its presence leads to some degree of systematic underestimation of studied exposure-outcome relations (i.e. attenuation of the effect estimate. For the common situation where the analysis involves at least one exposure and one confounder, we demonstrate that the direction of effect of random measurement error on the estimated exposure-outcome relations can be difficult to anticipate. Using three example studies on cardiovascular risk factors, we illustrate that random measurement error in the exposure and/or confounder can lead to underestimation as well as overestimation of exposure-outcome relations. We therefore advise medical researchers to refrain from making claims about the direction of effect of measurement error in their manuscripts, unless the appropriate inferential tools are used to study or alleviate the impact of measurement error from the analysis.

  10. Implications of Fraud and Error Risks in the Enterprise Environment and Auditor’s Work

    Directory of Open Access Journals (Sweden)

    Emil Horomnea

    2012-05-01

    Full Text Available The objective of this study is to identify and analyze the main correlations and implications offraud and error in the business environment and in the financial scandals occurred in the last decade. Theapproach envisages a synthesis and antithesis of the ideas found on this subject in the specialty literature, ofthe regulations issued by various international bodies. To achieve the established objectives, we used aconstructive methodology to identify criticism, presentations and developed a speech with view to a moreefficient and effective fraud and error risk management. The results of the study show that the major financialscandals and hence the global economic crisis are based largely on fraudulent maneuvers of significantproportions. By using "creative accounting" in fraud and error, famous companies have managed to distortreality for their performance and market position, misleading the users’ perception. This study is a theoreticalhaving implications for a future empirical study.The study contributes to auditing literature diversification inthe field of risk of fraud and error. An additional perspective is gained by addressing the financial crisis andsome famous bankruptcies by way of the financial auditors activity and the fraud and error risk.

  11. Model structural uncertainty quantification and hydrologic parameter and prediction error analysis using airborne electromagnetic data

    DEFF Research Database (Denmark)

    Minsley, B. J.; Christensen, Nikolaj Kruse; Christensen, Steen

    Model structure, or the spatial arrangement of subsurface lithological units, is fundamental to the hydrological behavior of Earth systems. Knowledge of geological model structure is critically important in order to make informed hydrological predictions and management decisions. Model structure...... is never perfectly known, however, and incorrect assumptions can be a significant source of error when making model predictions. We describe a systematic approach for quantifying model structural uncertainty that is based on the integration of sparse borehole observations and large-scale airborne...... electromagnetic (AEM) data. Our estimates of model structural uncertainty follow a Bayesian framework that accounts for both the uncertainties in geophysical parameter estimates given AEM data, and the uncertainties in the relationship between lithology and geophysical parameters. Using geostatistical sequential...

  12. What roles do errors serve in motor skill learning? An examination of two theoretical predictions.

    Science.gov (United States)

    Sanli, Elizabeth A; Lee, Timothy D

    2014-01-01

    Easy-to-difficult and difficult-to-easy progressions of task difficulty during skill acquisition were examined in 2 experiments that assessed retention, dual-task, and transfer tests of learning. Findings of the first experiment suggest that an easy-to difficult progression did not consistently induce implicit learning processes and was not consistently beneficial to performance under a secondary-task load. The findings of experiment two did not support the predictions made based on schema theory and only partially supported predictions based on reinvestment theory. The authors interpret these findings to suggest that the timing of error in relation to the difficulty of the task (functional task difficulty) plays a role in the transfer of learning to novel versions of a task.

  13. Risk prediction of hepatotoxicity in paracetamol poisoning.

    Science.gov (United States)

    Wong, Anselm; Graudins, Andis

    2017-09-01

    Paracetamol (acetaminophen) poisoning is the most common cause of acute liver failure in the developed world. A paracetamol treatment nomogram has been used for over four decades to help determine whether patients will develop hepatotoxicity without acetylcysteine treatment, and thus indicates those needing treatment. Despite this, a small proportion of patients still develop hepatotoxicity. More accurate risk predictors would be useful to increase the early detection of patients with the potential to develop hepatotoxicity despite acetylcysteine treatment. Similarly, there would be benefit in early identification of those with a low likelihood of developing hepatotoxicity, as this group may be safely treated with an abbreviated acetylcysteine regimen. To review the current literature related to risk prediction tools that can be used to identify patients at increased risk of hepatotoxicity. A systematic literature review was conducted using the search terms: "paracetamol" OR "acetaminophen" AND "overdose" OR "toxicity" OR "risk prediction rules" OR "hepatotoxicity" OR "psi parameter" OR "multiplication product" OR "half-life" OR "prothrombin time" OR "AST/ALT (aspartate transaminase/alanine transaminase)" OR "dose" OR "biomarkers" OR "nomogram". The search was limited to human studies without language restrictions, of Medline (1946 to May 2016), PubMed and EMBASE. Original articles pertaining to the theme were identified from January 1974 to May 2016. Of the 13,975 articles identified, 60 were relevant to the review. Paracetamol treatment nomograms: Paracetamol treatment nomograms have been used for decades to help decide the need for acetylcysteine, but rarely used to determine the risk of hepatotoxicity with treatment. Reported paracetamol dose and concentration: A dose ingestion >12 g or serum paracetamol concentration above the treatment thresholds on the paracetamol nomogram are associated with a greater risk of hepatotoxicity. Paracetamol elimination half

  14. The cerebellum does more than sensory prediction error-based learning in sensorimotor adaptation tasks.

    Science.gov (United States)

    Butcher, Peter A; Ivry, Richard B; Kuo, Sheng-Han; Rydz, David; Krakauer, John W; Taylor, Jordan A

    2017-09-01

    Individuals with damage to the cerebellum perform poorly in sensorimotor adaptation paradigms. This deficit has been attributed to impairment in sensory prediction error-based updating of an internal forward model, a form of implicit learning. These individuals can, however, successfully counter a perturbation when instructed with an explicit aiming strategy. This successful use of an instructed aiming strategy presents a paradox: In adaptation tasks, why do individuals with cerebellar damage not come up with an aiming solution on their own to compensate for their implicit learning deficit? To explore this question, we employed a variant of a visuomotor rotation task in which, before executing a movement on each trial, the participants verbally reported their intended aiming location. Compared with healthy control participants, participants with spinocerebellar ataxia displayed impairments in both implicit learning and aiming. This was observed when the visuomotor rotation was introduced abruptly ( experiment 1 ) or gradually ( experiment 2 ). This dual deficit does not appear to be related to the increased movement variance associated with ataxia: Healthy undergraduates showed little change in implicit learning or aiming when their movement feedback was artificially manipulated to produce similar levels of variability ( experiment 3 ). Taken together the results indicate that a consequence of cerebellar dysfunction is not only impaired sensory prediction error-based learning but also a difficulty in developing and/or maintaining an aiming solution in response to a visuomotor perturbation. We suggest that this dual deficit can be explained by the cerebellum forming part of a network that learns and maintains action-outcome associations across trials. NEW & NOTEWORTHY Individuals with cerebellar pathology are impaired in sensorimotor adaptation. This deficit has been attributed to an impairment in error-based learning, specifically, from a deficit in using sensory

  15. Current error vector based prediction control of the section winding permanent magnet linear synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Hong Junjie, E-mail: hongjjie@mail.sysu.edu.cn [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China); Li Liyi, E-mail: liliyi@hit.edu.cn [Dept. Electrical Engineering, Harbin Institute of Technology, Harbin 150000 (China); Zong Zhijian; Liu Zhongtu [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China)

    2011-10-15

    Highlights: {yields} The structure of the permanent magnet linear synchronous motor (SW-PMLSM) is new. {yields} A new current control method CEVPC is employed in this motor. {yields} The sectional power supply method is different to the others and effective. {yields} The performance gets worse with voltage and current limitations. - Abstract: To include features such as greater thrust density, higher efficiency without reducing the thrust stability, this paper proposes a section winding permanent magnet linear synchronous motor (SW-PMLSM), whose iron core is continuous, whereas winding is divided. The discrete system model of the motor is derived. With the definition of the current error vector and selection of the value function, the theory of the current error vector based prediction control (CEVPC) for the motor currents is explained clearly. According to the winding section feature, the motion region of the mover is divided into five zones, in which the implementation of the current predictive control method is proposed. Finally, the experimental platform is constructed and experiments are carried out. The results show: the current control effect has good dynamic response, and the thrust on the mover remains constant basically.

  16. Tax revenue and inflation rate predictions in Banda Aceh using Vector Error Correction Model (VECM)

    Science.gov (United States)

    Maulia, Eva; Miftahuddin; Sofyan, Hizir

    2018-05-01

    A country has some important parameters to achieve the welfare of the economy, such as tax revenues and inflation. One of the largest revenues of the state budget in Indonesia comes from the tax sector. Besides, the rate of inflation occurring in a country can be used as one measure, to measure economic problems that the country facing. Given the importance of tax revenue and inflation rate control in achieving economic prosperity, it is necessary to analyze the relationship and forecasting tax revenue and inflation rate. VECM (Vector Error Correction Model) was chosen as the method used in this research, because of the data used in the form of multivariate time series data. This study aims to produce a VECM model with optimal lag and to predict the tax revenue and inflation rate of the VECM model. The results show that the best model for data of tax revenue and the inflation rate in Banda Aceh City is VECM with 3rd optimal lag or VECM (3). Of the seven models formed, there is a significant model that is the acceptance model of income tax. The predicted results of tax revenue and the inflation rate in Kota Banda Aceh for the next 6, 12 and 24 periods (months) obtained using VECM (3) are considered valid, since they have a minimum error value compared to other models.

  17. Episodic Memory Encoding Interferes with Reward Learning and Decreases Striatal Prediction Errors

    Science.gov (United States)

    Braun, Erin Kendall; Daw, Nathaniel D.

    2014-01-01

    Learning is essential for adaptive decision making. The striatum and its dopaminergic inputs are known to support incremental reward-based learning, while the hippocampus is known to support encoding of single events (episodic memory). Although traditionally studied separately, in even simple experiences, these two types of learning are likely to co-occur and may interact. Here we sought to understand the nature of this interaction by examining how incremental reward learning is related to concurrent episodic memory encoding. During the experiment, human participants made choices between two options (colored squares), each associated with a drifting probability of reward, with the goal of earning as much money as possible. Incidental, trial-unique object pictures, unrelated to the choice, were overlaid on each option. The next day, participants were given a surprise memory test for these pictures. We found that better episodic memory was related to a decreased influence of recent reward experience on choice, both within and across participants. fMRI analyses further revealed that during learning the canonical striatal reward prediction error signal was significantly weaker when episodic memory was stronger. This decrease in reward prediction error signals in the striatum was associated with enhanced functional connectivity between the hippocampus and striatum at the time of choice. Our results suggest a mechanism by which memory encoding may compete for striatal processing and provide insight into how interactions between different forms of learning guide reward-based decision making. PMID:25378157

  18. Prediction-error in the context of real social relationships modulates reward system activity

    Directory of Open Access Journals (Sweden)

    Joshua ePoore

    2012-08-01

    Full Text Available The human reward system is sensitive to both social (e.g., validation and non-social rewards (e.g., money and is likely integral for relationship development and reputation building. However, data is sparse on the question of whether implicit social reward processing meaningfully contributes to explicit social representations such as trust and attachment security in pre-existing relationships. This event-related fMRI experiment examined reward system prediction-error activity in response to a potent social reward—social validation—and this activity’s relation to both attachment security and trust in the context of real romantic relationships. During the experiment, participants’ expectations for their romantic partners’ positive regard of them were confirmed (validated or violated, in either positive or negative directions. Primary analyses were conducted using predefined regions of interest, the locations of which were taken from previously published research. Results indicate that activity for mid-brain and striatal reward system regions of interest was modulated by social reward expectation violation in ways consistent with prior research on reward prediction-error. Additionally, activity in the striatum during viewing of disconfirmatory information was associated with both increases in post-scan reports of attachment anxiety and decreases in post-scan trust, a finding that follows directly from representational models of attachment and trust.

  19. Episodic memory encoding interferes with reward learning and decreases striatal prediction errors.

    Science.gov (United States)

    Wimmer, G Elliott; Braun, Erin Kendall; Daw, Nathaniel D; Shohamy, Daphna

    2014-11-05

    Learning is essential for adaptive decision making. The striatum and its dopaminergic inputs are known to support incremental reward-based learning, while the hippocampus is known to support encoding of single events (episodic memory). Although traditionally studied separately, in even simple experiences, these two types of learning are likely to co-occur and may interact. Here we sought to understand the nature of this interaction by examining how incremental reward learning is related to concurrent episodic memory encoding. During the experiment, human participants made choices between two options (colored squares), each associated with a drifting probability of reward, with the goal of earning as much money as possible. Incidental, trial-unique object pictures, unrelated to the choice, were overlaid on each option. The next day, participants were given a surprise memory test for these pictures. We found that better episodic memory was related to a decreased influence of recent reward experience on choice, both within and across participants. fMRI analyses further revealed that during learning the canonical striatal reward prediction error signal was significantly weaker when episodic memory was stronger. This decrease in reward prediction error signals in the striatum was associated with enhanced functional connectivity between the hippocampus and striatum at the time of choice. Our results suggest a mechanism by which memory encoding may compete for striatal processing and provide insight into how interactions between different forms of learning guide reward-based decision making. Copyright © 2014 the authors 0270-6474/14/3414901-12$15.00/0.

  20. Prediction-error in the context of real social relationships modulates reward system activity.

    Science.gov (United States)

    Poore, Joshua C; Pfeifer, Jennifer H; Berkman, Elliot T; Inagaki, Tristen K; Welborn, Benjamin L; Lieberman, Matthew D

    2012-01-01

    The human reward system is sensitive to both social (e.g., validation) and non-social rewards (e.g., money) and is likely integral for relationship development and reputation building. However, data is sparse on the question of whether implicit social reward processing meaningfully contributes to explicit social representations such as trust and attachment security in pre-existing relationships. This event-related fMRI experiment examined reward system prediction-error activity in response to a potent social reward-social validation-and this activity's relation to both attachment security and trust in the context of real romantic relationships. During the experiment, participants' expectations for their romantic partners' positive regard of them were confirmed (validated) or violated, in either positive or negative directions. Primary analyses were conducted using predefined regions of interest, the locations of which were taken from previously published research. Results indicate that activity for mid-brain and striatal reward system regions of interest was modulated by social reward expectation violation in ways consistent with prior research on reward prediction-error. Additionally, activity in the striatum during viewing of disconfirmatory information was associated with both increases in post-scan reports of attachment anxiety and decreases in post-scan trust, a finding that follows directly from representational models of attachment and trust.

  1. Model parameter-related optimal perturbations and their contributions to El Niño prediction errors

    Science.gov (United States)

    Tao, Ling-Jiang; Gao, Chuan; Zhang, Rong-Hua

    2018-04-01

    Errors in initial conditions and model parameters (MPs) are the main sources that limit the accuracy of ENSO predictions. In addition to exploring the initial error-induced prediction errors, model errors are equally important in determining prediction performance. In this paper, the MP-related optimal errors that can cause prominent error growth in ENSO predictions are investigated using an intermediate coupled model (ICM) and a conditional nonlinear optimal perturbation (CNOP) approach. Two MPs related to the Bjerknes feedback are considered in the CNOP analysis: one involves the SST-surface wind coupling ({α _τ } ), and the other involves the thermocline effect on the SST ({α _{Te}} ). The MP-related optimal perturbations (denoted as CNOP-P) are found uniformly positive and restrained in a small region: the {α _τ } component is mainly concentrated in the central equatorial Pacific, and the {α _{Te}} component is mainly located in the eastern cold tongue region. This kind of CNOP-P enhances the strength of the Bjerknes feedback and induces an El Niño- or La Niña-like error evolution, resulting in an El Niño-like systematic bias in this model. The CNOP-P is also found to play a role in the spring predictability barrier (SPB) for ENSO predictions. Evidently, such error growth is primarily attributed to MP errors in small areas based on the localized distribution of CNOP-P. Further sensitivity experiments firmly indicate that ENSO simulations are sensitive to the representation of SST-surface wind coupling in the central Pacific and to the thermocline effect in the eastern Pacific in the ICM. These results provide guidance and theoretical support for the future improvement in numerical models to reduce the systematic bias and SPB phenomenon in ENSO predictions.

  2. Shoulder dystocia: risk factors, predictability, and preventability.

    Science.gov (United States)

    Mehta, Shobha H; Sokol, Robert J

    2014-06-01

    Shoulder dystocia remains an unpredictable obstetric emergency, striking fear in the hearts of obstetricians both novice and experienced. While outcomes that lead to permanent injury are rare, almost all obstetricians with enough years of practice have participated in a birth with a severe shoulder dystocia and are at least aware of cases that have resulted in significant neurologic injury or even neonatal death. This is despite many years of research trying to understand the risk factors associated with it, all in an attempt primarily to characterize when the risk is high enough to avoid vaginal delivery altogether and prevent a shoulder dystocia, whose attendant morbidities are estimated to be at a rate as high as 16-48%. The study of shoulder dystocia remains challenging due to its generally retrospective nature, as well as dependence on proper identification and documentation. As a result, the prediction of shoulder dystocia remains elusive, and the cost of trying to prevent one by performing a cesarean delivery remains high. While ultimately it is the injury that is the key concern, rather than the shoulder dystocia itself, it is in the presence of an identified shoulder dystocia that occurrence of injury is most common. The majority of shoulder dystocia cases occur without major risk factors. Moreover, even the best antenatal predictors have a low positive predictive value. Shoulder dystocia therefore cannot be reliably predicted, and the only preventative measure is cesarean delivery. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. New methods for fall risk prediction.

    Science.gov (United States)

    Ejupi, Andreas; Lord, Stephen R; Delbaere, Kim

    2014-09-01

    Accidental falls are the leading cause of injury-related death and hospitalization in old age, with over one-third of the older adults experiencing at least one fall or more each year. Because of limited healthcare resources, regular objective fall risk assessments are not possible in the community on a large scale. New methods for fall prediction are necessary to identify and monitor those older people at high risk of falling who would benefit from participating in falls prevention programmes. Technological advances have enabled less expensive ways to quantify physical fall risk in clinical practice and in the homes of older people. Recently, several studies have demonstrated that sensor-based fall risk assessments of postural sway, functional mobility, stepping and walking can discriminate between fallers and nonfallers. Recent research has used low-cost, portable and objective measuring instruments to assess fall risk in older people. Future use of these technologies holds promise for assessing fall risk accurately in an unobtrusive manner in clinical and daily life settings.

  4. Nonparametric predictive pairwise comparison with competing risks

    International Nuclear Information System (INIS)

    Coolen-Maturi, Tahani

    2014-01-01

    In reliability, failure data often correspond to competing risks, where several failure modes can cause a unit to fail. This paper presents nonparametric predictive inference (NPI) for pairwise comparison with competing risks data, assuming that the failure modes are independent. These failure modes could be the same or different among the two groups, and these can be both observed and unobserved failure modes. NPI is a statistical approach based on few assumptions, with inferences strongly based on data and with uncertainty quantified via lower and upper probabilities. The focus is on the lower and upper probabilities for the event that the lifetime of a future unit from one group, say Y, is greater than the lifetime of a future unit from the second group, say X. The paper also shows how the two groups can be compared based on particular failure mode(s), and the comparison of the two groups when some of the competing risks are combined is discussed

  5. The prediction of the bankruptcy risk

    Directory of Open Access Journals (Sweden)

    Gheorghe DUMITRESCU

    2010-04-01

    Full Text Available The study research results of the bankruptcy risk in the actual economic crisis are very weak. This issue is very important for the economy of every country, no matter what their actual development level.The necessity of bankruptcy risk prediction appears in every company,but also in the related institutions like financial companies, investors, suppliers, customers.The bankruptcy risk made and makes the object of many studies of research that want to identify: the moment of the appearance of the bankruptcy, the factors that compete at the reach of this state, the indicators that express the best this orientation (to the bankruptcy.The threats to the firms impose the knowledge by the managers,permanently of the economic-financial situations, of the vulnerable areas and of those with potential of development. Thus, these must identify and gesture the threats that would stop the fulfillment of the established purposes.

  6. A two-dimensional matrix correction for off-axis portal dose prediction errors

    International Nuclear Information System (INIS)

    Bailey, Daniel W.; Kumaraswamy, Lalith; Bakhtiari, Mohammad; Podgorsak, Matthew B.

    2013-01-01

    Purpose: This study presents a follow-up to a modified calibration procedure for portal dosimetry published by Bailey et al. [“An effective correction algorithm for off-axis portal dosimetry errors,” Med. Phys. 36, 4089–4094 (2009)]. A commercial portal dose prediction system exhibits disagreement of up to 15% (calibrated units) between measured and predicted images as off-axis distance increases. The previous modified calibration procedure accounts for these off-axis effects in most regions of the detecting surface, but is limited by the simplistic assumption of radial symmetry. Methods: We find that a two-dimensional (2D) matrix correction, applied to each calibrated image, accounts for off-axis prediction errors in all regions of the detecting surface, including those still problematic after the radial correction is performed. The correction matrix is calculated by quantitative comparison of predicted and measured images that span the entire detecting surface. The correction matrix was verified for dose-linearity, and its effectiveness was verified on a number of test fields. The 2D correction was employed to retrospectively examine 22 off-axis, asymmetric electronic-compensation breast fields, five intensity-modulated brain fields (moderate-high modulation) manipulated for far off-axis delivery, and 29 intensity-modulated clinical fields of varying complexity in the central portion of the detecting surface. Results: Employing the matrix correction to the off-axis test fields and clinical fields, predicted vs measured portal dose agreement improves by up to 15%, producing up to 10% better agreement than the radial correction in some areas of the detecting surface. Gamma evaluation analyses (3 mm, 3% global, 10% dose threshold) of predicted vs measured portal dose images demonstrate pass rate improvement of up to 75% with the matrix correction, producing pass rates that are up to 30% higher than those resulting from the radial correction technique alone. As

  7. On a Test of Hypothesis to Verify the Operating Risk Due to Accountancy Errors

    Directory of Open Access Journals (Sweden)

    Paola Maddalena Chiodini

    2014-12-01

    Full Text Available According to the Statement on Auditing Standards (SAS No. 39 (AU 350.01, audit sampling is defined as “the application of an audit procedure to less than 100 % of the items within an account balance or class of transactions for the purpose of evaluating some characteristic of the balance or class”. The audit system develops in different steps: some are not susceptible to sampling procedures, while others may be held using sampling techniques. The auditor may also be interested in two types of accounting error: the number of incorrect records in the sample that overcome a given threshold (natural error rate, which may be indicative of possible fraud, and the mean amount of monetary errors found in incorrect records. The aim of this study is to monitor jointly both types of errors through an appropriate system of hypotheses, with particular attention to the second type error that indicates the risk of non-reporting errors overcoming the upper precision limits.

  8. Korean risk assessment model for breast cancer risk prediction.

    Science.gov (United States)

    Park, Boyoung; Ma, Seung Hyun; Shin, Aesun; Chang, Myung-Chul; Choi, Ji-Yeob; Kim, Sungwan; Han, Wonshik; Noh, Dong-Young; Ahn, Sei-Hyun; Kang, Daehee; Yoo, Keun-Young; Park, Sue K

    2013-01-01

    We evaluated the performance of the Gail model for a Korean population and developed a Korean breast cancer risk assessment tool (KoBCRAT) based upon equations developed for the Gail model for predicting breast cancer risk. Using 3,789 sets of cases and controls, risk factors for breast cancer among Koreans were identified. Individual probabilities were projected using Gail's equations and Korean hazard data. We compared the 5-year and lifetime risk produced using the modified Gail model which applied Korean incidence and mortality data and the parameter estimators from the original Gail model with those produced using the KoBCRAT. We validated the KoBCRAT based on the expected/observed breast cancer incidence and area under the curve (AUC) using two Korean cohorts: the Korean Multicenter Cancer Cohort (KMCC) and National Cancer Center (NCC) cohort. The major risk factors under the age of 50 were family history, age at menarche, age at first full-term pregnancy, menopausal status, breastfeeding duration, oral contraceptive usage, and exercise, while those at and over the age of 50 were family history, age at menarche, age at menopause, pregnancy experience, body mass index, oral contraceptive usage, and exercise. The modified Gail model produced lower 5-year risk for the cases than for the controls (p = 0.017), while the KoBCRAT produced higher 5-year and lifetime risk for the cases than for the controls (pKorean women, especially urban women.

  9. Evaluation of dose prediction errors and optimization convergence errors of deliverable-based head-and-neck IMRT plans computed with a superposition/convolution dose algorithm

    International Nuclear Information System (INIS)

    Mihaylov, I. B.; Siebers, J. V.

    2008-01-01

    The purpose of this study is to evaluate dose prediction errors (DPEs) and optimization convergence errors (OCEs) resulting from use of a superposition/convolution dose calculation algorithm in deliverable intensity-modulated radiation therapy (IMRT) optimization for head-and-neck (HN) patients. Thirteen HN IMRT patient plans were retrospectively reoptimized. The IMRT optimization was performed in three sequential steps: (1) fast optimization in which an initial nondeliverable IMRT solution was achieved and then converted to multileaf collimator (MLC) leaf sequences; (2) mixed deliverable optimization that used a Monte Carlo (MC) algorithm to account for the incident photon fluence modulation by the MLC, whereas a superposition/convolution (SC) dose calculation algorithm was utilized for the patient dose calculations; and (3) MC deliverable-based optimization in which both fluence and patient dose calculations were performed with a MC algorithm. DPEs of the mixed method were quantified by evaluating the differences between the mixed optimization SC dose result and a MC dose recalculation of the mixed optimization solution. OCEs of the mixed method were quantified by evaluating the differences between the MC recalculation of the mixed optimization solution and the final MC optimization solution. The results were analyzed through dose volume indices derived from the cumulative dose-volume histograms for selected anatomic structures. Statistical equivalence tests were used to determine the significance of the DPEs and the OCEs. Furthermore, a correlation analysis between DPEs and OCEs was performed. The evaluated DPEs were within ±2.8% while the OCEs were within 5.5%, indicating that OCEs can be clinically significant even when DPEs are clinically insignificant. The full MC-dose-based optimization reduced normal tissue dose by as much as 8.5% compared with the mixed-method optimization results. The DPEs and the OCEs in the targets had correlation coefficients greater

  10. Using the area under the curve to reduce measurement error in predicting young adult blood pressure from childhood measures.

    Science.gov (United States)

    Cook, Nancy R; Rosner, Bernard A; Chen, Wei; Srinivasan, Sathanur R; Berenson, Gerald S

    2004-11-30

    Tracking correlations of blood pressure, particularly childhood measures, may be attenuated by within-person variability. Combining multiple measurements can reduce this error substantially. The area under the curve (AUC) computed from longitudinal growth curve models can be used to improve the prediction of young adult blood pressure from childhood measures. Quadratic random-effects models over unequally spaced repeated measures were used to compute the area under the curve separately within the age periods 5-14 and 20-34 years in the Bogalusa Heart Study. This method adjusts for the uneven age distribution and captures the underlying or average blood pressure, leading to improved estimates of correlation and risk prediction. Tracking correlations were computed by race and gender, and were approximately 0.6 for systolic, 0.5-0.6 for K4 diastolic, and 0.4-0.6 for K5 diastolic blood pressure. The AUC can also be used to regress young adult blood pressure on childhood blood pressure and childhood and young adult body mass index (BMI). In these data, while childhood blood pressure and young adult BMI were generally directly predictive of young adult blood pressure, childhood BMI was negatively correlated with young adult blood pressure when childhood blood pressure was in the model. In addition, racial differences in young adult blood pressure were reduced, but not eliminated, after controlling for childhood blood pressure, childhood BMI, and young adult BMI, suggesting that other genetic or lifestyle factors contribute to this difference. 2004 John Wiley & Sons, Ltd.

  11. The information value of early career productivity in mathematics: a ROC analysis of prediction errors in bibliometricly informed decision making.

    Science.gov (United States)

    Lindahl, Jonas; Danell, Rickard

    The aim of this study was to provide a framework to evaluate bibliometric indicators as decision support tools from a decision making perspective and to examine the information value of early career publication rate as a predictor of future productivity. We used ROC analysis to evaluate a bibliometric indicator as a tool for binary decision making. The dataset consisted of 451 early career researchers in the mathematical sub-field of number theory. We investigated the effect of three different definitions of top performance groups-top 10, top 25, and top 50 %; the consequences of using different thresholds in the prediction models; and the added prediction value of information on early career research collaboration and publications in prestige journals. We conclude that early career performance productivity has an information value in all tested decision scenarios, but future performance is more predictable if the definition of a high performance group is more exclusive. Estimated optimal decision thresholds using the Youden index indicated that the top 10 % decision scenario should use 7 articles, the top 25 % scenario should use 7 articles, and the top 50 % should use 5 articles to minimize prediction errors. A comparative analysis between the decision thresholds provided by the Youden index which take consequences into consideration and a method commonly used in evaluative bibliometrics which do not take consequences into consideration when determining decision thresholds, indicated that differences are trivial for the top 25 and the 50 % groups. However, a statistically significant difference between the methods was found for the top 10 % group. Information on early career collaboration and publication strategies did not add any prediction value to the bibliometric indicator publication rate in any of the models. The key contributions of this research is the focus on consequences in terms of prediction errors and the notion of transforming uncertainty

  12. A methodology for analysing human errors of commission in accident scenarios for risk assessment

    International Nuclear Information System (INIS)

    Kim, J. H.; Jung, W. D.; Park, J. K

    2003-01-01

    As the concern on the impact of the operator's inappropriate interventions, so-called Errors Of Commissions(EOCs), on the plant safety has been raised, the interest in the identification and analysis of EOC events from the risk assessment perspective becomes increasing accordingly. To this purpose, we propose a new methodology for identifying and analysing human errors of commission that might be caused from the failures in situation assessment and decision making during accident progressions given an initiating event. The proposed methodology was applied to the accident scenarios of YGN 3 and 4 NPPs, which resulted in about 10 EOC situations that need careful attention

  13. Measurement Error Affects Risk Estimates for Recruitment to the Hudson River Stock of Striped Bass

    Directory of Open Access Journals (Sweden)

    Dennis J. Dunning

    2002-01-01

    Full Text Available We examined the consequences of ignoring the distinction between measurement error and natural variability in an assessment of risk to the Hudson River stock of striped bass posed by entrainment at the Bowline Point, Indian Point, and Roseton power plants. Risk was defined as the probability that recruitment of age-1+ striped bass would decline by 80% or more, relative to the equilibrium value, at least once during the time periods examined (1, 5, 10, and 15 years. Measurement error, estimated using two abundance indices from independent beach seine surveys conducted on the Hudson River, accounted for 50% of the variability in one index and 56% of the variability in the other. If a measurement error of 50% was ignored and all of the variability in abundance was attributed to natural causes, the risk that recruitment of age-1+ striped bass would decline by 80% or more after 15 years was 0.308 at the current level of entrainment mortality (11%. However, the risk decreased almost tenfold (0.032 if a measurement error of 50% was considered. The change in risk attributable to decreasing the entrainment mortality rate from 11 to 0% was very small (0.009 and similar in magnitude to the change in risk associated with an action proposed in Amendment #5 to the Interstate Fishery Management Plan for Atlantic striped bass (0.006— an increase in the instantaneous fishing mortality rate from 0.33 to 0.4. The proposed increase in fishing mortality was not considered an adverse environmental impact, which suggests that potentially costly efforts to reduce entrainment mortality on the Hudson River stock of striped bass are not warranted.

  14. Medication knowledge, certainty, and risk of errors in health care: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Johansson Inger

    2011-07-01

    Full Text Available Abstract Background Medication errors are often involved in reported adverse events. Drug therapy, prescribed by physicians, is mostly carried out by nurses, who are expected to master all aspects of medication. Research has revealed the need for improved knowledge in drug dose calculation, and medication knowledge as a whole is poorly investigated. The purpose of this survey was to study registered nurses' medication knowledge, certainty and estimated risk of errors, and to explore factors associated with good results. Methods Nurses from hospitals and primary health care establishments were invited to carry out a multiple-choice test in pharmacology, drug management and drug dose calculations (score range 0-14. Self-estimated certainty in each answer was recorded, graded from 0 = very uncertain to 3 = very certain. Background characteristics and sense of coping were recorded. Risk of error was estimated by combining knowledge and certainty scores. The results are presented as mean (±SD. Results Two-hundred and three registered nurses participated (including 16 males, aged 42.0 (9.3 years with a working experience of 12.4 (9.2 years. Knowledge scores in pharmacology, drug management and drug dose calculations were 10.3 (1.6, 7.5 (1.6, and 11.2 (2.0, respectively, and certainty scores were 1.8 (0.4, 1.9 (0.5, and 2.0 (0.6, respectively. Fifteen percent of the total answers showed a high risk of error, with 25% in drug management. Independent factors associated with high medication knowledge were working in hospitals (p Conclusions Medication knowledge was found to be unsatisfactory among practicing nurses, with a significant risk for medication errors. The study revealed a need to improve the nurses' basic knowledge, especially when referring to drug management.

  15. Modeling Input Errors to Improve Uncertainty Estimates for Sediment Transport Model Predictions

    Science.gov (United States)

    Jung, J. Y.; Niemann, J. D.; Greimann, B. P.

    2016-12-01

    Bayesian methods using Markov chain Monte Carlo algorithms have recently been applied to sediment transport models to assess the uncertainty in the model predictions due to the parameter values. Unfortunately, the existing approaches can only attribute overall uncertainty to the parameters. This limitation is critical because no model can produce accurate forecasts if forced with inaccurate input data, even if the model is well founded in physical theory. In this research, an existing Bayesian method is modified to consider the potential errors in input data during the uncertainty evaluation process. The input error is modeled using Gaussian distributions, and the means and standard deviations are treated as uncertain parameters. The proposed approach is tested by coupling it to the Sedimentation and River Hydraulics - One Dimension (SRH-1D) model and simulating a 23-km reach of the Tachia River in Taiwan. The Wu equation in SRH-1D is used for computing the transport capacity for a bed material load of non-cohesive material. Three types of input data are considered uncertain: (1) the input flowrate at the upstream boundary, (2) the water surface elevation at the downstream boundary, and (3) the water surface elevation at a hydraulic structure in the middle of the reach. The benefits of modeling the input errors in the uncertainty analysis are evaluated by comparing the accuracy of the most likely forecast and the coverage of the observed data by the credible intervals to those of the existing method. The results indicate that the internal boundary condition has the largest uncertainty among those considered. Overall, the uncertainty estimates from the new method are notably different from those of the existing method for both the calibration and forecast periods.

  16. Triangle network motifs predict complexes by complementing high-error interactomes with structural information.

    Science.gov (United States)

    Andreopoulos, Bill; Winter, Christof; Labudde, Dirk; Schroeder, Michael

    2009-06-27

    A lot of high-throughput studies produce protein-protein interaction networks (PPINs) with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-protein interactions (PPIs) were previously used for predicting protein function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs, and complement these with structural domain-domain interactions (SDDIs) representing binding evidence on proteins, forming PPI-SDDI-PPI triangles. We find low overlap between PPINs, SDDIs and known complexes, all well below 10%. We evaluate the overlap of PPI-SDDI-PPI triangles with known complexes from Munich Information center for Protein Sequences (MIPS). PPI-SDDI-PPI triangles have ~20 times higher overlap with MIPS complexes than using second-level neighbors in PPINs without SDDIs. The biological interpretation for triangles is that a SDDI causes two proteins to be observed with common interaction partners in high-throughput experiments. The relatively few SDDIs overlapping with PPINs are part of highly connected SDDI components, and are more likely to be detected in experimental studies. We demonstrate the utility of PPI-SDDI-PPI triangles by reconstructing myosin-actin processes in the nucleus, cytoplasm, and cytoskeleton, which were not obvious in the original PPIN. Using other complementary datatypes in place of SDDIs to form triangles, such as PubMed co-occurrences or threading information, results in a similar ability to find protein complexes. Given high-error PPINs with missing information, triangles of mixed datatypes are a promising direction for finding protein complexes. Integrating PPINs with SDDIs improves finding complexes. Structural SDDIs partially explain the high functional similarity of second-level neighbors in PPINs. We estimate that relatively little structural information would be sufficient

  17. Triangle network motifs predict complexes by complementing high-error interactomes with structural information

    Directory of Open Access Journals (Sweden)

    Labudde Dirk

    2009-06-01

    Full Text Available Abstract Background A lot of high-throughput studies produce protein-protein interaction networks (PPINs with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-protein interactions (PPIs were previously used for predicting protein function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs, and complement these with structural domain-domain interactions (SDDIs representing binding evidence on proteins, forming PPI-SDDI-PPI triangles. Results We find low overlap between PPINs, SDDIs and known complexes, all well below 10%. We evaluate the overlap of PPI-SDDI-PPI triangles with known complexes from Munich Information center for Protein Sequences (MIPS. PPI-SDDI-PPI triangles have ~20 times higher overlap with MIPS complexes than using second-level neighbors in PPINs without SDDIs. The biological interpretation for triangles is that a SDDI causes two proteins to be observed with common interaction partners in high-throughput experiments. The relatively few SDDIs overlapping with PPINs are part of highly connected SDDI components, and are more likely to be detected in experimental studies. We demonstrate the utility of PPI-SDDI-PPI triangles by reconstructing myosin-actin processes in the nucleus, cytoplasm, and cytoskeleton, which were not obvious in the original PPIN. Using other complementary datatypes in place of SDDIs to form triangles, such as PubMed co-occurrences or threading information, results in a similar ability to find protein complexes. Conclusion Given high-error PPINs with missing information, triangles of mixed datatypes are a promising direction for finding protein complexes. Integrating PPINs with SDDIs improves finding complexes. Structural SDDIs partially explain the high functional similarity of second-level neighbors in PPINs. We estimate that

  18. Reducing NIR prediction errors with nonlinear methods and large populations of intact compound feedstuffs

    International Nuclear Information System (INIS)

    Fernández-Ahumada, E; Gómez, A; Vallesquino, P; Guerrero, J E; Pérez-Marín, D; Garrido-Varo, A; Fearn, T

    2008-01-01

    According to the current demands of the authorities, the manufacturers and the consumers, controls and assessments of the feed compound manufacturing process have become a key concern. Among others, it must be assured that a given compound feed is well manufactured and labelled in terms of the ingredient composition. When near-infrared spectroscopy (NIRS) together with linear models were used for the prediction of the ingredient composition, the results were not always acceptable. Therefore, the performance of nonlinear methods has been investigated. Artificial neural networks and least squares support vector machines (LS-SVM) have been applied to a large (N = 20 320) and heterogeneous population of non-milled feed compounds for the NIR prediction of the inclusion percentage of wheat and sunflower meal, as representative of two different classes of ingredients. Compared to partial least squares regression, results showed considerable reductions of standard error of prediction values for both methods and ingredients: reductions of 45% with ANN and 49% with LS-SVM for wheat and reductions of 44% with ANN and 46% with LS-SVM for sunflower meal. These improvements together with the facility of NIRS technology to be implemented in the process make it ideal for meeting the requirements of the animal feed industry

  19. When theory and biology differ: The relationship between reward prediction errors and expectancy.

    Science.gov (United States)

    Williams, Chad C; Hassall, Cameron D; Trska, Robert; Holroyd, Clay B; Krigolson, Olave E

    2017-10-01

    Comparisons between expectations and outcomes are critical for learning. Termed prediction errors, the violations of expectancy that occur when outcomes differ from expectations are used to modify value and shape behaviour. In the present study, we examined how a wide range of expectancy violations impacted neural signals associated with feedback processing. Participants performed a time estimation task in which they had to guess the duration of one second while their electroencephalogram was recorded. In a key manipulation, we varied task difficulty across the experiment to create a range of different feedback expectancies - reward feedback was either very expected, expected, 50/50, unexpected, or very unexpected. As predicted, the amplitude of the reward positivity, a component of the human event-related brain potential associated with feedback processing, scaled inversely with expectancy (e.g., unexpected feedback yielded a larger reward positivity than expected feedback). Interestingly, the scaling of the reward positivity to outcome expectancy was not linear as would be predicted by some theoretical models. Specifically, we found that the amplitude of the reward positivity was about equivalent for very expected and expected feedback, and for very unexpected and unexpected feedback. As such, our results demonstrate a sigmoidal relationship between reward expectancy and the amplitude of the reward positivity, with interesting implications for theories of reinforcement learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Spared internal but impaired external reward prediction error signals in major depressive disorder during reinforcement learning.

    Science.gov (United States)

    Bakic, Jasmina; Pourtois, Gilles; Jepma, Marieke; Duprat, Romain; De Raedt, Rudi; Baeken, Chris

    2017-01-01

    Major depressive disorder (MDD) creates debilitating effects on a wide range of cognitive functions, including reinforcement learning (RL). In this study, we sought to assess whether reward processing as such, or alternatively the complex interplay between motivation and reward might potentially account for the abnormal reward-based learning in MDD. A total of 35 treatment resistant MDD patients and 44 age matched healthy controls (HCs) performed a standard probabilistic learning task. RL was titrated using behavioral, computational modeling and event-related brain potentials (ERPs) data. MDD patients showed comparable learning rate compared to HCs. However, they showed decreased lose-shift responses as well as blunted subjective evaluations of the reinforcers used during the task, relative to HCs. Moreover, MDD patients showed normal internal (at the level of error-related negativity, ERN) but abnormal external (at the level of feedback-related negativity, FRN) reward prediction error (RPE) signals during RL, selectively when additional efforts had to be made to establish learning. Collectively, these results lend support to the assumption that MDD does not impair reward processing per se during RL. Instead, it seems to alter the processing of the emotional value of (external) reinforcers during RL, when additional intrinsic motivational processes have to be engaged. © 2016 Wiley Periodicals, Inc.

  1. Comparison of two stochastic techniques for reliable urban runoff prediction by modeling systematic errors

    DEFF Research Database (Denmark)

    Del Giudice, Dario; Löwe, Roland; Madsen, Henrik

    2015-01-01

    from different fields and have not yet been compared in environmental modeling. To compare the two approaches, we develop a unifying terminology, evaluate them theoretically, and apply them to conceptual rainfall-runoff modeling in the same drainage system. Our results show that both approaches can......In urban rainfall-runoff, commonly applied statistical techniques for uncertainty quantification mostly ignore systematic output errors originating from simplified models and erroneous inputs. Consequently, the resulting predictive uncertainty is often unreliable. Our objective is to present two...... approaches which use stochastic processes to describe systematic deviations and to discuss their advantages and drawbacks for urban drainage modeling. The two methodologies are an external bias description (EBD) and an internal noise description (IND, also known as stochastic gray-box modeling). They emerge...

  2. Human dorsal striatum encodes prediction errors during observational learning of instrumental actions.

    Science.gov (United States)

    Cooper, Jeffrey C; Dunne, Simon; Furey, Teresa; O'Doherty, John P

    2012-01-01

    The dorsal striatum plays a key role in the learning and expression of instrumental reward associations that are acquired through direct experience. However, not all learning about instrumental actions require direct experience. Instead, humans and other animals are also capable of acquiring instrumental actions by observing the experiences of others. In this study, we investigated the extent to which human dorsal striatum is involved in observational as well as experiential instrumental reward learning. Human participants were scanned with fMRI while they observed a confederate over a live video performing an instrumental conditioning task to obtain liquid juice rewards. Participants also performed a similar instrumental task for their own rewards. Using a computational model-based analysis, we found reward prediction errors in the dorsal striatum not only during the experiential learning condition but also during observational learning. These results suggest a key role for the dorsal striatum in learning instrumental associations, even when those associations are acquired purely by observing others.

  3. Observing others stay or switch - How social prediction errors are integrated into reward reversal learning.

    Science.gov (United States)

    Ihssen, Niklas; Mussweiler, Thomas; Linden, David E J

    2016-08-01

    Reward properties of stimuli can undergo sudden changes, and the detection of these 'reversals' is often made difficult by the probabilistic nature of rewards/punishments. Here we tested whether and how humans use social information (someone else's choices) to overcome uncertainty during reversal learning. We show a substantial social influence during reversal learning, which was modulated by the type of observed behavior. Participants frequently followed observed conservative choices (no switches after punishment) made by the (fictitious) other player but ignored impulsive choices (switches), even though the experiment was set up so that both types of response behavior would be similarly beneficial/detrimental (Study 1). Computational modeling showed that participants integrated the observed choices as a 'social prediction error' instead of ignoring or blindly following the other player. Modeling also confirmed higher learning rates for 'conservative' versus 'impulsive' social prediction errors. Importantly, this 'conservative bias' was boosted by interpersonal similarity, which in conjunction with the lack of effects observed in a non-social control experiment (Study 2) confirmed its social nature. A third study suggested that relative weighting of observed impulsive responses increased with increased volatility (frequency of reversals). Finally, simulations showed that in the present paradigm integrating social and reward information was not necessarily more adaptive to maximize earnings than learning from reward alone. Moreover, integrating social information increased accuracy only when conservative and impulsive choices were weighted similarly during learning. These findings suggest that to guide decisions in choice contexts that involve reward reversals humans utilize social cues conforming with their preconceptions more strongly than cues conflicting with them, especially when the other is similar. Copyright © 2016 The Authors. Published by Elsevier B

  4. Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation

    International Nuclear Information System (INIS)

    Gershgorin, B.; Harlim, J.; Majda, A.J.

    2010-01-01

    The filtering and predictive skill for turbulent signals is often limited by the lack of information about the true dynamics of the system and by our inability to resolve the assumed dynamics with sufficiently high resolution using the current computing power. The standard approach is to use a simple yet rich family of constant parameters to account for model errors through parameterization. This approach can have significant skill by fitting the parameters to some statistical feature of the true signal; however in the context of real-time prediction, such a strategy performs poorly when intermittent transitions to instability occur. Alternatively, we need a set of dynamic parameters. One strategy for estimating parameters on the fly is a stochastic parameter estimation through partial observations of the true signal. In this paper, we extend our newly developed stochastic parameter estimation strategy, the Stochastic Parameterization Extended Kalman Filter (SPEKF), to filtering sparsely observed spatially extended turbulent systems which exhibit abrupt stability transition from time to time despite a stable average behavior. For our primary numerical example, we consider a turbulent system of externally forced barotropic Rossby waves with instability introduced through intermittent negative damping. We find high filtering skill of SPEKF applied to this toy model even in the case of very sparse observations (with only 15 out of the 105 grid points observed) and with unspecified external forcing and damping. Additive and multiplicative bias corrections are used to learn the unknown features of the true dynamics from observations. We also present a comprehensive study of predictive skill in the one-mode context including the robustness toward variation of stochastic parameters, imperfect initial conditions and finite ensemble effect. Furthermore, the proposed stochastic parameter estimation scheme applied to the same spatially extended Rossby wave system demonstrates

  5. Quantifying uncertainty for predictions with model error in non-Gaussian systems with intermittency

    International Nuclear Information System (INIS)

    Branicki, Michal; Majda, Andrew J

    2012-01-01

    This paper discusses a range of important mathematical issues arising in applications of a newly emerging stochastic-statistical framework for quantifying and mitigating uncertainties associated with prediction of partially observed and imperfectly modelled complex turbulent dynamical systems. The need for such a framework is particularly severe in climate science where the true climate system is vastly more complicated than any conceivable model; however, applications in other areas, such as neural networks and materials science, are just as important. The mathematical tools employed here rely on empirical information theory and fluctuation–dissipation theorems (FDTs) and it is shown that they seamlessly combine into a concise systematic framework for measuring and optimizing consistency and sensitivity of imperfect models. Here, we utilize a simple statistically exactly solvable ‘perfect’ system with intermittent hidden instabilities and with time-periodic features to address a number of important issues encountered in prediction of much more complex dynamical systems. These problems include the role and mitigation of model error due to coarse-graining, moment closure approximations, and the memory of initial conditions in producing short, medium and long-range predictions. Importantly, based on a suite of increasingly complex imperfect models of the perfect test system, we show that the predictive skill of the imperfect models and their sensitivity to external perturbations is improved by ensuring their consistency on the statistical attractor (i.e. the climate) with the perfect system. Furthermore, the discussed link between climate fidelity and sensitivity via the FDT opens up an enticing prospect of developing techniques for improving imperfect model sensitivity based on specific tests carried out in the training phase of the unperturbed statistical equilibrium/climate. (paper)

  6. Human errors and mistakes

    International Nuclear Information System (INIS)

    Wahlstroem, B.

    1993-01-01

    Human errors have a major contribution to the risks for industrial accidents. Accidents have provided important lesson making it possible to build safer systems. In avoiding human errors it is necessary to adapt the systems to their operators. The complexity of modern industrial systems is however increasing the danger of system accidents. Models of the human operator have been proposed, but the models are not able to give accurate predictions of human performance. Human errors can never be eliminated, but their frequency can be decreased by systematic efforts. The paper gives a brief summary of research in human error and it concludes with suggestions for further work. (orig.)

  7. SU-F-J-208: Prompt Gamma Imaging-Based Prediction of Bragg Peak Position for Realistic Treatment Error Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Y; Macq, B; Bondar, L [Universite catholique de Louvain, Louvain-la-Neuve (Belgium); Janssens, G [IBA, Louvain-la-Neuve (Belgium)

    2016-06-15

    Purpose: To quantify the accuracy in predicting the Bragg peak position using simulated in-room measurements of prompt gamma (PG) emissions for realistic treatment error scenarios that combine several sources of errors. Methods: Prompt gamma measurements by a knife-edge slit camera were simulated using an experimentally validated analytical simulation tool. Simulations were performed, for 143 treatment error scenarios, on an anthropomorphic phantom and a pencil beam scanning plan for nasal cavity. Three types of errors were considered: translation along each axis, rotation around each axis, and CT-calibration errors with magnitude ranging respectively, between −3 and 3 mm, −5 and 5 degrees, and between −5 and +5%. We investigated the correlation between the Bragg peak (BP) shift and the horizontal shift of PG profiles. The shifts were calculated between the planned (reference) position and the position by the error scenario. The prediction error for one spot was calculated as the absolute difference between the PG profile shift and the BP shift. Results: The PG shift was significantly and strongly correlated with the BP shift for 92% of the cases (p<0.0001, Pearson correlation coefficient R>0.8). Moderate but significant correlations were obtained for all cases that considered only CT-calibration errors and for 1 case that combined translation and CT-errors (p<0.0001, R ranged between 0.61 and 0.8). The average prediction errors for the simulated scenarios ranged between 0.08±0.07 and 1.67±1.3 mm (grand mean 0.66±0.76 mm). The prediction error was moderately correlated with the value of the BP shift (p=0, R=0.64). For the simulated scenarios the average BP shift ranged between −8±6.5 mm and 3±1.1 mm. Scenarios that considered combinations of the largest treatment errors were associated with large BP shifts. Conclusion: Simulations of in-room measurements demonstrate that prompt gamma profiles provide reliable estimation of the Bragg peak position for

  8. Spatiotemporal neural characterization of prediction error valence and surprise during reward learning in humans.

    Science.gov (United States)

    Fouragnan, Elsa; Queirazza, Filippo; Retzler, Chris; Mullinger, Karen J; Philiastides, Marios G

    2017-07-06

    Reward learning depends on accurate reward associations with potential choices. These associations can be attained with reinforcement learning mechanisms using a reward prediction error (RPE) signal (the difference between actual and expected rewards) for updating future reward expectations. Despite an extensive body of literature on the influence of RPE on learning, little has been done to investigate the potentially separate contributions of RPE valence (positive or negative) and surprise (absolute degree of deviation from expectations). Here, we coupled single-trial electroencephalography with simultaneously acquired fMRI, during a probabilistic reversal-learning task, to offer evidence of temporally overlapping but largely distinct spatial representations of RPE valence and surprise. Electrophysiological variability in RPE valence correlated with activity in regions of the human reward network promoting approach or avoidance learning. Electrophysiological variability in RPE surprise correlated primarily with activity in regions of the human attentional network controlling the speed of learning. Crucially, despite the largely separate spatial extend of these representations our EEG-informed fMRI approach uniquely revealed a linear superposition of the two RPE components in a smaller network encompassing visuo-mnemonic and reward areas. Activity in this network was further predictive of stimulus value updating indicating a comparable contribution of both signals to reward learning.

  9. Hierarchical prediction errors in midbrain and basal forebrain during sensory learning.

    Science.gov (United States)

    Iglesias, Sandra; Mathys, Christoph; Brodersen, Kay H; Kasper, Lars; Piccirelli, Marco; den Ouden, Hanneke E M; Stephan, Klaas E

    2013-10-16

    In Bayesian brain theories, hierarchically related prediction errors (PEs) play a central role for predicting sensory inputs and inferring their underlying causes, e.g., the probabilistic structure of the environment and its volatility. Notably, PEs at different hierarchical levels may be encoded by different neuromodulatory transmitters. Here, we tested this possibility in computational fMRI studies of audio-visual learning. Using a hierarchical Bayesian model, we found that low-level PEs about visual stimulus outcome were reflected by widespread activity in visual and supramodal areas but also in the midbrain. In contrast, high-level PEs about stimulus probabilities were encoded by the basal forebrain. These findings were replicated in two groups of healthy volunteers. While our fMRI measures do not reveal the exact neuron types activated in midbrain and basal forebrain, they suggest a dichotomy between neuromodulatory systems, linking dopamine to low-level PEs about stimulus outcome and acetylcholine to more abstract PEs about stimulus probabilities. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Neural correlates of sensory prediction errors in monkeys: evidence for internal models of voluntary self-motion in the cerebellum.

    Science.gov (United States)

    Cullen, Kathleen E; Brooks, Jessica X

    2015-02-01

    During self-motion, the vestibular system makes essential contributions to postural stability and self-motion perception. To ensure accurate perception and motor control, it is critical to distinguish between vestibular sensory inputs that are the result of externally applied motion (exafference) and that are the result of our own actions (reafference). Indeed, although the vestibular sensors encode vestibular afference and reafference with equal fidelity, neurons at the first central stage of sensory processing selectively encode vestibular exafference. The mechanism underlying this reafferent suppression compares the brain's motor-based expectation of sensory feedback with the actual sensory consequences of voluntary self-motion, effectively computing the sensory prediction error (i.e., exafference). It is generally thought that sensory prediction errors are computed in the cerebellum, yet it has been challenging to explicitly demonstrate this. We have recently addressed this question and found that deep cerebellar nuclei neurons explicitly encode sensory prediction errors during self-motion. Importantly, in everyday life, sensory prediction errors occur in response to changes in the effector or world (muscle strength, load, etc.), as well as in response to externally applied sensory stimulation. Accordingly, we hypothesize that altering the relationship between motor commands and the actual movement parameters will result in the updating in the cerebellum-based computation of exafference. If our hypothesis is correct, under these conditions, neuronal responses should initially be increased--consistent with a sudden increase in the sensory prediction error. Then, over time, as the internal model is updated, response modulation should decrease in parallel with a reduction in sensory prediction error, until vestibular reafference is again suppressed. The finding that the internal model predicting the sensory consequences of motor commands adapts for new

  11. Impact bias or underestimation? Outcome specifications predict the direction of affective forecasting errors.

    Science.gov (United States)

    Buechel, Eva C; Zhang, Jiao; Morewedge, Carey K

    2017-05-01

    Affective forecasts are used to anticipate the hedonic impact of future events and decide which events to pursue or avoid. We propose that because affective forecasters are more sensitive to outcome specifications of events than experiencers, the outcome specification values of an event, such as its duration, magnitude, probability, and psychological distance, can be used to predict the direction of affective forecasting errors: whether affective forecasters will overestimate or underestimate its hedonic impact. When specifications are positively correlated with the hedonic impact of an event, forecasters will overestimate the extent to which high specification values will intensify and low specification values will discount its impact. When outcome specifications are negatively correlated with its hedonic impact, forecasters will overestimate the extent to which low specification values will intensify and high specification values will discount its impact. These affective forecasting errors compound additively when multiple specifications are aligned in their impact: In Experiment 1, affective forecasters underestimated the hedonic impact of winning a smaller prize that they expected to win, and they overestimated the hedonic impact of winning a larger prize that they did not expect to win. In Experiment 2, affective forecasters underestimated the hedonic impact of a short unpleasant video about a temporally distant event, and they overestimated the hedonic impact of a long unpleasant video about a temporally near event. Experiments 3A and 3B showed that differences in the affect-richness of forecasted and experienced events underlie these differences in sensitivity to outcome specifications, therefore accounting for both the impact bias and its reversal. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. EFFECT OF MEASUREMENT ERRORS ON PREDICTED COSMOLOGICAL CONSTRAINTS FROM SHEAR PEAK STATISTICS WITH LARGE SYNOPTIC SURVEY TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Bard, D.; Chang, C.; Kahn, S. M.; Gilmore, K.; Marshall, S. [KIPAC, Stanford University, 452 Lomita Mall, Stanford, CA 94309 (United States); Kratochvil, J. M.; Huffenberger, K. M. [Department of Physics, University of Miami, Coral Gables, FL 33124 (United States); May, M. [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); AlSayyad, Y.; Connolly, A.; Gibson, R. R.; Jones, L.; Krughoff, S. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Ahmad, Z.; Bankert, J.; Grace, E.; Hannel, M.; Lorenz, S. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Haiman, Z.; Jernigan, J. G., E-mail: djbard@slac.stanford.edu [Department of Astronomy and Astrophysics, Columbia University, New York, NY 10027 (United States); and others

    2013-09-01

    We study the effect of galaxy shape measurement errors on predicted cosmological constraints from the statistics of shear peak counts with the Large Synoptic Survey Telescope (LSST). We use the LSST Image Simulator in combination with cosmological N-body simulations to model realistic shear maps for different cosmological models. We include both galaxy shape noise and, for the first time, measurement errors on galaxy shapes. We find that the measurement errors considered have relatively little impact on the constraining power of shear peak counts for LSST.

  13. Self-Reported and Observed Punitive Parenting Prospectively Predicts Increased Error-Related Brain Activity in Six-Year-Old Children.

    Science.gov (United States)

    Meyer, Alexandria; Proudfit, Greg Hajcak; Bufferd, Sara J; Kujawa, Autumn J; Laptook, Rebecca S; Torpey, Dana C; Klein, Daniel N

    2015-07-01

    The error-related negativity (ERN) is a negative deflection in the event-related potential (ERP) occurring approximately 50 ms after error commission at fronto-central electrode sites and is thought to reflect the activation of a generic error monitoring system. Several studies have reported an increased ERN in clinically anxious children, and suggest that anxious children are more sensitive to error commission--although the mechanisms underlying this association are not clear. We have previously found that punishing errors results in a larger ERN, an effect that persists after punishment ends. It is possible that learning-related experiences that impact sensitivity to errors may lead to an increased ERN. In particular, punitive parenting might sensitize children to errors and increase their ERN. We tested this possibility in the current study by prospectively examining the relationship between parenting style during early childhood and children's ERN approximately 3 years later. Initially, 295 parents and children (approximately 3 years old) participated in a structured observational measure of parenting behavior, and parents completed a self-report measure of parenting style. At a follow-up assessment approximately 3 years later, the ERN was elicited during a Go/No-Go task, and diagnostic interviews were completed with parents to assess child psychopathology. Results suggested that both observational measures of hostile parenting and self-report measures of authoritarian parenting style uniquely predicted a larger ERN in children 3 years later. We previously reported that children in this sample with anxiety disorders were characterized by an increased ERN. A mediation analysis indicated that ERN magnitude mediated the relationship between harsh parenting and child anxiety disorder. Results suggest that parenting may shape children's error processing through environmental conditioning and thereby risk for anxiety, although future work is needed to confirm this

  14. Self-reported and observed punitive parenting prospectively predicts increased error-related brain activity in six-year-old children

    Science.gov (United States)

    Meyer, Alexandria; Proudfit, Greg Hajcak; Bufferd, Sara J.; Kujawa, Autumn J.; Laptook, Rebecca S.; Torpey, Dana C.; Klein, Daniel N.

    2017-01-01

    The error-related negativity (ERN) is a negative deflection in the event-related potential (ERP) occurring approximately 50 ms after error commission at fronto-central electrode sites and is thought to reflect the activation of a generic error monitoring system. Several studies have reported an increased ERN in clinically anxious children, and suggest that anxious children are more sensitive to error commission—although the mechanisms underlying this association are not clear. We have previously found that punishing errors results in a larger ERN, an effect that persists after punishment ends. It is possible that learning-related experiences that impact sensitivity to errors may lead to an increased ERN. In particular, punitive parenting might sensitize children to errors and increase their ERN. We tested this possibility in the current study by prospectively examining the relationship between parenting style during early childhood and children’s ERN approximately three years later. Initially, 295 parents and children (approximately 3 years old) participated in a structured observational measure of parenting behavior, and parents completed a self-report measure of parenting style. At a follow-up assessment approximately three years later, the ERN was elicited during a Go/No-Go task, and diagnostic interviews were completed with parents to assess child psychopathology. Results suggested that both observational measures of hostile parenting and self-report measures of authoritarian parenting style uniquely predicted a larger ERN in children 3 years later. We previously reported that children in this sample with anxiety disorders were characterized by an increased ERN. A mediation analysis indicated that ERN magnitude mediated the relationship between harsh parenting and child anxiety disorder. Results suggest that parenting may shape children’s error processing through environmental conditioning and thereby risk for anxiety, although future work is needed to

  15. Improved model predictive control of resistive wall modes by error field estimator in EXTRAP T2R

    Science.gov (United States)

    Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.

    2016-12-01

    Many implementations of a model-based approach for toroidal plasma have shown better control performance compared to the conventional type of feedback controller. One prerequisite of model-based control is the availability of a control oriented model. This model can be obtained empirically through a systematic procedure called system identification. Such a model is used in this work to design a model predictive controller to stabilize multiple resistive wall modes in EXTRAP T2R reversed-field pinch. Model predictive control is an advanced control method that can optimize the future behaviour of a system. Furthermore, this paper will discuss an additional use of the empirical model which is to estimate the error field in EXTRAP T2R. Two potential methods are discussed that can estimate the error field. The error field estimator is then combined with the model predictive control and yields better radial magnetic field suppression.

  16. Checklist Usage as a Guidance on Read-Back Reducing the Potential Risk of Medication Error

    Directory of Open Access Journals (Sweden)

    Ida Bagus N. Maharjana

    2014-06-01

    Full Text Available Hospital as a last line of health services shall provide quality service and oriented on patient safety, one responsibility in preventing medication errors. Effective collaboration and communication between the profession needed to achieve patient safety. Read-back is one way of doing effective communication. Before-after study with PDCA TQM approach. The samples were on the medication chart patient medical rd rd records in the 3 week of May (before and the 3 week in July (after 2013. Treatment using the check list, asked for time 2 minutes to read-back by the doctors and nurses after the visit together. Obtained 57 samples (before and 64 samples (after. Before charging 45.54% incomplete medication chart on patient medical records that have the potential risk of medication error to 10.17% after treatment with a read back check list for 10 weeks, with 77.78% based on the achievement of the PDCA TQM approach. Checklist usage as a guidance on Read-back as an effective communication can reduce charging incompleteness drug records on medical records that have the potential risk of medication errors, 45.54% to 10.17%.

  17. Toward a better understanding on the role of prediction error on memory processes: From bench to clinic.

    Science.gov (United States)

    Krawczyk, María C; Fernández, Rodrigo S; Pedreira, María E; Boccia, Mariano M

    2017-07-01

    Experimental psychology defines Prediction Error (PE) as a mismatch between expected and current events. It represents a unifier concept within the memory field, as it is the driving force of memory acquisition and updating. Prediction error induces updating of consolidated memories in strength or content by memory reconsolidation. This process has two different neurobiological phases, which involves the destabilization (labilization) of a consolidated memory followed by its restabilization. The aim of this work is to emphasize the functional role of PE on the neurobiology of learning and memory, integrating and discussing different research areas: behavioral, neurobiological, computational and clinical psychiatry. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A bottom-up model of spatial attention predicts human error patterns in rapid scene recognition.

    Science.gov (United States)

    Einhäuser, Wolfgang; Mundhenk, T Nathan; Baldi, Pierre; Koch, Christof; Itti, Laurent

    2007-07-20

    Humans demonstrate a peculiar ability to detect complex targets in rapidly presented natural scenes. Recent studies suggest that (nearly) no focal attention is required for overall performance in such tasks. Little is known, however, of how detection performance varies from trial to trial and which stages in the processing hierarchy limit performance: bottom-up visual processing (attentional selection and/or recognition) or top-down factors (e.g., decision-making, memory, or alertness fluctuations)? To investigate the relative contribution of these factors, eight human observers performed an animal detection task in natural scenes presented at 20 Hz. Trial-by-trial performance was highly consistent across observers, far exceeding the prediction of independent errors. This consistency demonstrates that performance is not primarily limited by idiosyncratic factors but by visual processing. Two statistical stimulus properties, contrast variation in the target image and the information-theoretical measure of "surprise" in adjacent images, predict performance on a trial-by-trial basis. These measures are tightly related to spatial attention, demonstrating that spatial attention and rapid target detection share common mechanisms. To isolate the causal contribution of the surprise measure, eight additional observers performed the animal detection task in sequences that were reordered versions of those all subjects had correctly recognized in the first experiment. Reordering increased surprise before and/or after the target while keeping the target and distractors themselves unchanged. Surprise enhancement impaired target detection in all observers. Consequently, and contrary to several previously published findings, our results demonstrate that attentional limitations, rather than target recognition alone, affect the detection of targets in rapidly presented visual sequences.

  19. Accounting for the measurement error of spectroscopically inferred soil carbon data for improved precision of spatial predictions.

    Science.gov (United States)

    Somarathna, P D S N; Minasny, Budiman; Malone, Brendan P; Stockmann, Uta; McBratney, Alex B

    2018-08-01

    Spatial modelling of environmental data commonly only considers spatial variability as the single source of uncertainty. In reality however, the measurement errors should also be accounted for. In recent years, infrared spectroscopy has been shown to offer low cost, yet invaluable information needed for digital soil mapping at meaningful spatial scales for land management. However, spectrally inferred soil carbon data are known to be less accurate compared to laboratory analysed measurements. This study establishes a methodology to filter out the measurement error variability by incorporating the measurement error variance in the spatial covariance structure of the model. The study was carried out in the Lower Hunter Valley, New South Wales, Australia where a combination of laboratory measured, and vis-NIR and MIR inferred topsoil and subsoil soil carbon data are available. We investigated the applicability of residual maximum likelihood (REML) and Markov Chain Monte Carlo (MCMC) simulation methods to generate parameters of the Matérn covariance function directly from the data in the presence of measurement error. The results revealed that the measurement error can be effectively filtered-out through the proposed technique. When the measurement error was filtered from the data, the prediction variance almost halved, which ultimately yielded a greater certainty in spatial predictions of soil carbon. Further, the MCMC technique was successfully used to define the posterior distribution of measurement error. This is an important outcome, as the MCMC technique can be used to estimate the measurement error if it is not explicitly quantified. Although this study dealt with soil carbon data, this method is amenable for filtering the measurement error of any kind of continuous spatial environmental data. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Cardiac Concomitants of Feedback and Prediction Error Processing in Reinforcement Learning

    Science.gov (United States)

    Kastner, Lucas; Kube, Jana; Villringer, Arno; Neumann, Jane

    2017-01-01

    Successful learning hinges on the evaluation of positive and negative feedback. We assessed differential learning from reward and punishment in a monetary reinforcement learning paradigm, together with cardiac concomitants of positive and negative feedback processing. On the behavioral level, learning from reward resulted in more advantageous behavior than learning from punishment, suggesting a differential impact of reward and punishment on successful feedback-based learning. On the autonomic level, learning and feedback processing were closely mirrored by phasic cardiac responses on a trial-by-trial basis: (1) Negative feedback was accompanied by faster and prolonged heart rate deceleration compared to positive feedback. (2) Cardiac responses shifted from feedback presentation at the beginning of learning to stimulus presentation later on. (3) Most importantly, the strength of phasic cardiac responses to the presentation of feedback correlated with the strength of prediction error signals that alert the learner to the necessity for behavioral adaptation. Considering participants' weight status and gender revealed obesity-related deficits in learning to avoid negative consequences and less consistent behavioral adaptation in women compared to men. In sum, our results provide strong new evidence for the notion that during learning phasic cardiac responses reflect an internal value and feedback monitoring system that is sensitive to the violation of performance-based expectations. Moreover, inter-individual differences in weight status and gender may affect both behavioral and autonomic responses in reinforcement-based learning. PMID:29163004

  1. Comparison of the prediction error in cataract surgery with Lenstar and conventional ultrasound

    Directory of Open Access Journals (Sweden)

    Hou-Cheng Liang

    2013-12-01

    Full Text Available AIM: To compare the prediction errors(PEin cataract surgery with Lenstar and conventional ultrasound. METHODS: The data of age-related cataract patients were retrospectively analyzed from March, 2013 to June, 2013 in our hospital. Preoperative measurements of ocular biological parameters and calculation of intraocular lens(IOLdegree using SRK/T's formula with ultrasound, keratometry and Lenstar were performed. Cataract extraction combined with IOL implantation in capsule was taken in every patient. Retinoscopy was taken postoperatively after 3 months. Comparison of the two inspection methods for measuring axial length, mean corneal curvature and postoperative refractive PE and absolute value of PE(APE. RESULTS: Preoperative axial length was 24.68±1.70mm and 24.42±1.65mm with Lenstar and ultrasound, respectively, and there was significant difference(t=-12.688, Pr=0.992, Pt=-1.241, P=0.217, but was the significant correlation(r=0.963, Pt=-5.494, Pt=6.379, PCONCLUSION: Accurate ocular biological parameters can be achieved with Lenstar, and postoperative PE is more precise with Lenstar compared with conventional ultrasound. Lenstar can be used for precise calculation of IOL degree in cataract operation.

  2. Altered neural reward and loss processing and prediction error signalling in depression

    Science.gov (United States)

    Ubl, Bettina; Kuehner, Christine; Kirsch, Peter; Ruttorf, Michaela

    2015-01-01

    Dysfunctional processing of reward and punishment may play an important role in depression. However, functional magnetic resonance imaging (fMRI) studies have shown heterogeneous results for reward processing in fronto-striatal regions. We examined neural responsivity associated with the processing of reward and loss during anticipation and receipt of incentives and related prediction error (PE) signalling in depressed individuals. Thirty medication-free depressed persons and 28 healthy controls performed an fMRI reward paradigm. Regions of interest analyses focused on neural responses during anticipation and receipt of gains and losses and related PE-signals. Additionally, we assessed the relationship between neural responsivity during gain/loss processing and hedonic capacity. When compared with healthy controls, depressed individuals showed reduced fronto-striatal activity during anticipation of gains and losses. The groups did not significantly differ in response to reward and loss outcomes. In depressed individuals, activity increases in the orbitofrontal cortex and nucleus accumbens during reward anticipation were associated with hedonic capacity. Depressed individuals showed an absence of reward-related PEs but encoded loss-related PEs in the ventral striatum. Depression seems to be linked to blunted responsivity in fronto-striatal regions associated with limited motivational responses for rewards and losses. Alterations in PE encoding might mirror blunted reward- and enhanced loss-related associative learning in depression. PMID:25567763

  3. Cardiac Concomitants of Feedback and Prediction Error Processing in Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Lucas Kastner

    2017-10-01

    Full Text Available Successful learning hinges on the evaluation of positive and negative feedback. We assessed differential learning from reward and punishment in a monetary reinforcement learning paradigm, together with cardiac concomitants of positive and negative feedback processing. On the behavioral level, learning from reward resulted in more advantageous behavior than learning from punishment, suggesting a differential impact of reward and punishment on successful feedback-based learning. On the autonomic level, learning and feedback processing were closely mirrored by phasic cardiac responses on a trial-by-trial basis: (1 Negative feedback was accompanied by faster and prolonged heart rate deceleration compared to positive feedback. (2 Cardiac responses shifted from feedback presentation at the beginning of learning to stimulus presentation later on. (3 Most importantly, the strength of phasic cardiac responses to the presentation of feedback correlated with the strength of prediction error signals that alert the learner to the necessity for behavioral adaptation. Considering participants' weight status and gender revealed obesity-related deficits in learning to avoid negative consequences and less consistent behavioral adaptation in women compared to men. In sum, our results provide strong new evidence for the notion that during learning phasic cardiac responses reflect an internal value and feedback monitoring system that is sensitive to the violation of performance-based expectations. Moreover, inter-individual differences in weight status and gender may affect both behavioral and autonomic responses in reinforcement-based learning.

  4. Prediction errors to emotional expressions: the roles of the amygdala in social referencing.

    Science.gov (United States)

    Meffert, Harma; Brislin, Sarah J; White, Stuart F; Blair, James R

    2015-04-01

    Social referencing paradigms in humans and observational learning paradigms in animals suggest that emotional expressions are important for communicating valence. It has been proposed that these expressions initiate stimulus-reinforcement learning. Relatively little is known about the role of emotional expressions in reinforcement learning, particularly in the context of social referencing. In this study, we examined object valence learning in the context of a social referencing paradigm. Participants viewed objects and faces that turned toward the objects and displayed a fearful, happy or neutral reaction to them, while judging the gender of these faces. Notably, amygdala activation was larger when the expressions following an object were less expected. Moreover, when asked, participants were both more likely to want to approach, and showed stronger amygdala responses to, objects associated with happy relative to objects associated with fearful expressions. This suggests that the amygdala plays two roles in social referencing: (i) initiating learning regarding the valence of an object as a function of prediction errors to expressions displayed toward this object and (ii) orchestrating an emotional response to the object when value judgments are being made regarding this object. Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.

  5. Prediction of DVH parameter changes due to setup errors for breast cancer treatment based on 2D portal dosimetry

    International Nuclear Information System (INIS)

    Nijsten, S. M. J. J. G.; Elmpt, W. J. C. van; Mijnheer, B. J.; Minken, A. W. H.; Persoon, L. C. G. G.; Lambin, P.; Dekker, A. L. A. J.

    2009-01-01

    Electronic portal imaging devices (EPIDs) are increasingly used for portal dosimetry applications. In our department, EPIDs are clinically used for two-dimensional (2D) transit dosimetry. Predicted and measured portal dose images are compared to detect dose delivery errors caused for instance by setup errors or organ motion. The aim of this work is to develop a model to predict dose-volume histogram (DVH) changes due to setup errors during breast cancer treatment using 2D transit dosimetry. First, correlations between DVH parameter changes and 2D gamma parameters are investigated for different simulated setup errors, which are described by a binomial logistic regression model. The model calculates the probability that a DVH parameter changes more than a specific tolerance level and uses several gamma evaluation parameters for the planning target volume (PTV) projection in the EPID plane as input. Second, the predictive model is applied to clinically measured portal images. Predicted DVH parameter changes are compared to calculated DVH parameter changes using the measured setup error resulting from a dosimetric registration procedure. Statistical accuracy is investigated by using receiver operating characteristic (ROC) curves and values for the area under the curve (AUC), sensitivity, specificity, positive and negative predictive values. Changes in the mean PTV dose larger than 5%, and changes in V 90 and V 95 larger than 10% are accurately predicted based on a set of 2D gamma parameters. Most pronounced changes in the three DVH parameters are found for setup errors in the lateral-medial direction. AUC, sensitivity, specificity, and negative predictive values were between 85% and 100% while the positive predictive values were lower but still higher than 54%. Clinical predictive value is decreased due to the occurrence of patient rotations or breast deformations during treatment, but the overall reliability of the predictive model remains high. Based on our

  6. Thermal-Induced Errors Prediction and Compensation for a Coordinate Boring Machine Based on Time Series Analysis

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2014-01-01

    Full Text Available To improve the CNC machine tools precision, a thermal error modeling for the motorized spindle was proposed based on time series analysis, considering the length of cutting tools and thermal declined angles, and the real-time error compensation was implemented. A five-point method was applied to measure radial thermal declinations and axial expansion of the spindle with eddy current sensors, solving the problem that the three-point measurement cannot obtain the radial thermal angle errors. Then the stationarity of the thermal error sequences was determined by the Augmented Dickey-Fuller Test Algorithm, and the autocorrelation/partial autocorrelation function was applied to identify the model pattern. By combining both Yule-Walker equations and information criteria, the order and parameters of the models were solved effectively, which improved the prediction accuracy and generalization ability. The results indicated that the prediction accuracy of the time series model could reach up to 90%. In addition, the axial maximum error decreased from 39.6 μm to 7 μm after error compensation, and the machining accuracy was improved by 89.7%. Moreover, the X/Y-direction accuracy can reach up to 77.4% and 86%, respectively, which demonstrated that the proposed methods of measurement, modeling, and compensation were effective.

  7. Estimating Prediction Uncertainty from Geographical Information System Raster Processing: A User's Manual for the Raster Error Propagation Tool (REPTool)

    Science.gov (United States)

    Gurdak, Jason J.; Qi, Sharon L.; Geisler, Michael L.

    2009-01-01

    The U.S. Geological Survey Raster Error Propagation Tool (REPTool) is a custom tool for use with the Environmental System Research Institute (ESRI) ArcGIS Desktop application to estimate error propagation and prediction uncertainty in raster processing operations and geospatial modeling. REPTool is designed to introduce concepts of error and uncertainty in geospatial data and modeling and provide users of ArcGIS Desktop a geoprocessing tool and methodology to consider how error affects geospatial model output. Similar to other geoprocessing tools available in ArcGIS Desktop, REPTool can be run from a dialog window, from the ArcMap command line, or from a Python script. REPTool consists of public-domain, Python-based packages that implement Latin Hypercube Sampling within a probabilistic framework to track error propagation in geospatial models and quantitatively estimate the uncertainty of the model output. Users may specify error for each input raster or model coefficient represented in the geospatial model. The error for the input rasters may be specified as either spatially invariant or spatially variable across the spatial domain. Users may specify model output as a distribution of uncertainty for each raster cell. REPTool uses the Relative Variance Contribution method to quantify the relative error contribution from the two primary components in the geospatial model - errors in the model input data and coefficients of the model variables. REPTool is appropriate for many types of geospatial processing operations, modeling applications, and related research questions, including applications that consider spatially invariant or spatially variable error in geospatial data.

  8. Online visual feedback during error-free channel trials leads to active unlearning of movement dynamics: evidence for adaptation to trajectory prediction errors.

    Directory of Open Access Journals (Sweden)

    Angel Lago-Rodriguez

    2016-09-01

    Full Text Available Prolonged exposure to movement perturbations leads to creation of motor memories which decay towards previous states when the perturbations are removed. However, it remains unclear whether this decay is due only to a spontaneous and passive recovery of the previous state. It has recently been reported that activation of reinforcement-based learning mechanisms delays the onset of the decay. This raises the question whether other motor learning mechanisms may also contribute to the retention and/or decay of the motor memory. Therefore, we aimed to test whether mechanisms of error-based motor adaptation are active during the decay of the motor memory. Forty-five right-handed participants performed point-to-point reaching movements under an external dynamic perturbation. We measured the expression of the motor memory through error-clamped (EC trials, in which lateral forces constrained movements to a straight line towards the target. We found greater and faster decay of the motor memory for participants who had access to full online visual feedback during these EC trials (Cursor group, when compared with participants who had no EC feedback regarding movement trajectory (Arc group. Importantly, we did not find between-group differences in adaptation to the external perturbation. In addition, we found greater decay of the motor memory when we artificially increased feedback errors through the manipulation of visual feedback (Augmented-Error group. Our results then support the notion of an active decay of the motor memory, suggesting that adaptive mechanisms are involved in correcting for the mismatch between predicted movement trajectories and actual sensory feedback, which leads to greater and faster decay of the motor memory.

  9. Quality prediction modeling for sintered ores based on mechanism models of sintering and extreme learning machine based error compensation

    Science.gov (United States)

    Tiebin, Wu; Yunlian, Liu; Xinjun, Li; Yi, Yu; Bin, Zhang

    2018-06-01

    Aiming at the difficulty in quality prediction of sintered ores, a hybrid prediction model is established based on mechanism models of sintering and time-weighted error compensation on the basis of the extreme learning machine (ELM). At first, mechanism models of drum index, total iron, and alkalinity are constructed according to the chemical reaction mechanism and conservation of matter in the sintering process. As the process is simplified in the mechanism models, these models are not able to describe high nonlinearity. Therefore, errors are inevitable. For this reason, the time-weighted ELM based error compensation model is established. Simulation results verify that the hybrid model has a high accuracy and can meet the requirement for industrial applications.

  10. Absorbed in the task : Personality measures predict engagement during task performance as tracked by error negativity and asymmetrical frontal activity

    NARCIS (Netherlands)

    Tops, Mattie; Boksem, Maarten A. S.

    2010-01-01

    We hypothesized that interactions between traits and context predict task engagement, as measured by the amplitude of the error-related negativity (ERN), performance, and relative frontal activity asymmetry (RFA). In Study 1, we found that drive for reward, absorption, and constraint independently

  11. Preschool Speech Error Patterns Predict Articulation and Phonological Awareness Outcomes in Children with Histories of Speech Sound Disorders

    Science.gov (United States)

    Preston, Jonathan L.; Hull, Margaret; Edwards, Mary Louise

    2013-01-01

    Purpose: To determine if speech error patterns in preschoolers with speech sound disorders (SSDs) predict articulation and phonological awareness (PA) outcomes almost 4 years later. Method: Twenty-five children with histories of preschool SSDs (and normal receptive language) were tested at an average age of 4;6 (years;months) and were followed up…

  12. A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors

    NARCIS (Netherlands)

    Schoups, G.; Vrugt, J.A.

    2010-01-01

    Estimation of parameter and predictive uncertainty of hydrologic models has traditionally relied on several simplifying assumptions. Residual errors are often assumed to be independent and to be adequately described by a Gaussian probability distribution with a mean of zero and a constant variance.

  13. Experiences with Lean Six Sigma as improvement strategy to reduce parenteral medication administration errors and associated potential risk of harm

    NARCIS (Netherlands)

    van de Plas, Afke; Slikkerveer, Mariëlle; Hoen, Saskia; Schrijnemakers, Rick; Driessen, Johanna; de Vries, Frank; van den Bemt, Patricia

    2017-01-01

    In this controlled before-after study the effect of improvements, derived from Lean Six Sigma strategy, on parenteral medication administration errors and the potential risk of harm was determined. During baseline measurement, on control versus intervention ward, at least one administration error

  14. Proactive safety management in health care : towards a broader view of risk analysis, error recovery, and safety culture

    NARCIS (Netherlands)

    Habraken, M.M.P.

    2010-01-01

    Medical errors occur frequently. The harm and additional costs associated with those errors ask for effective safety management. According to the objective of minimal patient harm, safety management in health care should be proactive; that is, risks should be anticipated and reduced before patients

  15. CLIM : A cross-level workload-aware timing error prediction model for functional units

    NARCIS (Netherlands)

    Jiao, Xun; Rahimi, Abbas; Jiang, Yu; Wang, Jianguo; Fatemi, Hamed; De Gyvez, Jose Pineda; Gupta, Rajesh K.

    2018-01-01

    Timing errors that are caused by the timing violations of sensitized circuit paths, have emerged as an important threat to the reliability of synchronous digital circuits. To protect circuits from these timing errors, designers typically use a conservative timing margin, which leads to operational

  16. Prediction of human errors by maladaptive changes in event-related brain networks

    NARCIS (Netherlands)

    Eichele, T.; Debener, S.; Calhoun, V.D.; Specht, K.; Engel, A.K.; Hugdahl, K.; Cramon, D.Y. von; Ullsperger, M.

    2008-01-01

    Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional Mill and applying independent component analysis followed by deconvolution of hemodynamic responses, we

  17. Beyond reward prediction errors: the role of dopamine in movement kinematics

    Directory of Open Access Journals (Sweden)

    Joseph eBarter

    2015-05-01

    Full Text Available We recorded activity of dopamine (DA neurons in the substantia nigra pars compacta in unrestrained mice while monitoring their movements with video tracking. Our approach allows an unbiased examination of the continuous relationship between single unit activity and behavior. Although DA neurons show characteristic burst firing following cue or reward presentation, as previously reported, their activity can be explained by the representation of actual movement kinematics. Unlike neighboring pars reticulata GABAergic output neurons, which can represent vector components of position, DA neurons represent vector components of velocity or acceleration. We found neurons related to movements in four directions—up, down, left right. For horizontal movements, there is significant lateralization of neurons: the left nigra contains more rightward neurons, whereas the right nigra contains more leftward neurons. The relationship between DA activity and movement kinematics was found on both appetitive trials using sucrose and aversive trials using air puff, showing that these neurons belong to a velocity control circuit that can be used for any number of purposes, whether to seek reward or to avoid harm. In support of this conclusion, mimicry of the phasic activation of DA neurons with selective optogenetic stimulation could also generate movements. Contrary to the popular hypothesis that DA neurons encode reward prediction errors, our results suggest that nigrostriatal DA plays an essential role in controlling the kinematics of voluntary movements. We hypothesize that DA signaling implements gain adjustment for adaptive transition control, and describe a new model of BG in which DA functions to adjust the gain of a transition controller. This model has significant implications for our understanding of movement disorders implicating DA and the BG.

  18. The disparity mutagenesis model predicts rescue of living things from catastrophic errors

    Directory of Open Access Journals (Sweden)

    Mitsuru eFurusawa

    2014-12-01

    Full Text Available In animals including humans, mutation rates per generation will exceed a perceived threshold, which should result in an excessive genetic load. Despite this, they have survived without extinction. This is a perplexing problem for human genetics, arising at the end of the last century, and to date still does not have a fully satisfactory explanation. Shortly after we proposed the disparity theory of evolution in 1992, the disparity mutagenesis model was proposed, which forms the basis for an explanation for an acceleration of evolution and species survival. This model predicts a significant increase of the mutation threshold values if there is a high enough fidelity difference in replication between the lagging and leading strands. When applied to biological evolution, the model predicts that living things, including humans, might overcome the lethal effect of accumulated deleterious mutations and be able to survive. Artificially-prepared mutator strains of microorganisms, in which an enhanced lagging-strand-biased mutagenesis was introduced, showed unexpectedly high adaptability to severe environments. The implications of the striking behaviors shown by these disparity mutators will be discussed in relation to how living things with high mutation rates can avoid the self-defeating risk of excess mutations.

  19. Development of an attrition risk prediction tool.

    Science.gov (United States)

    Fowler, John; Norrie, Peter

    To review lecturers' and students' perceptions of the factors that may lead to attrition from pre-registration nursing and midwifery programmes and to identify ways to reduce the impact of such factors on the student's experience. Comparable attrition rates for nursing and midwifery students across various universities are difficult to monitor accurately; however, estimates that there is approximately a 25% national attrition rate are not uncommon. The financial and human implications of this are significant and worthy of investigation. A study was carried out in one medium-sized UK school of nursing and midwifery, aimed at identifying perceived factors associated with attrition and retention. Thirty-five lecturers were interviewed individually; 605 students completed a questionnaire, and of these, 10 were individually interviewed. Attrition data kept by the student service department were reviewed. Data were collected over an 18-month period in 2007-2008. Regression analysis of the student data identified eight significant predictors. Four of these were 'positive' factors in that they aided student retention and four were 'negative' in that they were associated with students' thoughts of resigning. Student attrition and retention is multifactorial, and, as such, needs to be managed holistically. One aspect of this management could be an attrition risk prediction tool.

  20. Predicting error in detecting mammographic masses among radiology trainees using statistical models based on BI-RADS features

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Lars J., E-mail: Lars.grimm@duke.edu; Ghate, Sujata V.; Yoon, Sora C.; Kim, Connie [Department of Radiology, Duke University Medical Center, Box 3808, Durham, North Carolina 27710 (United States); Kuzmiak, Cherie M. [Department of Radiology, University of North Carolina School of Medicine, 2006 Old Clinic, CB No. 7510, Chapel Hill, North Carolina 27599 (United States); Mazurowski, Maciej A. [Duke University Medical Center, Box 2731 Medical Center, Durham, North Carolina 27710 (United States)

    2014-03-15

    Purpose: The purpose of this study is to explore Breast Imaging-Reporting and Data System (BI-RADS) features as predictors of individual errors made by trainees when detecting masses in mammograms. Methods: Ten radiology trainees and three expert breast imagers reviewed 100 mammograms comprised of bilateral medial lateral oblique and craniocaudal views on a research workstation. The cases consisted of normal and biopsy proven benign and malignant masses. For cases with actionable abnormalities, the experts recorded breast (density and axillary lymph nodes) and mass (shape, margin, and density) features according to the BI-RADS lexicon, as well as the abnormality location (depth and clock face). For each trainee, a user-specific multivariate model was constructed to predict the trainee's likelihood of error based on BI-RADS features. The performance of the models was assessed using area under the receive operating characteristic curves (AUC). Results: Despite the variability in errors between different trainees, the individual models were able to predict the likelihood of error for the trainees with a mean AUC of 0.611 (range: 0.502–0.739, 95% Confidence Interval: 0.543–0.680,p < 0.002). Conclusions: Patterns in detection errors for mammographic masses made by radiology trainees can be modeled using BI-RADS features. These findings may have potential implications for the development of future educational materials that are personalized to individual trainees.

  1. Predicting error in detecting mammographic masses among radiology trainees using statistical models based on BI-RADS features.

    Science.gov (United States)

    Grimm, Lars J; Ghate, Sujata V; Yoon, Sora C; Kuzmiak, Cherie M; Kim, Connie; Mazurowski, Maciej A

    2014-03-01

    The purpose of this study is to explore Breast Imaging-Reporting and Data System (BI-RADS) features as predictors of individual errors made by trainees when detecting masses in mammograms. Ten radiology trainees and three expert breast imagers reviewed 100 mammograms comprised of bilateral medial lateral oblique and craniocaudal views on a research workstation. The cases consisted of normal and biopsy proven benign and malignant masses. For cases with actionable abnormalities, the experts recorded breast (density and axillary lymph nodes) and mass (shape, margin, and density) features according to the BI-RADS lexicon, as well as the abnormality location (depth and clock face). For each trainee, a user-specific multivariate model was constructed to predict the trainee's likelihood of error based on BI-RADS features. The performance of the models was assessed using area under the receive operating characteristic curves (AUC). Despite the variability in errors between different trainees, the individual models were able to predict the likelihood of error for the trainees with a mean AUC of 0.611 (range: 0.502-0.739, 95% Confidence Interval: 0.543-0.680,p errors for mammographic masses made by radiology trainees can be modeled using BI-RADS features. These findings may have potential implications for the development of future educational materials that are personalized to individual trainees.

  2. Predicting error in detecting mammographic masses among radiology trainees using statistical models based on BI-RADS features

    International Nuclear Information System (INIS)

    Grimm, Lars J.; Ghate, Sujata V.; Yoon, Sora C.; Kim, Connie; Kuzmiak, Cherie M.; Mazurowski, Maciej A.

    2014-01-01

    Purpose: The purpose of this study is to explore Breast Imaging-Reporting and Data System (BI-RADS) features as predictors of individual errors made by trainees when detecting masses in mammograms. Methods: Ten radiology trainees and three expert breast imagers reviewed 100 mammograms comprised of bilateral medial lateral oblique and craniocaudal views on a research workstation. The cases consisted of normal and biopsy proven benign and malignant masses. For cases with actionable abnormalities, the experts recorded breast (density and axillary lymph nodes) and mass (shape, margin, and density) features according to the BI-RADS lexicon, as well as the abnormality location (depth and clock face). For each trainee, a user-specific multivariate model was constructed to predict the trainee's likelihood of error based on BI-RADS features. The performance of the models was assessed using area under the receive operating characteristic curves (AUC). Results: Despite the variability in errors between different trainees, the individual models were able to predict the likelihood of error for the trainees with a mean AUC of 0.611 (range: 0.502–0.739, 95% Confidence Interval: 0.543–0.680,p < 0.002). Conclusions: Patterns in detection errors for mammographic masses made by radiology trainees can be modeled using BI-RADS features. These findings may have potential implications for the development of future educational materials that are personalized to individual trainees

  3. The application of SHERPA (Systematic Human Error Reduction and Prediction Approach) in the development of compensatory cognitive rehabilitation strategies for stroke patients with left and right brain damage.

    Science.gov (United States)

    Hughes, Charmayne M L; Baber, Chris; Bienkiewicz, Marta; Worthington, Andrew; Hazell, Alexa; Hermsdörfer, Joachim

    2015-01-01

    Approximately 33% of stroke patients have difficulty performing activities of daily living, often committing errors during the planning and execution of such activities. The objective of this study was to evaluate the ability of the human error identification (HEI) technique SHERPA (Systematic Human Error Reduction and Prediction Approach) to predict errors during the performance of daily activities in stroke patients with left and right hemisphere lesions. Using SHERPA we successfully predicted 36 of the 38 observed errors, with analysis indicating that the proportion of predicted and observed errors was similar for all sub-tasks and severity levels. HEI results were used to develop compensatory cognitive strategies that clinicians could employ to reduce or prevent errors from occurring. This study provides evidence for the reliability and validity of SHERPA in the design of cognitive rehabilitation strategies in stroke populations.

  4. Predictive analytics for supply chain collaboration, risk management ...

    African Journals Online (AJOL)

    kirstam

    management, and (2) supply chain risk management predicted financial .... overhead costs, delivery of ever-increasing customer value, flexibility with superior ... risk exposure, relationship longevity, trust and communication are considered as.

  5. Method for evaluation of risk due to seismic related design and construction errors based on past reactor experience

    International Nuclear Information System (INIS)

    Gonzalez Cuesta, M.; Okrent, D.

    1985-01-01

    This paper proposes a methodology for quantification of risk due to seismic related design and construction errors in nuclear power plants, based on information available on errors discovered in the past. For the purposes of this paper, an error is defined as any event that causes the seismic safety margins of a nuclear power plant to be smaller than implied by current regulatory requirements and industry common practice. Also, the actual reduction in the safety margins caused by the error will be called a deficiency. The method is based on a theoretical model of errors, called a deficiency logic diagram. First, an ultimate cause is present. This ultimate cause is consumated as a specific instance, called originating error. As originating errors may occur in actions to be applied a number of times, a deficiency generation system may be involved. Quality assurance activities will hopefully identify most of these deficiencies, requesting their disposition. However, the quality assurance program is not perfect and some operating plant deficiencies may persist, causing different levels of impact to the plant logic. The paper provides a way of extrapolating information about errors discovered in plants under construction in order to assess the risk due to errors that have not been discovered

  6. Elderly fall risk prediction using static posturography

    Science.gov (United States)

    2017-01-01

    Maintaining and controlling postural balance is important for activities of daily living, with poor postural balance being predictive of future falls. This study investigated eyes open and eyes closed standing posturography with elderly adults to identify differences and determine appropriate outcome measure cut-off scores for prospective faller, single-faller, multi-faller, and non-faller classifications. 100 older adults (75.5 ± 6.7 years) stood quietly with eyes open and then eyes closed while Wii Balance Board data were collected. Range in anterior-posterior (AP) and medial-lateral (ML) center of pressure (CoP) motion; AP and ML CoP root mean square distance from mean (RMS); and AP, ML, and vector sum magnitude (VSM) CoP velocity were calculated. Romberg Quotients (RQ) were calculated for all parameters. Participants reported six-month fall history and six-month post-assessment fall occurrence. Groups were retrospective fallers (24), prospective all fallers (42), prospective fallers (22 single, 6 multiple), and prospective non-fallers (47). Non-faller RQ AP range and RQ AP RMS differed from prospective all fallers, fallers, and single fallers. Non-faller eyes closed AP velocity, eyes closed VSM velocity, RQ AP velocity, and RQ VSM velocity differed from multi-fallers. RQ calculations were particularly relevant for elderly fall risk assessments. Cut-off scores from Clinical Cut-off Score, ROC curves, and discriminant functions were clinically viable for multi-faller classification and provided better accuracy than single-faller classification. RQ AP range with cut-off score 1.64 could be used to screen for older people who may fall once. Prospective multi-faller classification with a discriminant function (-1.481 + 0.146 x Eyes Closed AP Velocity—0.114 x Eyes Closed Vector Sum Magnitude Velocity—2.027 x RQ AP Velocity + 2.877 x RQ Vector Sum Magnitude Velocity) and cut-off score 0.541 achieved an accuracy of 84.9% and is viable as a screening tool for older

  7. Elderly fall risk prediction using static posturography.

    Science.gov (United States)

    Howcroft, Jennifer; Lemaire, Edward D; Kofman, Jonathan; McIlroy, William E

    2017-01-01

    Maintaining and controlling postural balance is important for activities of daily living, with poor postural balance being predictive of future falls. This study investigated eyes open and eyes closed standing posturography with elderly adults to identify differences and determine appropriate outcome measure cut-off scores for prospective faller, single-faller, multi-faller, and non-faller classifications. 100 older adults (75.5 ± 6.7 years) stood quietly with eyes open and then eyes closed while Wii Balance Board data were collected. Range in anterior-posterior (AP) and medial-lateral (ML) center of pressure (CoP) motion; AP and ML CoP root mean square distance from mean (RMS); and AP, ML, and vector sum magnitude (VSM) CoP velocity were calculated. Romberg Quotients (RQ) were calculated for all parameters. Participants reported six-month fall history and six-month post-assessment fall occurrence. Groups were retrospective fallers (24), prospective all fallers (42), prospective fallers (22 single, 6 multiple), and prospective non-fallers (47). Non-faller RQ AP range and RQ AP RMS differed from prospective all fallers, fallers, and single fallers. Non-faller eyes closed AP velocity, eyes closed VSM velocity, RQ AP velocity, and RQ VSM velocity differed from multi-fallers. RQ calculations were particularly relevant for elderly fall risk assessments. Cut-off scores from Clinical Cut-off Score, ROC curves, and discriminant functions were clinically viable for multi-faller classification and provided better accuracy than single-faller classification. RQ AP range with cut-off score 1.64 could be used to screen for older people who may fall once. Prospective multi-faller classification with a discriminant function (-1.481 + 0.146 x Eyes Closed AP Velocity-0.114 x Eyes Closed Vector Sum Magnitude Velocity-2.027 x RQ AP Velocity + 2.877 x RQ Vector Sum Magnitude Velocity) and cut-off score 0.541 achieved an accuracy of 84.9% and is viable as a screening tool for older

  8. Elderly fall risk prediction using static posturography.

    Directory of Open Access Journals (Sweden)

    Jennifer Howcroft

    Full Text Available Maintaining and controlling postural balance is important for activities of daily living, with poor postural balance being predictive of future falls. This study investigated eyes open and eyes closed standing posturography with elderly adults to identify differences and determine appropriate outcome measure cut-off scores for prospective faller, single-faller, multi-faller, and non-faller classifications. 100 older adults (75.5 ± 6.7 years stood quietly with eyes open and then eyes closed while Wii Balance Board data were collected. Range in anterior-posterior (AP and medial-lateral (ML center of pressure (CoP motion; AP and ML CoP root mean square distance from mean (RMS; and AP, ML, and vector sum magnitude (VSM CoP velocity were calculated. Romberg Quotients (RQ were calculated for all parameters. Participants reported six-month fall history and six-month post-assessment fall occurrence. Groups were retrospective fallers (24, prospective all fallers (42, prospective fallers (22 single, 6 multiple, and prospective non-fallers (47. Non-faller RQ AP range and RQ AP RMS differed from prospective all fallers, fallers, and single fallers. Non-faller eyes closed AP velocity, eyes closed VSM velocity, RQ AP velocity, and RQ VSM velocity differed from multi-fallers. RQ calculations were particularly relevant for elderly fall risk assessments. Cut-off scores from Clinical Cut-off Score, ROC curves, and discriminant functions were clinically viable for multi-faller classification and provided better accuracy than single-faller classification. RQ AP range with cut-off score 1.64 could be used to screen for older people who may fall once. Prospective multi-faller classification with a discriminant function (-1.481 + 0.146 x Eyes Closed AP Velocity-0.114 x Eyes Closed Vector Sum Magnitude Velocity-2.027 x RQ AP Velocity + 2.877 x RQ Vector Sum Magnitude Velocity and cut-off score 0.541 achieved an accuracy of 84.9% and is viable as a screening tool for

  9. Supervised learning based model for predicting variability-induced timing errors

    NARCIS (Netherlands)

    Jiao, X.; Rahimi, A.; Narayanaswamy, B.; Fatemi, H.; Pineda de Gyvez, J.; Gupta, R.K.

    2015-01-01

    Circuit designers typically combat variations in hardware and workload by increasing conservative guardbanding that leads to operational inefficiency. Reducing this excessive guardband is highly desirable, but causes timing errors in synchronous circuits. We propose a methodology for supervised

  10. Reward prediction error signal enhanced by striatum-amygdala interaction explains the acceleration of probabilistic reward learning by emotion.

    Science.gov (United States)

    Watanabe, Noriya; Sakagami, Masamichi; Haruno, Masahiko

    2013-03-06

    Learning does not only depend on rationality, because real-life learning cannot be isolated from emotion or social factors. Therefore, it is intriguing to determine how emotion changes learning, and to identify which neural substrates underlie this interaction. Here, we show that the task-independent presentation of an emotional face before a reward-predicting cue increases the speed of cue-reward association learning in human subjects compared with trials in which a neutral face is presented. This phenomenon was attributable to an increase in the learning rate, which regulates reward prediction errors. Parallel to these behavioral findings, functional magnetic resonance imaging demonstrated that presentation of an emotional face enhanced reward prediction error (RPE) signal in the ventral striatum. In addition, we also found a functional link between this enhanced RPE signal and increased activity in the amygdala following presentation of an emotional face. Thus, this study revealed an acceleration of cue-reward association learning by emotion, and underscored a role of striatum-amygdala interactions in the modulation of the reward prediction errors by emotion.

  11. Accuracy Enhancement with Processing Error Prediction and Compensation of a CNC Flame Cutting Machine Used in Spatial Surface Operating Conditions

    Directory of Open Access Journals (Sweden)

    Shenghai Hu

    2017-04-01

    Full Text Available This study deals with the precision performance of the CNC flame-cutting machine used in spatial surface operating conditions and presents an accuracy enhancement method based on processing error modeling prediction and real-time compensation. Machining coordinate systems and transformation matrix models were established for the CNC flame processing system considering both geometric errors and thermal deformation effects. Meanwhile, prediction and compensation models were constructed related to the actual cutting situation. Focusing on the thermal deformation elements, finite element analysis was used to measure the testing data of thermal errors, the grey system theory was applied to optimize the key thermal points, and related thermal dynamics models were carried out to achieve high-precision prediction values. Comparison experiments between the proposed method and the teaching method were conducted on the processing system after performing calibration. The results showed that the proposed method is valid and the cutting quality could be improved by more than 30% relative to the teaching method. Furthermore, the proposed method can be used under any working condition by making a few adjustments to the prediction and compensation models.

  12. A novel risk score to predict cardiovascular disease risk in national populations (Globorisk)

    DEFF Research Database (Denmark)

    Hajifathalian, Kaveh; Ueda, Peter; Lu, Yuan

    2015-01-01

    BACKGROUND: Treatment of cardiovascular risk factors based on disease risk depends on valid risk prediction equations. We aimed to develop, and apply in example countries, a risk prediction equation for cardiovascular disease (consisting here of coronary heart disease and stroke) that can be reca...

  13. Drug response prediction in high-risk multiple myeloma

    DEFF Research Database (Denmark)

    Vangsted, A J; Helm-Petersen, S; Cowland, J B

    2018-01-01

    from high-risk patients by GEP70 at diagnosis from Total Therapy 2 and 3A to predict the response by the DRP score of drugs used in the treatment of myeloma patients. The DRP score stratified patients further. High-risk myeloma with a predicted sensitivity to melphalan by the DRP score had a prolonged...

  14. Risk stratification in upper gastrointestinal bleeding; prediction, prevention and prognosis

    NARCIS (Netherlands)

    de Groot, N.L.

    2013-01-01

    In the first part of this thesis we developed a novel prediction score for predicting upper gastrointestinal (GI) bleeding in both NSAID and low-dose aspirin users. Both for NSAIDs and low-dose aspirin use risk scores were developed by identifying the five most dominant predictors. The risk of upper

  15. Experiences with Lean Six Sigma as improvement strategy to reduce parenteral medication administration errors and associated potential risk of harm.

    Science.gov (United States)

    van de Plas, Afke; Slikkerveer, Mariëlle; Hoen, Saskia; Schrijnemakers, Rick; Driessen, Johanna; de Vries, Frank; van den Bemt, Patricia

    2017-01-01

    In this controlled before-after study the effect of improvements, derived from Lean Six Sigma strategy, on parenteral medication administration errors and the potential risk of harm was determined. During baseline measurement, on control versus intervention ward, at least one administration error occurred in 14 (74%) and 6 (46%) administrations with potential risk of harm in 6 (32%) and 1 (8%) administrations. Most administration errors with high potential risk of harm occurred in bolus injections: 8 (57%) versus 2 (67%) bolus injections were injected too fast with a potential risk of harm in 6 (43%) and 1 (33%) bolus injections on control and intervention ward. Implemented improvement strategies, based on major causes of too fast administration of bolus injections, were: Substitution of bolus injections by infusions, education, availability of administration information and drug round tabards. Post intervention, on the control ward in 76 (76%) administrations at least one error was made (RR 1.03; CI95:0.77-1.38), with a potential risk of harm in 14 (14%) administrations (RR 0.45; CI95:0.20-1.02). In 40 (68%) administrations on the intervention ward at least one error occurred (RR 1.47; CI95:0.80-2.71) but no administrations were associated with a potential risk of harm. A shift in wrong duration administration errors from bolus injections to infusions, with a reduction of potential risk of harm, seems to have occurred on the intervention ward. Although data are insufficient to prove an effect, Lean Six Sigma was experienced as a suitable strategy to select tailored improvements. Further studies are required to prove the effect of the strategy on parenteral medication administration errors.

  16. Minimising the expectation value of the procurement cost in electricity markets based on the prediction error of energy consumption

    OpenAIRE

    Yamaguchi, Naoya; Hori, Maiya; Ideguchi, Yoshinari

    2018-01-01

    In this paper, we formulate a method for minimising the expectation value of the procurement cost of electricity in two popular spot markets: {\\it day-ahead} and {\\it intra-day}, under the assumption that expectation value of unit prices and the distributions of prediction errors for the electricity demand traded in two markets are known. The expectation value of the total electricity cost is minimised over two parameters that change the amounts of electricity. Two parameters depend only on t...

  17. Real-time prediction of atmospheric Lagrangian coherent structures based on forecast data: An application and error analysis

    Science.gov (United States)

    BozorgMagham, Amir E.; Ross, Shane D.; Schmale, David G.

    2013-09-01

    The language of Lagrangian coherent structures (LCSs) provides a new means for studying transport and mixing of passive particles advected by an atmospheric flow field. Recent observations suggest that LCSs govern the large-scale atmospheric motion of airborne microorganisms, paving the way for more efficient models and management strategies for the spread of infectious diseases affecting plants, domestic animals, and humans. In addition, having reliable predictions of the timing of hyperbolic LCSs may contribute to improved aerobiological sampling of microorganisms with unmanned aerial vehicles and LCS-based early warning systems. Chaotic atmospheric dynamics lead to unavoidable forecasting errors in the wind velocity field, which compounds errors in LCS forecasting. In this study, we reveal the cumulative effects of errors of (short-term) wind field forecasts on the finite-time Lyapunov exponent (FTLE) fields and the associated LCSs when realistic forecast plans impose certain limits on the forecasting parameters. Objectives of this paper are to (a) quantify the accuracy of prediction of FTLE-LCS features and (b) determine the sensitivity of such predictions to forecasting parameters. Results indicate that forecasts of attracting LCSs exhibit less divergence from the archive-based LCSs than the repelling features. This result is important since attracting LCSs are the backbone of long-lived features in moving fluids. We also show under what circumstances one can trust the forecast results if one merely wants to know if an LCS passed over a region and does not need to precisely know the passage time.

  18. Predictability of cardiovascular risks by psychological measures

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Iva; Kebza, V.

    2008-01-01

    Roč. 23, č. 1 (2008), s. 241-241 ISSN 0887-0446 R&D Projects: GA ČR GA406/06/0747 Institutional research plan: CEZ:AV0Z70250504 Keywords : CVD risks * psychological measures * physiological risks Subject RIV: AN - Psychology

  19. Predicting risk of cancer during HIV infection

    DEFF Research Database (Denmark)

    Borges, Álvaro H; Silverberg, Michael J; Wentworth, Deborah

    2013-01-01

    To investigate the relationship between inflammatory [interleukin-6 (IL-6) and C-reactive protein (CRP)] and coagulation (D-dimer) biomarkers and cancer risk during HIV infection.......To investigate the relationship between inflammatory [interleukin-6 (IL-6) and C-reactive protein (CRP)] and coagulation (D-dimer) biomarkers and cancer risk during HIV infection....

  20. Prediction and error growth in the daily forecast of precipitation from ...

    Indian Academy of Sciences (India)

    J. Earth Syst. Sci. 125, No. 1, February ... various climate models (Shukla 1985; Savijarvi. 1994; Shukla and ... of view of the socio-economic impact perspective. The rate of error ..... bias over the Indian Ocean, cloud parameteriza- tion schemes ...

  1. The predictability of name pronunciation errors in four South African languages

    CSIR Research Space (South Africa)

    Kgampe, M

    2011-11-01

    Full Text Available of the the typical errors made by speakers from four South African languages (Setswana, English, isiZulu) when producing names from the same four languages. We compare these results with the pronunciations generated by four language-specific grapheme-to-phoneme (G2P...

  2. Individual Differences in Working Memory Capacity Predict Action Monitoring and the Error-Related Negativity

    Science.gov (United States)

    Miller, A. Eve; Watson, Jason M.; Strayer, David L.

    2012-01-01

    Neuroscience suggests that the anterior cingulate cortex (ACC) is responsible for conflict monitoring and the detection of errors in cognitive tasks, thereby contributing to the implementation of attentional control. Though individual differences in frontally mediated goal maintenance have clearly been shown to influence outward behavior in…

  3. Global Variance Risk Premium and Forex Return Predictability

    OpenAIRE

    Aloosh, Arash

    2014-01-01

    In a long-run risk model with stochastic volatility and frictionless markets, I express expected forex returns as a function of consumption growth variances and stock variance risk premiums (VRPs)—the difference between the risk-neutral and statistical expectations of market return variation. This provides a motivation for using the forward-looking information available in stock market volatility indices to predict forex returns. Empirically, I find that stock VRPs predict forex returns at a ...

  4. Risk Prediction Model for Severe Postoperative Complication in Bariatric Surgery.

    Science.gov (United States)

    Stenberg, Erik; Cao, Yang; Szabo, Eva; Näslund, Erik; Näslund, Ingmar; Ottosson, Johan

    2018-01-12

    Factors associated with risk for adverse outcome are important considerations in the preoperative assessment of patients for bariatric surgery. As yet, prediction models based on preoperative risk factors have not been able to predict adverse outcome sufficiently. This study aimed to identify preoperative risk factors and to construct a risk prediction model based on these. Patients who underwent a bariatric surgical procedure in Sweden between 2010 and 2014 were identified from the Scandinavian Obesity Surgery Registry (SOReg). Associations between preoperative potential risk factors and severe postoperative complications were analysed using a logistic regression model. A multivariate model for risk prediction was created and validated in the SOReg for patients who underwent bariatric surgery in Sweden, 2015. Revision surgery (standardized OR 1.19, 95% confidence interval (CI) 1.14-0.24, p prediction model. Despite high specificity, the sensitivity of the model was low. Revision surgery, high age, low BMI, large waist circumference, and dyspepsia/GERD were associated with an increased risk for severe postoperative complication. The prediction model based on these factors, however, had a sensitivity that was too low to predict risk in the individual patient case.

  5. Risk factors for refractive errors in primary school children (6-12 years old) in Nakhon Pathom Province.

    Science.gov (United States)

    Yingyong, Penpimol

    2010-11-01

    Refractive error is one of the leading causes of visual impairment in children. An analysis of risk factors for refractive error is required to reduce and prevent this common eye disease. To identify the risk factors associated with refractive errors in primary school children (6-12 year old) in Nakhon Pathom province. A population-based cross-sectional analytic study was conducted between October 2008 and September 2009 in Nakhon Pathom. Refractive error, parental refractive status, and hours per week of near activities (studying, reading books, watching television, playing with video games, or working on the computer) were assessed in 377 children who participated in this study. The most common type of refractive error in primary school children was myopia. Myopic children were more likely to have parents with myopia. Children with myopia spend more time at near activities. The multivariate odds ratio (95% confidence interval)for two myopic parents was 6.37 (2.26-17.78) and for each diopter-hour per week of near work was 1.019 (1.005-1.033). Multivariate logistic regression models show no confounding effects between parental myopia and near work suggesting that each factor has an independent association with myopia. Statistical analysis by logistic regression revealed that family history of refractive error and hours of near-work were significantly associated with refractive error in primary school children.

  6. Predictive risk factors for persistent postherniotomy pain

    DEFF Research Database (Denmark)

    Aasvang, Eske K; Gmaehle, Eliza; Hansen, Jeanette B

    2010-01-01

    BACKGROUND: Persistent postherniotomy pain (PPP) affects everyday activities in 5-10% of patients. Identification of predisposing factors may help to identify the risk groups and guide anesthetic or surgical procedures in reducing risk for PPP. METHODS: A prospective study was conducted in 464...... patients undergoing open or laparoscopic transabdominal preperitoneal elective groin hernia repair. Primary outcome was identification of risk factors for substantial pain-related functional impairment at 6 months postoperatively assessed by the validated Activity Assessment Scale (AAS). Data on potential...... risk factors for PPP were collected preoperatively (pain from the groin hernia, preoperative AAS score, pain from other body regions, and psychometric assessment). Pain scores were collected on days 7 and 30 postoperatively. Sensory functions including pain response to tonic heat stimulation were...

  7. Lipoprotein metabolism indicators improve cardiovascular risk prediction

    NARCIS (Netherlands)

    Schalkwijk, D.B. van; Graaf, A.A. de; Tsivtsivadze, E.; Parnell, L.D.; Werff-van der Vat, B.J.C. van der; Ommen, B. van; Greef, J. van der; Ordovás, J.M.

    2014-01-01

    Background: Cardiovascular disease risk increases when lipoprotein metabolism is dysfunctional. We have developed a computational model able to derive indicators of lipoprotein production, lipolysis, and uptake processes from a single lipoprotein profile measurement. This is the first study to

  8. Develop mental dyslexia: predicting individual risk

    OpenAIRE

    Thompson, PA; Hulme, C; Nash, HM; Gooch, Deborah; Hayiou-Thomas, E; Snowling, MJ

    2015-01-01

    Background Causal theories of dyslexia suggest that it is a heritable disorder, which is the outcome of multiple risk factors. However, whether early screening for dyslexia is viable is not yet known. Methods The study followed children at high risk of dyslexia from preschool through the early primary years assessing them from age 3 years and 6 months (T1) at approximately annual intervals on tasks tapping cognitive, language, and executive-motor skills. The children were recruited...

  9. Calibration plots for risk prediction models in the presence of competing risks

    DEFF Research Database (Denmark)

    Gerds, Thomas A; Andersen, Per K; Kattan, Michael W

    2014-01-01

    A predicted risk of 17% can be called reliable if it can be expected that the event will occur to about 17 of 100 patients who all received a predicted risk of 17%. Statistical models can predict the absolute risk of an event such as cardiovascular death in the presence of competing risks...... prediction model is well calibrated. The first is lack of independent validation data, the second is right censoring, and the third is that when the risk scale is continuous, the estimation problem is as difficult as density estimation. To deal with these problems, we propose to estimate calibration curves...

  10. Error associated with model predictions of wildland fire rate of spread

    Science.gov (United States)

    Miguel G. Cruz; Martin E. Alexander

    2015-01-01

    How well can we expect to predict the spread rate of wildfires and prescribed fires? The degree of accuracy in model predictions of wildland fire behaviour characteristics are dependent on the model's applicability to a given situation, the validity of the model's relationships, and the reliability of the model input data (Alexander and Cruz 2013b#. We...

  11. Human Error Prediction and Countermeasures based on CREAM in Loading and Storage Phase of Spent Nuclear Fuel (SNF)

    International Nuclear Information System (INIS)

    Kim, Jae San; Kim, Min Su; Jo, Seong Youn

    2007-01-01

    With the steady demands for nuclear power energy in Korea, the amount of accumulated SNF has inevitably increased year by year. Thus far, SNF has been on-site transported from one unit to a nearby unit or an on-site dry storage facility. In the near future, as the amount of SNF generated approaches the capacity of these facilities, a percentage of it will be transported to another SNF storage facility. In the process of transporting SNF, human interactions involve inspecting and preparing the cask and spent fuel, loading the cask, transferring the cask and storage or monitoring the cask, etc. So, human actions play a significant role in SNF transportation. In analyzing incidents that have occurred during transport operations, several recent studies have indicated that 'human error' is a primary cause. Therefore, the objectives of this study are to predict and identify possible human errors during the loading and storage of SNF. Furthermore, after evaluating human error for each process, countermeasures to minimize human error are deduced

  12. An Empirical Analysis for the Prediction of a Financial Crisis in Turkey through the Use of Forecast Error Measures

    Directory of Open Access Journals (Sweden)

    Seyma Caliskan Cavdar

    2015-08-01

    Full Text Available In this study, we try to examine whether the forecast errors obtained by the ANN models affect the breakout of financial crises. Additionally, we try to investigate how much the asymmetric information and forecast errors are reflected on the output values. In our study, we used the exchange rate of USD/TRY (USD, the Borsa Istanbul 100 Index (BIST, and gold price (GP as our output variables of our Artificial Neural Network (ANN models. We observe that the predicted ANN model has a strong explanation capability for the 2001 and 2008 crises. Our calculations of some symmetry measures such as mean absolute percentage error (MAPE, symmetric mean absolute percentage error (sMAPE, and Shannon entropy (SE, clearly demonstrate the degree of asymmetric information and the deterioration of the financial system prior to, during, and after the financial crisis. We found that the asymmetric information prior to crisis is larger as compared to other periods. This situation can be interpreted as early warning signals before the potential crises. This evidence seems to favor an asymmetric information view of financial crises.

  13. Water erosion risk prediction in eucalyptus plantations

    Directory of Open Access Journals (Sweden)

    Mayesse Aparecida da Silva

    2014-04-01

    Full Text Available Eucalyptus plantations are normally found in vulnerable ecosystems such as steep slope, soil with low natural fertility and lands that were degraded by agriculture. The objective of this study was to obtain Universal Soil Loss Equation (USLE factors and use them to estimate water erosion risk in regions with eucalyptus planted. The USLE factors were obtained in field plots under natural rainfall in the Rio Doce Basin, MG, Brazil, and the model applied to assess erosion risk using USLE in a Geographic Information System. The study area showed rainfall-runoff erosivity values from 10,721 to 10,642 MJ mm ha-1 h-1 yr-1. Some soils (Latosols had very low erodibility values (2.0 x 10-4 and 1.0 x 10-4t h MJ-1 mm-1, the topographic factor ranged from 0.03 to 10.57 and crop and management factor values obtained for native forest, eucalyptus and planted pasture were 0.09, 0.12 and 0.22, respectively. Water erosion risk estimates for current land use indicated that the areas where should receive more attention were mainly areas with greater topographic factors and those with Cambisols. Planning of forestry activities in this region should consider implementation of other conservation practices beyond those already used, reducing areas with a greater risk of soil erosion and increasing areas with very low risk.

  14. The predicted CLARREO sampling error of the inter-annual SW variability

    Science.gov (United States)

    Doelling, D. R.; Keyes, D. F.; Nguyen, C.; Macdonnell, D.; Young, D. F.

    2009-12-01

    The NRC Decadal Survey has called for SI traceability of long-term hyper-spectral flux measurements in order to monitor climate variability. This mission is called the Climate Absolute Radiance and Refractivity Observatory (CLARREO) and is currently defining its mission requirements. The requirements are focused on the ability to measure decadal change of key climate variables at very high accuracy. The accuracy goals are set using anticipated climate change magnitudes, but the accuracy achieved for any given climate variable must take into account the temporal and spatial sampling errors based on satellite orbits and calibration accuracy. The time period to detect a significant trend in the CLARREO record depends on the magnitude of the sampling calibration errors relative to the current inter-annual variability. The largest uncertainty in climate feedbacks remains the effect of changing clouds on planetary energy balance. Some regions on earth have strong diurnal cycles, such as maritime stratus and afternoon land convection; other regions have strong seasonal cycles, such as the monsoon. However, when monitoring inter-annual variability these cycles are only important if the strength of these cycles vary on decadal time scales. This study will attempt to determine the best satellite constellations to reduce sampling error and to compare the error with the current inter-annual variability signal to ensure the viability of the mission. The study will incorporate Clouds and the Earth's Radiant Energy System (CERES) (Monthly TOA/Surface Averages) SRBAVG product TOA LW and SW climate quality fluxes. The fluxes are derived by combining Terra (10:30 local equator crossing time) CERES fluxes with 3-hourly 5-geostationary satellite estimated broadband fluxes, which are normalized using the CERES fluxes, to complete the diurnal cycle. These fluxes were saved hourly during processing and considered the truth dataset. 90°, 83° and 74° inclination precessionary orbits as

  15. Spatial measurement error and correction by spatial SIMEX in linear regression models when using predicted air pollution exposures.

    Science.gov (United States)

    Alexeeff, Stacey E; Carroll, Raymond J; Coull, Brent

    2016-04-01

    Spatial modeling of air pollution exposures is widespread in air pollution epidemiology research as a way to improve exposure assessment. However, there are key sources of exposure model uncertainty when air pollution is modeled, including estimation error and model misspecification. We examine the use of predicted air pollution levels in linear health effect models under a measurement error framework. For the prediction of air pollution exposures, we consider a universal Kriging framework, which may include land-use regression terms in the mean function and a spatial covariance structure for the residuals. We derive the bias induced by estimation error and by model misspecification in the exposure model, and we find that a misspecified exposure model can induce asymptotic bias in the effect estimate of air pollution on health. We propose a new spatial simulation extrapolation (SIMEX) procedure, and we demonstrate that the procedure has good performance in correcting this asymptotic bias. We illustrate spatial SIMEX in a study of air pollution and birthweight in Massachusetts. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Predicting risk and the emergence of schizophrenia.

    LENUS (Irish Health Repository)

    Clarke, Mary C

    2012-09-01

    This article gives an overview of genetic and environmental risk factors for schizophrenia. The presence of certain molecular, biological, and psychosocial factors at certain points in the life span, has been linked to later development of schizophrenia. All need to be considered in the context of schizophrenia as a lifelong brain disorder. Research interest in schizophrenia is shifting to late childhood\\/early adolescence for screening and preventative measures. This article discusses those environmental risk factors for schizophrenia for which there is the largest evidence base.

  17. Dorsal Anterior Cingulate Cortices Differentially Lateralize Prediction Errors and Outcome Valence in a Decision-Making Task

    Directory of Open Access Journals (Sweden)

    Alexander R. Weiss

    2018-05-01

    Full Text Available The dorsal anterior cingulate cortex (dACC is proposed to facilitate learning by signaling mismatches between the expected outcome of decisions and the actual outcomes in the form of prediction errors. The dACC is also proposed to discriminate outcome valence—whether a result has positive (either expected or desirable or negative (either unexpected or undesirable value. However, direct electrophysiological recordings from human dACC to validate these separate, but integrated, dimensions have not been previously performed. We hypothesized that local field potentials (LFPs would reveal changes in the dACC related to prediction error and valence and used the unique opportunity offered by deep brain stimulation (DBS surgery in the dACC of three human subjects to test this hypothesis. We used a cognitive task that involved the presentation of object pairs, a motor response, and audiovisual feedback to guide future object selection choices. The dACC displayed distinctly lateralized theta frequency (3–8 Hz event-related potential responses—the left hemisphere dACC signaled outcome valence and prediction errors while the right hemisphere dACC was involved in prediction formation. Multivariate analyses provided evidence that the human dACC response to decision outcomes reflects two spatiotemporally distinct early and late systems that are consistent with both our lateralized electrophysiological results and the involvement of the theta frequency oscillatory activity in dACC cognitive processing. Further findings suggested that dACC does not respond to other phases of action-outcome-feedback tasks such as the motor response which supports the notion that dACC primarily signals information that is crucial for behavioral monitoring and not for motor control.

  18. Operator errors

    International Nuclear Information System (INIS)

    Knuefer; Lindauer

    1980-01-01

    Besides that at spectacular events a combination of component failure and human error is often found. Especially the Rasmussen-Report and the German Risk Assessment Study show for pressurised water reactors that human error must not be underestimated. Although operator errors as a form of human error can never be eliminated entirely, they can be minimized and their effects kept within acceptable limits if a thorough training of personnel is combined with an adequate design of the plant against accidents. Contrary to the investigation of engineering errors, the investigation of human errors has so far been carried out with relatively small budgets. Intensified investigations in this field appear to be a worthwhile effort. (orig.)

  19. Risk assessment methodologies for predicting phosphorus losses

    NARCIS (Netherlands)

    Schoumans, O.F.; Chardon, W.J.

    2003-01-01

    Risk assessment parameters are needed to assess the contribution of phosphorus (P) losses from soil to surface water, and the effectiveness of nutrient and land management strategies for the reduction of P loss. These parameters need to take into account the large temporal and spatial variation in P

  20. Risk prediction model: Statistical and artificial neural network approach

    Science.gov (United States)

    Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim

    2017-04-01

    Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.

  1. Prediction of Banking Systemic Risk Based on Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Shouwei Li

    2013-01-01

    Full Text Available Banking systemic risk is a complex nonlinear phenomenon and has shed light on the importance of safeguarding financial stability by recent financial crisis. According to the complex nonlinear characteristics of banking systemic risk, in this paper we apply support vector machine (SVM to the prediction of banking systemic risk in an attempt to suggest a new model with better explanatory power and stability. We conduct a case study of an SVM-based prediction model for Chinese banking systemic risk and find the experiment results showing that support vector machine is an efficient method in such case.

  2. Predicting crystalline lens fall caused by accommodation from changes in wavefront error

    Science.gov (United States)

    He, Lin; Applegate, Raymond A.

    2011-01-01

    PURPOSE To illustrate and develop a method for estimating crystalline lens decentration as a function of accommodative response using changes in wavefront error and show the method and limitations using previously published data (2004) from 2 iridectomized monkey eyes so that clinicians understand how spherical aberration can induce coma, in particular in intraocular lens surgery. SETTINGS College of Optometry, University of Houston, Houston, USA. DESIGN Evaluation of diagnostic test or technology. METHODS Lens decentration was estimated by displacing downward the wavefront error of the lens with respect to the limiting aperture (7.0 mm) and ocular first surface wavefront error for each accommodative response (0.00 to 11.00 diopters) until measured values of vertical coma matched previously published experimental data (2007). Lens decentration was also calculated using an approximation formula that only included spherical aberration and vertical coma. RESULTS The change in calculated vertical coma was consistent with downward lens decentration. Calculated downward lens decentration peaked at approximately 0.48 mm of vertical decentration in the right eye and approximately 0.31 mm of decentration in the left eye using all Zernike modes through the 7th radial order. Calculated lens decentration using only coma and spherical aberration formulas was peaked at approximately 0.45 mm in the right eye and approximately 0.23 mm in the left eye. CONCLUSIONS Lens fall as a function of accommodation was quantified noninvasively using changes in vertical coma driven principally by the accommodation-induced changes in spherical aberration. The newly developed method was valid for a large pupil only. PMID:21700108

  3. Numerical Predictions of Static-Pressure-Error Corrections for a Modified T-38C Aircraft

    Science.gov (United States)

    2014-12-15

    but the more modern work of Latif et al . [11] demonstrated that compensated Pitot-static probes can be simulated accurately for subsonic and...what was originally estimated from CFD simulations in Bhamidipati et al . [3] by extracting the static-pressure error in front of the production probe...Aerodynamically Compensating Pitot Tube,” Journal of Aircraft, Vol. 25, No. 6, 1988, pp. 544–547. doi:10.2514/3.45620 [11] Latif , A., Masud, J., Sheikh, S. R., and

  4. Elderly fall risk prediction using static posturography

    OpenAIRE

    Howcroft, Jennifer; Lemaire, Edward D.; Kofman, Jonathan; McIlroy, William E.

    2017-01-01

    Maintaining and controlling postural balance is important for activities of daily living, with poor postural balance being predictive of future falls. This study investigated eyes open and eyes closed standing posturography with elderly adults to identify differences and determine appropriate outcome measure cut-off scores for prospective faller, single-faller, multi-faller, and non-faller classifications. 100 older adults (75.5 ± 6.7 years) stood quietly with eyes open and then eyes closed w...

  5. Straight line fitting and predictions: On a marginal likelihood approach to linear regression and errors-in-variables models

    Science.gov (United States)

    Christiansen, Bo

    2015-04-01

    Linear regression methods are without doubt the most used approaches to describe and predict data in the physical sciences. They are often good first order approximations and they are in general easier to apply and interpret than more advanced methods. However, even the properties of univariate regression can lead to debate over the appropriateness of various models as witnessed by the recent discussion about climate reconstruction methods. Before linear regression is applied important choices have to be made regarding the origins of the noise terms and regarding which of the two variables under consideration that should be treated as the independent variable. These decisions are often not easy to make but they may have a considerable impact on the results. We seek to give a unified probabilistic - Bayesian with flat priors - treatment of univariate linear regression and prediction by taking, as starting point, the general errors-in-variables model (Christiansen, J. Clim., 27, 2014-2031, 2014). Other versions of linear regression can be obtained as limits of this model. We derive the likelihood of the model parameters and predictands of the general errors-in-variables model by marginalizing over the nuisance parameters. The resulting likelihood is relatively simple and easy to analyze and calculate. The well known unidentifiability of the errors-in-variables model is manifested as the absence of a well-defined maximum in the likelihood. However, this does not mean that probabilistic inference can not be made; the marginal likelihoods of model parameters and the predictands have, in general, well-defined maxima. We also include a probabilistic version of classical calibration and show how it is related to the errors-in-variables model. The results are illustrated by an example from the coupling between the lower stratosphere and the troposphere in the Northern Hemisphere winter.

  6. Optimal classifier selection and negative bias in error rate estimation: an empirical study on high-dimensional prediction

    Directory of Open Access Journals (Sweden)

    Boulesteix Anne-Laure

    2009-12-01

    Full Text Available Abstract Background In biometric practice, researchers often apply a large number of different methods in a "trial-and-error" strategy to get as much as possible out of their data and, due to publication pressure or pressure from the consulting customer, present only the most favorable results. This strategy may induce a substantial optimistic bias in prediction error estimation, which is quantitatively assessed in the present manuscript. The focus of our work is on class prediction based on high-dimensional data (e.g. microarray data, since such analyses are particularly exposed to this kind of bias. Methods In our study we consider a total of 124 variants of classifiers (possibly including variable selection or tuning steps within a cross-validation evaluation scheme. The classifiers are applied to original and modified real microarray data sets, some of which are obtained by randomly permuting the class labels to mimic non-informative predictors while preserving their correlation structure. Results We assess the minimal misclassification rate over the different variants of classifiers in order to quantify the bias arising when the optimal classifier is selected a posteriori in a data-driven manner. The bias resulting from the parameter tuning (including gene selection parameters as a special case and the bias resulting from the choice of the classification method are examined both separately and jointly. Conclusions The median minimal error rate over the investigated classifiers was as low as 31% and 41% based on permuted uninformative predictors from studies on colon cancer and prostate cancer, respectively. We conclude that the strategy to present only the optimal result is not acceptable because it yields a substantial bias in error rate estimation, and suggest alternative approaches for properly reporting classification accuracy.

  7. A national prediction model for PM2.5 component exposures and measurement error-corrected health effect inference.

    Science.gov (United States)

    Bergen, Silas; Sheppard, Lianne; Sampson, Paul D; Kim, Sun-Young; Richards, Mark; Vedal, Sverre; Kaufman, Joel D; Szpiro, Adam A

    2013-09-01

    Studies estimating health effects of long-term air pollution exposure often use a two-stage approach: building exposure models to assign individual-level exposures, which are then used in regression analyses. This requires accurate exposure modeling and careful treatment of exposure measurement error. To illustrate the importance of accounting for exposure model characteristics in two-stage air pollution studies, we considered a case study based on data from the Multi-Ethnic Study of Atherosclerosis (MESA). We built national spatial exposure models that used partial least squares and universal kriging to estimate annual average concentrations of four PM2.5 components: elemental carbon (EC), organic carbon (OC), silicon (Si), and sulfur (S). We predicted PM2.5 component exposures for the MESA cohort and estimated cross-sectional associations with carotid intima-media thickness (CIMT), adjusting for subject-specific covariates. We corrected for measurement error using recently developed methods that account for the spatial structure of predicted exposures. Our models performed well, with cross-validated R2 values ranging from 0.62 to 0.95. Naïve analyses that did not account for measurement error indicated statistically significant associations between CIMT and exposure to OC, Si, and S. EC and OC exhibited little spatial correlation, and the corrected inference was unchanged from the naïve analysis. The Si and S exposure surfaces displayed notable spatial correlation, resulting in corrected confidence intervals (CIs) that were 50% wider than the naïve CIs, but that were still statistically significant. The impact of correcting for measurement error on health effect inference is concordant with the degree of spatial correlation in the exposure surfaces. Exposure model characteristics must be considered when performing two-stage air pollution epidemiologic analyses because naïve health effect inference may be inappropriate.

  8. Does the Risk Assessment and Prediction Tool Predict Discharge Disposition After Joint Replacement?

    DEFF Research Database (Denmark)

    Hansen, Viktor J.; Gromov, Kirill; Lebrun, Lauren M

    2015-01-01

    BACKGROUND: Payers of health services and policymakers place a major focus on cost containment in health care. Studies have shown that early planning of discharge is essential in reducing length of stay and achieving financial benefit; tools that can help predict discharge disposition would...... populations is unknown. A low RAPT score is reported to indicate a high risk of needing any form of inpatient rehabilitation after TJA, including short-term nursing facilities. QUESTIONS/PURPOSES: This study attempts (1) to assess predictive accuracy of the RAPT on US patients undergoing total hip and knee....... Based on our findings, the risk categories in our populations should be high risk intermediate risk 7 to 10, and low risk > 10. CONCLUSIONS: The RAPT accurately predicted discharge disposition for high- and low-risk patients in our cohort. Based on our data, intermediate-risk patients should...

  9. Analysis of errors introduced by geographic coordinate systems on weather numeric prediction modeling

    Directory of Open Access Journals (Sweden)

    Y. Cao

    2017-09-01

    Full Text Available Most atmospheric models, including the Weather Research and Forecasting (WRF model, use a spherical geographic coordinate system to internally represent input data and perform computations. However, most geographic information system (GIS input data used by the models are based on a spheroid datum because it better represents the actual geometry of the earth. WRF and other atmospheric models use these GIS input layers as if they were in a spherical coordinate system without accounting for the difference in datum. When GIS layers are not properly reprojected, latitudinal errors of up to 21 km in the midlatitudes are introduced. Recent studies have suggested that for very high-resolution applications, the difference in datum in the GIS input data (e.g., terrain land use, orography should be taken into account. However, the magnitude of errors introduced by the difference in coordinate systems remains unclear. This research quantifies the effect of using a spherical vs. a spheroid datum for the input GIS layers used by WRF to study greenhouse gas transport and dispersion in northeast Pennsylvania.

  10. Efficient thermal error prediction in a machine tool using finite element analysis

    International Nuclear Information System (INIS)

    Mian, Naeem S; Fletcher, Simon; Longstaff, Andrew P; Myers, Alan

    2011-01-01

    Thermally induced errors have a major significance on the positional accuracy of a machine tool. Heat generated during the machining process produces thermal gradients that flow through the machine structure causing linear and nonlinear thermal expansions and distortions of associated complex discrete structures, producing deformations that adversely affect structural stability. The heat passes through structural linkages and mechanical joints where interfacial parameters such as the roughness and form of the contacting surfaces affect the thermal resistance and thus the heat transfer coefficients. This paper presents a novel offline technique using finite element analysis (FEA) to simulate the effects of the major internal heat sources such as bearings, motors and belt drives of a small vertical milling machine (VMC) and the effects of ambient temperature pockets that build up during the machine operation. Simplified models of the machine have been created offline using FEA software and evaluated experimental results applied for offline thermal behaviour simulation of the full machine structure. The FEA simulated results are in close agreement with the experimental results ranging from 65% to 90% for a variety of testing regimes and revealed a maximum error range of 70 µm reduced to less than 10 µm

  11. Do natural methods for fertility regulation increase the risks of genetic errors?

    Science.gov (United States)

    Serra, A

    1981-09-01

    Genetic errors of many kinds are connected with the reproductive processes and are favored by a nunber of largely uncontrollable, endogenous, and/or exogenous factors. For a long time human beings have taken into their own hands the control of this process. The regulation of fertility is clearly a forceful request to any family, to any community, were it only to lower the level of the consequences of genetic errors. In connection with this request, and in the context of the Congress for the Family of Africa and Europe (Catholic University, January 1981), 1 question must still be raised and possibly answered. The question is: do or can the so called "natural methods" for the regulation of fertility increase the risks of genetic errors with their generally dramatic effects on families and on communities. It is important to try to give as far as possible a scientifically based answer to this question. Fr. Haring, a moral theologian, citing scientific evidence finds it shocking that the rhythm method, so strongly and recently endorsed again by Church authorities, should be classified among the means of "birth control" by way of spontaneous abortion or at least by spontaneous loss of a large number of zygotes which, due to the concrete application of the rhythm method, lack of necessary vitality for survival. He goes on to state that the scientific research provides overwhelming evidence that the rhythm method in its traditional form is responsible for a disproportionate waste of zygotes and a disproportionate frequency of spontaneous abortions and a defective childern. Professor Hilgers, a reproductive physiologist, takes on opposite view, maintaining that the hypotheses are arbitrary and the alarm false. The strongest evidence upon which Fr. Haring bases his moral principles about the use of the natural methods of fertility regulation is a paper by Guerrero and Rojos (1975). These authors examined, retrospectively, the success of 965 pregnancies which occurred in

  12. A simple solution for model comparison in bold imaging: the special case of reward prediction error and reward outcomes.

    Science.gov (United States)

    Erdeniz, Burak; Rohe, Tim; Done, John; Seidler, Rachael D

    2013-01-01

    Conventional neuroimaging techniques provide information about condition-related changes of the BOLD (blood-oxygen-level dependent) signal, indicating only where and when the underlying cognitive processes occur. Recently, with the help of a new approach called "model-based" functional neuroimaging (fMRI), researchers are able to visualize changes in the internal variables of a time varying learning process, such as the reward prediction error or the predicted reward value of a conditional stimulus. However, despite being extremely beneficial to the imaging community in understanding the neural correlates of decision variables, a model-based approach to brain imaging data is also methodologically challenging due to the multicollinearity problem in statistical analysis. There are multiple sources of multicollinearity in functional neuroimaging including investigations of closely related variables and/or experimental designs that do not account for this. The source of multicollinearity discussed in this paper occurs due to correlation between different subjective variables that are calculated very close in time. Here, we review methodological approaches to analyzing such data by discussing the special case of separating the reward prediction error signal from reward outcomes.

  13. Risk factors for medication errors in the electronic and manual prescription.

    Science.gov (United States)

    Volpe, Cris Renata Grou; Melo, Eveline Maria Magalhães de; Aguiar, Lucas Barbosa de; Pinho, Diana Lúcia Moura; Stival, Marina Morato

    2016-08-08

    to compare electronic and manual prescriptions of a public hospital of Brasilia, identifying risk factors for the occurrence of medication errors. descriptive-exploratory, comparative and retrospective study. Data collection occurred from July 2012 to January 2013, using an instrument for the review of the information contained in medical records related to the medication process. A total of 190 manual and 199 electronic records composed the sample, with 2027 prescriptions each. compared to the manual prescription, a significant reduction was observed in the risk factors after implantation of the electronic prescription, in items such as "lack of the form of dilution" (71.1% to 22.3%) and "prescription with brand name" (99.5% to 31.5%). Conversely, the risk factors "no check" and "lack of CRM of the prescriber" increased. The lack of the allergy registration and the occurrences related to medication were the same for both groups. generally, the use of the electronic prescription system was associated with a significant reduction in risk factors for medication errors, concerning the following aspects: illegibility, prescription with brand name and presence of essential items that provide a safe and effective prescription. comparar as prescrições eletrônicas e manuais de um hospital público do Distrito Federal, identificando os fatores de risco para ocorrência de erros de medicação. Estudo descritivo-exploratório, comparativo e retrospectivo. A coleta de dados ocorreu no período de julho de 2012 a janeiro de 2013, através de instrumento para revisão das informações referentes ao processo de medicação contidas em prontuários. Integraram a amostra 190 prontuários manuais e 199 eletrônicos, com 2027 prescrições cada. na comparação com a prescrição manual, observou-se redução significativa dos fatores de risco após implantação da eletrônica, em itens como "falta da forma de diluição" (71,1% e 22,3%) e "prescrição com nome comercial" (99

  14. PREDICTION OF SURGICAL TREATMENT WITH POUR PERITONITIS QUANTIFYING RISK FACTORS

    Directory of Open Access Journals (Sweden)

    І. К. Churpiy

    2012-11-01

    Full Text Available Explored the possibility of quantitative assessment of risk factors of complications in the treatment of diffuse peritonitis. Highlighted 53 groups of features that are important in predicting the course of diffuse peritonitis. The proposed scheme of defining the risk of clinical course of diffuse peritonitis can quantify the severity of the source of patients and in most cases correctly predict the results of treatment of disease.

  15. Predicting child maltreatment: A meta-analysis of the predictive validity of risk assessment instruments.

    Science.gov (United States)

    van der Put, Claudia E; Assink, Mark; Boekhout van Solinge, Noëlle F

    2017-11-01

    Risk assessment is crucial in preventing child maltreatment since it can identify high-risk cases in need of child protection intervention. Despite widespread use of risk assessment instruments in child welfare, it is unknown how well these instruments predict maltreatment and what instrument characteristics are associated with higher levels of predictive validity. Therefore, a multilevel meta-analysis was conducted to examine the predictive accuracy of (characteristics of) risk assessment instruments. A literature search yielded 30 independent studies (N=87,329) examining the predictive validity of 27 different risk assessment instruments. From these studies, 67 effect sizes could be extracted. Overall, a medium significant effect was found (AUC=0.681), indicating a moderate predictive accuracy. Moderator analyses revealed that onset of maltreatment can be better predicted than recurrence of maltreatment, which is a promising finding for early detection and prevention of child maltreatment. In addition, actuarial instruments were found to outperform clinical instruments. To bring risk and needs assessment in child welfare to a higher level, actuarial instruments should be further developed and strengthened by distinguishing risk assessment from needs assessment and by integrating risk assessment with case management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Error Concealment Method Based on Motion Vector Prediction Using Particle Filters

    Directory of Open Access Journals (Sweden)

    B. Hrusovsky

    2011-09-01

    Full Text Available Video transmitted over unreliable environment, such as wireless channel or in generally any network with unreliable transport protocol, is facing the losses of video packets due to network congestion and different kind of noises. The problem is becoming more important using highly effective video codecs. Visual quality degradation could propagate into subsequent frames due to redundancy elimination in order to obtain high compression ratio. Since the video stream transmission in real time is limited by transmission channel delay, it is not possible to retransmit all faulty or lost packets. It is therefore inevitable to conceal these defects. To reduce the undesirable effects of information losses, the lost data is usually estimated from the received data, which is generally known as error concealment problem. This paper discusses packet loss modeling in order to simulate losses during video transmission, packet losses analysis and their impacts on the motion vectors losses.

  17. Conclusive meta-analyses on antenatal magnesium may be inconclusive! Are we underestimating the risk of random error?

    DEFF Research Database (Denmark)

    Brok, Jesper; Huusom, Lene D; Thorlund, Kristian

    2012-01-01

    Results from meta-analyses significantly influence clinical practice. Both simulation and empirical studies have demonstrated that the risk of random error (i.e. spurious chance findings) in meta-analyses is much higher than previously anticipated. Hence, authors and users of systematic reviews a...... about the investigated intervention effect(s). We outline the rationale for conducting trial sequential analysis including some examples of the meta-analysis on antenatal magnesium for women at risk of preterm birth....

  18. Prevalence and risk factors of undercorrected refractive errors among Singaporean Malay adults: the Singapore Malay Eye Study.

    Science.gov (United States)

    Rosman, Mohamad; Wong, Tien Y; Tay, Wan-Ting; Tong, Louis; Saw, Seang-Mei

    2009-08-01

    To describe the prevalence and the risk factors of undercorrected refractive error in an adult urban Malay population. This population-based, cross-sectional study was conducted in Singapore in 3280 Malay adults, aged 40 to 80 years. All individuals were examined at a centralized clinic and underwent standardized interviews and assessment of refractive errors and presenting and best corrected visual acuities. Distance presenting visual acuity was monocularly measured by using a logarithm of the minimum angle of resolution (logMAR) number chart at a distance of 4 m, with the participants wearing their "walk-in" optical corrections (spectacles or contact lenses), if any. Refraction was determined by subjective refraction by trained, certified study optometrists. Best corrected visual acuity was monocularly assessed and recorded in logMAR scores using the same test protocol as was used for presenting visual acuity. Undercorrected refractive error was defined as an improvement of at least 0.2 logMAR (2 lines equivalent) in the best corrected visual acuity compared with the presenting visual acuity in the better eye. The mean age of the subjects included in our study was 58 +/- 11 years, and 52% of the subjects were women. The prevalence rate of undercorrected refractive error among Singaporean Malay adults in our study (n = 3115) was 20.4% (age-standardized prevalence rate, 18.3%). More of the women had undercorrected refractive error than the men (21.8% vs. 18.8%, P = 0.04). Undercorrected refractive error was also more common in subjects older than 50 years than in subjects aged 40 to 49 years (22.6% vs. 14.3%, P Malay adults with refractive errors was higher than that of the Singaporean Chinese adults with refractive errors. Undercorrected refractive error is a significant cause of correctable visual impairment among Singaporean Malay adults, affecting one in five persons.

  19. Obesity Risk Prediction among Women of Upper Egypt: The impact ...

    African Journals Online (AJOL)

    Obesity Risk Prediction among Women of Upper Egypt: The impact of FTO ... with increased obesity risk but there is a lack of association with diabetes. ... (as certain foods or gene therapy) will prevent the percentage of women who is affected ...

  20. [Medication reconciliation errors according to patient risk and type of physician prescriber identified by prescribing tool used].

    Science.gov (United States)

    Bilbao Gómez-Martino, Cristina; Nieto Sánchez, Ángel; Fernández Pérez, Cristina; Borrego Hernando, Mª Isabel; Martín-Sánchez, Francisco Javier

    2017-01-01

    To study the frequency of medication reconciliation errors (MREs) in hospitalized patients and explore the profiles of patients at greater risk. To compare the rates of errors in prescriptions written by emergency physicians and ward physicians, who each used a different prescribing tool. Prospective cross-sectional study of a convenience sample of patients admitted to medical, geriatric, and oncology wards over a period of 6 months. A pharmacist undertook the medication reconciliation report, and data were analyzed for possible associations with risk factors or prescriber type (emergency vs ward physician). A total of 148 patients were studied. Emergency physicians had prescribed for 68 (45.9%) and ward physicians for 80 (54.1%). A total of 303 MREs were detected; 113 (76.4%) patients had at least 1 error. No statistically significant differences were found between prescriber types. Factors that conferred risk for a medication error were use polypharmacy (odds ratio [OR], 3.4; 95% CI, 1.2-9.0; P=.016) and multiple chronic conditions in patients under the age of 80 years (OR, 3.9; 95% CI, 1.1-14.7; P=.039). The incidence of MREs is high regardless of whether the prescriber is an emergency or ward physician. The patients who are most at risk are those taking several medications and those under the age of 80 years who have multiple chronic conditions.

  1. The role of human error in risk analysis: Application to pre- and post-maintenance procedures of process facilities

    International Nuclear Information System (INIS)

    Noroozi, Alireza; Khakzad, Nima; Khan, Faisal; MacKinnon, Scott; Abbassi, Rouzbeh

    2013-01-01

    Human factors play an important role in the safe operation of a facility. Human factors include the systematic application of information about human characteristics and behavior to increase the safety of a process system. A significant proportion of human errors occur during the maintenance phase. However, the quantification of human error probabilities in the maintenance phase has not been given the amount of attention it deserves. This paper focuses on a human factors analysis in pre-and post- pump maintenance operations. The procedures for removing process equipment from service (pre-maintenance) and returning the equipment to service (post-maintenance) are considered for possible failure scenarios. For each scenario, human error probability is calculated for each activity using the Success Likelihood Index Method (SLIM). Consequences are also assessed in this methodology. The risk assessment is conducted for each component and the overall risk is estimated by adding individual risks. The present study is aimed at highlighting the importance of considering human error in quantitative risk analyses. The developed methodology has been applied to a case study of an offshore process facility

  2. The Role of Risk Aversion in Predicting Individual Behaviours

    OpenAIRE

    Guiso, Luigi; Paiella, Monica

    2004-01-01

    We use household survey data to construct a direct measure of absolute risk aversion based on the maximum price a consumer is willing to pay to buy a risky asset. We relate this measure to a set of consumers’ decisions that in theory should vary with attitude towards risk. We find that elicited risk aversion has considerable predictive power for a number of key household decisions such as choice of occupation, portfolio selection, moving decisions and exposure to chronic diseases in ways cons...

  3. The Role of Risk Aversion in Predicting Individual Behaviour

    OpenAIRE

    Monica Paiella; Luigi Guiso

    2004-01-01

    We use household survey data to construct a direct measure of absolute risk aversion based on the maximum price a consumer is willing to pay to buy a risky asset. We relate this measure to a set of consumers' decisions that in theory should vary with attitude towards risk. We find that elicited risk aversion has considerable predictive power for a number of key household decisions such as choice of occupation, portfolio selection, moving decisions and exposure to chronic diseases in ways cons...

  4. Risk avoidance in sympatric large carnivores: reactive or predictive?

    Science.gov (United States)

    Broekhuis, Femke; Cozzi, Gabriele; Valeix, Marion; McNutt, John W; Macdonald, David W

    2013-09-01

    1. Risks of predation or interference competition are major factors shaping the distribution of species. An animal's response to risk can either be reactive, to an immediate risk, or predictive, based on preceding risk or past experiences. The manner in which animals respond to risk is key in understanding avoidance, and hence coexistence, between interacting species. 2. We investigated whether cheetahs (Acinonyx jubatus), known to be affected by predation and competition by lions (Panthera leo) and spotted hyaenas (Crocuta crocuta), respond reactively or predictively to the risks posed by these larger carnivores. 3. We used simultaneous spatial data from Global Positioning System (GPS) radiocollars deployed on all known social groups of cheetahs, lions and spotted hyaenas within a 2700 km(2) study area on the periphery of the Okavango Delta in northern Botswana. The response to risk of encountering lions and spotted hyaenas was explored on three levels: short-term or immediate risk, calculated as the distance to the nearest (contemporaneous) lion or spotted hyaena, long-term risk, calculated as the likelihood of encountering lions and spotted hyaenas based on their cumulative distributions over a 6-month period and habitat-associated risk, quantified by the habitat used by each of the three species. 4. We showed that space and habitat use by cheetahs was similar to that of lions and, to a lesser extent, spotted hyaenas. However, cheetahs avoided immediate risks by positioning themselves further from lions and spotted hyaenas than predicted by a random distribution. 5. Our results suggest that cheetah spatial distribution is a hierarchical process, first driven by resource acquisition and thereafter fine-tuned by predator avoidance; thus suggesting a reactive, rather than a predictive, response to risk. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  5. Predicting Risk-Mitigating Behaviors From Indecisiveness and Trait Anxiety

    DEFF Research Database (Denmark)

    Mcneill, Ilona M.; Dunlop, Patrick D.; Skinner, Timothy C.

    2016-01-01

    Past research suggests that indecisiveness and trait anxiety may both decrease the likelihood of performing risk-mitigating preparatory behaviors (e.g., preparing for natural hazards) and suggests two cognitive processes (perceived control and worrying) as potential mediators. However, no single...... control over wildfire-related outcomes. Trait anxiety did not uniquely predict preparedness or perceived control, but it did uniquely predict worry, with higher trait anxiety predicting more worrying. Also, worry trended toward uniquely predicting preparedness, albeit in an unpredicted positive direction...

  6. Prediction beyond the borders: ERP indices of boundary extension-related error.

    Science.gov (United States)

    Czigler, István; Intraub, Helene; Stefanics, Gábor

    2013-01-01

    Boundary extension (BE) is a rapidly occurring memory error in which participants incorrectly remember having seen beyond the boundaries of a view. However, behavioral data has provided no insight into how quickly after the onset of a test picture the effect is detected. To determine the time course of BE from neural responses we conducted a BE experiment while recording EEG. We exploited a diagnostic response asymmetry to mismatched views (a closer and wider view of the same scene) in which the same pair of views is rated as more similar when the closer item is shown first than vice versa. On each trial, a closer or wider view was presented for 250 ms followed by a 250-ms mask and either the identical view or a mismatched view. Boundary ratings replicated the typical asymmetry. We found a similar asymmetry in ERP responses in the 265-285 ms interval where the second member of the close-then-wide pairs evoked less negative responses at left parieto-temporal sites compared to the wide-then-close condition. We also found diagnostic ERP effects in the 500-560 ms range, where ERPs to wide-then-close pairs were more positive at centro-parietal sites than in the other three conditions, which is thought to be related to participants' confidence in their perceptual decision. The ERP effect in the 265-285 ms range suggests the falsely remembered region beyond the view-boundaries of S1 is rapidly available and impacts assessment of the test picture within the first 265 ms of viewing, suggesting that extrapolated scene structure may be computed rapidly enough to play a role in the integration of successive views during visual scanning.

  7. Cardiovascular risk prediction tools for populations in Asia.

    Science.gov (United States)

    Barzi, F; Patel, A; Gu, D; Sritara, P; Lam, T H; Rodgers, A; Woodward, M

    2007-02-01

    Cardiovascular risk equations are traditionally derived from the Framingham Study. The accuracy of this approach in Asian populations, where resources for risk factor measurement may be limited, is unclear. To compare "low-information" equations (derived using only age, systolic blood pressure, total cholesterol and smoking status) derived from the Framingham Study with those derived from the Asian cohorts, on the accuracy of cardiovascular risk prediction. Separate equations to predict the 8-year risk of a cardiovascular event were derived from Asian and Framingham cohorts. The performance of these equations, and a subsequently "recalibrated" Framingham equation, were evaluated among participants from independent Chinese cohorts. Six cohort studies from Japan, Korea and Singapore (Asian cohorts); six cohort studies from China; the Framingham Study from the US. 172,077 participants from the Asian cohorts; 25,682 participants from Chinese cohorts and 6053 participants from the Framingham Study. In the Chinese cohorts, 542 cardiovascular events occurred during 8 years of follow-up. Both the Asian cohorts and the Framingham equations discriminated cardiovascular risk well in the Chinese cohorts; the area under the receiver-operator characteristic curve was at least 0.75 for men and women. However, the Framingham risk equation systematically overestimated risk in the Chinese cohorts by an average of 276% among men and 102% among women. The corresponding average overestimation using the Asian cohorts equation was 11% and 10%, respectively. Recalibrating the Framingham risk equation using cardiovascular disease incidence from the non-Chinese Asian cohorts led to an overestimation of risk by an average of 4% in women and underestimation of risk by an average of 2% in men. A low-information Framingham cardiovascular risk prediction tool, which, when recalibrated with contemporary data, is likely to estimate future cardiovascular risk with similar accuracy in Asian

  8. Standardized error severity score (ESS) ratings to quantify risk associated with child restraint system (CRS) and booster seat misuse.

    Science.gov (United States)

    Rudin-Brown, Christina M; Kramer, Chelsea; Langerak, Robin; Scipione, Andrea; Kelsey, Shelley

    2017-11-17

    Although numerous research studies have reported high levels of error and misuse of child restraint systems (CRS) and booster seats in experimental and real-world scenarios, conclusions are limited because they provide little information regarding which installation issues pose the highest risk and thus should be targeted for change. Beneficial to legislating bodies and researchers alike would be a standardized, globally relevant assessment of the potential injury risk associated with more common forms of CRS and booster seat misuse, which could be applied with observed error frequency-for example, in car seat clinics or during prototype user testing-to better identify and characterize the installation issues of greatest risk to safety. A group of 8 leading world experts in CRS and injury biomechanics, who were members of an international child safety project, estimated the potential injury severity associated with common forms of CRS and booster seat misuse. These injury risk error severity score (ESS) ratings were compiled and compared to scores from previous research that had used a similar procedure but with fewer respondents. To illustrate their application, and as part of a larger study examining CRS and booster seat labeling requirements, the new standardized ESS ratings were applied to objective installation performance data from 26 adult participants who installed a convertible (rear- vs. forward-facing) CRS and booster seat in a vehicle, and a child test dummy in the CRS and booster seat, using labels that only just met minimal regulatory requirements. The outcome measure, the risk priority number (RPN), represented the composite scores of injury risk and observed installation error frequency. Variability within the sample of ESS ratings in the present study was smaller than that generated in previous studies, indicating better agreement among experts on what constituted injury risk. Application of the new standardized ESS ratings to installation

  9. A Real-Time Accurate Model and Its Predictive Fuzzy PID Controller for Pumped Storage Unit via Error Compensation

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhou

    2017-12-01

    Full Text Available Model simulation and control of pumped storage unit (PSU are essential to improve the dynamic quality of power station. Only under the premise of the PSU models reflecting the actual transient process, the novel control method can be properly applied in the engineering. The contributions of this paper are that (1 a real-time accurate equivalent circuit model (RAECM of PSU via error compensation is proposed to reconcile the conflict between real-time online simulation and accuracy under various operating conditions, and (2 an adaptive predicted fuzzy PID controller (APFPID based on RAECM is put forward to overcome the instability of conventional control under no-load conditions with low water head. Respectively, all hydraulic factors in pipeline system are fully considered based on equivalent lumped-circuits theorem. The pretreatment, which consists of improved Suter-transformation and BP neural network, and online simulation method featured by two iterative loops are synthetically proposed to improve the solving accuracy of the pump-turbine. Moreover, the modified formulas for compensating error are derived with variable-spatial discretization to improve the accuracy of the real-time simulation further. The implicit RadauIIA method is verified to be more suitable for PSUGS owing to wider stable domain. Then, APFPID controller is constructed based on the integration of fuzzy PID and the model predictive control. Rolling prediction by RAECM is proposed to replace rolling optimization with its computational speed guaranteed. Finally, the simulation and on-site measurements are compared to prove trustworthy of RAECM under various running conditions. Comparative experiments also indicate that APFPID controller outperforms other controllers in most cases, especially low water head conditions. Satisfying results of RAECM have been achieved in engineering and it provides a novel model reference for PSUGS.

  10. Quality assurance of human error modelling in a major probabilistic risk assessment programme

    International Nuclear Information System (INIS)

    Rycraft, H.S.

    1990-01-01

    A method of incorporating the consideration of operator error within a major PRA exercise is described along with the quality assurance procedures employed to ensure a quality product. The exercise was undertaken at the Sellafield Reprocessing Plant. (author)

  11. Updating risk prediction tools: a case study in prostate cancer.

    Science.gov (United States)

    Ankerst, Donna P; Koniarski, Tim; Liang, Yuanyuan; Leach, Robin J; Feng, Ziding; Sanda, Martin G; Partin, Alan W; Chan, Daniel W; Kagan, Jacob; Sokoll, Lori; Wei, John T; Thompson, Ian M

    2012-01-01

    Online risk prediction tools for common cancers are now easily accessible and widely used by patients and doctors for informed decision-making concerning screening and diagnosis. A practical problem is as cancer research moves forward and new biomarkers and risk factors are discovered, there is a need to update the risk algorithms to include them. Typically, the new markers and risk factors cannot be retrospectively measured on the same study participants used to develop the original prediction tool, necessitating the merging of a separate study of different participants, which may be much smaller in sample size and of a different design. Validation of the updated tool on a third independent data set is warranted before the updated tool can go online. This article reports on the application of Bayes rule for updating risk prediction tools to include a set of biomarkers measured in an external study to the original study used to develop the risk prediction tool. The procedure is illustrated in the context of updating the online Prostate Cancer Prevention Trial Risk Calculator to incorporate the new markers %freePSA and [-2]proPSA measured on an external case-control study performed in Texas, U.S.. Recent state-of-the art methods in validation of risk prediction tools and evaluation of the improvement of updated to original tools are implemented using an external validation set provided by the U.S. Early Detection Research Network. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Enhanced clinical pharmacy service targeting tools: risk-predictive algorithms.

    Science.gov (United States)

    El Hajji, Feras W D; Scullin, Claire; Scott, Michael G; McElnay, James C

    2015-04-01

    This study aimed to determine the value of using a mix of clinical pharmacy data and routine hospital admission spell data in the development of predictive algorithms. Exploration of risk factors in hospitalized patients, together with the targeting strategies devised, will enable the prioritization of clinical pharmacy services to optimize patient outcomes. Predictive algorithms were developed using a number of detailed steps using a 75% sample of integrated medicines management (IMM) patients, and validated using the remaining 25%. IMM patients receive targeted clinical pharmacy input throughout their hospital stay. The algorithms were applied to the validation sample, and predicted risk probability was generated for each patient from the coefficients. Risk threshold for the algorithms were determined by identifying the cut-off points of risk scores at which the algorithm would have the highest discriminative performance. Clinical pharmacy staffing levels were obtained from the pharmacy department staffing database. Numbers of previous emergency admissions and admission medicines together with age-adjusted co-morbidity and diuretic receipt formed a 12-month post-discharge and/or readmission risk algorithm. Age-adjusted co-morbidity proved to be the best index to predict mortality. Increased numbers of clinical pharmacy staff at ward level was correlated with a reduction in risk-adjusted mortality index (RAMI). Algorithms created were valid in predicting risk of in-hospital and post-discharge mortality and risk of hospital readmission 3, 6 and 12 months post-discharge. The provision of ward-based clinical pharmacy services is a key component to reducing RAMI and enabling the full benefits of pharmacy input to patient care to be realized. © 2014 John Wiley & Sons, Ltd.

  13. A Physiologically Based Pharmacokinetic Model to Predict the Pharmacokinetics of Highly Protein-Bound Drugs and Impact of Errors in Plasma Protein Binding

    Science.gov (United States)

    Ye, Min; Nagar, Swati; Korzekwa, Ken

    2015-01-01

    Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data was often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding, and blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for terminal elimination half-life (t1/2, 100% of drugs), peak plasma concentration (Cmax, 100%), area under the plasma concentration-time curve (AUC0–t, 95.4%), clearance (CLh, 95.4%), mean retention time (MRT, 95.4%), and steady state volume (Vss, 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. PMID:26531057

  14. A physiologically based pharmacokinetic model to predict the pharmacokinetics of highly protein-bound drugs and the impact of errors in plasma protein binding.

    Science.gov (United States)

    Ye, Min; Nagar, Swati; Korzekwa, Ken

    2016-04-01

    Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data were often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding and the blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate the model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for the terminal elimination half-life (t1/2 , 100% of drugs), peak plasma concentration (Cmax , 100%), area under the plasma concentration-time curve (AUC0-t , 95.4%), clearance (CLh , 95.4%), mean residence time (MRT, 95.4%) and steady state volume (Vss , 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Addressing Common Cloud-Radiation Errors from 4-hour to 4-week Model Prediction

    Science.gov (United States)

    Benjamin, S.; Sun, S.; Grell, G. A.; Green, B.; Olson, J.; Kenyon, J.; James, E.; Smirnova, T. G.; Brown, J. M.

    2017-12-01

    Cloud-radiation representation in models for subgrid-scale clouds is a known gap from subseasonal-to-seasonal models down to storm-scale models applied for forecast duration of only a few hours. NOAA/ESRL has been applying common physical parameterizations for scale-aware deep/shallow convection and boundary-layer mixing over this wide range of time and spatial scales, with some progress to be reported in this presentation. The Grell-Freitas scheme (2014, Atmos. Chem. Phys.) and MYNN boundary-layer EDMF scheme (Olson / Benjamin et al. 2016 Mon. Wea. Rev.) have been applied and tested extensively for the NOAA hourly updated 3-km High-Resolution Rapid Refresh (HRRR) and 13-km Rapid Refresh (RAP) model/assimilation systems over the United States and North America, with targeting toward improvement to boundary-layer evolution and cloud-radiation representation in all seasons. This representation is critical for both warm-season severe convective storm forecasting and for winter-storm prediction of snow and mixed precipitation. At the same time the Grell-Freitas scheme has been applied also as an option for subseasonal forecasting toward improved US week 3-4 prediction with the FIM-HYCOM coupled model (Green et al 2017, MWR). Cloud/radiation evaluation using CERES satellite-based estimates have been applied to both 12-h RAP (13km) and also during Weeks 1-4 from 32-day FIM-HYCOM (60km) forecasts. Initial results reveal that improved cloud representation is needed for both resolutions and now is guiding further refinement for cloud representation including with the Grell-Freitas scheme and with the updated MYNN-EDMF scheme (both now also in global testing as well as with the 3km HRRR and 13km RAP models).

  16. The Economic Value of Predicting Bond Risk Premia

    DEFF Research Database (Denmark)

    Sarno, Lucio; Schneider, Paul; Wagner, Christian

    the expectations hypothesis (EH) out-ofsample: the forecasts do not add economic value compared to using the average historical excess return as an EH-consistent estimate of constant risk premia. We show that in general statistical signicance does not necessarily translate into economic signicance because EH...... deviations mainly matter at short horizons and standard predictability metrics are not compatible with common measures of economic value. Overall, the EH remains the benchmark for investment decisions and should be considered an economic prior in models of bond risk premia.......This paper studies whether the evident statistical predictability of bond risk premia translates into economic gains for bond investors. We show that ane term structure models (ATSMs) estimated by jointly tting yields and bond excess returns capture this predictive information otherwise hidden...

  17. Sleep Disturbance and Short Sleep as Risk Factors for Depression and Perceived Medical Errors in First-Year Residents.

    Science.gov (United States)

    Kalmbach, David A; Arnedt, J Todd; Song, Peter X; Guille, Constance; Sen, Srijan

    2017-03-01

    While short and poor quality sleep among training physicians has long been recognized as problematic, the longitudinal relationships among sleep, work hours, mood, and work performance are not well understood. Here, we prospectively characterize the risk of depression and medical errors based on preinternship sleep disturbance, internship-related sleep duration, and duty hours. Survey data from 1215 nondepressed interns were collected at preinternship baseline, then 3 and 6 months into internship. We examined how preinternship sleep quality and internship sleep and work hours affected risk of depression at 3 months, per the Patient Health Questionnaire 9. We then examined the impact of sleep loss and work hours on depression persistence from 3 to 6 months. Finally, we compared self-reported errors among interns based on nightly sleep duration (≤6 hr vs. >6 hr), weekly work hours (Poorly sleeping trainees obtained less sleep and were at elevated risk of depression in the first months of internship. Short sleep (≤6 hr nightly) during internship mediated the relationship between sleep disturbance and depression risk, and sleep loss led to a chronic course for depression. Depression rates were highest among interns with both sleep disturbance and short sleep. Elevated medical error rates were reported by physicians sleeping ≤6 hr per night, working ≥ 70 weekly hours, and who were acutely or chronically depressed. Sleep disturbance and internship-enforced short sleep increase risk of depression development and chronicity and medical errors. Interventions targeting sleep problems prior to and during residency hold promise for curbing depression rates and improving patient care. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  18. From prediction error to incentive salience: mesolimbic computation of reward motivation

    Science.gov (United States)

    Berridge, Kent C.

    2011-01-01

    Reward contains separable psychological components of learning, incentive motivation and pleasure. Most computational models have focused only on the learning component of reward, but the motivational component is equally important in reward circuitry, and even more directly controls behavior. Modeling the motivational component requires recognition of additional control factors besides learning. Here I will discuss how mesocorticolimbic mechanisms generate the motivation component of incentive salience. Incentive salience takes Pavlovian learning and memory as one input and as an equally important input takes neurobiological state factors (e.g., drug states, appetite states, satiety states) that can vary independently of learning. Neurobiological state changes can produce unlearned fluctuations or even reversals in the ability of a previously-learned reward cue to trigger motivation. Such fluctuations in cue-triggered motivation can dramatically depart from all previously learned values about the associated reward outcome. Thus a consequence of the difference between incentive salience and learning can be to decouple cue-triggered motivation of the moment from previously learned values of how good the associated reward has been in the past. Another consequence can be to produce irrationally strong motivation urges that are not justified by any memories of previous reward values (and without distorting associative predictions of future reward value). Such irrationally strong motivation may be especially problematic in addiction. To comprehend these phenomena, future models of mesocorticolimbic reward function should address the neurobiological state factors that participate to control generation of incentive salience. PMID:22487042

  19. Cloud Condensation Nuclei Prediction Error from Application of Kohler Theory: Importance for the Aerosol Indirect Effect

    Science.gov (United States)

    Sotiropoulou, Rafaella-Eleni P.; Nenes, Athanasios; Adams, Peter J.; Seinfeld, John H.

    2007-01-01

    In situ observations of aerosol and cloud condensation nuclei (CCN) and the GISS GCM Model II' with an online aerosol simulation and explicit aerosol-cloud interactions are used to quantify the uncertainty in radiative forcing and autoconversion rate from application of Kohler theory. Simulations suggest that application of Koehler theory introduces a 10-20% uncertainty in global average indirect forcing and 2-11% uncertainty in autoconversion. Regionally, the uncertainty in indirect forcing ranges between 10-20%, and 5-50% for autoconversion. These results are insensitive to the range of updraft velocity and water vapor uptake coefficient considered. This study suggests that Koehler theory (as implemented in climate models) is not a significant source of uncertainty for aerosol indirect forcing but can be substantial for assessments of aerosol effects on the hydrological cycle in climatically sensitive regions of the globe. This implies that improvements in the representation of GCM subgrid processes and aerosol size distribution will mostly benefit indirect forcing assessments. Predictions of autoconversion, by nature, will be subject to considerable uncertainty; its reduction may require explicit representation of size-resolved aerosol composition and mixing state.

  20. Cognitive tests predict real-world errors: the relationship between drug name confusion rates in laboratory-based memory and perception tests and corresponding error rates in large pharmacy chains.

    Science.gov (United States)

    Schroeder, Scott R; Salomon, Meghan M; Galanter, William L; Schiff, Gordon D; Vaida, Allen J; Gaunt, Michael J; Bryson, Michelle L; Rash, Christine; Falck, Suzanne; Lambert, Bruce L

    2017-05-01

    Drug name confusion is a common type of medication error and a persistent threat to patient safety. In the USA, roughly one per thousand prescriptions results in the wrong drug being filled, and most of these errors involve drug names that look or sound alike. Prior to approval, drug names undergo a variety of tests to assess their potential for confusability, but none of these preapproval tests has been shown to predict real-world error rates. We conducted a study to assess the association between error rates in laboratory-based tests of drug name memory and perception and real-world drug name confusion error rates. Eighty participants, comprising doctors, nurses, pharmacists, technicians and lay people, completed a battery of laboratory tests assessing visual perception, auditory perception and short-term memory of look-alike and sound-alike drug name pairs (eg, hydroxyzine/hydralazine). Laboratory test error rates (and other metrics) significantly predicted real-world error rates obtained from a large, outpatient pharmacy chain, with the best-fitting model accounting for 37% of the variance in real-world error rates. Cross-validation analyses confirmed these results, showing that the laboratory tests also predicted errors from a second pharmacy chain, with 45% of the variance being explained by the laboratory test data. Across two distinct pharmacy chains, there is a strong and significant association between drug name confusion error rates observed in the real world and those observed in laboratory-based tests of memory and perception. Regulators and drug companies seeking a validated preapproval method for identifying confusing drug names ought to consider using these simple tests. By using a standard battery of memory and perception tests, it should be possible to reduce the number of confusing look-alike and sound-alike drug name pairs that reach the market, which will help protect patients from potentially harmful medication errors. Published by the BMJ

  1. Identification of the high risk emergency surgical patient: Which risk prediction model should be used?

    Science.gov (United States)

    Stonelake, Stephen; Thomson, Peter; Suggett, Nigel

    2015-09-01

    National guidance states that all patients having emergency surgery should have a mortality risk assessment calculated on admission so that the 'high risk' patient can receive the appropriate seniority and level of care. We aimed to assess if peri-operative risk scoring tools could accurately calculate mortality and morbidity risk. Mortality risk scores for 86 consecutive emergency laparotomies, were calculated using pre-operative (ASA, Lee index) and post-operative (POSSUM, P-POSSUM and CR-POSSUM) risk calculation tools. Morbidity risk scores were calculated using the POSSUM predicted morbidity and compared against actual morbidity according to the Clavien-Dindo classification. The actual mortality was 10.5%. The average predicted risk scores for all laparotomies were: ASA 26.5%, Lee Index 2.5%, POSSUM 29.5%, P-POSSUM 18.5%, CR-POSSUM 10.5%. Complications occurred following 67 laparotomies (78%). The majority (51%) of complications were classified as Clavien-Dindo grade 2-3 (non-life-threatening). Patients having a POSSUM morbidity risk of greater than 50% developed significantly more life-threatening complications (CD 4-5) compared with those who predicted less than or equal to 50% morbidity risk (P = 0.01). Pre-operative risk stratification remains a challenge because the Lee Index under-predicts and ASA over-predicts mortality risk. Post-operative risk scoring using the CR-POSSUM is more accurate and we suggest can be used to identify patients who require intensive care post-operatively. In the absence of accurate risk scoring tools that can be used on admission to hospital it is not possible to reliably audit the achievement of national standards of care for the 'high-risk' patient.

  2. Predicting disease risk using bootstrap ranking and classification algorithms.

    Directory of Open Access Journals (Sweden)

    Ohad Manor

    Full Text Available Genome-wide association studies (GWAS are widely used to search for genetic loci that underlie human disease. Another goal is to predict disease risk for different individuals given their genetic sequence. Such predictions could either be used as a "black box" in order to promote changes in life-style and screening for early diagnosis, or as a model that can be studied to better understand the mechanism of the disease. Current methods for risk prediction typically rank single nucleotide polymorphisms (SNPs by the p-value of their association with the disease, and use the top-associated SNPs as input to a classification algorithm. However, the predictive power of such methods is relatively poor. To improve the predictive power, we devised BootRank, which uses bootstrapping in order to obtain a robust prioritization of SNPs for use in predictive models. We show that BootRank improves the ability to predict disease risk of unseen individuals in the Wellcome Trust Case Control Consortium (WTCCC data and results in a more robust set of SNPs and a larger number of enriched pathways being associated with the different diseases. Finally, we show that combining BootRank with seven different classification algorithms improves performance compared to previous studies that used the WTCCC data. Notably, diseases for which BootRank results in the largest improvements were recently shown to have more heritability than previously thought, likely due to contributions from variants with low minimum allele frequency (MAF, suggesting that BootRank can be beneficial in cases where SNPs affecting the disease are poorly tagged or have low MAF. Overall, our results show that improving disease risk prediction from genotypic information may be a tangible goal, with potential implications for personalized disease screening and treatment.

  3. A Post-Harvest Prediction Mass Loss Model for Tomato Fruit Using A Numerical Methodology Centered on Approximation Error Minimization

    Directory of Open Access Journals (Sweden)

    Francisco Javier Bucio

    2017-10-01

    Full Text Available Due to its nutritional and economic value, the tomato is considered one of the main vegetables in terms of production and consumption in the world. For this reason, an important case study is the fruit maturation parametrized by its mass loss in this study. This process develops in the fruit mainly after harvest. Since that parameter affects the economic value of the crop, the scientific community has been progressively approaching the issue. However, there is no a state-of-the-art practical model allowing the prediction of the tomato fruit mass loss yet. This study proposes a prediction model for tomato mass loss in a continuous and definite time-frame using regression methods. The model is based on a combination of adjustment methods such as least squares polynomial regression leading to error estimation, and cross validation techniques. Experimental results from a 50 fruit of tomato sample studied over a 54 days period were compared to results from the model using a second-order polynomial approach found to provide optimal data fit with a resulting efficiency of ~97%. The model also allows the design of precise logistic strategies centered on post-harvest tomato mass loss prediction usable by producers, distributors, and consumers.

  4. Generation of 3-D hydrostratigraphic zones from dense airborne electromagnetic data to assess groundwater model prediction error

    Science.gov (United States)

    Christensen, N. K.; Minsley, B. J.; Christensen, S.

    2017-02-01

    We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is not possible to perfectly resolve the structures of a groundwater system. It is shown that when using such erroneous structures in a groundwater model, they can lead to biased parameter estimates and biased model predictions, therefore impairing the model's predictive capability.

  5. Generation of 3-D hydrostratigraphic zones from dense airborne electromagnetic data to assess groundwater model prediction error

    Science.gov (United States)

    Christensen, Nikolaj K; Minsley, Burke J.; Christensen, Steen

    2017-01-01

    We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is not possible to perfectly resolve the structures of a groundwater system. It is shown that when using such erroneous structures in a groundwater model, they can lead to biased parameter estimates and biased model predictions, therefore impairing the model's predictive capability.

  6. Investigation on Cardiovascular Risk Prediction Using Physiological Parameters

    Directory of Open Access Journals (Sweden)

    Wan-Hua Lin

    2013-01-01

    Full Text Available Cardiovascular disease (CVD is the leading cause of death worldwide. Early prediction of CVD is urgently important for timely prevention and treatment. Incorporation or modification of new risk factors that have an additional independent prognostic value of existing prediction models is widely used for improving the performance of the prediction models. This paper is to investigate the physiological parameters that are used as risk factors for the prediction of cardiovascular events, as well as summarizing the current status on the medical devices for physiological tests and discuss the potential implications for promoting CVD prevention and treatment in the future. The results show that measures extracted from blood pressure, electrocardiogram, arterial stiffness, ankle-brachial blood pressure index (ABI, and blood glucose carry valuable information for the prediction of both long-term and near-term cardiovascular risk. However, the predictive values should be further validated by more comprehensive measures. Meanwhile, advancing unobtrusive technologies and wireless communication technologies allow on-site detection of the physiological information remotely in an out-of-hospital setting in real-time. In addition with computer modeling technologies and information fusion. It may allow for personalized, quantitative, and real-time assessment of sudden CVD events.

  7. Benefits and risks of using smart pumps to reduce medication error rates: a systematic review.

    Science.gov (United States)

    Ohashi, Kumiko; Dalleur, Olivia; Dykes, Patricia C; Bates, David W

    2014-12-01

    Smart infusion pumps have been introduced to prevent medication errors and have been widely adopted nationally in the USA, though they are not always used in Europe or other regions. Despite widespread usage of smart pumps, intravenous medication errors have not been fully eliminated. Through a systematic review of recent studies and reports regarding smart pump implementation and use, we aimed to identify the impact of smart pumps on error reduction and on the complex process of medication administration, and strategies to maximize the benefits of smart pumps. The medical literature related to the effects of smart pumps for improving patient safety was searched in PUBMED, EMBASE, and the Cochrane Central Register of Controlled Trials (CENTRAL) (2000-2014) and relevant papers were selected by two researchers. After the literature search, 231 papers were identified and the full texts of 138 articles were assessed for eligibility. Of these, 22 were included after removal of papers that did not meet the inclusion criteria. We assessed both the benefits and negative effects of smart pumps from these studies. One of the benefits of using smart pumps was intercepting errors such as the wrong rate, wrong dose, and pump setting errors. Other benefits include reduction of adverse drug event rates, practice improvements, and cost effectiveness. Meanwhile, the current issues or negative effects related to using smart pumps were lower compliance rates of using smart pumps, the overriding of soft alerts, non-intercepted errors, or the possibility of using the wrong drug library. The literature suggests that smart pumps reduce but do not eliminate programming errors. Although the hard limits of a drug library play a main role in intercepting medication errors, soft limits were still not as effective as hard limits because of high override rates. Compliance in using smart pumps is key towards effectively preventing errors. Opportunities for improvement include upgrading drug

  8. From prediction error to incentive salience: mesolimbic computation of reward motivation.

    Science.gov (United States)

    Berridge, Kent C

    2012-04-01

    Reward contains separable psychological components of learning, incentive motivation and pleasure. Most computational models have focused only on the learning component of reward, but the motivational component is equally important in reward circuitry, and even more directly controls behavior. Modeling the motivational component requires recognition of additional control factors besides learning. Here I discuss how mesocorticolimbic mechanisms generate the motivation component of incentive salience. Incentive salience takes Pavlovian learning and memory as one input and as an equally important input takes neurobiological state factors (e.g. drug states, appetite states, satiety states) that can vary independently of learning. Neurobiological state changes can produce unlearned fluctuations or even reversals in the ability of a previously learned reward cue to trigger motivation. Such fluctuations in cue-triggered motivation can dramatically depart from all previously learned values about the associated reward outcome. Thus, one consequence of the difference between incentive salience and learning can be to decouple cue-triggered motivation of the moment from previously learned values of how good the associated reward has been in the past. Another consequence can be to produce irrationally strong motivation urges that are not justified by any memories of previous reward values (and without distorting associative predictions of future reward value). Such irrationally strong motivation may be especially problematic in addiction. To understand these phenomena, future models of mesocorticolimbic reward function should address the neurobiological state factors that participate to control generation of incentive salience. © 2012 The Author. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  9. Machine learning application in online lending risk prediction

    OpenAIRE

    Yu, Xiaojiao

    2017-01-01

    Online leading has disrupted the traditional consumer banking sector with more effective loan processing. Risk prediction and monitoring is critical for the success of the business model. Traditional credit score models fall short in applying big data technology in building risk model. In this manuscript, data with various format and size were collected from public website, third-parties and assembled with client's loan application information data. Ensemble machine learning models, random fo...

  10. Predictive risk factors for moderate to severe hyperbilirubinemia

    OpenAIRE

    Gláucia Macedo de Lima; Maria Amélia Sayeg Campos Porto; Arnaldo Prata Barbosa; Antonio José Ledo Alves da Cunha

    2007-01-01

    Objective: to describe predictive factors for severity of neonataljaundice in newborn infants treated at the University Neonatal Clinic,highlighting maternal, obstetric and neonatal factors. Methods: Acohort retrospective study by means of review of medical charts todefine risk factors associated with moderate and severe jaundice.The cohort consisted of newborns diagnosed with indirect neonatalhyperbilirubinemia and submitted to phototherapy. Risk was classifiedas maternal, prenatal, obstetri...

  11. A Frequency-Domain Adaptive Filter (FDAF) Prediction Error Method (PEM) Framework for Double-Talk-Robust Acoustic Echo Cancellation

    DEFF Research Database (Denmark)

    Gil-Cacho, Jose M.; van Waterschoot, Toon; Moonen, Marc

    2014-01-01

    to the FDAF-PEM-AFROW algorithm. We show that FDAF-PEM-AFROW is by construction related to the best linear unbiased estimate (BLUE) of the echo path. We depart from this framework to show an improvement in performance with respect to other adaptive filters minimizing the BLUE criterion, namely the PEM......In this paper, we propose a new framework to tackle the double-talk (DT) problem in acoustic echo cancellation (AEC). It is based on a frequency-domain adaptive filter (FDAF) implementation of the so-called prediction error method adaptive filtering using row operations (PEM-AFROW) leading...... regularization (VR) algorithms. The FDAF-PEM-AFROW versions significantly outperform the original versions in every simulation. In terms of computational complexity, the FDAF-PEM-AFROW versions are themselves about two orders of magnitude cheaper than the original versions....

  12. Risk assessment and remedial policy evaluation using predictive modeling

    International Nuclear Information System (INIS)

    Linkov, L.; Schell, W.R.

    1996-01-01

    As a result of nuclear industry operation and accidents, large areas of natural ecosystems have been contaminated by radionuclides and toxic metals. Extensive societal pressure has been exerted to decrease the radiation dose to the population and to the environment. Thus, in making abatement and remediation policy decisions, not only economic costs but also human and environmental risk assessments are desired. This paper introduces a general framework for risk assessment and remedial policy evaluation using predictive modeling. Ecological risk assessment requires evaluation of the radionuclide distribution in ecosystems. The FORESTPATH model is used for predicting the radionuclide fate in forest compartments after deposition as well as for evaluating the efficiency of remedial policies. Time of intervention and radionuclide deposition profile was predicted as being crucial for the remediation efficiency. Risk assessment conducted for a critical group of forest users in Belarus shows that consumption of forest products (berries and mushrooms) leads to about 0.004% risk of a fatal cancer annually. Cost-benefit analysis for forest cleanup suggests that complete removal of organic layer is too expensive for application in Belarus and a better methodology is required. In conclusion, FORESTPATH modeling framework could have wide applications in environmental remediation of radionuclides and toxic metals as well as in dose reconstruction and, risk-assessment

  13. Forensic comparison and matching of fingerprints: using quantitative image measures for estimating error rates through understanding and predicting difficulty.

    Directory of Open Access Journals (Sweden)

    Philip J Kellman

    Full Text Available Latent fingerprint examination is a complex task that, despite advances in image processing, still fundamentally depends on the visual judgments of highly trained human examiners. Fingerprints collected from crime scenes typically contain less information than fingerprints collected under controlled conditions. Specifically, they are often noisy and distorted and may contain only a portion of the total fingerprint area. Expertise in fingerprint comparison, like other forms of perceptual expertise, such as face recognition or aircraft identification, depends on perceptual learning processes that lead to the discovery of features and relations that matter in comparing prints. Relatively little is known about the perceptual processes involved in making comparisons, and even less is known about what characteristics of fingerprint pairs make particular comparisons easy or difficult. We measured expert examiner performance and judgments of difficulty and confidence on a new fingerprint database. We developed a number of quantitative measures of image characteristics and used multiple regression techniques to discover objective predictors of error as well as perceived difficulty and confidence. A number of useful predictors emerged, and these included variables related to image quality metrics, such as intensity and contrast information, as well as measures of information quantity, such as the total fingerprint area. Also included were configural features that fingerprint experts have noted, such as the presence and clarity of global features and fingerprint ridges. Within the constraints of the overall low error rates of experts, a regression model incorporating the derived predictors demonstrated reasonable success in predicting objective difficulty for print pairs, as shown both in goodness of fit measures to the original data set and in a cross validation test. The results indicate the plausibility of using objective image metrics to predict expert

  14. Forensic comparison and matching of fingerprints: using quantitative image measures for estimating error rates through understanding and predicting difficulty.

    Science.gov (United States)

    Kellman, Philip J; Mnookin, Jennifer L; Erlikhman, Gennady; Garrigan, Patrick; Ghose, Tandra; Mettler, Everett; Charlton, David; Dror, Itiel E

    2014-01-01

    Latent fingerprint examination is a complex task that, despite advances in image processing, still fundamentally depends on the visual judgments of highly trained human examiners. Fingerprints collected from crime scenes typically contain less information than fingerprints collected under controlled conditions. Specifically, they are often noisy and distorted and may contain only a portion of the total fingerprint area. Expertise in fingerprint comparison, like other forms of perceptual expertise, such as face recognition or aircraft identification, depends on perceptual learning processes that lead to the discovery of features and relations that matter in comparing prints. Relatively little is known about the perceptual processes involved in making comparisons, and even less is known about what characteristics of fingerprint pairs make particular comparisons easy or difficult. We measured expert examiner performance and judgments of difficulty and confidence on a new fingerprint database. We developed a number of quantitative measures of image characteristics and used multiple regression techniques to discover objective predictors of error as well as perceived difficulty and confidence. A number of useful predictors emerged, and these included variables related to image quality metrics, such as intensity and contrast information, as well as measures of information quantity, such as the total fingerprint area. Also included were configural features that fingerprint experts have noted, such as the presence and clarity of global features and fingerprint ridges. Within the constraints of the overall low error rates of experts, a regression model incorporating the derived predictors demonstrated reasonable success in predicting objective difficulty for print pairs, as shown both in goodness of fit measures to the original data set and in a cross validation test. The results indicate the plausibility of using objective image metrics to predict expert performance and

  15. THE ROLE OF RISK AVERSION IN PREDICTING INDIVIDUAL BEHAVIOR

    OpenAIRE

    Luigi Guiso; Monica Paiella

    2005-01-01

    We use household survey data to construct a direct measure of absolute risk aversion based on the maximum price a consumer is willing to pay to buy a risky asset. We relate this measure to a set of consumers� decisions that in theory should vary with attitude towards risk. We find that elicited risk aversion has considerable predictive power for a number of key household decisions such as choice of occupation, portfolio selection, moving decisions and exposure to chronic diseases in ways co...

  16. A method for predicting errors when interacting with finite state systems. How implicit learning shapes the user's knowledge of a system

    International Nuclear Information System (INIS)

    Javaux, Denis

    2002-01-01

    This paper describes a method for predicting the errors that may appear when human operators or users interact with systems behaving as finite state systems. The method is a generalization of a method used for predicting errors when interacting with autopilot modes on modern, highly computerized airliners [Proc 17th Digital Avionics Sys Conf (DASC) (1998); Proc 10th Int Symp Aviat Psychol (1999)]. A cognitive model based on spreading activation networks is used for predicting the user's model of the system and its impact on the production of errors. The model strongly posits the importance of implicit learning in user-system interaction and its possible detrimental influence on users' knowledge of the system. An experiment conducted with Airbus Industrie and a major European airline on pilots' knowledge of autopilot behavior on the A340-200/300 confirms the model predictions, and in particular the impact of the frequencies with which specific state transitions and contexts are experienced

  17. Dynamic Bayesian modeling for risk prediction in credit operations

    DEFF Research Database (Denmark)

    Borchani, Hanen; Martinez, Ana Maria; Masegosa, Andres

    2015-01-01

    Our goal is to do risk prediction in credit operations, and as data is collected continuously and reported on a monthly basis, this gives rise to a streaming data classification problem. Our analysis reveals some practical problems that have not previously been thoroughly analyzed in the context...

  18. Prediction of postpartum blood transfusion – risk factors and recurrence

    DEFF Research Database (Denmark)

    Wikkelsø, Anne J; Hjortøe, Sofie; Gerds, Thomas A

    2014-01-01

    OBJECTIVE: The aim was to find clinically useful risk factors for postpartum transfusion and to assess the joint predictive value in a population of women with a first and second delivery. METHODS: All Danish women with a first and second delivery from January 2001 to September 2009 who gave birt...

  19. Predicting the risk of mineral deficiencies in grazing animals

    African Journals Online (AJOL)

    lambs to mineral supplements can be used to predict risks of deficiency will be demonstrated. In both cases .... between body size and appetite, the onset of lactation or the feeding of ... possible importance of this in the aetiology of milk fever.

  20. Mountain Risks: From Prediction to Management and Governance

    Directory of Open Access Journals (Sweden)

    David Petley

    2015-05-01

    Full Text Available Reviewed: Mountain Risks: From Prediction to Management and Governance. Edited by Theo Van Asch, Jordi Corominas, Stefan Greiving, Jean-Philippe Malet, and Sterlacchini Simone. Dordrecht, The Netherlands: Springer, 2014. xi + 413 pp. US$ 129.00, € 90.00, € 104.00. Also available as an e-book. ISBN 978-94-007-6768-3.

  1. Risk factors and birth prevalence of birth defects and inborn errors of ...

    African Journals Online (AJOL)

    Children with any birth defect or metabolic errors of metabolism at birth or in the neonatology section were our sample for study. Control group was randomly selected from the cases with normal live births. Blood tests were performed for children suspected to suffer from genetic blood disorders. The principal BD as per the ...

  2. Predicting disease risks from highly imbalanced data using random forest

    Directory of Open Access Journals (Sweden)

    Chakraborty Sounak

    2011-07-01

    Full Text Available Abstract Background We present a method utilizing Healthcare Cost and Utilization Project (HCUP dataset for predicting disease risk of individuals based on their medical diagnosis history. The presented methodology may be incorporated in a variety of applications such as risk management, tailored health communication and decision support systems in healthcare. Methods We employed the National Inpatient Sample (NIS data, which is publicly available through Healthcare Cost and Utilization Project (HCUP, to train random forest classifiers for disease prediction. Since the HCUP data is highly imbalanced, we employed an ensemble learning approach based on repeated random sub-sampling. This technique divides the training data into multiple sub-samples, while ensuring that each sub-sample is fully balanced. We compared the performance of support vector machine (SVM, bagging, boosting and RF to predict the risk of eight chronic diseases. Results We predicted eight disease categories. Overall, the RF ensemble learning method outperformed SVM, bagging and boosting in terms of the area under the receiver operating characteristic (ROC curve (AUC. In addition, RF has the advantage of computing the importance of each variable in the classification process. Conclusions In combining repeated random sub-sampling with RF, we were able to overcome the class imbalance problem and achieve promising results. Using the national HCUP data set, we predicted eight disease categories with an average AUC of 88.79%.

  3. The role of risk propensity in predicting self-employment.

    Science.gov (United States)

    Nieß, Christiane; Biemann, Torsten

    2014-09-01

    This study aims to untangle the role of risk propensity as a predictor of self-employment entry and self-employment survival. More specifically, it examines whether the potentially positive effect of risk propensity on the decision to become self-employed turns curvilinear when it comes to the survival of the business. Building on a longitudinal sample of 4,973 individuals from the German Socio-Economic Panel, we used event history analyses to evaluate the influence of risk propensity on self-employment over a 7-year time period. Results indicated that whereas high levels of risk propensity positively predicted the decision to become self-employed, the relationship between risk propensity and self-employment survival followed an inverted U-shaped curve. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  4. Predicting risk of violence through a self-appraisal questionnaire

    Directory of Open Access Journals (Sweden)

    José Manuel Andreu-Rodríguez

    2016-07-01

    Full Text Available The Self-Appraisal Questionnaire (SAQ is a self-report that predicts the risk of violence and recidivism and provides relevant information about treatment needs for incarcerated populations. The objective of the present study was to evaluate the concurrent and predictive validity of this self-report in Spanish offenders. The SAQ was administered to 276 offenders recruited from several prisons in Madrid (Spain. SAQ total scores presented high levels of internal consistency (alpha = .92. Correlations of the instrument with violence risk instruments were statistically significant and showed a moderate magnitude, indicating a reasonable degree of concurrent validity. The ROC analysis carried out on the SAQ total score revealed an AUC of .80, showing acceptable accuracy discriminating between violent and nonviolent recidivist groups. It is concluded that the SAQ total score is a reliable and valid measure to estimate violence and recidivism risk in Spanish offenders.

  5. No unified reward prediction error in local field potentials from the human nucleus accumbens: evidence from epilepsy patients.

    Science.gov (United States)

    Stenner, Max-Philipp; Rutledge, Robb B; Zaehle, Tino; Schmitt, Friedhelm C; Kopitzki, Klaus; Kowski, Alexander B; Voges, Jürgen; Heinze, Hans-Jochen; Dolan, Raymond J

    2015-08-01

    Functional magnetic resonance imaging (fMRI), cyclic voltammetry, and single-unit electrophysiology studies suggest that signals measured in the nucleus accumbens (Nacc) during value-based decision making represent reward prediction errors (RPEs), the difference between actual and predicted rewards. Here, we studied the precise temporal and spectral pattern of reward-related signals in the human Nacc. We recorded local field potentials (LFPs) from the Nacc of six epilepsy patients during an economic decision-making task. On each trial, patients decided whether to accept or reject a gamble with equal probabilities of a monetary gain or loss. The behavior of four patients was consistent with choices being guided by value expectations. Expected value signals before outcome onset were observed in three of those patients, at varying latencies and with nonoverlapping spectral patterns. Signals after outcome onset were correlated with RPE regressors in all subjects. However, further analysis revealed that these signals were better explained as outcome valence rather than RPE signals, with gamble gains and losses differing in the power of beta oscillations and in evoked response amplitudes. Taken together, our results do not support the idea that postsynaptic potentials in the Nacc represent a RPE that unifies outcome magnitude and prior value expectation. We discuss the generalizability of our findings to healthy individuals and the relation of our results to measurements of RPE signals obtained from the Nacc with other methods. Copyright © 2015 the American Physiological Society.

  6. Developing EHR-driven heart failure risk prediction models using CPXR(Log) with the probabilistic loss function.

    Science.gov (United States)

    Taslimitehrani, Vahid; Dong, Guozhu; Pereira, Naveen L; Panahiazar, Maryam; Pathak, Jyotishman

    2016-04-01

    Computerized survival prediction in healthcare identifying the risk of disease mortality, helps healthcare providers to effectively manage their patients by providing appropriate treatment options. In this study, we propose to apply a classification algorithm, Contrast Pattern Aided Logistic Regression (CPXR(Log)) with the probabilistic loss function, to develop and validate prognostic risk models to predict 1, 2, and 5year survival in heart failure (HF) using data from electronic health records (EHRs) at Mayo Clinic. The CPXR(Log) constructs a pattern aided logistic regression model defined by several patterns and corresponding local logistic regression models. One of the models generated by CPXR(Log) achieved an AUC and accuracy of 0.94 and 0.91, respectively, and significantly outperformed prognostic models reported in prior studies. Data extracted from EHRs allowed incorporation of patient co-morbidities into our models which helped improve the performance of the CPXR(Log) models (15.9% AUC improvement), although did not improve the accuracy of the models built by other classifiers. We also propose a probabilistic loss function to determine the large error and small error instances. The new loss function used in the algorithm outperforms other functions used in the previous studies by 1% improvement in the AUC. This study revealed that using EHR data to build prediction models can be very challenging using existing classification methods due to the high dimensionality and complexity of EHR data. The risk models developed by CPXR(Log) also reveal that HF is a highly heterogeneous disease, i.e., different subgroups of HF patients require different types of considerations with their diagnosis and treatment. Our risk models provided two valuable insights for application of predictive modeling techniques in biomedicine: Logistic risk models often make systematic prediction errors, and it is prudent to use subgroup based prediction models such as those given by CPXR

  7. Risk predictive modelling for diabetes and cardiovascular disease.

    Science.gov (United States)

    Kengne, Andre Pascal; Masconi, Katya; Mbanya, Vivian Nchanchou; Lekoubou, Alain; Echouffo-Tcheugui, Justin Basile; Matsha, Tandi E

    2014-02-01

    Absolute risk models or clinical prediction models have been incorporated in guidelines, and are increasingly advocated as tools to assist risk stratification and guide prevention and treatments decisions relating to common health conditions such as cardiovascular disease (CVD) and diabetes mellitus. We have reviewed the historical development and principles of prediction research, including their statistical underpinning, as well as implications for routine practice, with a focus on predictive modelling for CVD and diabetes. Predictive modelling for CVD risk, which has developed over the last five decades, has been largely influenced by the Framingham Heart Study investigators, while it is only ∼20 years ago that similar efforts were started in the field of diabetes. Identification of predictive factors is an important preliminary step which provides the knowledge base on potential predictors to be tested for inclusion during the statistical derivation of the final model. The derived models must then be tested both on the development sample (internal validation) and on other populations in different settings (external validation). Updating procedures (e.g. recalibration) should be used to improve the performance of models that fail the tests of external validation. Ultimately, the effect of introducing validated models in routine practice on the process and outcomes of care as well as its cost-effectiveness should be tested in impact studies before wide dissemination of models beyond the research context. Several predictions models have been developed for CVD or diabetes, but very few have been externally validated or tested in impact studies, and their comparative performance has yet to be fully assessed. A shift of focus from developing new CVD or diabetes prediction models to validating the existing ones will improve their adoption in routine practice.

  8. Calibration plots for risk prediction models in the presence of competing risks.

    Science.gov (United States)

    Gerds, Thomas A; Andersen, Per K; Kattan, Michael W

    2014-08-15

    A predicted risk of 17% can be called reliable if it can be expected that the event will occur to about 17 of 100 patients who all received a predicted risk of 17%. Statistical models can predict the absolute risk of an event such as cardiovascular death in the presence of competing risks such as death due to other causes. For personalized medicine and patient counseling, it is necessary to check that the model is calibrated in the sense that it provides reliable predictions for all subjects. There are three often encountered practical problems when the aim is to display or test if a risk prediction model is well calibrated. The first is lack of independent validation data, the second is right censoring, and the third is that when the risk scale is continuous, the estimation problem is as difficult as density estimation. To deal with these problems, we propose to estimate calibration curves for competing risks models based on jackknife pseudo-values that are combined with a nearest neighborhood smoother and a cross-validation approach to deal with all three problems. Copyright © 2014 John Wiley & Sons, Ltd.

  9. EEG Theta Dynamics within Frontal and Parietal Cortices for Error Processing during Reaching Movements in a Prism Adaptation Study Altering Visuo-Motor Predictive Planning.

    Science.gov (United States)

    Arrighi, Pieranna; Bonfiglio, Luca; Minichilli, Fabrizio; Cantore, Nicoletta; Carboncini, Maria Chiara; Piccotti, Emily; Rossi, Bruno; Andre, Paolo

    2016-01-01

    Modulation of frontal midline theta (fmθ) is observed during error commission, but little is known about the role of theta oscillations in correcting motor behaviours. We investigate EEG activity of healthy partipants executing a reaching task under variable degrees of prism-induced visuo-motor distortion and visual occlusion of the initial arm trajectory. This task introduces directional errors of different magnitudes. The discrepancy between predicted and actual movement directions (i.e. the error), at the time when visual feedback (hand appearance) became available, elicits a signal that triggers on-line movement correction. Analysis were performed on 25 EEG channels. For each participant, the median value of the angular error of all reaching trials was used to partition the EEG epochs into high- and low-error conditions. We computed event-related spectral perturbations (ERSP) time-locked either to visual feedback or to the onset of movement correction. ERSP time-locked to the onset of visual feedback showed that fmθ increased in the high- but not in the low-error condition with an approximate time lag of 200 ms. Moreover, when single epochs were sorted by the degree of motor error, fmθ started to increase when a certain level of error was exceeded and, then, scaled with error magnitude. When ERSP were time-locked to the onset of movement correction, the fmθ increase anticipated this event with an approximate time lead of 50 ms. During successive trials, an error reduction was observed which was associated with indices of adaptations (i.e., aftereffects) suggesting the need to explore if theta oscillations may facilitate learning. To our knowledge this is the first study where the EEG signal recorded during reaching movements was time-locked to the onset of the error visual feedback. This allowed us to conclude that theta oscillations putatively generated by anterior cingulate cortex activation are implicated in error processing in semi-naturalistic motor

  10. Providing access to risk prediction tools via the HL7 XML-formatted risk web service.

    Science.gov (United States)

    Chipman, Jonathan; Drohan, Brian; Blackford, Amanda; Parmigiani, Giovanni; Hughes, Kevin; Bosinoff, Phil

    2013-07-01

    Cancer risk prediction tools provide valuable information to clinicians but remain computationally challenging. Many clinics find that CaGene or HughesRiskApps fit their needs for easy- and ready-to-use software to obtain cancer risks; however, these resources may not fit all clinics' needs. The HughesRiskApps Group and BayesMendel Lab therefore developed a web service, called "Risk Service", which may be integrated into any client software to quickly obtain standardized and up-to-date risk predictions for BayesMendel tools (BRCAPRO, MMRpro, PancPRO, and MelaPRO), the Tyrer-Cuzick IBIS Breast Cancer Risk Evaluation Tool, and the Colorectal Cancer Risk Assessment Tool. Software clients that can convert their local structured data into the HL7 XML-formatted family and clinical patient history (Pedigree model) may integrate with the Risk Service. The Risk Service uses Apache Tomcat and Apache Axis2 technologies to provide an all Java web service. The software client sends HL7 XML information containing anonymized family and clinical history to a Dana-Farber Cancer Institute (DFCI) server, where it is parsed, interpreted, and processed by multiple risk tools. The Risk Service then formats the results into an HL7 style message and returns the risk predictions to the originating software client. Upon consent, users may allow DFCI to maintain the data for future research. The Risk Service implementation is exemplified through HughesRiskApps. The Risk Service broadens the availability of valuable, up-to-date cancer risk tools and allows clinics and researchers to integrate risk prediction tools into their own software interface designed for their needs. Each software package can collect risk data using its own interface, and display the results using its own interface, while using a central, up-to-date risk calculator. This allows users to choose from multiple interfaces while always getting the latest risk calculations. Consenting users contribute their data for future

  11. Using cognitive status to predict crash risk: blazing new trails?

    Science.gov (United States)

    Staplin, Loren; Gish, Kenneth W; Sifrit, Kathy J

    2014-02-01

    A computer-based version of an established neuropsychological paper-and-pencil assessment tool, the Trail-Making Test, was applied with approximately 700 drivers aged 70 years and older in offices of the Maryland Motor Vehicle Administration. This was a volunteer sample that received a small compensation for study participation, with an assurance that their license status would not be affected by the results. Analyses revealed that the study sample was representative of Maryland older drivers with respect to age and indices of prior driving safety. The relationship between drivers' scores on the Trail-Making Test and prospective crash experience was analyzed using a new outcome measure that explicitly takes into account error responses as well as correct responses, the error-compensated completion time. For the only reliable predictor of crash risk, Trail-Making Test Part B, this measure demonstrated a modest gain in specificity and was a more significant predictor of future safety risk than the simple time-to-completion measure. Improved specificity and the potential for autonomous test administration are particular advantages of this measure for use with large populations, in settings such as health care or driver licensing. © 2013.

  12. The Reliability and Predictive Validity of the Stalking Risk Profile.

    Science.gov (United States)

    McEwan, Troy E; Shea, Daniel E; Daffern, Michael; MacKenzie, Rachel D; Ogloff, James R P; Mullen, Paul E

    2018-03-01

    This study assessed the reliability and validity of the Stalking Risk Profile (SRP), a structured measure for assessing stalking risks. The SRP was administered at the point of assessment or retrospectively from file review for 241 adult stalkers (91% male) referred to a community-based forensic mental health service. Interrater reliability was high for stalker type, and moderate-to-substantial for risk judgments and domain scores. Evidence for predictive validity and discrimination between stalking recidivists and nonrecidivists for risk judgments depended on follow-up duration. Discrimination was moderate (area under the curve = 0.66-0.68) and positive and negative predictive values good over the full follow-up period ( Mdn = 170.43 weeks). At 6 months, discrimination was better than chance only for judgments related to stalking of new victims (area under the curve = 0.75); however, high-risk stalkers still reoffended against their original victim(s) 2 to 4 times as often as low-risk stalkers. Implications for the clinical utility and refinement of the SRP are discussed.

  13. Predicting impacts of climate change on Fasciola hepatica risk.

    Science.gov (United States)

    Fox, Naomi J; White, Piran C L; McClean, Colin J; Marion, Glenn; Evans, Andy; Hutchings, Michael R

    2011-01-10

    Fasciola hepatica (liver fluke) is a physically and economically devastating parasitic trematode whose rise in recent years has been attributed to climate change. Climate has an impact on the free-living stages of the parasite and its intermediate host Lymnaea truncatula, with the interactions between rainfall and temperature having the greatest influence on transmission efficacy. There have been a number of short term climate driven forecasts developed to predict the following season's infection risk, with the Ollerenshaw index being the most widely used. Through the synthesis of a modified Ollerenshaw index with the UKCP09 fine scale climate projection data we have developed long term seasonal risk forecasts up to 2070 at a 25 km square resolution. Additionally UKCIP gridded datasets at 5 km square resolution from 1970-2006 were used to highlight the climate-driven increase to date. The maps show unprecedented levels of future fasciolosis risk in parts of the UK, with risk of serious epidemics in Wales by 2050. The seasonal risk maps demonstrate the possible change in the timing of disease outbreaks due to increased risk from overwintering larvae. Despite an overall long term increase in all regions of the UK, spatio-temporal variation in risk levels is expected. Infection risk will reduce in some areas and fluctuate greatly in others with a predicted decrease in summer infection for parts of the UK due to restricted water availability. This forecast is the first approximation of the potential impacts of climate change on fasciolosis risk in the UK. It can be used as a basis for indicating where active disease surveillance should be targeted and where the development of improved mitigation or adaptation measures is likely to bring the greatest benefits.

  14. Predicting impacts of climate change on Fasciola hepatica risk.

    Directory of Open Access Journals (Sweden)

    Naomi J Fox

    2011-01-01

    Full Text Available Fasciola hepatica (liver fluke is a physically and economically devastating parasitic trematode whose rise in recent years has been attributed to climate change. Climate has an impact on the free-living stages of the parasite and its intermediate host Lymnaea truncatula, with the interactions between rainfall and temperature having the greatest influence on transmission efficacy. There have been a number of short term climate driven forecasts developed to predict the following season's infection risk, with the Ollerenshaw index being the most widely used. Through the synthesis of a modified Ollerenshaw index with the UKCP09 fine scale climate projection data we have developed long term seasonal risk forecasts up to 2070 at a 25 km square resolution. Additionally UKCIP gridded datasets at 5 km square resolution from 1970-2006 were used to highlight the climate-driven increase to date. The maps show unprecedented levels of future fasciolosis risk in parts of the UK, with risk of serious epidemics in Wales by 2050. The seasonal risk maps demonstrate the possible change in the timing of disease outbreaks due to increased risk from overwintering larvae. Despite an overall long term increase in all regions of the UK, spatio-temporal variation in risk levels is expected. Infection risk will reduce in some areas and fluctuate greatly in others with a predicted decrease in summer infection for parts of the UK due to restricted water availability. This forecast is the first approximation of the potential impacts of climate change on fasciolosis risk in the UK. It can be used as a basis for indicating where active disease surveillance should be targeted and where the development of improved mitigation or adaptation measures is likely to bring the greatest benefits.

  15. Detailed analysis of inversions predicted between two human genomes: errors, real polymorphisms, and their origin and population distribution.

    Science.gov (United States)

    Vicente-Salvador, David; Puig, Marta; Gayà-Vidal, Magdalena; Pacheco, Sarai; Giner-Delgado, Carla; Noguera, Isaac; Izquierdo, David; Martínez-Fundichely, Alexander; Ruiz-Herrera, Aurora; Estivill, Xavier; Aguado, Cristina; Lucas-Lledó, José Ignacio; Cáceres, Mario

    2017-02-01

    The growing catalogue of structural variants in humans often overlooks inversions as one of the most difficult types of variation to study, even though they affect phenotypic traits in diverse organisms. Here, we have analysed in detail 90 inversions predicted from the comparison of two independently assembled human genomes: the reference genome (NCBI36/HG18) and HuRef. Surprisingly, we found that two thirds of these predictions (62) represent errors either in assembly comparison or in one of the assemblies, including 27 misassembled regions in HG18. Next, we validated 22 of the remaining 28 potential polymorphic inversions using different PCR techniques and characterized their breakpoints and ancestral state. In addition, we determined experimentally the derived allele frequency in Europeans for 17 inversions (DAF = 0.01-0.80), as well as the distribution in 14 worldwide populations for 12 of them based on the 1000 Genomes Project data. Among the validated inversions, nine have inverted repeats (IRs) at their breakpoints, and two show nucleotide variation patterns consistent with a recurrent origin. Conversely, inversions without IRs have a unique origin and almost all of them show deletions or insertions at the breakpoints in the derived allele mediated by microhomology sequences, which highlights the importance of mechanisms like FoSTeS/MMBIR in the generation of complex rearrangements in the human genome. Finally, we found several inversions located within genes and at least one candidate to be positively selected in Africa. Thus, our study emphasizes the importance of careful analysis and validation of large-scale genomic predictions to extract reliable biological conclusions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Predicting complication risk in spine surgery: a prospective analysis of a novel risk assessment tool.

    Science.gov (United States)

    Veeravagu, Anand; Li, Amy; Swinney, Christian; Tian, Lu; Moraff, Adrienne; Azad, Tej D; Cheng, Ivan; Alamin, Todd; Hu, Serena S; Anderson, Robert L; Shuer, Lawrence; Desai, Atman; Park, Jon; Olshen, Richard A; Ratliff, John K

    2017-07-01

    OBJECTIVE The ability to assess the risk of adverse events based on known patient factors and comorbidities would provide more effective preoperative risk stratification. Present risk assessment in spine surgery is limited. An adverse event prediction tool was developed to predict the risk of complications after spine surgery and tested on a prospective patient cohort. METHODS The spinal Risk Assessment Tool (RAT), a novel instrument for the assessment of risk for patients undergoing spine surgery that was developed based on an administrative claims database, was prospectively applied to 246 patients undergoing 257 spinal procedures over a 3-month period. Prospectively collected data were used to compare the RAT to the Charlson Comorbidity Index (CCI) and the American College of Surgeons National Surgery Quality Improvement Program (ACS NSQIP) Surgical Risk Calculator. Study end point was occurrence and type of complication after spine surgery. RESULTS The authors identified 69 patients (73 procedures) who experienced a complication over the prospective study period. Cardiac complications were most common (10.2%). Receiver operating characteristic (ROC) curves were calculated to compare complication outcomes using the different assessment tools. Area under the curve (AUC) analysis showed comparable predictive accuracy between the RAT and the ACS NSQIP calculator (0.670 [95% CI 0.60-0.74] in RAT, 0.669 [95% CI 0.60-0.74] in NSQIP). The CCI was not accurate in predicting complication occurrence (0.55 [95% CI 0.48-0.62]). The RAT produced mean probabilities of 34.6% for patients who had a complication and 24% for patients who did not (p = 0.0003). The generated predicted values were stratified into low, medium, and high rates. For the RAT, the predicted complication rate was 10.1% in the low-risk group (observed rate 12.8%), 21.9% in the medium-risk group (observed 31.8%), and 49.7% in the high-risk group (observed 41.2%). The ACS NSQIP calculator consistently

  17. Machine learning derived risk prediction of anorexia nervosa.

    Science.gov (United States)

    Guo, Yiran; Wei, Zhi; Keating, Brendan J; Hakonarson, Hakon

    2016-01-20

    Anorexia nervosa (AN) is a complex psychiatric disease with a moderate to strong genetic contribution. In addition to conventional genome wide association (GWA) studies, researchers have been using machine learning methods in conjunction with genomic data to predict risk of diseases in which genetics play an important role. In this study, we collected whole genome genotyping data on 3940 AN cases and 9266 controls from the Genetic Consortium for Anorexia Nervosa (GCAN), the Wellcome Trust Case Control Consortium 3 (WTCCC3), Price Foundation Collaborative Group and the Children's Hospital of Philadelphia (CHOP), and applied machine learning methods for predicting AN disease risk. The prediction performance is measured by area under the receiver operating characteristic curve (AUC), indicating how well the model distinguishes cases from unaffected control subjects. Logistic regression model with the lasso penalty technique generated an AUC of 0.693, while Support Vector Machines and Gradient Boosted Trees reached AUC's of 0.691 and 0.623, respectively. Using different sample sizes, our results suggest that larger datasets are required to optimize the machine learning models and achieve higher AUC values. To our knowledge, this is the first attempt to assess AN risk based on genome wide genotype level data. Future integration of genomic, environmental and family-based information is likely to improve the AN risk evaluation process, eventually benefitting AN patients and families in the clinical setting.

  18. Predictive risk factors for moderate to severe hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Gláucia Macedo de Lima

    2007-12-01

    Full Text Available Objective: to describe predictive factors for severity of neonataljaundice in newborn infants treated at the University Neonatal Clinic,highlighting maternal, obstetric and neonatal factors. Methods: Acohort retrospective study by means of review of medical charts todefine risk factors associated with moderate and severe jaundice.The cohort consisted of newborns diagnosed with indirect neonatalhyperbilirubinemia and submitted to phototherapy. Risk was classifiedas maternal, prenatal, obstetric and neonatal factors; risk estimationwas based on the odds ratio (95% confidence interval; a bi-variantmultivariate regression logistic analysis was applied to variables forp < 0.1. Results: Of 818 babies born during the studied period, 94(11% had jaundice prior to hospital discharge. Phototherapy was usedon 69 (73% patients. Predictive factors for severity were multiparity;prolonged rupture of membranes, dystocia, cephalohematoma, a lowApgar score, prematurity and small-for-date babies. Following birth,breastfeeding, sepsis, Rh incompatibility, and jaundice presentingbefore the third day of life were associated with an increased risk ofhyperbilirubinemia and the need for therapy. Conclusion: Other thanthose characteristics that are singly associated with phototherapy,we concluded that multiparity, presumed neonatal asphyxia, low birthweight and infection are the main predictive factors leading to moderateand severe jaundice in newborn infants in our neonatal unit.

  19. Why Don't We Learn to Accurately Forecast Feelings? How Misremembering Our Predictions Blinds Us to Past Forecasting Errors

    Science.gov (United States)

    Meyvis, Tom; Ratner, Rebecca K.; Levav, Jonathan

    2010-01-01

    Why do affective forecasting errors persist in the face of repeated disconfirming evidence? Five studies demonstrate that people misremember their forecasts as consistent with their experience and thus fail to perceive the extent of their forecasting error. As a result, people do not learn from past forecasting errors and fail to adjust subsequent…

  20. A risk prediction model for xerostomia: a retrospective cohort study.

    Science.gov (United States)

    Villa, Alessandro; Nordio, Francesco; Gohel, Anita

    2016-12-01

    We investigated the prevalence of xerostomia in dental patients and built a xerostomia risk prediction model by incorporating a wide range of risk factors. Socio-demographic data, past medical history, self-reported dry mouth and related symptoms were collected retrospectively from January 2010 to September 2013 for all new dental patients. A logistic regression framework was used to build a risk prediction model for xerostomia. External validation was performed using an independent data set to test the prediction power. A total of 12 682 patients were included in this analysis (54.3%, females). Xerostomia was reported by 12.2% of patients. The proportion of people reporting xerostomia was higher among those who were taking more medications (OR = 1.11, 95% CI = 1.08-1.13) or recreational drug users (OR = 1.4, 95% CI = 1.1-1.9). Rheumatic diseases (OR = 2.17, 95% CI = 1.88-2.51), psychiatric diseases (OR = 2.34, 95% CI = 2.05-2.68), eating disorders (OR = 2.28, 95% CI = 1.55-3.36) and radiotherapy (OR = 2.00, 95% CI = 1.43-2.80) were good predictors of xerostomia. For the test model performance, the ROC-AUC was 0.816 and in the external validation sample, the ROC-AUC was 0.799. The xerostomia risk prediction model had high accuracy and discriminated between high- and low-risk individuals. Clinicians could use this model to identify the classes of medications and systemic diseases associated with xerostomia. © 2015 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  1. Lung cancer in never smokers Epidemiology and risk prediction models

    Science.gov (United States)

    McCarthy, William J.; Meza, Rafael; Jeon, Jihyoun; Moolgavkar, Suresh

    2012-01-01

    In this chapter we review the epidemiology of lung cancer incidence and mortality among never smokers/ nonsmokers and describe the never smoker lung cancer risk models used by CISNET modelers. Our review focuses on those influences likely to have measurable population impact on never smoker risk, such as secondhand smoke, even though the individual-level impact may be small. Occupational exposures may also contribute importantly to the population attributable risk of lung cancer. We examine the following risk factors in this chapter: age, environmental tobacco smoke, cooking fumes, ionizing radiation including radon gas, inherited genetic susceptibility, selected occupational exposures, preexisting lung disease, and oncogenic viruses. We also compare the prevalence of never smokers between the three CISNET smoking scenarios and present the corresponding lung cancer mortality estimates among never smokers as predicted by a typical CISNET model. PMID:22882894

  2. Is ozone model bias driven by errors in cloud predictions? A quantitative assessment using satellite cloud retrievals in WRF-Chem

    Science.gov (United States)

    Ryu, Y. H.; Hodzic, A.; Barré, J.; Descombes, G.; Minnis, P.

    2017-12-01

    Clouds play a key role in radiation and hence O3 photochemistry by modulating photolysis rates and light-dependent emissions of biogenic volatile organic compounds (BVOCs). It is not well known, however, how much of the bias in O3 predictions is caused by inaccurate cloud predictions. This study quantifies the errors in surface O3 predictions associated with clouds in summertime over CONUS using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. Cloud fields used for photochemistry are corrected based on satellite cloud retrievals in sensitivity simulations. It is found that the WRF-Chem model is able to detect about 60% of clouds in the right locations and generally underpredicts cloud optical depths. The errors in hourly O3 due to the errors in cloud predictions can be up to 60 ppb. On average in summertime over CONUS, the errors in 8-h average O3 of 1-6 ppb are found to be attributable to those in cloud predictions under cloudy sky conditions. The contribution of changes in photolysis rates due to clouds is found to be larger ( 80 % on average) than that of light-dependent BVOC emissions. The effects of cloud corrections on O­3 are about 2 times larger in VOC-limited than NOx-limited regimes, suggesting that the benefits of accurate cloud predictions would be greater in VOC-limited than NOx-limited regimes.

  3. Cumulative risk hypothesis: Predicting and preventing child maltreatment recidivism.

    Science.gov (United States)

    Solomon, David; Åsberg, Kia; Peer, Samuel; Prince, Gwendolyn

    2016-08-01

    Although Child Protective Services (CPS) and other child welfare agencies aim to prevent further maltreatment in cases of child abuse and neglect, recidivism is common. Having a better understanding of recidivism predictors could aid in preventing additional instances of maltreatment. A previous study identified two CPS interventions that predicted recidivism: psychotherapy for the parent, which was related to a reduced risk of recidivism, and temporary removal of the child from the parent's custody, which was related to an increased recidivism risk. However, counter to expectations, this previous study did not identify any other specific risk factors related to maltreatment recidivism. For the current study, it was hypothesized that (a) cumulative risk (i.e., the total number of risk factors) would significantly predict maltreatment recidivism above and beyond intervention variables in a sample of CPS case files and that (b) therapy for the parent would be related to a reduced likelihood of recidivism. Because it was believed that the relation between temporary removal of a child from the parent's custody and maltreatment recidivism is explained by cumulative risk, the study also hypothesized that that the relation between temporary removal of the child from the parent's custody and recidivism would be mediated by cumulative risk. After performing a hierarchical logistic regression analysis, the first two hypotheses were supported, and an additional predictor, psychotherapy for the child, also was related to reduced chances of recidivism. However, Hypothesis 3 was not supported, as risk did not significantly mediate the relation between temporary removal and recidivism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Differential Dopamine Release Dynamics in the Nucleus Accumbens Core and Shell Reveal Complementary Signals for Error Prediction and Incentive Motivation.

    Science.gov (United States)

    Saddoris, Michael P; Cacciapaglia, Fabio; Wightman, R Mark; Carelli, Regina M

    2015-08-19

    Mesolimbic dopamine (DA) is phasically released during appetitive behaviors, though there is substantive disagreement about the specific purpose of these DA signals. For example, prediction error (PE) models suggest a role of learning, while incentive salience (IS) models argue that the DA signal imbues stimuli with value and thereby stimulates motivated behavior. However, within the nucleus accumbens (NAc) patterns of DA release can strikingly differ between subregions, and as such, it is possible that these patterns differentially contribute to aspects of PE and IS. To assess this, we measured DA release in subregions of the NAc during a behavioral task that spatiotemporally separated sequential goal-directed stimuli. Electrochemical methods were used to measure subsecond NAc dopamine release in the core and shell during a well learned instrumental chain schedule in which rats were trained to press one lever (seeking; SL) to gain access to a second lever (taking; TL) linked with food delivery, and again during extinction. In the core, phasic DA release was greatest following initial SL presentation, but minimal for the subsequent TL and reward events. In contrast, phasic shell DA showed robust release at all task events. Signaling decreased between the beginning and end of sessions in the shell, but not core. During extinction, peak DA release in the core showed a graded decrease for the SL and pauses in release during omitted expected rewards, whereas shell DA release decreased predominantly during the TL. These release dynamics suggest parallel DA signals capable of supporting distinct theories of appetitive behavior. Dopamine signaling in the brain is important for a variety of cognitive functions, such as learning and motivation. Typically, it is assumed that a single dopamine signal is sufficient to support these cognitive functions, though competing theories disagree on how dopamine contributes to reward-based behaviors. Here, we have found that real

  5. Prediction Model of Collapse Risk Based on Information Entropy and Distance Discriminant Analysis Method

    Directory of Open Access Journals (Sweden)

    Hujun He

    2017-01-01

    Full Text Available The prediction and risk classification of collapse is an important issue in the process of highway construction in mountainous regions. Based on the principles of information entropy and Mahalanobis distance discriminant analysis, we have produced a collapse hazard prediction model. We used the entropy measure method to reduce the influence indexes of the collapse activity and extracted the nine main indexes affecting collapse activity as the discriminant factors of the distance discriminant analysis model (i.e., slope shape, aspect, gradient, and height, along with exposure of the structural face, stratum lithology, relationship between weakness face and free face, vegetation cover rate, and degree of rock weathering. We employ postearthquake collapse data in relation to construction of the Yingxiu-Wolong highway, Hanchuan County, China, as training samples for analysis. The results were analyzed using the back substitution estimation method, showing high accuracy and no errors, and were the same as the prediction result of uncertainty measure. Results show that the classification model based on information entropy and distance discriminant analysis achieves the purpose of index optimization and has excellent performance, high prediction accuracy, and a zero false-positive rate. The model can be used as a tool for future evaluation of collapse risk.

  6. Methods for Estimation of Radiation Risk in Epidemiological Studies Accounting for Classical and Berkson Errors in Doses

    KAUST Repository

    Kukush, Alexander

    2011-01-16

    With a binary response Y, the dose-response model under consideration is logistic in flavor with pr(Y=1 | D) = R (1+R)(-1), R = λ(0) + EAR D, where λ(0) is the baseline incidence rate and EAR is the excess absolute risk per gray. The calculated thyroid dose of a person i is expressed as Dimes=fiQi(mes)/Mi(mes). Here, Qi(mes) is the measured content of radioiodine in the thyroid gland of person i at time t(mes), Mi(mes) is the estimate of the thyroid mass, and f(i) is the normalizing multiplier. The Q(i) and M(i) are measured with multiplicative errors Vi(Q) and ViM, so that Qi(mes)=Qi(tr)Vi(Q) (this is classical measurement error model) and Mi(tr)=Mi(mes)Vi(M) (this is Berkson measurement error model). Here, Qi(tr) is the true content of radioactivity in the thyroid gland, and Mi(tr) is the true value of the thyroid mass. The error in f(i) is much smaller than the errors in ( Qi(mes), Mi(mes)) and ignored in the analysis. By means of Parametric Full Maximum Likelihood and Regression Calibration (under the assumption that the data set of true doses has lognormal distribution), Nonparametric Full Maximum Likelihood, Nonparametric Regression Calibration, and by properly tuned SIMEX method we study the influence of measurement errors in thyroid dose on the estimates of λ(0) and EAR. The simulation study is presented based on a real sample from the epidemiological studies. The doses were reconstructed in the framework of the Ukrainian-American project on the investigation of Post-Chernobyl thyroid cancers in Ukraine, and the underlying subpolulation was artificially enlarged in order to increase the statistical power. The true risk parameters were given by the values to earlier epidemiological studies, and then the binary response was simulated according to the dose-response model.

  7. Methods for estimation of radiation risk in epidemiological studies accounting for classical and Berkson errors in doses.

    Science.gov (United States)

    Kukush, Alexander; Shklyar, Sergiy; Masiuk, Sergii; Likhtarov, Illya; Kovgan, Lina; Carroll, Raymond J; Bouville, Andre

    2011-02-16

    With a binary response Y, the dose-response model under consideration is logistic in flavor with pr(Y=1 | D) = R (1+R)(-1), R = λ(0) + EAR D, where λ(0) is the baseline incidence rate and EAR is the excess absolute risk per gray. The calculated thyroid dose of a person i is expressed as Dimes=fiQi(mes)/Mi(mes). Here, Qi(mes) is the measured content of radioiodine in the thyroid gland of person i at time t(mes), Mi(mes) is the estimate of the thyroid mass, and f(i) is the normalizing multiplier. The Q(i) and M(i) are measured with multiplicative errors Vi(Q) and ViM, so that Qi(mes)=Qi(tr)Vi(Q) (this is classical measurement error model) and Mi(tr)=Mi(mes)Vi(M) (this is Berkson measurement error model). Here, Qi(tr) is the true content of radioactivity in the thyroid gland, and Mi(tr) is the true value of the thyroid mass. The error in f(i) is much smaller than the errors in ( Qi(mes), Mi(mes)) and ignored in the analysis. By means of Parametric Full Maximum Likelihood and Regression Calibration (under the assumption that the data set of true doses has lognormal distribution), Nonparametric Full Maximum Likelihood, Nonparametric Regression Calibration, and by properly tuned SIMEX method we study the influence of measurement errors in thyroid dose on the estimates of λ(0) and EAR. The simulation study is presented based on a real sample from the epidemiological studies. The doses were reconstructed in the framework of the Ukrainian-American project on the investigation of Post-Chernobyl thyroid cancers in Ukraine, and the underlying subpolulation was artificially enlarged in order to increase the statistical power. The true risk parameters were given by the values to earlier epidemiological studies, and then the binary response was simulated according to the dose-response model.

  8. Risk prediction of cardiovascular death based on the QTc interval

    DEFF Research Database (Denmark)

    Nielsen, Jonas B; Graff, Claus; Rasmussen, Peter V

    2014-01-01

    electrocardiograms from 173 529 primary care patients aged 50-90 years were collected during 2001-11. The Framingham formula was used for heart rate-correction of the QT interval. Data on medication, comorbidity, and outcomes were retrieved from administrative registries. During a median follow-up period of 6......AIMS: Using a large, contemporary primary care population we aimed to provide absolute long-term risks of cardiovascular death (CVD) based on the QTc interval and to test whether the QTc interval is of value in risk prediction of CVD on an individual level. METHODS AND RESULTS: Digital...

  9. An RES-Based Model for Risk Assessment and Prediction of Backbreak in Bench Blasting

    Science.gov (United States)

    Faramarzi, F.; Ebrahimi Farsangi, M. A.; Mansouri, H.

    2013-07-01

    Most blasting operations are associated with various forms of energy loss, emerging as environmental side effects of rock blasting, such as flyrock, vibration, airblast, and backbreak. Backbreak is an adverse phenomenon in rock blasting operations, which imposes risk and increases operation expenses because of safety reduction due to the instability of walls, poor fragmentation, and uneven burden in subsequent blasts. In this paper, based on the basic concepts of a rock engineering systems (RES) approach, a new model for the prediction of backbreak and the risk associated with a blast is presented. The newly suggested model involves 16 effective parameters on backbreak due to blasting, while retaining simplicity as well. The data for 30 blasts, carried out at Sungun copper mine, western Iran, were used to predict backbreak and the level of risk corresponding to each blast by the RES-based model. The results obtained were compared with the backbreak measured for each blast, which showed that the level of risk achieved is in consistence with the backbreak measured. The maximum level of risk [vulnerability index (VI) = 60] was associated with blast No. 2, for which the corresponding average backbreak was the highest achieved (9.25 m). Also, for blasts with levels of risk under 40, the minimum average backbreaks (<4 m) were observed. Furthermore, to evaluate the model performance for backbreak prediction, the coefficient of correlation ( R 2) and root mean square error (RMSE) of the model were calculated ( R 2 = 0.8; RMSE = 1.07), indicating the good performance of the model.

  10. Risk determination after an acute myocardial infarction: review of 3 clinical risk prediction tools.

    Science.gov (United States)

    Scruth, Elizabeth Ann; Page, Karen; Cheng, Eugene; Campbell, Michelle; Worrall-Carter, Linda

    2012-01-01

    The objective of the study was to provide comprehensive information for the clinical nurse specialist (CNS) on commonly used clinical prediction (risk assessment) tools used to estimate risk of a secondary cardiac or noncardiac event and mortality in patients undergoing primary percutaneous coronary intervention (PCI) for ST-elevation myocardial infarction (STEMI). The evolution and widespread adoption of primary PCI represent major advances in the treatment of acute myocardial infarction, specifically STEMI. The American College of Cardiology and the American Heart Association have recommended early risk stratification for patients presenting with acute coronary syndromes using several clinical risk scores to identify patients' mortality and secondary event risk after PCI. Clinical nurse specialists are integral to any performance improvement strategy. Their knowledge and understandings of clinical prediction tools will be essential in carrying out important assessment, identifying and managing risk in patients who have sustained a STEMI, and enhancing discharge education including counseling on medications and lifestyle changes. Over the past 2 decades, risk scores have been developed from clinical trials to facilitate risk assessment. There are several risk scores that can be used to determine in-hospital and short-term survival. This article critiques the most common tools: the Thrombolytic in Myocardial Infarction risk score, the Global Registry of Acute Coronary Events risk score, and the Controlled Abciximab and Device Investigation to Lower Late Angioplasty Complications risk score. The importance of incorporating risk screening assessment tools (that are important for clinical prediction models) to guide therapeutic management of patients cannot be underestimated. The ability to forecast secondary risk after a STEMI will assist in determining which patients would require the most aggressive level of treatment and monitoring postintervention including

  11. Nonparametric predictive inference for combined competing risks data

    International Nuclear Information System (INIS)

    Coolen-Maturi, Tahani; Coolen, Frank P.A.

    2014-01-01

    The nonparametric predictive inference (NPI) approach for competing risks data has recently been presented, in particular addressing the question due to which of the competing risks the next unit will fail, and also considering the effects of unobserved, re-defined, unknown or removed competing risks. In this paper, we introduce how the NPI approach can be used to deal with situations where units are not all at risk from all competing risks. This may typically occur if one combines information from multiple samples, which can, e.g. be related to further aspects of units that define the samples or groups to which the units belong or to different applications where the circumstances under which the units operate can vary. We study the effect of combining the additional information from these multiple samples, so effectively borrowing information on specific competing risks from other units, on the inferences. Such combination of information can be relevant to competing risks scenarios in a variety of application areas, including engineering and medical studies

  12. Predicting adolescent's cyberbullying behavior: A longitudinal risk analysis.

    Science.gov (United States)

    Barlett, Christopher P

    2015-06-01

    The current study used the risk factor approach to test the unique and combined influence of several possible risk factors for cyberbullying attitudes and behavior using a four-wave longitudinal design with an adolescent US sample. Participants (N = 96; average age = 15.50 years) completed measures of cyberbullying attitudes, perceptions of anonymity, cyberbullying behavior, and demographics four times throughout the academic school year. Several logistic regression equations were used to test the contribution of these possible risk factors. Results showed that (a) cyberbullying attitudes and previous cyberbullying behavior were important unique risk factors for later cyberbullying behavior, (b) anonymity and previous cyberbullying behavior were valid risk factors for later cyberbullying attitudes, and (c) the likelihood of engaging in later cyberbullying behavior increased with the addition of risk factors. Overall, results show the unique and combined influence of such risk factors for predicting later cyberbullying behavior. Results are discussed in terms of theory. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  13. Improving default risk prediction using Bayesian model uncertainty techniques.

    Science.gov (United States)

    Kazemi, Reza; Mosleh, Ali

    2012-11-01

    Credit risk is the potential exposure of a creditor to an obligor's failure or refusal to repay the debt in principal or interest. The potential of exposure is measured in terms of probability of default. Many models have been developed to estimate credit risk, with rating agencies dating back to the 19th century. They provide their assessment of probability of default and transition probabilities of various firms in their annual reports. Regulatory capital requirements for credit risk outlined by the Basel Committee on Banking Supervision have made it essential for banks and financial institutions to develop sophisticated models in an attempt to measure credit risk with higher accuracy. The Bayesian framework proposed in this article uses the techniques developed in physical sciences and engineering for dealing with model uncertainty and expert accuracy to obtain improved estimates of credit risk and associated uncertainties. The approach uses estimates from one or more rating agencies and incorporates their historical accuracy (past performance data) in estimating future default risk and transition probabilities. Several examples demonstrate that the proposed methodology can assess default probability with accuracy exceeding the estimations of all the individual models. Moreover, the methodology accounts for potentially significant departures from "nominal predictions" due to "upsetting events" such as the 2008 global banking crisis. © 2012 Society for Risk Analysis.

  14. Risk prediction, safety analysis and quantitative probability methods - a caveat

    International Nuclear Information System (INIS)

    Critchley, O.H.

    1976-01-01

    Views are expressed on the use of quantitative techniques for the determination of value judgements in nuclear safety assessments, hazard evaluation, and risk prediction. Caution is urged when attempts are made to quantify value judgements in the field of nuclear safety. Criteria are given the meaningful application of reliability methods but doubts are expressed about their application to safety analysis, risk prediction and design guidances for experimental or prototype plant. Doubts are also expressed about some concomitant methods of population dose evaluation. The complexities of new designs of nuclear power plants make the problem of safety assessment more difficult but some possible approaches are suggested as alternatives to the quantitative techniques criticized. (U.K.)

  15. Failing to learn from negative prediction errors: Obesity is associated with alterations in a fundamental neural learning mechanism.

    Science.gov (United States)

    Mathar, David; Neumann, Jane; Villringer, Arno; Horstmann, Annette

    2017-10-01

    Prediction errors (PEs) encode the difference between expected and actual action outcomes in the brain via dopaminergic modulation. Integration of these learning signals ensures efficient behavioral adaptation. Obesity has recently been linked to altered dopaminergic fronto-striatal circuits, thus implying impairments in cognitive domains that rely on its integrity. 28 obese and 30 lean human participants performed an implicit stimulus-response learning paradigm inside an fMRI scanner. Computational modeling and psycho-physiological interaction (PPI) analysis was utilized for assessing PE-related learning and associated functional connectivity. We show that human obesity is associated with insufficient incorporation of negative PEs into behavioral adaptation even in a non-food context, suggesting differences in a fundamental neural learning mechanism. Obese subjects were less efficient in using negative PEs to improve implicit learning performance, despite proper coding of PEs in striatum. We further observed lower functional coupling between ventral striatum and supplementary motor area in obese subjects subsequent to negative PEs. Importantly, strength of functional coupling predicted task performance and negative PE utilization. These findings show that obesity is linked to insufficient behavioral adaptation specifically in response to negative PEs, and to associated alterations in function and connectivity within the fronto-striatal system. Recognition of neural differences as a central characteristic of obesity hopefully paves the way to rethink established intervention strategies: Differential behavioral sensitivity to negative and positive PEs should be considered when designing intervention programs. Measures relying on penalization of unwanted behavior may prove less effective in obese subjects than alternative approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Predictions of space radiation fatality risk for exploration missions.

    Science.gov (United States)

    Cucinotta, Francis A; To, Khiet; Cacao, Eliedonna

    2017-05-01

    In this paper we describe revisions to the NASA Space Cancer Risk (NSCR) model focusing on updates to probability distribution functions (PDF) representing the uncertainties in the radiation quality factor (QF) model parameters and the dose and dose-rate reduction effectiveness factor (DDREF). We integrate recent heavy ion data on liver, colorectal, intestinal, lung, and Harderian gland tumors with other data from fission neutron experiments into the model analysis. In an earlier work we introduced distinct QFs for leukemia and solid cancer risk predictions, and here we consider liver cancer risks separately because of the higher RBE's reported in mouse experiments compared to other tumors types, and distinct risk factors for liver cancer for astronauts compared to the U.S. The revised model is used to make predictions of fatal cancer and circulatory disease risks for 1-year deep space and International Space Station (ISS) missions, and a 940 day Mars mission. We analyzed the contribution of the various model parameter uncertainties to the overall uncertainty, which shows that the uncertainties in relative biological effectiveness (RBE) factors at high LET due to statistical uncertainties and differences across tissue types and mouse strains are the dominant uncertainty. NASA's exposure limits are approached or exceeded for each mission scenario considered. Two main conclusions are made: 1) Reducing the current estimate of about a 3-fold uncertainty to a 2-fold or lower uncertainty will require much more expansive animal carcinogenesis studies in order to reduce statistical uncertainties and understand tissue, sex and genetic variations. 2) Alternative model assumptions such as non-targeted effects, increased tumor lethality and decreased latency at high LET, and non-cancer mortality risks from circulatory diseases could significantly increase risk estimates to several times higher than the NASA limits. Copyright © 2017 The Committee on Space Research (COSPAR

  17. Predicting epidemic risk from past temporal contact data.

    Directory of Open Access Journals (Sweden)

    Eugenio Valdano

    2015-03-01

    Full Text Available Understanding how epidemics spread in a system is a crucial step to prevent and control outbreaks, with broad implications on the system's functioning, health, and associated costs. This can be achieved by identifying the elements at higher risk of infection and implementing targeted surveillance and control measures. One important ingredient to consider is the pattern of disease-transmission contacts among the elements, however lack of data or delays in providing updated records may hinder its use, especially for time-varying patterns. Here we explore to what extent it is possible to use past temporal data of a system's pattern of contacts to predict the risk of infection of its elements during an emerging outbreak, in absence of updated data. We focus on two real-world temporal systems; a livestock displacements trade network among animal holdings, and a network of sexual encounters in high-end prostitution. We define the node's loyalty as a local measure of its tendency to maintain contacts with the same elements over time, and uncover important non-trivial correlations with the node's epidemic risk. We show that a risk assessment analysis incorporating this knowledge and based on past structural and temporal pattern properties provides accurate predictions for both systems. Its generalizability is tested by introducing a theoretical model for generating synthetic temporal networks. High accuracy of our predictions is recovered across different settings, while the amount of possible predictions is system-specific. The proposed method can provide crucial information for the setup of targeted intervention strategies.

  18. How to make predictions about future infectious disease risks

    Science.gov (United States)

    Woolhouse, Mark

    2011-01-01

    Formal, quantitative approaches are now widely used to make predictions about the likelihood of an infectious disease outbreak, how the disease will spread, and how to control it. Several well-established methodologies are available, including risk factor analysis, risk modelling and dynamic modelling. Even so, predictive modelling is very much the ‘art of the possible’, which tends to drive research effort towards some areas and away from others which may be at least as important. Building on the undoubted success of quantitative modelling of the epidemiology and control of human and animal diseases such as AIDS, influenza, foot-and-mouth disease and BSE, attention needs to be paid to developing a more holistic framework that captures the role of the underlying drivers of disease risks, from demography and behaviour to land use and climate change. At the same time, there is still considerable room for improvement in how quantitative analyses and their outputs are communicated to policy makers and other stakeholders. A starting point would be generally accepted guidelines for ‘good practice’ for the development and the use of predictive models. PMID:21624924

  19. The Economic Value of Predicting Bond Risk Premia

    DEFF Research Database (Denmark)

    Sarno, Lucio; Schneider, Paul; Wagner, Christian

    2016-01-01

    evaluation. More specifically, the model mostly generates positive (negative) economic value during times of high (low) macroeconomic uncertainty. Overall, the expectations hypothesis remains a useful benchmark for investment decisions in bond markets, especially in low uncertainty states.......This paper studies whether the evident statistical predictability of bond risk premia translates into economic gains for investors. We propose a novel estimation strategy for affine term structure models that jointly fits yields and bond excess returns, thereby capturing predictive information...... otherwise hidden to standard estimations. The model predicts excess returns with high regression R2s and high forecast accuracy but cannot outperform the expectations hypothesis out-of-sample in terms of economic value, showing a general contrast between statistical and economic metrics of forecast...

  20. Predicted cancer risks induced by computed tomography examinations during childhood, by a quantitative risk assessment approach.

    Science.gov (United States)

    Journy, Neige; Ancelet, Sophie; Rehel, Jean-Luc; Mezzarobba, Myriam; Aubert, Bernard; Laurier, Dominique; Bernier, Marie-Odile

    2014-03-01

    The potential adverse effects associated with exposure to ionizing radiation from computed tomography (CT) in pediatrics must be characterized in relation to their expected clinical benefits. Additional epidemiological data are, however, still awaited for providing a lifelong overview of potential cancer risks. This paper gives predictions of potential lifetime risks of cancer incidence that would be induced by CT examinations during childhood in French routine practices in pediatrics. Organ doses were estimated from standard radiological protocols in 15 hospitals. Excess risks of leukemia, brain/central nervous system, breast and thyroid cancers were predicted from dose-response models estimated in the Japanese atomic bomb survivors' dataset and studies of medical exposures. Uncertainty in predictions was quantified using Monte Carlo simulations. This approach predicts that 100,000 skull/brain scans in 5-year-old children would result in eight (90 % uncertainty interval (UI) 1-55) brain/CNS cancers and four (90 % UI 1-14) cases of leukemia and that 100,000 chest scans would lead to 31 (90 % UI 9-101) thyroid cancers, 55 (90 % UI 20-158) breast cancers, and one (90 % UI risks without exposure). Compared to background risks, radiation-induced risks would be low for individuals throughout life, but relative risks would be highest in the first decades of life. Heterogeneity in the radiological protocols across the hospitals implies that 5-10 % of CT examinations would be related to risks 1.4-3.6 times higher than those for the median doses. Overall excess relative risks in exposed populations would be 1-10 % depending on the site of cancer and the duration of follow-up. The results emphasize the potential risks of cancer specifically from standard CT examinations in pediatrics and underline the necessity of optimization of radiological protocols.

  1. Managing Sensitive Information: DOD Can More Effectively Reduce the Risk of Classification Errors

    National Research Council Canada - National Science Library

    D'Agostino, Davi M; Borseth, Ann; Fenton, Mattias; Hatton, Adam; Hills, Barbara; Keefer, David; Mayfield, David; Reid, Jim; Richardson, Terry; Schwartz, Marc

    2006-01-01

    ...) information security program are increasing the risk of misclassification. DoD's information security program is decentralized to the DoD component level, and the Office of the Under Secretary of Defense for Intelligence (OUSD...

  2. Predictive Modelling Risk Calculators and the Non Dialysis Pathway.

    Science.gov (United States)

    Robins, Jennifer; Katz, Ivor

    2013-04-16

    This guideline will review the current prediction models and survival/mortality scores available for decision making in patients with advanced kidney disease who are being considered for a non-dialysis treatment pathway. Risk prediction is gaining increasing attention with emerging literature suggesting improved patient outcomes through individualised risk prediction (1). Predictive models help inform the nephrologist and the renal palliative care specialists in their discussions with patients and families about suitability or otherwise of dialysis. Clinical decision making in the care of end stage kidney disease (ESKD) patients on a non-dialysis treatment pathway is currently governed by several observational trials (3). Despite the paucity of evidence based medicine in this field, it is becoming evident that the survival advantages associated with renal replacement therapy in these often elderly patients with multiple co-morbidities and limited functional status may be negated by loss of quality of life (7) (6), further functional decline (5, 8), increased complications and hospitalisations. This article is protected by copyright. All rights reserved.

  3. Human error risk management for engineering systems: a methodology for design, safety assessment, accident investigation and training

    International Nuclear Information System (INIS)

    Cacciabue, P.C.

    2004-01-01

    The objective of this paper is to tackle methodological issues associated with the inclusion of cognitive and dynamic considerations into Human Reliability methods. A methodology called Human Error Risk Management for Engineering Systems is presented that offers a 'roadmap' for selecting and consistently applying Human Factors approaches in different areas of application and contains also a 'body' of possible methods and techniques of its own. Two types of possible application are discussed to demonstrate practical applications of the methodology. Specific attention is dedicated to the issue of data collection and definition from specific field assessment

  4. Modeling coherent errors in quantum error correction

    Science.gov (United States)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  5. Predictive Risk of Radiation Induced Cerebral Necrosis in Pediatric Brain Cancer Patients after VMAT Versus Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Derek; Zhang, Rui, E-mail: rzhang@marybird.com [Department of Radiation Oncology, Mary Bird Perkins Cancer Center, 4950 Essen Ln., Baton Rouge, LA 70809 (United States); Department of Physics and Astronomy, Louisiana State University, Nicholson Hall, Tower Dr., Baton Rouge, LA 70810 (United States); Sanders, Mary [Department of Radiation Oncology, Mary Bird Perkins Cancer Center, 4950 Essen Ln., Baton Rouge, LA 70809 (United States); Newhauser, Wayne [Department of Radiation Oncology, Mary Bird Perkins Cancer Center, 4950 Essen Ln., Baton Rouge, LA 70809 (United States); Department of Physics and Astronomy, Louisiana State University, Nicholson Hall, Tower Dr., Baton Rouge, LA 70810 (United States)

    2015-04-13

    Cancer of the brain and central nervous system (CNS) is the second most common of all pediatric cancers. Treatment of many of these cancers includes radiation therapy of which radiation induced cerebral necrosis (RICN) can be a severe and potentially devastating side effect. Risk factors for RICN include brain volume irradiated, the dose given per fraction and total dose. Thirteen pediatric patients were selected for this study to determine the difference in predicted risk of RICN when treating with volumetric modulated arc therapy (VMAT) compared to passively scattered proton therapy (PSPT) and intensity modulated proton therapy (IMPT). Plans were compared on the basis of dosimetric endpoints in the planned treatment volume (PTV) and brain and a radiobiological endpoint of RICN calculated using the Lyman-Kutcher-Burman probit model. Uncertainty tests were performed to determine if the predicted risk of necrosis was sensitive to positional errors, proton range errors and selection of risk models. Both PSPT and IMPT plans resulted in a significant increase in the maximum dose to the brain, a significant reduction in the total brain volume irradiated to low doses, and a significant lower predicted risk of necrosis compared with the VMAT plans. The findings of this study were upheld by the uncertainty analysis.

  6. Predictive Risk of Radiation Induced Cerebral Necrosis in Pediatric Brain Cancer Patients after VMAT Versus Proton Therapy

    Directory of Open Access Journals (Sweden)

    Derek Freund

    2015-04-01

    Full Text Available Cancer of the brain and central nervous system (CNS is the second most common of all pediatric cancers. Treatment of many of these cancers includes radiation therapy of which radiation induced cerebral necrosis (RICN can be a severe and potentially devastating side effect. Risk factors for RICN include brain volume irradiated, the dose given per fraction and total dose. Thirteen pediatric patients were selected for this study to determine the difference in predicted risk of RICN when treating with volumetric modulated arc therapy (VMAT compared to passively scattered proton therapy (PSPT and intensity modulated proton therapy (IMPT. Plans were compared on the basis of dosimetric endpoints in the planned treatment volume (PTV and brain and a radiobiological endpoint of RICN calculated using the Lyman-Kutcher-Burman probit model. Uncertainty tests were performed to determine if the predicted risk of necrosis was sensitive to positional errors, proton range errors and selection of risk models. Both PSPT and IMPT plans resulted in a significant increase in the maximum dose to the brain, a significant reduction in the total brain volume irradiated to low doses, and a significant lower predicted risk of necrosis compared with the VMAT plans. The findings of this study were upheld by the uncertainty analysis.

  7. Prediction of health risks from accidents: A comprehensive assessment methodology

    International Nuclear Information System (INIS)

    MacFarlane, D.R.; Yuan, Y.C.

    1992-01-01

    We have developed two computer programs to predict radiation risks to individuals and/or the collective population from exposures to accidental releases of radioactive materials. When used together, these two codes provide a consistent, comprehensive tool to estimate not only the risks to specific individuals but also the distribution of risks in the exposed population and the total number of individuals within a specific level of risk. Prompt and latent fatalities are estimated for the exposed population, and from these, the risk to an average individual can be derived. Uncertainty in weather conditions is considered by estimating both the ''median'' and the ''maximum'' population doses based on the frequency distribution of wind speeds and stabilities for a given site. The importance of including all dispersible particles (particles smaller than about 100 μm) for dose and health risk analyses from nonfiltered releases for receptor locations within about 10 km from a release has been investigated. The dose contribution of the large particles (> 10 μm) has been shown to be substantially greater than those from the small particles for the dose receptors in various release and exposure conditions. These conditions include, particularly, elevated releases, strong wind weather, and exposure pathways associated with ground-deposited material over extended periods of time

  8. Predicting risk behaviors: development and validation of a diagnostic scale.

    Science.gov (United States)

    Witte, K; Cameron, K A; McKeon, J K; Berkowitz, J M

    1996-01-01

    The goal of this study was to develop and validate the Risk Behavior Diagnosis (RBD) Scale for use by health care providers and practitioners interested in promoting healthy behaviors. Theoretically guided by the Extended Parallel Process Model (EPPM; a fear appeal theory), the RBD scale was designed to work in conjunction with an easy-to-use formula to determine which types of health risk messages would be most appropriate for a given individual or audience. Because some health risk messages promote behavior change and others backfire, this type of scale offers guidance to practitioners on how to develop the best persuasive message possible to motivate healthy behaviors. The results of the study demonstrate the RBD scale to have a high degree of content, construct, and predictive validity. Specific examples and practical suggestions are offered to facilitate use of the scale for health practitioners.

  9. Collection of offshore human error probability data

    International Nuclear Information System (INIS)

    Basra, Gurpreet; Kirwan, Barry

    1998-01-01

    Accidents such as Piper Alpha have increased concern about the effects of human errors in complex systems. Such accidents can in theory be predicted and prevented by risk assessment, and in particular human reliability assessment (HRA), but HRA ideally requires qualitative and quantitative human error data. A research initiative at the University of Birmingham led to the development of CORE-DATA, a Computerised Human Error Data Base. This system currently contains a reasonably large number of human error data points, collected from a variety of mainly nuclear-power related sources. This article outlines a recent offshore data collection study, concerned with collecting lifeboat evacuation data. Data collection methods are outlined and a selection of human error probabilities generated as a result of the study are provided. These data give insights into the type of errors and human failure rates that could be utilised to support offshore risk analyses

  10. A simulation study to quantify the impacts of exposure measurement error on air pollution health risk estimates in copollutant time-series models.

    Science.gov (United States)

    BackgroundExposure measurement error in copollutant epidemiologic models has the potential to introduce bias in relative risk (RR) estimates. A simulation study was conducted using empirical data to quantify the impact of correlated measurement errors in time-series analyses of a...

  11. How to regress and predict in a Bland-Altman plot? Review and contribution based on tolerance intervals and correlated-errors-in-variables models.

    Science.gov (United States)

    Francq, Bernard G; Govaerts, Bernadette

    2016-06-30

    Two main methodologies for assessing equivalence in method-comparison studies are presented separately in the literature. The first one is the well-known and widely applied Bland-Altman approach with its agreement intervals, where two methods are considered interchangeable if their differences are not clinically significant. The second approach is based on errors-in-variables regression in a classical (X,Y) plot and focuses on confidence intervals, whereby two methods are considered equivalent when providing similar measures notwithstanding the random measurement errors. This paper reconciles these two methodologies and shows their similarities and differences using both real data and simulations. A new consistent correlated-errors-in-variables regression is introduced as the errors are shown to be correlated in the Bland-Altman plot. Indeed, the coverage probabilities collapse and the biases soar when this correlation is ignored. Novel tolerance intervals are compared with agreement intervals with or without replicated data, and novel predictive intervals are introduced to predict a single measure in an (X,Y) plot or in a Bland-Atman plot with excellent coverage probabilities. We conclude that the (correlated)-errors-in-variables regressions should not be avoided in method comparison studies, although the Bland-Altman approach is usually applied to avert their complexity. We argue that tolerance or predictive intervals are better alternatives than agreement intervals, and we provide guidelines for practitioners regarding method comparison studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Basic Diagnosis and Prediction of Persistent Contrail Occurrence using High-resolution Numerical Weather Analyses/Forecasts and Logistic Regression. Part I: Effects of Random Error

    Science.gov (United States)

    Duda, David P.; Minnis, Patrick

    2009-01-01

    Straightforward application of the Schmidt-Appleman contrail formation criteria to diagnose persistent contrail occurrence from numerical weather prediction data is hindered by significant bias errors in the upper tropospheric humidity. Logistic models of contrail occurrence have been proposed to overcome this problem, but basic questions remain about how random measurement error may affect their accuracy. A set of 5000 synthetic contrail observations is created to study the effects of random error in these probabilistic models. The simulated observations are based on distributions of temperature, humidity, and vertical velocity derived from Advanced Regional Prediction System (ARPS) weather analyses. The logistic models created from the simulated observations were evaluated using two common statistical measures of model accuracy, the percent correct (PC) and the Hanssen-Kuipers discriminant (HKD). To convert the probabilistic results of the logistic models into a dichotomous yes/no choice suitable for the statistical measures, two critical probability thresholds are considered. The HKD scores are higher when the climatological frequency of contrail occurrence is used as the critical threshold, while the PC scores are higher when the critical probability threshold is 0.5. For both thresholds, typical random errors in temperature, relative humidity, and vertical velocity are found to be small enough to allow for accurate logistic models of contrail occurrence. The accuracy of the models developed from synthetic data is over 85 percent for both the prediction of contrail occurrence and non-occurrence, although in practice, larger errors would be anticipated.

  13. An investigation into multi-dimensional prediction models to estimate the pose error of a quadcopter in a CSP plant setting

    Science.gov (United States)

    Lock, Jacobus C.; Smit, Willie J.; Treurnicht, Johann

    2016-05-01

    The Solar Thermal Energy Research Group (STERG) is investigating ways to make heliostats cheaper to reduce the total cost of a concentrating solar power (CSP) plant. One avenue of research is to use unmanned aerial vehicles (UAVs) to automate and assist with the heliostat calibration process. To do this, the pose estimation error of each UAV must be determined and integrated into a calibration procedure. A computer vision (CV) system is used to measure the pose of a quadcopter UAV. However, this CV system contains considerable measurement errors. Since this is a high-dimensional problem, a sophisticated prediction model must be used to estimate the measurement error of the CV system for any given pose measurement vector. This paper attempts to train and validate such a model with the aim of using it to determine the pose error of a quadcopter in a CSP plant setting.

  14. A Novel Risk Scoring System Reliably Predicts Readmission Following Pancreatectomy

    Science.gov (United States)

    Valero, Vicente; Grimm, Joshua C.; Kilic, Arman; Lewis, Russell L.; Tosoian, Jeffrey J.; He, Jin; Griffin, James; Cameron, John L.; Weiss, Matthew J.; Vollmer, Charles M.; Wolfgang, Christopher L.

    2015-01-01

    Background Postoperative readmissions have been proposed by Medicare as a quality metric and may impact provider reimbursement. Since readmission following pancreatectomy is common, we sought to identify factors associated with readmission in order to establish a predictive risk scoring system (RSS). Study Design A retrospective analysis of 2,360 pancreatectomies performed at nine, high-volume pancreatic centers between 2005 and 2011 was performed. Forty-five factors strongly associated with readmission were identified. To derive and validate a RSS, the population was randomly divided into two cohorts in a 4:1 fashion. A multivariable logistic regression model was constructed and scores were assigned based on the relative odds ratio of each independent predictor. A composite Readmission After Pancreatectomy (RAP) score was generated and then stratified to create risk groups. Results Overall, 464 (19.7%) patients were readmitted within 90-days. Eight pre- and postoperative factors, including prior myocardial infarction (OR 2.03), ASA Class ≥ 3 (OR 1.34), dementia (OR 6.22), hemorrhage (OR 1.81), delayed gastric emptying (OR 1.78), surgical site infection (OR 3.31), sepsis (OR 3.10) and short length of stay (OR 1.51), were independently predictive of readmission. The 32-point RAP score generated from the derivation cohort was highly predictive of readmission in the validation cohort (AUC 0.72). The low (0-3), intermediate (4-7) and high risk (>7) groups correlated to 11.7%, 17.5% and 45.4% observed readmission rates, respectively (preadmission following pancreatectomy. Identification of patients with increased risk of readmission using the RAP score will allow efficient resource allocation aimed to attenuate readmission rates. It also has potential to serve as a new metric for comparative research and quality assessment. PMID:25797757

  15. Prediction of tension-type headache risk in adolescents

    Directory of Open Access Journals (Sweden)

    K. A. Stepanchenko

    2016-08-01

    Full Text Available Tension-type headache is the actual problem of adolescent neurology, which is associated with the prevalence of the disease, the tendency of the disease to the chronic course and a negative impact on performance in education, work capacity and quality of patients’ life. The aim. To develop a method for prediction of tension-type headache occurrence in adolescents. Materials and methods. 2342 adolescent boys and girls at the age of 13-17 years in schools of Kharkiv were examined. We used questionnaire to identify the headache. A group of adolescents with tension-type headache - 1430 people (61.1% was selected. The control group included 246 healthy adolescents. Possible risk factors for tension-type headache formation were divided into 4 groups: genetic, biomedical, psychosocial and social. Mathematical prediction of tension-type headache risk in adolescents was performed using the method of intensive indicators normalization of E.N. Shigan, which was based on probabilistic Bayesian’s method. The result was presented in the form of prognostic coefficients. Results. The most informative risk factors for tension-type headache development were the diseases, from which the teenager suffered after 1 year (sleep disorders, gastrointestinal diseases, autonomic disorders in the family history, traumatic brain injury, physical inactivity, poor adaptation of the patient in the kindergarten and school, stresses. Diagnostic scale has been developed to predict the risk of tension-type headache. It includes 23 prognostic factors with their gradation and meaning of integrated risk indicator, depending on individual factor strength influence. The risk of tension-type headache development ranged from 25,27 to 81,43 values of prognostic coefficient (low probability (25,27-43,99, the average probability (43,99-62,71 and high probability (62,71- 81,43. Conclusion. The study of tension-type headache risk factors, which were obtained by using an assessed and

  16. Medical error disclosure: from the therapeutic alliance to risk management: the vision of the new Italian code of medical ethics.

    Science.gov (United States)

    Turillazzi, Emanuela; Neri, Margherita

    2014-07-15

    The Italian code of medical deontology recently approved stipulates that physicians have the duty to inform the patient of each unwanted event and its causes, and to identify, report and evaluate adverse events and errors. Thus the obligation to supply information continues to widen, in some way extending beyond the doctor-patient relationship to become an essential tool for improving the quality of professional services. The new deontological precepts intersect two areas in which the figure of the physician is paramount. On the one hand is the need for maximum integrity towards the patient, in the name of the doctor's own, and the other's (the patient's) dignity and liberty; on the other is the physician's developing role in the strategies of the health system to achieve efficacy, quality, reliability and efficiency, to reduce errors and adverse events and to manage clinical risk. In Italy, due to guidelines issued by the Ministry of Health and to the new code of medical deontology, the role of physicians becomes a part of a complex strategy of risk management based on a system focused approach in which increasing transparency regarding adverse outcomes and full disclosure of health- related negative events represent a key factor.

  17. Reducing Monte Carlo error in the Bayesian estimation of risk ratios using log-binomial regression models.

    Science.gov (United States)

    Salmerón, Diego; Cano, Juan A; Chirlaque, María D

    2015-08-30

    In cohort studies, binary outcomes are very often analyzed by logistic regression. However, it is well known that when the goal is to estimate a risk ratio, the logistic regression is inappropriate if the outcome is common. In these cases, a log-binomial regression model is preferable. On the other hand, the estimation of the regression coefficients of the log-binomial model is difficult owing to the constraints that must be imposed on these coefficients. Bayesian methods allow a straightforward approach for log-binomial regression models and produce smaller mean squared errors in the estimation of risk ratios than the frequentist methods, and the posterior inferences can be obtained using the software WinBUGS. However, Markov chain Monte Carlo methods implemented in WinBUGS can lead to large Monte Carlo errors in the approximations to the posterior inferences because they produce correlated simulations, and the accuracy of the approximations are inversely related to this correlation. To reduce correlation and to improve accuracy, we propose a reparameterization based on a Poisson model and a sampling algorithm coded in R. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Medical error disclosure: from the therapeutic alliance to risk management: the vision of the new Italian code of medical ethics

    Science.gov (United States)

    2014-01-01

    Background The Italian code of medical deontology recently approved stipulates that physicians have the duty to inform the patient of each unwanted event and its causes, and to identify, report and evaluate adverse events and errors. Thus the obligation to supply information continues to widen, in some way extending beyond the doctor-patient relationship to become an essential tool for improving the quality of professional services. Discussion The new deontological precepts intersect two areas in which the figure of the physician is paramount. On the one hand is the need for maximum integrity towards the patient, in the name of the doctor’s own, and the other’s (the patient’s) dignity and liberty; on the other is the physician’s developing role in the strategies of the health system to achieve efficacy, quality, reliability and efficiency, to reduce errors and adverse events and to manage clinical risk. Summary In Italy, due to guidelines issued by the Ministry of Health and to the new code of medical deontology, the role of physicians becomes a part of a complex strategy of risk management based on a system focused approach in which increasing transparency regarding adverse outcomes and full disclosure of health- related negative events represent a key factor. PMID:25023339

  19. Combining empirical approaches and error modelling to enhance predictive uncertainty estimation in extrapolation for operational flood forecasting. Tests on flood events on the Loire basin, France.

    Science.gov (United States)

    Berthet, Lionel; Marty, Renaud; Bourgin, François; Viatgé, Julie; Piotte, Olivier; Perrin, Charles

    2017-04-01

    An increasing number of operational flood forecasting centres assess the predictive uncertainty associated with their forecasts and communicate it to the end users. This information can match the end-users needs (i.e. prove to be useful for an efficient crisis management) only if it is reliable: reliability is therefore a key quality for operational flood forecasts. In 2015, the French flood forecasting national and regional services (Vigicrues network; www.vigicrues.gouv.fr) implemented a framework to compute quantitative discharge and water level forecasts and to assess the predictive uncertainty. Among the possible technical options to achieve this goal, a statistical analysis of past forecasting errors of deterministic models has been selected (QUOIQUE method, Bourgin, 2014). It is a data-based and non-parametric approach based on as few assumptions as possible about the forecasting error mathematical structure. In particular, a very simple assumption is made regarding the predictive uncertainty distributions for large events outside the range of the calibration data: the multiplicative error distribution is assumed to be constant, whatever the magnitude of the flood. Indeed, the predictive distributions may not be reliable in extrapolation. However, estimating the predictive uncertainty for these rare events is crucial when major floods are of concern. In order to improve the forecasts reliability for major floods, an attempt at combining the operational strength of the empirical statistical analysis and a simple error modelling is done. Since the heteroscedasticity of forecast errors can considerably weaken the predictive reliability for large floods, this error modelling is based on the log-sinh transformation which proved to reduce significantly the heteroscedasticity of the transformed error in a simulation context, even for flood peaks (Wang et al., 2012). Exploratory tests on some operational forecasts issued during the recent floods experienced in

  20. Predictive cytogenetic biomarkers for colorectal neoplasia in medium risk patients.

    Science.gov (United States)

    Ionescu, E M; Nicolaie, T; Ionescu, M A; Becheanu, G; Andrei, F; Diculescu, M; Ciocirlan, M

    2015-01-01

    DNA damage and chromosomal alterations in peripheral lymphocytes parallels DNA mutations in tumor tissues. The aim of our study was to predict the presence of neoplastic colorectal lesions by specific biomarkers in "medium risk" individuals (age 50 to 75, with no personal or family of any colorectal neoplasia). We designed a prospective cohort observational study including patients undergoing diagnostic or opportunistic screening colonoscopy. Specific biomarkers were analyzed for each patient in peripheral lymphocytes - presence of micronuclei (MN), nucleoplasmic bridges (NPB) and the Nuclear Division Index (NDI) by the cytokinesis-blocked micronucleus assay (CBMN). Of 98 patients included, 57 were "medium risk" individuals. MN frequency and NPB presence were not significantly different in patients with neoplastic lesions compared to controls. In "medium risk" individuals, mean NDI was significantly lower for patients with any neoplastic lesions (adenomas and adenocarcinomas, AUROC 0.668, p 00.5), for patients with advanced neoplasia (advanced adenoma and adenocarcinoma, AUROC 0.636 p 0.029) as well as for patients with adenocarcinoma (AUROC 0.650, p 0.048), for each comparison with the rest of the population. For a cut-off of 1.8, in "medium risk" individuals, an NDI inferior to that value may predict any neoplastic lesion with a sensitivity of 97.7%, an advanced neoplastic lesion with a sensitivity of 97% and adenocarcinoma with a sensitivity of 94.4%. NDI score may have a role as a colorectal cancer-screening test in "medium risk" individuals. DNA = deoxyribonucleic acid; CRC = colorectal cancer; EU = European Union; WHO = World Health Organization; FOBT = fecal occult blood test; CBMN = cytokinesis-blocked micronucleus assay; MN = micronuclei; NPB = nucleoplasmic bridges; NDI = Nuclear Division Index; FAP = familial adenomatous polyposis; HNPCC = hereditary non-polypoid colorectal cancer; IBD = inflammatory bowel diseases; ROC = receiver operating

  1. Peak Pc Prediction in Conjunction Analysis: Conjunction Assessment Risk Analysis. Pc Behavior Prediction Models

    Science.gov (United States)

    Vallejo, J.J.; Hejduk, M.D.; Stamey, J. D.

    2015-01-01

    Satellite conjunction risk typically evaluated through the probability of collision (Pc). Considers both conjunction geometry and uncertainties in both state estimates. Conjunction events initially discovered through Joint Space Operations Center (JSpOC) screenings, usually seven days before Time of Closest Approach (TCA). However, JSpOC continues to track objects and issue conjunction updates. Changes in state estimate and reduced propagation time cause Pc to change as event develops. These changes a combination of potentially predictable development and unpredictable changes in state estimate covariance. Operationally useful datum: the peak Pc. If it can reasonably be inferred that the peak Pc value has passed, then risk assessment can be conducted against this peak value. If this value is below remediation level, then event intensity can be relaxed. Can the peak Pc location be reasonably predicted?

  2. How the credit assignment problems in motor control could be solved after the cerebellum predicts increases in error.

    Science.gov (United States)

    Verduzco-Flores, Sergio O; O'Reilly, Randall C

    2015-01-01

    We present a cerebellar architecture with two main characteristics. The first one is that complex spikes respond to increases in sensory errors. The second one is that cerebellar modules associate particular contexts where errors have increased in the past with corrective commands that stop the increase in error. We analyze our architecture formally and computationally for the case of reaching in a 3D environment. In the case of motor control, we show that there are synergies of this architecture with the Equilibrium-Point hypothesis, leading to novel ways to solve the motor error and distal learning problems. In particular, the presence of desired equilibrium lengths for muscles provides a way to know when the error is increasing, and which corrections to apply. In the context of Threshold Control Theory and Perceptual Control Theory we show how to extend our model so it implements anticipative corrections in cascade control systems that span from muscle contractions to cognitive operations.

  3. How the credit assignment problems in motor control could be solved after the cerebellum predicts increases in error

    Directory of Open Access Journals (Sweden)

    Sergio Oscar Verduzco-Flores

    2015-03-01

    Full Text Available We present a cerebellar architecture with two main characteristics. The first one is that complex spikes respond to increases in sensory errors. The second one is that cerebellar modules associate particular contexts where errors have increased in the past with corrective commands that stop the increase in error. We analyze our architecture formally and computationally for the case of reaching in a 3D environment. In the case of motor control, we show that there are synergies of this architecture with the Equilibrium-Point hypothesis, leading to novel ways to solve the motor error and distal learning problems. In particular, the presence of desired equilibrium lengths for muscles provides a way to know when the error is increasing, and which corrections to apply. In the context of Threshold Control Theory and Perceptual Control Theory we show how to extend our model so it implements anticipative corrections in cascade control systems that span from muscle contractions to cognitive operations.

  4. Processing of action- but not stimulus-related prediction errors differs between active and observational feedback learning.

    Science.gov (United States)

    Kobza, Stefan; Bellebaum, Christian

    2015-01-01

    Learning of stimulus-response-outcome associations is driven by outcome prediction errors (PEs). Previous studies have shown larger PE-dependent activity in the striatum for learning from own as compared to observed actions and the following outcomes despite comparable learning rates. We hypothesised that this finding relates primarily to a stronger integration of action and outcome information in active learners. Using functional magnetic resonance imaging, we investigated brain activations related to action-dependent PEs, reflecting the deviation between action values and obtained outcomes, and action-independent PEs, reflecting the deviation between subjective values of response-preceding cues and obtained outcomes. To this end, 16 active and 15 observational learners engaged in a probabilistic learning card-guessing paradigm. On each trial, active learners saw one out of five cues and pressed either a left or right response button to receive feedback (monetary win or loss). Each observational learner observed exactly those cues, responses and outcomes of one active learner. Learning performance was assessed in active test trials without feedback and did not differ between groups. For both types of PEs, activations were found in the globus pallidus, putamen, cerebellum, and insula in active learners. However, only for action-dependent PEs, activations in these structures and the anterior cingulate were increased in active relative to observational learners. Thus, PE-related activity in the reward system is not generally enhanced in active relative to observational learning but only for action-dependent PEs. For the cerebellum, additional activations were found across groups for cue-related uncertainty, thereby emphasising the cerebellum's role in stimulus-outcome learning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Missing Value Imputation Improves Mortality Risk Prediction Following Cardiac Surgery: An Investigation of an Australian Patient Cohort.

    Science.gov (United States)

    Karim, Md Nazmul; Reid, Christopher M; Tran, Lavinia; Cochrane, Andrew; Billah, Baki

    2017-03-01

    The aim of this study was to evaluate the impact of missing values on the prediction performance of the model predicting 30-day mortality following cardiac surgery as an example. Information from 83,309 eligible patients, who underwent cardiac surgery, recorded in the Australia and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) database registry between 2001 and 2014, was used. An existing 30-day mortality risk prediction model developed from ANZSCTS database was re-estimated using the complete cases (CC) analysis and using multiple imputation (MI) analysis. Agreement between the risks generated by the CC and MI analysis approaches was assessed by the Bland-Altman method. Performances of the two models were compared. One or more missing predictor variables were present in 15.8% of the patients in the dataset. The Bland-Altman plot demonstrated significant disagreement between the risk scores (prisk of mortality. Compared to CC analysis, MI analysis resulted in an average of 8.5% decrease in standard error, a measure of uncertainty. The MI model provided better prediction of mortality risk (observed: 2.69%; MI: 2.63% versus CC: 2.37%, Pvalues improved the 30-day mortality risk prediction following cardiac surgery. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  6. Selective screening of 650 high risk Iranian patients for detection of inborn error of metabolism

    Directory of Open Access Journals (Sweden)

    Narges Pishva

    2015-02-01

    Full Text Available Objective: Although metabolic diseases individually are rare ,but overall have an incidence of 1/2000 and can cause devastating and irreversible effect if not diagnosed early and treated promptly. selective screening is an acceptable method for detection of these multi presentation diseases.Method: using panel neonatal screening for detection of metabolic diseases in 650 high risk Iranian patients in Fars province. The following clinical features were used as inclusion criteria for investigation of the patients.Lethargy, poor feeding ,persistent vomiting, cholestasis, intractable seizure ,decreased level of consciousness ,persistent hypoglycemia, unexplained acid base disturbance and unexplained neonatal death.Result: Organic acidemia with 40 cases (42% was the most frequent disorder diagnosed in our high risk populations, followed by disorder of galactose metabolism(30%, 15 patient had classic galactosemia(GALT

  7. Selective screening of 650 high risk Iranian patients for detection of inborn error of metabolism

    Directory of Open Access Journals (Sweden)

    Narges Pishva

    2015-02-01

    Full Text Available Objective: Although metabolic diseases individually are rare ,but overall have an incidence of 1/2000 and can cause devastating and irreversible effect if not diagnosed early and treated promptly. selective screening is an acceptable method for detection of these multi presentation diseases. Method: using panel neonatal screening for detection of metabolic diseases in 650 high risk Iranian patients in Fars province. The following clinical features were used as inclusion criteria for investigation of the patients. Lethargy, poor feeding ,persistent vomiting, cholestasis, intractable seizure ,decreased level of consciousness ,persistent hypoglycemia, unexplained acid base disturbance and unexplained neonatal death. Result: Organic acidemia with 40 cases (42% was the most frequent disorder diagnosed in our high risk populations, followed by disorder of galactose metabolism(30%, 15 patient had classic galactosemia(GALT

  8. Trial-by-Trial Modulation of Associative Memory Formation by Reward Prediction Error and Reward Anticipation as Revealed by a Biologically Plausible Computational Model.

    Science.gov (United States)

    Aberg, Kristoffer C; Müller, Julia; Schwartz, Sophie

    2017-01-01

    Anticipation and delivery of rewards improves memory formation, but little effort has been made to disentangle their respective contributions to memory enhancement. Moreover, it has been suggested that the effects of reward on memory are mediated by dopaminergic influences on hippocampal plasticity. Yet, evidence linking memory improvements to actual reward computations reflected in the activity of the dopaminergic system, i.e., prediction errors and expected values, is scarce and inconclusive. For example, different previous studies reported that the magnitude of prediction errors during a reinforcement learning task was a positive, negative, or non-significant predictor of successfully encoding simultaneously presented images. Individual sensitivities to reward and punishment have been found to influence the activation of the dopaminergic reward system and could therefore help explain these seemingly discrepant results. Here, we used a novel associative memory task combined with computational modeling and showed independent effects of reward-delivery and reward-anticipation on memory. Strikingly, the computational approach revealed positive influences from both reward delivery, as mediated by prediction error magnitude, and reward anticipation, as mediated by magnitude of expected value, even in the absence of behavioral effects when analyzed using standard methods, i.e., by collapsing memory performance across trials within conditions. We additionally measured trait estimates of reward and punishment sensitivity and found that individuals with increased reward (vs. punishment) sensitivity had better memory for associations encoded during positive (vs. negative) prediction errors when tested after 20 min, but a negative trend when tested after 24 h. In conclusion, modeling trial-by-trial fluctuations in the magnitude of reward, as we did here for prediction errors and expected value computations, provides a comprehensive and biologically plausible description of

  9. Distinct prediction errors in mesostriatal circuits of the human brain mediate learning about the values of both states and actions: evidence from high-resolution fMRI.

    Science.gov (United States)

    Colas, Jaron T; Pauli, Wolfgang M; Larsen, Tobias; Tyszka, J Michael; O'Doherty, John P

    2017-10-01

    Prediction-error signals consistent with formal models of "reinforcement learning" (RL) have repeatedly been found within dopaminergic nuclei of the midbrain and dopaminoceptive areas of the striatum. However, the precise form of the RL algorithms implemented in the human brain is not yet well determined. Here, we created a novel paradigm optimized to dissociate the subtypes of reward-prediction errors that function as the key computational signatures of two distinct classes of RL models-namely, "actor/critic" models and action-value-learning models (e.g., the Q-learning model). The state-value-prediction error (SVPE), which is independent of actions, is a hallmark of the actor/critic architecture, whereas the action-value-prediction error (AVPE) is the distinguishing feature of action-value-learning algorithms. To test for the presence of these prediction-error signals in the brain, we scanned human participants with a high-resolution functional magnetic-resonance imaging (fMRI) protocol optimized to enable measurement of neural activity in the dopaminergic midbrain as well as the striatal areas to which it projects. In keeping with the actor/critic model, the SVPE signal was detected in the substantia nigra. The SVPE was also clearly present in both the ventral striatum and the dorsal striatum. However, alongside these purely state-value-based computations we also found evidence for AVPE signals throughout the striatum. These high-resolution fMRI findings suggest that model-free aspects of reward learning in humans can be explained algorithmically with RL in terms of an actor/critic mechanism operating in parallel with a system for more direct action-value learning.

  10. Prevalence and risk factors for refractive errors in the South Indian adult population: The Andhra Pradesh Eye disease study

    Directory of Open Access Journals (Sweden)

    Sannapaneni Krishnaiah

    2008-12-01

    Full Text Available Sannapaneni Krishnaiah1,2,3, Marmamula Srinivas1,2,3, Rohit C Khanna1,2, Gullapalli N Rao1,2,31L V Prasad Eye Institute, Banjara Hills, Hyderabad, India; 2International Center for Advancement of Rural Eye Care, L V Prasad Eye Institute, Banjara Hills, Hyderabad, India; 3Vision CRC, University of New South Wales, Sydney, NSW, AustraliaAim: To report the prevalence, risk factors and associated population attributable risk percentage (PAR for refractive errors in the South Indian adult population.Methods: A population-based cross-sectional epidemiologic study was conducted in the Indian state of Andhra Pradesh. A multistage cluster, systematic, stratified random sampling method was used to obtain participants (n = 10293 for this study.Results: The age-gender-area-adjusted prevalence rates in those ≥40 years of age were determined for myopia (spherical equivalent [SE] < −0.5 D 34.6% (95% confidence interval [CI]: 33.1–36.1, high-myopia (SE < −5.0 D 4.5% (95% CI: 3.8–5.2, hyperopia (SE > +0.5 D 18.4% (95% CI: 17.1–19.7, astigmatism (cylinder < −0.5 D 37.6% (95% CI: 36–39.2, and anisometropia (SE difference between right and left eyes >0.5 D 13.0% (95% CI: 11.9–14.1. The prevalence of myopia, astigmatism, high-myopia, and anisometropia significantly increased with increasing age (all p < 0.0001. There was no gender difference in prevalence rates in any type of refractive error, though women had a significantly higher rate of hyperopia than men (p < 0.0001. Hyperopia was significantly higher among those with a higher educational level (odds ratio [OR] 2.49; 95% CI: 1.51–3.95 and significantly higher among the hypertensive group (OR 1.24; 95% CI: 1.03–1.49. The severity of lens nuclear opacity was positively associated with myopia and negatively associated with hyperopia.Conclusions: The prevalence of myopia in this adult Indian population is much higher than in similarly aged white populations. These results confirm the previously

  11. Risk prediction of major complications in individuals with diabetes: the Atherosclerosis Risk in Communities Study.

    Science.gov (United States)

    Parrinello, C M; Matsushita, K; Woodward, M; Wagenknecht, L E; Coresh, J; Selvin, E

    2016-09-01

    To develop a prediction equation for 10-year risk of a combined endpoint (incident coronary heart disease, stroke, heart failure, chronic kidney disease, lower extremity hospitalizations) in people with diabetes, using demographic and clinical information, and a panel of traditional and non-traditional biomarkers. We included in the study 654 participants in the Atherosclerosis Risk in Communities (ARIC) study, a prospective cohort study, with diagnosed diabetes (visit 2; 1990-1992). Models included self-reported variables (Model 1), clinical measurements (Model 2), and glycated haemoglobin (Model 3). Model 4 tested the addition of 12 blood-based biomarkers. We compared models using prediction and discrimination statistics. Successive stages of model development improved risk prediction. The C-statistics (95% confidence intervals) of models 1, 2, and 3 were 0.667 (0.64, 0.70), 0.683 (0.65, 0.71), and 0.694 (0.66, 0.72), respectively (p < 0.05 for differences). The addition of three traditional and non-traditional biomarkers [β-2 microglobulin, creatinine-based estimated glomerular filtration rate (eGFR), and cystatin C-based eGFR] to Model 3 significantly improved discrimination (C-statistic = 0.716; p = 0.003) and accuracy of 10-year risk prediction for major complications in people with diabetes (midpoint percentiles of lowest and highest deciles of predicted risk changed from 18-68% to 12-87%). These biomarkers, particularly those of kidney filtration, may help distinguish between people at low versus high risk of long-term major complications. © 2016 John Wiley & Sons Ltd.

  12. Adolescent expectations of early death predict adult risk behaviors.

    Directory of Open Access Journals (Sweden)

    Quynh C Nguyen

    Full Text Available Only a handful of public health studies have investigated expectations of early death among adolescents. Associations have been found between these expectations and risk behaviors in adolescence. However, these beliefs may not only predict worse adolescent outcomes, but worse trajectories in health with ties to negative outcomes that endure into young adulthood. The objectives of this study were to investigate perceived chances of living to age 35 (Perceived Survival Expectations, PSE as a predictor of suicidal ideation, suicide attempt and substance use in young adulthood. We examined the predictive capacity of PSE on future suicidal ideation/attempt after accounting for sociodemographics, depressive symptoms, and history of suicide among family and friends to more fully assess its unique contribution to suicide risk. We investigated the influence of PSE on legal and illegal substance use and varying levels of substance use. We utilized the National Longitudinal Study of Adolescent Health (Add Health initiated in 1994-95 among 20,745 adolescents in grades 7-12 with follow-up interviews in 1996 (Wave II, 2001-02 (Wave III and 2008 (Wave IV; ages 24-32. Compared to those who were almost certain of living to age 35, perceiving a 50-50 or less chance of living to age 35 at Waves I or III predicted suicide attempt and ideation as well as regular substance use (i.e., exceeding daily limits for moderate drinking; smoking ≥ a pack/day; and using illicit substances other than marijuana at least weekly at Wave IV. Associations between PSE and detrimental adult outcomes were particularly strong for those reporting persistently low PSE at both Waves I and III. Low PSE at Wave I or Wave III was also related to a doubling and tripling, respectively, of death rates in young adulthood. Long-term and wide-ranging ties between PSE and detrimental outcomes suggest these expectations may contribute to identifying at-risk youth.

  13. Predicting risk of trace element pollution from municipal roads using site-specific soil samples and remotely sensed data.

    Science.gov (United States)

    Reeves, Mari Kathryn; Perdue, Margaret; Munk, Lee Ann; Hagedorn, Birgit

    2018-07-15

    Studies of environmental processes exhibit spatial variation within data sets. The ability to derive predictions of risk from field data is a critical path forward in understanding the data and applying the information to land and resource management. Thanks to recent advances in predictive modeling, open source software, and computing, the power to do this is within grasp. This article provides an example of how we predicted relative trace element pollution risk from roads across a region by combining site specific trace element data in soils with regional land cover and planning information in a predictive model framework. In the Kenai Peninsula of Alaska, we sampled 36 sites (191 soil samples) adjacent to roads for trace elements. We then combined this site specific data with freely-available land cover and urban planning data to derive a predictive model of landscape scale environmental risk. We used six different model algorithms to analyze the dataset, comparing these in terms of their predictive abilities and the variables identified as important. Based on comparable predictive abilities (mean R 2 from 30 to 35% and mean root mean square error from 65 to 68%), we averaged all six model outputs to predict relative levels of trace element deposition in soils-given the road surface, traffic volume, sample distance from the road, land cover category, and impervious surface percentage. Mapped predictions of environmental risk from toxic trace element pollution can show land managers and transportation planners where to prioritize road renewal or maintenance by each road segment's relative environmental and human health risk. Published by Elsevier B.V.

  14. The "polyenviromic risk score": Aggregating environmental risk factors predicts conversion to psychosis in familial high-risk subjects.

    Science.gov (United States)

    Padmanabhan, Jaya L; Shah, Jai L; Tandon, Neeraj; Keshavan, Matcheri S

    2017-03-01

    Young relatives of individuals with schizophrenia (i.e. youth at familial high-risk, FHR) are at increased risk of developing psychotic disorders, and show higher rates of psychiatric symptoms, cognitive and neurobiological abnormalities than non-relatives. It is not known whether overall exposure to environmental risk factors increases risk of conversion to psychosis in FHR subjects. Subjects consisted of a pilot longitudinal sample of 83 young FHR subjects. As a proof of principle, we examined whether an aggregate score of exposure to environmental risk factors, which we term a 'polyenviromic risk score' (PERS), could predict conversion to psychosis. The PERS combines known environmental risk factors including cannabis use, urbanicity, season of birth, paternal age, obstetric and perinatal complications, and various types of childhood adversity, each weighted by its odds ratio for association with psychosis in the literature. A higher PERS was significantly associated with conversion to psychosis in young, familial high-risk subjects (OR=1.97, p=0.009). A model combining the PERS and clinical predictors had a sensitivity of 27% and specificity of 96%. An aggregate index of environmental risk may help predict conversion to psychosis in FHR subjects. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. EEG Theta Dynamics within Frontal and Parietal Cortices for Error Processing during Reaching Movements in a Prism Adaptation Study Altering Visuo-Motor Predictive Planning.

    Directory of Open Access Journals (Sweden)

    Pieranna Arrighi

    Full Text Available Modulation of frontal midline theta (fmθ is observed during error commission, but little is known about the role of theta oscillations in correcting motor behaviours. We investigate EEG activity of healthy partipants executing a reaching task under variable degrees of prism-induced visuo-motor distortion and visual occlusion of the initial arm trajectory. This task introduces directional errors of different magnitudes. The discrepancy between predicted and actual movement directions (i.e. the error, at the time when visual feedback (hand appearance became available, elicits a signal that triggers on-line movement correction. Analysis were performed on 25 EEG channels. For each participant, the median value of the angular error of all reaching trials was used to partition the EEG epochs into high- and low-error conditions. We computed event-related spectral perturbations (ERSP time-locked either to visual feedback or to the onset of movement correction. ERSP time-locked to the onset of visual feedback showed that fmθ increased in the high- but not in the low-error condition with an approximate time lag of 200 ms. Moreover, when single epochs were sorted by the degree of motor error, fmθ started to increase when a certain level of error was exceeded and, then, scaled with error magnitude. When ERSP were time-locked to the onset of movement correction, the fmθ increase anticipated this event with an approximate time lead of 50 ms. During successive trials, an error reduction was observed which was associated with indices of adaptations (i.e., aftereffects suggesting the need to explore if theta oscillations may facilitate learning. To our knowledge this is the first study where the EEG signal recorded during reaching movements was time-locked to the onset of the error visual feedback. This allowed us to conclude that theta oscillations putatively generated by anterior cingulate cortex activation are implicated in error processing in semi

  16. Phasic dopamine as a prediction error of intrinsic and extrinsic reinforcements driving both action acquisition and reward maximization: a simulated robotic study.

    Science.gov (United States)

    Mirolli, Marco; Santucci, Vieri G; Baldassarre, Gianluca

    2013-03-01

    An important issue of recent neuroscientific research is to understand the functional role of the phasic release of dopamine in the striatum, and in particular its relation to reinforcement learning. The literature is split between two alternative hypotheses: one considers phasic dopamine as a reward prediction error similar to the computational TD-error, whose function is to guide an animal to maximize future rewards; the other holds that phasic dopamine is a sensory prediction error signal that lets the animal discover and acquire novel actions. In this paper we propose an original hypothesis that integrates these two contrasting positions: according to our view phasic dopamine represents a TD-like reinforcement prediction error learning signal determined by both unexpected changes in the environment (temporary, intrinsic reinforcements) and biological rewards (permanent, extrinsic reinforcements). Accordingly, dopamine plays the functional role of driving both the discovery and acquisition of novel actions and the maximization of future rewards. To validate our hypothesis we perform a series of experiments with a simulated robotic system that has to learn different skills in order to get rewards. We compare different versions of the system in which we vary the composition of the learning signal. The results show that only the system reinforced by both extrinsic and intrinsic reinforcements is able to reach high performance in sufficiently complex conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Quantifying the predictive accuracy of time-to-event models in the presence of competing risks.

    Science.gov (United States)

    Schoop, Rotraut; Beyersmann, Jan; Schumacher, Martin; Binder, Harald

    2011-02-01

    Prognostic models for time-to-event data play a prominent role in therapy assignment, risk stratification and inter-hospital quality assurance. The assessment of their prognostic value is vital not only for responsible resource allocation, but also for their widespread acceptance. The additional presence of competing risks to the event of interest requires proper handling not only on the model building side, but also during assessment. Research into methods for the evaluation of the prognostic potential of models accounting for competing risks is still needed, as most proposed methods measure either their discrimination or calibration, but do not examine both simultaneously. We adapt the prediction error proposal of Graf et al. (Statistics in Medicine 1999, 18, 2529–2545) and Gerds and Schumacher (Biometrical Journal 2006, 48, 1029–1040) to handle models with competing risks, i.e. more than one possible event type, and introduce a consistent estimator. A simulation study investigating the behaviour of the estimator in small sample size situations and for different levels of censoring together with a real data application follows.

  18. Melanoma risk prediction using a multilocus genetic risk score in the Women's Health Initiative cohort.

    Science.gov (United States)

    Cho, Hyunje G; Ransohoff, Katherine J; Yang, Lingyao; Hedlin, Haley; Assimes, Themistocles; Han, Jiali; Stefanick, Marcia; Tang, Jean Y; Sarin, Kavita Y

    2018-07-01

    Single-nucleotide polymorphisms (SNPs) associated with melanoma have been identified though genome-wide association studies. However, the combined impact of these SNPs on melanoma development remains unclear, particularly in postmenopausal women who carry a lower melanoma risk. We examine the contribution of a combined polygenic risk score on melanoma development in postmenopausal women. Genetic risk scores were calculated using 21 genome-wide association study-significant SNPs. Their combined effect on melanoma development was evaluated in 19,102 postmenopausal white women in the clinical trial and observational study arms of the Women's Health Initiative dataset. Compared to the tertile of weighted genetic risk score with the lowest genetic risk, the women in the tertile with the highest genetic risk were 1.9 times more likely to develop melanoma (95% confidence interval 1.50-2.42). The incremental change in c-index from adding genetic risk scores to age were 0.075 (95% confidence interval 0.041-0.109) for incident melanoma. Limitations include a lack of information on nevi count, Fitzpatrick skin type, family history of melanoma, and potential reporting and selection bias in the Women's Health Initiative cohort. Higher genetic risk is associated with increased melanoma prevalence and incidence in postmenopausal women, but current genetic information may have a limited role in risk prediction when phenotypic information is available. Copyright © 2018 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  19. Randomized clinical trials in dentistry: Risks of bias, risks of random errors, reporting quality, and methodologic quality over the years 1955-2013.

    Directory of Open Access Journals (Sweden)

    Humam Saltaji

    Full Text Available To examine the risks of bias, risks of random errors, reporting quality, and methodological quality of randomized clinical trials of oral health interventions and the development of these aspects over time.We included 540 randomized clinical trials from 64 selected systematic reviews. We extracted, in duplicate, details from each of the selected randomized clinical trials with respect to publication and trial characteristics, reporting and methodologic characteristics, and Cochrane risk of bias domains. We analyzed data using logistic regression and Chi-square statistics.Sequence generation was assessed to be inadequate (at unclear or high risk of bias in 68% (n = 367 of the trials, while allocation concealment was inadequate in the majority of trials (n = 464; 85.9%. Blinding of participants and blinding of the outcome assessment were judged to be inadequate in 28.5% (n = 154 and 40.5% (n = 219 of the trials, respectively. A sample size calculation before the initiation of the study was not performed/reported in 79.1% (n = 427 of the trials, while the sample size was assessed as adequate in only 17.6% (n = 95 of the trials. Two thirds of the trials were not described as double blinded (n = 358; 66.3%, while the method of blinding was appropriate in 53% (n = 286 of the trials. We identified a significant decrease over time (1955-2013 in the proportion of trials assessed as having inadequately addressed methodological quality items (P < 0.05 in 30 out of the 40 quality criteria, or as being inadequate (at high or unclear risk of bias in five domains of the Cochrane risk of bias tool: sequence generation, allocation concealment, incomplete outcome data, other sources of bias, and overall risk of bias.The risks of bias, risks of random errors, reporting quality, and methodological quality of randomized clinical trials of oral health interventions have improved over time; however, further efforts that contribute to the development of more stringent

  20. A simulation study to quantify the impacts of exposure measurement error on air pollution health risk estimates in copollutant time-series models.

    Science.gov (United States)

    Dionisio, Kathie L; Chang, Howard H; Baxter, Lisa K

    2016-11-25

    Exposure measurement error in copollutant epidemiologic models has the potential to introduce bias in relative risk (RR) estimates. A simulation study was conducted using empirical data to quantify the impact of correlated measurement errors in time-series analyses of air pollution and health. ZIP-code level estimates of exposure for six pollutants (CO, NO x , EC, PM 2.5 , SO 4 , O 3 ) from 1999 to 2002 in the Atlanta metropolitan area were used to calculate spatial, population (i.e. ambient versus personal), and total exposure measurement error. Empirically determined covariance of pollutant concentration pairs and the associated measurement errors were used to simulate true exposure (exposure without error) from observed exposure. Daily emergency department visits for respiratory diseases were simulated using a Poisson time-series model with a main pollutant RR = 1.05 per interquartile range, and a null association for the copollutant (RR = 1). Monte Carlo experiments were used to evaluate the impacts of correlated exposure errors of different copollutant pairs. Substantial attenuation of RRs due to exposure error was evident in nearly all copollutant pairs studied, ranging from 10 to 40% attenuation for spatial error, 3-85% for population error, and 31-85% for total error. When CO, NO x or EC is the main pollutant, we demonstrated the possibility of false positives, specifically identifying significant, positive associations for copollutants based on the estimated type I error rate. The impact of exposure error must be considered when interpreting results of copollutant epidemiologic models, due to the possibility of attenuation of main pollutant RRs and the increased probability of false positives when measurement error is present.

  1. Scaling range sizes to threats for robust predictions of risks to biodiversity.

    Science.gov (United States)

    Keith, David A; Akçakaya, H Resit; Murray, Nicholas J

    2018-04-01

    Assessments of risk to biodiversity often rely on spatial distributions of species and ecosystems. Range-size metrics used extensively in these assessments, such as area of occupancy (AOO), are sensitive to measurement scale, prompting proposals to measure them at finer scales or at different scales based on the shape of the distribution or ecological characteristics of the biota. Despite its dominant role in red-list assessments for decades, appropriate spatial scales of AOO for predicting risks of species' extinction or ecosystem collapse remain untested and contentious. There are no quantitative evaluations of the scale-sensitivity of AOO as a predictor of risks, the relationship between optimal AOO scale and threat scale, or the effect of grid uncertainty. We used stochastic simulation models to explore risks to ecosystems and species with clustered, dispersed, and linear distribution patterns subject to regimes of threat events with different frequency and spatial extent. Area of occupancy was an accurate predictor of risk (0.81<|r|<0.98) and performed optimally when measured with grid cells 0.1-1.0 times the largest plausible area threatened by an event. Contrary to previous assertions, estimates of AOO at these relatively coarse scales were better predictors of risk than finer-scale estimates of AOO (e.g., when measurement cells are <1% of the area of the largest threat). The optimal scale depended on the spatial scales of threats more than the shape or size of biotic distributions. Although we found appreciable potential for grid-measurement errors, current IUCN guidelines for estimating AOO neutralize geometric uncertainty and incorporate effective scaling procedures for assessing risks posed by landscape-scale threats to species and ecosystems. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  2. Beyond discrimination: A comparison of calibration methods and clinical usefulness of predictive models of readmission risk.

    Science.gov (United States)

    Walsh, Colin G; Sharman, Kavya; Hripcsak, George

    2017-12-01

    Prior to implementing predictive models in novel settings, analyses of calibration and clinical usefulness remain as important as discrimination, but they are not frequently discussed. Calibration is a model's reflection of actual outcome prevalence in its predictions. Clinical usefulness refers to the utilities, costs, and harms of using a predictive model in practice. A decision analytic approach to calibrating and selecting an optimal intervention threshold may help maximize the impact of readmission risk and other preventive interventions. To select a pragmatic means of calibrating predictive models that requires a minimum amount of validation data and that performs well in practice. To evaluate the impact of miscalibration on utility and cost via clinical usefulness analyses. Observational, retrospective cohort study with electronic health record data from 120,000 inpatient admissions at an urban, academic center in Manhattan. The primary outcome was thirty-day readmission for three causes: all-cause, congestive heart failure, and chronic coronary atherosclerotic disease. Predictive modeling was performed via L1-regularized logistic regression. Calibration methods were compared including Platt Scaling, Logistic Calibration, and Prevalence Adjustment. Performance of predictive modeling and calibration was assessed via discrimination (c-statistic), calibration (Spiegelhalter Z-statistic, Root Mean Square Error [RMSE] of binned predictions, Sanders and Murphy Resolutions of the Brier Score, Calibration Slope and Intercept), and clinical usefulness (utility terms represented as costs). The amount of validation data necessary to apply each calibration algorithm was also assessed. C-statistics by diagnosis ranged from 0.7 for all-cause readmission to 0.86 (0.78-0.93) for congestive heart failure. Logistic Calibration and Platt Scaling performed best and this difference required analyzing multiple metrics of calibration simultaneously, in particular Calibration

  3. Alternative Testing Methods for Predicting Health Risk from Environmental Exposures

    Directory of Open Access Journals (Sweden)

    Annamaria Colacci

    2014-08-01

    Full Text Available Alternative methods to animal testing are considered as promising tools to support the prediction of toxicological risks from environmental exposure. Among the alternative testing methods, the cell transformation assay (CTA appears to be one of the most appropriate approaches to predict the carcinogenic properties of single chemicals, complex mixtures and environmental pollutants. The BALB/c 3T3 CTA shows a good degree of concordance with the in vivo rodent carcinogenesis tests. Whole-genome transcriptomic profiling is performed to identify genes that are transcriptionally regulated by different kinds of exposures. Its use in cell models representative of target organs may help in understanding the mode of action and predicting the risk for human health. Aiming at associating the environmental exposure to health-adverse outcomes, we used an integrated approach including the 3T3 CTA and transcriptomics on target cells, in order to evaluate the effects of airborne particulate matter (PM on toxicological complex endpoints. Organic extracts obtained from PM2.5 and PM1 samples were evaluated in the 3T3 CTA in order to identify effects possibly associated with different aerodynamic diameters or airborne chemical components. The effects of the PM2.5 extracts on human health were assessed by using whole-genome 44 K oligo-microarray slides. Statistical analysis by GeneSpring GX identified genes whose expression was modulated in response to the cell treatment. Then, modulated genes were associated with pathways, biological processes and diseases through an extensive biological analysis. Data derived from in vitro methods and omics techniques could be valuable for monitoring the exposure to toxicants, understanding the modes of action via exposure-associated gene expression patterns and to highlight the role of genes in key events related to adversity.

  4. Value of multiple risk factors in predicting coronary artery disease

    International Nuclear Information System (INIS)

    Zhu Zhengbin; Zhang Ruiyan; Zhang Qi; Yang Zhenkun; Hu Jian; Zhang Jiansheng; Shen Weifeng

    2008-01-01

    Objective: This study sought to assess the relationship between correlative comprehension risk factors and coronary arterial disease and to build up a simple mathematical model to evaluate the extension of coronary artery lesion in patients with stable angina. Methods: A total of 1024 patients with chest pain who underwent coronary angiography were divided into CAD group(n=625)and control group(n=399) based on at least one significant coronary artery narrowing more than 50% in diameter. Independent risk factors for CAD were evaluated and multivariate logistic regression model and receiver-operating characteristic(ROC) curves were used to estimate the independent influence factor for CAD and built up a simple formula for clinical use. Results: Multivariate regression analysis revealed that UACR > 7.25 μg/mg(OR=3.6; 95% CI 2.6-4.9; P 20 mmol/L(OR=3.2; 95% CI 2.3-4.4; P 2 (OR=2.3; 95% CI 1.4-3.8; P 2.6 mmol/L (OR 2.141; 95% CI 1.586-2.890; P 7.25 μg/mg + 1.158 x hsCRP > 20 mmol/L + 0.891 GFR 2 + 0.831 x LVEF 2.6 mmol/L + 0.676 x smoking history + 0.594 x male + 0.459 x diabetes + 0.425 x hypertension). Area under the curve was 0.811 (P < 0.01), and the optimal probability value for predicting severe stage of CAD was 0.977 (sensitivity 49.0%, specificity 92.7% ). Conclusions: Risk factors including renal insufficiency were the main predictors for CAD. The logistic regression model is the non-invasive method of choice for predicting the extension of coronary artery lesion in patients with stable agiana. (authors)

  5. Prediction and error growth in the daily forecast of precipitation from the NCEP CFSv2 over the subdivisions of Indian subcontinent

    Science.gov (United States)

    Pandey, Dhruva Kumar; Rai, Shailendra; Sahai, A. K.; Abhilash, S.; Shahi, N. K.

    2016-02-01

    This study investigates the forecast skill and predictability of various indices of south Asian monsoon as well as the subdivisions of the Indian subcontinent during JJAS season for the time domain of 2001-2013 using NCEP CFSv2 output. It has been observed that the daily mean climatology of precipitation over the land points of India is underestimated in the model forecast as compared to observation. The monthly model bias of precipitation shows the dry bias over the land points of India and also over the Bay of Bengal, whereas the Himalayan and Arabian Sea regions show the wet bias. We have divided the Indian landmass into five subdivisions namely central India, southern India, Western Ghat, northeast and southern Bay of Bengal regions based on the spatial variation of observed mean precipitation in JJAS season. The underestimation over the land points of India during mature phase was originated from the central India, southern Bay of Bengal, southern India and Western Ghat regions. The error growth in June forecast is slower as compared to July forecast in all the regions. The predictability error also grows slowly in June forecast as compared to July forecast in most of the regions. The doubling time of predictability error was estimated to be in the range of 3-5 days for all the regions. Southern India and Western Ghats are more predictable in the July forecast as compared to June forecast, whereas IMR, northeast, central India and southern Bay of Bengal regions have the opposite nature.

  6. Moderation of the Relationship Between Reward Expectancy and Prediction Error-Related Ventral Striatal Reactivity by Anhedonia in Unmedicated Major Depressive Disorder: Findings From the EMBARC Study

    Science.gov (United States)

    Greenberg, Tsafrir; Chase, Henry W.; Almeida, Jorge R.; Stiffler, Richelle; Zevallos, Carlos R.; Aslam, Haris A.; Deckersbach, Thilo; Weyandt, Sarah; Cooper, Crystal; Toups, Marisa; Carmody, Thomas; Kurian, Benji; Peltier, Scott; Adams, Phillip; McInnis, Melvin G.; Oquendo, Maria A.; McGrath, Patrick J.; Fava, Maurizio; Weissman, Myrna; Parsey, Ramin; Trivedi, Madhukar H.; Phillips, Mary L.

    2016-01-01

    Objective Anhedonia, disrupted reward processing, is a core symptom of major depressive disorder. Recent findings demonstrate altered reward-related ventral striatal reactivity in depressed individuals, but the extent to which this is specific to anhedonia remains poorly understood. The authors examined the effect of anhedonia on reward expectancy (expected outcome value) and prediction error-(discrepancy between expected and actual outcome) related ventral striatal reactivity, as well as the relationship between these measures. Method A total of 148 unmedicated individuals with major depressive disorder and 31 healthy comparison individuals recruited for the multisite EMBARC (Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care) study underwent functional MRI during a well-validated reward task. Region of interest and whole-brain data were examined in the first- (N=78) and second- (N=70) recruited cohorts, as well as the total sample, of depressed individuals, and in healthy individuals. Results Healthy, but not depressed, individuals showed a significant inverse relationship between reward expectancy and prediction error-related right ventral striatal reactivity. Across all participants, and in depressed individuals only, greater anhedonia severity was associated with a reduced reward expectancy-prediction error inverse relationship, even after controlling for other symptoms. Conclusions The normal reward expectancy and prediction error-related ventral striatal reactivity inverse relationship concords with conditioning models, predicting a shift in ventral striatal responding from reward outcomes to reward cues. This study shows, for the first time, an absence of this relationship in two cohorts of unmedicated depressed individuals and a moderation of this relationship by anhedonia, suggesting reduced reward-contingency learning with greater anhedonia. These findings help elucidate neural mechanisms of anhedonia, as a step toward

  7. Moderation of the Relationship Between Reward Expectancy and Prediction Error-Related Ventral Striatal Reactivity by Anhedonia in Unmedicated Major Depressive Disorder: Findings From the EMBARC Study.

    Science.gov (United States)

    Greenberg, Tsafrir; Chase, Henry W; Almeida, Jorge R; Stiffler, Richelle; Zevallos, Carlos R; Aslam, Haris A; Deckersbach, Thilo; Weyandt, Sarah; Cooper, Crystal; Toups, Marisa; Carmody, Thomas; Kurian, Benji; Peltier, Scott; Adams, Phillip; McInnis, Melvin G; Oquendo, Maria A; McGrath, Patrick J; Fava, Maurizio; Weissman, Myrna; Parsey, Ramin; Trivedi, Madhukar H; Phillips, Mary L

    2015-09-01

    Anhedonia, disrupted reward processing, is a core symptom of major depressive disorder. Recent findings demonstrate altered reward-related ventral striatal reactivity in depressed individuals, but the extent to which this is specific to anhedonia remains poorly understood. The authors examined the effect of anhedonia on reward expectancy (expected outcome value) and prediction error- (discrepancy between expected and actual outcome) related ventral striatal reactivity, as well as the relationship between these measures. A total of 148 unmedicated individuals with major depressive disorder and 31 healthy comparison individuals recruited for the multisite EMBARC (Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care) study underwent functional MRI during a well-validated reward task. Region of interest and whole-brain data were examined in the first- (N=78) and second- (N=70) recruited cohorts, as well as the total sample, of depressed individuals, and in healthy individuals. Healthy, but not depressed, individuals showed a significant inverse relationship between reward expectancy and prediction error-related right ventral striatal reactivity. Across all participants, and in depressed individuals only, greater anhedonia severity was associated with a reduced reward expectancy-prediction error inverse relationship, even after controlling for other symptoms. The normal reward expectancy and prediction error-related ventral striatal reactivity inverse relationship concords with conditioning models, predicting a shift in ventral striatal responding from reward outcomes to reward cues. This study shows, for the first time, an absence of this relationship in two cohorts of unmedicated depressed individuals and a moderation of this relationship by anhedonia, suggesting reduced reward-contingency learning with greater anhedonia. These findings help elucidate neural mechanisms of anhedonia, as a step toward identifying potential biosignatures

  8. How Systems Engineering and Risk Management Defend Against Murphy's Law and Human Error

    Science.gov (United States)

    Bay, Michael; Connley, Warren

    2004-01-01

    Systems Engineering and Risk Management processes can work synergistically to defend against the causes of many mission ending failures. Defending against mission ending failures is facilitated by fostering a team that has a healthy respect for Murphy's Law and a team with a of curiosity for how things work, how they can fail, and what they need to know. This curiosity is channeled into making the unknowns known or what is uncertain more certain. Efforts to assure mission success require the expenditure of energy in the following areas: 1. Understanding what defines Mission Success as guided by the customer's needs, objectives and constraints. 2. Understanding how the system is supposed to work and how the system is to be produced, fueled by the curiosity of how the system should work and how it should be produced. 3. Understanding how the system can fail and how the system might not be produced on time and within cost, fueled by the curiosity of how the system might fail and how production might be difficult. 4. Understanding what we need to know and what we need learn for proper completion of the above three items, fueled by the curiosity of what we might not know in order to make the best decisions.

  9. ِDesigning a Model to Medical Errors Prediction for Outpatients Visits According to Rganizational Commitment and Job Involvement

    Directory of Open Access Journals (Sweden)

    SM Mirhosseini

    2015-09-01

    Full Text Available Abstract Introduction: A wide ranges of variables effect on the medical errors such as job involvement and organizational commitment. Coincidental relationship between two variables on medical errors during outpatients’ visits has been investigated to design a model. Methods: A field study with 114 physicians during outpatients’ visits revealed the mean of medical errors. Azimi and Allen-meyer questionnaires were used to measure Job involvement and organizational commitment. Physicians divided into four groups according to the Job involvement and organizational commitment in two dimensions (Zone1: high job involvement and high organizational commitment, Zone2: high job involvement and low organizational commitment, Zone3: low job involvement and high organizational commitment, Zone 4: low job involvement and low organizational commitment. ANOVA and Scheffe test were conducted to analyse the medical errors in four Zones by SPSS22. A guideline was presented according to the relationship between errors and two other variables. Results: The mean of organizational commitment was 79.50±12.30 and job involvement 12.72±3.66, medical errors in first group (0.32, second group (0.51, third group (0.41 and last one (0.50. ANOVA (F test=22.20, sig=0.00 and Scheffé were significant except for the second and forth group. The validity of the model was 73.60%. Conclusion: Applying some strategies to boost the organizational commitment and job involvement can help for diminishing the medical errors during outpatients’ visits. Thus, the investigation to comprehend the factors contributing organizational commitment and job involvement can be helpful.

  10. Development and external validation of a risk-prediction model to predict 5-year overall survival in advanced larynx cancer

    NARCIS (Netherlands)

    Petersen, Japke F.; Stuiver, Martijn M.; Timmermans, Adriana J.; Chen, Amy; Zhang, Hongzhen; O'Neill, James P.; Deady, Sandra; Vander Poorten, Vincent; Meulemans, Jeroen; Wennerberg, Johan; Skroder, Carl; Day, Andrew T.; Koch, Wayne; van den Brekel, Michiel W. M.

    2017-01-01

    TNM-classification inadequately estimates patient-specific overall survival (OS). We aimed to improve this by developing a risk-prediction model for patients with advanced larynx cancer. Cohort study. We developed a risk prediction model to estimate the 5-year OS rate based on a cohort of 3,442

  11. Elastic scattering spectroscopy for detection of cancer risk in Barrett's esophagus: experimental and clinical validation of error removal by orthogonal subtraction for increasing accuracy

    Science.gov (United States)

    Zhu, Ying; Fearn, Tom; MacKenzie, Gary; Clark, Ben; Dunn, Jason M.; Bigio, Irving J.; Bown, Stephen G.; Lovat, Laurence B.

    2009-07-01

    Elastic scattering spectroscopy (ESS) may be used to detect high-grade dysplasia (HGD) or cancer in Barrett's esophagus (BE). When spectra are measured in vivo by a hand-held optical probe, variability among replicated spectra from the same site can hinder the development of a diagnostic model for cancer risk. An experiment was carried out on excised tissue to investigate how two potential sources of this variability, pressure and angle, influence spectral variability, and the results were compared with the variations observed in spectra collected in vivo from patients with Barrett's esophagus. A statistical method called error removal by orthogonal subtraction (EROS) was applied to model and remove this measurement variability, which accounted for 96.6% of the variation in the spectra, from the in vivo data. Its removal allowed the construction of a diagnostic model with specificity improved from 67% to 82% (with sensitivity fixed at 90%). The improvement was maintained in predictions on an independent in vivo data set. EROS works well as an effective pretreatment for Barrett's in vivo data by identifying measurement variability and ameliorating its effect. The procedure reduces the complexity and increases the accuracy and interpretability of the model for classification and detection of cancer risk in Barrett's esophagus.

  12. Predicting the cumulative risk of death during hospitalization by modeling weekend, weekday and diurnal mortality risks.

    Science.gov (United States)

    Coiera, Enrico; Wang, Ying; Magrabi, Farah; Concha, Oscar Perez; Gallego, Blanca; Runciman, William

    2014-05-21

    Current prognostic models factor in patient and disease specific variables but do not consider cumulative risks of hospitalization over time. We developed risk models of the likelihood of death associated with cumulative exposure to hospitalization, based on time-varying risks of hospitalization over any given day, as well as day of the week. Model performance was evaluated alone, and in combination with simple disease-specific models. Patients admitted between 2000 and 2006 from 501 public and private hospitals in NSW, Australia were used for training and 2007 data for evaluation. The impact of hospital care delivered over different days of the week and or times of the day was modeled by separating hospitalization risk into 21 separate time periods (morning, day, night across the days of the week). Three models were developed to predict death up to 7-days post-discharge: 1/a simple background risk model using age, gender; 2/a time-varying risk model for exposure to hospitalization (admission time, days in hospital); 3/disease specific models (Charlson co-morbidity index, DRG). Combining these three generated a full model. Models were evaluated by accuracy, AUC, Akaike and Bayesian information criteria. There was a clear diurnal rhythm to hospital mortality in the data set, peaking in the evening, as well as the well-known 'weekend-effect' where mortality peaks with weekend admissions. Individual models had modest performance on the test data set (AUC 0.71, 0.79 and 0.79 respectively). The combined model which included time-varying risk however yielded an average AUC of 0.92. This model performed best for stays up to 7-days (93% of admissions), peaking at days 3 to 5 (AUC 0.94). Risks of hospitalization vary not just with the day of the week but also time of the day, and can be used to make predictions about the cumulative risk of death associated with an individual's hospitalization. Combining disease specific models with such time varying- estimates appears to

  13. Quantitative risk assessment via uncertainty analysis in combination with error propagation for the determination of the dynamic Design Space of the primary drying step during freeze-drying

    DEFF Research Database (Denmark)

    Van Bockstal, Pieter Jan; Mortier, Séverine Thérèse F.C.; Corver, Jos

    2017-01-01

    of a freeze-drying process, allowing to quantitatively estimate and control the risk of cake collapse (i.e., the Risk of Failure (RoF)). The propagation of the error on the estimation of the thickness of the dried layer Ldried as function of primary drying time was included in the uncertainty analysis...

  14. Violence risk prediction. Clinical and actuarial measures and the role of the Psychopathy Checklist.

    Science.gov (United States)

    Dolan, M; Doyle, M

    2000-10-01

    Violence risk prediction is a priority issue for clinicians working with mentally disordered offenders. To review the current status of violence risk prediction research. Literature search (Medline). Key words: violence, risk prediction, mental disorder. Systematic/structured risk assessment approaches may enhance the accuracy of clinical prediction of violent outcomes. Data on the predictive validity of available clinical risk assessment tools are based largely on American and North American studies and further validation is required in British samples. The Psychopathy Checklist appears to be a key predictor of violent recidivism in a variety of settings. Violence risk prediction is an inexact science and as such will continue to provoke debate. Clinicians clearly need to be able to demonstrate the rationale behind their decisions on violence risk and much can be learned from recent developments in research on violence risk prediction.

  15. Patterns of poststroke brain damage that predict speech production errors in apraxia of speech and aphasia dissociate.

    Science.gov (United States)

    Basilakos, Alexandra; Rorden, Chris; Bonilha, Leonardo; Moser, Dana; Fridriksson, Julius

    2015-06-01

    Acquired apraxia of speech (AOS) is a motor speech disorder caused by brain damage. AOS often co-occurs with aphasia, a language disorder in which patients may also demonstrate speech production errors. The overlap of speech production deficits in both disorders has raised questions on whether AOS emerges from a unique pattern of brain damage or as a subelement of the aphasic syndrome. The purpose of this study was to determine whether speech production errors in AOS and aphasia are associated with distinctive patterns of brain injury. Forty-three patients with history of a single left-hemisphere stroke underwent comprehensive speech and language testing. The AOS Rating Scale was used to rate speech errors specific to AOS versus speech errors that can also be associated with both AOS and aphasia. Localized brain damage was identified using structural magnetic resonance imaging, and voxel-based lesion-impairment mapping was used to evaluate the relationship between speech errors specific to AOS, those that can occur in AOS or aphasia, and brain damage. The pattern of brain damage associated with AOS was most strongly associated with damage to cortical motor regions, with additional involvement of somatosensory areas. Speech production deficits that could be attributed to AOS or aphasia were associated with damage to the temporal lobe and the inferior precentral frontal regions. AOS likely occurs in conjunction with aphasia because of the proximity of the brain areas supporting speech and language, but the neurobiological substrate for each disorder differs. © 2015 American Heart Association, Inc.

  16. Risk prediction of emergency department revisit 30 days post discharge: a prospective study.

    Directory of Open Access Journals (Sweden)

    Shiying Hao

    Full Text Available Among patients who are discharged from the Emergency Department (ED, about 3% return within 30 days. Revisits can be related to the nature of the disease, medical errors, and/or inadequate diagnoses and treatment during their initial ED visit. Identification of high-risk patient population can help device new strategies for improved ED care with reduced ED utilization.A decision tree based model with discriminant Electronic Medical Record (EMR features was developed and validated, estimating patient ED 30 day revisit risk. A retrospective cohort of 293,461 ED encounters from HealthInfoNet (HIN, Maine's Health Information Exchange (HIE, between January 1, 2012 and December 31, 2012, was assembled with the associated patients' demographic information and one-year clinical histories before the discharge date as the inputs. To validate, a prospective cohort of 193,886 encounters between January 1, 2013 and June 30, 2013 was constructed. The c-statistics for the retrospective and prospective predictions were 0.710 and 0.704 respectively. Clinical resource utilization, including ED use, was analyzed as a function of the ED risk score. Cluster analysis of high-risk patients identified discrete sub-populations with distinctive demographic, clinical and resource utilization patterns.Our ED 30-day revisit model was prospectively validated on the Maine State HIN secure statewide data system. Future integration of our ED predictive analytics into the ED care work flow may lead to increased opportunities for targeted care intervention to reduce ED resource burden and overall healthcare expense, and improve outcomes.

  17. Young Children’s Risk-Taking: Mothers’ Authoritarian Parenting Predicts Risk-Taking by Daughters but Not Sons

    OpenAIRE

    Wood, Erin E.; Kennison, Shelia M.

    2017-01-01

    We investigated how mothers’ parenting behaviors and personal characteristics were related to risk-taking by young children. We tested contrasting predictions from evolutionary and social role theories with the former predicting higher risk-taking by boys compared to girls and the latter predicting that mothers would influence children’s gender role development with risk-taking occurring more in children parented with higher levels of harshness (i.e., authoritarian parenting style). In our st...

  18. Study of dosimetry errors in the framework of a concerted international study about the risk of cancer in nuclear industry workers. Study of the errors made on dose estimations of 100 to 3000 keV photons

    International Nuclear Information System (INIS)

    Thierry Chef, I.

    2000-01-01

    Ionizing radiations are uncontested factors of cancer risk and the radioprotection standards are defined on the basis of epidemiological studies of persons exposed to high doses of radiations (atomic bombs and therapeutic medical exposures). An epidemiological study of cancer risk has been carried out on nuclear industry workers from 17 countries in order to check these standards and to directly evaluate the risk linked with long duration exposures to low doses. The techniques used to measure the workers' doses have changed with time and these evolutions have been different in the different countries considered. The study of dosimetry errors aims at estimating the compatibility of the doses with respect to the periods of time and to the countries, and at quantifying the errors that could have disturbed the dose measurements during the first years and their consideration in the risk estimation. A compilation of the information available about dosimetry in the participating countries has been performed and the main sources of errors have been identified. Experiments have been carried out to test the response of the dosimeters used and to evaluate the conditions of exposure inside the companies. The biases and uncertainties have been estimated per company and per period of time and the most important correspond to the oldest measurements performed. This study contributes also to improve the knowledge of the working conditions and of the preciseness of dose estimations. (J.S.)

  19. The utility of absolute risk prediction using FRAX® and Garvan Fracture Risk Calculator in daily practice.

    Science.gov (United States)

    van Geel, Tineke A C M; Eisman, John A; Geusens, Piet P; van den Bergh, Joop P W; Center, Jacqueline R; Dinant, Geert-Jan

    2014-02-01

    There are two commonly used fracture risk prediction tools FRAX(®) and Garvan Fracture Risk Calculator (GARVAN-FRC). The objective of this study was to investigate the utility of these tools in daily practice. A prospective population-based 5-year follow-up study was conducted in ten general practice centres in the Netherlands. For the analyses, the FRAX(®) and GARVAN-FRC 10-year absolute risks (FRAX(®) does not have 5-year risk prediction) for all fractures were used. Among 506 postmenopausal women aged ≥60 years (mean age: 67.8±5.8 years), 48 (9.5%) sustained a fracture during follow-up. Both tools, using BMD values, distinguish between women who did and did not fracture (10.2% vs. 6.8%, respectively for FRAX(®) and 32.4% vs. 39.1%, respectively for GARVAN-FRC, pbetter for women who sustained a fracture (higher sensitivity) and FRAX(®) for women who did not sustain a fracture (higher specificity). Similar results were obtained using age related cut off points. The discriminant value of both models is at least as good as models used in other medical conditions; hence they can be used to communicate the fracture risk to patients. However, given differences in the estimated risks between FRAX(®) and GARVAN-FRC, the significance of the absolute risk must be related to country-specific recommended intervention thresholds to inform the patient. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Pyrosequencing as a tool for the detection of Phytophthora species: error rate and risk of false Molecular Operational Taxonomic Units.

    Science.gov (United States)

    Vettraino, A M; Bonants, P; Tomassini, A; Bruni, N; Vannini, A

    2012-11-01

    To evaluate the accuracy of pyrosequencing for the description of Phytophthora communities in terms of taxa identification and risk of assignment for false Molecular Operational Taxonomic Units (MOTUs). Pyrosequencing of Internal Transcribed Spacer 1 (ITS1) amplicons was used to describe the structure of a DNA mixture comprising eight Phytophthora spp. and Pythium vexans. Pyrosequencing resulted in 16 965 reads, detecting all species in the template DNA mixture. Reducing the ITS1 sequence identity threshold resulted in a decrease in numbers of unmatched reads but a concomitant increase in the numbers of false MOTUs. The total error rate was 0·63% and comprised mainly mismatches (0·25%) Pyrosequencing of ITS1 region is an efficient and accurate technique for the detection and identification of Phytophthora spp. in environmental samples. However, the risk of allocating false MOTUs, even when demonstrated to be low, may require additional validation with alternative detection methods. Phytophthora spp. are considered among the most destructive groups of invasive plant pathogens, affecting thousands of cultivated and wild plants worldwide. Simultaneous early detection of Phytophthora complexes in environmental samples offers an unique opportunity for the interception of known and unknown species along pathways of introduction, along with the identification of these organisms in invaded environments. © 2012 The Authors Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  1. Complex terrain wind resource estimation with the wind-atlas method: Prediction errors using linearized and nonlinear CFD micro-scale models

    DEFF Research Database (Denmark)

    Troen, Ib; Bechmann, Andreas; Kelly, Mark C.

    2014-01-01

    Using the Wind Atlas methodology to predict the average wind speed at one location from measured climatological wind frequency distributions at another nearby location we analyse the relative prediction errors using a linearized flow model (IBZ) and a more physically correct fully non-linear 3D...... flow model (CFD) for a number of sites in very complex terrain (large terrain slopes). We first briefly describe the Wind Atlas methodology as implemented in WAsP and the specifics of the “classical” model setup and the new setup allowing the use of the CFD computation engine. We discuss some known...

  2. Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in BRCA1 and BRCA2 Mutation Carriers

    DEFF Research Database (Denmark)

    Kuchenbaecker, Karoline B; McGuffog, Lesley; Barrowdale, Daniel

    2017-01-01

    Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic ...... risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management....

  3. Cardiovascular risk prediction: the old has given way to the new but at what risk-benefit ratio?

    Directory of Open Access Journals (Sweden)

    Yeboah J

    2014-10-01

    Full Text Available Joseph Yeboah Heart and Vascular Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC, USA Abstract: The ultimate goal of cardiovascular risk prediction is to identify individuals in the population to whom the application or administration of current proven lifestyle modifications and medicinal therapies will result in reduction in cardiovascular disease events and minimal adverse effects (net benefit to society. The use of cardiovascular risk prediction tools dates back to 1976 when the Framingham coronary heart disease risk score was published. Since then a lot of novel risk markers have been identified and other cardiovascular risk prediction tools have been developed to either improve or replace the Framingham Risk Score (FRS. In 2013, the new atherosclerotic cardiovascular disease risk estimator was published by the American College of Cardiology and the American Heart Association to replace the FRS for cardiovascular risk prediction. It is too soon to know the performance of the new atherosclerotic cardiovascular disease risk estimator. The risk-benefit ratio for preventive therapy (lifestyle modifications, statin +/− aspirin based on cardiovascular disease risk assessed using the FRS is unknown but it was assumed to be a net benefit. Should we also assume the risk-benefit ratio for the new atherosclerotic cardiovascular disease risk estimator is also a net benefit? Keywords: risk prediction, prevention, cardiovascular disease

  4. Patterns of Post-Stroke Brain Damage that Predict Speech Production Errors in Apraxia of Speech and Aphasia Dissociate

    Science.gov (United States)

    Basilakos, Alexandra; Rorden, Chris; Bonilha, Leonardo; Moser, Dana; Fridriksson, Julius

    2015-01-01

    Background and Purpose Acquired apraxia of speech (AOS) is a motor speech disorder caused by brain damage. AOS often co-occurs with aphasia, a language disorder in which patients may also demonstrate speech production errors. The overlap of speech production deficits in both disorders has raised questions regarding if AOS emerges from a unique pattern of brain damage or as a sub-element of the aphasic syndrome. The purpose of this study was to determine whether speech production errors in AOS and aphasia are associated with distinctive patterns of brain injury. Methods Forty-three patients with history of a single left-hemisphere stroke underwent comprehensive speech and language testing. The Apraxia of Speech Rating Scale was used to rate speech errors specific to AOS versus speech errors that can also be associated with AOS and/or aphasia. Localized brain damage was identified using structural MRI, and voxel-based lesion-impairment mapping was used to evaluate the relationship between speech errors specific to AOS, those that can occur in AOS and/or aphasia, and brain damage. Results The pattern of brain damage associated with AOS was most strongly associated with damage to cortical motor regions, with additional involvement of somatosensory areas. Speech production deficits that could be attributed to AOS and/or aphasia were associated with damage to the temporal lobe and the inferior pre-central frontal regions. Conclusion AOS likely occurs in conjunction with aphasia due to the proximity of the brain areas supporting speech and language, but the neurobiological substrate for each disorder differs. PMID:25908457

  5. Predicting infection risk of airborne foot-and-mouth disease.

    Science.gov (United States)

    S