WorldWideScience

Sample records for ring-down spectroscopy technique

  1. Cavity Ring Down and Thermal Lens Techniques Applied to Vibrational Spectroscopy of Gases and Liquids

    Science.gov (United States)

    Nyaupane, Parashu Ram

    Infrared (IR) and near-infrared (NIR) region gas temperature sensors have been used in the past because of its non-intrusive character and fast time response. In this dissertation cavity ring down (CRD) absorption of oxygen around the region 760 nm has been used to measure the temperature of flowing air in an open optical cavity. This sensor could be a convenient method for measuring the temperature at the input (cold air) and output (hot air) after cooling the blades of a gas turbine. The results could contribute to improvements in turbine blade cooling designs. Additionally, it could be helpful for high temperature measurement in harsh conditions like flames, boilers, and industrial pyrolysis ovens as well as remote sensing. We are interested in experiments that simulate the liquid methane and ethane lakes on Titan which is around the temperature of 94 K. Our specific goal is to quantify the solubility of unsaturated hydrocarbons in liquid ethane and methane. However, it is rather complicated to do so because of the low temperatures, low solubility and solvent effects. So, it is wise to do the experiments at higher temperature and test the suitability of the techniques. In these projects, we were trying to explore if our existing laboratory techniques were sensitive enough to obtain the solubility of unsaturated hydrocarbons in liquid ethane. First, we studied the thermal lens spectroscopy (TLS) of the (Deltav = 6) C-H overtone of benzene and naphthalene in hexane and CCl4 at room temperature.

  2. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique

    NARCIS (Netherlands)

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; Van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.

    2010-01-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balancao Atmosferico Regional de Carbono na Amazonia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This

  3. Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique

    Science.gov (United States)

    Chen, H.; Karion, A.; Rella, C. W.; Winderlich, J.; Gerbig, C.; Filges, A.; Newberger, T.; Sweeney, C.; Tans, P. P.

    2013-04-01

    Accurate measurements of carbon monoxide (CO) in humid air have been made using the cavity ring-down spectroscopy (CRDS) technique. The measurements of CO mole fractions are determined from the strength of its spectral absorption in the near-infrared region (~1.57 μm) after removing interferences from adjacent carbon dioxide (CO2) and water vapor (H2O) absorption lines. Water correction functions that account for the dilution and pressure-broadening effects as well as absorption line interferences from adjacent CO2 and H2O lines have been derived for CO2 mole fractions between 360-390 ppm and for reported H2O mole fractions between 0-4%. The line interference corrections are independent of CO mole fractions. The dependence of the line interference correction on CO2 abundance is estimated to be approximately -0.3 ppb/100 ppm CO2 for dry mole fractions of CO. Comparisons of water correction functions from different analyzers of the same type show significant differences, making it necessary to perform instrument-specific water tests for each individual analyzer. The CRDS analyzer was flown on an aircraft in Alaska from April to November in 2011, and the accuracy of the CO measurements by the CRDS analyzer has been validated against discrete NOAA/ESRL flask sample measurements made on board the same aircraft, with a mean difference between integrated in situ and flask measurements of -0.6 ppb and a standard deviation of 2.8 ppb. Preliminary testing of CRDS instrumentation that employs improved spectroscopic model functions for CO2, H2O, and CO to fit the raw spectral data (available since the beginning of 2012) indicates a smaller water vapor dependence than the models discussed here, but more work is necessary to fully validate the performance. The CRDS technique provides an accurate and low-maintenance method of monitoring the atmospheric dry mole fractions of CO in humid air streams.

  4. Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS technique

    Directory of Open Access Journals (Sweden)

    H. Chen

    2013-04-01

    Full Text Available Accurate measurements of carbon monoxide (CO in humid air have been made using the cavity ring-down spectroscopy (CRDS technique. The measurements of CO mole fractions are determined from the strength of its spectral absorption in the near-infrared region (~1.57 μm after removing interferences from adjacent carbon dioxide (CO2 and water vapor (H2O absorption lines. Water correction functions that account for the dilution and pressure-broadening effects as well as absorption line interferences from adjacent CO2 and H2O lines have been derived for CO2 mole fractions between 360–390 ppm and for reported H2O mole fractions between 0–4%. The line interference corrections are independent of CO mole fractions. The dependence of the line interference correction on CO2 abundance is estimated to be approximately −0.3 ppb/100 ppm CO2 for dry mole fractions of CO. Comparisons of water correction functions from different analyzers of the same type show significant differences, making it necessary to perform instrument-specific water tests for each individual analyzer. The CRDS analyzer was flown on an aircraft in Alaska from April to November in 2011, and the accuracy of the CO measurements by the CRDS analyzer has been validated against discrete NOAA/ESRL flask sample measurements made on board the same aircraft, with a mean difference between integrated in situ and flask measurements of −0.6 ppb and a standard deviation of 2.8 ppb. Preliminary testing of CRDS instrumentation that employs improved spectroscopic model functions for CO2, H2O, and CO to fit the raw spectral data (available since the beginning of 2012 indicates a smaller water vapor dependence than the models discussed here, but more work is necessary to fully validate the performance. The CRDS technique provides an accurate and low-maintenance method of monitoring the atmospheric dry mole fractions of CO in humid air streams.

  5. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4 using the cavity ring-down spectroscopy (CRDS technique

    Directory of Open Access Journals (Sweden)

    V. Y. Chow

    2010-03-01

    Full Text Available High-accuracy continuous measurements of greenhouse gases (CO2 and CH4 during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4.

  6. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique

    Science.gov (United States)

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.

    2010-03-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR) analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4.

  7. Medical Diagnostic Breath Analysis by Cavity Ring Down Spectroscopy

    Science.gov (United States)

    Guss, Joseph S.; Metsälä, Markus; Halonen, Lauri

    2009-06-01

    Certain medical conditions give rise to the presence of chemicals in the bloodstream. These chemicals - known as biomarkers - may also be present in low concentrations in human breath. Cavity ring down spectroscopy possesses the requisite selectivity and sensitivity to detect such biomarkers in the congested spectrum of a breath sample. The ulcer-causing bacterium, Helicobacter pylori, is a prolific producer of the enzyme urease, which catalyses the breakdown of urea ((NH_2)_2CO) in the stomach as follows: (NH_2)_2CO + H_2O ⟶ CO_2 + 2NH_3 Currently, breath tests seeking altered carbon-isotope ratios in exhaled CO_2 after the ingestion of ^{13}C- or ^{14}C-labeled urea are used to diagnose H. pylori infection. We present recent results from an ongoing collaboration with Tampere Area University Hospital. The study involves 100 patients (both infected and uninfected) and concerns the possible correlation between the bacterial infection and breath ammonia. D. Y. Graham, P. D. Klein, D. J. Evans, Jr, D. G. Evans, L. C. Alpert, A. R. Opekun, T. W. Boutton, Lancet 1(8543), 1174-7 March 1987.

  8. Measurement of absolute concentrations of minor reactive species in flames by cavity ring down absorption spectroscopy (CRDS) method; Mesure de concentrations absolues d'especes reactives minoritaires dans les flammes par la technique d'absorption cavity ring down spectroscopy (CRDS)

    Energy Technology Data Exchange (ETDEWEB)

    Mercier, X.

    2000-11-15

    Combustion processes, which represent our main source of energy today, arouse still numerous questioning. It likes essentially the complexity of the involved chemical mechanisms as well as in the inherent difficulty to the study of an environment which is the field of several thousand simultaneous reactions. Now, even if powerful models exist, allowing the simulation of complex chemical systems, they can not predict any process of combustion and the experimental approach of these ones is still essential for the improvement of the existing models. In particular, the quantitative measure of minor species in flames constitutes a fundamental stage in the validation of the chemical mechanisms with high temperature. It is in this optics that we developed a new technique for flames study, the Cavity Ring-Down Spectroscopy (CRDS). This technique (appeared to the end of the 80's (O' Keefe and Deacon [1988]) within the framework of a spectroscopic study) is similar to a very high sensibility absorption method. The principle of the CRDS technique is based on the measure of the lifetime of an laser pulse injected in an optical cavity within which is an absorbing sample. in this report, we show the interest and the potentialities of the CRDS for the study of homogeneous flames. To do it, we clarify in detail the principle of the CRDS and the care to be taken for the measure of absolute concentrations. Besides, a comparison of the absolute concentrations profiles obtained by CRDS (of CN and CH notably) in a CH{sub 4} /O{sub 2} flame seeded with NO, with those stemming from the modelling by means of the software PREMIX is also presented. The very good agreement which reveals this comparison tends to show that the CRDS, because of its high sensibility and its direct quantitative character, is one of the most efficient methods for the measure of minor species absolute concentrations in homogeneous flames. (author)

  9. Evanescent-wave cavity ring-down spectroscopy for enhanced detection of surface binding under flow injection analysis conditions

    NARCIS (Netherlands)

    Van Der Sneppen, L.; Ariese, F.; Gooijer, C.; Ubachs, W.

    2008-01-01

    In evanescent-wave cavity ring-down spectroscopy, one (or more) of the re°ections inside the cavity is a total internal re°ection (TIR) event. Only the evanescent wave associated with this TIR is being used for prob-ing the sample. This technique is therefore highly surface-speci-c and attractive

  10. Time resolved super continuum Cavity Ring-Down Spectroscopy for multicomponent gas detection

    International Nuclear Information System (INIS)

    Nakaema, Walter Morinobu

    2010-01-01

    In this work, we present a variation of the technique CRDS (Cavity Ring-Down Spectroscopy) to obtain simultaneously a multicomponent absorption spectrum in a broad visible range. This new approach uses the Supercontinuum (SC) spectrum (resulting from irradiation of nonlinear media by femtosecond lasers, or simply generated by compact sources) as a light source to illuminate the cavity. In this context it is described the features of the modules assembling a MC-SC-CRDS (Multicomponent Supercontinuum Cavity Ring-Down Spectroscopy): a set of high reflectivity mirrors, the resonant cavity and the detection system. Some problems related to the multimode excitation, stray light, effective use of the dynamic range of the detector, the poor resolution of the instrument to resolve narrow absorption lines are issued. We present the absorption spectra of H 2 O (polyads 4υ, 4υ + δ) and O 2 (spin-forbidden b-X branch) measured simultaneously by this technique in the visible range and a comparison with the absorption lines based on HITRAN database is made to demonstrate the functionality of this method. (author)

  11. Miniature chemical sensor combining molecular recognition with evanescent wave cavity ring-down spectroscopy

    International Nuclear Information System (INIS)

    Pipino, Andrew C. R.

    2004-01-01

    A new chemical detection technology has been realized that addresses DOE environmental management needs. The new technology is based on a variant of the sensitive optical absorption technique, cavity ring-down spectroscopy (CRDS). Termed evanescent-wave cavity ring-down spectroscopy (EW-CRDS), the technology employs a miniature solid-state optical resonator having an extremely high Q-factor as the sensing element, where the high-Q is achieved by using ultra-low-attenuation optical materials, ultra-smooth surfaces, and ultra-high reflectivity coatings, as well as low-diffraction-loss designs. At least one total-internal reflection (TIR) mirror is integral to the resonator permitting the concomitant evanescent wave to probe the ambient environment. Several prototypes have been designed, fabricated, characterized, and applied to chemical detection. Moreover, extensions of the sensing concept have been explored to enhance selectivity, sensitivity, and range of application. Operating primarily in the visible and near IR regions, the technology inherently enables remote detection by optical fiber. Producing 11 archival publications, 5 patents, 19 invited talks, 4 conference proceedings, a CRADA, and a patent-license agreement, the project has realized a new chemical detection technology providing >100 times more sensitivity than comparable technologies, while also providing practical advantages

  12. S-Nitrosothiols Observed Using Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Rad, Mary Lynn; Gaston, Benjamin M.; Lehmann, Kevin

    2017-06-01

    The biological importance of nitric oxide has been known for nearly forty years due to its role in cardiovascular and nervous signaling. The main carrier molecules, s-nitrosothiols (RSNOs), are of additional interest due to their role in signaling reactions. Additionally, these compounds are related to several diseases including muscular dystrophy, stroke, myocardial infarction, Alzheimer's disease, Parkinson's disease, cystic fibrosis, asthma, and pulmonary arterial hypertension. One of the main barriers to elucidating the role of these RSNOs is the low (nanomolar) concentration present in samples of low volume (typically ˜100 μL). To this end we have set up a cavity ring-down spectrometer tuned to observe ^{14}NO and ^{15}NO released from cell growth samples. To decrease the limit of detection we have implemented a laser locking scheme employing Zeeman modulation of NO in a reference cell and have tuned the polarization of the laser using a half wave plate to optimize the polarization for the inherent birefringence of the CRDS mirrors. Progress toward measuring RSNO concentration in biological samples will be presented.

  13. Optical feedback in dfb quantum cascade laser for mid-infrared cavity ring-down spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Terabayashi, Ryohei, E-mail: terabayashi.ryouhei@h.mbox.nagoya-u.ac.jp; Sonnenschein, Volker, E-mail: volker@nagoya-u.jp; Tomita, Hideki, E-mail: tomita@nagoya-u.jp; Hayashi, Noriyoshi, E-mail: hayashi.noriyoshi@h.mbox.nagoya-u.ac.jp; Kato, Shusuke, E-mail: katou.shuusuke@f.mbox.nagoya-u.ac.jp; Jin, Lei, E-mail: kin@nuee.nagoya-u.ac.jp; Yamanaka, Masahito, E-mail: yamanaka@nuee.nagoya-u.ac.jp; Nishizawa, Norihiko, E-mail: nishizawa@nuee.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan); Sato, Atsushi, E-mail: atsushi.sato@sekisui.com; Nozawa, Kohei, E-mail: kohei.nozawa@sekisui.com; Hashizume, Kenta, E-mail: kenta.hashizume@sekisui.com; Oh-hara, Toshinari, E-mail: toshinari.ohara@sekisui.com [Sekisui Medical Co., Ltd., Drug Development Solutions Center (Japan); Iguchi, Tetsuo, E-mail: t-iguchi@nucl.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan)

    2017-11-15

    A simple external optical feedback system has been applied to a distributed feedback quantum cascade laser (DFB QCL) for cavity ring-down spectroscopy (CRDS) and a clear effect of feedback was observed. A long external feedback path length of up to 4m can decrease the QCL linewidth to around 50kHz, which is of the order of the transmission linewidth of our high finesse ring-down cavity. The power spectral density of the transmission signal from high finesse cavity reveals that the noise at frequencies above 20kHz is reduced dramatically.

  14. Model-Based, Closed-Loop Control of PZT Creep for Cavity Ring-Down Spectroscopy.

    Science.gov (United States)

    McCartt, A D; Ognibene, T J; Bench, G; Turteltaub, K W

    2014-09-01

    Cavity ring-down spectrometers typically employ a PZT stack to modulate the cavity transmission spectrum. While PZTs ease instrument complexity and aid measurement sensitivity, PZT hysteresis hinders the implementation of cavity-length-stabilized, data-acquisition routines. Once the cavity length is stabilized, the cavity's free spectral range imparts extreme linearity and precision to the measured spectrum's wavelength axis. Methods such as frequency-stabilized cavity ring-down spectroscopy have successfully mitigated PZT hysteresis, but their complexity limits commercial applications. Described herein is a single-laser, model-based, closed-loop method for cavity length control.

  15. Development of a pulsed laser with emission at 1053 nm for Cavity Ring-Down Spectroscopy

    International Nuclear Information System (INIS)

    Cavalcanti, Fabio

    2014-01-01

    In this work, a pulsed and Q-switched laser resonator was developed using the double-beam mode-controlling technique. A Nd:LiYF4 crystal with 0,8mol% of doping concentration was used to generate a giant pulse with duration of 5,5 ns (FWHM), 1,2 mJ of energy and 220 kW peak power for the Cavity Ring-Down Spectroscopy (CRDS) technique. The CRDS technique is used to measure absorption spectra for gases, liquids and solids. With the CRDS technique it is possible to measure losses with high degree of accuracy, underscoring the sensitivity that is confirmed by the use of mirrors with high reflectivity. With this technique, the losses by reflection and scattering of transparent materials were evaluated. By calibrating the resonant cavity, it was possible to measure the losses in the samples with resolution of 0,045%, the maximum being reached by 0,18%. The calibration was possible because there was obtained to measure a decay time of approximately 20 μs with the empty cavity. Besides was obtained a method for determining the refractive index of transparent materials with accuracy of five decimals. (author)

  16. Rapid-swept CW cavity ring-down laser spectroscopy for carbon isotope analysis

    International Nuclear Information System (INIS)

    Tomita, Hideki; Watanabe, Kenichi; Takiguchi, Yu; Kawarabayashi, Jun; Iguchi, Tetsuo

    2006-01-01

    With the aim of developing a portable system for an in field isotope analysis, we investigate an isotope analysis based on rapid-swept CW cavity ring-down laser spectroscopy, in which the concentration of a chemical species is derived from its photo absorbance. Such a system can identify the isotopomer and still be constructed as a quite compact system. We have made some basic experimental measurements of the overtone absorption lines of carbon dioxide ( 12 C 16 O 2 , 13 C 16 O 2 ) by rapid-swept cavity ring-down spectroscopy with a CW infrared diode laser at 6,200 cm -1 (1.6 μm). The isotopic ratio has been obtained as (1.07±0.13)x10 -2 , in good agreement with the natural abundance within experimental uncertainty. The detection sensitivity in absorbance has been estimated to be 3x10 -8 cm -1 . (author)

  17. Quantifying Carbon-14 for Biology Using Cavity Ring-Down Spectroscopy

    OpenAIRE

    McCartt, A. Daniel; Ognibene, Ted J.; Bench, Graham; Turteltaub, Kenneth W.

    2016-01-01

    A cavity ring-down spectroscopy (CRDS) instrument was developed using mature, robust hardware for the measurement of carbon-14 in biological studies. The system was characterized using carbon-14 elevated glucose samples and returned a linear response up to 387 times contemporary carbon-14 concentrations. Carbon-14 free and contemporary carbon-14 samples with varying carbon-13 concentrations were used to assess the method detection limit of approximately one-third contemporary carbon-14 levels...

  18. Cavity ring-down technique for measurement of reflectivity of high

    Indian Academy of Sciences (India)

    grade mirrors ( > 99.5 %) based on cavity ring-down (CRD) technique has been success-fully demonstrated in our laboratory using a pulsed Nd:YAG laser. A fast photomultiplier tube with an oscilloscope was used to detect and analyse the CRD ...

  19. Cavity Ring-Down Spectroscopy for Gaseous Fission Products Trace Measurements in Sodium Fast Reactors

    International Nuclear Information System (INIS)

    Jacquet, P.; Pailloux, A.; Doizi, D.; Aoust, G.; Jeannot, J.-P.

    2013-06-01

    Safety and availability are key issues of the generation IV reactors. Hence, the three radionuclide confinement barriers, including fuel cladding, must stay tight during the reactor operation. During the primary gaseous failure, fission products xenon and krypton are released. Their fast and sensitive detection guarantees the first confinement barrier tightness. In the frame of the French ASTRID project, an optical spectroscopy technique - Cavity Ring Down Spectroscopy (CRDS) - is investigated for the gaseous fission products measurement. A dedicated CRDS set-up is needed to detect the rare gases with a commercial laser. Indeed, the CRDS is coupled to a glow discharge plasma, which generates a population of metastable atoms. The xenon plasma conditions are optimized to 110 Pa and 1.3 W (3 mA). The production efficiency of metastable Xe is then 0.8 %, stable within 0.5% during hours. The metastable number density is proportional to the xenon over argon molar fraction. The spectroscopic parameters of the strong 823.16 nm xenon transition are calculated and/or measured in order to optimize the fit of the experimental spectra and make a quantitative measurement of the metastable xenon. The CRDS is coupled to the discharge cell. The laser intensity inside the cavity is limited by the optical saturation process, resulting from the strong optical pumping of the metastable state. The resulting weak CRDS signal requires a fast and very sensitive photodetector. A 600 ppt xenon molar fraction was measured by CRDS. With the present set-up, the detection limits are estimated from the baseline noise to approximately 20 ppt for each even isotope, 60 ppt for the 131 Xe and 55 ppt for the 129 Xe. This sensitivity matches the specifications required for gaseous leak measurement; approximately 100 ppt for 133 Xe (4 GBq/m 3 ) and 10 ppb for stable isotopes. The odd isotopes are selectively measured, whereas the even isotopes overlap, a spectroscopic feature that applies for stable or

  20. Cavity ring-down spectroscopy (CRDS) system for measuring atmospheric mercury using differential absorption

    Science.gov (United States)

    Pierce, A.; Obrist, D.; Moosmuller, H.; Moore, C.

    2012-04-01

    Atmospheric elemental mercury (Hg0) is a globally pervasive element that can be transported and deposited to remote ecosystems where it poses — particularly in its methylated form — harm to many organisms including humans. Current techniques for measurement of atmospheric Hg0 require several liters of sample air and several minutes for each analysis. Fast-response (i.e., 1 second or faster) measurements would improve our ability to understand and track chemical cycling of mercury in the atmosphere, including high frequency Hg0 fluctuations, sources and sinks, and chemical transformation processes. We present theory, design, challenges, and current results of our new prototype sensor based on cavity ring-down spectroscopy (CRDS) for fast-response measurement of Hg0 mass concentrations. CRDS is a direct absorption technique that implements path-lengths of multiple kilometers in a compact absorption cell using high-reflectivity mirrors, thereby improving sensitivity and reducing sample volume compared to conventional absorption spectroscopy. Our sensor includes a frequency-doubled, dye-laser emitting laser pulses tunable from 215 to 280 nm, pumped by a Q-switched, frequency tripled Nd:YAG laser with a pulse repetition rate of 50 Hz. We present how we successfully perform automated wavelength locking and stabilization of the laser to the peak Hg0 absorption line at 253.65 nm using an external isotopically-enriched mercury (202Hg0) cell. An emphasis of this presentation will be on the implementation of differential absorption measurement whereby measurements are alternated between the peak Hg0 absorption wavelength and a nearby wavelength "off" the absorption line. This can be achieved using a piezo electric tuning element that allows for pulse-by-pulse tuning and detuning of the laser "online" and "offline" of the Hg absorption line, and thereby allows for continuous correction of baseline extinction losses. Unexpected challenges with this approach included

  1. Toward real-time measurement of atmospheric mercury concentrations using cavity ring-down spectroscopy

    Directory of Open Access Journals (Sweden)

    X. Faïn

    2010-03-01

    Full Text Available Cavity ring-down spectroscopy (CRDS is a direct absorption technique that utilizes path lengths up to multiple kilometers in a compact absorption cell and has a significantly higher sensitivity than conventional absorption spectroscopy. This tool opens new prospects for study of gaseous elemental mercury (Hg0 because of its high temporal resolution and reduced sample volume requirements (<0.5 l of sample air. We developed a new sensor based on CRDS for measurement of (Hg0 mass concentration. Sensor characteristics include sub-ng m−3 detection limit and high temporal resolution using a frequency-doubled, tuneable dye laser emitting pulses at ~253.65 nm with a pulse repetition frequency of 50 Hz. The dye laser incorporates a unique piezo element attached to its tuning grating allowing it to tune the laser on and off the Hg0 absorption line on a pulse-to-pulse basis to facilitate differential absorption measurements. Hg0 absorption measurements with this CRDS laboratory prototype are highly linearly related to Hg0 concentrations determined by a Tekran 2537B analyzer over an Hg0 concentration range from 0.2 ng m−3 to 573 ng m−3, implying excellent linearity of both instruments. The current CRDS instrument has a sensitivity of 0.10 ng Hg0 m−3 at 10-s time resolution. Ambient-air tests showed that background Hg0 levels can be detected at low temporal resolution (i.e., 1 s, but also highlight a need for high-frequency (i.e., pulse-to-pulse differential on/off-line tuning of the laser wavelength to account for instabilities of the CRDS system and variable background absorption interferences. Future applications may include ambient Hg0 flux measurements with eddy covariance techniques, which require measurements of Hg0 concentrations with sub-ng m−3 sensitivity and sub-second time

  2. Measurement of size-dependent single scattering albedo of fresh biomass burning aerosols using the extinction-minus-scattering technique with a combination of cavity ring-down spectroscopy and nephelometry

    Directory of Open Access Journals (Sweden)

    S. Singh

    2016-11-01

    Full Text Available Biomass burning (BB aerosols have a significant effect on regional climate, and represent a significant uncertainty in our understanding of climate change. Using a combination of cavity ring-down spectroscopy and integrating nephelometry, the single scattering albedo (SSA and Ångstrom absorption exponent (AAE were measured for several North American biomass fuels. This was done for several particle diameters for the smoldering and flaming stage of white pine, red oak, and cedar combustion. Measurements were done over a wider wavelength range than any previous direct measurement of BB particles. While the offline sampling system used in this work shows promise, some changes in particle size distribution were observed, and a thorough evaluation of this method is required. The uncertainty of SSA was 6 %, with the truncation angle correction of the nephelometer being the largest contributor to error. While scattering and extinction did show wavelength dependence, SSA did not. SSA values ranged from 0.46 to 0.74, and were not uniformly greater for the smoldering stage than the flaming stage. SSA values changed with particle size, and not systematically so, suggesting the proportion of tar balls to fractal black carbon change with fuel type/state and particle size. SSA differences of 0.15–0.4 or greater can be attributed to fuel type or fuel state for fresh soot. AAE values were quite high (1.59–5.57, despite SSA being lower than is typically observed in wildfires. The SSA and AAE values in this work do not fit well with current schemes that relate these factors to the modified combustion efficiency of a burn. Combustion stage, particle size, fuel type, and fuel condition were found to have the most significant effects on the intrinsic optical properties of fresh soot, though additional factors influence aged soot.

  3. The application of cavity ring-down spectroscopy to atmospheric and physical chemistry

    Science.gov (United States)

    Hargrove, James Mcchesney

    Cavity ring-down spectroscopy (CRDS) is a sensitive form of absorption spectroscopy. Thousands of reflections between two multilayer dielectric mirrors give CRDS an extremely long path-length. The rate of decay of the signal is measured instead of the magnitude of attenuation, so laser intensity fluctuations do not affect the measurement. At 405.23 nm, NO2 had a detection limit of 150 ppt/10 s (3sigma). Particles were removed by a 0.45 mum filter. Water vapor had a 2.8 ppb NO 2 equivalent interference for 1% water vapor in air, with a simple quadratic dependence on water monomer concentration that might have been due to water dimer. Removing NO2 with an annular denuder coated with guiacol and sodium hydroxide, or reacting the NO2 and NO2 with ozone, allows for an interference measurement. An NOy measurement can be obtained after thermal decomposition of higher oxides and ozone. The interference was easier to accommodate than the quenching found in chemiluminescence. The water dimer hypothesis was supported by temperature studies resulting in thermodynamics consistent with theory. The oscillator strength at 409 nm was roughly three orders of magnitude stronger than the best available calculations, leading to a serious unanswered question of the possible source of the additional enhancement. Measurements at 532 nm found a similar response, and others have measured a response at 440 nm, suggesting the 6th, 7th and 8th overtones of water dimer occur at ˜532 nm, ˜440 nm and 409 nm with a similar magnitude that is possibly larger than the 3rd and 4th overtones that have not been detectable. The excellent NO2 detection sensitivity enabled the measurement of NO2 emitted by ambient particles from thermal decomposition. Gas phase interferences were removed with radial aerosol denuders. PANs, ANs, and ammonium nitrate were measured sequentially at 150°C, 215°C and 250°C by the emitted NO2. This technique was applied to ambient air during the Study of Organic Aerosols in

  4. Determination of dissolved methane in natural waters using headspace analysis with cavity ring-down spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Hannah M.; Shiller, Alan M., E-mail: alan.shiller@usm.edu

    2015-01-26

    Highlights: • A method for determining low nanomolar dissolved CH{sub 4} was developed. • The methane detection utilizes cavity ring-down spectroscopy (CRDS). • Use of CRDS requires less time, materials and labor than typical of GC analysis. • Relative standard deviations of ∼4% were achieved at low nM CH{sub 4}. • Applications to seawater and river water are presented. - Abstract: Methane (CH{sub 4}) is the third most abundant greenhouse gas (GHG) but is vastly understudied in comparison to carbon dioxide. Sources and sinks to the atmosphere vary considerably in estimation, including sources such as fresh and marine water systems. A new method to determine dissolved methane concentrations in discrete water samples has been evaluated. By analyzing an equilibrated headspace using laser cavity ring-down spectroscopy (CRDS), low nanomolar dissolved methane concentrations can be determined with high reproducibility (i.e., 0.13 nM detection limit and typical 4% RSD). While CRDS instruments cost roughly twice that of gas chromatographs (GC) usually used for methane determination, the process presented herein is substantially simpler, faster, and requires fewer materials than GC methods. Typically, 70-mL water samples are equilibrated with an equivalent amount of zero air in plastic syringes. The equilibrated headspace is transferred to a clean, dry syringe and then drawn into a Picarro G2301 CRDS analyzer via the instrument’s pump. We demonstrate that this instrument holds a linear calibration into the sub-ppmv methane concentration range and holds a stable calibration for at least two years. Application of the method to shipboard dissolved methane determination in the northern Gulf of Mexico as well as river water is shown. Concentrations spanning nearly six orders of magnitude have been determined with this method.

  5. Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy.

    Science.gov (United States)

    Pierce, Ashley M; Moore, Christopher W; Wohlfahrt, Georg; Hörtnagl, Lukas; Kljun, Natascha; Obrist, Daniel

    2015-02-03

    A newly developed pulsed cavity ring-down spectroscopy (CRDS) system for measuring atmospheric gaseous elemental mercury (GEM) concentrations at high temporal resolution (25 Hz) was used to successfully conduct the first eddy covariance (EC) flux measurements of GEM. GEM is the main gaseous atmospheric form, and quantification of bidirectional exchange between the Earth's surface and the atmosphere is important because gas exchange is important on a global scale. For example, surface GEM emissions from natural sources, legacy emissions, and re-emission of previously deposited anthropogenic pollution may exceed direct primary anthropogenic emissions. Using the EC technique for flux measurements requires subsecond measurements, which so far has not been feasible because of the slow time response of available instrumentation. The CRDS system measured GEM fluxes, which were compared to fluxes measured with the modified Bowen ratio (MBR) and a dynamic flux chamber (DFC). Measurements took place near Reno, NV, in September and October 2012 encompassing natural, low-mercury (Hg) background soils and Hg-enriched soils. During nine days of measurements with deployment of Hg-enriched soil in boxes within 60 m upwind of the EC tower, the covariance of GEM concentration and vertical wind speed was measured, showing that EC fluxes over an Hg-enriched area were detectable. During three separate days of flux measurements over background soils (without Hg-enriched soils), no covariance was detected, indicating fluxes below the detection limit. When fluxes were measurable, they strongly correlated with wind direction; the highest fluxes occurred when winds originated from the Hg-enriched area. Comparisons among the three methods showed good agreement in direction (e.g., emission or deposition) and magnitude, especially when measured fluxes originated within the Hg-enriched soil area. EC fluxes averaged 849 ng m(-2) h(-1), compared to DFC fluxes of 1105 ng m(-2) h(-1) and MBR fluxes

  6. Quantification of Atmospheric Formaldehyde by Near-Infrared Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Rella, C.; Hoffnagle, J.; Fleck, D.; Kim-Hak, D.

    2017-12-01

    Formaldehyde is an important species in atmospheric chemistry, especially in urban environments, where it is a decay product of methane and volatile hydrocarbons. It is also a toxic, carcinogenic compound that can contaminate ambient air from incomplete combustion, or outgassing of commercial products such as adhesives used to fabricate plywood or to affix indoor carpeting. Formaldehyde has a clearly resolved ro-vibrational absorption spectrum that is well-suited to optical analysis of formaldehyde concentration. We describe an instrument based on cavity ring-down spectroscopy for the quantitative analysis of formaldehyde concentration in ambient air. The instrument has a precision (1-sigma) of about 1 ppb at a measurement rate of 1 second, and provides measurements of less than 100 ppt with averaging. The instrument provides stable measurements (drift < 1 ppb) over long periods of time (days). The instrument has been ruggedized for mobile applications, and with a fast response time of a couple of seconds, it is suitable for ground-based vehicle deployments for fenceline monitoring of formaldehyde emissions. In addition, we report on ambient atmospheric measurements at a 10m urban tower, which demonstrate the suitability of the instrument for applications in atmospheric chemistry.

  7. A cavity ring-down spectroscopy sensor for real-time Hall thruster erosion measurements

    International Nuclear Information System (INIS)

    Lee, B. C.; Huang, W.; Tao, L.; Yamamoto, N.; Yalin, A. P.; Gallimore, A. D.

    2014-01-01

    A continuous-wave cavity ring-down spectroscopy sensor for real-time measurements of sputtered boron from Hall thrusters has been developed. The sensor uses a continuous-wave frequency-quadrupled diode laser at 250 nm to probe ground state atomic boron sputtered from the boron nitride insulating channel. Validation results from a controlled setup using an ion beam and target showed good agreement with a simple finite-element model. Application of the sensor for measurements of two Hall thrusters, the H6 and SPT-70, is described. The H6 was tested at power levels ranging from 1.5 to 10 kW. Peak boron densities of 10 ± 2 × 10 14 m −3 were measured in the thruster plume, and the estimated eroded channel volume agreed within a factor of 2 of profilometry. The SPT-70 was tested at 600 and 660 W, yielding peak boron densities of 7.2 ± 1.1 × 10 14 m −3 , and the estimated erosion rate agreed within ∼20% of profilometry. Technical challenges associated with operating a high-finesse cavity in the presence of energetic plasma are also discussed

  8. Quantification of hydrogen sulfide by near-infrared cavity ring-down spectroscopy

    Science.gov (United States)

    Rella, C.; Hoffnagle, J.; Wahl, E. H.; Kim-Hak, D.

    2017-12-01

    Hydrogen Sulfide is an important atmospheric sulfur species. Primary natural terrestrial sources of atmospheric H2S are volcanos and wetlands; primary anthropogenic sources are landfills; wastewater treatment facilities; sewer systems; natural gas extraction, production, and distribution; and paper manufacturing. The human nose is very sensitive to H2S and other sulfur species, leading to a significant negative impact of industrial processes in which H2S is emitted into the atmosphere. However, there is a relative lack of instrumentation capable of detecting and quantifying H2S at ppb levels and below. We describe an instrument based on cavity ring-down spectroscopy for the quantitative analysis of hydrogen sulfide concentration in ambient air. In addition to H2S, the instrument measures water vapor and methane. The instrument has a precision (1-sigma) of about 1 ppb at a measurement rate of 1 second, and provides measurements of less than 100 ppt with averaging. The instrument provides stable measurements (drift < 1 ppb) over long periods of time (days), and has a response time of just a couple of seconds. We report on ambient atmospheric measurements at a 10m urban tower, which demonstrate the suitability of the instrument for applications in urban sulfur emissions. This instrument is also suitable for soil flux measurements in a recirculating chamber, with predicted detection limit of about 0.6 μg H2S / m2 / hr and 0.45 μg CH4 / m2 / hr in a 10-minute chamber closure time.

  9. Infrared cavity ring-down spectroscopy with a CW diode laser system

    NARCIS (Netherlands)

    Hemerik, M.M.; Kroesen, G.M.W.; Doebele, H.F.; Muraoka, K.

    1999-01-01

    We report on the first measurements with our CRDS setup. Although the diode laser system was out of order, we were able to test the most important parts with the use of a CO laser. The first results show a ring-down time of 1.54 ~is, which is in perfect agreement with the predicted reflectivity of

  10. Compact near-IR and mid-IR cavity ring down spectroscopy device

    Science.gov (United States)

    Miller, J. Houston (Inventor)

    2011-01-01

    This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data.

  11. High Precision Continuous and Real-Time Measurement of Atmospheric Oxygen Using Cavity Ring-Down Spectroscopy.

    Science.gov (United States)

    Kim-Hak, D.; Hoffnagle, J.; Rella, C.; Sun, M.

    2016-12-01

    Oxygen is a major and vital component of the Earth atmosphere representing about 21% of its composition. It is consumed or produced through biochemical processes such as combustion, respiration, and photosynthesis. Although atmospheric oxygen is not a greenhouse gas, it can be used as a top-down constraint on the carbon cycle. The variation observations of oxygen in the atmosphere are very small, in the order of the few ppm's. This presents the main technical challenge for measurement as a very high level of precision is required and only few methods including mass spectrometry, fuel cell, and paramagnetic are capable of overcoming it. Here we present new developments of a high-precision gas analyzer that utilizes the technique of Cavity Ring-Down Spectroscopy to measure oxygen concentration and oxygen isotope. Its compact and ruggedness design combined with high precision and long-term stability allows the user to deploy the instrument in the field for continuous monitoring of atmospheric oxygen level. Measurements have a 1-σ 5-minute averaging precision of 1-2 ppm for O2 over a dynamic range of 0-20%. We will present supplemental data acquired from our 10m tower measurements in Santa Clara, CA.

  12. Pressure optimization of an EC-QCL based cavity ring-down spectroscopy instrument for exhaled NO detection

    Science.gov (United States)

    Zhou, Sheng; Han, Yanling; Li, Bincheng

    2018-02-01

    Nitric oxide (NO) in exhaled breath has gained increasing interest in recent years mainly driven by the clinical need to monitor inflammatory status in respiratory disorders, such as asthma and other pulmonary conditions. Mid-infrared cavity ring-down spectroscopy (CRDS) using an external cavity, widely tunable continuous-wave quantum cascade laser operating at 5.3 µm was employed for NO detection. The detection pressure was reduced in steps to improve the sensitivity, and the optimal pressure was determined to be 15 kPa based on the fitting residual analysis of measured absorption spectra. A detection limit (1σ, or one time of standard deviation) of 0.41 ppb was experimentally achieved for NO detection in human breath under the optimized condition in a total of 60 s acquisition time (2 s per data point). Diurnal measurement session was conducted for exhaled NO. The experimental results indicated that mid-infrared CRDS technique has great potential for various applications in health diagnosis.

  13. Cavity ring-down technique for measurement of reflectivity of high ...

    Indian Academy of Sciences (India)

    Laser & Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400 085,. India. *Corresponding author. E-mail: gsridhar@barc.gov.in. Abstract. A simple, accurate and reliable method for measuring the reflectivity of laser- ... Keywords. Cavity ring-down method; reflectivity measurement; optical resonator.

  14. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    Science.gov (United States)

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  15. Study of the effective inverse photon efficiency using optical emission spectroscopy combined with cavity ring-down spectroscopy approach

    Science.gov (United States)

    Wu, Xingwei; Li, Cong; Wang, Yong; Wang, Zhiwei; Feng, Chunlei; Ding, Hongbin

    2015-09-01

    The hydrocarbon impurities formation is inevitable due to wall erosion in a long pulse high performance scenario with carbon-based plasma facing materials in fusion devices. The standard procedure to determine the chemical erosion yield in situ is by means of inverse photon efficiency D/XB. In this work, the conversion factor between CH4 flux and photon flux of CH A → X transition (effective inverse photon efficiency PE-1) was measured directly using a cascaded arc plasma simulator with argon/methane. This study shows that the measured PE-1 is different from the calculated D/XB. We compared the photon flux measured by optical emission spectroscopy (OES) and calculated by electron impact excitation of CH(X) which was diagnosed by cavity ring-down spectroscopy (CRDS). It seems that charge exchange and dissociative recombination processes are the main channels of CH(A) production and removal which lead to the inconsistency of PE -1 and D/XB at lower temperature. Meanwhile, the fraction of excited CH(A) produced by dissociative recombination processes was investigated, and we found it increased with Te in the range from 4% to 13% at Te definition instead of D/XB since the electron impact excitation is not the only channel of CH(A) production. These results have an effect on evaluating the yield of chemical erosion in divertor of fusion device.

  16. Miniature Chemical Sensor Combining Molecular Recognition with Evanescent Wave Cavity Ring-Down Spectroscopy

    International Nuclear Information System (INIS)

    Pipino, Andrew C. R.; Meuse, Curtis W.

    2002-01-01

    To address the chemical sensing needs of DOE, a new class of chemical sensors is being developed that enables qualitative and quantitative, remote, real-time, optical diagnostics of chemical species in hazardous gas, liquid, and semi-solid phases by employing evanescent wave cavity ringdown spectroscopy (EW-CRDS). The sensitivity of EW-CRDS was demonstrated previously under Project No.60231. The objective of this project is to enhance the range of application and selectivity of the technique by combining EW-CRDS with refractive-index-sensitive nanoparticle optics, molecular recognition (MR) chemistry, and by utilizing the polarization-dependence of EW-CRDS. Research Progress and Implications

  17. Precise oxygen and hydrogen isotope determination in nanoliter quantities of speleothem inclusion water by cavity ring-down spectroscopic techniques

    Science.gov (United States)

    Uemura, Ryu; Nakamoto, Masashi; Asami, Ryuji; Mishima, Satoru; Gibo, Masakazu; Masaka, Kosuke; Jin-Ping, Chen; Wu, Chung-Che; Chang, Yu-Wei; Shen, Chuan-Chou

    2016-01-01

    Speleothem inclusion-water isotope compositions are a promising new climatic proxy, but their applicability is limited by their low content in water and by analytical challenges. We have developed a precise and accurate isotopic technique that is based on cavity ring-down spectroscopy (CRDS). This method features a newly developed crushing apparatus, a refined sample extraction line, careful evaluation of the water/carbonate adsorption effect. After crushing chipped speleothem in a newly-developed crushing device, released inclusion water is purified and mixed with a limited amount of nitrogen gas in the extraction line for CRDS measurement. We have measured 50-260 nL of inclusion water from 77 to 286 mg of stalagmite deposits sampled from Gyokusen Cave, Okinawa Island, Japan. The small sample size requirement demonstrates that our analytical technique can offer high-resolution inclusion water-based paleoclimate reconstructions. The 1σ reproducibility for different stalagmites ranges from ±0.05 to 0.61‰ for δ18O and ±0.0 to 2.9‰ for δD. The δD vs. δ18O plot for inclusion water from modern stalagmites is consistent with the local meteoric water line. The 1000 ln α values based on calcite and fluid inclusion measurements from decades-old stalagmites are in agreement with the data from present-day farmed calcite experiment. Combination of coeval carbonate and fluid inclusion data suggests that past temperatures at 9-10 thousand years ago (ka) and 26 ka were 3.4 ± 0.7 °C and 8.2 ± 2.4 °C colder than at present, respectively.

  18. An external-cavity quantum cascade laser operating near 5.2 µm combined with cavity ring-down spectroscopy for multi-component chemical sensing

    Science.gov (United States)

    Dutta Banik, Gourab; Maity, Abhijit; Som, Suman; Pal, Mithun; Pradhan, Manik

    2018-04-01

    We report on the performance of a widely tunable continuous wave mode-hop-free external-cavity quantum cascade laser operating at λ ~ 5.2 µm combined with cavity ring-down spectroscopy (CRDS) technique for high-resolution molecular spectroscopy. The CRDS system has been utilized for simultaneous and molecule-specific detection of several environmentally and bio-medically important trace molecular species such as nitric oxide, nitrous oxide, carbonyl sulphide and acetylene (C2H2) at ultra-low concentrations by probing numerous rotationally resolved ro-vibrational transitions in the mid-IR spectral region within a relatively small spectral range of ~0.035 cm-1. This continuous wave external-cavity quantum cascade laser-based multi-component CRDS sensor with high sensitivity and molecular specificity promises applications in environmental sensing as well as non-invasive medical diagnosis through human breath analysis.

  19. Nuclear spin state-resolved cavity ring-down spectroscopy diagnostics of a low-temperature H3+ -dominated plasma

    International Nuclear Information System (INIS)

    Hejduk, Michal; Dohnal, Petr; Varju, Jozef; Rubovič, Peter; Plašil, Radek; Glosík, Juraj

    2012-01-01

    We have applied a continuous-wave near-infrared cavity ring-down spectroscopy method to study the parameters of a H 3 + -dominated plasma at temperatures in the range 77–200 K. We monitor populations of three rotational states of the ground vibrational state corresponding to para and ortho nuclear spin states in the discharge and the afterglow plasma in time and conclude that abundances of para and ortho states and rotational temperatures are well defined and stable. The non-trivial dependence of a relative population of para- H 3 + on a relative population of para-H 2 in a source H 2 gas is described. The results described in this paper are valuable for studies of state-selective dissociative recombination of H 3 + ions with electrons in the afterglow plasma and for the design of sources of H 3 + ions in a specific nuclear spin state. (paper)

  20. Nuclear spin state-resolved cavity ring-down spectroscopy diagnostics of a low-temperature H_3^+ -dominated plasma

    Science.gov (United States)

    Hejduk, Michal; Dohnal, Petr; Varju, Jozef; Rubovič, Peter; Plašil, Radek; Glosík, Juraj

    2012-04-01

    We have applied a continuous-wave near-infrared cavity ring-down spectroscopy method to study the parameters of a H_3^+ -dominated plasma at temperatures in the range 77-200 K. We monitor populations of three rotational states of the ground vibrational state corresponding to para and ortho nuclear spin states in the discharge and the afterglow plasma in time and conclude that abundances of para and ortho states and rotational temperatures are well defined and stable. The non-trivial dependence of a relative population of para- H_3^+ on a relative population of para-H2 in a source H2 gas is described. The results described in this paper are valuable for studies of state-selective dissociative recombination of H_3^+ ions with electrons in the afterglow plasma and for the design of sources of H_3^+ ions in a specific nuclear spin state.

  1. Real-Tme Boron Nitride Erosion Measurements of the HiVHAc Thruster via Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Lee, Brian C.; Yalin, Azer P.; Gallimore, Alec; Huang, Wensheng; Kamhawi, Hani

    2013-01-01

    Cavity ring-down spectroscopy was used to make real-time erosion measurements from the NASA High Voltage Hall Accelerator thruster. The optical sensor uses 250 nm light to measure absorption of atomic boron in the plume of an operating Hall thruster. Theerosion rate of the High Voltage Hall Accelerator thruster was measured for discharge voltages ranging from 330 to 600 V and discharge powers ranging from 1 to 3 kW. Boron densities as high as 6.5 x 10(exp 15) per cubic meter were found within the channel. Using a very simple boronvelocity model, approximate volumetric erosion rates between 5.0 x 10(exp -12) and 8.2 x 10(exp -12) cubic meter per second were found.

  2. Br2 molecular elimination in photolysis of (COBr)2 at 248 nm by using cavity ring-down absorption spectroscopy: A photodissociation channel being ignored

    International Nuclear Information System (INIS)

    Wu, Chia-Ching; Lin, Hsiang-Chin; Chang, Yuan-Bin; Tsai, Po-Yu; Yeh, Yu-Ying; Fan, He; Lin, King-Chuen; Francisco, J. S.

    2011-01-01

    A primary dissociation channel of Br 2 elimination is detected following a single-photon absorption of (COBr) 2 at 248 nm by using cavity ring-down absorption spectroscopy. The technique contains two laser beams propagating in a perpendicular configuration. The tunable laser beam along the axis of the ring-down cell probes the Br 2 fragment in the B 3 Π ou + -X 1 Σ g + transition. The measurements of laser energy- and pressure-dependence and addition of a Br scavenger are further carried out to rule out the probability of Br 2 contribution from a secondary reaction. By means of spectral simulation, the ratio of nascent vibrational population for v = 0, 1, and 2 levels is evaluated to be 1:(0.65 ± 0.09):(0.34 ± 0.07), corresponding to a Boltzmann vibrational temperature of 893 ± 31 K. The quantum yield of the ground state Br 2 elimination reaction is determined to be 0.11 ± 0.06. With the aid of ab initio potential energy calculations, the pathway of molecular elimination is proposed on the energetic ground state (COBr) 2 via internal conversion. A four-center dissociation mechanism is followed synchronously or sequentially yielding three fragments of Br 2 + 2CO. The resulting Br 2 is anticipated to be vibrationally hot. The measurement of a positive temperature effect supports the proposed mechanism.

  3. Br2 molecular elimination in photolysis of (COBr)2 at 248 nm by using cavity ring-down absorption spectroscopy: a photodissociation channel being ignored.

    Science.gov (United States)

    Wu, Chia-Ching; Lin, Hsiang-Chin; Chang, Yuan-Bin; Tsai, Po-Yu; Yeh, Yu-Ying; Fan, He; Lin, King-Chuen; Francisco, J S

    2011-12-21

    A primary dissociation channel of Br(2) elimination is detected following a single-photon absorption of (COBr)(2) at 248 nm by using cavity ring-down absorption spectroscopy. The technique contains two laser beams propagating in a perpendicular configuration. The tunable laser beam along the axis of the ring-down cell probes the Br(2) fragment in the B(3)Π(ou)(+)-X(1)Σ(g)(+) transition. The measurements of laser energy- and pressure-dependence and addition of a Br scavenger are further carried out to rule out the probability of Br(2) contribution from a secondary reaction. By means of spectral simulation, the ratio of nascent vibrational population for v = 0, 1, and 2 levels is evaluated to be 1:(0.65 ± 0.09):(0.34 ± 0.07), corresponding to a Boltzmann vibrational temperature of 893 ± 31 K. The quantum yield of the ground state Br(2) elimination reaction is determined to be 0.11 ± 0.06. With the aid of ab initio potential energy calculations, the pathway of molecular elimination is proposed on the energetic ground state (COBr)(2) via internal conversion. A four-center dissociation mechanism is followed synchronously or sequentially yielding three fragments of Br(2) + 2CO. The resulting Br(2) is anticipated to be vibrationally hot. The measurement of a positive temperature effect supports the proposed mechanism.

  4. 4D Density Determination of NH Radicals in an MSE Microplasma Combining Planar Laser Induced Fluorescence and Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Visser, Martin; Schenk, Andreas; Gericke, Karl-Heinz

    2010-10-01

    An application of microplasmas is surface modification under mild conditions and of small, well defined areas. For this, an understanding of the plasma composition is of importance. First results of our work on the production and detection of NH radicals in a capacitively coupled radio frequency (RF) microplasma are presented. A microstructured comb electrode was used to generate a glow discharge in a hydrogen/nitrogen gas mixture by applying 13.56 MHz RF voltage. The techniques of planar laser induced fluorescence (PLIF) and cavity ring-down spectroscopy (CRDS) are used for space and time resolved, quantitative detection of the NH radical in the plasma. The rotational temperature was determined to be 820 K and, the density 5.1×1012 cm3. Also, time dependent behaviour of the NH production was observed.

  5. 4D Density Determination of NH Radicals in an MSE Microplasma Combining Planar Laser Induced Fluorescence and Cavity Ring-Down Spectroscopy

    International Nuclear Information System (INIS)

    Visser, Martin; Schenk, Andreas; Gericke, Karl-Heinz

    2010-01-01

    An application of microplasmas is surface modification under mild conditions and of small, well defined areas. For this, an understanding of the plasma composition is of importance. First results of our work on the production and detection of NH radicals in a capacitively coupled radio frequency (RF) microplasma are presented. A microstructured comb electrode was used to generate a glow discharge in a hydrogen/nitrogen gas mixture by applying 13.56 MHz RF voltage. The techniques of planar laser induced fluorescence (PLIF) and cavity ring-down spectroscopy (CRDS) are used for space and time resolved, quantitative detection of the NH radical in the plasma. The rotational temperature was determined to be 820 K and, the density 5.1x10 12 cm 3 . Also, time dependent behaviour of the NH production was observed.

  6. Fluorescence excitation-emission matrix (EEM) spectroscopy and cavity ring-down (CRD) absorption spectroscopy of oil-contaminated jet fuel using fiber-optic probes.

    Science.gov (United States)

    Omrani, Hengameh; Barnes, Jack A; Dudelzak, Alexander E; Loock, Hans-Peter; Waechter, Helen

    2012-06-21

    Excitation emission matrix (EEM) and cavity ring-down (CRD) spectral signatures have been used to detect and quantitatively assess contamination of jet fuels with aero-turbine lubricating oil. The EEM spectrometer has been fiber-coupled to permit in situ measurements of jet turbine oil contamination of jet fuel. Parallel Factor (PARAFAC) analysis as well as Principal Component Analysis and Regression (PCA/PCR) were used to quantify oil contamination in a range from the limit of detection (10 ppm) to 1000 ppm. Fiber-loop cavity ring-down spectroscopy using a pulsed 355 nm laser was used to quantify the oil contamination in the range of 400 ppm to 100,000 ppm. Both methods in combination therefore permit the detection of oil contamination with a linear dynamic range of about 10,000.

  7. The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques

    Science.gov (United States)

    Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  8. Cavity ring down spectroscopy of CH, CH2, HCO, and H2CO in a premixed flat flame at both atmospheric and sub-atmospheric pressure

    NARCIS (Netherlands)

    Evertsen, R.; Staicu, A.D.; Oijen, van J.A.; Dam, N.J.; Goey, de L.P.H.; Meulen, ter J.J.; Cheauveau, C.; Vovelle, C.

    2003-01-01

    Density distributions of CH, CH2, HCO and H2CO have been measured in a premixed CH4/air flat flame by Cavity Ring Down Spectroscopy (CRDS). At atmospheric pressure problems are encountered due to the narrow spatial distribution of these species. Rotational flame Temperatures have been derived from

  9. High-resolution Measurements of Gas-Phase Hydrogen Chloride (HCl) in the Atmosphere by Cavity Ring Down Spectroscopy

    Science.gov (United States)

    Hoffnagle, John; Chen, Hongbing; Lee, Jim; Rella, Chris; Kim-Hak, David; Winkler, Renato; Markovic, Milos; Veres, Patrick

    2017-04-01

    Halogen radical species, such as chlorine and bromine atoms and their oxides, can greatly affect the chemical composition of the troposphere. Hydrogen chloride is the dominant (gas-phase) contributor to the tropospheric chlorine inventory. Real time in situ observations of HCl can provide an important window into the complex photochemical reaction pathways for chlorine in the atmosphere, including heterogeneous reactions on aerosol surfaces. In this work, we report a novel, commercially-available HCl gas-phase analyzer (G2108, Picarro Inc. Santa Clara, CA, USA) based upon Cavity Ring Down Spectroscopy (CRDS) in the near-infrared, and discuss its performance. With a measurement interval of approximately 2 seconds, a precision of better than 40 parts-per-trillion (1 sigma, 30 seconds), and a response time of approximately 1-2 minutes (10 - 90% rise time or 90 - 10% fall time), this analyzer is well-suited for measurements of atmospherically-relevant concentrations of HCl, in both laboratory and field. CRDS provides very stable measurements and low drift, requiring infrequent calibration of the instrument, and can therefore be operated remotely for extended periods of time. In this work we also present results from a laboratory intercomparison of the Picarro G2108 analyzer and an iodide ion time-of-flight Chemical Ionization Mass Spectrometer (CIMS), and the results of the analyzer time response tests.

  10. Evanescent wave cavity ring-down spectroscopy (EW-CRDS) as a probe of macromolecule adsorption kinetics at functionalized interfaces.

    Science.gov (United States)

    O'Connell, Michael A; de Cuendias, Anne; Gayet, Florence; Shirley, Ian M; Mackenzie, Stuart R; Haddleton, David M; Unwin, Patrick R

    2012-05-01

    Evanescent wave cavity ring-down spectroscopy (EW-CRDS) has been employed to study the interfacial adsorption kinetics of coumarin-tagged macromolecules onto a range of functionalized planar surfaces. Such studies are valuable in designing polymers for complex systems where the degree of interaction between the polymer and surface needs to be tailored. Three tagged synthetic polymers with different functionalities are examined: poly(acrylic acid) (PAA), poly(3-sulfopropyl methacrylate, potassium salt) (PSPMA), and a mannose-modified glycopolymer. Adsorption transients at the silica/water interface are found to be characteristic for each polymer, and kinetics are deduced from the initial rates. The chemistry of the adsorption interfaces has been varied by, first, manipulation of silica surface chemistry via the bulk pH, followed by surfaces modified by poly(L-glutamic acid) (PGA) and cellulose, giving five chemically different surfaces. Complementary atomic force microscopy (AFM) imaging has been used for additional surface characterization of adsorbed layers and functionalized interfaces to allow adsorption rates to be interpreted more fully. Adsorption rates for PSPMA and the glycopolymer are seen to be highly surface sensitive, with significantly higher rates on cellulose-modified surfaces, whereas PAA shows a much smaller rate dependence on the nature of the adsorption surface.

  11. Br2 elimination in 248-nm photolysis of CF2Br2 probed by using cavity ring-down absorption spectroscopy.

    Science.gov (United States)

    Hsu, Ching-Yi; Huang, Hong-Yi; Lin, King-Chuen

    2005-10-01

    By using cavity ring-down absorption spectroscopy technique, we have observed the channel of Br2 molecular elimination following photodissociation of CF2Br2 at 248 nm. A tunable laser beam, which is crossed perpendicular to the photolyzing laser beam in a ring-down cell, is used to probe the Br2 fragment in the B 3Piou+-X1Sigmag+ transition. The vibrational population is obtained in a nascent state, despite ring-down time as long as 500-1000 ns. The population ratio of Br2(v=1)/Br2(v=0) is determined to be 0.4+/-0.2, slightly larger than the value of 0.22 evaluated by Boltzmann distribution at room temperature. The quantum yield of the Br2 elimination reaction is also measured to be 0.04+/-0.01. This work provides direct evidence to support molecular elimination occurring in the CF2Br2 photodissociation and proposes a plausible pathway with the aid of ab initio potential-energy calculations. CF2Br2 is excited probably to the 1B1 and 3B2 states at 248 nm. As the C-Br bond is elongated upon excitation, the coupling of the 1A'(1B1) state to the high vibrational levels of the ground state X 1A'(1A1) may be enhanced to facilitate the process of internal conversion. After transition, the highly vibrationally excited CF2Br2 feasibly surpasses a transition barrier prior to decomposition. According to the ab initio calculations, the transition state structure tends to correlate with the intermediate state CF2Br+Br(CF2Br...Br) and the products CF2+Br2. A sequential photodissociation pathway is thus favored. That is, a single C-Br bond breaks, and then the free-Br atom moves to form a Br-Br bond, followed by the Br2 elimination. The formed Br-Br bond distance in the transition state tends to approach equilibrium such that the Br2 fragment may be populated in cold vibrational distribution. Observation of a small vibrational population ratio of Br2(v=1)Br2(v=0) agrees with the proposed mechanism.

  12. Comb-assisted cavity ring down spectroscopy of 17O enriched water between 7443 and 7921 cm-1

    Science.gov (United States)

    Mondelain, D.; Mikhailenko, S. N.; Karlovets, E. V.; Béguier, S.; Kassi, S.; Campargue, A.

    2017-12-01

    The room temperature absorption spectrum of water vapor highly enriched in 17O has been recorded by Cavity Ring Down Spectroscopy (CRDS) between 7443 and 7921 cm-1. Three series of recordings were performed with pressure values around 0.1, 1 and 10 Torr. The frequency calibration of the present spectra benefited of the combination of the CRDS spectrometer to a self-referenced frequency comb. The resulting CRD spectrometer combines excellent frequency accuracy over a broad spectral region with a high sensitivity (Noise Equivalent Absorption, αmin∼ 10-11-10-10 cm-1). The investigated spectral region corresponds to the high energy range of the first hexade. The assignments were performed using known experimental energy levels as well as calculated line lists based on the results of Partridge and Schwenke. Overall about 4150 lines were measured and assigned to 4670 transitions of six water isotopologues (H216O, H217O, H218O, HD16O, HD17O and HD18O). Their intensities span six orders of magnitude from 10-28 to 10-22 cm/molecule. Most of the new results concern the H217O and HD17O isotopologues for which about 1600 and 400 transitions were assigned leading to the determination of 329 and 207 new energy levels, respectively. For comparison only about 300 and four transitions of H217O and HD17O were previously known in the region, respectively. By comparison to highly accurate H216O line positions available in the literature, the average accuracy on our line centers is checked to be on the order of 3 MHz (10-4 cm-1) or better for not weak well isolated lines. This small uncertainty represents a significant improvement of the line center determination of many H216O lines included in the experimental list provided as Supplementary Material.

  13. Detecting Hydrogen Chloride (HCl) in the Polluted Marine Boundary Layer Using Cavity Ring-Down Spectroscopy (CRDS)

    Science.gov (United States)

    Furlani, T.; Dawe, K.; VandenBoer, T. C.; Young, C.

    2017-12-01

    Oxidation initiated with chlorine atoms yields more ozone than oxidation initiated with hydroxyl radicals. Reasons for this are not fully understood, but the implications for mechanisms of oxidation chemistry are significant.1,2 Chlorine atoms have not been directly measured to date in the atmosphere and its abundance is usually inferred through steady-state approximations from all known formation and loss processes. A major reservoir for chlorine in the troposphere is by proton abstraction of organic compounds to form HCl.3 HCl can also be formed heterogeneously via acid displacement reactions with ubiquitously-found sodium chloride (NaCl) on solid surfaces with nitric acid (HNO3). The majority of the available chloride in the marine boundary layer comes from the sea salt in and around marine derived sea-spray aerosols. HCl is not a perfect sink and can react with hydroxyl radicals or be photolyzed to form chlorine atoms. The balance between loss and formation processes of chlorine atoms from HCl is highly dependent on many external factors, such as the wet and dry deposition rate of HCl. Measuring HCl in the gas and aerosol phase is important to the understanding of chlorine chemistry in the polluted marine boundary layer. HCl levels in the polluted marine boundary layer are typically between 100pptv-1ppbv,3 requiring the sensitive and selective detection capabilities of cavity ring-down spectroscopy (CRDS).4 We measured HCl using a Picarro CRDS in the polluted marine boundary layer for the first time. Measurements were conducted during April and May of 2017 in St. John's, Newfoundland and Labrador. The performance of the instrument will be discussed, as well as observations of HCl in the context of local conditions. References1Osthoff, H. D. et al. Nat. Geosci 1, 324-328 (2008). 2Young, C. J. et al. Atmos. Chem. Phys. 14, 3427-3440 (2014). 3Crisp, T. a et al. J. Geophys. Res. Atmos. 6897-6915 (2014). 4Hagen, C. L. et al. Atmos. Meas. Tech. 7, 345-357 (2014).

  14. Afterglow Studies of H3+(v=0) Recombination using Time Resolved cw.Diode Laser Cavity Ring-Down Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Macko, P.; Bánó, G.; Hlavenka, P.; Plašil, R.; Poterya, V.; Pysanenko, A.; Votava, Ondřej; Johnsen, R.; Glosík, J.

    2004-01-01

    Roč. 233, 1/3 (2004), s. 299-304 ISSN 1387-3806 R&D Projects: GA ČR GA205/02/0610; GA ČR GA202/02/0948 Institutional research plan: CEZ:AV0Z4040901 Keywords : recombination * H-3(+) ions * cavity ring-down Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.235, year: 2004

  15. System for δ13C-CO2 and xCO2 analysis of discrete gas samples by cavity ring-down spectroscopy

    Science.gov (United States)

    Dickinson, Dane; Bodé, Samuel; Boeckx, Pascal

    2017-11-01

    A method was devised for analysing small discrete gas samples (50 mL syringe) by cavity ring-down spectroscopy (CRDS). Measurements were accomplished by inletting 50 mL syringed samples into an isotopic-CO2 CRDS analyser (Picarro G2131-i) between baseline readings of a reference air standard, which produced sharp peaks in the CRDS data feed. A custom software script was developed to manage the measurement process and aggregate sample data in real time. The method was successfully tested with CO2 mole fractions (xCO2) ranging from 20 000 ppm and δ13C-CO2 values from -100 up to +30 000 ‰ in comparison to VPDB (Vienna Pee Dee Belemnite). Throughput was typically 10 samples h-1, with 13 h-1 possible under ideal conditions. The measurement failure rate in routine use was ca. 1 %. Calibration to correct for memory effects was performed with gravimetric gas standards ranging from 0.05 to 2109 ppm xCO2 and δ13C-CO2 levels varying from -27.3 to +21 740 ‰. Repeatability tests demonstrated that method precision for 50 mL samples was ca. 0.05 % in xCO2 and 0.15 ‰ in δ13C-CO2 for CO2 compositions from 300 to 2000 ppm with natural abundance 13C. Long-term method consistency was tested over a 9-month period, with results showing no systematic measurement drift over time. Standardised analysis of discrete gas samples expands the scope of application for isotopic-CO2 CRDS and enhances its potential for replacing conventional isotope ratio measurement techniques. Our method involves minimal set-up costs and can be readily implemented in Picarro G2131-i and G2201-i analysers or tailored for use with other CRDS instruments and trace gases.

  16. Near Infrared Cavity Ring-Down Spectroscopy for Isotopic Analyses of CH4 on Future Martian Surface Missions

    Science.gov (United States)

    Chen, Y.; Mahaffy P.; Holmes, V.; Burris, J.; Morey, P.; Lehmann, K.K.; Lollar, B. Sherwood; Lacrampe-Couloume, G.; Onstott, T.C.

    2014-01-01

    A compact Near Infrared Continuous Wave Cavity Ring-Down Spectrometer (near-IR-cw-CRDS) was developed as a candidate for future planetary surface missions. The optical cavity was made of titanium with rugged quartz windows to protect the delicate super cavity from the harsh environmental changes that it would experience during space flight and a Martian surface mission. This design assured the long-term stability of the system. The system applied three distributed feedback laser diodes (DFB-LD), two of which were tuned to the absorption line peaks of (sup 12)CH4 and (sup 13)CH4 at 6046.954 inverse centimeters and 6049.121 inverse centimeters, respectively. The third laser was tuned to a spectral-lines-free region for measuring the baseline cavity loss. The multiple laser design compensated for typical baseline drift of a CRDS system and, thus, improved the overall precision. A semiconductor optical amplifier (SOA) was used instead of an Acousto-Optic Module (AOM) to initiate the cavity ring-down events. It maintained high acquisition rates such as AOM, but consumed less power. High data acquisition rates combined with improved long-term stability yielded precise isotopic measurements in this near-IR region even though the strongest CH4 absorption line in this region is 140 times weaker than that of the strongest mid-IR absorption band. The current system has a detection limit of 1.4 times 10( sup –12) inverse centimeters for (sup 13)CH4. This limit corresponds to approximately 7 parts per trillion volume of CH4 at 100 Torrs. With no further improvements the detection limit of our current near IR-cw-CRDS at an ambient Martian pressure of approximately 6 Torrs (8 millibars) would be 0.25 parts per billion volume for one 3.3 minute long analysis.

  17. A free-flowing soap film combined with cavity ring-down spectroscopy as a detection system for liquid chromatography.

    Science.gov (United States)

    Vogelsang, Markus; Welsch, Thomas; Jones, Harold

    2010-05-07

    We have shown that a free-flowing soap film has sufficiently high-quality optical properties to allow it to be used in the cavity of a ring-down spectrometer (CRDS). The flow rates required to maintain a stable soap film were similar to those used in liquid chromatography and thus allowed interfacing with an HPLC system for use as an optical detector. We have investigated the properties of the system in a relevant analytical application. The soap film/CRDS combination was used at 355 nm as a detector for the separation of a mixture of nitroarenes. These compounds play a role in the residue analysis of areas contaminated with explosives and their decomposition products. In spite of the short absorption path length (9 microm) obtained by the soap film, the high-sensitivity of CRDS allowed a limit of detection of 4 x 10(-6) in absorption units (AU) or less than 17 fmol in the detection volume to be achieved. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  18. A Novel Method for Analysis of Dissolved Inorganic Carbon Concentration and δ13C by Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Smith, E.; Gonneea, M. E.; Boze, L. G.; Casso, M.; Pohlman, J.

    2017-12-01

    Dissolved inorganic carbon (DIC) is the largest pool of carbon in the oceans and is where about half of anthropogenic carbon dioxide (CO2) emissions are being sequestered. Determining the concentration and stable carbon isotopic content (δ13C) of DIC allows us to delineate carbon sources that contribute to marine DIC. A simple and reliable method for measuring DIC concentration and δ13C can be used to apportion contributions from external sources and identify effects from biogeochemical reactions that contribute or remove DIC. The U.S. Geological Survey has developed a discrete sample analysis module (DSAM) that interfaces to a Picarro G-2201i cavity ring-down spectrometer (CRDS, Picarro Inc.) to analyze CO2 and methane concentrations and δ13C from discrete gas samples. In this study, we adapted the USGS DSAM-CRDS analysis system to include an AutoMate prep device (Automate FX, Inc.) for analysis of DIC concentration and δ13C from aqueous samples. The Automate prep device was modified to deliver CO2 extracted from DIC to the DSAM, which conditions and transfers the gas to the CRDS. LabVIEW software (National Instruments) triggers the Automate Prep device, controls the DSAM and collects data from the CRDS. CO2 mass concentration data are obtained by numerical integration of the CO2 volumetric concentrations output by the CRDS and subsequent comparison to standard materials. CO2 carbon isotope values from the CRDS (iCO2) are converted to δ13C values using a slope and offset correction calibration procedure. The system design and operation was optimized using sodium bicarbonate (NaHCO3) standards and a certified reference material. Surface water and pore water samples collected from Sage Lot Pond, a salt marsh in Cape Cod MA, have been analyzed for concentration by coulometry and δ13C by isotope ratio mass spectrometry and will be used to validate the DIC-DSAM-CRDS method for field applications.

  19. Comprehensive laboratory and field testing of cavity ring-down spectroscopy analyzers measuring H2O, CO2, CH4 and CO

    Science.gov (United States)

    Yver Kwok, C.; Laurent, O.; Guemri, A.; Philippon, C.; Wastine, B.; Rella, C. W.; Vuillemin, C.; Truong, F.; Delmotte, M.; Kazan, V.; Darding, M.; Lebègue, B.; Kaiser, C.; Xueref-Rémy, I.; Ramonet, M.

    2015-09-01

    To develop an accurate measurement network of greenhouse gases, instruments in the field need to be stable and precise and thus require infrequent calibrations and a low consumption of consumables. For about 10 years, cavity ring-down spectroscopy (CRDS) analyzers have been available that meet these stringent requirements for precision and stability. Here, we present the results of tests of CRDS instruments in the laboratory (47 instruments) and in the field (15 instruments). The precision and stability of the measurements are studied. We demonstrate that, thanks to rigorous testing, newer models generally perform better than older models, especially in terms of reproducibility between instruments. In the field, we see the importance of individual diagnostics during the installation phase, and we show the value of calibration and target gases that assess the quality of the data. Finally, we formulate recommendations for use of these analyzers in the field.

  20. Comprehensive laboratory and field testing of cavity ring-down spectroscopy analyzers measuring H2O, CO2, CH4 and CO

    Directory of Open Access Journals (Sweden)

    C. Yver Kwok

    2015-09-01

    Full Text Available To develop an accurate measurement network of greenhouse gases, instruments in the field need to be stable and precise and thus require infrequent calibrations and a low consumption of consumables. For about 10 years, cavity ring-down spectroscopy (CRDS analyzers have been available that meet these stringent requirements for precision and stability. Here, we present the results of tests of CRDS instruments in the laboratory (47 instruments and in the field (15 instruments. The precision and stability of the measurements are studied. We demonstrate that, thanks to rigorous testing, newer models generally perform better than older models, especially in terms of reproducibility between instruments. In the field, we see the importance of individual diagnostics during the installation phase, and we show the value of calibration and target gases that assess the quality of the data. Finally, we formulate recommendations for use of these analyzers in the field.

  1. System for δ13C–CO2 and xCO2 analysis of discrete gas samples by cavity ring-down spectroscopy

    Directory of Open Access Journals (Sweden)

    D. Dickinson

    2017-11-01

    Full Text Available A method was devised for analysing small discrete gas samples (50 mL syringe by cavity ring-down spectroscopy (CRDS. Measurements were accomplished by inletting 50 mL syringed samples into an isotopic-CO2 CRDS analyser (Picarro G2131-i between baseline readings of a reference air standard, which produced sharp peaks in the CRDS data feed. A custom software script was developed to manage the measurement process and aggregate sample data in real time. The method was successfully tested with CO2 mole fractions (xCO2 ranging from  <  0.1 to  >  20 000 ppm and δ13C–CO2 values from −100 up to +30 000 ‰ in comparison to VPDB (Vienna Pee Dee Belemnite. Throughput was typically 10 samples h−1, with 13 h−1 possible under ideal conditions. The measurement failure rate in routine use was ca. 1 %. Calibration to correct for memory effects was performed with gravimetric gas standards ranging from 0.05 to 2109 ppm xCO2 and δ13C–CO2 levels varying from −27.3 to +21 740 ‰. Repeatability tests demonstrated that method precision for 50 mL samples was ca. 0.05 % in xCO2 and 0.15 ‰ in δ13C–CO2 for CO2 compositions from 300 to 2000 ppm with natural abundance 13C. Long-term method consistency was tested over a 9-month period, with results showing no systematic measurement drift over time. Standardised analysis of discrete gas samples expands the scope of application for isotopic-CO2 CRDS and enhances its potential for replacing conventional isotope ratio measurement techniques. Our method involves minimal set-up costs and can be readily implemented in Picarro G2131-i and G2201-i analysers or tailored for use with other CRDS instruments and trace gases.

  2. Photodissociation of 1,2-dibromoethylene at 248 nm: Br2 molecular elimination probed by cavity ring-down absorption spectroscopy.

    Science.gov (United States)

    Chang, Yuan-Pin; Lee, Ping-Chen; Lin, King-Chuen; Huang, C H; Sun, B J; Chang, A H H

    2008-06-02

    The Br2 elimination channel is probed for 1,2-C2H2Br2 in the B(3)Pi(+)ou-X(1)Sigma(+)g transition upon irradiation at 248 nm by using cavity ring-down absorption spectroscopy (CRDS). The nascent vibrational population ratio of Br2(v=1)/Br2(v=0) is obtained to be 0.7+/-0.2, thus indicating that the Br2 fragment is produced in hot vibrational states. The obtained Br2 products are anticipated to result primarily from photodissociation of the ground-state cis isomer via four-center elimination or from cis/trans isomers via three-center elimination, each mechanism involving a transition state that has a Br-Br distance much larger than that of ground state Br2. According to ab initio potential energy calculations, the pathways that lead to Br2 elimination may proceed either through the electronic ground state by internal conversion or through the triplet state by intersystem crossing. Temperature-dependence measurements are examined, thereby supporting the pathway that involves internal conversion--which was excluded previously by using product translational spectroscopy (PTS). The quantum yield for the Br2 elimination reaction is determined to be 0.120.1, being substantially contributed by the ground-state Br2 product. The discrepancy of this value from that (of 0.2) obtained by PTS may rise from the lack of measurements in probing the triplet-state Br2 product.

  3. Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance

    Directory of Open Access Journals (Sweden)

    E. J. Steig

    2014-08-01

    Full Text Available High-precision analysis of the 17O / 16O isotope ratio in water and water vapor is of interest in hydrological, paleoclimate, and atmospheric science applications. Of specific interest is the parameter 17O excess (Δ17O, a measure of the deviation from a~linear relationship between 17O / 16O and 18O / 16O ratios. Conventional analyses of Δ17O of water are obtained by fluorination of H2O to O2 that is analyzed by dual-inlet isotope ratio mass spectrometry (IRMS. We describe a new laser spectroscopy instrument for high-precision Δ17O measurements. The new instrument uses cavity ring-down spectroscopy (CRDS with laser-current-tuned cavity resonance to achieve reduced measurement drift compared with previous-generation instruments. Liquid water and water-vapor samples can be analyzed with a better than 8 per meg precision for Δ17O using integration times of less than 30 min. Calibration with respect to accepted water standards demonstrates that both the precision and the accuracy of Δ17O are competitive with conventional IRMS methods. The new instrument also achieves simultaneous analysis of δ18O, Δ17O and δD with precision of < 0.03‰, < 0.02 and < 0.2‰, respectively, based on repeated calibrated measurements.

  4. Cavity Ring-down Spectroscopic System And Method

    KAUST Repository

    Alquaity, Awad Bin Saud

    2015-05-14

    A system and method for cavity ring-down spectroscopy can include a pulsed quantum cascade laser, an optical ring-down cavity, a photodetector, and an oscilloscope. The system and method can produce pulse widths of less than 200 ns with bandwidths greater than 300 pm, as well as provide temporal resolution of greater than 10 .mu.s.

  5. Cavity Ring-down Spectroscopic System And Method

    KAUST Repository

    Alquaity, Awad Bin Saud; Farooq, Aamir

    2015-01-01

    A system and method for cavity ring-down spectroscopy can include a pulsed quantum cascade laser, an optical ring-down cavity, a photodetector, and an oscilloscope. The system and method can produce pulse widths of less than 200 ns with bandwidths greater than 300 pm, as well as provide temporal resolution of greater than 10 .mu.s.

  6. Precise and accurate δ13C analysis of rock samples using Flash Combustion–Cavity Ring Down Laser Spectroscopy

    DEFF Research Database (Denmark)

    Balslev-Clausen, David Morten; Dahl, Tais W.; Saad, Nabil

    2013-01-01

    The ratio of 13C to 12C in marine sedimentary rocks holds important clues to the evolution of the carbon cycle through Earth history. Isotopic analyses are traditionally carried out using isotope ratio mass spectrometry (IRMS), but this technique is both labor-intensive, expensive and requires...

  7. Probing the ignored elimination channel of Br2 in the 248 nm photodissociation of 1,1-dibromoethylene by cavity ring-down absorption spectroscopy.

    Science.gov (United States)

    Lee, Ping-Chen; Tsai, Po-Yu; Hsiao, Ming-Kai; Lin, King-Chuen; Huang, C H; Chang, A H H

    2009-03-09

    In the photodissociation of 1,1-C(2)H(2)Br(2) at 248 nm, the Br(2) elimination channel is probed by using cavity ring-down absorption spectroscopy (CRDS). In terms of spectral simulation, the vibrational population ratio of Br(2)(v = 1)/Br(2)(v = 0) is found to be 0.55+/-0.05, which indicates that the Br(2) fragment is vibrationally hot. The rotational population is thermally equilibrated with a Boltzmann temperature of 349+/-38 K. According to ab initio potential energy calculations, the obtained fragments are anticipated to result primarily from photodissociation of the ground electronic state that undergoes 1) H migration followed by three-center elimination, and 2) isomerization forming either trans- or cis-1,2-C(2)H(2)Br(2) from which Br(2) is eliminated. RRKM calculations predict that the Br(2) dissociation rates through the ground singlet state prevail over those through the triplet state. Measurements of temperature and Ar pressure dependence are examined to support the proposed pathway via internal conversion. The quantum yield for the Br(2) elimination reaction is determined to be 0.07+/-0.04. This result is smaller than that obtained in 1,2-C(2)H(2)Br(2), probably because the dissociation rates are slowed in the isomerization stage.

  8. Molecular elimination of Br2 in photodissociation of CH2BrC(O)Br at 248 nm using cavity ring-down absorption spectroscopy.

    Science.gov (United States)

    Fan, He; Tsai, Po-Yu; Lin, King-Chuen; Lin, Cheng-Wei; Yan, Chi-Yu; Yang, Shu-Wei; Chang, A H H

    2012-12-07

    The primary elimination channel of bromine molecule in one-photon dissociation of CH(2)BrC(O)Br at 248 nm is investigated using cavity ring-down absorption spectroscopy. By means of spectral simulation, the ratio of nascent vibrational population in v = 0, 1, and 2 levels is evaluated to be 1:(0.5 ± 0.1):(0.2 ± 0.1), corresponding to a Boltzmann vibrational temperature of 581 ± 45 K. The quantum yield of the ground state Br(2) elimination reaction is determined to be 0.24 ± 0.08. With the aid of ab initio potential energy calculations, the obtained Br(2) fragments are anticipated to dissociate on the electronic ground state, yielding vibrationally hot Br(2) products. The temperature-dependence measurements support the proposed pathway via internal conversion. For comparison, the Br(2) yields are obtained analogously from CH(3)CHBrC(O)Br and (CH(3))(2)CBrC(O)Br to be 0.03 and 0.06, respectively. The trend of Br(2) yields among the three compounds is consistent with the branching ratio evaluation by Rice-Ramsperger-Kassel-Marcus method. However, the latter result for each molecule is smaller by an order of magnitude than the yield findings. A non-statistical pathway so-called roaming process might be an alternative to the Br(2) production, and its contribution might account for the underestimate of the branching ratio calculations.

  9. Self- and air-broadened cross sections of ethane (C2H6) determined by frequency-stabilized cavity ring-down spectroscopy near 1.68 µm

    International Nuclear Information System (INIS)

    Reed, Zachary D.; Hodges, Joseph T.

    2015-01-01

    The absorption spectrum of ethane was measured by frequency-stabilized cavity ring-down spectroscopy over the wave number range 5950–5967 cm −1 . Spectra are reported for both pure ethane acquired at pressures near 3 Pa and mixtures of ethane in air at pressures ranging from 666 Pa to 101.3 kPa. Absorption cross sections are reported with a spectrum sampling period of 109 MHz and frequency resolution of 200 kHz. Atmospheric pressure cross sections agree fairly well with existing cross sections determined by FTS in nitrogen, but there are significant variations in cross sections at lower pressures. Source identification of fugitive methane emissions using spectroscopic measurements of the atmospheric ethane-to-methane ratio is also discussed. - Highlights: • We measured spectra of pure and air-broadened ethane in the 1.7 μm region. • Measured cross sections were substantially different than literature values. • Relative uncertainties of measured cross sections were less than 1 %. • These results can be used to quantify ethane/methane ratios for source apportionment

  10. An intercomparison of HO2 measurements by fluorescence assay by gas expansion and cavity ring-down spectroscopy within HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry

    Directory of Open Access Journals (Sweden)

    L. Onel

    2017-12-01

    Full Text Available The HO2 radical was monitored simultaneously using two independent techniques in the Leeds HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry atmospheric simulation chamber at room temperature and total pressures of 150 and 1000 mbar of synthetic air. In the first method, HO2 was measured indirectly following sampling through a pinhole expansion to 3 mbar when sampling from 1000 mbar and to 1 mbar when sampling from 150 mbar. Subsequent addition of NO converted it to OH, which was detected via laser-induced fluorescence spectroscopy using the FAGE (fluorescence assay by gas expansion technique. The FAGE method is used widely to measure HO2 concentrations in the field and was calibrated using the 185 nm photolysis of water vapour in synthetic air with a limit of detection at 1000 mbar of 1.6 × 106 molecule cm−3 for an averaging time of 30 s. In the second method, HO2 was measured directly and absolutely without the need for calibration using cavity ring-down spectroscopy (CRDS, with the optical path across the entire ∼ 1.4 m width of the chamber, with excitation of the first O-H overtone at 1506.43 nm using a diode laser and with a sensitivity determined from Allan deviation plots of 3.0 × 108 and 1.5 × 109 molecule cm−3 at 150 and 1000 mbar respectively, for an averaging period of 30 s. HO2 was generated in HIRAC by the photolysis of Cl2 using black lamps in the presence of methanol in synthetic air and was monitored by FAGE and CRDS for ∼ 5–10 min periods with the lamps on and also during the HO2 decay after the lamps were switched off. At 1000 mbar total pressure the correlation plot of [HO2]FAGE versus [HO2]CRDS gave an average gradient of 0.84 ± 0.08 for HO2 concentrations in the range ∼ 4–100 × 109 molecule cm−3, while at 150 mbar total pressure the corresponding gradient was 0.90 ± 0.12 on average for HO2 concentrations in the range

  11. Evaluation of factors affecting accurate measurements of atmospheric CO2 and CH4 by wavelength-scanned cavity ring-down spectroscopy

    Science.gov (United States)

    Nara, H.; Tanimoto, H.; Tohjima, Y.; Mukai, H.; Nojiri, Y.; Katsumata, K.; Rella, C.

    2012-07-01

    We examined potential interferences from water vapor and atmospheric background gases (N2, O2, and Ar), and biases by isotopologues of target species, on accurate measurement of atmospheric CO2 and CH4 by means of wavelength-scanned cavity ring-down spectroscopy (WS-CRDS). Variations in the composition of the background gas substantially impacted the CO2 and CH4 measurements: the measured amounts of CO2 and CH4 decreased with increasing N2 mole fraction, but increased with increasing O2 and Ar, suggesting that the pressure-broadening effects (PBEs) increased as Ar < O2 < N2. Using these experimental results, we inferred PBEs for the measurement of synthetic standard gases. The PBEs were negligible (up to 0.05 ppm for CO2 and 0.01 ppb for CH4) for gas standards balanced with purified air, although the PBEs were substantial (up to 0.87 ppm for CO2 and 1.4 ppb for CH4) for standards balanced with synthetic air. For isotopic biases on CO2 measurements, we compared experimental results and theoretical calculations, which showed excellent agreement within their uncertainty. We derived empirical correction functions for water vapor for three WS-CRDS instruments (Picarro EnviroSense 3000i, G-1301, and G-2301). Although the transferability of the functions was not clear, no significant difference was found in the water vapor correction values among these instruments within the typical analytical precision at sufficiently low water concentrations (< 0.3%V for CO2 and < 0.4%V for CH4). For accurate measurements of CO2 and CH4 in ambient air, we concluded that WS-CRDS measurements should be performed under complete dehumidification of air samples, or moderate dehumidification followed by application of a water vapor correction function, along with calibration by natural air-based standard gases or purified air-balanced synthetic standard gases with isotopic correction.

  12. The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 μm.

    Science.gov (United States)

    Mondelain, D; Vasilchenko, S; Čermák, P; Kassi, S; Campargue, A

    2015-07-21

    The room temperature self- and foreign-continua of water vapor have been measured near 4250 cm(-1) with a newly developed high sensitivity cavity ring down spectrometer (CRDS). The typical sensitivity of the recordings is αmin≈ 6 × 10(-10) cm(-1) which is two orders of magnitude better than previous Fourier transform spectroscopy (FTS) measurements in the spectral region. The investigated spectral interval is located in the low energy range of the important 2.1 μm atmospheric transparency window. Self-continuum cross-sections, CS, were retrieved from the quadratic dependence of the spectrum base line level measured for different water vapor pressures between 0 and 15 Torr, after subtraction of the local water monomer lines contribution calculated using HITRAN2012 line parameters. The CS values were determined with 5% accuracy for four spectral points between 4249.2 and 4257.3 cm(-1). Their values of about 3.2 × 10(-23) cm(2) molecule(-1) atm(-1) are found 20% higher than predicted by the MT_CKD V2.5 model but two times weaker than reported in the literature using FTS. The foreign-continuum was evaluated by injecting various amounts of synthetic air in the CRDS cell while keeping the initial water vapor partial pressure constant. The foreign-continuum cross-section, CF, was retrieved from a linear fit of the spectrum base line level versus the air pressure. The obtained CF values are larger by a factor of 4.5 compared to the MT_CKD values and smaller by a factor of 1.7 compared to previous FTS values. As a result, for an atmosphere at room temperature with 60% relative humidity, the foreign-continuum contribution to the water continuum near 4250 cm(-1) is found to be on the same order as the self-continuum contribution.

  13. Validation of spectroscopic gas analyzer accuracy using gravimetric standard gas mixtures: impact of background gas composition on CO2 quantitation by cavity ring-down spectroscopy

    Science.gov (United States)

    Lim, Jeong Sik; Park, Miyeon; Lee, Jinbok; Lee, Jeongsoon

    2017-12-01

    The effect of background gas composition on the measurement of CO2 levels was investigated by wavelength-scanned cavity ring-down spectrometry (WS-CRDS) employing a spectral line centered at the R(1) of the (3 00 1)III ← (0 0 0) band. For this purpose, eight cylinders with various gas compositions were gravimetrically and volumetrically prepared within 2σ = 0.1 %, and these gas mixtures were introduced into the WS-CRDS analyzer calibrated against standards of ambient air composition. Depending on the gas composition, deviations between CRDS-determined and gravimetrically (or volumetrically) assigned CO2 concentrations ranged from -9.77 to 5.36 µmol mol-1, e.g., excess N2 exhibited a negative deviation, whereas excess Ar showed a positive one. The total pressure broadening coefficients (TPBCs) obtained from the composition of N2, O2, and Ar thoroughly corrected the deviations up to -0.5 to 0.6 µmol mol-1, while these values were -0.43 to 1.43 µmol mol-1 considering PBCs induced by only N2. The use of TPBC enhanced deviations to be corrected to ˜ 0.15 %. Furthermore, the above correction linearly shifted CRDS responses for a large extent of TPBCs ranging from 0.065 to 0.081 cm-1 atm-1. Thus, accurate measurements using optical intensity-based techniques such as WS-CRDS require TPBC-based instrument calibration or use standards prepared in the same background composition of ambient air.

  14. Localization of groundwater infiltration in the combined sewers of Brussels by stable isotopes measurements (δ18O, δD) by Cavity Ring Down Spectroscopy.

    Science.gov (United States)

    De Bondt, Kevin; Claeys, Philippe

    2014-05-01

    In the last 20 years research has been conducted to quantify the infiltration of groundwater into the sewers. This groundwater, called parasitic water, increases the volume of waste-water to be treated and consequently the cost of this treatment. Moreover, in the case of combined sewer systems, the parasitic water also limits the sewer capacity and indirectly increases the risks of combined sewer overflows and floods. The infiltration of groundwater occurs trough cracks, sewer collapses and from direct connections with old springs. Different methods quantify the intrusion of parasitic water. Among these, the use of the stable isotopes of water (δ18O & δD) shows good result in catchments or cities close to Mountainous regions (example from Lyon, Zurich), where isotopic signals vary significantly because of continental and altitude effects. However many cities, such as Brussels, are located in more oceanic settings and theoretically offer less potential for the application of the stable isotopes method. In the case of Brussels, river-water from the Meuse is used to produce domestic-water. The catchment of this river extends into the Ardennes, which are affected by slightly different climatic conditions. δ18O & δD analyzes of groundwater from the main aquifer (Ledo-Paniselian-Brusselian) and domestic-water from the Callois reservoir fed by the Meuse River show sufficient isotopic differences in the south of Brussels, but only during the summer. The discrimination potential is better with δD than with δ18O. The improvement of δD measurements (precision, costs,...) brought by Cavity Ring Down Spectroscopy largely contributes to the potential of using stable isotopes method to trace water in Brussels. The first campaigns in the sewers also show a little enrichment (in heavy isotopes) of the waste-water in comparison with the reservoir waters and tap waters. This increases the potential of the method but constrains the sampling to pure waste-water in sewer segments

  15. 248 nm photolysis of CH2Br2 by using cavity ring-down absorption spectroscopy: Br2 molecular elimination at room temperature.

    Science.gov (United States)

    Wei, Pei-Ying; Chang, Yuan-Ping; Lee, Wei-Bin; Hu, Zhengfa; Huang, Hong-Yi; Lin, King-Chuen; Chen, K T; Chang, A H H

    2006-10-07

    Following photodissociation of CH2Br2 at 248 nm, Br2 molecular elimination is detected by using a tunable laser beam, as crossed perpendicular to the photolyzing laser beam in a ring-down cell, probing the Br2 fragment in the B 3Piou+ -X 1Sigmag+ transition. The nascent vibrational population is obtained, yielding a population ratio of Br2(v = 1)Br2(v = 0) to be 0.7 +/- 0.2. The quantum yield for the Br2 elimination reaction is determined to be 0.2 +/- 0.1. Nevertheless, when CH2Br2 is prepared in a supersonic molecular beam under cold temperature, photofragmentation gives no Br2 detectable in a time-of-flight mass spectrometer. With the aid of ab initio potential energy calculations, a plausible pathway is proposed. Upon excitation to the 1B1 or 3B1 state, C-Br bond elongation may change the molecular symmetry of Cs and enhance the resultant 1 1,3A'-X 1A' (or 1 1,3B1-X 1A1 as C2v is used) coupling to facilitate the process of internal conversion, followed by asynchronous concerted photodissociation. Temperature dependence measurements lend support to the proposed pathway.

  16. Fugitive Methane Emission Identification and Source Attribution: Ethane-to-Methane Analysis Using a Portable Cavity Ring-Down Spectroscopy Analyzer

    Science.gov (United States)

    Kim-Hak, D.; Fleck, D.

    2017-12-01

    Natural gas analysis and methane specifically have become increasingly important by virtue of methane's 28-36x greenhouse warming potential compared to CO2 and accounting for 10% of total greenhouse gas emissions in the US alone. Additionally, large uncontrolled leaks, such as the recent one from Aliso Canyon in Southern California, originating from uncapped wells, storage facilities and coal mines have increased the total global contribution of methane missions even further. Determining the specific fingerprint of methane sources by quantifying the ethane to methane (C2:C1) ratios provides us with means to understand processes yielding methane and allows for sources of methane to be mapped and classified through these processes; i.e. biogenic or thermogenic, oil vs. gas vs. coal gas-related. Here we present data obtained using a portable cavity ring-down spectrometry analyzer weighing less than 25 lbs and consuming less than 35W that simultaneously measures methane and ethane in real-time with a raw 1-σ precision of plane gas propagation.

  17. Technical note: Coupling infrared gas analysis and cavity ring down spectroscopy for autonomous, high-temporal-resolution measurements of DIC and δ13C-DIC

    Science.gov (United States)

    Call, Mitchell; Schulz, Kai G.; Carvalho, Matheus C.; Santos, Isaac R.; Maher, Damien T.

    2017-03-01

    A new approach to autonomously determine concentrations of dissolved inorganic carbon (DIC) and its carbon stable isotope ratio (δ13C-DIC) at high temporal resolution is presented. The simple method requires no customised design. Instead it uses two commercially available instruments currently used in aquatic carbon research. An inorganic carbon analyser utilising non-dispersive infrared detection (NDIR) is coupled to a Cavity Ring-down Spectrometer (CRDS) to determine DIC and δ13C-DIC based on the liberated CO2 from acidified aliquots of water. Using a small sample volume of 2 mL, the precision and accuracy of the new method was comparable to standard isotope ratio mass spectrometry (IRMS) methods. The system achieved a sampling resolution of 16 min, with a DIC precision of ±1.5 to 2 µmol kg-1 and δ13C-DIC precision of ±0.14 ‰ for concentrations spanning 1000 to 3600 µmol kg-1. Accuracy of 0.1 ± 0.06 ‰ for δ13C-DIC based on DIC concentrations ranging from 2000 to 2230 µmol kg-1 was achieved during a laboratory-based algal bloom experiment. The high precision data that can be autonomously obtained by the system should enable complex carbonate system questions to be explored in aquatic sciences using high-temporal-resolution observations.

  18. First Continuous High Frequency in Situ Measurements of CO2 and CH4 in Rwanda Using Cavity Ring-down Spectroscopy

    Science.gov (United States)

    Gasore, J.; DeWitt, L. H.; Prinn, R. G.

    2015-12-01

    Recent IPCC reports emphasize the lack of ground measurements of greenhouse gases on the African continent, despite Africa's significant emissions from agriculture and biomass burning as well as ongoing land use changes. We have established a greenhouse gas monitoring station in northern Rwanda that will be part of the Advanced Global Atmospheric Gases Experiment (AGAGE), a global network of high frequency long-term remote atmospheric measurement stations. Using a Picarro G2401 cavity ring-down analyzer, continuous measurements of CO2, CH4, and CO at a frequency of five seconds are being captured at this equatorial East African site. The measurement site is located near the Virunga mountains, a volcanic range in North-West Rwanda, on the summit of Mt. Mugogo (2507 m above sea level). Mt. Mugogo is located in a rural area 70km away from Kigali, the capital of Rwanda, and about 13km from the nearest town. From HYSPLIT 7-day back-trajectory calculations, we have determined that the station measures air masses originating from East and Central Africa, the Indian Ocean and occasionally from Southern Asia. Depending on the wind direction and local boundary layer height, measurements taken at Mt Mugogo are occasionally influenced by local sources, including emissions from the nearby city and wood fires from small rural settlements around the station. Here we present the first greenhouse gas measurement data from this unique and understudied location in Africa. Using the lagrangian transport and dispersion model FLEXPART, we derive the relationship between the observed mole fractions of CO2 and CH4 and our current knowledge of their sources and sinks, across this large African footprint.

  19. In-Situ Measurements of Aerosol Optical Properties using New Cavity Ring-Down and Photoacoustics Instruments and Comparison with more Traditional Techniques

    Science.gov (United States)

    Strawa, A. W.; Arnott, P.; Covert, D.; Elleman, R.; Ferrare, R.; Hallar, A. G.; Jonsson, H.; Kirchstetter, T. W.; Luu, A. P.; Ogren, J.

    2004-01-01

    Carbonaceous species (BC and OC) are responsible for most of the absorption associated with aerosol particles. The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult aerosol properties to measure. A new cavity ring-down (CRD) instrument, called Cadenza (NASA-ARC), measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. Absorption coefficient is obtained from the difference of measured extinction and scattering within the instrument. Aerosol absorption coefficient is also measured by a photoacoustic (PA) instrument (DRI) that was operated on an aircraft for the first time during the DOE Aerosol Intensive Operating Period (IOP). This paper will report on measurements made with this new instrument and other in-situ instruments during two field recent field studies. The first field study was an airborne cam;oaign, the DOE Aerosol Intensive Operating Period flown in May, 2003 over northern Oklahoma. One of the main purposes of the IOP was to assess our ability to measure extinction and absorption coefficient in situ. This paper compares measurements of these aerosol optical properties made by the CRD, PA, nephelometer, and Particle Soot Absorption Photometer (PSAP) aboard the CIRPAS Twin-Otter. During the IOP, several significant aerosol layers were sampled aloft. These layers are identified in the remote (AATS-14) as well as in situ measurements. Extinction profiles measured by Cadenza are compared to those derived from the Ames Airborne Tracking Sunphotometer (AATS-14, NASA-ARC). The regional radiative impact of these layers is assessed by using the measured aerosol optical properties in a radiative transfer model. The second study was conducted in the Caldecott Tunnel, a heavily-used tunnel located north of San Francisco, Ca. The aerosol sampled in this study was

  20. Effect of air composition (N2, O2, Ar, and H2O) on CO2 and CH4 measurement by wavelength-scanned cavity ring-down spectroscopy: calibration and measurement strategy

    Science.gov (United States)

    Nara, H.; Tanimoto, H.; Tohjima, Y.; Mukai, H.; Nojiri, Y.; Katsumata, K.; Rella, C. W.

    2012-11-01

    We examined potential interferences from water vapor and atmospheric background gases (N2, O2, and Ar), and biases by isotopologues of target species, on accurate measurement of atmospheric CO2 and CH4 by means of wavelength-scanned cavity ring-down spectroscopy (WS-CRDS). Changes of the background gas mole fractions in the sample air substantially impacted the CO2 and CH4 measurements: variation of CO2 and CH4 due to relative increase of each background gas increased as Ar < O2 < N2, suggesting similar relation for the pressure-broadening effects (PBEs) among the background gas. The pressure-broadening coefficients due to variations in O2 and Ar for CO2 and CH4 are empirically determined from these experimental results. Calculated PBEs using the pressure-broadening coefficients are linearly correlated with the differences between the mole fractions of O2 and Ar and their ambient abundances. Although the PBEs calculation showed that impact of natural variation of O2 is negligible on the CO2 and CH4 measurements, significant bias was inferred for the measurement of synthetic standard gases. For gas standards balanced with purified air, the PBEs were estimated to be marginal (up to 0.05 ppm for CO2 and 0.01 ppb for CH4) although the PBEs were substantial (up to 0.87 ppm for CO2 and 1.4 ppb for CH4) for standards balanced with synthetic air. For isotopic biases on CO2 measurements, we compared experimental results and theoretical calculations, which showed excellent agreement within their uncertainty. We derived instrument-specific water correction functions empirically for three WS-CRDS instruments (Picarro EnviroSense 3000i, G-1301, and G-2301), and evaluated the transferability of the water correction function from G-1301 among these instruments. Although the transferability was not proven, no significant difference was found in the water vapor correction function for the investigated WS-CRDS instruments as well as the instruments reported in the past studies

  1. Effect of air composition (N2, O2, Ar, and H2O on CO2 and CH4 measurement by wavelength-scanned cavity ring-down spectroscopy: calibration and measurement strategy

    Directory of Open Access Journals (Sweden)

    K. Katsumata

    2012-11-01

    Full Text Available We examined potential interferences from water vapor and atmospheric background gases (N2, O2, and Ar, and biases by isotopologues of target species, on accurate measurement of atmospheric CO2 and CH4 by means of wavelength-scanned cavity ring-down spectroscopy (WS-CRDS. Changes of the background gas mole fractions in the sample air substantially impacted the CO2 and CH4 measurements: variation of CO2 and CH4 due to relative increase of each background gas increased as Ar 2 2, suggesting similar relation for the pressure-broadening effects (PBEs among the background gas. The pressure-broadening coefficients due to variations in O2 and Ar for CO2 and CH4 are empirically determined from these experimental results. Calculated PBEs using the pressure-broadening coefficients are linearly correlated with the differences between the mole fractions of O2 and Ar and their ambient abundances. Although the PBEs calculation showed that impact of natural variation of O2 is negligible on the CO2 and CH4 measurements, significant bias was inferred for the measurement of synthetic standard gases. For gas standards balanced with purified air, the PBEs were estimated to be marginal (up to 0.05 ppm for CO2 and 0.01 ppb for CH4 although the PBEs were substantial (up to 0.87 ppm for CO2 and 1.4 ppb for CH4 for standards balanced with synthetic air. For isotopic biases on CO2 measurements, we compared experimental results and theoretical calculations, which showed excellent agreement within their uncertainty. We derived instrument-specific water correction functions empirically for three WS-CRDS instruments (Picarro EnviroSense 3000i, G-1301, and G-2301, and evaluated the transferability of the water correction function from G-1301 among these instruments. Although the transferability was not proven, no significant difference was found in the water vapor correction function for the investigated WS-CRDS instruments as well as the instruments reported in the past

  2. Effects of variation in background mixing ratios of N2, O2, and Ar on the measurement of δ18O-H2O and δ2H-H2O values by cavity ring-down spectroscopy

    Science.gov (United States)

    Johnson, Jennifer E.; Rella, Chris W.

    2017-08-01

    Cavity ring-down spectrometers have generally been designed to operate under conditions in which the background gas has a constant composition. However, there are a number of observational and experimental situations of interest in which the background gas has a variable composition. In this study, we examine the effect of background gas composition on a cavity ring-down spectrometer that measures δ18O-H2O and δ2H-H2O values based on the amplitude of water isotopologue absorption features around 7184 cm-1 (L2120-i, Picarro, Inc.). For background mixtures balanced with N2, the apparent δ18O values deviate from true values by -0.50 ± 0.001 ‰ O2 %-1 and -0.57 ± 0.001 ‰ Ar %-1, and apparent δ2H values deviate from true values by 0.26 ± 0.004 ‰ O2 %-1 and 0.42 ± 0.004 ‰ Ar %-1. The artifacts are the result of broadening, narrowing, and shifting of both the target absorption lines and strong neighboring lines. While the background-induced isotopic artifacts can largely be corrected with simple empirical or semi-mechanistic models, neither type of model is capable of completely correcting the isotopic artifacts to within the inherent instrument precision. The development of strategies for dynamically detecting and accommodating background variation in N2, O2, and/or Ar would facilitate the application of cavity ring-down spectrometers to a new class of observations and experiments.

  3. Effects of variation in background mixing ratios of N2, O2, and Ar on the measurement of δ18O–H2O and δ2H–H2O values by cavity ring-down spectroscopy

    Directory of Open Access Journals (Sweden)

    J. E. Johnson

    2017-08-01

    Full Text Available Cavity ring-down spectrometers have generally been designed to operate under conditions in which the background gas has a constant composition. However, there are a number of observational and experimental situations of interest in which the background gas has a variable composition. In this study, we examine the effect of background gas composition on a cavity ring-down spectrometer that measures δ18O–H2O and δ2H–H2O values based on the amplitude of water isotopologue absorption features around 7184 cm−1 (L2120-i, Picarro, Inc.. For background mixtures balanced with N2, the apparent δ18O values deviate from true values by −0.50 ± 0.001 ‰ O2 %−1 and −0.57 ± 0.001 ‰ Ar %−1, and apparent δ2H values deviate from true values by 0.26 ± 0.004 ‰ O2 %−1 and 0.42 ± 0.004 ‰ Ar  %−1. The artifacts are the result of broadening, narrowing, and shifting of both the target absorption lines and strong neighboring lines. While the background-induced isotopic artifacts can largely be corrected with simple empirical or semi-mechanistic models, neither type of model is capable of completely correcting the isotopic artifacts to within the inherent instrument precision. The development of strategies for dynamically detecting and accommodating background variation in N2, O2, and/or Ar would facilitate the application of cavity ring-down spectrometers to a new class of observations and experiments.

  4. Optical fibre cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser

    Science.gov (United States)

    Zhou, Kaiming; Webb, David; Mou, Chengbo; Farries, Mark; Hayes, Neil; Bennion, Ian

    2009-10-01

    μA microchannel was inscribed in the fibre of a ring cavity which was constructed from two 0.1%:99.9% couplers and a 10m fibre loop. Cavity ring down spectroscopy (CRDS) was used to measure the refractive index (RI) of gels infused into the microchannel with high resolution. The ring down time discloses a nonlinear increase with respect to the RI of the gel and sensitivity up to 300μs/RI unit (RIU) and resolution of 5×10-4 were obtained.

  5. Lineshape test on overlapped transitions (R9F1, R9F2) of the 2v3 band of 12CH4 by frequency-stabilized cavity ring-down spectroscopy

    Science.gov (United States)

    Yang, L.; Lin, H.; Plimmer, M. D.; Feng, X. J.; Zhang, J. T.

    2018-05-01

    The performances of a multi-spectral fit for the spectra of pressure-broadened overlapping lines (R9F1, R9F2) of 12CH4 in binary mixtures with N2 were studied by applying different lineshape models, from the simplest Voigt profile (VP) to the Harmann-Tran profile (HTP). Line-mixing was approximated in the first order in the spectral fits. Data were acquired using a high-resolution cavity ring-down spectrometer of minimum detectable absorption coefficient of 2.8 × 10-12 cm-1. The lines were observed with a signal-to-noise ratio of 19 365 for pressures from 5 to 40 kPa. The study reveals that the multi-spectral fits using the HTP and the speed-dependent Nelkin-Ghatak profile (SDNGP) yield the best among all tested. The two models gave the maximum relative residuals of less than 0.065 %. All things considered, the HTP and the SDNGP appear to be the most reliable models for treating the present case of multi-spectral fitting of unresolved dual-component spectra.

  6. First results of cavity ring down signals from exhaled air

    Science.gov (United States)

    Revalde, G.; Grundšteins, K.; Alnis, J.; Skudra, A.

    2017-12-01

    In this paper we report first results from the developed cavity ring-down spectrometer for application in human breath analysis for the diagnostics of diabetes and later for early detection of lung cancer. Our cavity ring-down spectrometer works in UV region with pulsed Nd:YAG laser at 266 nm wavelength. First experiments allow us to determine acetone and benzene at the level bellow ppm. In our experiment, first results from breath samples from volunteers after doing different activities were collected and examined. Influence of the smoking on the breath signals also was examined.

  7. Dual-etalon, cavity-ring-down, frequency comb spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Strecker, Kevin E.; Chandler, David W.

    2010-10-01

    The 'dual etalon frequency comb spectrometer' is a novel low cost spectometer with limited moving parts. A broad band light source (pulsed laser, LED, lamp ...) is split into two beam paths. One travels through an etalon and a sample gas, while the second arm is just an etalon cavity, and the two beams are recombined onto a single detector. If the free spectral ranges (FSR) of the two cavities are not identical, the intensity pattern at the detector with consist of a series of heterodyne frequencies. Each mode out of the sample arm etalon with have a unique frequency in RF (radio-frequency) range, where modern electronics can easily record the signals. By monitoring these RF beat frequencies we can then determine when an optical frequencies is absorbed. The resolution is set by the FSR of the cavity, typically 10 MHz, with a bandwidth up to 100s of cm{sup -1}. In this report, the new spectrometer is described in detail and demonstration experiments on Iodine absorption are carried out. Further we discuss powerful potential next generation steps to developing this into a point sensor for monitoring combustion by-products, environmental pollutants, and warfare agents.

  8. Infrared Spectroscopy with a Cavity Ring-Down Spectrometer

    Science.gov (United States)

    2014-08-01

    this is a negligible shift as far as the performance of the spectrometers are concerned, knowledge of the shift would allow for compensation if...Safety and Health NIST National Institute of Standards and Technology ODS Optical Devices and Sensors Team OSHA Occupational Safety and Health

  9. Nonlinear estimation of ring-down time for a Fabry-Perot optical cavity.

    Science.gov (United States)

    Kallapur, Abhijit G; Boyson, Toby K; Petersen, Ian R; Harb, Charles C

    2011-03-28

    This paper discusses the application of a discrete-time extended Kalman filter (EKF) to the problem of estimating the decay time constant for a Fabry-Perot optical cavity for cavity ring-down spectroscopy (CRDS). The data for the estimation process is obtained from a CRDS experimental setup in terms of the light intensity at the output of the cavity. The cavity is held in lock with the input laser frequency by controlling the distance between the mirrors within the cavity by means of a proportional-integral (PI) controller. The cavity is purged with nitrogen and placed under vacuum before chopping the incident light at 25 KHz and recording the light intensity at its output. In spite of beginning the EKF estimation process with uncertainties in the initial value for the decay time constant, its estimates converge well within a small neighborhood of the expected value for the decay time constant of the cavity within a few ring-down cycles. Also, the EKF estimation results for the decay time constant are compared to those obtained using the Levenberg-Marquardt estimation scheme.

  10. Proceedings of the DAE-BRNS theme meeting on recent trends in spectroscopy: book of abstracts

    International Nuclear Information System (INIS)

    2014-01-01

    The meeting aimed at providing the latest developments in various spectroscopic techniques to the research students and practicing scientists. The proceedings of the symposium covered a wide range of topics of infrared and Raman spectroscopy, time resolved spectroscopy, mass spectrometry, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, rotational and vibrational spectroscopy, fluorescence spectroscopy, cavity ring down spectroscopy, laser based spectroscopic techniques and electrochemical spectroscopy. Papers relevant to INIS are indexed separately

  11. Ring down artefacts on abdominal sonography to predict pulmonary abnormalities in the emergency department.

    Science.gov (United States)

    Tsai, C-L; Wang, H-P; Lien, W-C; Chen, C-C; Lai, T-I; Chen, W-J

    2005-10-01

    Ring down artefacts are sometimes found when emergency physicians perform abdominal ultrasound to differentiate between various abdominal problems. We describe a patient who presented with right upper quadrant abdominal pain and whose ultrasound examination showed ring down artefacts posterior to the right hemidiaphragm, which led to the eventual diagnosis of pneumonia. Ring down artefacts on ultrasound may be used to predict pulmonary abnormalities. Awareness of this sonographic finding may assist in accurate diagnosis and administration of appropriate treatment without delay.

  12. Mid-Ir Cavity Ring-Down Spectrometer for Biological Trace Nitric Oxide Detection

    Science.gov (United States)

    Kan, Vincent; Ragab, Ahemd; Stsiapura, Vitali; Lehmann, Kevin K.; Gaston, Benjamin M.

    2011-06-01

    S-nitrosothiols have received much attention in biochemistry and medicine as donors of nitrosonium ion (NO^+) and nitric oxide (NO) - physiologically active molecules involved in vasodilation and signal transduction. Determination of S-nitrosothiols content in cells and tissues is of great importance for fundamental research and medical applications. We will report on our ongoing development of a instrument to measure trace levels of nitric oxide gas (NO), released from S-nitrosothiols after exposure to UV light (340 nm) or reaction with L-Cysteine+CuCl mixture. The instrument uses the method of cavity ring-down spectroscopy, probing rotationally resolved lines in the vibrational fundamental transition near 5.2 μm. The laser source is a continuous-wave, room temperature external cavity quantum cascade laser. An acousto-optic modulator is used to abruptly turn off the optical power incident on the cavity when the laser and cavity pass through resonance.

  13. Modern spectroscopy

    CERN Document Server

    Hollas, J Michael

    2013-01-01

    The latest edition of this highly acclaimed title introduces the reader to a wide range of spectroscopies, and includes both the background theory and applications to structure determination and chemical analysis.  It covers rotational, vibrational, electronic, photoelectron and Auger spectroscopy, as well as EXAFs and the theory of lasers and laser spectroscopy. A  revised and updated edition of a successful, clearly written book Includes the latest developments in modern laser techniques, such as cavity ring-down spectroscopy and femtosecond lasers Provides numerous worked examples, calculations and questions at the end of chapters.

  14. 403 nm cavity ring-down measurements of brown carbon aerosol

    Science.gov (United States)

    Kwon, D.; Grassian, V. H.; Kleiber, P.; Young, M. A.

    2017-12-01

    Atmospheric aerosol influences Earth's climate by absorbing and scattering incoming solar radiation and outgoing terrestrial radiation. One class of secondary organic aerosol (SOA), called brown carbon (BrC), has attracted attention for its wavelength dependent light absorbing properties with absorption coefficients that generally increase from the visible (Vis) to ultraviolet (UV) regions. Here we report results from our investigation of the optical properties of BrC aerosol products from the aqueous phase reaction of ammonium sulfate (AS) with methylglyoxal (MG) using cavity ring-down spectroscopy (CRDS) at 403 nm wavelength. We have measured the optical constants of BrC SOA from the AS/MG reaction as a function of reaction time. Under dry flow conditions, we observed no apparent variation in the BrC refractive index with aging over the course of 22 days. The retrieved BrC optical constants are similar to those of AS with n = 1.52 for the real component. Despite significant UV absorption observed from the bulk BrC solution, the imaginary index value at 403 nm is below our minimum detection limit which puts an upper bound of k as 0.03. These observations are in agreement with results from our recent studies of the light scattering properties of this BrC aerosol.

  15. Evaluation of a cavity ring-down spectrometer for in situ observations of 13CO2

    Directory of Open Access Journals (Sweden)

    D. E. J. Worthy

    2013-02-01

    Full Text Available With the emergence of wide-spread application of new optical techniques to monitor δ13C in atmospheric CO2 there is a growing need to ensure well-calibrated measurements. We characterized one commonly available instrument, a cavity ring-down spectrometer (CRDS system used for continuous in situ monitoring of atmospheric 13CO2. We found no dependency of δ13C on the CO2 concentration in the range of 303–437 ppm. We designed a calibration scheme according to the diagnosed instrumental drifts and established a quality assurance protocol. We find that the repeatability (1-σ of measurements is 0.25‰ for 10 min and 0.15‰ for 20 min integrated averages, respectively. Due to a spectral overlap, our instrument displays a cross-sensitivity to CH4 of 0.42 ± 0.024‰ ppm−1. Our ongoing target measurements yield standard deviations of δ13C from 0.22‰ to 0.28‰ for 10 min averages. We furthermore estimate the reproducibility of our system for ambient air samples from weekly measurements of a long-term target gas to be 0.18‰. We find only a minuscule offset of 0.002 ± 0.025‰ between the CRDS and Environment Canada's isotope ratio mass spectrometer (IRMS results for four target gases used over the course of one year.

  16. High precision measurements of 16O12C17O using a new type of cavity ring down spectrometer

    Science.gov (United States)

    Daëron, M.; Stoltmann, T.; Kassi, S.; Burkhart, J.; Kerstel, E.

    2016-12-01

    Laser absorption techniques for the measurement of isotopologue abundances in gases have been dripping into the geoscientific community over the past decade. In the field of carbon dioxide such instruments have mostly been restricted to measurements of the most abundant stable isotopologues. Distinct advantages of CRDS techniques are non-destructiveness and the ability to resolve isobaric isotopologues. The determination of low-abundance isotopologues is predominantly limited by the linewidth of the probing laser, laser jitter, laser drift and system stability. Here we present first measurements of 16O12C17O abundances using a new type of ultra-precise cavity ring down spectrometer. By the use of Optical Feedback Frequency Stabilization, we achieved a laser line width in the sub-kHz regime with a frequency drift of less than 20 Hz/s. A tight coupling with an ultra-stable ring down cavity combined with a frequency tuning mechanism which enables us to arbitrarily position spectral points (Burkart et al., 2013) allowed us to demonstrate a single-scan (2 minutes) precision of 40 ppm on the determination of the 16O12C17O abundance. These promising results imply that routine, direct, high-precision measurements of 17O-anomalies in CO2 using this non-destructive method are in reach. References:Burkart J, Romanini D, Kassi S; Optical feedback stabilized laser tuned by single-sideband modulation; Optical Letters 12:2062-2063 (2013)

  17. Sensitivity enhancement of fiber loop cavity ring-down pressure sensor.

    Science.gov (United States)

    Jiang, Yajun; Yang, Dexing; Tang, Daqing; Zhao, Jianlin

    2009-11-10

    We present a theoretical and experimental study on sensitivity enhancement of a fiber-loop cavity ring-down pressure sensor. The cladding of the sensing fiber is etched in hydrofluoric acid solution to enhance its sensitivity. The experimental results demonstrate that the pressure applied on the sensing fiber is linearly proportional to the difference between the reciprocals of the ring-down time with and without pressure, and the relative sensitivity exponentially increases with decreasing the cladding diameter. When the sensing fiber is etched to 41.15 microm, its sensitivity is about 36 times that of nonetched fiber in the range of 0 to 32.5 MPa. The measured relative standard deviation of the ring-down time is about 0.15% and, correspondingly, the least detectable loss is about 0.00069 dB.

  18. Flask sample measurements for CO2, CH4 and CO using cavity ring-down spectrometry

    Science.gov (United States)

    Wang, J.-L.; Jacobson, G.; Rella, C. W.; Chang, C.-Y.; Liu, I.; Liu, W.-T.; Chew, C.; Ou-Yang, C.-F.; Liao, W.-C.; Chang, C.-C.

    2013-08-01

    In recent years, cavity ring-down spectrometry (CRDS) has been demonstrated to be a highly sensitive, stable and fast analytical technique for real-time in situ measurements of greenhouse gases. In this study, we propose the technique (which we call flask-CRDS) of analyzing whole air flask samples for CO2, CH4 and CO using a custom gas manifold designed to connect to a CRDS analyzer. Extremely stable measurements of these gases can be achieved over a large pressure range in the flask, from 175 to 760 Torr. The wide pressure range is conducive to flask sample measurement in three ways: (1) flask samples can be collected in low-pressure environments (e.g. high-altitude locations); (2) flask samples can be first analyzed for other trace gases with the remaining low-pressure sample for CRDS analysis of CO2, CH4 and CO; and (3) flask samples can be archived and re-analyzed for validation. The repeatability of this method (1σ of 0.07 ppm for CO2, 0.4 ppb for CH4, and 0.5 ppb for CO) was assessed by analyzing five canisters filled with the same air sample to a pressure of 200 Torr. An inter-comparison of the flask-CRDS data with in-situ CRDS measurements at a high-altitude mountain baseline station revealed excellent agreement, with differences of 0.10 ± 0.09 ppm (1σ) for CO2 and 0.9 ± 1.0 ppb for CH4. This study demonstrated that the flask-CRDS method was not only simple to build and operate but could also perform highly accurate and precise measurements of atmospheric CO2, CH4 and CO in flask samples.

  19. Cavity-enhanced spectroscopies

    CERN Document Server

    van Zee, Roger

    2003-01-01

    ""Cavity-Enhanced Spectroscopy"" discusses the use of optical resonators and lasers to make sensitive spectroscopic measurements. This volume is written by the researcchers who pioneered these methods. The book reviews both the theory and practice behind these spectroscopic tools and discusses the scientific discoveries uncovered by these techniques. It begins with a chapter on the use of optical resonators for frequency stabilization of lasers, which is followed by in-depth chapters discussing cavity ring-down spectroscopy, frequency-modulated, cavity-enhanced spectroscopy, intracavity spectr

  20. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin [eds.

    2012-07-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  1. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    International Nuclear Information System (INIS)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin

    2012-01-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  2. Laser Spectroscopy for Atmospheric and Environmental Sensing

    Directory of Open Access Journals (Sweden)

    Solomon Bililign

    2009-12-01

    Full Text Available Lasers and laser spectroscopic techniques have been extensively used in several applications since their advent, and the subject has been reviewed extensively in the last several decades. This review is focused on three areas of laser spectroscopic applications in atmospheric and environmental sensing; namely laser-induced fluorescence (LIF, cavity ring-down spectroscopy (CRDS, and photoluminescence (PL techniques used in the detection of solids, liquids, aerosols, trace gases, and volatile organic compounds (VOCs.

  3. Cavity Ring-down Spectroscopy for Carbon Isotope Analysis with 2 μm Diode Laser

    International Nuclear Information System (INIS)

    Hiromoto, K.; Tomita, H.; Watanabe, K.; Kawarabayashi, J.; Iguchi, T.

    2009-01-01

    We have made a prototype based on CRDS with 2 μm diode laser for carbon isotope analysis of CO 2 in air. The carbon isotope ratio was obtained to be (1.085±0.012)x10 -2 which shows good agreement with the isotope ratio measured by the magnetic sector-type mass spectrometer within uncertainty. Hence, we demonstrated the carbon isotope analysis based on CRDS with 2 μm tunable diode laser.

  4. Detection of hydrogen cyanide from oral anaerobes by cavity ring down spectroscopy

    Science.gov (United States)

    Chen, Wen; Roslund, Kajsa; Fogarty, Christopher L.; Pussinen, Pirkko J.; Halonen, Lauri; Groop, Per-Henrik; Metsälä, Markus; Lehto, Markku

    2016-03-01

    Hydrogen cyanide (HCN) has been recognized as a potential biomarker for non-invasive diagnosis of Pseudomonas aeruginosa infection in the lung. However, the oral cavity is a dominant production site for exhaled HCN and this contribution can mask the HCN generated in the lung. It is thus important to understand the sources of HCN production in the oral cavity. By screening of oral anaerobes for HCN production, we observed that the genus of Porphyromonas, Prevotella and Fusobacterium generated low levels of HCN in vitro. This is the first study to show that oral anaerobes are capable of producing HCN in vitro. Further investigations were conducted on the species of P. gingivalis and we successfully detected HCN production (0.9-10.9 ppb) in the headspace of three P. gingivalis reference strains (ATCC 33277, W50 and OMG 434) and one clinical isolate. From P. gingivalis ATCC 33277 and W50, a strong correlation between HCN and CO2 concentrations (rs = 0.89, p < 0.001) was observed, indicating that the HCN production of P. gingivalis might be connected with the bacterial metabolic activity. These results indicate that our setup could be widely applied to the screening of in vitro HCN production by both aerobic and anaerobic bacteria.

  5. Measurement of Aerosol Optical Properties by Integrating Cavity Ring-Down Spectroscopy and Nephelometry

    Science.gov (United States)

    2013-01-01

    Getachew Tedela North Carolina A&T State University 1601 East Market Street Greensboro, NC 27411 -3209 REPORT DOCUMENTATION PAGE b. ABSTRACT UU c. THIS...2.1013 3.273 )( P TSTPgasKgasK  (18) Where, the standard temperature and pressure ( STP ) are 273.2 k and 1013.2 mb

  6. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals.

    Science.gov (United States)

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Tzallas, Paraskevas; Loppinet, Benoit; Rakitzis, T Peter

    2015-09-14

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces.

  7. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals

    International Nuclear Information System (INIS)

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E.; Spiliotis, Alexandros K.; Rakitzis, T. Peter; Tzallas, Paraskevas; Loppinet, Benoit

    2015-01-01

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces

  8. Extinction efficiencies of coated absorbing aerosols measured by cavity ring down aerosol spectrometry

    Directory of Open Access Journals (Sweden)

    E. Segre

    2008-03-01

    Full Text Available In this study, we measure the extinction efficiency at 532 nm of absorbing aerosol particles coated with a non-absorbing solid and liquid organic shell with coating thickness varying between 5 and 100 nm using cavity ring down aerosol spectrometry. For this purpose, we use nigrosin, an organic black dye, as a model absorbing core and two non-absorbing organic substances as shells, glutaric acid (GA and Di-Ethyl-Hexyl-Sebacate (DEHS. The measured behavior of the coated particles is consistent with Mie calculations of core-shell particles. Errors between measured and calculated values for nigrosin coated with GA and DEHS are between 0.5% and 10.5% and between 0.5% and 9%, respectively. However, it is evident that the calculations are in better agreement with the measured results for thinner coatings. Possible reasons for these discrepancies are discussed.

  9. Molecular Laser Spectroscopy as a Tool for Gas Analysis Applications

    Directory of Open Access Journals (Sweden)

    Javis Anyangwe Nwaboh

    2011-01-01

    Full Text Available We have used the traceable infrared laser spectrometric amount fraction measurement (TILSAM method to perform absolute concentration measurements of molecular species using three laser spectroscopic techniques. We report results performed by tunable diode laser absorption spectroscopy (TDLAS, quantum cascade laser absorption spectroscopy (QCLAS, and cavity ring down spectroscopy (CRDS, all based on the TILSAM methodology. The measured results of the different spectroscopic techniques are in agreement with respective gravimetric values, showing that the TILSAM method is feasible with all different techniques. We emphasize the data quality objectives given by traceability issues and uncertainty analyses.

  10. Field-based cavity ring-down spectrometry of δ¹³C in soil-respired CO₂.

    Science.gov (United States)

    Munksgaard, Niels C; Davies, Kalu; Wurster, Chris M; Bass, Adrian M; Bird, Michael I

    2013-06-01

    Measurement of soil-respired CO₂ at high temporal resolution and sample density is necessary to accurately identify sources and quantify effluxes of soil-respired CO₂. A portable sampling device for the analysis of δ(13)C values in the field is described herein. CO₂ accumulated in a soil chamber was batch sampled sequentially in four gas bags and analysed by Wavelength-Scanned Cavity Ring-down Spectrometry (WS-CRDS). A Keeling plot (1/[CO₂] versus δ(13)C) was used to derive δ(13)C values of soil-respired CO₂. Calibration to the δ(13)C Vienna Peedee Belemnite scale was by analysis of cylinder CO₂ and CO₂ derived from dissolved carbonate standards. The performance of gas-bag analysis was compared to continuous analysis where the WS-CRDS analyser was connected directly to the soil chamber. Although there are inherent difficulties in obtaining absolute accuracy data for δ(13)C values in soil-respired CO₂, the similarity of δ(13)C values obtained for the same test soil with different analytical configurations indicated that an acceptable accuracy of the δ(13)C data were obtained by the WS-CRDS techniques presented here. Field testing of a variety of tropical soil/vegetation types, using the batch sampling technique yielded δ(13)C values for soil-respired CO₂ related to the dominance of either C₃ (tree, δ(13)C=-27.8 to-31.9 ‰) or C₄ (tropical grass, δ(13)C=-9.8 to-13.6 ‰) photosynthetic pathways in vegetation at the sampling sites. Standard errors of the Keeling plot intercept δ(13)C values of soil-respired CO₂ were typically7-9 μmol m(-2) s(-1)).

  11. Inspiral, merger, and ring-down of equal-mass black-hole binaries

    International Nuclear Information System (INIS)

    Buonanno, Alessandra; Cook, Gregory B.; Pretorius, Frans

    2007-01-01

    We investigate the dynamics and gravitational-wave (GW) emission in the binary merger of equal-mass black holes as obtained from numerical relativity simulations. The simulations were performed with an evolution code based on generalized harmonic coordinates developed by Pretorius, and used quasiequilibrium initial-data sets constructed by Cook and Pfeiffer. Results from the evolution of three sets of initial data are explored in detail, corresponding to different initial separations of the black holes, and exhibit between 2-8 GW cycles before coalescence. We find that to a good approximation the inspiral phase of the evolution is quasicircular, followed by a 'blurred, quasicircular plunge' lasting for about 1-1.5 GW cycles. After this plunge the GW frequency decouples from the orbital frequency, and we define this time to be the start of the merger phase. Roughly 10-15 M separates the time between the beginning of the merger phase and when we are able to extract quasinormal ring-down modes from gravitational waves emitted by the newly formed black hole. This suggests that the merger lasts for a correspondingly short amount of time, approximately 0.5-0.75 of a full GW cycle. We present first-order comparisons between analytical models of the various stages of the merger and the numerical results--more detailed and accurate comparisons will need to await numerical simulations with higher accuracy, better control of systemic errors (including coordinate artifacts), and initial configurations where the binaries are further separated. During the inspiral, we find that if the orbital phase is well modeled, the leading order Newtonian quadrupole formula is able to match both the amplitude and phase of the numerical GW quite accurately until close to the point of merger. We provide comparisons between the numerical results and analytical predictions based on the adiabatic post-Newtonian (PN) and nonadiabatic resummed-PN models (effective-one-body and Pade models). For all

  12. A low-volume cavity ring-down spectrometer for sample-limited applications

    Science.gov (United States)

    Stowasser, C.; Farinas, A. D.; Ware, J.; Wistisen, D. W.; Rella, C.; Wahl, E.; Crosson, E.; Blunier, T.

    2014-08-01

    In atmospheric and environmental sciences, optical spectrometers are used for the measurements of greenhouse gas mole fractions and the isotopic composition of water vapor or greenhouse gases. The large sample cell volumes (tens of milliliters to several liters) in commercially available spectrometers constrain the usefulness of such instruments for applications that are limited in sample size and/or need to track fast variations in the sample stream. In an effort to make spectrometers more suitable for sample-limited applications, we developed a low-volume analyzer capable of measuring mole fractions of methane and carbon monoxide based on a commercial cavity ring-down spectrometer. The instrument has a small sample cell (9.6 ml) and can selectively be operated at a sample cell pressure of 140, 45, or 20 Torr (effective internal volume of 1.8, 0.57, and 0.25 ml). We present the new sample cell design and the flow path configuration, which are optimized for small sample sizes. To quantify the spectrometer's usefulness for sample-limited applications, we determine the renewal rate of sample molecules within the low-volume spectrometer. Furthermore, we show that the performance of the low-volume spectrometer matches the performance of the standard commercial analyzers by investigating linearity, precision, and instrumental drift.

  13. Department of Nuclear Spectroscopy and Technique: Overview

    International Nuclear Information System (INIS)

    Kozlowski, T.

    1999-01-01

    Full text: During the last year, the activity of our department was spread over basic research in nuclear physics (standard spectroscopy, more exotic regions close to the elementary particle physics, theoretical studies of heavy ion interactions), high energy atomic physics, applications of and nuclear physics (environmental studies, effects of irradiation, ion production). Some effort was focused on teaching - actually, four Ph. D. students are working for their degrees. Some of us were involved in organisation and further activity of the ''Radioactive Waste'' exhibition in Swierk. Our research is performed on our facilities (C30 cyclotron, low background detection facility), and in close co-operation with the Heavy Ion Laboratory of the Warsaw University, Jagellonian University in Cracow, Military Technical Academy in Warsaw, Institute of Electronic Technology and Materials in Warsaw and some foreign centers like GSI in Darmstadt, MPI in Heidelberg and KFA in Juelich (Germany), PSI in Villigen (Switzerland), University of Notre Dame, Argonne National Lab., Lawrence Berkeley Lab. and Los Alamos National Lab. (USA). The reader is invited to find some of our recent results on the next pages; together with a list of publications. Nevertheless some activities are worth mentioning: Nuclear spectroscopic studies were concentrated on Z or N 50 nuclei - determination of excited level schemes of 182,183 Ir, 180,181,182 Os and 110 Sn and 132 Ce was continued and some new effects found. The most precise lifetime of the A hyperon in very heavy hypernuclei was measured(COSY-13 project). The search of muon number forbidden nuclear μ - e nuclear conversion was continued (SINDRUM II coll.). Heavy ion interactions leading to fusion or fission processes were studied theoretically, and the experiments are in preparation. The experimental studies of atomic effects in bare, H- and He- like very heavy atoms and X ray spectroscopy of heavy ion atomic collisions were continued at GSI

  14. Laser techniques for spectroscopy of core-excited atomic levels

    Science.gov (United States)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  15. Photoion spectroscopy of atoms using coincidence techniques

    International Nuclear Information System (INIS)

    Hayaishi, Tatsuji

    1990-01-01

    Interaction of atoms or molecules with photons causes many effects which are often obscured because of many decay paths from the event. To pick up an effect in the mixed-up ones, it is necessary to observe the decay path arising the effect alone. There is a coincidence technique in one of experimental means for the purpose of observing the decay path. In this article, two coincidence measurements are presented; a photoelectron-photoion coincidence technique and a threshold photoelectron-photoion coincidence technique. Furthermore, experimental facts of rare gases atoms obtained by the techniques are reviewed. (author)

  16. New positron annihilation spectroscopy techniques for thick materials

    International Nuclear Information System (INIS)

    Selim, F.A.; Wells, D.P.; Harmon, J.F.; Kwofie, J.; Erikson, G.; Roney, T.

    2003-01-01

    The Idaho Accelerator Center (IAC) has developed new techniques for positron annihilation spectroscopy (PAS) by using highly penetrating γ-rays to create positrons inside the material via pair production. Two sources of γ-rays have been employed. Bremsstrahlung beams from small-electron linacs (6 MeV) were used to generate positrons inside the material to perform Doppler-broadening spectroscopy. A 2 MeV proton beam was used to obtain coincident γ-rays from 27 Al target and enable lifetime and Doppler-broadening spectroscopy. This technique successfully measured stress/strain in thick samples, and showed promise to extend PAS into a variety of applications

  17. Novel information theory techniques for phonon spectroscopy

    International Nuclear Information System (INIS)

    Hague, J P

    2007-01-01

    The maximum entropy method (MEM) and spectral reverse Monte Carlo (SRMC) techniques are applied to the determination of the phonon density of states (PDOS) from heat-capacity data. The approach presented here takes advantage of the standard integral transform relating the PDOS with the specific heat at constant volume. MEM and SRMC are highly successful numerical approaches for inverting integral transforms. The formalism and algorithms necessary to carry out the inversion of specific heat curves are introduced, and where possible, I have concentrated on algorithms and experimental details for practical usage. Simulated data are used to demonstrate the accuracy of the approach. The main strength of the techniques presented here is that the resulting spectra are always physical: Computed PDOS is always positive and properly applied information theory techniques only show statistically significant detail. The treatment set out here provides a simple, cost-effective and reliable method to determine phonon properties of new materials. In particular, the new technique is expected to be very useful for establishing where interesting phonon modes and properties can be found, before spending time at large scale facilities

  18. Laser techniques for extreme-ultraviolet spectroscopy

    International Nuclear Information System (INIS)

    Harris, S.E.; Young, J.F.; Caro, R.G.; Falcone, R.W.; Holmgren, D.E.; Walker, D.J.; Wang, J.C.; Rothenberg, J.E.; Willison, J.R.

    1983-06-01

    In this paper we describe several techniques for using lasers to study core-excited energy levels in the spectral region between 10 eV and 100 eV. We are particularly interested in levels that are metastable against autoionization and, in some cases, against both autoionization and radiation

  19. Optical coherence techniques for plasma doppler spectroscopy

    International Nuclear Information System (INIS)

    Howard, J.; Michael, C.; Glass, F.; Cheetham, A.D.

    2000-01-01

    A new electro-optically Modulated Optical Solid-State (MOSS) interferometer has been constructed for measurement of the low order spectral moments of line emission from optically thin radiant media. The instrument, which is based on the principle of the Fourier transform spectrometer, has high etendue and is rugged, compact and inexpensive. By employing electro-optical path-length modulation techniques, the spectral information is transferred to the temporal frequency domain and can be obtained using a single photodetector. Specifically, the zeroth moment (brightness) is given by the average signal level, the first moment (shift) by the modulation phase and the second moment (line width) by the modulation amplitude. (author)

  20. Department of Nuclear Spectroscopy and Technique - Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, T. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1997-12-31

    Departamental at activity was concentrated on two different regions according to the Department`s name: ``spectroscopy`` (basic research) and ``technology`` (applications). Simultaneously, some effort was focused on teaching. Our research was activated by cooperation with several Polish, European and USA centres and by access to their experimental facilities like the C200 heavy ion cyclotron of the Warsaw University, the heavy ion accelerator complex at GSI in Darmstadt (Germany), PSI cyclotrons in Villigen (Switzerland), NORDBALL, ANL-UND BALL and GAMMASPHERE detectors. However, some results were also obtained using our C30 proton cyclotron, the crystal X-ray spectrometer installed on the SINS EAK electron accelerator and our low background gamma detection facility. On-line radioactive ion sources are under preparation in cooperation with our Department. Nevertheless, it is worthwhile to stress some highlights of 1996. i) Calculations of heavy ion collision dynamics were performed in cooperation with the SINS Theory Department and LBL at Berkeley (USA). It has been shown that the experimental data on the mean kinetic energies of fission fragments are not sufficient to distinguish between one-and two-body dissipation. The mass flow seems to be more sensitive to the dissipation mechanism. ii) A final analysis of the NORDBALL experiments on the excited states of nuclei in the vicinity of {sup 100}Sn. The level structures of {sup 90,101,} {sup 102,103}Cd, {sup 101,103,1O5}In and {sup 105}Sn are reasonably well described by the shell model. iii) The discovery of two high spin isomers in {sup {sup 1}83}Ir and two superdeformed bands in {sup 149}Tb in experiments at LBL on ANL-UND BALL and GAMMASPHERE detectors. iv) Determination of radionuclide concentration in the air, some plants and soil. In particular, the map of concentration of {sup 210}Pb in our soil is an unique achievement. v) Participation in the project of the flue gas treatment plant using the electron beam

  1. Department of Nuclear Spectroscopy and Technique - Overview

    International Nuclear Information System (INIS)

    Kozlowski, T.

    1997-01-01

    Departamental at activity was concentrated on two different regions according to the Department's name: ''spectroscopy'' (basic research) and ''technology'' (applications). Simultaneously, some effort was focused on teaching. Our research was activated by cooperation with several Polish, European and USA centres and by access to their experimental facilities like the C200 heavy ion cyclotron of the Warsaw University, the heavy ion accelerator complex at GSI in Darmstadt (Germany), PSI cyclotrons in Villigen (Switzerland), NORDBALL, ANL-UND BALL and GAMMASPHERE detectors. However, some results were also obtained using our C30 proton cyclotron, the crystal X-ray spectrometer installed on the SINS EAK electron accelerator and our low background gamma detection facility. On-line radioactive ion sources are under preparation in cooperation with our Department. Nevertheless, it is worthwhile to stress some highlights of 1996. i) Calculations of heavy ion collision dynamics were performed in cooperation with the SINS Theory Department and LBL at Berkeley (USA). It has been shown that the experimental data on the mean kinetic energies of fission fragments are not sufficient to distinguish between one-and two-body dissipation. The mass flow seems to be more sensitive to the dissipation mechanism. ii) A final analysis of the NORDBALL experiments on the excited states of nuclei in the vicinity of 100 Sn. The level structures of 90,101, 102,103 Cd, 101,103,1O5 In and 105 Sn are reasonably well described by the shell model. iii) The discovery of two high spin isomers in 1 83 Ir and two superdeformed bands in 149 Tb in experiments at LBL on ANL-UND BALL and GAMMASPHERE detectors. iv) Determination of radionuclide concentration in the air, some plants and soil. In particular, the map of concentration of 210 Pb in our soil is an unique achievement. v) Participation in the project of the flue gas treatment plant using the electron beam method for the 'Pomorzany' coal power plant

  2. Department of Nuclear Spectroscopy and Technique - Overview

    International Nuclear Information System (INIS)

    Sernicki, J.

    2005-01-01

    Full text:Research activities in our Department in the last year were focused on traditional domains of nuclear physics: heavy-ion reactions and nuclear spectroscopy, but also on medium-energy elementary particle physics, neutrino physics, as well as atomic physics. Along with the group of nuclear and atomic physicists, our Department encompasses a team working on medical physics and another team engaged in ecology and environmental physics. We maintain our collaboration with FZ Juelich (Germany) continuing experiments on the COSY storage ring, aimed at studying heavy hyperons produced in pp collisions. Recently, evidence for a new hyperon has been obtained. At PSI Villigen (Switzerland) rare pion- and muon decays have been studied using the large PIBETA detector. The branching ratio for the pion beta decay was measured with six times better accuracy than previously. From the precise measurements of the radiative pion decay the pion axial form factor was evaluated (four times more precisely). Some anomaly, which can not be explained by the Standard Model, was observed in this process. In the field of neutrino physics, data collected with the T600 module of the cosmic ray detector ICARUS in Pavia (Italy) have been analysed. In collaboration with the Department of Nuclear Theory, conditions to observe the fascinating process of neutrino-less double electron capture were further examined from the point of view of the fundamental question of the neutrino nature and mass. Our involvement in the CHIMERA/ISOSPIN Collaboration resulted in interesting studies of semi-peripheral nucleus-nucleus collisions at the Fermi energy range. In particular, a new method of determination of the time scale of the emission of intermediate mass fragments was developed. We continued the collaboration with LBNL Berkeley (USA) and IEP Warsaw University on a theoretical model of the synthesis of super-heavy elements. A comprehensive description of the model with extensive predictions of the

  3. Greenhouse Gas Dynamics in a Salt-Wedge Estuary Revealed by High Resolution Cavity Ring-Down Spectroscopy Observations.

    Science.gov (United States)

    Tait, Douglas R; Maher, Damien T; Wong, WeiWen; Santos, Isaac R; Sadat-Noori, Mahmood; Holloway, Ceylena; Cook, Perran L M

    2017-12-05

    Estuaries are an important source of greenhouse gases to the atmosphere, but uncertainties remain in the flux rates and production pathways of greenhouse gases in these dynamic systems. This study performs simultaneous high resolution measurements of the three major greenhouse gases (carbon dioxide, methane, and nitrous oxide) as well as carbon stable isotope ratios of carbon dioxide and methane, above and below the pycnocline along a salt wedge estuary (Yarra River estuary, Australia). We identified distinct zones of elevated greenhouse gas concentrations. At the tip of salt wedge, average CO 2 and N 2 O concentrations were approximately five and three times higher than in the saline mouth of the estuary. In anaerobic bottom waters, the natural tracer radon ( 222 Rn) revealed that porewater exchange was the likely source of the highest methane concentrations (up to 1302 nM). Isotopic analysis of CH 4 showed a dominance of acetoclastic production in fresh surface waters and hydrogenotrophic production occurring in the saline bottom waters. The atmospheric flux of methane (in CO 2 equivalent units) was a major (35-53%) contributor of atmospheric radiative forcing from the estuary, while N 2 O contributed <2%. We hypothesize that the release of bottom water gases when stratification episodically breaks down will release large pulses of greenhouse gases to the atmosphere.

  4. δ13C and δ18O measurements of carbonate rocks using Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Lucic, G.; Kim-Hak, D.; Curtis, J. H.

    2017-12-01

    We present a novel, user friendly and cost effective method for the analysis of δ13C and δ18O in CO2 gas obtained from acid digestion of carbonate rocks. 2 to 3 milligrams of pure carbonate, ground to a powder, is digested in a pre-evacuated glass vial using 100% phosphoric acid at 70° C. Vials with the reacted samples are then loaded onto an automated carousel sampler where produced CO2 gas in the headspace is extracted and sent to a Picarro CRDS isotopic C and O analyzer. Once loaded onto the carousel, 49 samples may be analyzed automatically at a rate of one sample every 15 minutes. δ13C and δ18O of the sample are reported in real time with a precision of 0.2 and 0.4 per mil, respectively. The portability and simplicity of the autosampler and CRDS setup opens up potential for permanent and mobile deployments, enabling near-realtime sampling feedback in the lab or on the go in the field. Consumable and operating costs are small when compared to other technology in use, making the CRDS-Carbonate system suitable for large and small research labs. Finally, we present a summary results from a series of validation tests in which standards and natural carbonate rock samples were analyzed and compared to traditional Kiel-IRMS results.

  5. Novel techniques in VUV high-resolution spectroscopy

    NARCIS (Netherlands)

    Ubachs, W.M.G.; Salumbides, E.J.; Eikema, K.S.E.; de Oliveira, N.; Nahon, L.

    2014-01-01

    Novel VUV sources and techniques for VUV spectroscopy are reviewed. Laser-based VUV sources have been developed via non-linear upconversion of laser pulses in the nanosecond (ns), the picosecond (ps), and femtosecond (fs) domain, and are applied in high-resolution gas phase spectroscopic studies.

  6. Carbon isotope systematics of Turrialba volcano, Costa Rica, using a portable cavity ring-down spectrometer

    Science.gov (United States)

    Malowany, K. S.; Stix, J.; de Moor, J. M.; Chu, K.; Lacrampe-Couloume, G.; Sherwood Lollar, B.

    2017-07-01

    Over the past two decades, activity at Turrialba volcano, Costa Rica, has shifted from hydrothermal to increasingly magmatic in character, with enhanced degassing and eruption potential. We have conducted a survey of the δ13C signatures of gases at Turrialba using a portable field-based CRDS with comparison to standard IRMS techniques. Our δ13C results of the volcanic plume, high-temperature vents, and soil gases reveal isotopic heterogeneity in the CO2 gas composition at Turrialba prior to its recent phase of eruptive activity. The isotopic value of the regional fault system, Falla Ariete (-3.4 ± 0.1‰), is in distinct contrast with the Central crater gases (-3.9 ± 0.1‰) and the 2012 high-temperature vent (-4.4 ± 0.2‰), an indication that spatial variability in δ13C may be linked to hydrothermal transport of volcanic gases, heterogeneities in the source composition, or magmatic degassing. Isotopic values of CO2 samples collected in the plume vary from δ13C of -5.2 to -10.0‰, indicative of mixing between atmospheric CO2 (-9.2 ± 0.1‰), and a volcanic source. We compare the Keeling method to a traditional mixing model (hyperbolic mixing curve) to estimate the volcanic source composition at Turrialba from the plume measurements. The predicted source compositions from the Keeling and hyperbolic methods (-3.0 ± 0.5‰ and -3.9 ± 0.4‰, respectively) illustrate two potential interpretations of the volcanic source at Turrialba. As of the 29 October 2014, Turrialba has entered a new eruptive period, and continued monitoring of the summit gases for δ13C should be conducted to better understand the dominant processes controlling δ13C fractionation at Turrialba.

  7. Hydrogen and Oxygen stable isotope analysis of water in fruits and vegetables by using cavity ring-down spectrometry

    International Nuclear Information System (INIS)

    Suzuki, Yaeko

    2016-01-01

    We determined oxygen and hydrogen stable isotope ratios (δ"1"8O and δD) of water in fruits (citrus) and vegetables (ginger) using cavity ring-down spectrometry (CRDS) for assessment of their authenticity. The δ"1"8O and δD values of fruits and straight juice had higher than those of concentrated juice. The citrus fruits from Japan had relatively lower δ"1"8O and δD values of than those from Australia, South Africa and the United States. The δD values and d-excess of ginger samples from Japan were relatively higher than those of ginger samples from China. The δ"1"8O and δD values of water in fruits and vegetables would be representative of the ambient water, depending on geographical parameters such as the latitude and altitude. These results suggested that δ"1"8O and δD values of water in fruits and vegetables by using CRDS would be potentially useful for assessment of their authenticity. (author)

  8. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  9. Imprint of the merger and ring-down on the gravitational wave background from black hole binaries coalescence

    Science.gov (United States)

    Marassi, S.; Schneider, R.; Corvino, G.; Ferrari, V.; Portegies Zwart, S.

    2011-12-01

    We compute the gravitational wave background (GWB) generated by a cosmological population of black hole-black hole (BH-BH) binaries using hybrid waveforms recently produced by numerical simulations of (BH-BH) coalescence, which include the inspiral, merger, and ring-down contributions. A large sample of binary systems is simulated using the population synthesis code SeBa, and we extract fundamental statistical information on (BH-BH) physical parameters (primary and secondary BH masses, orbital separations and eccentricities, formation, and merger time scales). We then derive the binary birth and merger rates using the theoretical cosmic star formation history obtained from a numerical study which reproduces the available observational data at redshifts zrate of 0.85Mpc-3Myr-1. Third generation detectors, such as the Einstein Telescope (ET), could reveal the GWB from the inspiral phase predicted by any of the considered models. In addition, ET could sample the merger phase of the evolution at least for models which predict local merger rates between [0.053-0.85]Mpc-3Myr-1, which are more than a factor 2 lower than the upper limit inferred from the analysis of the LIGO S5 run [J. Abadie , Phys. Rev. DPRVDAQ1550-7998 83, 122005 (2011)10.1103/PhysRevD.83.122005]. The frequency dependence and amplitude of the GWB generated during the coalescence is very sensitive to the adopted core mass threshold for BH formation. This opens up the possibility to better understand the final stages of the evolution of massive stellar binaries using observational constraints on the associated gravitational wave emission.

  10. Cavity Ring-Down Absorption of O2 in Air as a Temperature Sensor for an Open and a Cryogenic Optical Cavity.

    Science.gov (United States)

    Nyaupane, Parashu R; Perez-Delgado, Yasnahir; Camejo, David; Wright, Lesley M; Manzanares, Carlos E

    2017-05-01

    The A-band of oxygen has been measured at low resolution at temperatures between 90 K and 373 K using the phase shift cavity ring down (PS-CRD) technique. For temperatures between 90 K and 295 K, the PS-CRD technique presented here involves an optical cavity attached to a cryostat. The static cell and mirrors of the optical cavity are all inside a vacuum chamber at the same temperature of the cryostat. The temperature of the cell can be changed between 77 K and 295 K. For temperatures above 295 K, a hollow glass cylindrical tube without windows has been inserted inside an optical cavity to measure the temperature of air flowing through the tube. The cavity consists of two highly reflective mirrors which are mounted parallel to each other and separated by a distance of 93 cm. In this experiment, air is passed through a heated tube. The temperature of the air flowing through the tube is determined by measuring the intensity of the oxygen absorption as a function of the wavenumber. The A-band of oxygen is measured between 298 K and 373 K, with several air flow rates. To obtain the temperature, the energy of the lower rotational state for seven selected rotational transitions is linearly fitted to a logarithmic function that contains the relative intensity of the rotational transition, the initial and final rotational quantum numbers, and the energy of the transition. Accuracy of the temperature measurement is determined by comparing the calculated temperature from the spectra with the temperature obtained from a calibrated thermocouple inserted at the center of the tube. This flowing air temperature sensor will be used to measure the temperatures of cooling air at the input (cold air) and output (hot air) after cooling the blades of a laboratory gas turbine. The results could contribute to improvements in turbine blade cooling design.

  11. A method for estimating time-frequency characteristics of compact binary mergers to improve searches for inspiral, merger and ring-down phases separately

    International Nuclear Information System (INIS)

    Hanna, Chad; Megevand, Miguel; Palenzuela, Carlos; Ochsner, Evan

    2009-01-01

    Recent advances in the description of compact binary systems have produced gravitational waveforms that include inspiral, merger and ring-down phases. Comparing results from numerical simulations with those of post-Newtonian, and related, expansions has provided motivation for employing post-Newtonian waveforms in near merger epochs when searching for gravitational waves and has encouraged the development of analytic fits to full numerical waveforms. Until searches employ full waveforms as templates, data analysts can still conduct separate inspiral, merger and ring-down searches. Improved knowledge about the end of the inspiral phase, the beginning of the merger and the ring-down frequencies will increase the efficiency of searches over each phase separately without needing the exact waveform. We will show that knowledge of the final spin, of which there are many theoretical models and analytic fits to simulations, may give an insight into the time-frequency properties of the merger. We also present implications on the ability to probe the tidal disruption of neutron stars through gravitational waves.

  12. Development of infrared spectroscopy techniques for environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sandsten, Jonas

    2000-08-01

    Infrared spectroscopy techniques have long been utilized in identifying and quantifying species of interest to us. Many of the elementary molecules in the atmosphere interact with infrared radiation through their ability to absorb and emit energy in vibrational and rotational transitions. A large variety of methods for monitoring of molecules and aerosol particles by collecting samples or by using remote sensing methods are available. The objective of the work presented in this thesis was to develop infrared spectroscopic techniques to further enhance the amount of useful information obtained from gathering spectral data. A new method for visualization and quantification of gas flows based on gas-correlation techniques was developed. Real-time imaging of gas leaks and incomplete or erratic flare combustion of ethene was demonstrated. The method relies on the thermal background as a radiation source and the gas can be visualized in absorption or in emission depending on the temperature difference. Diode laser spectroscopy was utilized to monitor three molecular species at the same time and over the same path. Two near-infrared diode lasers beams were combined in a periodically poled lithium niobate crystal and by difference-frequency generation a third beam was created, enabling simultaneous monitoring of oxygen, water vapor and methane. Models of aerosol particle cross sections were used to simulate the diffraction pattern of light scattered by fibers, spherical particles and real particles, such as pollen, through a new aerosol particle sensing prototype. The instrument, using a coupled cavity diode laser, has been designed with a ray-tracing program and the final prototype was employed for single aerosol particle sizing and identification.

  13. Advanced techniques in actinide spectroscopy (ATAS 2014). Abstract book

    International Nuclear Information System (INIS)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin

    2014-01-01

    In 2012, The Institute of Resource Ecology at the Helmholtz-Zentrum Dresden Rossendorf organized the first international workshop of Advanced Techniques in Actinide Spectroscopy (ATAS). A very positive feedback and the wish for a continuation of the workshop were communicated from several participants to the scientific committee during the workshop and beyond. Today, the ATAS workshop has been obviously established as an international forum for the exchange of progress and new experiences on advanced spectroscopic techniques for international actinide and lanthanide research. In comparison to already established workshops and conferences on the field of radioecology, one main focus of ATAS is to generate synergistic effects and to improve the scientific discussion between spectroscopic experimentalists and theoreticians. The exchange of ideas in particular between experimental and theoretical applications in spectroscopy and the presentation of new analytical techniques are of special interest for many research institutions working on the improvement of transport models of toxic elements in the environment and the food chain as well as on reprocessing technologies of nuclear and non-nuclear waste. Spectroscopic studies in combination with theoretical modelling comprise the exploration of molecular mechanisms of complexation processes in aqueous or organic phases and of sorption reactions of the contaminants on mineral surfaces to obtain better process understanding on a molecular level. As a consequence, predictions of contaminant's migration behaviour will become more reliable and precise. This can improve the monitoring and removal of hazardous elements from the environment and hence, will assist strategies for remediation technologies and risk assessment. Particular emphasis is placed on the results of the first inter-laboratory Round-Robin test on actinide spectroscopy (RRT). The main goal of RRT is the comprehensive molecular analysis of the actinide complex

  14. Advanced techniques in actinide spectroscopy (ATAS 2014). Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin (eds.)

    2014-07-01

    In 2012, The Institute of Resource Ecology at the Helmholtz-Zentrum Dresden Rossendorf organized the first international workshop of Advanced Techniques in Actinide Spectroscopy (ATAS). A very positive feedback and the wish for a continuation of the workshop were communicated from several participants to the scientific committee during the workshop and beyond. Today, the ATAS workshop has been obviously established as an international forum for the exchange of progress and new experiences on advanced spectroscopic techniques for international actinide and lanthanide research. In comparison to already established workshops and conferences on the field of radioecology, one main focus of ATAS is to generate synergistic effects and to improve the scientific discussion between spectroscopic experimentalists and theoreticians. The exchange of ideas in particular between experimental and theoretical applications in spectroscopy and the presentation of new analytical techniques are of special interest for many research institutions working on the improvement of transport models of toxic elements in the environment and the food chain as well as on reprocessing technologies of nuclear and non-nuclear waste. Spectroscopic studies in combination with theoretical modelling comprise the exploration of molecular mechanisms of complexation processes in aqueous or organic phases and of sorption reactions of the contaminants on mineral surfaces to obtain better process understanding on a molecular level. As a consequence, predictions of contaminant's migration behaviour will become more reliable and precise. This can improve the monitoring and removal of hazardous elements from the environment and hence, will assist strategies for remediation technologies and risk assessment. Particular emphasis is placed on the results of the first inter-laboratory Round-Robin test on actinide spectroscopy (RRT). The main goal of RRT is the comprehensive molecular analysis of the actinide

  15. A new cavity ring-down instrument for airborne monitoring of N2O5, NO3, NO2 and O3 in the upper troposphere lower stratosphere

    Science.gov (United States)

    Ruth, Albert A.; Brown, Steven S.; Dinesan, Hemanth; Dubé, William P.; Goulette, Marc; Hübler, Gerhard; Orphal, Johannes; Zahn, Andreas

    2016-04-01

    The chemistry of NO3 and N2O5 is important to the regulation of both tropospheric and stratospheric ozone. In situ detection of NO3 and N2O5 in the upper troposphere lower stratosphere (UTLS) represents a new scientific direction as the only previous measurements of these species in this region of the atmosphere has been via remote sensing techniques. Because both the sources and the sinks for NO3 and N2O5 are potentially stratified spatially, their mixing ratios, and their influence on nitrogen oxide and ozone transport and loss at night can show large variability as a function of altitude. Aircraft-based measurements of heterogeneous N2O5 uptake in the lower troposphere have uncovered a surprising degree of variability in the uptake coefficient [1], but there are no corresponding high altitude measurements.The UTLS is routinely sampled by the IAGOS-CARIBIC program (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container, www.caribic-atmospheric.com), a European infrastructural program with the aim of studying the chemistry and transport across this part of the atmosphere. An airfreight container with 15 different automated instruments from 8 European research partners is utilized on board a commercial Lufthansa airbus 340-600 to monitor ~ 100 atmospheric species (trace gases and aerosol parameters) in the UTLS. The instrumentation in the CARIBIC container is now to be supplemented by a new cavity ring-down device for monitoring nitrogen oxides, jointly developed by researchers from Cork (Ireland), Boulder (USA) and Karlsruhe (Germany). The compact and light-weight instrument is designed to monitor not only NO3 and N2O5, but also NO2 and O3. The detection is based on 4 high-finesse optical cavities (cavity length ~ 44 cm). Two cavities are operated at 662 nm (maximum absorption of NO3), the other two at 405 nm (maximum absorption of NO2). The inlet to one of the (662)-cavities is heated in order to thermally decompose N2O5

  16. Preliminary detection of explosive standard components with Laser Raman Technique

    International Nuclear Information System (INIS)

    Botti, S.; Ciardi, R.

    2008-01-01

    Presently, our section is leader of the ISOTREX project (Integrated System for On-line TRace EXplosives detection in solid, liquid and vapour state), funded in the frame of the PASR 2006 action (Preparatory Action on the enhancement of the European industrial potential in the field of Security Research Preparatory Action) of the 6. EC framework. ISOTREX project will exploit the capabilities of different laser techniques as LIBS (Laser Induced Breakdown Spectroscopy), LPA (Laser Photo Acustic) and CRDS (Cavity Ring Down Spectroscopy) to monitor explosive traces. In this frame, we extended our investigation also to the laser induced Raman effect spectroscopy, in order to investigate its capabilities and possible future integration. We analysed explosive samples in bulk solid phase, diluted liquid phase and as evaporated films over suitable substrate. In the following, we present the main results obtained, outlining preliminary conclusions [it

  17. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Matthew W. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  18. Effective approach to spectroscopy and spectral analysis techniques using Matlab

    Science.gov (United States)

    Li, Xiang; Lv, Yong

    2017-08-01

    With the development of electronic information, computer and network, modern education technology has entered new era, which would give a great impact on teaching process. Spectroscopy and spectral analysis is an elective course for Optoelectronic Information Science and engineering. The teaching objective of this course is to master the basic concepts and principles of spectroscopy, spectral analysis and testing of basic technical means. Then, let the students learn the principle and technology of the spectrum to study the structure and state of the material and the developing process of the technology. MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and fourth-generation programming language. A proprietary programming language developed by MathWorks, MATLAB allows matrix manipulations, plotting of functions and data, Based on the teaching practice, this paper summarizes the new situation of applying Matlab to the teaching of spectroscopy. This would be suitable for most of the current school multimedia assisted teaching

  19. Chlorococcalean microalgae Ankistrodesmus convolutes biodiesel characterization with Fourier transform-infrared spectroscopy and gas chromatography mass spectroscopy techniques

    Directory of Open Access Journals (Sweden)

    Swati SONAWANE

    2015-12-01

    Full Text Available The Chlorococcalean microalgae Ankistrodesmus convolutes was found in fresh water Godawari reservoir, Ahmednagar district of Maharashtra State, India. Microalgae are modern biomass for the production of liquid biofuel due to its high solar cultivation efficiency. The collection, harvesting and drying processes were play vital role in converting algal biomass into energy liquid fuel. The oil extraction was the important step for the biodiesel synthesis. The fatty acid methyl ester (FAME synthesis was carried through base catalyzed transesterification method. The product was analyzed by using the hyphened techniques like Fourier Transform-Infrared spectroscopy (FT-IR and Gas Chromatography Mass Spectroscopy (GCMS. FT-IR Spectroscopy was results the ester as functional group of obtained product while the Gas Chromatography Mass Spectroscopy was results the six type of fatty acid methyl ester with different concentration. Ankistrodesmus convolutes biodiesel consist of 46.5% saturated and 49.14% unsaturated FAME.

  20. Laser-induced breakdown spectroscopy (LIBS): a new spectrochemical technique

    International Nuclear Information System (INIS)

    Radziemski, L.J.; Loree, T.R.; Cremers, D.A.

    1982-01-01

    We have used the breakdown spark from a focused laser beam to generate analytically useful emission spectra of minor constituents in air and other carrier gases. The medium was sampled directly. It was not necessary to reduce the sample to solution nor to introduce electrodes. The apparatus is particularly simple; a pulsed laser, spectrometer, and some method for time resolution. The latter is essential in laser-induced-breakdown spectroscopy (LIBS) because of the strong early continuum. High temperatures in the spark result in vaporization of small particles, dissociation of molecules, and excitation of atomic and ionic spectra, including species which are normally difficult to detect. In one application, we have monitored beryllium in air at conventrations below 1 μg/m 3 , which is below 1 ppB (w/w). In another we have monitored chlorine and fluorine atoms in real time. LIBS has the potential for real-time direct sampling of contaminants in situ

  1. Modern techniques in galaxy kinematics : Results from planetary nebula spectroscopy

    NARCIS (Netherlands)

    Romanowsky, AJ; Douglas, NG; Kuijken, K; Arnaboldi, M; Gerssen, J; Merrifield, MR; Kwok, S; Dopita, M; Sutherland, R

    2003-01-01

    We have observed planetary nebulae (PNe) in several early-type galaxies using new techniques on 4- to 8-meter-class telescopes. We obtain the first large data sets (greater than or similar to 100 velocities each) of PN kinematics in galaxies at greater than or similar to 15 Mpc, and present some

  2. Laser sources and techniques for spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kung, A.H. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This program focuses on the development of novel laser and spectroscopic techniques in the IR, UV, and VUV regions for studying combustion related molecular dynamics at the microscopic level. Laser spectroscopic techniques have proven to be extremely powerful in the investigation of molecular processes which require very high sensitivity and selectivity. The authors approach is to use quantum electronic and non-linear optical techniques to extend the spectral coverage and to enhance the optical power of ultrahigh resolution laser sources so as to obtain and analyze photoionization, fluorescence, and photoelectron spectra of jet-cooled free radicals and of reaction products resulting from unimolecular and bimolecular dissociations. New spectroscopic techniques are developed with these sources for the detection of optically thin and often short-lived species. Recent activities center on regenerative amplification of high resolution solid-state lasers, development of tunable high power mid-IR lasers and short-pulse UV/VUV tunable lasers, and development of a multipurpose high-order suppressor crossed molecular beam apparatus for use with synchrotron radiation sources. This program also provides scientific and technical support within the Chemical Sciences Division to the development of LBL`s Combustion Dynamics Initiative.

  3. Cavity Ring-Down Measurement of Aerosol Optical Properties During the Asian Dust Above Monterey Experiment and DOE Aerosol Intensive Operating Period

    Science.gov (United States)

    Ricci, K.; Strawa, A. W.; Provencal, R.; Castaneda, R.; Bucholtz, A.; Schmid, B.

    2004-01-01

    Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300/Mm with an estimated precision of 0.1/Mm for 1550 nm light and 0.2/Mm for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects. We present comparisons between the Cadenza measurements and those from a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS 14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.

  4. Tunable diode laser spectroscopy as a technique for combustion diagnostics

    International Nuclear Information System (INIS)

    Bolshov, M.A.; Kuritsyn, Yu.A.; Romanovskii, Yu.V.

    2015-01-01

    Tunable diode laser absorption spectroscopy (TDLAS) has become a proven method of rapid gas diagnostics. In the present review an overview of the state of the art of TDL-based sensors and their applications for measurements of temperature, pressure, and species concentrations of gas components in harsh environments is given. In particular, the contemporary tunable diode laser systems, various methods of absorption detection (direct absorption measurements, wavelength modulation based phase sensitive detection), and relevant algorithms for data processing that improve accuracy and accelerate the diagnostics cycle are discussed in detail. The paper demonstrates how the recent developments of these methods and algorithms made it possible to extend the functionality of TDLAS in the tomographic imaging of combustion processes. Some prominent examples of applications of TDL-based sensors in a wide range of practical combustion aggregates, including scramjet engines and facilities, internal combustion engines, pulse detonation combustors, and coal gasifiers, are given in the final part of the review. - Highlights: • Overview of modern TDL-based sensors for combustion • TDL systems, methods of absorption detection and algorithms of data processing • Prominent examples of TDLAS diagnostics of the combustion facilities • Extension of the TDLAS on the tomographic imaging of combustion processes

  5. New directions in point-contact spectroscopy based on scanning tunneling microscopy techniques (Review Article)

    International Nuclear Information System (INIS)

    Tartaglini, E.; Verhagen, T.G.A.; Galli, F.; Trouwborst, M.L.; Aarts, J.; Van-Ruitebbeek, J.M.; Muller, R.; Shiota, T.

    2013-01-01

    Igor Yanson showed 38 years ago for the first time a point-contact measurement where he probed the energy resolved spectroscopy of the electronic scattering inside the metal. Since this first measurement, the pointcontact spectroscopy (PCS) technique improved enormously. The application of the scanning probe microscopy (SPM) techniques in the late 1980s allowed achieving contacts with a diameter of a single atom. With the introduction of the mechanically controlled break junction technique, even spectroscopy on freely suspended chains of atoms could be performed. In this paper, we briefly review the current developments of PCS and show recent experiments in advanced scanning PCS based on SPM techniques. We describe some results obtained with both needle-anvil type of point contacts and scanning tunneling microscopy (STM). We also show our first attempt to lift up with a STM a chain of single gold atoms from a Au(110) surface.

  6. PAT challenges routine techniques on defect spectroscopy in material science

    International Nuclear Information System (INIS)

    Badawi, E.A.

    2005-01-01

    Atomic or Point Defects are the most simple defects in solids. Due to the small size their direct observation by the routine techniques is not possible. A single type of defects (thermal defect) was observed in the quenching process. Using the Arrhenius method and threshold method we recommended the accurate both method of treatments. The calculated values for formation enthalpies and self-diffusion using positron lifetime and Doppler broadening in a good agreement in (A356.0) and (A413.1). Specifically it is show how PAT detect defect concentrations, (formation- migration) enthalpies and grain size for the material under investigation. Most of the these data are reported

  7. The application of near infrared spectroscopy (NIR technique for

    Directory of Open Access Journals (Sweden)

    Sandor Barabassy

    2001-06-01

    Full Text Available The production of cow’s milk in Hungary fluctuates by 15-20 % annualy. Surplus milk is dried into powder and can also be converted to modified milk powders using techniques such as ultra filtration. From approximetely 20.000 tonnes, of all milk powder types, 3.000 tonnes, is converted using ultra filtration technology. Multivariable near infrared (NIR calibration was performed on powder mixtures of whole milk, skimmed milk, whey, retenate (protein concentrate and lactose for rapid fat, protein, lactose, water and ash content determination. More than 150 samples were prepared and measured in two NIRS labs (Scottish Agriculture College – SAC – Aberdeen and University of Horticulture and Food Science - UHFS – Budapest. The results obtained from the same samples were compared. The aims of the study were: 1. Rapid quantitative and qualitative determination of mixtures of milk powder products using NIR technique. 2. Comparison of the results achieved in Aberdeen (SAC and Budapest (UHFS institutes. The mass per cent varied between 0.0-2.8% for fat, 0.0-80% for protein, 6.6-100 % for lactose, 0.0-5.0 % for water and 0.0-8.0 % for ash. High correlation coefficients (0.97-0.99 were found for all five components.

  8. Beam synchronous detection techniques for X-Ray spectroscopy

    International Nuclear Information System (INIS)

    Goujon, Gérard; Rogalev, Andreï; Goulon, José; Feite, Serge; Wilhelm, Fabrice

    2013-01-01

    The Photo diode detectors combine a set of properties that make them most appropriate, in particular, for X-ray Magnetic Circular Dichroism (XMCD) experiments. Under standard operating conditions, the detection bandwidth is primarily limited by the transimpedance preamplifier that converts the very low ac photocurrent into a voltage. On the other hand, when the photodiode is reverse biased, its finite shunt resistance will cause an undesirable, temperature dependent DC dark current. The best strategy to get rid of it is to use synchronous detection techniques. A classical implementation is based on the use of a chopper modulating the X-ray beam intensity at rather low frequencies (typically below 1 kHz). Here we report on the recent development of a fast Xray detection which has the capability to fully exploit the frequency structure of the ESRF X-ray beam (355 KHz and its harmonics). The availability of new wide band preamplifiers allowed us to extend the working frequency range up to a few MHz. A beam synchronous data processing was implemented in large FPGAs. Performances of the new detection system implemented at the ESRF beamline ID12 are illustrated with detection of the Fe K-edge XMCD spectra in garnets, using 4 bunches operation mode with modulation frequency of 1.4 MHz.

  9. Biological mineralization of iron: Studies using Moesbauer spectroscopy and complementary techniques

    International Nuclear Information System (INIS)

    Webb, J.; Kim, K.S.; Tran, K.C.; Pierre, T.G.S.

    1988-01-01

    Biological deposition of solid Fe-containing phases can be studied using 57 Fe Moessbauer spectroscopy. Other techniques are needed in order to understand this complex process. These include proton-induced X-ray and γ-ray emission (PIXE/PIGME), electron microscopy, electron and X-ray diffraction, infrared spectroscopy and chemical characterization of organic components. This paper reviews and evaluates the application of these techniques to biological mineralization of Fe, particularly that occurring in the radula teeth of the marine molluscs, chitons and limpets. (orig.)

  10. Spectroscopic techniques in the study of human tissues and their components. Part I: IR spectroscopy.

    Science.gov (United States)

    Olsztyńska-Janus, Sylwia; Szymborska-Małek, Katarzyna; Gąsior-Głogowska, Marlena; Walski, Tomasz; Komorowska, Małgorzata; Witkiewicz, Wojciech; Pezowicz, Celina; Kobielarz, Magdalena; Szotek, Sylwia

    2012-01-01

    Among the currently used methods of monitoring human tissues and their components many types of research are distinguished. These include spectroscopic techniques. The advantage of these techniques is the small amount of sample required, the rapid process of recording the spectra, and most importantly in the case of biological samples - preparation of tissues is not required. In this work, vibrational spectroscopy: ATR-FTIR and Raman spectroscopy will be used. Studies are carried out on tissues: tendons, blood vessels, skin, red blood cells and biological components: amino acids, proteins, DNA, plasma, and deposits.

  11. Tutorial: Junction spectroscopy techniques and deep-level defects in semiconductors

    Science.gov (United States)

    Peaker, A. R.; Markevich, V. P.; Coutinho, J.

    2018-04-01

    The term junction spectroscopy embraces a wide range of techniques used to explore the properties of semiconductor materials and semiconductor devices. In this tutorial review, we describe the most widely used junction spectroscopy approaches for characterizing deep-level defects in semiconductors and present some of the early work on which the principles of today's methodology are based. We outline ab-initio calculations of defect properties and give examples of how density functional theory in conjunction with formation energy and marker methods can be used to guide the interpretation of experimental results. We review recombination, generation, and trapping of charge carriers associated with defects. We consider thermally driven emission and capture and describe the techniques of Deep Level Transient Spectroscopy (DLTS), high resolution Laplace DLTS, admittance spectroscopy, and scanning DLTS. For the study of minority carrier related processes and wide gap materials, we consider Minority Carrier Transient Spectroscopy (MCTS), Optical DLTS, and deep level optical transient spectroscopy together with some of their many variants. Capacitance, current, and conductance measurements enable carrier exchange processes associated with the defects to be detected. We explain how these methods are used in order to understand the behaviour of point defects and the determination of charge states and negative-U (Hubbard correlation energy) behaviour. We provide, or reference, examples from a wide range of materials including Si, SiGe, GaAs, GaP, GaN, InGaN, InAlN, and ZnO.

  12. Development of accelerator-based γ-ray-induced positron annihilation spectroscopy technique

    International Nuclear Information System (INIS)

    Selim, F.A.; Wells, D.P.; Harmon, J. F.; Williams, J.

    2005-01-01

    Accelerator-based γ-ray-induced positron annihilation spectroscopy performs positron annihilation spectroscopy by utilizing MeV bremsstrahlung radiation generated from an accelerator (We have named the technique 'accelerator-based γ-ray-induced PAS', even though 'bremsstrahlung' is more correct here than 'γ rays'. The reason for that is to make the name of the technique more general, since PAS may be performed by utilizing MeV γ rays emitted from nuclei through the use of accelerators as described later in this article and as in the case of positron lifetime spectroscopy [F.A. Selim, D.P. Wells, and J.F. Harmon, Rev. Sci. Instrum. 76, 033905 (2005)].) instead of using positrons from radioactive sources or positron beams. MeV γ rays create positrons inside the materials by pair production. The induced positrons annihilate with the material electrons emitting a 511-keV annihilation radiation. Doppler broadening spectroscopy of the 511-keV radiation provides information about open-volume defects and plastic deformation in solids. The high penetration of MeV γ rays allows probing of defects at high depths in thick materials up to several centimeters, which is not possible with most of the current nondestructive techniques. In this article, a detailed description of the technique will be presented, including its benefits and limitations relative to the other nondestructive methods. Its application on the investigation of plastic deformation in thick steel alloys will be shown

  13. Development of High Field MR Imaging and Spectroscopy Techniques of the Prostate

    NARCIS (Netherlands)

    Arteaga de Castro, C.S.

    2013-01-01

    This thesis summarizes the work of the development of new techniques for obtaining magnetic resonance imaging (MRI) and spectroscopy (MRS) of the prostate at the ultra high field of 7 tesla (T). The 7 T field strength presents various challenges such as the shortening of the wavelength and the lower

  14. Using Essential Oils to Teach Advanced-Level Organic Chemistry Separation Techniques and Spectroscopy

    Science.gov (United States)

    Bott, Tina M.; Wan, Hayley

    2013-01-01

    Students sometimes have difficulty grasping the importance of when and how basic distillation techniques, column chromatography, TLC, and basic spectroscopy (IR and NMR) can be used to identify unknown compounds within a mixture. This two-part experiment uses mixtures of pleasant-smelling, readily available terpenoid compounds as unknowns to…

  15. The Generalized Multipole Technique for the Simulation of Low-Loss Electron Energy Loss Spectroscopy

    DEFF Research Database (Denmark)

    Kiewidt, Lars; Karamehmedovic, Mirza

    2018-01-01

    In this study, we demonstrate the use of a Generalized Multipole Technique (GMT) to simulate low-loss Electron Energy Loss Spectroscopy (EELS) spectra of isolated spheriodal nanoparticles. The GMT provides certain properties, such as semi-analytical description of the electromagnetic fields...

  16. Using Moessbauer spectroscopy as key technique in the investigation of nanosized magnetic particles for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Morais, P. C., E-mail: pcmor@unb.br [Universidade de Brasilia, Nucleo de Fisica Aplicada, Instituto de Fisica (Brazil)

    2008-01-15

    This paper describes how cobalt ferrite nanoparticles, suspended as ionic or biocompatible magnetic fluids, can be used as a platform to built complex nanosized magnetic materials, more specifically magnetic drug delivery systems. In particular, the paper is addressed to the discussion of the use of the Moessbauer spectroscopy as an extremely useful technique in supporting the investigation of key aspects related to the properties of the hosted magnetic nanosized particle. Example of the use of the Moessbauer spectroscopy in accessing information regarding the nanoparticle modification due to the empirical process which provides long term chemical stability is included in the paper.

  17. Electron spectroscopy

    International Nuclear Information System (INIS)

    Hegde, M.S.

    1979-01-01

    An introduction to the various techniques in electron spectroscopy is presented. These techniques include: (1) UV Photoelectron spectroscopy, (2) X-ray Photoelectron spectroscopy, (3) Auger electron spectroscopy, (4) Electron energy loss spectroscopy, (5) Penning ionization spectroscopy and (6) Ion neutralization spectroscopy. The radiations used in each technique, the basis of the technique and the special information obtained in structure determination in atoms and molecules by each technique are summarised. (A.K.)

  18. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  19. Correlation between near infrared spectroscopy and electrical techniques in measuring skin moisture content

    International Nuclear Information System (INIS)

    Mohamad, M; Sabbri, A R M; Jafri, M Z Mat; Omar, A F

    2014-01-01

    Near infrared (NIR) spectroscopy technique serves as an important tool for the measurement of moisture content of skin owing to the advantages it has over the other techniques. The purpose of the study is to develop a correlation between NIR spectrometer with electrical conventional techniques for skin moisture measurement. A non-invasive measurement of moisture content of skin was performed on different part of human face and hand under control environment (temperature 21 ± 1 °C, relative humidity 45 ± 5 %). Ten healthy volunteers age between 21-25 (male and female) participated in this study. The moisture content of skin was measured using DermaLab ® USB Moisture Module, Scalar Moisture Checker and NIR spectroscopy (NIRQuest). Higher correlation was observed between NIRQuest and Dermalab moisture probe with a coefficient of determination (R 2 ) above 70 % for all the subjects. However, the value of R 2 between NIRQuest and Moisture Checker was observed to be lower with the R 2 values ranges from 51.6 to 94.4 %. The correlation of NIR spectroscopy technique successfully developed for measuring moisture content of the skin. The analysis of this correlation can help to establish novel instruments based on an optical system in clinical used especially in the dermatology field

  20. Analysis of relaxing laser-induced plasmas by absorption spectroscopy: Toward a new quantitative diagnostic technique

    International Nuclear Information System (INIS)

    Ribiere, M.; Cheron, B.G.

    2010-01-01

    Broad-band near UV absorption spectroscopy was used to analyze atmospheric laser-induced plasmas formed on metallic and refractory targets. When the common emission spectroscopy only provides the density of the radiating atomic excited states, the technique reported in this paper is able to achieve high spatial resolution in the measurement of absolute number densities in expanding laser-induced plasmas. The reliability and the versatility of this technique, which is based on the comparison between results of the numerical integration of the radiative transfer equation and experimental spectra, were tested on different targets. The evolutions in time and space of the absolute population of the plasma species originating from metallic alloys (Al-Mg and Cu-Ni) and refractory materials (C/SiC) were achieved over large time scales. Owing to its accuracy, this absorption technique (that we call 'LIPAS' for Laser Induced Plasma Absorption Spectroscopy) should bring a new and enhanced support to the validation of collisional-radiative models attempting to provide reliable evolutions of laser-induced plasmas.

  1. Dielectric spectroscopy technique applied to study the behaviour of irradiated polymer

    International Nuclear Information System (INIS)

    Saoud, R.; Soualmia, A.; Guerbi, C.A.; Benrekaa, N.

    2006-01-01

    Relaxation spectroscopy provides an excellent method for the study of motional processes in materials and has been widely applied to macromolecules and polymers. The technique is potentially of most interest when applied to irradiated systems. Application to the study of the structure beam-irradiated Teflon is thus an outstanding opportunity for the dielectric relaxation technique, particularly as this material exhibits clamping problems when subjected to dynamic mechanical relaxation studies. A very wide frequency range is necessary to resolve dipolar effects. In this paper, we discuss some significant results about the behavior and the modification of the structure of Teflon submitted to weak energy radiations

  2. Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques

    International Nuclear Information System (INIS)

    Balabin, Roman M.; Safieva, Ravilya Z.; Lomakina, Ekaterina I.

    2010-01-01

    Near infrared (NIR) spectroscopy is a non-destructive (vibrational spectroscopy based) measurement technique for many multicomponent chemical systems, including products of petroleum (crude oil) refining and petrochemicals, food products (tea, fruits, e.g., apples, milk, wine, spirits, meat, bread, cheese, etc.), pharmaceuticals (drugs, tablets, bioreactor monitoring, etc.), and combustion products. In this paper we have compared the abilities of nine different multivariate classification methods: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), soft independent modeling of class analogy (SIMCA), partial least squares (PLS) classification, K-nearest neighbor (KNN), support vector machines (SVM), probabilistic neural network (PNN), and multilayer perceptron (ANN-MLP) - for gasoline classification. Three sets of near infrared (NIR) spectra (450, 415, and 345 spectra) were used for classification of gasolines into 3, 6, and 3 classes, respectively, according to their source (refinery or process) and type. The 14,000-8000 cm -1 NIR spectral region was chosen. In all cases NIR spectroscopy was found to be effective for gasoline classification purposes, when compared with nuclear magnetic resonance (NMR) spectroscopy or gas chromatography (GC). KNN, SVM, and PNN techniques for classification were found to be among the most effective ones. Artificial neural network (ANN-MLP) approach based on principal component analysis (PCA), which was believed to be efficient, has shown much worse results. We hope that the results obtained in this study will help both further chemometric (multivariate data analysis) investigations and investigations in the sphere of applied vibrational (infrared/IR, near-IR, and Raman) spectroscopy of sophisticated multicomponent systems.

  3. Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques

    Energy Technology Data Exchange (ETDEWEB)

    Balabin, Roman M., E-mail: balabin@org.chem.ethz.ch [Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich (Switzerland); Safieva, Ravilya Z. [Gubkin Russian State University of Oil and Gas, 119991 Moscow (Russian Federation); Lomakina, Ekaterina I. [Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119992 Moscow (Russian Federation)

    2010-06-25

    Near infrared (NIR) spectroscopy is a non-destructive (vibrational spectroscopy based) measurement technique for many multicomponent chemical systems, including products of petroleum (crude oil) refining and petrochemicals, food products (tea, fruits, e.g., apples, milk, wine, spirits, meat, bread, cheese, etc.), pharmaceuticals (drugs, tablets, bioreactor monitoring, etc.), and combustion products. In this paper we have compared the abilities of nine different multivariate classification methods: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), soft independent modeling of class analogy (SIMCA), partial least squares (PLS) classification, K-nearest neighbor (KNN), support vector machines (SVM), probabilistic neural network (PNN), and multilayer perceptron (ANN-MLP) - for gasoline classification. Three sets of near infrared (NIR) spectra (450, 415, and 345 spectra) were used for classification of gasolines into 3, 6, and 3 classes, respectively, according to their source (refinery or process) and type. The 14,000-8000 cm{sup -1} NIR spectral region was chosen. In all cases NIR spectroscopy was found to be effective for gasoline classification purposes, when compared with nuclear magnetic resonance (NMR) spectroscopy or gas chromatography (GC). KNN, SVM, and PNN techniques for classification were found to be among the most effective ones. Artificial neural network (ANN-MLP) approach based on principal component analysis (PCA), which was believed to be efficient, has shown much worse results. We hope that the results obtained in this study will help both further chemometric (multivariate data analysis) investigations and investigations in the sphere of applied vibrational (infrared/IR, near-IR, and Raman) spectroscopy of sophisticated multicomponent systems.

  4. Optical spectroscopy techniques can accurately distinguish benign and malignant renal tumours.

    Science.gov (United States)

    Couapel, Jean-Philippe; Senhadji, Lotfi; Rioux-Leclercq, Nathalie; Verhoest, Grégory; Lavastre, Olivier; de Crevoisier, Renaud; Bensalah, Karim

    2013-05-01

    WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: There is little known about optical spectroscopy techniques ability to evaluate renal tumours. This study shows for the first time the ability of Raman and optical reflectance spectroscopy to distinguish benign and malignant renal tumours in an ex vivo environment. We plan to develop this optical assistance in the operating room in the near future. To evaluate the ability of Raman spectroscopy (RS) and optical reflectance spectroscopy (ORS) to distinguish benign and malignant renal tumours at surgery. Between March and October 2011, RS and ORS spectra were prospectively acquired on surgical renal specimens removed for suspicion of renal cell carcinoma (RCC). Optical measurements were done immediately after surgery. Optical signals were normalised to ensure comparison between spectra. Initial and final portions of each spectrum were removed to avoid artefacts. A support vector machine (SVM) was built and tested using a leave-one-out cross-validation. Classification scores, including accuracy, sensitivity and specificity were calculated on the entire population and in patients with tumours of 700 optical spectra were obtained and submitted to SVM classification. The SVM could recognise benign and malignant renal tumours with an accuracy of 96% (RS) and 88% (ORS) in the whole population and with an accuracy of 93% (RS) and 95% (ORS) in the present subset of small renal tumours (Benign and malignant renal tumours can be accurately discriminated by a combination of RS and ORS. In vivo experiments are needed to further assess the value of optical spectroscopy techniques. © 2012 BJU International.

  5. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    Energy Technology Data Exchange (ETDEWEB)

    Varela, J.A.; Amado, J.M.; Tobar, M.J.; Mateo, M.P.; Yañez, A.; Nicolas, G., E-mail: gines@udc.es

    2015-05-01

    Highlights: • Chemical mapping and profiling by laser-induced breakdown spectroscopy (LIBS) of coatings produced by laser cladding. • Production of laser clads using tungsten carbide (WC) and nickel based matrix (NiCrBSi) powders. • Calibration by LIBS of hardfacing alloys with different WC concentrations. - Abstract: Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  6. Fast Measurement of Soluble Solid Content in Mango Based on Visible and Infrared Spectroscopy Technique

    Science.gov (United States)

    Yu, Jiajia; He, Yong

    Mango is a kind of popular tropical fruit, and the soluble solid content is an important in this study visible and short-wave near-infrared spectroscopy (VIS/SWNIR) technique was applied. For sake of investigating the feasibility of using VIS/SWNIR spectroscopy to measure the soluble solid content in mango, and validating the performance of selected sensitive bands, for the calibration set was formed by 135 mango samples, while the remaining 45 mango samples for the prediction set. The combination of partial least squares and backpropagation artificial neural networks (PLS-BP) was used to calculate the prediction model based on raw spectrum data. Based on PLS-BP, the determination coefficient for prediction (Rp) was 0.757 and root mean square and the process is simple and easy to operate. Compared with the Partial least squares (PLS) result, the performance of PLS-BP is better.

  7. New techniques of time-resolved infrared and Raman spectroscopy using ultrashort laser pulses

    International Nuclear Information System (INIS)

    Laubereau, A.

    1986-01-01

    Considerable progress has been made in recent years in the field of spectroscopic applications of ultrashort laser pulses. This paper examines two approaches toward studying ultrafast relaxation processes in condensed matter: an IR technique which complements coherent Raman scattering; and a Fourier Raman method with high frequency resolution. The time domain IR spectroscopy technique has been applied to various vibration-rotation transitions of pure HCl gas and in mixtures with Ar buffer gas. The advantage of the time domain measurements instead of frequency spectroscopy is readily visualized when one recalls that a frequency resolution of 10 -3 cm -1 corresponds to time observations over 10 -8 , which are readily feasible. As a first demonstration of the FT-Raman technique the author presents experimental data on the Q-branch of the v 1 -vibrational mode of methane. An example for the experimental data obtained approximately 2 mm behind the nozzle is presented; the coherent anti-Stokes Raman signal is plotted versus delay time. A complicated beating structure and the decay of the signal envelope are readily seen. The desired spectroscopic information is obtained by numerical Fourier transformation of the experimental points presented

  8. Neutron Spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique

    Science.gov (United States)

    Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; Bleuel, D. L.; Bernstein, L. A.; Bevins, J.; Harasty, M.; Laplace, T. A.; Matthews, E. F.

    2018-01-01

    A new double time-of-flight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performed using both GEANT4 and MCNP6. The efficiency-corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. This method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams with frame overlap and opens new opportunities for pulsed white neutron source facilities.

  9. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  10. Numerical differentiation methods for the logarithmic derivative technique used in dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    Henrik Haspel

    2010-06-01

    Full Text Available In dielectric relaxation spectroscopy the conduction contribution often hampers the evaluation of dielectric spectra, especially in the low-frequency regime. In order to overcome this the logarithmic derivative technique could be used, where the calculation of the logarithmic derivative of the real part of the complex permittivity function is needed. Since broadband dielectric measurement provides discrete permittivity function, numerical differentiation has to be used. Applicability of the Savitzky-Golay convolution method in the derivative analysis is examined, and a detailed investigation of the influential parameters (frequency, spectrum resolution, peak shape is presented on synthetic dielectric data.

  11. Raman Spectroscopy of Solid Oxide Fuel Cells: Technique Overview and Application to Carbon Deposition Analysis

    KAUST Repository

    Maher, R. C.

    2013-07-30

    Raman spectroscopy is a powerful characterization tool for improving the understanding of solid oxide fuel cells (SOFCs), capable of providing direct, molecularly specific information regarding the physical and chemical processes occurring within functional SOFCs in real time. In this paper we give a summary of the technique itself and highlight ex situ and in situ studies that are particularly relevant for SOFCs. This is followed by a case study of carbon formation on SOFC Ni-based anodes exposed to carbon monoxide (CO) using both ex situ and in situ Raman spectroscopy combined with computational simulations. In situ measurements clearly show that carbon formation is significantly reduced for polarized SOFCs compared to those held at open circuit potential (OCP). Ex situ Raman mapping of the surfaces showed clear variations in the rate of carbon formation across the surface of polarized anodes. Computational simulations describing the geometry of the cell showed that this is due to variations in gas access. These results demonstrate the ability of Raman spectroscopy in combination with traditional characterization tools, to provide detailed understanding of critical processes occurring within functional SOFCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Raman Spectroscopy of Solid Oxide Fuel Cells: Technique Overview and Application to Carbon Deposition Analysis

    KAUST Repository

    Maher, R. C.; Duboviks, V.; Offer, G. J.; Kishimoto, M.; Brandon, N. P.; Cohen, L. F.

    2013-01-01

    Raman spectroscopy is a powerful characterization tool for improving the understanding of solid oxide fuel cells (SOFCs), capable of providing direct, molecularly specific information regarding the physical and chemical processes occurring within functional SOFCs in real time. In this paper we give a summary of the technique itself and highlight ex situ and in situ studies that are particularly relevant for SOFCs. This is followed by a case study of carbon formation on SOFC Ni-based anodes exposed to carbon monoxide (CO) using both ex situ and in situ Raman spectroscopy combined with computational simulations. In situ measurements clearly show that carbon formation is significantly reduced for polarized SOFCs compared to those held at open circuit potential (OCP). Ex situ Raman mapping of the surfaces showed clear variations in the rate of carbon formation across the surface of polarized anodes. Computational simulations describing the geometry of the cell showed that this is due to variations in gas access. These results demonstrate the ability of Raman spectroscopy in combination with traditional characterization tools, to provide detailed understanding of critical processes occurring within functional SOFCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Intracavity optogalvanic spectroscopy. An analytical technique for 14C analysis with subattomole sensitivity.

    Science.gov (United States)

    Murnick, Daniel E; Dogru, Ozgur; Ilkmen, Erhan

    2008-07-01

    We show a new ultrasensitive laser-based analytical technique, intracavity optogalvanic spectroscopy, allowing extremely high sensitivity for detection of (14)C-labeled carbon dioxide. Capable of replacing large accelerator mass spectrometers, the technique quantifies attomoles of (14)C in submicrogram samples. Based on the specificity of narrow laser resonances coupled with the sensitivity provided by standing waves in an optical cavity and detection via impedance variations, limits of detection near 10(-15) (14)C/(12)C ratios are obtained. Using a 15-W (14)CO2 laser, a linear calibration with samples from 10(-15) to >1.5 x 10(-12) in (14)C/(12)C ratios, as determined by accelerator mass spectrometry, is demonstrated. Possible applications include microdosing studies in drug development, individualized subtherapeutic tests of drug metabolism, carbon dating and real time monitoring of atmospheric radiocarbon. The method can also be applied to detection of other trace entities.

  14. Diagnosis of Lithium-Ion Batteries State-of-Health based on Electrochemical Impedance Spectroscopy Technique

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stan, Ana-Irina

    2014-01-01

    Lithium-ion batteries have developed into a popular energy storage choice for a wide range of applications because of their superior characteristics in comparison to other energy storage technologies. Besides modelling the performance behavior of Lithium-ion batteries, it has become of huge...... interest to accurately diagnose their state-of-health (SOH). At present, Lithium-ion batteries are diagnosed by performing capacity or resistance (current pulse) measurements; however, in the majority of the cases, these measurements are time consuming and result in changing the state of the battery...... as well. This paper investigates the use of the electrochemical impedance spectroscopy (EIS) technique for SOH diagnosis of Lithium-ion battery cells, instead of using the aforementioned techniques, since this new method allows for online and direct measurement of the battery cell response in any working...

  15. Time-resolved X-ray photoelectron spectroscopy techniques for the study of interfacial charge dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Neppl, Stefan, E-mail: sneppl@lbl.gov; Gessner, Oliver

    2015-04-15

    Highlights: • Ultrafast interfacial charge transfer is probed with atomic site specificity. • Femtosecond X-ray photoelectron spectroscopy using a free electron laser. • Efficient and flexible picosecond X-ray photoelectron pump–probe scheme using synchrotron radiation. - Abstract: X-ray photoelectron spectroscopy (XPS) is one of the most powerful techniques to quantitatively analyze the chemical composition and electronic structure of surfaces and interfaces in a non-destructive fashion. Extending this technique into the time domain has the exciting potential to shed new light on electronic and chemical dynamics at surfaces by revealing transient charge configurations with element- and site-specificity. Here, we describe prospects and challenges that are associated with the implementation of picosecond and femtosecond time-resolved X-ray photoelectron spectroscopy at third-generation synchrotrons and X-ray free-electron lasers, respectively. In particular, we discuss a series of laser-pump/X-ray-probe photoemission experiments performed on semiconductor surfaces, molecule-semiconductor interfaces, and films of semiconductor nanoparticles that demonstrate the high sensitivity of time-resolved XPS to light-induced charge carrier generation, diffusion and recombination within the space charge layers of these materials. Employing the showcase example of photo-induced electronic dynamics in a dye-sensitized semiconductor system, we highlight the unique possibility to probe heterogeneous charge transfer dynamics from both sides of an interface, i.e., from the perspective of the molecular electron donor and the semiconductor acceptor, simultaneously. Such capabilities will be crucial to improve our microscopic understanding of interfacial charge redistribution and associated chemical dynamics, which are at the heart of emerging energy conversion, solar fuel generation, and energy storage technologies.

  16. Testing a laser-induced breakdown spectroscopy technique on the Arctic sediments

    Science.gov (United States)

    Han, D.; Nam, S. I.

    2017-12-01

    Physical and geochemical investigations coupled with the Laser-induced Breakdown Spectroscopy (LIBS) were performed on three surface sediment cores (ARA03B/24BOX, ARA02B/01(A)MUC, ARA02B/02MUC and ARA02B/03(A)MUC) recovered from the western Arctic Ocean (Chukchi Sea) during IBRV ARON expeditions in 2012. The LIBS technique was applied to carry out elemental chemical analysis of the Arctic sediments and compared with that measured by ITRAX X-ray fuorescence (XRF) core scanning. LIBS and XRF have shown similar elemental composition within each sediment core. In this study, mineral composition (XRD), grain size distribution and organic carbon content as well as elemental composition (LIBS) were all considered to understand paleoenvironmental changes (ocean circulation, sea-ice drift, iceberg discharge, and etc.) recorded in the Arctic Holocene sediment. Quantitative LIBS analysis shows a gradually varying distribution of the elements along the sampled core and clear separation between the cores. The cores are geochemically characterized by elevated Mn profile. The gradient of mineral composition and grain sizes among the cores shows regional distribution and variation in sedimentary condition due to geological distance between East Siberian and North America. The present study reveals that a LIBS technique can be employed for in-situ sediment analyses for the Arctic Ocean. Furthermore, LIBS does not require costly equipment, trained operators, and complicated sample pre-treatment processes compared to Atomic absorption spectroscopy (AAS) and inductively coupled plasma emission spectroscopy (ICP), and also known to show relatively high levels of sensitivity, precision, and distinction than XRF analysis, scanning electron microscopy-energy dispersive spectrometry (SEM-EDS), and electron probe X-ray microanalysis (EPMA).

  17. spectroscopy

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-14

    Oct 14, 2015 ... characterized by using phenotypic, API and Fourier transform infrared (FTIR) spectroscopy methods. One hundred and fifty-seven (157) strains were isolated from 13 cheese samples, and identification test was performed for 83 strains. At the end of the study, a total of 22 Lactococcus sp., 36 Enterecoccus ...

  18. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    Science.gov (United States)

    Varela, J. A.; Amado, J. M.; Tobar, M. J.; Mateo, M. P.; Yañez, A.; Nicolas, G.

    2015-05-01

    Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  19. Comparative evaluation of differential laser-induced perturbation spectroscopy as a technique to discriminate emerging skin pathology

    Science.gov (United States)

    Kozikowski, Raymond T.; Smith, Sarah E.; Lee, Jennifer A.; Castleman, William L.; Sorg, Brian S.; Hahn, David W.

    2012-06-01

    Fluorescence spectroscopy has been widely investigated as a technique for identifying pathological tissue; however, unrelated subject-to-subject variations in spectra complicate data analysis and interpretation. We describe and evaluate a new biosensing technique, differential laser-induced perturbation spectroscopy (DLIPS), based on deep ultraviolet (UV) photochemical perturbation in combination with difference spectroscopy. This technique combines sequential fluorescence probing (pre- and post-perturbation) with sub-ablative UV perturbation and difference spectroscopy to provide a new spectral dimension, facilitating two improvements over fluorescence spectroscopy. First, the differential technique eliminates significant variations in absolute fluorescence response within subject populations. Second, UV perturbations alter the extracellular matrix (ECM), directly coupling the DLIPS response to the biological structure. Improved biosensing with DLIPS is demonstrated in vivo in a murine model of chemically induced skin lesion development. Component loading analysis of the data indicates that the DLIPS technique couples to structural proteins in the ECM. Analysis of variance shows that DLIPS has a significant response to emerging pathology as opposed to other population differences. An optimal likelihood ratio classifier for the DLIPS dataset shows that this technique holds promise for improved diagnosis of epithelial pathology. Results further indicate that DLIPS may improve diagnosis of tissue by augmenting fluorescence spectra (i.e. orthogonal sensing).

  20. In vivo diagnosis of cervical precancer using Raman spectroscopy and genetic algorithm techniques.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, A; Huang, Zhiwei

    2011-10-21

    This study aimed to evaluate the clinical utility of applying near-infrared (NIR) Raman spectroscopy and genetic algorithm-partial least squares-discriminant analysis (GA-PLS-DA) to identify biomolecular changes of cervical tissues associated with dysplastic transformation during colposcopic examination. A total of 105 in vivo Raman spectra were measured from 57 cervical sites (35 normal and 22 precancer sites) of 29 patients recruited, in which 65 spectra were from normal sites, while 40 spectra were from cervical precancerous lesions (i.e., 7 low-grade CIN and 33 high-grade CIN). The GA feature selection technique incorporated with PLS was utilized to study the significant biochemical Raman bands for differentiation between normal and precancer cervical tissues. The GA-PLS-DA algorithm with double cross-validation (dCV) identified seven diagnostically significant Raman bands in the ranges of 925-935, 979-999, 1080-1090, 1240-1260, 1320-1340, 1400-1420, and 1625-1645 cm(-1) related to proteins, nucleic acids and lipids in tissue, and yielded a diagnostic accuracy of 82.9% (sensitivity of 72.5% (29/40) and specificity of 89.2% (58/65)) for precancer detection. The results of this exploratory study suggest that Raman spectroscopy in conjunction with GA-PLS-DA and dCV methods has the potential to provide clinically significant discrimination between normal and precancer cervical tissues at the molecular level.

  1. A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy.

    Science.gov (United States)

    Cooper, Robert J; Selb, Juliette; Gagnon, Louis; Phillip, Dorte; Schytz, Henrik W; Iversen, Helle K; Ashina, Messoud; Boas, David A

    2012-01-01

    Near-infrared spectroscopy (NIRS) is susceptible to signal artifacts caused by relative motion between NIRS optical fibers and the scalp. These artifacts can be very damaging to the utility of functional NIRS, particularly in challenging subject groups where motion can be unavoidable. A number of approaches to the removal of motion artifacts from NIRS data have been suggested. In this paper we systematically compare the utility of a variety of published NIRS motion correction techniques using a simulated functional activation signal added to 20 real NIRS datasets which contain motion artifacts. Principle component analysis, spline interpolation, wavelet analysis, and Kalman filtering approaches are compared to one another and to standard approaches using the accuracy of the recovered, simulated hemodynamic response function (HRF). Each of the four motion correction techniques we tested yields a significant reduction in the mean-squared error (MSE) and significant increase in the contrast-to-noise ratio (CNR) of the recovered HRF when compared to no correction and compared to a process of rejecting motion-contaminated trials. Spline interpolation produces the largest average reduction in MSE (55%) while wavelet analysis produces the highest average increase in CNR (39%). On the basis of this analysis, we recommend the routine application of motion correction techniques (particularly spline interpolation or wavelet analysis) to minimize the impact of motion artifacts on functional NIRS data.

  2. Sample preparation techniques in trace element analysis by X-ray emission spectroscopy

    International Nuclear Information System (INIS)

    Valkovic, V.

    1983-11-01

    The report, written under a research contract with the IAEA, contains a detailed presentation of the most difficult problem encountered in the trace element analysis by methods of the X-ray emission spectroscopy, namely the sample preparation techniques. The following items are covered. Sampling - with specific consideration of aerosols, water, soil, biological materials, petroleum and its products, storage of samples and their handling. Pretreatment of samples - preconcentration, ashing, solvent extraction, ion exchange and electrodeposition. Sample preparations for PIXE - analysis - backings, target uniformity and homogeneity, effects of irradiation, internal standards and specific examples of preparation (aqueous, biological, blood serum and solid samples). Sample preparations for radioactive sources or tube excitation - with specific examples (water, liquid and solid samples, soil, geological, plants and tissue samples). Finally, the problem of standards and reference materials, as well as that of interlaboratory comparisons, is discussed

  3. Application of Raman spectroscopy and chemometric techniques to assess sensory characteristics of young dairy bull beef.

    Science.gov (United States)

    Zhao, Ming; Nian, Yingqun; Allen, Paul; Downey, Gerard; Kerry, Joseph P; O'Donnell, Colm P

    2018-05-01

    This work aims to develop a rapid analytical technique to predict beef sensory attributes using Raman spectroscopy (RS) and to investigate correlations between sensory attributes using chemometric analysis. Beef samples (n = 72) were obtained from young dairy bulls (Holstein-Friesian and Jersey×Holstein-Friesian) slaughtered at 15 and 19 months old. Trained sensory panel evaluation and Raman spectral data acquisition were both carried out on the same longissimus thoracis muscles after ageing for 21 days. The best prediction results were obtained using a Raman frequency range of 1300-2800 cm -1 . Prediction performance of partial least squares regression (PLSR) models developed using all samples were moderate to high for all sensory attributes (R 2 CV values of 0.50-0.84 and RMSECV values of 1.31-9.07) and were particularly high for desirable flavour attributes (R 2 CVs of 0.80-0.84, RMSECVs of 4.21-4.65). For PLSR models developed on subsets of beef samples i.e. beef of an identical age or breed type, significant improvements on prediction performances were achieved for overall sensory attributes (R 2 CVs of 0.63-0.89 and RMSECVs of 0.38-6.88 for each breed type; R 2 CVs of 0.52-0.89 and RMSECVs of 0.96-6.36 for each age group). Chemometric analysis revealed strong correlations between sensory attributes. Raman spectroscopy combined with chemometric analysis was demonstrated to have high potential as a rapid and non-destructive technique to predict the sensory quality traits of young dairy bull beef. Copyright © 2018. Published by Elsevier Ltd.

  4. In-situ, real-time, studies of film growth processes using ion scattering and direct recoil spectroscopy techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Smentkowski, V. S.

    1999-04-22

    Time-of-flight ion scattering and recoil spectroscopy (TOF-ISARS) enables the characterization of the composition and structure of surfaces with 1-2 monolayer specificity. It will be shown that surface analysis is possible at ambient pressures greater than 3 mTorr using TOF-ISARS techniques; allowing for real-time, in situ studies of film growth processes. TOF-ISARS comprises three analytical techniques: ion scattering spectroscopy (ISS), which detects the backscattered primary ion beam; direct recoil spectroscopy (DRS), which detects the surface species recoiled into the forward scattering direction; and mass spectroscopy of recoiled ions (MSRI), which is 3 variant of DRS capable of isotopic resolution for all surface species--including H and He. The advantages and limitations of each of these techniques will be discussed. The use of the three TOF-ISARS methods for real-time, in situ film growth studies at high ambient pressures will be illustrated. It will be shown that MSRI analysis is possible during sputter deposition. It will be also be demonstrated that the analyzer used for MSRI can also be used for time of flight secondary ion mass spectroscopy (TOF-SIMS) under high vacuum conditions. The use of a single analyzer to perform the complimentary surface analytical techniques of MSRI and SIMS is unique. The dwd functionality of the MSRI analyzer provides surface information not obtained when either MSRI or SIMS is used independently.

  5. Portable (handheld) clinical device for quantitative spectroscopy of skin, utilizing spatial frequency domain reflectance techniques

    Science.gov (United States)

    Saager, Rolf B.; Dang, An N.; Huang, Samantha S.; Kelly, Kristen M.; Durkin, Anthony J.

    2017-09-01

    Spatial Frequency Domain Spectroscopy (SFDS) is a technique for quantifying in-vivo tissue optical properties. SFDS employs structured light patterns that are projected onto tissues using a spatial light modulator, such as a digital micromirror device. In combination with appropriate models of light propagation, this technique can be used to quantify tissue optical properties (absorption, μa, and scattering, μs', coefficients) and chromophore concentrations. Here we present a handheld implementation of an SFDS device that employs line (one dimensional) imaging. This instrument can measure 1088 spatial locations that span a 3 cm line as opposed to our original benchtop SFDS system that only collects a single 1 mm diameter spot. This imager, however, retains the spectral resolution (˜1 nm) and range (450-1000 nm) of our original benchtop SFDS device. In the context of homogeneous turbid media, we demonstrate that this new system matches the spectral response of our original system to within 1% across a typical range of spatial frequencies (0-0.35 mm-1). With the new form factor, the device has tremendously improved mobility and portability, allowing for greater ease of use in a clinical setting. A smaller size also enables access to different tissue locations, which increases the flexibility of the device. The design of this portable system not only enables SFDS to be used in clinical settings but also enables visualization of properties of layered tissues such as skin.

  6. Development of in vivo impedance spectroscopy techniques for measurement of micropore formation following microneedle insertion.

    Science.gov (United States)

    Brogden, Nicole K; Ghosh, Priyanka; Hardi, Lucia; Crofford, Leslie J; Stinchcomb, Audra L

    2013-06-01

    Microneedles (MNs) provide a minimally invasive means to enhance skin permeability by creating micron-scale channels (micropores) that provide a drug delivery pathway. Adequate formation of the micropores is critical to the success of this unique drug delivery technique. The objective of the current work was to develop sensitive and reproducible impedance spectroscopy techniques to monitor micropore formation in animal models and human subjects. Hairless guinea pigs, a Yucatan miniature pig, and human volunteers were treated with 100 MN insertions per site following an overnight prehydration period. Repeated measurements were made pre- and post-MN treatment using dry and gel Ag/AgCl electrodes applied with light verses direct pressure to hold the electrode to the skin surface. Impedance measurements dropped significantly post-MN application at all sites (p micropore formation. In the Yucatan pig and human subjects, gel electrodes with direct pressure yielded the lowest variability (demonstrated by lower %relative standard deviation), whereas dry electrodes with direct pressure were superior in the guinea pigs. These studies confirm that impedance measurements are suitable for use in both clinical and animal research environments to monitor the formation of new micropores that will allow for drug delivery through the impermeable skin layers. Copyright © 2013 Wiley Periodicals, Inc.

  7. Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.

    Science.gov (United States)

    Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei

    2013-12-03

    We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in

  8. [Identification of varieties of textile fibers by using Vis/NIR infrared spectroscopy technique].

    Science.gov (United States)

    Wu, Gui-Fang; He, Yong

    2010-02-01

    The aim of the present paper was to provide new insight into Vis/NIR spectroscopic analysis of textile fibers. In order to achieve rapid identification of the varieties of fibers, the authors selected 5 kinds of fibers of cotton, flax, wool, silk and tencel to do a study with Vis/NIR spectroscopy. Firstly, the spectra of each kind of fiber were scanned by spectrometer, and principal component analysis (PCA) method was used to analyze the characteristics of the pattern of Vis/NIR spectra. Principal component scores scatter plot (PC1 x PC2 x PC3) of fiber indicated the classification effect of five varieties of fibers. The former 6 principal components (PCs) were selected according to the quantity and size of PCs. The PCA classification model was optimized by using the least-squares support vector machines (LS-SVM) method. The authors used the 6 PCs extracted by PCA as the inputs of LS-SVM, and PCA-LS-SVM model was built to achieve varieties validation as well as mathematical model building and optimization analysis. Two hundred samples (40 samples for each variety of fibers) of five varieties of fibers were used for calibration of PCA-LS-SVM model, and the other 50 samples (10 samples for each variety of fibers) were used for validation. The result of validation showed that Vis/NIR spectroscopy technique based on PCA-LS-SVM had a powerful classification capability. It provides a new method for identifying varieties of fibers rapidly and real time, so it has important significance for protecting the rights of consumers, ensuring the quality of textiles, and implementing rationalization production and transaction of textile materials and its production.

  9. Micro-Raman spectroscopy a powerful technique to identify crocidolite and erionite fibers in tissue sections

    Science.gov (United States)

    Rinaudo, C.; Croce, A.; Allegrina, M.; Baris, I. Y.; Dogan, A.; Powers, A.; Rivera, Z.; Bertino, P.; Yang, H.; Gaudino, G.; Carbone, M.

    2013-05-01

    Exposure to mineral fibers such asbestos and erionite is widely associated with the development of lung cancer and pleural malignant mesothelioma (MM). Pedigree and mineralogical studies indicated that genetics may influence mineral fiber carcinogenesis. Although dimensions strongly impact on the fiber carcinogenic potential, also the chemical composition and the fiber is relevant. By using micro-Raman spectroscopy we show here persistence and identification of different mineral phases, directly on histopathological specimens of mice and humans. Fibers of crocidolite asbestos and erionite of different geographic areas (Oregon, US and Cappadocia, Turkey) were injected in mice intra peritoneum. MM developed in 10/15 asbestos-treated mice after 5 months, and in 8-10/15 erionite-treated mice after 14 months. The persistence of the injected fibers was investigated in pancreas, liver, spleen and in the peritoneal tissue. The chemical identification of the different phases occurred in the peritoneal cavity or at the organ borders, while only rarely fibers were localized in the parenchyma. Raman patterns allow easily to recognize crocidolite and erionite fibers. Microscopic analysis revealed that crocidolite fibers were frequently coated by ferruginous material ("asbestos bodies"), whereas erionite fibers were always free from coatings. We also analyzed by micro-Raman spectroscopy lung tissues, both from MM patients of the Cappadocia, where a MM epidemic developed because of environmental exposure to erionite, and from Italian MM patients with occupational exposure to asbestos. Our findings demonstrate that micro-Raman spectroscopy is technique able to identify mineral phases directly on histopathology specimens, as routine tissue sections prepared for diagnostic purpose. REFERENCES A.U. Dogan, M. Dogan. Environ. Geochem. Health 2008, 30(4), 355. M. Carbone, S. Emri, A.U. Dogan, I. Steele, M. Tuncer, HI. Pass, et al. Nat. Rev. Cancer. 2007, 7 (2),147. M. Carbone, Y

  10. Biological sensing with surface-enhanced Raman spectroscopy (SERS) using a facile and rapid silver colloid-based synthesis technique

    Science.gov (United States)

    Smyth, C.; Mehigan, S.; Rakovich, Y. P.; Bell, S. E. J.; McCabe, E. M.

    2011-03-01

    Optical techniques towards the realisation of sensitive and selective biosensing platforms have received a considerable amount of attention in recent times. Techniques based on interferometry, surface plasmon resonance, field-effect transistors and waveguides have all proved popular, and in particular, spectroscopy offers a large range of options. Raman spectroscopy has always been viewed as an information rich technique in which the vibrational frequencies reveal a lot about the structure of a compound. The issue with Raman spectroscopy has traditionally been that its rather low cross section leads to poor limits-of-detection. In response to this problem, Surface-enhanced Raman Scattering (SERS), which increases sensitivity by bringing the sample in contact with many types of enhanceing substrates, has been developed. Here we discuss a facile and rapid technique for the detection of pterins using colloidal silver suspensions. Pteridine compounds are a family of biochemicals, heterocyclic in structure, and employed in nature as components of colour pigmentation and also as facilitators for many metabolic pathways, particularly those relating to the amino acid hydroxylases. In this work, xanthopterin, isoxanthopterin and 7,8- dihydrobiopterin have been examined whilst absorbed to SERS-active silver colloids. SERS, while far more sensitive than regular Raman spectroscopy, has its own issues relating to the reproducibility of substrates. In order to obtain quantitative data for the pteridine compounds mentioned above, exploratory studies of methods for introducing an internal standard for normalisation of the signals have been carried out.e

  11. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    International Nuclear Information System (INIS)

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of Kα and Kβ emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS

  12. Enhanced Quality Control in Pharmaceutical Applications by Combining Raman Spectroscopy and Machine Learning Techniques

    Science.gov (United States)

    Martinez, J. C.; Guzmán-Sepúlveda, J. R.; Bolañoz Evia, G. R.; Córdova, T.; Guzmán-Cabrera, R.

    2018-06-01

    In this work, we applied machine learning techniques to Raman spectra for the characterization and classification of manufactured pharmaceutical products. Our measurements were taken with commercial equipment, for accurate assessment of variations with respect to one calibrated control sample. Unlike the typical use of Raman spectroscopy in pharmaceutical applications, in our approach the principal components of the Raman spectrum are used concurrently as attributes in machine learning algorithms. This permits an efficient comparison and classification of the spectra measured from the samples under study. This also allows for accurate quality control as all relevant spectral components are considered simultaneously. We demonstrate our approach with respect to the specific case of acetaminophen, which is one of the most widely used analgesics in the market. In the experiments, commercial samples from thirteen different laboratories were analyzed and compared against a control sample. The raw data were analyzed based on an arithmetic difference between the nominal active substance and the measured values in each commercial sample. The principal component analysis was applied to the data for quantitative verification (i.e., without considering the actual concentration of the active substance) of the difference in the calibrated sample. Our results show that by following this approach adulterations in pharmaceutical compositions can be clearly identified and accurately quantified.

  13. Near-infrared spectroscopy technique to evaluate the effects of drugs in treating traumatic brain edema

    Science.gov (United States)

    Xie, J.; Qian, Z.; Yang, T.; Li, W.; Hu, G.

    2011-01-01

    The aim of this study was to evaluate the effects of several drugs in treating traumatic brain edema (TBE) following traumatic brain injury (TBI) using near-infrared spectroscopy (NIRs) technology. Rats with TBE models were given hypertonic saline (HS), mannitol and mannitol+HS respectively for different groups. Light scattering properties of rat's local cortex was measured by NIRs within the wavelength range from 700 to 850 nm. TBE models were built in rats' left brains. The scattering properties of the right and left target corresponding to the position of normal and TBE tissue were measured and recorded in vivo and real-time by a bifurcated needle probe. The brain water contents (BWC) were measured by the wet and dry weight method after injury and treatment hours 1, 6, 24, 72 and 120. A marked linear relationship was observed between reduced scattering coefficient (μs') and BWC. By recording μs' of rats' brains, the entire progressions of effects of several drugs were observed. The result may suggest that the NIRs techniques have a potential for assessing effects in vivo and real-time on treatment of the brain injury.

  14. Near-infrared spectroscopy technique to evaluate the effects of drugs in treating traumatic brain edema

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J; Qian, Z; Li, W; Hu, G [Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China); Yang, T, E-mail: zhiyu@nuaa.edu.cn [School of Clinical Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009 (China)

    2011-01-01

    The aim of this study was to evaluate the effects of several drugs in treating traumatic brain edema (TBE) following traumatic brain injury (TBI) using near-infrared spectroscopy (NIRs) technology. Rats with TBE models were given hypertonic saline (HS), mannitol and mannitol+HS respectively for different groups. Light scattering properties of rat's local cortex was measured by NIRs within the wavelength range from 700 to 850 nm. TBE models were built in rats' left brains. The scattering properties of the right and left target corresponding to the position of normal and TBE tissue were measured and recorded in vivo and real-time by a bifurcated needle probe. The brain water contents (BWC) were measured by the wet and dry weight method after injury and treatment hours 1, 6, 24, 72 and 120. A marked linear relationship was observed between reduced scattering coefficient ({mu}{sub s}') and BWC. By recording {mu}{sub s}' of rats' brains, the entire progressions of effects of several drugs were observed. The result may suggest that the NIRs techniques have a potential for assessing effects in vivo and real-time on treatment of the brain injury.

  15. Near-infrared spectroscopy technique to evaluate the effects of drugs in treating traumatic brain edema

    International Nuclear Information System (INIS)

    Xie, J; Qian, Z; Li, W; Hu, G; Yang, T

    2011-01-01

    The aim of this study was to evaluate the effects of several drugs in treating traumatic brain edema (TBE) following traumatic brain injury (TBI) using near-infrared spectroscopy (NIRs) technology. Rats with TBE models were given hypertonic saline (HS), mannitol and mannitol+HS respectively for different groups. Light scattering properties of rat's local cortex was measured by NIRs within the wavelength range from 700 to 850 nm. TBE models were built in rats' left brains. The scattering properties of the right and left target corresponding to the position of normal and TBE tissue were measured and recorded in vivo and real-time by a bifurcated needle probe. The brain water contents (BWC) were measured by the wet and dry weight method after injury and treatment hours 1, 6, 24, 72 and 120. A marked linear relationship was observed between reduced scattering coefficient (μ s ') and BWC. By recording μ s ' of rats' brains, the entire progressions of effects of several drugs were observed. The result may suggest that the NIRs techniques have a potential for assessing effects in vivo and real-time on treatment of the brain injury.

  16. The use of laser-induced plasma spectroscopy technique for the characterization of boiler tubes

    International Nuclear Information System (INIS)

    Nicolas, G.; Mateo, M.P.; Yanez, A.

    2007-01-01

    The present work focuses on the characterization of boiler tube walls using laser-induced plasma spectroscopy technique with visual inspection by optical and scanning electron microscopy of the cross-sections of these tubes. In a watertube boiler, water runs through tubes that are surrounded by a heating source. As a result, the water is heated to very high temperatures, causing accumulation of deposits on the inside surfaces of the tubes. These deposits play an important role in the efficiency of the boiler tube because they produce a reduction of the boiler heat rate and an increase in the number of tube failures. The objectives are to determine the thickness and arrangement of deposits located on the highest heat area of the boiler and compare them with tube parts where the heat flux is lower. The major deposits found were copper and magnetite. These deposits come mainly from the boiler feedwater and from the reaction between iron and water, and they do not form on the tube walls at a uniform rate over time. Their amount depends on the areas where they are collected. A Nd:YAG laser operating at 355 nm has been used to perform laser-induced plasma spectra and depth profiles of the deposits

  17. The use of laser-induced plasma spectroscopy technique for the characterization of boiler tubes

    Science.gov (United States)

    Nicolas, G.; Mateo, M. P.; Yañez, A.

    2007-12-01

    The present work focuses on the characterization of boiler tube walls using laser-induced plasma spectroscopy technique with visual inspection by optical and scanning electron microscopy of the cross-sections of these tubes. In a watertube boiler, water runs through tubes that are surrounded by a heating source. As a result, the water is heated to very high temperatures, causing accumulation of deposits on the inside surfaces of the tubes. These deposits play an important role in the efficiency of the boiler tube because they produce a reduction of the boiler heat rate and an increase in the number of tube failures. The objectives are to determine the thickness and arrangement of deposits located on the highest heat area of the boiler and compare them with tube parts where the heat flux is lower. The major deposits found were copper and magnetite. These deposits come mainly from the boiler feedwater and from the reaction between iron and water, and they do not form on the tube walls at a uniform rate over time. Their amount depends on the areas where they are collected. A Nd:YAG laser operating at 355 nm has been used to perform laser-induced plasma spectra and depth profiles of the deposits.

  18. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy.

    Science.gov (United States)

    Hippler, Michael; Mohr, Christian; Keen, Katherine A; McNaghten, Edward D

    2010-07-28

    Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers (OF-CERPAS) is introduced as a novel technique for ultratrace gas analysis and high-resolution spectroscopy. In the scheme, a single-mode cw diode laser (3 mW, 635 nm) is coupled into a high-finesse linear cavity and stabilized to the cavity by optical feedback. Inside the cavity, a build-up of laser power to at least 2.5 W occurs. Absorbing gas phase species inside the cavity are detected with high sensitivity by the photoacoustic effect using a microphone embedded in the cavity. To increase sensitivity further, coupling into the cavity is modulated at a frequency corresponding to a longitudinal resonance of an organ pipe acoustic resonator (f=1.35 kHz and Q approximately 10). The technique has been characterized by measuring very weak water overtone transitions near 635 nm. Normalized noise-equivalent absorption coefficients are determined as alpha approximately 4.4x10(-9) cm(-1) s(1/2) (1 s integration time) and 2.6x10(-11) cm(-1) s(1/2) W (1 s integration time and 1 W laser power). These sensitivities compare favorably with existing state-of-the-art techniques. As an advantage, OF-CERPAS is a "zero-background" method which increases selectivity and sensitivity, and its sensitivity scales with laser power.

  19. DNA binding studies of Sunset Yellow FCF using spectroscopy, viscometry and electrochemical techniques

    Science.gov (United States)

    Asaadi, Sara; Hajian, Reza

    2017-10-01

    Color is one of the important factors in food industry. All food companies use synthetic pigments to improve the aesthetic of products. Studies on the interaction between deoxyribonucleic acid (DNA) and food dye molecules is important because DNA is responsible for some processes including replication and transcription of cells, mutations, genetic diseases, and some synthetic chemical nucleases. In this study, the molecular interaction between Sunset Yellow FCF (SY) as a common food coloring additive and calf thymus DNA (ct-DNA) has been studied using UV-Vis spectrophotometry, spectrofluorometry, Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry and viscometry techniques. The binding constant between ct-DNA and SY in phosphate buffer solution (pH 7.4) was calculated as 2.09 × 103 L mol-1. The non-electrostatic bonding constant (K0t) was almost consistent and the ratio of K0t/Kb increased by increasing the ionic strength in the range of 0.01-0.1 mol L-1 of KCl. This observation shows that, the molecular bonding of SY to ct-DNA is a combination of electrostatic and intercalation interactions. In the electrochemical studies, an oxidation peak at 0.71 V and a reduction peak at about 0.63 V was observed with the peak potential difference (ΔEp) of 0.08 V, showing a reversible process. The oxidation and reduction peaks were significantly decreased in the presence of ct-DNA and the reduction peak current shifted to negative values. In spectrofluorometric study, the fluorescence intensity of SY increased dramatically after successive addition of DNA due to the increasing of molecular surface area and decreasing of impact frequency between solvent and SY-DNA adduct. Moreover, viscometric study shows that the increasing of viscosity for SY solution in the presence of DNA is due to the intercalation mechanism with double strand DNA (ds-DNA).

  20. Evaluation of the laser-induced breakdown spectroscopy technique for determination of the chemical composition of copper concentrates

    Energy Technology Data Exchange (ETDEWEB)

    Łazarek, Łukasz, E-mail: lukasz.lazarek@pwr.wroc.pl [Laser and Fiber Electronics Group, Faculty of Electronics, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland); Antończak, Arkadiusz J.; Wójcik, Michał R. [Laser and Fiber Electronics Group, Faculty of Electronics, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland); Drzymała, Jan [Faculty of Geoengineering, Mining and Geology, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland); Abramski, Krzysztof M. [Laser and Fiber Electronics Group, Faculty of Electronics, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2014-07-01

    Laser-induced breakdown spectroscopy (LIBS), like many other spectroscopic techniques, is a comparative method. Typically, in qualitative analysis, synthetic certified standard with a well-known elemental composition is used to calibrate the system. Nevertheless, in all laser-induced techniques, such calibration can affect the accuracy through differences in the overall composition of the chosen standard. There are also some intermediate factors, which can cause imprecision in measurements, such as optical absorption, surface structure and thermal conductivity. In this work the calibration performed for the LIBS technique utilizes pellets made directly from the tested materials (old well-characterized samples). This choice produces a considerable improvement in the accuracy of the method. This technique was adopted for the determination of trace elements in industrial copper concentrates, standardized by conventional atomic absorption spectroscopy with a flame atomizer. A series of copper flotation concentrate samples was analyzed for three elements: silver, cobalt and vanadium. We also proposed a method of post-processing the measurement data to minimize matrix effects and permit reliable analysis. It has been shown that the described technique can be used in qualitative and quantitative analyses of complex inorganic materials, such as copper flotation concentrates. It was noted that the final validation of such methodology is limited mainly by the accuracy of the characterization of the standards. - Highlights: • A laser-induced breakdown spectroscopy technique is introduced for composition monitoring in industrial copper concentrates. • Calibration samples consisted of pellets produced from the tested materials. • The proposed method of post-processing significantly minimizes matrix effects. • The possible uses of this technique are limited mainly by accurate characterization of the standard samples.

  1. Evaluation of the laser-induced breakdown spectroscopy technique for determination of the chemical composition of copper concentrates

    International Nuclear Information System (INIS)

    Łazarek, Łukasz; Antończak, Arkadiusz J.; Wójcik, Michał R.; Drzymała, Jan; Abramski, Krzysztof M.

    2014-01-01

    Laser-induced breakdown spectroscopy (LIBS), like many other spectroscopic techniques, is a comparative method. Typically, in qualitative analysis, synthetic certified standard with a well-known elemental composition is used to calibrate the system. Nevertheless, in all laser-induced techniques, such calibration can affect the accuracy through differences in the overall composition of the chosen standard. There are also some intermediate factors, which can cause imprecision in measurements, such as optical absorption, surface structure and thermal conductivity. In this work the calibration performed for the LIBS technique utilizes pellets made directly from the tested materials (old well-characterized samples). This choice produces a considerable improvement in the accuracy of the method. This technique was adopted for the determination of trace elements in industrial copper concentrates, standardized by conventional atomic absorption spectroscopy with a flame atomizer. A series of copper flotation concentrate samples was analyzed for three elements: silver, cobalt and vanadium. We also proposed a method of post-processing the measurement data to minimize matrix effects and permit reliable analysis. It has been shown that the described technique can be used in qualitative and quantitative analyses of complex inorganic materials, such as copper flotation concentrates. It was noted that the final validation of such methodology is limited mainly by the accuracy of the characterization of the standards. - Highlights: • A laser-induced breakdown spectroscopy technique is introduced for composition monitoring in industrial copper concentrates. • Calibration samples consisted of pellets produced from the tested materials. • The proposed method of post-processing significantly minimizes matrix effects. • The possible uses of this technique are limited mainly by accurate characterization of the standard samples

  2. Summary: Update to ASTM guide E 1523 to charge control and charge referencing techniques in x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Baer, D.R.

    2005-01-01

    An updated version of the American Society for Testing and Materials (ASTM) guide E 1523 to the methods to charge control and charge referencing techniques in x-ray photoelectron spectroscopy has been released by ASTM [Annual Book of ASTM Standards Surface Analysis (American Society for Testing and Materials, West Conshohocken, PA, 2004), Vol. 03.06]. The guide is meant to acquaint x-ray photoelectron spectroscopy (XPS) users with the various charge control and charge referencing techniques that are and have been used in the acquisition and interpretation of XPS data from surfaces of insulating specimens. The current guide has been expanded to include new references as well as recommendations for reporting information on charge control and charge referencing. The previous version of the document had been published in 1997 [D. R. Baer and K. D. Bomben, J. Vac. Sci. Technol. A 16, 754 (1998)

  3. Making Mass Spectrometry See the Light: The Promises and Challenges of Cryogenic Infrared Ion Spectroscopy as a Bioanalytical Technique.

    Science.gov (United States)

    Cismesia, Adam P; Bailey, Laura S; Bell, Matthew R; Tesler, Larry F; Polfer, Nicolas C

    2016-05-01

    The detailed chemical information contained in the vibrational spectrum of a cryogenically cooled analyte ion would, in principle, make infrared (IR) ion spectroscopy a gold standard technique for molecular identification in mass spectrometry. Despite this immense potential, there are considerable challenges in both instrumentation and methodology to overcome before the technique is analytically useful. Here, we discuss the promise of IR ion spectroscopy for small molecule analysis in the context of metabolite identification. Experimental strategies to address sensitivity constraints, poor overall duty cycle, and speed of the experiment are intimately tied to the development of a mass-selective cryogenic trap. Therefore, the most likely avenues for success, in the authors' opinion, are presented here, alongside alternative approaches and some thoughts on data interpretation.

  4. Method for identifyng a particular protein in a cell, using a marker peptide and spectroscopy techniques and uses thereof

    OpenAIRE

    Risco, Cristina; De Groot, Raoul Junior

    2011-01-01

    [EN] The invention relates to a method that can be used to view and detect a particular protein in a cell, a cell organ or a virus, using a marker peptide bound to metal particles and using correlative, optical and electronic microscopy images, in which the microscopically obtained image is analysed together with at least one elementary image obtained using a spectroscopy technique. This method can be used to study the biological action of proteins of biomedical interest as well as to locate ...

  5. Evaluation of the laser-induced breakdown spectroscopy technique for determination of the chemical composition of copper concentrates

    Science.gov (United States)

    Łazarek, Łukasz; Antończak, Arkadiusz J.; Wójcik, Michał R.; Drzymała, Jan; Abramski, Krzysztof M.

    2014-07-01

    Laser-induced breakdown spectroscopy (LIBS), like many other spectroscopic techniques, is a comparative method. Typically, in qualitative analysis, synthetic certified standard with a well-known elemental composition is used to calibrate the system. Nevertheless, in all laser-induced techniques, such calibration can affect the accuracy through differences in the overall composition of the chosen standard. There are also some intermediate factors, which can cause imprecision in measurements, such as optical absorption, surface structure and thermal conductivity. In this work the calibration performed for the LIBS technique utilizes pellets made directly from the tested materials (old well-characterized samples). This choice produces a considerable improvement in the accuracy of the method. This technique was adopted for the determination of trace elements in industrial copper concentrates, standardized by conventional atomic absorption spectroscopy with a flame atomizer. A series of copper flotation concentrate samples was analyzed for three elements: silver, cobalt and vanadium. We also proposed a method of post-processing the measurement data to minimize matrix effects and permit reliable analysis. It has been shown that the described technique can be used in qualitative and quantitative analyses of complex inorganic materials, such as copper flotation concentrates. It was noted that the final validation of such methodology is limited mainly by the accuracy of the characterization of the standards.

  6. Deep-UV high resolution cavity ring-down spectroscopy of the Schumann-Runge bands in O-16(2) and O-18(2) at wavelengths 197-203 nm

    NARCIS (Netherlands)

    Hannemann, S.; van Duijn, E.J.; Ubachs, W.M.G.

    2005-01-01

    With the use of a novel titanium:sapphire laser source delivering, upon fourth harmonic generation, narrowband and tunable radiation in the deep-UV, spectroscopic studies were performed on weak Schumann-Runge bands of oxygen. Improved values for rotational and fine structure molecular parameters for

  7. Quantum cascade laser absorption spectroscopy with the amplitude-to-time conversion technique for atmospheric-pressure plasmas

    International Nuclear Information System (INIS)

    Yumii, Takayoshi; Kimura, Noriaki; Hamaguchi, Satoshi

    2013-01-01

    The NO 2 concentration, i.e., density, in a small plasma of a nitrogen oxide (NOx) treatment reactor has been measured by highly sensitive laser absorption spectroscopy. The absorption spectroscopy uses a single path of a quantum cascade laser beam passing through a plasma whose dimension is about 1 cm. The high sensitivity of spectroscopy is achieved by the amplitude-to-time conversion technique. Although the plasma reactor is designed to convert NO in the input gas to NO 2 , it has been demonstrated by this highly sensitive absorption spectroscopy that NO 2 in a simulated exhaust gas that enters the reactor is decomposed by the plasma first and then NO 2 is formed again, possibly more than it was decomposed, through a series of gas-phase reactions by the time the gas exits the reactor. The observation is consistent with that of an earlier study on NO decomposition by the same type of a plasma reactor [T. Yumii et al., J. Phys. D 46, 135202 (2013)], in which a high concentration of NO 2 was observed at the exit of the reactor.

  8. Quantification of skeletal muscle mitochondrial function by 31P magnetic resonance spectroscopy techniques : A quantitative review

    NARCIS (Netherlands)

    Kemp, G.J.; Ahmad, R.E.; Nicolay, K.; Prompers, J.J.

    2015-01-01

    Magnetic resonance spectroscopy (MRS) can give information about cellular metabolism in vivo which is difficult to obtain in other ways. In skeletal muscle, non-invasive 31P MRS measurements of the post-exercise recovery kinetics of pH, [PCr], [Pi] and [ADP] contain valuable information about muscle

  9. New enhanced sensitivity infrared laser spectroscopy techniques applied to reactive plasmas and trace gas detection

    NARCIS (Netherlands)

    Welzel, S.

    2009-01-01

    Infrared laser absorption spectroscopy (IRLAS) employing both tuneable diode and quantum cascade lasers (TDLs, QCLs) has been applied with both high sensitivity and high time resolution to plasma diagnostics and trace gas measurements. TDLAS combined with a conventional White type multiple pass cell

  10. Next generation laser-based standoff spectroscopy techniques for Mars exploration.

    Science.gov (United States)

    Gasda, Patrick J; Acosta-Maeda, Tayro E; Lucey, Paul G; Misra, Anupam K; Sharma, Shiv K; Taylor, G Jeffrey

    2015-01-01

    In the recent Mars 2020 Rover Science Definition Team Report, the National Aeronautics and Space Administration (NASA) has sought the capability to detect and identify elements, minerals, and most importantly, biosignatures, at fine scales for the preparation of a retrievable cache of samples. The current Mars rover, the Mars Science Laboratory Curiosity, has a remote laser-induced breakdown spectroscopy (LIBS) instrument, a type of quantitative elemental analysis, called the Chemistry Camera (ChemCam) that has shown that laser-induced spectroscopy instruments are not only feasible for space exploration, but are reliable and complementary to traditional elemental analysis instruments such as the Alpha Particle X-Ray Spectrometer. The superb track record of ChemCam has paved the way for other laser-induced spectroscopy instruments, such as Raman and fluorescence spectroscopy. We have developed a prototype remote LIBS-Raman-fluorescence instrument, Q-switched laser-induced time-resolved spectroscopy (QuaLITy), which is approximately 70 000 times more efficient at recording signals than a commercially available LIBS instrument. The increase in detection limits and sensitivity is due to our development of a directly coupled system, the use of an intensified charge-coupled device image detector, and a pulsed laser that allows for time-resolved measurements. We compare the LIBS capabilities of our system with an Ocean Optics spectrometer instrument at 7 m and 5 m distance. An increase in signal-to-noise ratio of at least an order of magnitude allows for greater quantitative analysis of the elements in a LIBS spectrum with 200-300 μm spatial resolution at 7 m, a Raman instrument capable of 1 mm spatial resolution at 3 m, and bioorganic fluorescence detection at longer distances. Thus, the new QuaLITy instrument fulfills all of the NASA expectations for proposed instruments.

  11. Space- and time-resolved raman and breakdown spectroscopy: advanced lidar techniques

    Science.gov (United States)

    Silviu, Gurlui; Marius Mihai, Cazacu; Adrian, Timofte; Oana, Rusu; Georgiana, Bulai; Dimitriu, Dan

    2018-04-01

    DARLIOES - the advanced LIDAR is based on space- and time-resolved RAMAN and breakdown spectroscopy, to investigate chemical and toxic compounds, their kinetics and physical properties at high temporal (2 ns) and spatial (1 cm) resolution. The high spatial and temporal resolution are needed to resolve a large variety of chemical troposphere compounds, emissions from aircraft, the self-organization space charges induced light phenomena, temperature and humidity profiles, ice nucleation, etc.

  12. The C1Σ+ state of KLi studied by polarization labelling spectroscopy technique

    International Nuclear Information System (INIS)

    Grochola, A.; Kowalczyk, P.; Jastrzebski, W.; Crozet, P.; Ross, A.J.

    2002-01-01

    The polarization labelling spectroscopy method is applied to study the C 1 Σ + - X 1 Σ + band system of the KLi molecule. Rotationally resolved polarization spectra are observed in the spectral range 17150 - 20350 cm -1 . A set of Dunham coefficients describes the C 1 Σ + state to 95% of its potential well depth, and the potential curve is constructed by the Rydberg-Klein-Rees procedure. The molecular parameters deduced from this work are compared with theoretical calculations. (author)

  13. Moessbauer spectroscopy-nuclear hyperfine technique for studying dynamic chemical states of iron complexes

    International Nuclear Information System (INIS)

    Maeda, Y.

    2005-01-01

    A brief introduction of Moessbauer spectroscopy will be presented, followed by a discussion of the Moessbauer parameters, isomer shifts, quadrupole splittings, and spectral shapes of complexes in the presence of relaxation of the electronic states of the iron atoms. The usefulness of Moessbauer spectroscopy to demonstrate the dynamic phenomena of electronic states will be discussed in this lecture. (1) The Moessbauer spectra of mixed valence dinuclear and trinuclear iron complexes will be discussed in connection with the chemical structure of the complexes: The values of the quadrupole splittings and isomer shifts of [Fe II Fe III (bpmp) (ppa) 2 ](BF 4 ) 2 increase on raising the temperature, where Hbpmp represents 2,6-bis[bis(2- pyridylmethyl)aminoethyl]-4-methylphenol and ppa is 3-n-phenylpropionic acid. The spectra can be accounted for by postulating intramolecular electron exchange between two energetically inequivalent vibronic states Fe A 2+ Fe B 3+ and Fe A 3+ Fe B 2+ : The apparent time averaged valence states of the iron atoms are 2.2 and 2.8 on the Moessbauer time scale at 293 K. (2) The Moessbauer spectra of iron(III) spin-crossover complexes will be discussed in connection with the spin-transition rate and chemical structure of the complexes. The Moessbauer spectra of spin-crossover iron(III) complexes with LIESST (Light Induced Electronic Spin-State Transition) and of metallomesogens will be discussed to illustrate the extension of this research area by the use of Moessbauer spectroscopy.

  14. Laser-induced breakdown spectroscopy (LIBS) technique for the determination of the chemical composition of complex inorganic materials

    Science.gov (United States)

    Łazarek, Łukasz; Antończak, Arkadiusz J.; Wójcik, Michał R.; Kozioł, Paweł E.; Stepak, Bogusz; Abramski, Krzysztof M.

    2014-08-01

    Laser-induced breakdown spectroscopy (LIBS) is a fast, fully optical method, that needs little or no sample preparation. In this technique qualitative and quantitative analysis is based on comparison. The determination of composition is generally based on the construction of a calibration curve namely the LIBS signal versus the concentration of the analyte. Typically, to calibrate the system, certified reference materials with known elemental composition are used. Nevertheless, such samples due to differences in the overall composition with respect to the used complex inorganic materials can influence significantly on the accuracy. There are also some intermediate factors which can cause imprecision in measurements, such as optical absorption, surface structure, thermal conductivity etc. This paper presents the calibration procedure performed with especially prepared pellets from the tested materials, which composition was previously defined. We also proposed methods of post-processing which allowed for mitigation of the matrix effects and for a reliable and accurate analysis. This technique was implemented for determination of trace elements in industrial copper concentrates standardized by conventional atomic absorption spectroscopy with a flame atomizer. A series of copper flotation concentrate samples was analyzed for contents of three elements, that is silver, cobalt and vanadium. It has been shown that the described technique can be used to qualitative and quantitative analyses of complex inorganic materials, such as copper flotation concentrates.

  15. Study on high-silicon boron-containing zeolite by thermogravimetric and IR-spectroscopy techniques

    International Nuclear Information System (INIS)

    Chukin, G.D.; Nefedov, B.K.; Surin, S.A.; Polinina, E.V.; Khusid, B.L.; Sidel'kovskaya, V.G.

    1985-01-01

    The structure identity of initial Na-forms of boron-containing and aluminosilicate high-silicon zeolites is established by thermogravimetric and IR-spectroscopy methods. The presence of boron in Na-forms of high-silicon zeolites is shown to lead to reduction of structure thermal stability. It is noted that thermal stability of the H-form of both high-silicon boron-containing and boron-free zeolites is practically equal and considerably higher than that of Na-forms

  16. Impurity diagnosis of a KSTAR graphite divertor tile using laser induced breakdown spectroscopy technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minju; Cho, Min Sang; Cho, Byoung Ick, E-mail: bicho@gist.ac.kr

    2017-04-15

    Laser induced breakdown spectroscopy (LIBS) has been tested to diagnose impurity elements on a Korea Superconducting Tokamak Advanced Research (KSTAR) divertor tile. Spectral lines of various impurity elements such as iron, chromium, and nickel were detected from the divertor surface. The variation of spectra with consecutive laser pulses demonstrates the potential for depth profiling analysis for the deposited impurity layer. The LIBS plasma parameters have been qualitatively determined from analysis of the relative line intensities and linewidths for each element. The validity of this analysis has been checked with atomic spectral simulations.

  17. Non-destructive technique for determining the viability of soybean (Glycine max) seeds using FT-NIR spectroscopy.

    Science.gov (United States)

    Kusumaningrum, Dewi; Lee, Hoonsoo; Lohumi, Santosh; Mo, Changyeun; Kim, Moon S; Cho, Byoung-Kwan

    2018-03-01

    The viability of seeds is important for determining their quality. A high-quality seed is one that has a high capability of germination that is necessary to ensure high productivity. Hence, developing technology for the detection of seed viability is a high priority in agriculture. Fourier transform near-infrared (FT-NIR) spectroscopy is one of the most popular devices among other vibrational spectroscopies. This study aims to use FT-NIR spectroscopy to determine the viability of soybean seeds. Viable and artificial ageing seeds as non-viable soybeans were used in this research. The FT-NIR spectra of soybean seeds were collected and analysed using a partial least-squares discriminant analysis (PLS-DA) to classify viable and non-viable soybean seeds. Moreover, the variable importance in projection (VIP) method for variable selection combined with the PLS-DA was employed. The most effective wavelengths were selected by the VIP method, which selected 146 optimal variables from the full set of 1557 variables. The results demonstrated that the FT-NIR spectral analysis with the PLS-DA method that uses all variables or the selected variables showed good performance based on the high value of prediction accuracy for soybean viability with an accuracy close to 100%. Hence, FT-NIR techniques with a chemometric analysis have the potential for rapidly measuring soybean seed viability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Non-Halal biomarkers identification based on Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography-Time of Flight Mass Spectroscopy (GC-TOF MS) techniques

    Science.gov (United States)

    Witjaksono, Gunawan; Saputra, Irwan; Latief, Marsad; Jaswir, Irwandi; Akmeliawati, Rini; Abdelkreem Saeed Rabih, Almur

    2017-11-01

    Consumption of meat from halal (lawful) sources is essential for Muslims. The identification of non-halal meat is one of the main issues that face consumers in meat markets, especially in non-Islamic countries. Pig is one of the non-halal sources of meat, and hence pig meat and its derivatives are forbidden for Muslims to consume. Although several studies have been conducted to identify the biomarkers for nonhalal meats like pig meat, these studies are still in their infancy stages, and as a result there is no universal biomarker which could be used for clear cut identification. The purpose of this paper is to use Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography-Time of Flight Mass Spectroscopy (GC-TOF MS) techniques to study fat of pig, cow, lamb and chicken to find possible biomarkers for pig fat (lard) identification. FTIR results showed that lard and chicken fat have unique peaks at wavenumbers 1159.6 cm-1, 1743.4 cm-1, 2853.1 cm-1 and 2922.5 cm-1 compared to lamb and beef fats which did not show peaks at these wavenumbers. On the other hand, GC/MS-TOF results showed that the concentration of 1,2,3-trimethyl-Benzene, Indane, and Undecane in lard are 250, 14.5 and 1.28 times higher than their concentrations in chicken fat, respectively, and 91.4, 2.3 and 1.24 times higher than their concentrations in cow fat, respectively. These initial results clearly indicate that there is a possibility to find biomarkers for non-halal identification.

  19. Quasi-optimum gamma and X spectroscopy based on real-time digital techniques

    CERN Document Server

    Pullia, Antonio; Ripamonti, G

    2000-01-01

    An adaptive, self-calibrated instrument for gamma- and X-ray digital spectroscopy is proposed and demonstrated. Most of the typical processing features (pole-zero cancellation, baseline restoration, and shaping) are digitally implemented and optimized. Initialization is performed through a software procedure, which makes the system particularly flexible and allows periodical adaptivity. It is shown that spectroscopy performances are achieved even while using low-cost, low-frequency (5 Ms/s), and relatively low-resolution (12-bit) AD converters. The ADC differential nonlinearity (DNL), for example, is improved of two orders of magnitude, as estimated over the Compton shoulder of a sup 6 sup 0 Co spectrum, owing to an equivalent built-in sliding-scale effect. Using the system with an high-purity germanium (HPGe) detector a resolution of 1.9 keV FWHM (1.6 per mille) is obtained on the 1.17 MeV spectral line of a sup 6 sup 0 Co source. An Integral Nonlinearity (INL) of 0.3 per mille is measured in the range from ...

  20. Application of laser tweezers Raman spectroscopy techniques to the monitoring of single cell response to stimuli

    Science.gov (United States)

    Chan, James W.; Liu, Rui; Matthews, Dennis L.

    2012-06-01

    Laser tweezers Raman spectroscopy (LTRS) combines optical trapping with micro-Raman spectroscopy to enable label-free biochemical analysis of individual cells and small biological particles in suspension. The integration of the two technologies greatly simplifies the sample preparation and handling of suspension cells for spectroscopic analysis in physiologically meaningful conditions. In our group, LTRS has been used to study the effects of external perturbations, both chemical and mechanical, on the biochemistry of the cell. Single cell dynamics can be studied by performing longitudinal studies to continuously monitor the response of the cell as it interacts with its environment. The ability to carry out these measurements in-vitro makes LTRS an attractive tool for many biomedical applications. Here, we discuss the use of LTRS to study the response of cancer cells to chemotherapeutics and bacteria cells to antibiotics and show that the life cycle and apoptosis of the cells can be detected. These results show the promise of LTRS for drug discovery/screening, antibiotic susceptibility testing, and chemotherapy response monitoring applications. In separate experiments, we study the response of red blood cells to the mechanical forces imposed on the cell by the optical tweezers. A laser power dependent deoxygenation of the red blood cell in the single beam trap is reported. Normal, sickle cell, and fetal red blood cells have a different behavior that enables the discrimination of the cell types based on this mechanochemical response. These results show the potential utility of LTRS for diagnosing and studying red blood cell diseases.

  1. New techniques of laser spectroscopy on exotic isotopes of gallium and francium

    CERN Document Server

    Procter, Thomas John

    The neutron-deficient gallium isotopes down to ${N}$=32 have had their hyperfine structures and isotope shifts measured via collinear laser spectroscopy using the COLLAPS (COllinear LAser sPectroScopy) beam line. The ground-state spin of $^{63}$Ga has been determined as ${I}$ = 3/2 and its magnetic dipole and electric quadrupole moments were measured to be $\\mu$ = +1.469(5) $_{\\mu N}$ and ${ Q}$s = +0.212(14) b respectively. The nuclear moments of $^{70}$Ga were measured to be ${\\mu}$= +0.571(2) $_{\\mu}$ and ${Q}$s = +0.105(7) b. New isotope shift results were combined with previously measured values of the neutron-rich isotopes and the changes in mean-square charge radii of the entire gallium isotope chain were investigated. Analysis of the trend in the neutron-deficient charge radii demonstrated that there is no evidence of anomalous charge radii behaviour in gallium in the region of ${N}$=32. A sudden increase of the charge radii was observed at the ${N}$=50 shell gap and an inversion of the normal odd-eve...

  2. Advantages and disadvantages of nuclear magnetic resonance spectroscopy as a hyphenated technique

    International Nuclear Information System (INIS)

    Silva Elipe, Maria Victoria

    2003-01-01

    A general overview of the advancements and applications of nuclear magnetic resonance (NMR) hyphenated with other analytical techniques is given from a practical point of view. Details on the advantages and disadvantages of the hyphenation of NMR with liquid chromatography as LC-NMR and also with mass spectrometry as LC-MS-NMR are demonstrated with two examples. Current developments of NMR with other analytical separation techniques, especially with capillary liquid chromatography (capLC) are discussed

  3. System and technique for characterizing fluids using ultrasonic diffraction grating spectroscopy

    Science.gov (United States)

    Greenwood, Margaret S [Richland, WA

    2008-07-08

    A system for determining property of multiphase fluids based on ultrasonic diffraction grating spectroscopy includes a diffraction grating on a solid in contact with the fluid. An interrogation device delivers ultrasound through the solid and a captures a reflection spectrum from the diffraction grating. The reflection spectrum exhibits peaks whose relative size depends on the properties of the various phases of the multiphase fluid. For example, for particles in a liquid, the peaks exhibit dependence on the particle size and the particle volume fraction. Where the exact relationship is know know a priori, data from different peaks of the same reflection spectrum or data from the peaks of different spectra obtained from different diffraction gratings can be used to resolve the size and volume fraction.

  4. 238U And 232Th Concentration In Rock Samples using Alpha Autoradiography and Gamma Spectroscopy Techniques

    International Nuclear Information System (INIS)

    Hafez, A.F.; El-Farrash, A.H.; Yousef, H.A.

    2009-01-01

    The activity concentrations of uranium and thorium were measured for some rock samples selected from Dahab region in the south tip of Sinai. In order to detect any harmful radiation that would affect on the tourists and is becoming economic resource because Dahab have open fields of tourism in Egypt. The activity concentration of uranium and thorium in rocks samples was measured using two techniques. The first is .-autoradiography technique with LR-115 and CR-39 detectors and the second is gamma spectroscopic technique with NaI(Tl) detector. It was found that the average activity concentrations of uranium and thorium using .-autoradiography technique ranged from 6.41-49.31 Bqkg-1, 4.86- 40.87 Bqkg-1 respectively and by gamma detector are ranged from 6.70- 49.50 Bqkg-1, 4.47- 42.33 Bqkg-1 respectively. From the obtained data we can conclude that there is no radioactive healthy hazard for human and living beings in the area under investigation. It was found that there are no big differences between the calculated thorium to uranium ratios in both techniques

  5. A technique for measuring oxygen saturation in biological tissues based on diffuse optical spectroscopy

    Science.gov (United States)

    Kleshnin, Mikhail; Orlova, Anna; Kirillin, Mikhail; Golubiatnikov, German; Turchin, Ilya

    2017-07-01

    A new approach to optical measuring blood oxygen saturation was developed and implemented. This technique is based on an original three-stage algorithm for reconstructing the relative concentration of biological chromophores (hemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the probing radiation source. The numerical experiments and approbation of the proposed technique on a biological phantom have shown the high reconstruction accuracy and the possibility of correct calculation of hemoglobin oxygenation in the presence of additive noise and calibration errors. The obtained results of animal studies have agreed with the previously published results of other research groups and demonstrated the possibility to apply the developed technique to monitor oxygen saturation in tumor tissue.

  6. Pump-probe differencing technique for cavity-enhanced, noise-canceling saturation laser spectroscopy.

    Science.gov (United States)

    de Vine, Glenn; McClelland, David E; Gray, Malcolm B; Close, John D

    2005-05-15

    We present an experimental technique that permits mechanical-noise-free, cavity-enhanced frequency measurements of an atomic transition and its hyperfine structure. We employ the 532-nm frequency-doubled output from a Nd:YAG laser and an iodine vapor cell. The cell is placed in a folded ring cavity (FRC) with counterpropagating pump and probe beams. The FRC is locked with the Pound-Drever-Hall technique. Mechanical noise is rejected by differencing the pump and probe signals. In addition, this differenced error signal provides a sensitive measure of differential nonlinearity within the FRC.

  7. Photodissociation action spectroscopy of ozonized films of undecylenic acid

    Science.gov (United States)

    Gomez, Anthony; Li, Ao; Wlaser, Maggie; Britigan, Nicole; Nizkorodov, Sergey

    2005-03-01

    Photochemical studies of thin films of oxidized undecylenic acid and its salts will be presented. The films are first partially oxidized by ozone, and then irradiated with a wavelength tunable UV source in an inert atmosphere. The escaping gas-phase photochemical products are detected by cavity ring-down spectroscopy as a function of the excitation frequency. The film composition is analyzed by chromatography and mass spectrometry. The data provide critical new insights into the mechanisms of ozonolysis and photolysis of oxidized undecylenic acid, and have serious implications for atmospheric chemistry of organic aerosol particles.

  8. X-ray spectroscopy: An experimental technique to measure charge state distribution during ion–solid interaction

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Prashant, E-mail: prashant@iuac.res.in; Nandi, Tapan

    2016-01-08

    Charge state distributions of {sup 56}Fe and {sup 58}Ni projectile ions passing through thin carbon foils have been studied in the energy range of 1.65–2.69 MeV/u using a novel method involving the X-ray spectroscopy technique. Interestingly the charge state distribution in the bulk shows Lorentzian behavior instead of usual Gaussian distribution. Further, different parameters of charge state distribution like mean charge state, distribution width and asymmetric parameter are determined and compared with the empirical calculations and ETACHA predictions. It is found that the X-ray measurement technique is appropriate to determine the mean charge state during the ion–solid interaction or in the bulk. Interestingly, empirical formalism predicts much lower mean charge states of the projectile ions compared to X-ray measurements which clearly indicate multi-electron capture from the target surface. The ETACHA predictions and experimental results are found to be comparable for the present energy regime. - Highlights: • New method is proposed to determine charge state distribution using X-ray technique. • Charge state distribution parameters are calculated and compared with various theoretical predictions. • X-ray technique is found to be appropriate to segregate the charge state distribution in the bulk from the target surface. • ETACHA predictions are found satisfactory in the energy range of ≥1.65 MeV/u.

  9. Screening Technique for Lead and Cadmium in Toys and Other Materials Using Atomic Absorption Spectroscopy

    Science.gov (United States)

    Brouwer, Henry

    2005-01-01

    A simple procedure to quickly screen different consumer products for the presence of lead, cadmium, and other metals is described. This screening technique avoids expending a lot of preparation time on samples known to contain low levels of hazardous metals where only samples testing positive for the desired elements need to be analyzed…

  10. Performance assessment of a cavity ring-down laser spectrometer: achieving better precision and accuracy in the measurement of δ18O and δ2H in liquid water samples

    International Nuclear Information System (INIS)

    Prado-Pérez, A J; Rodríguez-Arévalo, J; Díaz-Teijeiro, M F

    2014-01-01

    The development of new isotopic laser-based analyzers currently represents a clear alternative to conventional isotope ratio mass spectrometers. However, this analytical technique also suffers some disadvantages such as the memory effect, problems related to the overall stability of the equipment and other issues associated with the injection system, essentially regarding the syringe's longevity. This paper aims to minimize these disadvantages in order to increase the overall performance, in terms of precision and accuracy, of these kinds of analyzers. The main results of the experiments carried out in this paper have shown that: (i) the minimum number of discarded injections needed to eliminate the memory effect can be determined just considering the expected isotopic signature difference between two consecutive samples; (ii) both accuracy and precision of the isotopic measurements increase with increasing injection volume up to 2.1–2.2 µL; (iii) it is possible to extend the syringe lifetime by almost a factor of 6 by using n-methyl 2-pyrrolidone as a lubricant. Besides, it has been concluded that, by using the appropriate procedure, the main disadvantages associated with CRDS laser spectroscopy analyzers can be minimized, achieving measurement accuracy and precision of the order of ±0.05 ‰ for δ 18 O and ±0.3 ‰ for δ 2 H. (paper)

  11. Localized corrosion evaluation of the ASTM F139 stainless steel marked by laser using scanning vibrating electrode technique, X-ray photoelectron spectroscopy and Mott–Schottky techniques

    International Nuclear Information System (INIS)

    Pieretti, Eurico F.; Manhabosco, Sara M.; Dick, Luís F.P.; Hinder, Steve; Costa, Isolda

    2014-01-01

    Graphical abstract: SEM image of pits found at the centred marked area, where the laser beam focused twice. - Highlights: • The effect of laser engraving on the corrosion resistance of the ASTM F139 was studied. • Scanning vibrating electrode technique was used to identify the anodic zone. • Laser engraving of austenitic stainless steels produces highly defective surfaces. • Laser engraving causes large chemical modification of the surface. • Pitting nucleates at the interface between laser affected and unaffected areas. - Abstract: The effect of laser engraving on the corrosion resistance of ASTM F139 stainless steel (SS) has been investigated by electrochemical techniques. The nucleation of localized corrosion on this biomaterial was evaluated by scanning vibrating electrode technique (SVET) in a phosphate buffered saline solution (PBS) of pH 7.4. The Mott–Schottky approach was used to determine the electronic properties of the passive film, also chemically characterized by X-ray photoelectron spectroscopy (XPS). SVET allowed the identification of the anodic zones on the surface of the SS marked by laser technique that were associated with the heat-affected areas. Metallic drops solidified on the laser marked surface dissolved actively at OCP and favoured the nucleation of crevice corrosion, while at the pitting potential, pits nucleate preferentially on the laser marks. XPS results showed that laser engraving caused large chemical modification of the surface. Mott–Schottky results indicated a more defective oxide layer with a larger number of donors on the laser marked surface comparatively to that without marks

  12. Positron annihilation lifetime spectroscopy (PALS) as a characterization technique for nanostructured self-assembled amphiphile systems.

    Science.gov (United States)

    Dong, Aurelia W; Pascual-Izarra, Carlos; Pas, Steven J; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2009-01-08

    Positron annihilation lifetime spectroscopy (PALS) has potential as a novel rapid characterization method for self-assembly amphiphile systems; however, a lack of systematic correlation of PALS parameters with structural attributes has limited its more widespread application. In this study, using the well-characterized phytantriol/water and the phytantriol/vitamin E acetate/water self-assembly amphiphile systems, the impact of systematic structural changes controlled by changes in composition and temperature on PALS parameters has been studied. The PALS parameters (orthopositronium (oPs) lifetime and intensity signatures) were shown to be sensitive to the molecular packing and mobility of the self-assembled lipid molecules in various lyotropic liquid crystalline phases, enabling differentiation between liquid crystalline structures. The oPs lifetime, related to the molecular packing and mobility, is correlated with rheological properties of the individual mesophases. The oPs lifetime links the lipid chain packing and mobility in the various mesophases to resultant macroscopic properties, such as permeability, which is critical for the use of these mesophase structures as diffusion-controlled release matrices for active liposoluble compounds.

  13. Vibration-rotational overtones absorption of solid hydrogens using optoacoustic spectroscopy technique

    International Nuclear Information System (INIS)

    Vieira, M.M.F.

    1985-01-01

    Vibrational-rotational overtones absorption solid hydrogens (H 2 , D 2 , HD) is studied using pulsed laser piezoeletric transducer (PULPIT) optoacoustic spectroscopy is studied. A general downward shift in energy from isolated molecular energies is observed. Studying normal-hydrogen it was observed that the phonon excitations associated with double-molecular transitions are predominantly transverse-optical phonons, whereas the excitations associated with single-molecular transitions are predominantly longitudinal - optical phonons. Multiplet structures were observed for certain double transitions in parahydrogen and orthodeuterium. The HD spectrum, besides presenting the sharp zero-phonon lines and the associated phonon side bands, like H 2 and D 2 , showed also two different features. This observation was common to all the transitions involving pure rotational excitation in H 2 and D 2 , which showed broad linewidths. This, together with some other facts (fluorescence lifetime *approx*10 5 sec; weak internal vibration and lattice coupling), led to the proposition of a mechanism for the fast nonradiative relaxation in solid hydrogens, implied from some observed experimental evidences. This relaxation, due to strong coupling, would happen in two steps: the internal vibration modes would relax to the rotational modes of the molecules, and then this rotational modes would relax to the lattice vibration modes. (Author) [pt

  14. Holographic Spectroscopy: Wavelength-Dependent Analysis of Photosensitive Materials by Means of Holographic Techniques

    Directory of Open Access Journals (Sweden)

    Kay-Michael Voit

    2013-01-01

    Full Text Available Holographic spectroscopy is highlighted as a powerful tool for the analysis of photosensitive materials with pronounced alterations of the complex permittivity over a broad range in the visible spectrum, due to the advances made both in the fields of advanced holographic media and highly tunable lasers systems. To analytically discuss consequences for in- and off-Bragg reconstruction, we revised Kogelnik’s coupled wave theory strictly on the basis of complex permittivities. We extended it to comply with modern experimental parameters such as out-of-phase mixed holograms and highly modulated gratings. A spatially modulated, wavelength-dependent permittivity that superimposes a spatially homogeneous wavelength-dependent ground state spectrum is taken into account for signal wave reconstruction with bulky elementary mixed gratings as an example. The dispersion characteristics of the respective diffraction efficiency is modelled for color-center-absorption and absorption of strongly localized carriers. As an example for the theoretical possibilities of our newly derived set of equations, we present a quantitative analysis of the Borrmann effect connected to out-of-phase gratings, providing easier and more intuitive methods for the derivation of their grating parameters.

  15. A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Cooper, Robert J; Selb, Juliette; Gagnon, Louis

    2012-01-01

    a significant reduction in the mean-squared error (MSE) and significant increase in the contrast-to-noise ratio (CNR) of the recovered HRF when compared to no correction and compared to a process of rejecting motion-contaminated trials. Spline interpolation produces the largest average reduction in MSE (55....... Principle component analysis, spline interpolation, wavelet analysis, and Kalman filtering approaches are compared to one another and to standard approaches using the accuracy of the recovered, simulated hemodynamic response function (HRF). Each of the four motion correction techniques we tested yields......%) while wavelet analysis produces the highest average increase in CNR (39%). On the basis of this analysis, we recommend the routine application of motion correction techniques (particularly spline interpolation or wavelet analysis) to minimize the impact of motion artifacts on functional NIRS data....

  16. Fourier Transform Infrared (FTIR Spectroscopy with Chemometric Techniques for the Classification of Ballpoint Pen Inks

    Directory of Open Access Journals (Sweden)

    Muhammad Naeim Mohamad Asri

    2015-12-01

    Full Text Available FTIR spectroscopic techniques have been shown to possess good abilities to analyse ballpoint pen inks. These in-situ techniques involve directing light onto ballpoint ink samples to generate an FTIR spectrum, providing “molecular fingerprints” of the ink samples thus allowing comparison by direct visual comparison. In this study, ink from blue (n=15 and red (n=15 ballpoint pens of five different brands: Kilometrico®, G-Soft®, Stabilo®, Pilot® and Faber Castell® was analysed using the FTIR technique with the objective of establishing a distinctive differentiation according to the brand. The resulting spectra were first compared and grouped manually. Due to the similarities in terms of colour and shade of the inks, distinctive differentiation could not be achieved by means of direct visual comparison. However, when the same spectral data was analysed by Principal Component Analysis (PCA software, distinctive grouping of the ballpoint pen inks was achieved. Our results demonstrate that PCA can be used objectively to investigate ballpoint pen inks of similar colour and more importantly of different brands.

  17. Calibration and field testing of cavity ring-down laser spectrometers measuring CH4, CO2, and δ13CH4 deployed on towers in the Marcellus Shale region

    Directory of Open Access Journals (Sweden)

    N. L. Miles

    2018-03-01

    Full Text Available Four in situ cavity ring-down spectrometers (G2132-i, Picarro, Inc. measuring methane dry mole fraction (CH4, carbon dioxide dry mole fraction (CO2, and the isotopic ratio of methane (δ13CH4 were deployed at four towers in the Marcellus Shale natural gas extraction region of Pennsylvania. In this paper, we describe laboratory and field calibration of the analyzers for tower-based applications and characterize their performance in the field for the period January–December 2016. Prior to deployment, each analyzer was tested using bottles with various isotopic ratios, from biogenic to thermogenic source values, which were diluted to varying degrees in zero air, and an initial calibration was performed. Furthermore, at each tower location, three field tanks were employed, from ambient to high mole fractions, with various isotopic ratios. Two of these tanks were used to adjust the calibration of the analyzers on a daily basis. We also corrected for the cross-interference from ethane on the isotopic ratio of methane. Using an independent field tank for evaluation, the standard deviation of 4 h means of the isotopic ratio of methane difference from the known value was found to be 0.26 ‰ δ13CH4. Following improvements in the field tank testing scheme, the standard deviation of 4 h means was 0.11 ‰, well within the target compatibility of 0.2 ‰. Round-robin style testing using tanks with near-ambient isotopic ratios indicated mean errors of −0.14 to 0.03 ‰ for each of the analyzers. Flask to in situ comparisons showed mean differences over the year of 0.02 and 0.08 ‰, for the east and south towers, respectively. Regional sources in this region were difficult to differentiate from strong perturbations in the background. During the afternoon hours, the median differences of the isotopic ratio measured at three of the towers, compared to the background tower, were &minus0.15 to 0.12 ‰ with standard deviations of the 10

  18. Calibration and field testing of cavity ring-down laser spectrometers measuring CH4, CO2, and δ13CH4 deployed on towers in the Marcellus Shale region

    Science.gov (United States)

    Miles, Natasha L.; Martins, Douglas K.; Richardson, Scott J.; Rella, Christopher W.; Arata, Caleb; Lauvaux, Thomas; Davis, Kenneth J.; Barkley, Zachary R.; McKain, Kathryn; Sweeney, Colm

    2018-03-01

    Four in situ cavity ring-down spectrometers (G2132-i, Picarro, Inc.) measuring methane dry mole fraction (CH4), carbon dioxide dry mole fraction (CO2), and the isotopic ratio of methane (δ13CH4) were deployed at four towers in the Marcellus Shale natural gas extraction region of Pennsylvania. In this paper, we describe laboratory and field calibration of the analyzers for tower-based applications and characterize their performance in the field for the period January-December 2016. Prior to deployment, each analyzer was tested using bottles with various isotopic ratios, from biogenic to thermogenic source values, which were diluted to varying degrees in zero air, and an initial calibration was performed. Furthermore, at each tower location, three field tanks were employed, from ambient to high mole fractions, with various isotopic ratios. Two of these tanks were used to adjust the calibration of the analyzers on a daily basis. We also corrected for the cross-interference from ethane on the isotopic ratio of methane. Using an independent field tank for evaluation, the standard deviation of 4 h means of the isotopic ratio of methane difference from the known value was found to be 0.26 ‰ δ13CH4. Following improvements in the field tank testing scheme, the standard deviation of 4 h means was 0.11 ‰, well within the target compatibility of 0.2 ‰. Round-robin style testing using tanks with near-ambient isotopic ratios indicated mean errors of -0.14 to 0.03 ‰ for each of the analyzers. Flask to in situ comparisons showed mean differences over the year of 0.02 and 0.08 ‰, for the east and south towers, respectively. Regional sources in this region were difficult to differentiate from strong perturbations in the background. During the afternoon hours, the median differences of the isotopic ratio measured at three of the towers, compared to the background tower, were &minus0.15 to 0.12 ‰ with standard deviations of the 10 min isotopic ratio differences of 0.8

  19. Technique of proton and phosphorous MR spectroscopy; Technik der Protonen- und Phosphor-MR-Spektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Backens, M. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2017-06-15

    Magnetic resonance spectroscopy (MRS) is an important non-invasive method that can reveal the concentration and spatial distribution of particular biochemically relevant tissue metabolites. Proton MRS is routinely applicable in the clinical setting providing good quality results even with a moderate magnetic field strength of 1.5 T. Relative values of metabolite concentrations are mostly used for the assessment of metabolic disorders. Absolute quantification of metabolites can be achieved by means of internal or external reference scans. Phosphorous MRS extends the range of detectable molecules to energy and cell membrane metabolism. The lower detection limit of metabolite concentrations is in the range of some mmol/kg. Depending on the magnetic field strength, MRS enables a spatial resolution of a few milliliters. The use of phosphorous MRS is considerably limited because higher field strengths of at least 3.0 T and additional expensive hardware for signal processing are required. (orig.) [German] Die MR-Spektroskopie (MRS) ist eine wichtige nichtinvasive Untersuchungsmethode, die Konzentration und raeumliche Verteilung einiger biochemisch relevanter Metaboliten im Gewebe ermitteln kann. Die Protonenspektroskopie ist klinisch etabliert, in der Routine einfach durchfuehrbar und liefert bereits bei einer Magnetfeldstaerke von 1,5 T qualitativ gute Ergebnisse. Fuer die Beurteilung von Stoffwechselveraenderungen werden Metabolitenkonzentrationen meist als Relativwerte angegeben. Mithilfe interner oder externer Referenzmessungen sind auch absolute Metabolitenkonzentrationen berechenbar. Die Phosphorspektroskopie erweitert den Bereich der detektierbaren Molekuele auf den Energie- und Zellmembranstoffwechsel. Die minimale nachweisbare Metabolitenkonzentration liegt bei einigen mmol/kg. Abhaengig von der Magnetfeldstaerke ist eine raeumliche Aufloesung der MRS von wenigen Millilitern erreichbar. Der Einsatz der Phosphor-MRS wird dadurch erheblich eingeschraenkt, dass sie

  20. An introductory study using impedance spectroscopy technique with polarizable microelectrode for amino acids characterization

    Science.gov (United States)

    Chin, K. B.; Chi, I.; Pasalic, J.; Huang, C.-K.; Barge, Laura M.

    2018-04-01

    Portable, low power, yet ultra-sensitive life detection instrumentations are vital to future astrobiology flight programs at NASA. In this study, initial attempts to characterize amino acids in an aqueous environment by electrochemical impedance spectroscopy (EIS) using polarizable (blocking) electrodes in order to establish a means of detection via their electrical properties. Seven amino acids were chosen due to their scientific importance in demonstrating sensitivity levels in the range of part per billion concentration. Albeit more challenging in real systems of analyst mixtures, we found individual amino acids in aqueous environment do exhibit some degree of chemical and physical uniqueness to warrant characterization by EIS. The polar amino acids (Asp, Glu, and His) exhibited higher electrochemical activity than the non-polar amino acids (Ala, Gly, Val, and Leu). The non-polar amino acids (Gly and Ala) also exhibited unique electrical properties which appeared to be more dependent on physical characteristics such as molecular weight and structure. At concentrations above 1 mM where the amino acids play a more dominant transport role within the water, the conductivity was found to be more sensitive to concentrations. At lower concentrations activity with water. As revealed by equivalent circuit modeling, the relaxation times showed a 1-2 order of magnitude difference between polar and non-polar amino acids. The pseudo-capacitance from EIS measurements on sample mixtures containing salt water and individual amino acids revealed the possibility for improvement in amino acid selectivity using gold nanoporous surface enhanced electrodes. This work establishes important methodologies for characterizing amino acids using EIS combined with microscale electrodes, supporting the case for instrumentation development for life detection and origin of life programs.

  1. Ex vivo hyperpolarized MR spectroscopy on isolated renal tubular cells: A novel technique for cell energy phenotyping.

    Science.gov (United States)

    Juul, Troels; Palm, Fredrik; Nielsen, Per Mose; Bertelsen, Lotte Bonde; Laustsen, Christoffer

    2017-08-01

    It has been demonstrated that hyperpolarized 13 C MR is a useful tool to study cultured cells. However, cells in culture can alter phenotype, which raises concerns regarding the in vivo significance of such findings. Here we investigate if metabolic phenotyping using hyperpolarized 13 C MR is suitable for cells isolated from kidney tissue, without prior cell culture. Isolation of tubular cells from freshly excised kidney tissue and treatment with either ouabain or antimycin A was investigated with hyperpolarized MR spectroscopy on a 9.4 Tesla preclinical imaging system. Isolation of tubular cells from less than 2 g of kidney tissue generally resulted in more than 10 million live tubular cells. This amount of cells was enough to yield robust signals from the conversion of 13 C-pyruvate to lactate, bicarbonate and alanine, demonstrating that metabolic flux by means of both anaerobic and aerobic pathways can be quantified using this technique. Ex vivo metabolic phenotyping using hyperpolarized 13 C MR in a preclinical system is a useful technique to study energy metabolism in freshly isolated renal tubular cells. This technique has the potential to advance our understanding of both normal cell physiology as well as pathological processes contributing to kidney disease. Magn Reson Med 78:457-461, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Use of the associated particle technique in the fast neutron spectroscopy

    International Nuclear Information System (INIS)

    Aquirre O, G.A.

    1978-01-01

    Selecting a neutrons monoenergetic source it was found that the nuclear reaction D(d,n) 3 He can be used to measure nuclear sections and differentials in elastic nuclear reactions through the associated particle technique; the neutron beam energy is directly determined in time of flight spectrum of the neutron. The flux is determined by the number of 3 He ions observed in the charged particle spectrum. The neutron flux can be increased increasing the solid angle of the neutrons beam in two magnitude orders according to the results of neutrons beam profile measures. (author)

  3. Electron-volt spectroscopy at a pulsed neutron source using a resonance detector technique

    CERN Document Server

    Andreani, C; Senesi, R; Gorini, G; Tardocchi, M; Bracco, A; Rhodes, N; Schooneveld, E M

    2002-01-01

    The effectiveness of the neutron resonance detector spectrometer for deep inelastic neutron scattering measurements has been assessed by measuring the Pb scattering on the eVS spectrometer at ISIS pulsed neutron source and natural U foils as (n,gamma) resonance converters. A conventional NaI scintillator with massive shielding has been used as gamma detector. A neutron energy window up to 90 eV, including four distinct resonance peaks, has been assessed. A net decrease of the intrinsic width of the 6.6 eV resonance peak has also been demonstrated employing the double difference spectrum technique, with two uranium foils of different thickness.

  4. Optimization of impedance spectroscopy techniques for measuring cutaneous micropore formation after microneedle treatment in an elderly population.

    Science.gov (United States)

    Kelchen, Megan N; Holdren, Grant O; Farley, Matthew J; Zimmerman, M Bridget; Fairley, Janet A; Brogden, Nicole K

    2014-12-01

    The objective of this study was to optimize a reproducible impedance spectroscopy method in elderly subjects as a means to evaluate the effects of microneedles on aging skin. Human volunteers were treated with microneedles at six sites on the upper arm. Repeated impedance measurements were taken pre- and post-microneedle insertion. Two electrode types were evaluated (dry vs. gel), using either light or direct pressure to maintain contact between the electrode and skin surface. Transepidermal water loss (TEWL) was measured as a complementary technique. Five control subjects and nine elderly subjects completed the study. Microneedle insertion produced a significant decrease in impedance from baseline in all subjects (p micropore formation. This was supported by a complementary significant increase in TEWL (p micropore formation in elderly subjects, which will be essential for future studies describing microneedle-assisted transdermal delivery in aging populations.

  5. Optical waveguide lightmode spectroscopy technique-based immunosensor development for aflatoxin B1 determination in spice paprika samples.

    Science.gov (United States)

    Majer-Baranyi, Krisztina; Zalán, Zsolt; Mörtl, Mária; Juracsek, Judit; Szendrő, István; Székács, András; Adányi, Nóra

    2016-11-15

    Optical waveguide lightmode spectroscopy (OWLS) technique has been applied to label-free detection of aflatoxin B1 in a competitive immunoassay format, with the aim to compare the analytical goodness of the developed OWLS immunosenor with HPLC and enzyme-linked immunosorbent assay (ELISA) methods for the detection of aflatoxin in spice paprika matrix. We have also assessed applicability of the QuEChERS method prior to ELISA measurements, and the results were compared to those obtained by traditional solvent extraction followed by immunoaffinity clean-up. The AFB1 content of sixty commercial spice paprika samples from different countries were measured with the developed and optimized OWLS immunosensor. Comparing the results from the indirect immunosensor to that obtained by HPLC or ELISA provided excellent correlation (with regression coefficients above 0.94) indicating that the competitive OWLS immunosensor has a potential for quick determination of aflatoxin B1 in paprika samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Surface-enhanced resonance Raman scattering (SERRS) spectroscopy: a powerful technique for the forensic analysis of colorants?

    Science.gov (United States)

    White, Peter C.; Rodger, Caroline; Rutherford, Vicky; Finnon, Yvonne; Smith, W. Ewen; Fitzgerald, Mary P.

    1999-02-01

    During the past five years work in our laboratory has been concentrated on developing SERRS spectroscopy and making it a simple and robust technique for the analyses of colorants. It has proved to be highly discriminative, extremely sensitive and possible to identify dyes in mixtures without their prior separation. Additionally, by using concentrated silver colloid solutions, in-situ analyses have now been accomplished with minimal or in some cases no visual destruction of the item being examined and with virtually no background interference from the surfaces on which the stains or smears have been deposited. To illustrate the methodology and the potential of SERRS various applications including the in-situ analyses of the dyes on cotton fibers and stains from cosmetics, shoe polishes, inks and drinks on various surfaces are presented.

  7. MICROCALORIMETER SPECTROSCOPY AT HIGH PULSE RATES: A MULTI-PULSE FITTING TECHNIQUE

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J. W.; Alpert, B. K.; Doriese, W. B.; Joe, Y. I.; O’Neil, G. C.; Swetz, D. S.; Ullom, J. N. [National Institute of Standards and Technology, 325 Broadway MS 686.02, Boulder, CO 80305 (United States); Fischer, D. A.; Jaye, C. [National Institute of Standards and Technology, Brookhaven National Lab, Brookhaven, NY (United States)

    2015-08-15

    Transition Edge Sensor microcalorimeters can measure X-ray and gamma-ray energies with very high energy resolution and high photon-collection efficiency. For this technology to reach its full potential in future X-ray observatories, each sensor must be able to measure hundreds or even thousands of photon energies per second. Current “optimal filtering” approaches to achieve the best possible energy resolution work only for photons that are well isolated in time, a requirement which is in direct conflict with the need for high-rate measurements. We describe a new analysis procedure to allow fitting for the pulse height of all photons even in the presence of heavy pulse pile-up. In the limit of isolated pulses, the technique reduces to standard optimal filtering with long records. We employ reasonable approximations to the noise covariance function in order to render this procedure computationally viable even for very long data records. The technique is employed to analyze X-ray emission spectra at 600 eV and 6 keV at rates up to 250 counts s{sup −1} in microcalorimeters having exponential signal decay times of approximately 1.2 ms.

  8. Cytogenetic analysis of quinoa chromosomes using nanoscale imaging and spectroscopy techniques

    Science.gov (United States)

    Yangquanwei, Zhong; Neethirajan, Suresh; Karunakaran, Chithra

    2013-11-01

    Here we present a high-resolution chromosomal spectral map derived from synchrotron-based soft X-ray spectromicroscopy applied to quinoa species. The label-free characterization of quinoa metaphase chromosomes shows that it consists of organized substructures of DNA-protein complex. The analysis of spectra of chromosomes using the scanning transmission X-ray microscope (STXM) and its superposition of the pattern with the atomic force microscopy (AFM) and scanning electron microscopy (SEM) images proves that it is possible to precisely locate the gene loci and the DNA packaging inside the chromosomes. STXM has been successfully used to distinguish and quantify the DNA and protein components inside the quinoa chromosomes by visualizing the interphase at up to 30-nm spatial resolution. Our study represents the successful attempt of non-intrusive interrogation and integrating imaging techniques of chromosomes using synchrotron STXM and AFM techniques. The methodology developed for 3-D imaging of chromosomes with chemical specificity and temporal resolution will allow the nanoscale imaging tools to emerge from scientific research and development into broad practical applications such as gene loci tools and biomarker libraries.

  9. Measurements of the absolute concentrations of HCO and (CH2)-C-1 in a premixed atmospheric flat flame by cavity ringdown spectroscopy

    NARCIS (Netherlands)

    Evertsen, R.; Oijen, van J.A.; Hermanns, R.T.E.; Goey, de L.P.H.; Meulen, ter J.J.

    2003-01-01

    Singlet methylene (1CH2) and the formyl radical (HCO) have been studied in a premixed flat flame of CH4 and air by cavity ring-down spectroscopy at 1 atm. The absorption lines lie in the same spectral region for both species. The 1CH2 radicals were probed via the 1B1 (0,13,0) ¿ã1A1 (0,0,0) band at

  10. Imaging Spectroscopy: A Novel Use for the Velocity Mapped Ion Imaging Technique.

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, Jennie S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Culberson, Lori [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Strecker, Kevin E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Steill, Jeffrey D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chandler, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The ability to measure the velocity of neutral atoms and molecules with a precision of several meter/sec provides an opportunity to measure subtle perturbations on electronic states with high resolution. Using Velocity Mapped Ion Imaging we are able to measure induced perturbations of electronic states such as broadening and magnetic and electric field splittings . We demonstrate this ability utilizing the 5s[3/2]2 → 5p[5/2]3 cycling transition at 811.5 nm in metastable Kr atoms to investigate the saturation broadening caused by Rabi cycling on a resonant transition with MHz resolution. In addition we investigate the lifetime broadening associated with ionization from the cycling states and the Zeeman splitting of the states. We discuss the inherent limits to resolution obtained with this technique.

  11. Comparison of infrared spectroscopy techniques: developing an efficient method for high resolution analysis of sediment properties from long records

    Science.gov (United States)

    Hahn, Annette; Rosén, Peter; Kliem, Pierre; Ohlendorf, Christian; Persson, Per; Zolitschka, Bernd; Pasado Science Team

    2010-05-01

    The analysis of sediment samples in visible to mid-infrared spectra is ideal for high-resolution records. It requires only small amounts (0.01-0.1g dry weight) of sample material and facilitates rapid and cost efficient analysis of a wide variety of biogeochemical properties on minerogenic and organic substances (Kellner et al. 1998). One of these techniques, the Diffuse Reflectance Fourier Transform Infrared Spectrometry (DRIFTS), has already been successfully applied to lake sediment from very different settings and has shown to be a promising technique for high resolution analyses of long sedimentary records on glacial-interglacial timescales (Rosén et al. 2009). However, the DRIFTS technique includes a time-consuming step where sediment samples are mixed with KBr. To assess if alternative and more rapid infrared (IR) techniques can be used, four different IR spectroscopy techniques are compared for core catcher sediment samples from Laguna Potrok Aike - an ICDP site located in southernmost South America. Partial least square (PLS) calibration models were developed using the DRIFTS technique. The correlation coefficients (R) for correlations between DRIFTS-inferred and conventionally measured biogeochemical properties show values of 0.80 for biogenic silica (BSi), 0.95 for total organic carbon (TOC), 0.91 for total nitrogen (TN), and 0.92 for total inorganic carbon (TIC). Good statistical performance was also obtained by using the Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy ATR-FTIRS technique which requires less sample preparation. Two devices were used, the full-sized Bruker Equinox 252 and the smaller and less expensive Bruker Alpha. R for ATR-FTIRS-inferred and conventionally measured biogeochemical properties were 0.87 (BSi), 0.93 (TOC), 0.90 (TN), and 0.91 (TIC) for the Alpha, and 0.78 (TOC), 0.85 (TN), 0.79 (TIC) for the Equinox 252 device. As the penetration depth of the IR beam is frequency dependent, a firm surface contact of

  12. Integrating remote sensing techniques at Cuprite, Nevada: AVIRIS, Thematic Mapper, and field spectroscopy

    Science.gov (United States)

    Hill, Bradley; Nash, Greg; Ridd, Merrill; Hauff, Phoebe L.; Ebel, Phil

    1992-01-01

    The Cuprite mining district in southwestern Nevada has become a test site for remote sensing studies with numerous airborne scanners and ground sensor data sets collected over the past fifteen years. Structurally, the Cuprite region can be divided into two areas with slightly different alteration and mineralogy. These zones lie on either side of a postulated low-angle structural discontinuity that strikes nearly parallel to US Route 95. Hydrothermal alternation at Cuprite was classified into three major zones: silicified, opalized, and argillized. These alteration types form a bulls-eye pattern east of the highway and are more linear on the west side of the highway making a striking contrast from the air and the imagery. Cuprite is therefore an ideal location for remote sensing research as it exhibits easily identified hydrothermal zoning, is relatively devoid of vegetation, and contains a distinctive spectrally diagnostic mineral suite including the ammonium feldspar buddingtonite, several types of alunite, different jarosites, illite, kaolinite, smectite, dickite, and opal. This present study brings a new dimension to these previous remote sensing and ground data sets compiled for Cuprite. The development of a higher resolution field spectrometer now provides the capability to combine extensive in-situ mineralogical data with a new geologic field survey and detailed Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images. The various data collection methods and the refinement of the integrated techniques are discussed.

  13. Near Infrared Spectroscopy Calibration for Wood Chemistry: Which Chemometric Technique Is Best for Prediction and Interpretation?

    Directory of Open Access Journals (Sweden)

    Brian K. Via

    2014-07-01

    Full Text Available This paper addresses the precision in factor loadings during partial least squares (PLS and principal components regression (PCR of wood chemistry content from near infrared reflectance (NIR spectra. The precision of the loadings is considered important because these estimates are often utilized to interpret chemometric models or selection of meaningful wavenumbers. Standard laboratory chemistry methods were employed on a mixed genus/species hardwood sample set. PLS and PCR, before and after 1st derivative pretreatment, was utilized for model building and loadings investigation. As demonstrated by others, PLS was found to provide better predictive diagnostics. However, PCR exhibited a more precise estimate of loading peaks which makes PCR better for interpretation. Application of the 1st derivative appeared to assist in improving both PCR and PLS loading precision, but due to the small sample size, the two chemometric methods could not be compared statistically. This work is important because to date most research works have committed to PLS because it yields better predictive performance. But this research suggests there is a tradeoff between better prediction and model interpretation. Future work is needed to compare PLS and PCR for a suite of spectral pretreatment techniques.

  14. Near infrared spectroscopy calibration for wood chemistry: which chemometric technique is best for prediction and interpretation?

    Science.gov (United States)

    Via, Brian K; Zhou, Chengfeng; Acquah, Gifty; Jiang, Wei; Eckhardt, Lori

    2014-07-25

    This paper addresses the precision in factor loadings during partial least squares (PLS) and principal components regression (PCR) of wood chemistry content from near infrared reflectance (NIR) spectra. The precision of the loadings is considered important because these estimates are often utilized to interpret chemometric models or selection of meaningful wavenumbers. Standard laboratory chemistry methods were employed on a mixed genus/species hardwood sample set. PLS and PCR, before and after 1st derivative pretreatment, was utilized for model building and loadings investigation. As demonstrated by others, PLS was found to provide better predictive diagnostics. However, PCR exhibited a more precise estimate of loading peaks which makes PCR better for interpretation. Application of the 1st derivative appeared to assist in improving both PCR and PLS loading precision, but due to the small sample size, the two chemometric methods could not be compared statistically. This work is important because to date most research works have committed to PLS because it yields better predictive performance. But this research suggests there is a tradeoff between better prediction and model interpretation. Future work is needed to compare PLS and PCR for a suite of spectral pretreatment techniques.

  15. Gas-phase spectroscopy of synephrine by laser desorption supersonic jet technique.

    Science.gov (United States)

    Ishiuchi, Shun-ichi; Asakawa, Toshiro; Mitsuda, Haruhiko; Miyazaki, Mitsuhiko; Chakraborty, Shamik; Fujii, Masaaki

    2011-09-22

    In our previous work, we found that synephrine has six conformers in the gas phase, while adrenaline, which is a catecholamine and has the same side chain as synephrine, has been reported to have only two conformers. To determine the conformational geometries of synephrine, we measured resonance enhanced multiphoton ionization, ultraviolet-ultraviolet hole burning, and infrared dip spectra by utilizing the laser desorption supersonic jet technique. By comparing the observed infrared spectra with theoretical ones, we assigned geometries except for the orientations of the phenolic OH group. Comparison between the determined structures of synephrine and those of 2-methylaminno-1-phenylethanol, which has the same side chain as synephrine but no phenol OH group, leads to the conclusion that the phenolic OH group in synephrine does not affect the conformational flexibility of the side chain. In the case of adrenaline, which is expected to have 12 conformers if there are no interactions between the catecholic OH groups and the side chain, some interactions possibly exist between them because only two conformations are observed. By estimation of the dipole-dipole interaction energy between partial dipole moments of the catecholic OH groups and the side chain, it was concluded that the dipole-dipole interaction stabilizes specific conformers which are actually observed. © 2011 American Chemical Society

  16. DNA-binding studies of valrubicin as a chemotherapy drug using spectroscopy and electrochemical techniques

    Directory of Open Access Journals (Sweden)

    Reza Hajian

    2017-06-01

    Full Text Available In this study, the molecular interactions between valrubicin, an anticancer drug, and fish sperm DNA have been studied in phosphate buffer solution (pH 7.4 using UV–Vis spectrophotometry and cyclic voltammetry techniques. Valrubicin intercalated into double stranded DNA under a weak displacement reaction with methylene blue (MB molecule in a competitive reaction. The binding constant (kb of valrubicin-DNA was determined as 1.75×103 L/mol by spectrophotometric titration. The value of non-electrostatic binding constant (kt0 was almost constant at different ionic strengths while the ratio of kt0/kb increased from 4.51% to 23.77%. These results indicate that valrubicin binds to ds-DNA via electrostatic and intercalation modes. Thermodynamic parameters including ΔH0, ΔS0 and ΔG0 for valrubicin-DNA interaction were determined as −25.21×103 kJ/mol, 1.55×102 kJ/mol K and −22.03 kJ/mol, respectively. Cyclic voltammetry study shows a pair of redox peaks for valrubicin at 0.45 V and 0.36 V (vs. Ag/AgCl. The peak currents decreased and peak positions shifted to positive direction in the presence of DNA, showing intercalation mechanism due to the variation in formal potential.

  17. An experimental study of hydroxyl in quartz using infrared spectroscopy and ion microprobe techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rovetta, M. R.; Blacic, J. D.; Hervig, R. L.; Holloway, J. R.

    1989-05-10

    We have measured the concentrations of hydroxyl, deuterium, Al, Fe, Li,Na, K, and Rb in a natural quartz crystal before and after hydrothermaltreatment at 1.5 GPa and 800/degree/--1050 /degree/C. We employed microbeam infraredspectroscopy and ion probe techniques to avoid impurities trapped in healedcracks and fluid inclusions that might bias a normal bulk analysis.The /ital f//sub H/sub 2// of our experiments were buffered to thehematite-magnetite-(OH)fluid, nickel-nickel oxide-(OH)fluid, oriron-wustite-(OH)fluid phase assemblages. After hydrothermal treatment,the samples contained local concentrations of hydrogen or deuterium ofseveral hundred atoms/10/sup 6/ Si (the starting crystal contained 45 H/10/sup 6/ Si).We did several experiments with Al/sub 2/O/sub 3/ or RbCl added to the sample chargeand found local Al enrichment where the deuterium concentration was highbut no Rb enrichment. Finally, we measured trace elements and hydroxyl in aquartz sample after plastic deformation in a talc furnace assembly; inregions of the sample containing basal and prismatic deformation lamellae(but no visible healed microcracks at 400/times/ optical magnification)hydroxyl had increased to /similar to/200 oO/10/sup 6/ Si with no increase in Al or Fe.Samples enriched in hydroxyl but not Al (including the plastically strainedsample) gave infrared spectra resembling natural amethyst crystals.

  18. Terahertz spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2009-01-01

    In this presentation I will review methods for spectroscopy in the THz range, with special emphasis on the practical implementation of the technique known ad THz time-domain spectroscopy (THz-TDS). THz-TDS has revived the old field of far-infrared spectroscopy, and enabled a wealth of new...... activities that promise commercial potential for spectroscopic applications in the THz range. This will be illustrated with examples of spectroscopy of liquids inside their bottles as well as sensitive, quantitative spectroscopy in waveguides....

  19. Instrumentation and signal processing for the detection of heavy water using off axis-integrated cavity output spectroscopy technique

    Science.gov (United States)

    Gupta, A.; Singh, P. J.; Gaikwad, D. Y.; Udupa, D. V.; Topkar, A.; Sahoo, N. K.

    2018-02-01

    An experimental setup is developed for the trace level detection of heavy water (HDO) using the off axis-integrated cavity output spectroscopy technique. The absorption spectrum of water samples is recorded in the spectral range of 7190.7 cm-1-7191.5 cm-1 with the diode laser as the light source. From the recorded water vapor absorption spectrum, the heavy water concentration is determined from the HDO and water line. The effect of cavity gain nonlinearity with per pass absorption is studied. The signal processing and data fitting procedure is devised to obtain linear calibration curves by including nonlinear cavity gain effects into the calculation. Initial calibration of mirror reflectivity is performed by measurements on the natural water sample. The signal processing and data fitting method has been validated by the measurement of the HDO concentration in water samples over a wide range from 20 ppm to 2280 ppm showing a linear calibration curve. The average measurement time is about 30 s. The experimental technique presented in this paper could be applied for the development of a portable instrument for the fast measurement of water isotopic composition in heavy water plants and for the detection of heavy water leak in pressurized heavy water reactors.

  20. Hair analysis by means of laser induced breakdown spectroscopy technique and support vector machine model for diagnosing addiction

    Directory of Open Access Journals (Sweden)

    M Vahid Dastjerdi

    2018-02-01

    Full Text Available Along with the development of laboratory methods for diagnosing addiction, concealment ways, either physically or chemically, for creating false results have been in progress. In this research based on the Laser Induced Breakdown Spectroscopy technique (LIBS and analyzing hair of addicted and normal people, we are proposing a new method to overcome problems in conventional methods and reduce possibility of cheating in the process of diagnosing addiction. For this purpose, at first we have sampled hair of 17 normal and addicted people and recorded 5 spectrums for each sample, overall 170 spectrums. After analyzing the recorded LIBS spectra and detecting the atomic and ionic lines as well as molecular bands, relative intensities of emission lines for Aluminum to Calcium (Al/Ca and Aluminum to Sodium (Al/Na were selected as the input variables for the Support Vector Machine model (SVM.The Radial Basis, Polynomial Kernel functions and a linear function were chosen for classifying the data in SVM model. The results of this research showed that by the combination of LIBS technique and SVM one can distinguish addicted person with precision of 100%. Because of several advantages of LIBS such as high speed analysis and being portable, this method can be used individually or together with available methods as an automatic method for diagnosing addiction through hair analysis.

  1. Ac conductivity and dielectric spectroscopy studies on tin oxide thin films formed by spray deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Barış, Behzad, E-mail: behzadbaris@gmail.com

    2014-04-01

    Au/tin oxide/n-Si (1 0 0) structure has been created by forming a tin oxide (SnO{sub 2}) on n-type Si by using the spray deposition technique. The ac electrical conductivity (σ{sub ac}) and dielectric properties of the structure have been investigated between 30 kHz and 1 MHz at room temperature. The values of ε', ε″, tanδ, σ{sub ac}, M' and M″ were determined as 1.404, 0.357, 0.253, 1.99×10{sup −7} S/cm, 0.665 and 0.168 for 1 MHz and 6.377, 6.411, 1.005, 1.07×10{sup −7} S/cm, 0.077 and 0.078 for 30 kHz at zero bias, respectively. These changes were attributed to variation of the charge carriers from the interface traps located between semiconductor and metal in the band gap. It is concluded that the values of the ε', ε″ and tanδ increase with decreasing frequency while a decrease is seen in σ{sub ac} and the real (M') and imaginary (M″) components of the electrical modulus. The M″ parameter of the structure has a relaxation peak as a function of frequency for each examined voltage. The relaxation time of M″(τ{sub M″}) varies from 0.053 ns to 0.018 ns with increasing voltage. The variation of Cole–Cole plots of the sample shows that there is one relaxation.

  2. In vivo proton MR spectroscopy of normal liver parenchyma: technique and results

    International Nuclear Information System (INIS)

    Mueller, C.; Huebner, F.; Bisdas, S.; Herzog, C.; Hammerstingl, R.M.; Vogl, T.J.; Ackermann, H.; Vorbuchner, M.

    2006-01-01

    Purpose: To analyze the proton magnetic resonance spectroscopic data ( 1 H MRS) of normal liver parenchyma with regard to age, sex, body mass index and location in the liver. Materials and Methods: 45 healthy volunteers age 24 to 65 years were examined with an optimized single-voxel 1 H MRS using a 1.5-T scanner. A spin echo sequence with a TR of 1500 ms and a TE of 135 ms was used, allowing in-phase detection of the choline signal. Weak water suppression was achieved using a chemical shift selective suppression (CHESS) technique. Each examination included the measurement of three voxels with a voxel size of 18 x 18 x 18 mm 3 in different areas of the liver. The volunteers were divided into different age-based groups (young: ≤44 years; older: ≥44 years), BMI (normal weighted: 2 ; obese: >25 kg/m 2 ) and sex. Results: In the acquired spectra different lipid (e.g. [CH 2 ] n ), choline, glutamine, glutamate and glycogenglucose-complex reasonances were detected. The analysis of the spectra, however, only focused on the concentrations of choline and (CH 2 ) n and the relative concentrations of the choline-to-(CH 2 ) n -ratios. In the older volunteers the relative concentration of the choline-to-(CH 2 ) n -ratio was significantly decreased by 0.213±0.193 in comparison to the younger subjects (p=0,031). Further statistical analysis confirmed a significant decrease of the choline-to-(CH 2 ) n -ratio by 0.223±0.180 in obese volunteers compared to volunteers of a standard weight (p=0,016). The significant difference between the choline-to-(CH 2 ) n -ratio female versus male volunteers was calculated with an increase of 0.483±0.172 (p=0,000). The location of the voxel in the liver parenchyma did not yield a signficant difference in the choline-to-(CH 2 ) n -ratio. (orig.)

  3. Reflection electron energy loss spectroscopy as efficient technique for the determination of optical properties of polystyrene intermixed with gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Deris, Jamileh [Department of Physics, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of); Hajati, Shaaker, E-mail: Hajati@mail.yu.ac.ir [Department of Physics, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of); Department of Semiconductors, Materials and Energy Research Center, Karaj 3177983634 (Iran, Islamic Republic of)

    2017-01-15

    Highlights: • Reflection Electron Energy Loss Spectroscopy of nano-metalized polymer. • Determination of real part of the dielectric function of nanostructured sample. • Determination of imaginary part of the dielectric function of nanostructured sample. • Determination of refractive index and coefficient of extinction of the sample. • Determination of reflection and absorption coefficients of nano-metalized Polymer. - Abstract: The electronic properties (electron inelastic cross section, energy loss function) of a nano-metalized polystyrene obtained by reflection electron energy loss spectroscopy (REELS) in a previous study [J. Deris, S. Hajati, S. Tougaard, V. Zaporojtchenko, Appl. Surf. Sci. 377 (2016) 44–47], which relies on the Yubero-Tougaard method, were used in the complementary application of Kramers-Kronig transformation to determine its optical properties such as the real part (ε{sub 1}) and imaginary part (ε{sub 2}) of the dielectric function (ε), refractive index (n), coefficients of extinction (k), reflection (R) and absorption (μ). The degree of intermixing of polystyrene thin film and gold nanoparticles of sizes 5.5 nm was controlled by annealing the sample to achieve a morphology in which the nanoparticles were homogeneously distributed within polystyrene. It is worth noting that no data are available on the optical properties of metalized polymers such as gold nanoparticles intermixed with polystyrene. Therefore, this work is of high importance in terms of both the sample studied here and the method applied. The advantage of the method applied here is that no information on the lateral distribution of the nanocomposite sample is required. This means that the REELS technique has been presented here to suitably, efficiently and easily obtain the optical properties of such nano-metalized polymer in which the metal nanoparticles have been vertically well distributed (homogeneous in depth). Therefore, for vertically homogeneous and

  4. High-sensitivity ultraviolet photoemission spectroscopy technique for direct detection of gap states in organic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bussolotti, Fabio, E-mail: fabio@ims.ac.jp

    2015-10-01

    Highlights: • Density of gap states in organic thin film was detected by photoemission spectroscopy. • Inert gas exposure affects the density of gap states in organic thin films. • Density of gap states controls the energy level alignment at the organic/inorganic and organic/organic interfaces. - Abstract: We developed ultrahigh sensitivity, low-background ultraviolet photoemission spectroscopy (UPS) technique which does not introduce detectable radiation damages into organic materials. The UPS allows to detect density of states of the order of ∼10{sup 16} states eV{sup −1} cm{sup −3} even for radiation-sensitive organic films, this results being comparable to electrical measurements of charge trapping centers. In this review we introduce the method of ultrahigh sensitivity photoemission measurement and we present some results on the energy distribution of gap states in pentacene (Pn) films deposited on SiO{sub 2} and Au(1 1 1) substrate. For Pn/SiO{sub 2} thin film the results show that exposure to inert gas (N{sub 2} and Ar) atmosphere produces a sharp rise in gap states from 10{sup 16} to 10{sup 18} states eV{sup −1} cm{sup −3} and pushes the Fermi level closer to the valence band (0.15–0.17 eV), as does exposure to O{sub 2} (0.20 eV), while no such gas-induced effects are observed for Pn/Au(1 1 1) system. The results demonstrate that these gap states originate from small imperfections in the Pn packing structure, which are induced by gas penetration into the film through the Pn crystal grain boundaries. Similar results were obtained for CuPc/F{sub 16}CuPc thin films, a prototypical example of donor/acceptor interface for photovoltaic application.

  5. Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data

    Science.gov (United States)

    Brigadoi, Sabrina; Ceccherini, Lisa; Cutini, Simone; Scarpa, Fabio; Scatturin, Pietro; Selb, Juliette; Gagnon, Louis; Boas, David A.; Cooper, Robert J.

    2013-01-01

    Motion artifacts are a significant source of noise in many functional near-infrared spectroscopy (fNIRS) experiments. Despite this, there is no well-established method for their removal. Instead, functional trials of fNIRS data containing a motion artifact are often rejected completely. However, in most experimental circumstances the number of trials is limited, and multiple motion artifacts are common, particularly in challenging populations. Many methods have been proposed recently to correct for motion artifacts, including principle component analysis, spline interpolation, Kalman filtering, wavelet filtering and correlation-based signal improvement. The performance of different techniques has been often compared in simulations, but only rarely has it been assessed on real functional data. Here, we compare the performance of these motion correction techniques on real functional data acquired during a cognitive task, which required the participant to speak aloud, leading to a low-frequency, low-amplitude motion artifact that is correlated with the hemodynamic response. To compare the efficacy of these methods, objective metrics related to the physiology of the hemodynamic response have been derived. Our results show that it is always better to correct for motion artifacts than reject trials, and that wavelet filtering is the most effective approach to correcting this type of artifact, reducing the area under the curve where the artifact is present in 93% of the cases. Our results therefore support previous studies that have shown wavelet filtering to be the most promising and powerful technique for the correction of motion artifacts in fNIRS data. The analyses performed here can serve as a guide for others to objectively test the impact of different motion correction algorithms and therefore select the most appropriate for the analysis of their own fNIRS experiment. PMID:23639260

  6. Monte Carlo simulation of X-ray imaging and spectroscopy experiments using quadric geometry and variance reduction techniques

    Science.gov (United States)

    Golosio, Bruno; Schoonjans, Tom; Brunetti, Antonio; Oliva, Piernicola; Masala, Giovanni Luca

    2014-03-01

    The simulation of X-ray imaging experiments is often performed using deterministic codes, which can be relatively fast and easy to use. However, such codes are generally not suitable for the simulation of even slightly more complex experimental conditions, involving, for instance, first-order or higher-order scattering, X-ray fluorescence emissions, or more complex geometries, particularly for experiments that combine spatial resolution with spectral information. In such cases, simulations are often performed using codes based on the Monte Carlo method. In a simple Monte Carlo approach, the interaction position of an X-ray photon and the state of the photon after an interaction are obtained simply according to the theoretical probability distributions. This approach may be quite inefficient because the final channels of interest may include only a limited region of space or photons produced by a rare interaction, e.g., fluorescent emission from elements with very low concentrations. In the field of X-ray fluorescence spectroscopy, this problem has been solved by combining the Monte Carlo method with variance reduction techniques, which can reduce the computation time by several orders of magnitude. In this work, we present a C++ code for the general simulation of X-ray imaging and spectroscopy experiments, based on the application of the Monte Carlo method in combination with variance reduction techniques, with a description of sample geometry based on quadric surfaces. We describe the benefits of the object-oriented approach in terms of code maintenance, the flexibility of the program for the simulation of different experimental conditions and the possibility of easily adding new modules. Sample applications in the fields of X-ray imaging and X-ray spectroscopy are discussed. Catalogue identifier: AERO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERO_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland

  7. Use of NMR spectroscopy in combination with pattern recognition techniques for elucidation of origin and adulteration of foodstuffs

    Energy Technology Data Exchange (ETDEWEB)

    Standal, Inger Beate

    2009-07-01

    Consumers and food authorities are, to an increasing extent, concerned about factors such as the origin of food, how it is produced, and if it is healthy and safe. There are methods for general quality control to map the safety and nutritional value; however there is a need for suitable analytical methods to verify information such as the production method (wild/farmed), geographical origin, species, and process history of foods. This thesis evaluates the applicability of using nuclear magnetic resonance (NMR) spectroscopy combined with pattern recognition techniques for authentication of foodstuffs. Fish and marine oils were chosen as materials. 13C NMR was applied to authenticate marine oils and muscle lipids of both fatty and lean fish, according to production method (wild/farmed), geographical origin, species, and process history. 1H NMR was applied on low molecular weight compounds extracted from cod muscle to authenticate fish according to species and processing conditions. 13C NMR combined with pattern recognition techniques enabled the differentiation of marine oils according to wild/farmed and geographical origin of the raw material. It is suggested that this was mainly due to the different diets of the fish from which the oil was produced. It was also possible to authenticate marine oils according to species, and to say something about the level of mixtures detectable. The Sn-2 position specificity of fatty acids in triacylglycerols was shown to be an important characteristic to separate oils of different species. Esterified fish oil (concentrates) could easily be differentiated from natural fish oil by their 13C NMR profile. (Author)

  8. Development of the gas puff charge exchange recombination spectroscopy (GP-CXRS) technique for ion measurements in the plasma edge

    International Nuclear Information System (INIS)

    Churchill, R. M.; Theiler, C.; Lipschultz, B.; Dux, R.; Pütterich, T.; Viezzer, E.

    2013-01-01

    A novel charge-exchange recombination spectroscopy (CXRS) diagnostic method is presented, which uses a simple thermal gas puff for its donor neutral source, instead of the typical high-energy neutral beam. This diagnostic, named gas puff CXRS (GP-CXRS), is used to measure ion density, velocity, and temperature in the tokamak edge/pedestal region with excellent signal-background ratios, and has a number of advantages to conventional beam-based CXRS systems. Here we develop the physics basis for GP-CXRS, including the neutral transport, the charge-exchange process at low energies, and effects of energy-dependent rate coefficients on the measurements. The GP-CXRS hardware setup is described on two separate tokamaks, Alcator C-Mod and ASDEX Upgrade. Measured spectra and profiles are also presented. Profile comparisons of GP-CXRS and a beam based CXRS system show good agreement. Emphasis is given throughout to describing guiding principles for users interested in applying the GP-CXRS diagnostic technique

  9. Development of the gas puff charge exchange recombination spectroscopy (GP-CXRS) technique for ion measurements in the plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, R. M.; Theiler, C.; Lipschultz, B. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Dux, R.; Pütterich, T.; Viezzer, E. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Collaboration: Alcator C-Mod Team; ASDEX Upgrade Team

    2013-09-15

    A novel charge-exchange recombination spectroscopy (CXRS) diagnostic method is presented, which uses a simple thermal gas puff for its donor neutral source, instead of the typical high-energy neutral beam. This diagnostic, named gas puff CXRS (GP-CXRS), is used to measure ion density, velocity, and temperature in the tokamak edge/pedestal region with excellent signal-background ratios, and has a number of advantages to conventional beam-based CXRS systems. Here we develop the physics basis for GP-CXRS, including the neutral transport, the charge-exchange process at low energies, and effects of energy-dependent rate coefficients on the measurements. The GP-CXRS hardware setup is described on two separate tokamaks, Alcator C-Mod and ASDEX Upgrade. Measured spectra and profiles are also presented. Profile comparisons of GP-CXRS and a beam based CXRS system show good agreement. Emphasis is given throughout to describing guiding principles for users interested in applying the GP-CXRS diagnostic technique.

  10. Inter-comparison of laser photoacoustic spectroscopy and gas chromatography techniques for measurements of ethene in the atmosphere.

    Science.gov (United States)

    Kuster, William C; Harren, Frans J M; de Gouw, Joost A

    2005-06-15

    Laser photoacoustic spectroscopy (LPAS) is highly suitable for the detection of ethene in air due to the overlap between its strongest absorption lines and the wavelengths accessible by high-powered CO2 lasers. Here, we test the ability of LPAS to measure ethene in ambient air by comparing the measurements in urban air with those from a gas chromatography flame-ionization detection (GC-FID) instrument. Over the course of several days, we obtained quantitative agreement between the two measurements. Over this period, the LPAS instrument had a positive offset of 330 +/- 140 pptv (parts-per-trillion by volume) relative to the GC-FID instrument, possibly caused by interference from other species. The detection limit of the LPAS instrument is currently estimated around 1 ppbv and is limited by this offset and the statistical noise in the data. We conclude that LPAS has the potential to provide fast-response measurements of ethene in the atmosphere, with significant advantages over existing techniques when measuring from moving platforms and in the vicinity of emission sources.

  11. Techniques in meson spectroscopy

    International Nuclear Information System (INIS)

    Longacre, R.S.

    1991-01-01

    This report contains lectures on the following topics: the quark model and beyond using quantum chromodynamics; analysis of formation reactions; energy dependence of the partial wave amplitudes; where the data for the t-matrix analysis comes from; and coupled channel analysis of isoscalar mesons

  12. Spectroscopy in catalysis : an introduction

    NARCIS (Netherlands)

    Niemantsverdriet, J.W.

    2000-01-01

    Spectroscopy in Catalysis describes the most important modern analytical techniques used to investigate catalytic surfaces. These include electron spectroscopy (XPS, UPS, AES, EELS), ion spectroscopy (SIMS, SNMS, RBS, LEIS), vibrational spectroscopy (infrared, Raman, EELS), temperature-programmed

  13. Development of a multiplexing fingerprint and high wavenumber Raman spectroscopy technique for real-time in vivo tissue Raman measurements at endoscopy

    Science.gov (United States)

    Bergholt, Mads Sylvest; Zheng, Wei; Huang, Zhiwei

    2013-03-01

    We report on the development of a novel multiplexing Raman spectroscopy technique using a single laser light together with a volume phase holographic (VPH) grating that simultaneously acquires both fingerprint (FP) and high wavenumber (HW) tissue Raman spectra at endoscopy. We utilize a customized VPH dual-transmission grating, which disperses the incident Raman scattered light vertically onto two separate segments (i.e., -150 to 1950 cm-1 1750 to 3600 cm-1) of a charge-coupled device camera. We demonstrate that the multiplexing Raman technique can acquire high quality in vivo tissue Raman spectra ranging from 800 to 3600 cm-1 within 1.0 s with a spectral resolution of 3 to 6 cm-1 during clinical endoscopy. The rapid multiplexing Raman spectroscopy technique covering both FP and HW ranges developed in this work has potential for improving in vivo tissue diagnosis and characterization at endoscopy.

  14. Investigation of modified thin SnO2 layers treated by rapid thermal annealing by means of hollow cathode spectroscopy and AFM technique

    International Nuclear Information System (INIS)

    Djulgerova, R; Popova, L; Beshkov, G; Petrovic, Z Lju; Rakocevic, Z; Mihailov, V; Gencheva, V; Dohnalik, T

    2006-01-01

    By means of hollow cathode spectroscopy and atomic force microscopy the surface morphology and composition of SnO 2 thin film, modified with hexamethyldisilazane after rapid thermal annealing treatment (800-1200 deg. C), are investigated. Formation of crystalline structure is suggested at lower temperatures. Depolimerization, destruction and dehydration are developed at temperatures of 1200 deg. C. It is shown that the rapid thermal annealing treatment could modify both the surface morphology and the composition of the layer, thus changing the adsorption ability of the sensing layer. The results confirm the ability of hollow cathode emission spectroscopy for depth profiling of new materials especially combined with standard techniques

  15. Viability study of using the Laser-Induced Breakdown Spectroscopy technique for radioactive waste detection at IPEN-CNEN/SP, Brazil

    International Nuclear Information System (INIS)

    Tunes, Matheus A.; Schon, Claudio G.

    2013-01-01

    this work a viability study to apply the Laser-Induced Breakdown Spectroscopy (LIBS) technique for radioactive waste characterization was developed using a high power q-switched Nd:YAG rod-Laser, operating at 1064 nm with 9 ns of pulse-width and pulse-to-pulse energy around 10 to 20 mJ. When applied in a non-radioactive deionized water sample, our methodology exhibits a good potential to spectroscopy detection of Hydrogen species with resolution around 0.035 nm at full width at half maximum (FWHM). (author)

  16. Analysis of the technique Thermal Desorption Spectroscopy (TDS) and its Application for the Characterization of Metal -Hydrogen Systems

    International Nuclear Information System (INIS)

    Castro, F.J.

    2000-01-01

    We present the theoretical and experimental developments made to study the desorption of hydrogen from metallic samples by Thermal Desorption Spectroscopy (TDS). With this technique gas desorption is stimulated by the programmed heating of the sample. To perform the study we set up a newly designed equipment and develop theoretical models of the kinetic processes involved. The equipment and the models are used to analyze the desorption process in a real system. We begin by analyzing the models developed to interpret the results of the experiments. These models consider simultaneously bulk diffusion and surface reaction processes in metal-hydrogen systems with one or two thermodynamic phases. We present numerical results, computer simulations and analytical approximations of the original models. Based on these results we analyze the main features of the spectra for the different relevant kinetic processes, and determine the changes induced in them when material parameters (activation energies, geometry) or experimental parameters (heating speed, initial concentration) are modified.We present the original equipment, designed and constructed during this work to perform the TDS experiments. We describe its main characteristics, its components, its range of operation and its sensibility. We also offer an analysis of the background spectrum. We use the Pd-H system to test the equipment and the models. The samples chosen, powders, granules, foils and wires, were previously characterized to analyze their composition, their morphology and their characteristic size. We show the results of Scanning Electron Microscopy (SEM) observation, X ray diffraction (XRD) and Auger Electron Spectroscopy (AES) analysis.We then present and analyze in depth the experimental desorption spectra of the palladium powder. Based on the analysis we determine the rate limiting step for desorption and the characteristic activation energies. When the system is on the b phase (hydride) the rate

  17. Development of a microwave dielectric spectroscopy system for materials characterization using the open-ended coaxial probe technique

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Ruiz, I.; Aviles-Castro, D. [Centro Nacional de Metrologia, Queretaro (Mexico); Jardon-Aguilar, H. [Instituto Politecnico Nacional, Mexico, D. F. (Mexico)

    2001-02-01

    Dielectric spectroscopy is a measurement technique to characterize the interaction between electromagnetic energy and macroscopic samples as a function of frequency. It is based on the measurement of complex permittivity plus conductivity and it has shown to be very useful to provide information about internal structure of matter. It has some advantages over others like optical or chemical analysis: it is very fast, easy to implement, requires little or no preparation of the sample, it can be non-destructive and/or minimally intrusive. In this paper the development of a dielectric spectroscopy system for the microwave frequency range (50 MHz-20 GHz), using an open-ended coaxial probe as sensor, is described. The complete system includes a vector network analyzer, a microwave coaxial cable, the probe, a sample holder and a computer to automate measurements and further data processing. This system has been used to measure some liquid and solid materials such as alcohol, water and Teflon. The real and imaginary parts of permittivity as function of frequency, for several sugarcane alcohol and deionised water mixtures, tequilas and Teflon samples are given. Measurement repeatability and accuracy considerations were taken and it was identified that uncertainty of reference standards and system repeatability are the most important error sources. Also, it was found that open-ended coaxial probe technique is appropriate for measuring not only liquids but also solid materials. Some of the obtained results were compared to those reported in literature and good convergence was observed. [Spanish] La espectroscopia dielectrica es una tecnica moderna de medicion para caracterizar la interaccion entre la energia electromagnetica y muestras macroscopicas como funcion de la frecuencia. Esta tecnica se basa en la medicion de la permitividad compleja y conductividad de los materiales y ha mostrado ser muy util para proporcionar informacion sobre la estructura interna de estos. Tiene

  18. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Xia Hui-Hui; Kan Rui-Feng; Liu Jian-Guo; Xu Zhen-Yu; He Ya-Bai

    2016-01-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H 2 O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. (paper)

  19. Single-cell force spectroscopy as a technique to quantify human red blood cell adhesion to subendothelial laminin.

    Science.gov (United States)

    Maciaszek, Jamie L; Partola, Kostyantyn; Zhang, Jing; Andemariam, Biree; Lykotrafitis, George

    2014-12-18

    Single-cell force spectroscopy (SCFS), an atomic force microscopy (AFM)-based assay, enables quantitative study of cell adhesion while maintaining the native state of surface receptors in physiological conditions. Human healthy and pathological red blood cells (RBCs) express a large number of surface proteins which mediate cell-cell interactions, or cell adhesion to the extracellular matrix. In particular, RBCs adhere with high affinity to subendothelial matrix laminin via the basal cell adhesion molecule and Lutheran protein (BCAM/Lu). Here, we established SCFS as an in vitro technique to study human RBC adhesion at baseline and following biochemical treatment. Using blood obtained from healthy human subjects, we recorded adhesion forces from single RBCs attached to AFM cantilevers as the cell was pulled-off of substrates coated with laminin protein. We found that an increase in the overall cell adhesion measured via SCFS is correlated with an increase in the resultant total force measured on 1 µm(2) areas of the RBC membrane. Further, we showed that SCFS can detect significant changes in the adhesive response of RBCs to modulation of the cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) pathway. Lastly, we identified variability in the RBC adhesion force to laminin amongst the human subjects, suggesting that RBCs maintain diverse levels of active BCAM/Lu adhesion receptors. By using single-cell measurements, we established a powerful new method for the quantitative measurement of single RBC adhesion with specific receptor-mediated binding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Monitoring of petroleum hydrocarbon pollution in surface waters by a direct comparison of fluorescence spectroscopy and remote sensing techniques

    Energy Technology Data Exchange (ETDEWEB)

    De Domenico, L.; Crisafi, E. (Consiglio Nazionale delle Ricerche, Messina (Italy). Thalassografic Inst.); Magazzu, G. (Lecce Univ. (Italy). Dept. of Biology); Puglisi, A. (Mediterranean Oceanological Centre (CEOM), Palermo (Italy)); La Rosa, A. (Air-Survey, Italy s.r.l., Catania (Italy))

    1994-10-01

    Oil pollution levels were estimated using simultaneous acquisition of data from remote sensing by helicopter and fluorescence spectroscopy on surface samples. Laboratory quantitative analysis of hydrocarbons was used to calibrate remotely sensed data. The data were treated using a computer to generate a colour-coded map not attainable with conventional methods representing seawater pollution. Results were in good agreement and indicated that remotely sensed data together with those achieved by fluorescence spectroscopy are applicable for monitoring hydrocarbon pollution. (author)

  1. Monitoring of petroleum hydrocarbon pollution in surface waters by a direct comparison of fluorescence spectroscopy and remote sensing techniques

    International Nuclear Information System (INIS)

    De Domenico, L.; Crisafi, E.; La Rosa, A.

    1994-01-01

    Oil pollution levels were estimated using simultaneous acquisition of data from remote sensing by helicopter and fluorescence spectroscopy on surface samples. Laboratory quantitative analysis of hydrocarbons was used to calibrate remotely sensed data. The data were treated using a computer to generate a colour-coded map not attainable with conventional methods representing seawater pollution. Results were in good agreement and indicated that remotely sensed data together with those achieved by fluorescence spectroscopy are applicable for monitoring hydrocarbon pollution. (author)

  2. Tunable All Reflective Spatial Heterodyne Spectroscopy, A Technique For High Resolving Power Observation OI Defused Emission Line Sources

    Science.gov (United States)

    Hosseini, Seyedeh Sona

    The solar system presents a challenge to spectroscopic observers, because it is an astrophysically low energy environment populated with often angularly extended targets (e.g, interplanetary medium, comets, planetary upper atmospheres, and planet and satellite near space environments). Spectroscopy is a proven tool for determining compositional and other properties of remote objects. Narrow band imaging and low resolving spectroscopic measurements provide information about composition, photochemical evolution, energy distribution and density. The extension to high resolving power provides further access to temperature, velocity, isotopic ratios, separation of blended sources, and opacity effects. The drawback of high-resolution spectroscopy comes from the instrumental limitations of lower throughput, the necessity of small entrance apertures, sensitivity, field of view, and large physical instrumental size. These limitations quickly become definitive for faint and/or extended targets and for spacecraft encounters. An emerging technique with promise for the study of faint, extended sources at high resolving power is the all-reflective form of the Spatial Heterodyne Spectrometer (SHS). SHS instruments are compact and naturally possess both high etendue and high resolving power. To achieve similar spectral grasp, grating spectrometers require big telescopes. SHS is a common-path beam Fourier transform interferometer that produces Fizeau fringe pattern for all other wavelengths except the tuned wavelength. Compared to similar Fourier transform Spectrometers (FTS), SHS has considerably relaxed optical tolerances that make it easier to use in the visible and UV spectral ranges. The large etendue of SHS instruments makes them ideal for observations of extended, low surface brightness, isolated emission line sources, while their intrinsically high spectral resolution enables the study of the dynamical and spectral characteristics described above. SHS also combines very

  3. Raman spectroscopy

    Science.gov (United States)

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  4. Studying the interaction between three synthesized heterocyclic sulfonamide compounds with hemoglobin by spectroscopy and molecular modeling techniques.

    Science.gov (United States)

    Naeeminejad, Samane; Assaran Darban, Reza; Beigoli, Sima; Saberi, Mohammad Reza; Chamani, Jamshidkhan

    2017-11-01

    The interaction between synthesized heterocyclic benzene sulfonamide compounds, N-(7-benzyl-56-biphenyl-2m-tolyl-7H-pyrrolo[23-d]pyrimidine-4-yl)-benzene sulfonamide (HBS 1 ), N-(7-benzyl-56-biphenyl-2-m-tolyl-7H-pyrrolo[23-d] pyrimidine-4-yl)-4-methyl- benzene sulfonamide (HBS 2 ), and N-(7-benzyl-56-biphenyl-2-m-tolyl-7H-pyrrolo[23-d]pyrimidine-4-yl)-4-chloro-benzene sulfonamide (HBS 3 ) with Hb was studied by fluorescence quenching, zeta potentional, circular dichroism, and molecular modeling techniques. The fluorescence spectroscopy experiments were performed in order to study the conformational changes, possibly due to a discrete reorganization of Trp residues during binding between HBS derivatives and Hb. The variation of the K SV value suggested that hydrophobic and electrostatic interactions were the predominant intermolecular forces stabilizing the complex. The K SV1 ans K SV2 values of HBS derivatives with Hb are .6 × 10 13 and 3 × 10 13  M -1 for Hb-HBS 1 , 1 × 10 13 and 4 × 10 13  M -1 for Hb-HBS 2 , .9 × 10 13 , and 6 × 10 13  M -1 for Hb-HBS 3 , respectively. The molecular distances between Hb and HBS derivatives in binary and ternary systems were estimated according to Förster's theory of dipole-dipole non-radiation energy transfer. The quantitative analysis data of circular dichroism spectra demonstrated that the binding of the three HBS derivatives to Hb induced conformational changes in Hb. Changes in the zeta potential of the Hb-HBS derivatives complexes demonstrated a hydrophobic adsorption of the anionic ligand onto the surface of Hb as well as both electrostatic and hydrophobic adsorption in the case of the complex. The modeling data thus confirmed the experimental results. This study is expected to provide important insight into the interaction of Hb with three HBS derivatives to use in various toxicological and therapeutic processes.

  5. Accuracy of Liver Fat Quantification With Advanced CT, MRI, and Ultrasound Techniques: Prospective Comparison With MR Spectroscopy.

    Science.gov (United States)

    Kramer, Harald; Pickhardt, Perry J; Kliewer, Mark A; Hernando, Diego; Chen, Guang-Hong; Zagzebski, James A; Reeder, Scott B

    2017-01-01

    The purpose of this study was to prospectively evaluate the accuracy of proton-density fat-fraction, single- and dual-energy CT (SECT and DECT), gray-scale ultrasound (US), and US shear-wave elastography (US-SWE) in the quantification of hepatic steatosis with MR spectroscopy (MRS) as the reference standard. Fifty adults who did not have symptoms (23 men, 27 women; mean age, 57 ± 5 years; body mass index, 27 ± 5) underwent liver imaging with un-enhanced SECT, DECT, gray-scale US, US-SWE, proton-density fat-fraction MRI, and MRS for this prospective trial. MRS voxels for the reference standard were colocalized with all other modalities under investigation. For SECT (120 kVp), attenuation values were recorded. For rapid-switching DECT (80/140 kVp), monochromatic images (70-140 keV) and fat density-derived material decomposition images were reconstructed. For proton-density fat fraction MRI, a quantitative chemical shift-encoded method was used. For US, echogenicity was evaluated on a qualitative 0-3 scale. Quantitative US shear-wave velocities were also recorded. Data were analyzed by linear regression for each technique compared with MRS. There was excellent correlation between MRS and both proton-density fat-fraction MRI (r 2 = 0.992; slope, 0.974; intercept, -0.943) and SECT (r 2 = 0.856; slope, -0.559; intercept, 35.418). DECT fat attenuation had moderate correlation with MRS measurements (r 2 = 0.423; slope, 0.034; intercept, 8.459). There was good correlation between qualitative US echogenicity and MRS measurements with a weighted kappa value of 0.82. US-SWE velocity did not have reliable correlation with MRS measurements (r 2 = 0.004; slope, 0.069; intercept, 6.168). Quantitative MRI proton-density fat fraction and SECT fat attenuation have excellent linear correlation with MRS measurements and can serve as accurate noninvasive biomarkers for quantifying steatosis. Material decomposition with DECT does not improve the accuracy of fat quantification over

  6. Handling of uncertainty due to interference fringe in FT-NIR transmittance spectroscopy - Performance comparison of interference elimination techniques using glucose-water system

    Science.gov (United States)

    Beganović, Anel; Beć, Krzysztof B.; Henn, Raphael; Huck, Christian W.

    2018-05-01

    The applicability of two elimination techniques for interferences occurring in measurements with cells of short pathlength using Fourier transform near-infrared (FT-NIR) spectroscopy was evaluated. Due to the growing interest in the field of vibrational spectroscopy in aqueous biological fluids (e.g. glucose in blood), aqueous solutions of D-(+)-glucose were prepared and split into a calibration set and an independent validation set. All samples were measured with two FT-NIR spectrometers at various spectral resolutions. Moving average smoothing (MAS) and fast Fourier transform filter (FFT filter) were applied to the interference affected FT-NIR spectra in order to eliminate the interference pattern. After data pre-treatment, partial least squares regression (PLSR) models using different NIR regions were constructed using untreated (interference affected) spectra and spectra treated with MAS and FFT filter. The prediction of the independent validation set revealed information about the performance of the utilized interference elimination techniques, as well as the different NIR regions. The results showed that the combination band of water at approx. 5200 cm-1 is of great importance since its performance was superior to the one of the so-called first overtone of water at approx. 6800 cm-1. Furthermore, this work demonstrated that MAS and FFT filter are fast and easy-to-use techniques for the elimination of interference fringes in FT-NIR transmittance spectroscopy.

  7. Ultraviolet-Visible and Fluorescence Spectroscopy Techniques Are Important Diagnostic Tools during the Progression of Atherosclerosis: Diet Zinc Supplementation Retarded or Delayed Atherosclerosis

    Science.gov (United States)

    Abdelhalim, Mohamed Anwar K.; Moussa, Sherif A. Abdelmottaleb; AL-Mohy, Yanallah Hussain

    2013-01-01

    Background. In this study, we examined whether UV-visible and fluorescence spectroscopy techniques detect the progression of atherosclerosis in serum of rabbits fed on high-cholesterol diet (HCD) and HCD supplemented with zinc (HCD + Zn) compared with the control. Methods. The control rabbits group was fed on 100 g/day of normal diet. The HCD group was fed on Purina Certified Rabbit Chow supplemented with 1.0% cholesterol plus 1.0% olive oil (100 g/day) for the same period. The HCD + Zn group was fed on normal Purina Certified Rabbit Chow plus 1.0% cholesterol and 1.0% olive oil supplemented with 470 ppm Zn for the same feeding period. UV-visible and fluorescence spectroscopy and biochemistry in Rabbit's blood serum and blood hematology were measured in Rabbit's blood. Results. We found that the fluorescent peak of HCD shifted toward UV-visible wavelength compared with the control using fluorescent excitation of serum at 192 nm. In addition, they showed that supplementation of zinc (350 ppm) restored the fluorescent peak closely to the control. By using UV-visible spectroscopy approach, we found that the peak absorbance of HCD (about 280 nm) was higher than that of control and that zinc supplementation seemed to decrease the absorbance. Conclusions. This study demonstrates that ultraviolet-visible and fluorescence spectroscopy techniques can be applied as noninvasive techniques on a sample blood serum for diagnosing or detecting the progression of atherosclerosis. The Zn supplementation to rabbits fed on HCD delays or retards the progression of atherosclerosis. Inducing anemia in rabbits fed on HCD delays the progression of atherosclerosis. PMID:24350281

  8. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers) and parametric oscillators, coherent matter waves, Doppler-free Fourier spectroscopy with optical frequency combs, interference spectroscopy, quantum optics, the interferometric detection of gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.

  9. Cationic effect on dye-sensitized solar cell properties using electrochemical impedance and transient absorption spectroscopy techniques

    International Nuclear Information System (INIS)

    Gupta, Ravindra Kumar; Bedja, Idriss

    2017-01-01

    Redox-couple polymer electrolytes, (poly(ethylene oxide)-succinonitrile) blend/MI-I 2 , where M  =  Li or K, were prepared by the solution cast method. Owing to the plasticizing property of K + ions, the K + ion-based electrolyte exhibited better electrical conductivity than the Li + ion-based electrolyte, which did however exhibit better photovoltaic properties. Electrochemical impedance spectroscopy revealed faster redox species diffusions and interfacial processes in the Li + ion-based dye-sensitized solar cells than in the K + ion-based ones. Transient absorption spectroscopy ascertained faster dye-regeneration by the Li + ion-based electrolyte than the K + ion-based electrolyte. (paper)

  10. Characterisation of PDO olive oil Chianti Classico by non-selective (UV–visible, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques

    International Nuclear Information System (INIS)

    Casale, M.; Oliveri, P.; Casolino, C.; Sinelli, N.; Zunin, P.; Armanino, C.; Forina, M.; Lanteri, S.

    2012-01-01

    Highlights: ► Characterisation of the Italian PDO extra virgin olive oil Chianti Classico. ► Comparison between non-selective (UV–vis, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques. ► Synergy among spectroscopic techniques, by the fusion of the respective spectra. ► Prediction of the content of oleic and linoleic acids in the olive oils. - Abstract: An authentication study of the Italian PDO (protected designation of origin) extra virgin olive oil Chianti Classico was performed; UV–visible (UV–vis), Near-Infrared (NIR) and Mid-Infrared (MIR) spectroscopies were applied to a set of samples representative of the whole Chianti Classico production area. The non-selective signals (fingerprints) provided by the three spectroscopic techniques were utilised both individually and jointly, after fusion of the respective profile vectors, in order to build a model for the Chianti Classico PDO olive oil. Moreover, these results were compared with those obtained by the gas chromatographic determination of the fatty acids composition. In order to characterise the olive oils produced in the Chianti Classico PDO area, UNEQ (unequal class models) and SIMCA (soft independent modelling of class analogy) were employed both on the MIR, NIR and UV–vis spectra, individually and jointly, and on the fatty acid composition. Finally, PLS (partial least square) regression was applied on the UV–vis, NIR and MIR spectra, in order to predict the content of oleic and linoleic acids in the extra virgin olive oils. UNEQ, SIMCA and PLS were performed after selection of the relevant predictors, in order to increase the efficiency of both classification and regression models. The non-selective information obtained from UV–vis, NIR and MIR spectroscopy allowed to build reliable models for checking the authenticity of the Italian PDO extra virgin olive oil Chianti Classico.

  11. Characterisation of PDO olive oil Chianti Classico by non-selective (UV-visible, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Casale, M., E-mail: monica@dictfa.unige.it [Universita degli Studi di Genova, Department of Chemistry and Food and Pharmaceutical Technologies, Via Brigata Salerno 13, I-16147, Genoa (Italy); Oliveri, P.; Casolino, C. [Universita degli Studi di Genova, Department of Chemistry and Food and Pharmaceutical Technologies, Via Brigata Salerno 13, I-16147, Genoa (Italy); Sinelli, N. [Universita degli Studi di Milano, Department of Food Science and Technology, Via Celoria, 2 - I-20133 Milan (Italy); Zunin, P.; Armanino, C.; Forina, M.; Lanteri, S. [Universita degli Studi di Genova, Department of Chemistry and Food and Pharmaceutical Technologies, Via Brigata Salerno 13, I-16147, Genoa (Italy)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Characterisation of the Italian PDO extra virgin olive oil Chianti Classico. Black-Right-Pointing-Pointer Comparison between non-selective (UV-vis, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques. Black-Right-Pointing-Pointer Synergy among spectroscopic techniques, by the fusion of the respective spectra. Black-Right-Pointing-Pointer Prediction of the content of oleic and linoleic acids in the olive oils. - Abstract: An authentication study of the Italian PDO (protected designation of origin) extra virgin olive oil Chianti Classico was performed; UV-visible (UV-vis), Near-Infrared (NIR) and Mid-Infrared (MIR) spectroscopies were applied to a set of samples representative of the whole Chianti Classico production area. The non-selective signals (fingerprints) provided by the three spectroscopic techniques were utilised both individually and jointly, after fusion of the respective profile vectors, in order to build a model for the Chianti Classico PDO olive oil. Moreover, these results were compared with those obtained by the gas chromatographic determination of the fatty acids composition. In order to characterise the olive oils produced in the Chianti Classico PDO area, UNEQ (unequal class models) and SIMCA (soft independent modelling of class analogy) were employed both on the MIR, NIR and UV-vis spectra, individually and jointly, and on the fatty acid composition. Finally, PLS (partial least square) regression was applied on the UV-vis, NIR and MIR spectra, in order to predict the content of oleic and linoleic acids in the extra virgin olive oils. UNEQ, SIMCA and PLS were performed after selection of the relevant predictors, in order to increase the efficiency of both classification and regression models. The non-selective information obtained from UV-vis, NIR and MIR spectroscopy allowed to build reliable models for checking the authenticity of the Italian PDO extra virgin olive oil

  12. Near-field reflection backscattering apertureless optical microscopy: Application to spectroscopy experiments on opaque samples, comparison between lock-in and digital photon counting detection techniques

    International Nuclear Information System (INIS)

    Diziain, S.; Bijeon, J.-L.; Adam, P.-M.; Lamy de la Chapelle, M.; Thomas, B.; Deturche, R.; Royer, P.

    2007-01-01

    An apertureless scanning near-field optical microscope (ASNOM) in reflection backscattering configuration is designed to conduct spectroscopic experiments on opaque samples constituted of latex beads. The ASNOM proposed takes advantage of the depth-discrimination properties of confocal microscopes to efficiently extract the near-field optical signal. Given their importance in a spectroscopic experiment, we systematically compare the lock-in and synchronous photon counting detection methods. Some results of Rayleigh's scattering in the near field of the test samples are used to illustrate the possibilities of this technique for reflection backscattering spectroscopy

  13. Investigation of electrically active defects in InGaAs quantum wire intermediate-band solar cells using deep-level transient spectroscopy (DLTS) technique

    OpenAIRE

    Al Saqri, Noor alhuda; Felix, Jorlandio F.; Aziz, Mohsin; Kunets, Vasyl P.; Jameel, Dler Adil; Taylor, David; Henini, M.; Abd El-sadek, Mahmmoud S.; Furrow, Colin; Ware, Morgan E.; Benamara, Mourad; Mortazavi, Mansour; Salamo, Gregory

    2016-01-01

    InGaAs quantum wire (QWr) intermediate-band solar cell based nanostructures grown by molecular beam epitaxy are studied. The electrical and interface properties of these solar cell devices, as determined by current–voltage (I–V) and capacitance–voltage (C-V) techniques, were found to change with temperature over a wide range of 20–340 K. The electron and hole traps present in these devices have been investigated using deep-level transient spectroscopy (DLTS). The DLTS results showed that the ...

  14. Study of some Ayurvedic Indian medicinal plants for the essential trace elemental contents by instrumental neutron activation analysis and atomic absorption spectroscopy techniques

    International Nuclear Information System (INIS)

    Lokhande, R.S.; Singare, P.U.; Andhele, M.L.; Acharya, R.; Nair, A.G.C.; Reddy, A.V.R.

    2009-01-01

    Elemental analysis of some medicinal plants used in the Indian Ayurvedic system was performed by employing instrumental neutron activation analysis (INAA) and atomic absorption spectroscopy (AAS) techniques. The samples were irradiated with thermal neutrons in a nuclear reactor and the induced activity was counted by gamma ray spectrometry using an efficiency calibrated high resolution high purity germanium (HPGe) detector. Most of the medicinal plants were found to be rich in one or more of the elements under study. The variation in elemental concentration in same medicinal plants samples collected in summer, winter and rainy seasons was studied and the biological effects of these elements on human beings are discussed. (orig.)

  15. Near-field reflection backscattering apertureless optical microscopy: Application to spectroscopy experiments on opaque samples, comparison between lock-in and digital photon counting detection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Diziain, S. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Bijeon, J.-L. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France)]. E-mail: bijeon@utt.fr; Adam, P.-M. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Lamy de la Chapelle, M. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Thomas, B. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Deturche, R. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Royer, P. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France)

    2007-01-15

    An apertureless scanning near-field optical microscope (ASNOM) in reflection backscattering configuration is designed to conduct spectroscopic experiments on opaque samples constituted of latex beads. The ASNOM proposed takes advantage of the depth-discrimination properties of confocal microscopes to efficiently extract the near-field optical signal. Given their importance in a spectroscopic experiment, we systematically compare the lock-in and synchronous photon counting detection methods. Some results of Rayleigh's scattering in the near field of the test samples are used to illustrate the possibilities of this technique for reflection backscattering spectroscopy.

  16. Invited Review Article: Tip modification methods for tip-enhanced Raman spectroscopy (TERS) and colloidal probe technique: A 10 year update (2006-2016) review

    Science.gov (United States)

    Yuan, C. C.; Zhang, D.; Gan, Y.

    2017-03-01

    Engineering atomic force microscopy tips for reliable tip enhanced Raman spectroscopy (TERS) and colloidal probe technique are becoming routine practices in many labs. In this 10 year update review, various new tip modification methods developed over the past decade are briefly reviewed to help researchers select the appropriate method. The perspective is put in a large context to discuss the opportunities and challenges in this area, including novel combinations of seemingly different methods, potential applications of some methods which were not originally intended for TERS tip fabrication, and the problems of high cost and poor reproducibility of tip fabrication.

  17. An Alternative Quality Control Technique for Mineral Chemistry Analysis of Portland Cement-Grade Limestone Using Shortwave Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Nasrullah Zaini

    2016-11-01

    Full Text Available Shortwave infrared (SWIR spectroscopy can be applied directly to analyze the mineral chemistry of raw or geologic materials. It provides diagnostic spectral characteristics of the chemical composition of minerals, information that is invaluable for the identification and quality control of such materials. The present study aims to investigate the potential of SWIR spectroscopy as an alternative quality control technique for the mineral chemistry analysis of Portland cement-grade limestone. We used the spectroscopic (wavelength position and depth of absorption feature and geochemical characteristics of limestone samples to estimate the abundance and composition of carbonate and clay minerals on rock surfaces. The depth of the carbonate (CO3 and Al-OH absorption features are linearly correlated with the contents of CaO and Al2O3 in the samples, respectively, as determined by portable X-ray fluorescence (PXRF measurements. Variations in the wavelength position of CO3 and Al-OH absorption features are related to changes in the chemical compositions of the samples. The results showed that the dark gray and light gray limestone samples are better suited for manufacturing Portland cement clinker than the dolomitic limestone samples. This finding is based on the CaO, MgO, Al2O3, and SiO2 concentrations and compositions. The results indicate that SWIR spectroscopy is an appropriate approach for the chemical quality control of cement raw materials.

  18. A simple, sensitive and non-destructive technique for characterizing bovine dental enamel erosion: attenuated total reflection Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Kim, In-Hye; Son, Jun Sik; Min, Bong Ki; Kim, Young Kyoung; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-03-30

    Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 °C. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers' microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ν1, ν3 phosphate contour: the ratio of the height amplitude of ν3 PO4 to that of ν1 PO4 (Method 1) and the shift of the ν3 PO4 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (Perosion.

  19. Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques.

    Science.gov (United States)

    Huang, Lin; Zhao, Jiewen; Chen, Quansheng; Zhang, Yanhua

    2014-02-15

    Total volatile basic nitrogen (TVB-N) content is an important reference index for evaluating pork freshness. This paper attempted to measure TVB-N content in pork meat using integrating near infrared spectroscopy (NIRS), computer vision (CV), and electronic nose (E-nose) techniques. In the experiment, 90 pork samples with different freshness were collected for data acquisition by three different techniques, respectively. Then, the individual characteristic variables were extracted from each sensor. Next, principal component analysis (PCA) was used to achieve data fusion based on these characteristic variables from 3 different sensors data. Back-propagation artificial neural network (BP-ANN) was used to construct the model for TVB-N content prediction, and the top principal components (PCs) were extracted as the input of model. The result of the model was achieved as follows: the root mean square error of prediction (RMSEP) = 2.73 mg/100g and the determination coefficient (R(p)(2)) = 0.9527 in the prediction set. Compared with single technique, integrating three techniques, in this paper, has its own superiority. This work demonstrates that it has the potential in nondestructive detection of TVB-N content in pork meat using integrating NIRS, CV and E-nose, and data fusion from multi-technique could significantly improve TVB-N prediction performance. Copyright © 2013. Published by Elsevier Ltd.

  20. Development of Electronic Nose and Near Infrared Spectroscopy Analysis Techniques to Monitor the Critical Time in SSF Process of Feed Protein

    Directory of Open Access Journals (Sweden)

    Hui Jiang

    2014-10-01

    Full Text Available In order to assure the consistency of the final product quality, a fast and effective process monitoring is a growing need in solid state fermentation (SSF industry. This work investigated the potential of non-invasive techniques combined with the chemometrics method, to monitor time-related changes that occur during SSF process of feed protein. Four fermentation trials conducted were monitored by an electronic nose device and a near infrared spectroscopy (NIRS spectrometer. Firstly, principal component analysis (PCA and independent component analysis (ICA were respectively applied to the feature extraction and information fusion. Then, the BP_AdaBoost algorithm was used to develop the fused model for monitoring of the critical time in SSF process of feed protein. Experimental results showed that the identified results of the fusion model are much better than those of the single technique model both in the training and validation sets, and the complexity of the fusion model was also less than that of the single technique model. The overall results demonstrate that it has a high potential in online monitoring of the critical moment in SSF process by use of integrating electronic nose and NIRS techniques, and data fusion from multi-technique could significantly improve the monitoring performance of SSF process.

  1. Development of the double-pulse technique to improve the analytical performance of Laser Induced Breakdown Spectroscopy (LIBS) on solids: Nuclear and geological applications

    International Nuclear Information System (INIS)

    Gautier, C.

    2005-10-01

    The double-pulse technique has been developed to improve the analytical performance of Laser Ablation coupled to Optical Emission Spectroscopy (LA/OES). This approach relies on the addition of a second time-resolved laser pulse to the classical LA/OES system. It has been studied on aluminium alloys according to different geometries of the two laser beams (orthogonal and collinear geometries) before being applied to different materials (synthetic glass, rock, steel, sodium chloride). The increase in emission intensity depends on the temporal parameters, on the excitation energy level of the emission line, on the concentration of the studied element and on the analyzed matrix. The double-pulse LA/OES technique can be particularly interesting to improve the sensitivity towards vitreous matrices containing elements emitting lines with high excitation energy levels. (author)

  2. Analytical applications of spectroscopy

    International Nuclear Information System (INIS)

    Creaser, C.S.

    1988-01-01

    This book provides an up to date overview of recent developments in analytical spectroscopy, with a particular emphasis on the common themes of chromatography - spectroscopy combinations, Fourier transform methods, and data handling techniques, which have played an increasingly important part in the development of all spectroscopic techniques. The book contains papers originally presented at a conference entitled 'Spectroscopy Across The Spectrum' held jointly with the first 'International Near Infrared Spectroscopy Conference' at the University of East Anglia, Norwich, UK, in July 1987, which have been edited and rearranged with some additional material. Each section includes reviews of key areas of current research as well as short reports of new developments. The fields covered are: Near Infrared Spectroscopy; Infrared Spectroscopy; Mass Spectroscopy; NMR Spectroscopy; Atomic and UV/Visible Spectroscopy; Chemometrics and Data Analysis. (author)

  3. UV-vis spectroscopy and colorimetric models for detecting anthocyanin-metal complexes in plants: An overview of in vitro and in vivo techniques.

    Science.gov (United States)

    Fedenko, Volodymyr S; Shemet, Sergiy A; Landi, Marco

    2017-05-01

    Although anthocyanin (ACN) biosynthesis is one of the best studied pathways of secondary metabolism in plants, the possible physiological and ecological role(s) of these pigments continue to intrigue scientists. Like other dihydroxy B-ring substituted flavonoids, ACNs have an ability to bind metal and metalloid ions, a property that has been exploited for a variety of purposes. For example, the metal binding ability may be used to stabilize ACNs from plant food sources, or to modify their colors for using them as food colorants. The complexation of metals with cyanidin derivatives can also be used as a simple, sensitive, cheap, and rapid method for determination concentrations of several metals in biological and environmental samples using UV-vis spectroscopy. Far less information is available on the ecological significance of ACN-metal complexes in plant-environment interactions. Metalloanthocyanins (protocyanin, nemophilin, commelinin, protodelphin, cyanosalvianin) are involved in the copigmentation phenomenon that leads to blue-pigmented petals, which may facilitate specific plant-pollinator interactions. ACN-metal formation and compartmentation into the vacuole has also been proposed to be part of an orchestrated detoxification mechanism in plants which experience metal/metalloid excess. However, investigations into ACN-metal interactions in plant biology may be limited because of the complexity of the analytical techniques required. To address this concern, here we describe simple methods for the detection of ACN-metal both in vitro and in vivo using UV-vis spectroscopy and colorimetric models. In particular, the use of UV-vis spectra, difference absorption spectra, and colorimetry techniques will be described for in vitro determination of ACN-metal features, whereas reflectance spectroscopy and colorimetric parameters related to CIE L * a * b * and CIE XYZ systems will be detailed for in vivo analyses. In this way, we hope to make this high-informative tool

  4. Europium Uptake and Partitioning in Oat (Avena sativa) Roots as studied By Laser-Induced Fluorescence Spectroscopy and Confocal Microscopy Profiling Technique

    International Nuclear Information System (INIS)

    Fellows, Robert J.; Wang, Zheming; Ainsworth, Calvin C.

    2003-01-01

    The uptake of Eu3+ by elongating oat plant roots was studied by fluorescence spectroscopy, fluorescence lifetime measurement, as well as laser excitation time-resolved confocal fluorescence profiling technique. The results of this work indicated that the initial uptake of Eu(III) by oat root was most evident within the apical meristem of the root just proximal to the root cap. Distribution of assimilated Eu(III) within the roots differentiation and elongation zone was non-uniform. Higher concentrations were observed within the vascular cylinder, specifically in the phloem and developing xylem parenchyma. Elevated levels of the metal were also observed in the root hairs of the mature root. The concentration of assimilated Eu3+ dropped sharply from the apical meristem to the differentiation and elongation zone and then gradually decreased as the distance from the root cap increased. Fluorescence spectroscopic characteristics of the assimilated Eu3+ suggested that the Eu3+ exists a s inner-sphere mononuclear complexes inside the root. This work has also demonstrated the effectiveness of a time-resolved Eu3+ fluorescence spectroscopy and confocal fluorescence profiling techniques for the in vivo, real-time study of metal[Eu3+] accumulation by a functioning intact plant root. This approach can prove valuable for basic and applied studies in plant nutrition and environmental uptake of actinide radionuclides

  5. Transport and accumulation of PVP-Hypericin in cancer and normal cells characterized by image correlation spectroscopy techniques.

    Science.gov (United States)

    Penjweini, Rozhin; Smisdom, Nick; Deville, Sarah; Ameloot, Marcel

    2014-05-01

    PVP-Hypericin (PVP: polyvinylpyrrolidone) is a potent anti-cancer photosensitizer for photodynamic diagnosis (PDD) and therapy (PDT). However, cellular targets and mechanisms involved in the cancer-selectivity of the photosensitizer are not yet fully understood. This paper gives new insights into the differential transport and localization of PVP-Hypericin in cancer and normal cells which are essential to unravel the mechanisms of action and cancer-selectivity. Temporal (TICS) and spatiotemporal (STICS) image correlation spectroscopy are used for the assessment of PVP-Hypericin diffusion and/or velocity in the case of concerted flow in human cervical epithelial HeLa and human lung carcinoma A549 cells, as well as in human primary dendritic cells (DC) and human peripheral blood mononuclear cells (PBMC). Spatiotemporal image cross-correlation spectroscopy (STICCS) based on organelle specific fluorescent labeling is employed to study the accumulation of the photosensitizer in nucleus, mitochondria, early-endosomes and lysosomes of the cells and to assess the dynamics of co-migrating molecules. Whereas STICS and TICS did not show a remarkable difference between the dynamics of PVP-Hypericin in HeLa, A549 and DC cells, a significantly different diffusion rate of the photosensitizer was measured in PBMC. STICCS detected a stationary accumulation of PVP-Hypericin within the nucleus, mitochondria, early endosomes and lysosomes of HeLa and A549 cells. However, significant flow due to the directed motion of the organelles was detected. In contrast, no accumulation in the nucleus and mitochondria of DC and PBMC could be monitored. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A Comparison of Regression Techniques for Estimation of Above-Ground Winter Wheat Biomass Using Near-Surface Spectroscopy

    Directory of Open Access Journals (Sweden)

    Jibo Yue

    2018-01-01

    Full Text Available Above-ground biomass (AGB provides a vital link between solar energy consumption and yield, so its correct estimation is crucial to accurately monitor crop growth and predict yield. In this work, we estimate AGB by using 54 vegetation indexes (e.g., Normalized Difference Vegetation Index, Soil-Adjusted Vegetation Index and eight statistical regression techniques: artificial neural network (ANN, multivariable linear regression (MLR, decision-tree regression (DT, boosted binary regression tree (BBRT, partial least squares regression (PLSR, random forest regression (RF, support vector machine regression (SVM, and principal component regression (PCR, which are used to analyze hyperspectral data acquired by using a field spectrophotometer. The vegetation indexes (VIs determined from the spectra were first used to train regression techniques for modeling and validation to select the best VI input, and then summed with white Gaussian noise to study how remote sensing errors affect the regression techniques. Next, the VIs were divided into groups of different sizes by using various sampling methods for modeling and validation to test the stability of the techniques. Finally, the AGB was estimated by using a leave-one-out cross validation with these powerful techniques. The results of the study demonstrate that, of the eight techniques investigated, PLSR and MLR perform best in terms of stability and are most suitable when high-accuracy and stable estimates are required from relatively few samples. In addition, RF is extremely robust against noise and is best suited to deal with repeated observations involving remote-sensing data (i.e., data affected by atmosphere, clouds, observation times, and/or sensor noise. Finally, the leave-one-out cross-validation method indicates that PLSR provides the highest accuracy (R2 = 0.89, RMSE = 1.20 t/ha, MAE = 0.90 t/ha, NRMSE = 0.07, CV (RMSE = 0.18; thus, PLSR is best suited for works requiring high

  7. Temperature measurement of plasma-assisted flames: comparison between optical emission spectroscopy and 2-color laser induced fluorescence techniques

    KAUST Repository

    Lacoste, Deanna A.

    2015-03-30

    Accurate thermometry of highly reactive environments, such as plasma-assisted combustion, is challenging. With the help of conical laminar premixed methane-air flames, this study compares two thermometry techniques for the temperature determination in a combustion front enhanced by nanosecond repetitively pulsed (NRP) plasma discharges. Based on emission spectroscopic analysis, the results show that the rotational temperature of CH(A) gives a reasonable estimate for the adiabatic flame temperature, only for lean and stoichiometric conditions. The rotational temperature of N2(C) is found to significantly underestimate the flame temperature. The 2-color OH-PLIF technique gives correct values of the flame temperature.

  8. Temperature measurement of plasma-assisted flames: comparison between optical emission spectroscopy and 2-color laser induced fluorescence techniques

    KAUST Repository

    Lacoste, Deanna A.; Heitz, Sylvain A.; Moeck, Jonas P.

    2015-01-01

    Accurate thermometry of highly reactive environments, such as plasma-assisted combustion, is challenging. With the help of conical laminar premixed methane-air flames, this study compares two thermometry techniques for the temperature determination in a combustion front enhanced by nanosecond repetitively pulsed (NRP) plasma discharges. Based on emission spectroscopic analysis, the results show that the rotational temperature of CH(A) gives a reasonable estimate for the adiabatic flame temperature, only for lean and stoichiometric conditions. The rotational temperature of N2(C) is found to significantly underestimate the flame temperature. The 2-color OH-PLIF technique gives correct values of the flame temperature.

  9. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis.

    Science.gov (United States)

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-05

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH 4 + strategy for ethylene and SO 2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO 2 from fruits. It was satisfied that trace ethylene and SO 2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO 2 during the entire LVCC sampling process were proved to be gas targets from real samples by SERS. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. High accuracy laboratory spectroscopy to support active greenhouse gas sensing

    Science.gov (United States)

    Long, D. A.; Bielska, K.; Cygan, A.; Havey, D. K.; Okumura, M.; Miller, C. E.; Lisak, D.; Hodges, J. T.

    2011-12-01

    Recent carbon dioxide (CO2) remote sensing missions have set precision targets as demanding as 0.25% (1 ppm) in order to elucidate carbon sources and sinks [1]. These ambitious measurement targets will require the most precise body of spectroscopic reference data ever assembled. Active sensing missions will be especially susceptible to subtle line shape effects as the narrow bandwidth of these measurements will greatly limit the number of spectral transitions which are employed in retrievals. In order to assist these remote sensing missions we have employed frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) [2], a high-resolution, ultrasensitive laboratory technique, to measure precise line shape parameters for transitions of O2, CO2, and other atmospherically-relevant species within the near-infrared. These measurements have led to new HITRAN-style line lists for both 16O2 [3] and rare isotopologue [4] transitions in the A-band. In addition, we have performed detailed line shape studies of CO2 transitions near 1.6 μm under a variety of broadening conditions [5]. We will address recent measurements in these bands as well as highlight recent instrumental improvements to the FS-CRDS spectrometer. These improvements include the use of the Pound-Drever-Hall locking scheme, a high bandwidth servo which enables measurements to be made at rates greater than 10 kHz [6]. In addition, an optical frequency comb will be utilized as a frequency reference, which should allow for transition frequencies to be measured with uncertainties below 10 kHz (3×10-7 cm-1). [1] C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, et al., J. Geophys. Res.-Atmos. 112, D10314 (2007). [2] J. T. Hodges, H. P. Layer, W. W. Miller, G. E. Scace, Rev. Sci. Instrum. 75, 849-863 (2004). [3] D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, et al., J. Quant. Spectrosc. Radiat. Transfer 111, 2021-2036 (2010). [4] D. A. Long, D. K. Havey, S. S. Yu, M. Okumura, et al., J. Quant. Spectrosc

  11. Analysis of Different Classification Techniques for Two-Class Functional Near-Infrared Spectroscopy-Based Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Noman Naseer

    2016-01-01

    Full Text Available We analyse and compare the classification accuracies of six different classifiers for a two-class mental task (mental arithmetic and rest using functional near-infrared spectroscopy (fNIRS signals. The signals of the mental arithmetic and rest tasks from the prefrontal cortex region of the brain for seven healthy subjects were acquired using a multichannel continuous-wave imaging system. After removal of the physiological noises, six features were extracted from the oxygenated hemoglobin (HbO signals. Two- and three-dimensional combinations of those features were used for classification of mental tasks. In the classification, six different modalities, linear discriminant analysis (LDA, quadratic discriminant analysis (QDA, k-nearest neighbour (kNN, the Naïve Bayes approach, support vector machine (SVM, and artificial neural networks (ANN, were utilized. With these classifiers, the average classification accuracies among the seven subjects for the 2- and 3-dimensional combinations of features were 71.6, 90.0, 69.7, 89.8, 89.5, and 91.4% and 79.6, 95.2, 64.5, 94.8, 95.2, and 96.3%, respectively. ANN showed the maximum classification accuracies: 91.4 and 96.3%. In order to validate the results, a statistical significance test was performed, which confirmed that the p values were statistically significant relative to all of the other classifiers (p < 0.005 using HbO signals.

  12. Near-infrared spectroscopy of the bladder: a new technique for studying lower urinary tract function in health and disease

    Science.gov (United States)

    Shadgan, Babak; Afshar, Kourosh; Stothers, Lynn; Macnab, Andrew

    2010-02-01

    Background: Continuous wave near-infrared spectroscopy (NIRS) can monitor chromophore change in the bladder detrusor muscle during voiding; oxygenation and hemodynamic data derived differ in health and disease. Application of wireless NIRS for evaluation of voiding dysfunction would benefit children. Methods: Subjects: 20 children (4-17 yrs) [5 normal, 15 with urinary tract pathology]. Instrumentation: self-contained device weight 84 gm; 3 paired light emitting diodes (760/850 nm) in a spatially resolved configuration; source-detector separation distances (30, 35 and 40 mm); silicon photodiode detector; and Bluetooth®. Procedure: Transcutaneous monitoring (midline abdominal skin 2 cm above pubis) during spontaneous voiding (bladder contraction) of oxygenated (O2Hb), deoxygenated (HHb) and total hemoglobin (tHb) and tissue oxygen saturation index (TSI %) at 10 Hz. Results: All 20 trials produced clear graphic data with no movement effect evident. Comparison of patterns of chromophore change between normal and symptomatic subjects revealed trend differences in O2Hb and tHb. (Normal positive; Symptomatic negative, and TSI% fell in symptomatic group). Conclusions: Wireless NIRS is technically feasible in ambulant children. Negative trends in chromophore concentration and falls in TSI% suggest a hemodynamic impairment may underlie some forms of voiding dysfunction, with abnormal physiology involving the microcirculation possibly resulting in muscle fatigue during voiding.

  13. [A review on studies and applications of near infrared spectroscopy technique(NIRS) in detecting quality of hay].

    Science.gov (United States)

    Ding, Wu-Rong; Gan, You-Min; Guo, Xu-Sheng; Yang, Fu-Yu

    2009-02-01

    The quality of hay can directly affect the price of hay and also livestock productivity. Many kinds of methods have been developed for detecting the quality of hay and the method of near infrared spectroscopy (NIRS) has been widely used with consideration of its fast, effective and nondestructive characteristics during detecting process. In the present paper, the feasibility and effectiveness of application of NIRS to detecting hay quality were expounded. Meanwhile, the advance in the study of using NIRS to detect chemical compositions, extent of incursion by epiphyte, amount of toxicant excreted by endogenetic epiphyte and some minim components that can not be detected by using chemical methods were also introduced detailedly. Based on the review of the progresses in using NIRS to detect the quality of hay, it can be concluded that using NIRS to detect hay quality can avoid the disadvantages of time wasting, complication and high cost when using traditional chemical method. And for better utilization of NIRS in practice, some more studies still need to be implemented to further perfect and improve the utilization of NIRS for detecting forage quality, and more accurate modes and systematic analysis software need to be established in times to come.

  14. Auger electron spectroscopy, ionization loss spectroscopy, appearance potential spectroscopy

    International Nuclear Information System (INIS)

    Riwan, R.

    1973-01-01

    The spectroscopy of surfaces using an incident electron beam is studied. The fundamental mechanisms are discussed together with the parameters involved in Auger emission: excitation of the atom, de-excitation by electron emission, and the migration of electrons towards the surface and their ejection. Some examples of applications are given (surface structures, metallurgy, chemical information). Two new techniques for analyzing surfaces are studied: ionization spectroscopy, and appearance potential spectroscopy [fr

  15. Study of InGaN/GaN quantum dot systems by TEM techniques and photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    Kashtiban, R J; Bangert, U; Harvey, A J; Sherliker, B; Halsall, M P

    2010-01-01

    InGaN/GaN multilayer quantum dot structures produced by MOCVD techniques on c-plane sapphire were studied by transmission electron microscopy (TEM) and photoluminescence (PL) techniques. Indium fluctuations ranging from 1-4 nm were observed with both energy filtered TEM (EFTEM) and high angle annular dark field (HAADF) scanning TEM. The existence of V-shaped defects with nucleation centres at the termination of threading dislocation were observed in HAADF images. There was also evidence of the formation of large quantum dots at low densities from lattice HRTEM images. This was further confirmed by PL measurements through the observation of a single sharp line at low power with the typical saturation behaviour at higher power excitation.

  16. Polarization spectroscopy of the sodium dimer utilizing a triple-resonance technique in the presence of argon

    Science.gov (United States)

    Arndt, Phillip; Horton, Timothy; McFarland, Jacob; Bayram, Burcin; Miami University Spectroscopy Team

    2015-05-01

    The collisional dynamics of molecular sodium in the 61Σg electronic state is under investigation using a triple resonance technique in the presence of argon. A continuous wave ring dye laser is used to populate specific rovibrational levels of the A1Σu electronic state. A pump-probe technique is then employed where the pump laser populates the 61Σg state, and the probe laser dumps the population to the B1Σu state. From this level, fluorescence is detected as the system decays to the X1Σg state. We measure the polarization of this signal in the presence of various argon pressures. We will present our current work as well as the processes involved in the experiment. Financial support from the National Science Foundation (Grant No. NSF-PHY-1309571) is gratefully acknowledged.

  17. Optical Spectroscopy

    DEFF Research Database (Denmark)

    Thyrhaug, Erling

    The work presented in this thesis is broadly concerned with how complexation reactions and molecular motion can be characterized with the standard techniques in optical spectroscopy. The thesis aims to show a relatively broad range of methods for probing physico-chemical properties in fluorophore...... information about chemical equilibria, kinetics and molecular motion by monitoring changes in optical properties of the system. The five presented research projects are largely unrelated to each other both in aim and in what property is probed, however they are all connected in that they are fluorophore...... reactions by optical spectroscopy. In project 1 simple steady-state absorption and fluorescence spectroscopy is used to determine the stoichiometries and equilibrium constants in the inclusion complex formation between cyclodextrins and derivatives of the water-insoluble oligo(phenylene vinylene) in aqueous...

  18. Characterisation of PDO olive oil Chianti Classico by non-selective (UV-visible, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques.

    Science.gov (United States)

    Casale, M; Oliveri, P; Casolino, C; Sinelli, N; Zunin, P; Armanino, C; Forina, M; Lanteri, S

    2012-01-27

    An authentication study of the Italian PDO (protected designation of origin) extra virgin olive oil Chianti Classico was performed; UV-visible (UV-vis), Near-Infrared (NIR) and Mid-Infrared (MIR) spectroscopies were applied to a set of samples representative of the whole Chianti Classico production area. The non-selective signals (fingerprints) provided by the three spectroscopic techniques were utilised both individually and jointly, after fusion of the respective profile vectors, in order to build a model for the Chianti Classico PDO olive oil. Moreover, these results were compared with those obtained by the gas chromatographic determination of the fatty acids composition. In order to characterise the olive oils produced in the Chianti Classico PDO area, UNEQ (unequal class models) and SIMCA (soft independent modelling of class analogy) were employed both on the MIR, NIR and UV-vis spectra, individually and jointly, and on the fatty acid composition. Finally, PLS (partial least square) regression was applied on the UV-vis, NIR and MIR spectra, in order to predict the content of oleic and linoleic acids in the extra virgin olive oils. UNEQ, SIMCA and PLS were performed after selection of the relevant predictors, in order to increase the efficiency of both classification and regression models. The non-selective information obtained from UV-vis, NIR and MIR spectroscopy allowed to build reliable models for checking the authenticity of the Italian PDO extra virgin olive oil Chianti Classico. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Fragmentation of the C60 molecule in collision with light ions studied by a multi-correlation technique. Cross-sections, electron spectroscopy

    International Nuclear Information System (INIS)

    Rentenier, A.

    2004-04-01

    A quantitative study of the C60 fullerenes fragmentation in collision with light ions (H n + with n=1,2,3, He q+ with q=1,2) in the velocity range 0,1 - 2,3 u.a.) is presented. The multi-correlation technique, developed between fragment ions and electrons with well defined energy, has enlightened some of the dependences and properties of fragmentation mechanisms (cross sections, electron spectroscopy, size distributions, kinetic energy of fragment ions, Campi's scatter plot, activation energies). The deposited energy hence appeared as an important parameter. Cross sections have been measured, for the first time, for all the collisional processes. Ionisation and capture only depends on the collision velocity. On the other hand, scaling laws with the deposited energy have been observed for the cross sections of multifragmentation, which depends on the collision energy and the nature of the projectile. The deposited energy has also been found as an essential parameter to understand the evolution of the charged fragment size distributions. The electron spectroscopy, achieved at an emission angle of 35 degrees, showed spectra peaked at important energies (from 5 to 20 eV). The spectra shape depends on the collision velocity. A first theoretical analysis points out the link between the observed energy distribution and the presence of a centrifugal potential barrier. Finally, correlation experiments between produced ions and electron energy reveal that electron energy increases with internal energy. (author)

  20. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    Science.gov (United States)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.

    2016-01-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1- reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2 % (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1 min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non-absolute detection methods. In addition to

  1. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis

    Science.gov (United States)

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-01

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH4+ strategy for ethylene and SO2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO2 from fruits. It was satisfied that trace ethylene and SO2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO2 during the entire LVCC sampling process were proved to be samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS.

  2. Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Gonser, U.

    1975-01-01

    This book is addressed to persons interested in learning about what has been done and what can be done with Moessbauer spectroscopy. In an introductory chapter the basic principle is explained and the general parameters governing Moessbauer spectroscopy are tabulated. For the following chapters various disciplines are chosen and the wide applicability of this measuring technique is demonstrated. The second chapter discusses a few representative examples of chemical interesting information being reflected by isomer shifts and quadrupole splittings, particularly with respect to bonding and structural properties. The third chapter deals with some applications of Moessbauer spectroscopy for characterizing magnetic compounds and its use for magnetic structure investigations, particularly by making use of polarized radiation. The fourth chapter describes the use of the Moessbauer spectroscopy for studying iron in biological molecules. As an example of recent applications to mineralogy and geology the results of the studies of lunar samples are reviewed in the fifth chapter. Finally, in the last chapter, work is described on the use of Moessbauer spectroscopy in physical metallurgy, particularly quantitative analyses which have enabled metallurgists to solve many old problems. (orig./FW) [de

  3. Determination of lysergic acid diethylamide (LSD) in mouse blood by capillary electrophoresis/ fluorescence spectroscopy with sweeping techniques in micellar electrokinetic chromatography.

    Science.gov (United States)

    Fang, Ching; Liu, Ju-Tsung; Chou, Shiu-Huey; Lin, Cheng-Huang

    2003-03-01

    The separation and on-line concentration of lysergic acid diethylamide (LSD) in mouse blood was achieved by means of capillary electrophoresis/fluorescence spectroscopy using sodium dodecyl sulfate (SDS) as the surfactant. Techniques involving on-line sample concentration, including sweeping micellar electrokinetic chromatography (sweeping-MEKC) and cation-selective exhaustive injection-sweep-micellar electrokinetic chromatography (CSEI-sweep-MEKC) were applied; the optimum on-line concentration and separation conditions were determined. In the analysis of an actual sample, LSD was found in a blood sample from a test mouse (0.1 mg LSD fed to a 20 g mouse; approximately 1/10 to the value of LD(50)). As a result, 120 and 30 ng/mL of LSD was detected at 20 and 60 min, respectively, after ingestion of the doses.

  4. Tracking Color Shift in Ballpoint Pen Ink Using Photoshop Assisted Spectroscopy: A Nondestructive Technique Developed to Rehouse a Nobel Laureate's Manuscript.

    Science.gov (United States)

    Wright, Kristi; Herro, Holly

    2016-01-01

    Many historically and culturally significant documents from the mid-to-late twentieth century were written in ballpoint pen inks, which contain light-sensitive dyes that present problems for collection custodians and paper conservators. The conservation staff at the National Library of Medicine (NLM), National Institutes of Health, conducted a multiphase project on the chemistry and aging of ballpoint pen ink that culminated in the development of a new method to detect aging of ballpoint pen ink while examining a variety of storage environments. NLM staff determined that ballpoint pen ink color shift can be detected noninvasively using image editing software. Instructions are provided on how to detect color shift in digitized materials using a technique developed specifically for this project-Photoshop Assisted Spectroscopy. 1 The study results offer collection custodians storage options for historic documents containing ballpoint pen ink.

  5. Bio-functions and molecular carbohydrate structure association study in forage with different source origins revealed using non-destructive vibrational molecular spectroscopy techniques.

    Science.gov (United States)

    Ji, Cuiying; Zhang, Xuewei; Yan, Xiaogang; Mostafizar Rahman, M; Prates, Luciana L; Yu, Peiqiang

    2017-08-05

    The objectives of this study were to: 1) investigate forage carbohydrate molecular structure profiles; 2) bio-functions in terms of CHO rumen degradation characteristics and hourly effective degradation ratio of N to OM (HED N/OM ), and 3) quantify interactive association between molecular structures, bio-functions and nutrient availability. The vibrational molecular spectroscopy was applied to investigate the structure feature on a molecular basis. Two sourced-origin alfalfa forages were used as modeled forages. The results showed that the carbohydrate molecular structure profiles were highly linked to the bio-functions in terms of rumen degradation characteristics and hourly effective degradation ratio. The molecular spectroscopic technique can be used to detect forage carbohydrate structure features on a molecular basis and can be used to study interactive association between forage molecular structure and bio-functions. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Influence of ns-laser wavelength in laser-induced breakdown spectroscopy for discrimination of painting techniques

    Science.gov (United States)

    Bai, Xueshi; Syvilay, Delphine; Wilkie-Chancellier, Nicolas; Texier, Annick; Martinez, Loic; Serfaty, Stéphane; Martos-Levif, Dominique; Detalle, Vincent

    2017-08-01

    The influence of ns-laser wavelength to discriminate ancient painting techniques such as are fresco, casein, animal glue, egg yolk and oil was investigated in this work. This study was carried out with a single shot laser on samples covered by a layer made of a mixture of the cinnabar pigment and different binders. Three wavelengths based on Nd: YAG laser were investigated (1064, 532 and 266 nm). The plasma is controlled at the same electron temperature after an adjustment of pulse energy for these three wavelengths on a fresco sample without organic binder. This approach allows to eliminate the effects of laser pulse energy and the material laser absorption. Afterwards, the emission spectra were compared to separate different techniques. The organic binding media has been separated based on the relative emission intensity of the present CN or C2 rovibrational emissions. In order to test the capability of separating or identifying, the chemometric approach (PCA) was applied to the different matrix. The different solutions in term of wavelength range to optimise the identification was investigated. We focused on the evaluation for the laser wavelength to insure a better separation. The different capacity was interpreted by differentiating the binders by the altered interaction mechanisms between the laser photon and the binders. Also, the electron temperature in the plasma was estimated, which provided the evidences to our findings.

  7. Elemental analysis of water and soil environmental samples in Tabuk area by neutron capture gamma-ray spectroscopy techniques

    International Nuclear Information System (INIS)

    Al-Aseery, Sh.M.; Alamoudi, Z.; Hassan, A.M.

    2006-01-01

    The prompt and delayed gamma-rays due to neutron capture in the nuclei of the constituent elements of three soil samples and one drinking water sample have been measured. The 252 Cf and 226 Ra/Be isotopic neutron sources are used for neutron irradiation. Also, the hyper pure germanium detection system is used. The soil samples were from Astra, Tadco and El-Gammaz farms, while the water sample was taken from Tabuk city. In case of prompt gamma-ray analysis, a total of 16 elements were identified and the concentration percentage values by weight were calculated for: C, Na, Mg, Al, Si, S, Cl,, Ca, Ti, Cr, Mn, Fe, Co, Zn, Sr ad Pb elements. A comparative study between the results obtained in this work and the results obtained by ICP-MS and EDX-Ray techniques for the same samples is given

  8. Comparison of partial least squares and lasso regression techniques as applied to laser-induced breakdown spectroscopy of geological samples

    International Nuclear Information System (INIS)

    Dyar, M.D.; Carmosino, M.L.; Breves, E.A.; Ozanne, M.V.; Clegg, S.M.; Wiens, R.C.

    2012-01-01

    A remote laser-induced breakdown spectrometer (LIBS) designed to simulate the ChemCam instrument on the Mars Science Laboratory Rover Curiosity was used to probe 100 geologic samples at a 9-m standoff distance. ChemCam consists of an integrated remote LIBS instrument that will probe samples up to 7 m from the mast of the rover and a remote micro-imager (RMI) that will record context images. The elemental compositions of 100 igneous and highly-metamorphosed rocks are determined with LIBS using three variations of multivariate analysis, with a goal of improving the analytical accuracy. Two forms of partial least squares (PLS) regression are employed with finely-tuned parameters: PLS-1 regresses a single response variable (elemental concentration) against the observation variables (spectra, or intensity at each of 6144 spectrometer channels), while PLS-2 simultaneously regresses multiple response variables (concentrations of the ten major elements in rocks) against the observation predictor variables, taking advantage of natural correlations between elements. Those results are contrasted with those from the multivariate regression technique of the least absolute shrinkage and selection operator (lasso), which is a penalized shrunken regression method that selects the specific channels for each element that explain the most variance in the concentration of that element. To make this comparison, we use results of cross-validation and of held-out testing, and employ unscaled and uncentered spectral intensity data because all of the input variables are already in the same units. Results demonstrate that the lasso, PLS-1, and PLS-2 all yield comparable results in terms of accuracy for this dataset. However, the interpretability of these methods differs greatly in terms of fundamental understanding of LIBS emissions. PLS techniques generate principal components, linear combinations of intensities at any number of spectrometer channels, which explain as much variance in the

  9. Comparison of partial least squares and lasso regression techniques as applied to laser-induced breakdown spectroscopy of geological samples

    Energy Technology Data Exchange (ETDEWEB)

    Dyar, M.D., E-mail: mdyar@mtholyoke.edu [Dept. of Astronomy, Mount Holyoke College, 50 College St., South Hadley, MA 01075 (United States); Carmosino, M.L.; Breves, E.A.; Ozanne, M.V. [Dept. of Astronomy, Mount Holyoke College, 50 College St., South Hadley, MA 01075 (United States); Clegg, S.M.; Wiens, R.C. [Los Alamos National Laboratory, P.O. Box 1663, MS J565, Los Alamos, NM 87545 (United States)

    2012-04-15

    A remote laser-induced breakdown spectrometer (LIBS) designed to simulate the ChemCam instrument on the Mars Science Laboratory Rover Curiosity was used to probe 100 geologic samples at a 9-m standoff distance. ChemCam consists of an integrated remote LIBS instrument that will probe samples up to 7 m from the mast of the rover and a remote micro-imager (RMI) that will record context images. The elemental compositions of 100 igneous and highly-metamorphosed rocks are determined with LIBS using three variations of multivariate analysis, with a goal of improving the analytical accuracy. Two forms of partial least squares (PLS) regression are employed with finely-tuned parameters: PLS-1 regresses a single response variable (elemental concentration) against the observation variables (spectra, or intensity at each of 6144 spectrometer channels), while PLS-2 simultaneously regresses multiple response variables (concentrations of the ten major elements in rocks) against the observation predictor variables, taking advantage of natural correlations between elements. Those results are contrasted with those from the multivariate regression technique of the least absolute shrinkage and selection operator (lasso), which is a penalized shrunken regression method that selects the specific channels for each element that explain the most variance in the concentration of that element. To make this comparison, we use results of cross-validation and of held-out testing, and employ unscaled and uncentered spectral intensity data because all of the input variables are already in the same units. Results demonstrate that the lasso, PLS-1, and PLS-2 all yield comparable results in terms of accuracy for this dataset. However, the interpretability of these methods differs greatly in terms of fundamental understanding of LIBS emissions. PLS techniques generate principal components, linear combinations of intensities at any number of spectrometer channels, which explain as much variance in the

  10. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    2008-01-01

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.

  11. Development of a technique for the on line determination of uranium in solution by gamma ray spectroscopy

    International Nuclear Information System (INIS)

    Singh, Sarabjit; Ramaswami, A.; Gill, Jatinder Singh

    2005-02-01

    A technique based on gamma ray spectrometry has been developed for the continuous monitoring of uranium in the solution form. Simulated container and support system was designed and fabricated for the development of an efficiency calibration curve and to find the detection limit for the estimation of uranium using 185.7 keV ( 235 U) gamma ray. The system was calibrated for its counting efficiency using HPGe detector system, in a standard source mount to detector geometry. The sensitivity of the detection system and counting time for low-level estimation of uranium has also been established. The detection limit of the monitor is ∼10 mg of uranium per litre of the solution. In order to correct for the density variation of the solution experiment was carried to study the variation of count rate of 185.7 ke V gamma ray of 235 U as a function of the density of the solution. This report gives the details of the development of a continuous monitor for the determination of uranium in the solution streams. (author)

  12. Use of near-infrared spectroscopy and feature selection techniques for predicting the caffeine content and roasting color in roasted coffees.

    Science.gov (United States)

    Pizarro, Consuelo; Esteban-Díez, Isabel; González-Sáiz, José-María; Forina, Michele

    2007-09-05

    Near-infrared spectroscopy (NIRS), combined with diverse feature selection techniques and multivariate calibration methods, has been used to develop robust and reliable reduced-spectrum regression models based on a few NIR filter sensors for determining two key parameters for the characterization of roasted coffees, which are extremely relevant from a quality assurance standpoint: roasting color and caffeine content. The application of the stepwise orthogonalization of predictors (an "old" technique recently revisited, known by the acronym SELECT) provided notably improved regression models for the two response variables modeled, with root-mean-square errors of the residuals in external prediction (RMSEP) equal to 3.68 and 1.46% for roasting color and caffeine content of roasted coffee samples, respectively. The improvement achieved by the application of the SELECT-OLS method was particularly remarkable when the very low complexities associated with the final models obtained for predicting both roasting color (only 9 selected wavelengths) and caffeine content (17 significant wavelengths) were taken into account. The simple and reliable calibration models proposed in the present study encourage the possibility of implementing them in online and routine applications to predict quality parameters of unknown coffee samples via their NIR spectra, thanks to the use of a NIR instrument equipped with a proper filter system, which would imply a considerable simplification with regard to the recording and interpretation of the spectra, as well as an important economic saving.

  13. Validation of diffuse correlation spectroscopy sensitivity to nicotinamide-induced blood flow elevation in the murine hindlimb using the fluorescent microsphere technique

    Science.gov (United States)

    Proctor, Ashley R.; Ramirez, Gabriel A.; Han, Songfeng; Liu, Ziping; Bubel, Tracy M.; Choe, Regine

    2018-03-01

    Nicotinamide has been shown to affect blood flow in both tumor and normal tissues, including skeletal muscle. Intraperitoneal injection of nicotinamide was used as a simple intervention to test the sensitivity of noninvasive diffuse correlation spectroscopy (DCS) to changes in blood flow in the murine left quadriceps femoris skeletal muscle. DCS was then compared with the gold-standard fluorescent microsphere (FM) technique for validation. The nicotinamide dose-response experiment showed that relative blood flow measured by DCS increased following treatment with 500- and 1000-mg / kg nicotinamide. The DCS and FM technique comparison showed that blood flow index measured by DCS was correlated with FM counts quantified by image analysis. The results of this study show that DCS is sensitive to nicotinamide-induced blood flow elevation in the murine left quadriceps femoris. Additionally, the results of the comparison were consistent with similar studies in higher-order animal models, suggesting that mouse models can be effectively employed to investigate the utility of DCS for various blood flow measurement applications.

  14. In situ electrochemical impedance spectroscopy/synchrotron radiation grazing incidence X-ray diffraction-A powerful new technique for the characterization of electrochemical surfaces and interfaces

    Energy Technology Data Exchange (ETDEWEB)

    De Marco, Roland [Nanochemistry Research Institute, Department of Applied Chemistry, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845 (Australia)]. E-mail: r.demarco@exchange.curtin.edu.au; Jiang, Z.-T. [Nanochemistry Research Institute, Department of Applied Chemistry, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845 (Australia); Martizano, Jay [Nanochemistry Research Institute, Department of Applied Chemistry, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845 (Australia); Lowe, Alex [Nanochemistry Research Institute, Department of Applied Chemistry, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845 (Australia); Pejcic, Bobby [Nanochemistry Research Institute, Department of Applied Chemistry, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845 (Australia); Riessen, Arie van [Materials Research Group, Department of Applied Physics, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845 (Australia)

    2006-08-15

    A marriage of electrochemical impedance spectroscopy (EIS) and in situ synchrotron radiation grazing incidence X-ray diffraction (SR-GIXRD) has provided a powerful new technique for the elucidation of the mechanistic chemistry of electrochemical systems. In this study, EIS/SR-GIXRD has been used to investigate the influence of metal ion buffer calibration ligands, along with natural organic ligands in seawater, on the behaviour of the iron chalcogenide glass ion-selective electrode (ISE). The SR-GIXRD data demonstrated that citrate - a previously reported poor iron calibration ligand for the analysis of seawater - induced an instantaneous and total dissolution of crystalline GeSe and Sb{sub 2}Se{sub 3} in the modified surface layer (MSL) of the ISE, while natural organic ligands in seawater and a mixture of ligands in a mimetic seawater ligand system protected the MSL's crystalline inclusions of GeSe and Sb{sub 2}Se{sub 3} from oxidative attack. Expectedly, the EIS data showed that citrate induced a loss in the medium frequency time constant for the MSL of the ISE, while seawater's natural organic ligands and the mimetic ligand system preserved the medium frequency EIS response characteristics of the ISE's MSL. The new EIS/SR-GIXRD technique has provided insights into the suitability of iron calibration ligands for the analysis of iron in seawater.

  15. Experimental and Numerical Characterization of a Pulsed Supersonic Uniform Flow for Kinetics and Spectroscopy

    Science.gov (United States)

    Suas-David, Nicolas; Thawoos, Shameemah; Broderick, Bernadette M.; Suits, Arthur

    2017-06-01

    The current CPUF (Chirped Pulse Uniform Flow) and the new UF-CRDS (Uniform Flow Cavity Ring-Down Spectroscopy) setups relie mostly on the production of a good quality supersonic uniform flow. A supersonic uniform flow is produced by expanding a gas through a Laval nozzle - similar to the nozzles used in aeronautics - linked to a vacuum chamber. The expansion is characterized by an isentropic core where constant very low kinetic temperature (down to 20K) and constant density are observed. The relatively large diameter of the isentropic core associated with homogeneous thermodynamic conditions makes it a relevant tool for low temperature spectroscopy. On the other hand, the length along the axis of the flow of this core (could be longer than 50cm) allows kinetic studies which is one of the main interest of this setup (CRESU technique. The formation of a uniform flow requires an extreme accuracy in the design of the shape of the nozzle for a set of defined temperature/density. The design is based on a Matlab program which retrieves the shape of the isentropic core according to the method of characteristics prior to calculate the thickness of the boundary layer. Two different approaches are used to test the viability of a new nozzle derived from the program. First, a computational fluid dynamic software (OpenFOAM) models the distribution of the thermodynamic properties of the expansion. Then, fabricated nozzles using 3-D printing are tested based on Pitot measurements and spectroscopic analyses. I will present comparisons of simulation and measured performance for a range of nozzles. We will see how the high level of accuracy of numerical simulations provides a deeper knowledge of the experimental conditions. J. M. Oldham, C. Abeysekera, J. Joalland, L. N. Zack, K. Prozument, I. R. Sims, G. Barrat Park, R. W. Filed and A. G. Suits, J. Chem. Phys. 141, 154202, (2014). I. Sims, J. L. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, B. Rowe, I. W. Smith

  16. Development of a Fourier transform infrared spectroscopy coupled to UV-Visible analysis technique for aminosides and glycopeptides quantitation in antibiotic locks.

    Science.gov (United States)

    Sayet, G; Sinegre, M; Ben Reguiga, M

    2014-01-01

    Antibiotic Lock technique maintains catheters' sterility in high-risk patients with long-term parenteral nutrition. In our institution, vancomycin, teicoplanin, amikacin and gentamicin locks are prepared in the pharmaceutical department. In order to insure patient safety and to comply to regulatory requirements, antibiotic locks are submitted to qualitative and quantitative assays prior to their release. The aim of this study was to develop an alternative quantitation technique for each of these 4 antibiotics, using a Fourier transform infrared (FTIR) coupled to UV-Visible spectroscopy and to compare results to HPLC or Immunochemistry assays. Prevalidation studies permitted to assess spectroscopic conditions used for antibiotic locks quantitation: FTIR/UV combinations were used for amikacin (1091-1115cm(-1) and 208-224nm), vancomycin (1222-1240cm(-1) and 276-280nm), and teicoplanin (1226-1230cm(-1) and 278-282nm). Gentamicin was quantified with FTIR only (1045-1169cm(-1) and 2715-2850cm(-1)) due to interferences in UV domain of parabens, preservatives present in the commercial brand used to prepare locks. For all AL, the method was linear (R(2)=0.996 to 0.999), accurate, repeatable (intraday RSD%: from 2.9 to 7.1% and inter-days RSD%: 2.9 to 5.1%) and precise. Compared to the reference methods, the FTIR/UV method appeared tightly correlated (Pearson factor: 97.4 to 99.9%) and did not show significant difference in recovery determinations. We developed a new simple reliable analysis technique for antibiotics quantitation in locks using an original association of FTIR and UV analysis, allowing a short time analysis to identify and quantify the studied antibiotics. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bosch, A.

    1982-01-01

    In this work examples of the various aspects of photoelectron spectroscopy are given. The investigation was started with the development of an angle-resolved spectrometer so that the first chapters deal with angle-resolved ultra-violet photoelectron spectroscopy. To indicate the possibilities and pitfalls of the technique, in chapter II the theory is briefly reviewed. In chapter III the instrument is described. The system is based on the cylindrical mirror deflection analyzer, which is modified and improved for angle-resolved photoelectron spectroscopy. In combination with a position sensitive detector, a spectrometer is developed with which simultaneously several angle-resolved spectra can be recorded. In chapter IV, the results are reported of angle-integrated UPS experiments on dilute alloys. Using the improved energy resolution of the instrument the author was able to study the impurity states more accurately and shows that the photoemission technique has become an important tool in the study of impurities and the interactions involved. XPS and Auger results obtained from dilute alloys are presented in chapter V. It is shown that these systems are especially suited for the study of correlation effects and can provide interesting problems related to the satellite structure and the interaction of the impurity with the host. In chapter VI, the valence bands of ternary alloys are studied with UPS and compared to recent band structure calculation. The core level shifts are analyzed in a simple, thermodynamic scheme. (Auth.)

  18. Ultrabroadband spectroscopy for security applications

    DEFF Research Database (Denmark)

    Engelbrecht, Sunniva; Berge, Luc; Skupin, Stefan

    2015-01-01

    Ultrabroadband spectroscopy is a promising novel approach to overcome two major hurdles which have so far limited the application of THz spectroscopy for security applications: the increased bandwidth enables to record several characteristic spectroscopic features and the technique allows...

  19. Investigation of kinetics and thermodynamics of DNA hybridization by means of 2-D fluorescence spectroscopy and soft/hard modeling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Sara; Kompany-Zareh, Mohsen, E-mail: kmpz@dr.com

    2016-02-04

    Reversible hybridization reaction plays a key role in fundamental biological processes, in many laboratory techniques, and also in DNA based sensing devices. Comprehensive investigation of this process is, therefore, essential for the development of more sophisticated applications. Kinetics and thermodynamics of the hybridization reaction, as a second order process, are systematically investigated with the aid of the soft and hard chemometric methods. Labeling two complementary 21 mer DNA single strands with FAM and Texas red fluorophores, enabled recording of the florescence excitation−emission matrices during the experiments which led to three-way data sets. The presence of fluorescence resonance energy transfer in excitation and emission modes and the closure in concentration mode, made the three-way data arrays rank deficient. To acquire primary chemical information, restricted Tucker3 as a soft method was employed. Herein a model-based method, hard restricted trilinear decomposition, is introduced for in depth analysis of rank deficient three-way data sets. By employing proposed hard method, the nonlinear model parameters as well as the correct profiles could be estimated. In addition, a simple constraint is presented to extract chemically reasonable output profiles regarding the core elements of restricted Tucker3 model. - Highlights: • Hard restricted trilinear decomposition (HrTD) was introduced for model-based analysis of three-way rank deficient data. • DNA hybridization was investigated by two-dimensional fluorescence spectroscopy and soft/hard multi-way techniques. • Restricted Tucker3 analysis enabled accurate estimation of pure FRET profiles in the hybridized form. • HrTD was successfully employed to estimate kinetic and equilibrium parameters of DNA hybridization system. • The performance of the proposed methods in response to different physical stimuli was successfully evaluated.

  20. Rapid analysis of adulterations in Chinese lotus root powder (LRP) by near-infrared (NIR) spectroscopy coupled with chemometric class modeling techniques.

    Science.gov (United States)

    Xu, Lu; Shi, Peng-Tao; Ye, Zi-Hong; Yan, Si-Min; Yu, Xiao-Ping

    2013-12-01

    This paper develops a rapid analysis method for adulteration identification of a popular traditional Chinese food, lotus root powder (LRP), by near-infrared spectroscopy and chemometrics. 85 pure LRP samples were collected from 7 main lotus producing areas of China to include most if not all of the significant variations likely to be encountered in unknown authentic materials. To evaluate the model specificity, 80 adulterated LRP samples prepared by blending pure LRP with different levels of four cheaper and commonly used starches were measured and predicted. For multivariate quality models, two class modeling methods, the traditional soft independent modeling of class analogy (SIMCA) and a recently proposed partial least squares class model (PLSCM) were used. Different data preprocessing techniques, including smoothing, taking derivative and standard normal variate (SNV) transformation were used to improve the classification performance. The results indicate that smoothing, taking second-order derivatives and SNV can improve the class models by enhancing signal-to-noise ratio, reducing baseline and background shifts. The most accurate and stable models were obtained with SNV spectra for both SIMCA (sensitivity 0.909 and specificity 0.938) and PLSCM (sensitivity 0.909 and specificity 0.925). Moreover, both SIMCA and PLSCM could detect LRP samples mixed with 5% (w/w) or more other cheaper starches, including cassava, sweet potato, potato and maize starches. Although it is difficult to perform an exhaustive collection of all pure LRP samples and possible adulterations, NIR spectrometry combined with class modeling techniques provides a reliable and effective method to detect most of the current LRP adulterations in Chinese market. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Protected Geographical Indication Identification of a Chinese Green Tea (Anji-White by Near-Infrared Spectroscopy and Chemometric Class Modeling Techniques

    Directory of Open Access Journals (Sweden)

    Lu Xu

    2013-01-01

    Full Text Available This paper reports a rapid identification method for a Chinese green tea with PGI, Anji-white tea, by class modeling techniques and NIR spectroscopy. 167 real and representative Anji-white tea samples were collected from 8 tea plantations in their original producing areas for model training. Another 81 non-Anji-white tea samples of similar appearance were collected from 7 important tea producing areas and used for validation of model specificity. Diffuse NIR spectra were measured with finely ground tea powders. OCPLS and SIMCA were used to describe the distribution of representative Anji-white tea objects and predict the authenticity of new objects. For data preprocessing, smoothing, derivatives, and SNV were applied to improve the raw spectra and classification performance. It is demonstrated that taking derivatives and SNV can improve classification accuracy and reduce the complexity of class models by removing spectral background and baseline. For the best models, the sensitivity and specificity were 0.886 and 0.951 for OCPLS, 0.886 and 0.938 for SIMCA with SNV spectra, respectively. Although it is difficult to perform an exhaustive analysis of all types of potential false objects, the proposed method can detect most of the important non-Anji-white teas in the Chinese market.

  2. Influence of Ar-ion implantation on the structural and mechanical properties of zirconia as studied by Raman spectroscopy and nanoindentation techniques

    Science.gov (United States)

    Kurpaska, L.; Jasinski, J.; Wyszkowska, E.; Nowakowska-Langier, K.; Sitarz, M.

    2018-04-01

    In this study, structural and nanomechanical properties of zirconia polymorphs induced by ion irradiation were investigated by means of Raman spectroscopy and nanoindentation techniques. The zirconia layer have been produced by high temperature oxidation of pure zirconium at 600 °C for 5 h at normal atmospheric pressure. In order to distinguish between the internal and external parts of zirconia, the spherical metallographic sections have been prepared. The samples were irradiated at room temperature with 150 keV Ar+ ions at fluences ranging from 1 × 1015 to 1 × 1017 ions/cm2. The main objective of this study was to distinguish and confirm different structural and mechanical properties between the interface layer and fully developed scale in the internal/external part of the oxide. Conducted studies suggest that increasing ion fluence impacts Raman bands positions (especially characteristic for tetragonal phase) and increases the nanohardness and Young's modulus of individual phases. This phenomenon has been examined from the point of view of stress-induced hardening effect and classical monoclinic → tetragonal (m → t) martensitic phase transformation.

  3. A structural study of bone changes in knee osteoarthritis by synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy techniques

    Science.gov (United States)

    Sindhupakorn, Bura; Thienpratharn, Suwittaya; Kidkhunthod, Pinit

    2017-10-01

    Osteoarthritis (OA) is characterized by degeneration of articular cartilage and thickening of subchondral bone. The present study investigated the changing of biochemical components of cartilage and bone compared between normal and OA people. Using Synchrotron-based X-ray fluorescence (SR-XRF) and X-ray absorption spectroscopy (XAS) techniquesincluding X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were employed for the bone changes in kneeosteoarthritisstudies. The bone samples were collected from various osteoarthritis patients with both male and female in the ages range between 20 and 74 years old. SR-XRF results excited at 4240 eV for Ca elements show a majority three main groups, based on their XRF intensities, 20-36 years, 40-60 years and over 70 years, respectively. By employing XAS techniques, XANES features can be used to clearly explain in term of electronic transitions occurring in bone samples which are affected from osteoarthritis symptoms. Moreover, a structural change around Ca ions in bone samples is obviously obtained by EXAFS results indicating an increase of Ca-amorphous phase when the ages increase.

  4. Hippocampal and neocortical metabolite ratio in patients with complex partial seizure: short TE and long TE techniques using single voxel proton MR spectroscopy

    International Nuclear Information System (INIS)

    Chung, Jin Il; Kim, Dong Ik; Lee, Byung In; Lee, Seung Ik; Yoon, Pyeong Ho

    2000-01-01

    To compare hippocampal and neocortical metabolite ratios using single-voxel proton MR spectroscopy with different echo times in patients with complex partial seizure. Using a GE Signa 1.5T scanner with STEAM and PRESS sequences, automated single voxel proton MRS was used to determine metabolite ratio differences in the hippocampus and neocortex of nine complex partial seizure patients (mesial temporal sclerosis (n=3D5), status epilepticus (n=3D1), tumor (n=3D1), cortical dysplasia (n=3D1), occipital lobe epilepsy (n=3D1)). A total of 20 examinations were performed in the region of the hippocampus (n=3D17), temporal neocortex (n=3D1), and parieto-occipital gray matter (n=3D1). Voxel size range was 5.2-17.4 cm 3 . The calculated creatine (Cr) peak was employed as an internal reference and the relative ratio of N-acetylaspartate (NAA) and choline (Cho) was calculated for both short and long echo times using an automated PROBE/SV (GE Medical Systems) package. Each NAA/Cho ratio obtained using both PRESS and STEAM techniques was compared by means of statistical analysis (paired Student t-test). Using PRESS (long TE, 272 ms), NAA/Cho ratios were successfully calculated in 16 of 20 examinations; in four this was not possible due to noise levels of the Cr and Cho peaks. Using STEAM (short TE, 30 ms) NAA/Cho ratios were successfully calculated in 19 of 20 examinations; in one, the Cho peak could not be measured. Using PRESS and STEAM, mean and standard deviations for the NAA/Cho ratio were 1.22±0.50 and 1.16±0.36, respectively. There were no statistically significant differences in this ratio between the short and long TE method (p less than 0.01). In complex partial seizure patients, no significant metabolite differences were found between short and long echo times of single voxel proton MR spectroscopy. The metabolite ratio at different echo times can be reliably obtained using this simplified and automated PROBE/SV quantitation method. (author)

  5. Hippocampal and neocortical metabolite ratio in patients with complex partial seizure: short TE and long TE techniques using single voxel proton MR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jin Il; Kim, Dong Ik; Lee, Byung In; Lee, Seung Ik; Yoon, Pyeong Ho [Medical College, Yonsei University, Seoul (Korea, Republic of)

    2000-08-01

    To compare hippocampal and neocortical metabolite ratios using single-voxel proton MR spectroscopy with different echo times in patients with complex partial seizure. Using a GE Signa 1.5T scanner with STEAM and PRESS sequences, automated single voxel proton MRS was used to determine metabolite ratio differences in the hippocampus and neocortex of nine complex partial seizure patients (mesial temporal sclerosis (n=3D5), status epilepticus (n=3D1), tumor (n=3D1), cortical dysplasia (n=3D1), occipital lobe epilepsy (n=3D1)). A total of 20 examinations were performed in the region of the hippocampus (n=3D17), temporal neocortex (n=3D1), and parieto-occipital gray matter (n=3D1). Voxel size range was 5.2-17.4 cm{sup 3}. The calculated creatine (Cr) peak was employed as an internal reference and the relative ratio of N-acetylaspartate (NAA) and choline (Cho) was calculated for both short and long echo times using an automated PROBE/SV (GE Medical Systems) package. Each NAA/Cho ratio obtained using both PRESS and STEAM techniques was compared by means of statistical analysis (paired Student t-test). Using PRESS (long TE, 272 ms), NAA/Cho ratios were successfully calculated in 16 of 20 examinations; in four this was not possible due to noise levels of the Cr and Cho peaks. Using STEAM (short TE, 30 ms) NAA/Cho ratios were successfully calculated in 19 of 20 examinations; in one, the Cho peak could not be measured. Using PRESS and STEAM, mean and standard deviations for the NAA/Cho ratio were 1.22{+-}0.50 and 1.16{+-}0.36, respectively. There were no statistically significant differences in this ratio between the short and long TE method (p less than 0.01). In complex partial seizure patients, no significant metabolite differences were found between short and long echo times of single voxel proton MR spectroscopy. The metabolite ratio at different echo times can be reliably obtained using this simplified and automated PROBE/SV quantitation method. (author)

  6. High sensitivity cavity ring down spectroscopy of N_2O near 1.22 µm: (II) "1"4N_2"1"6O line intensity modeling and global fit of "1"4N_2"1"8O line positions

    International Nuclear Information System (INIS)

    Tashkun, S.A.; Perevalov, V.I.; Karlovets, E.V.; Kassi, S.; Campargue, A.

    2016-01-01

    In a recent work (Karlovets et al., 2016 [1]), we reported the measurement and rovibrational assignments of more than 3300 transitions belonging to 64 bands of five nitrous oxide isotopologues ("1"4N_2"1"6O, "1"4N"1"5N"1"6O, "1"5N"1"4N"1"6O, "1"4N_2"1"8O and "1"4N_2"1"7O) in the high sensitivity CRDS spectrum recorded in the 7915–8334 cm"−"1 spectral range. The assignments were performed by comparison with predictions of the effective Hamiltonian models developed for each isotopologue. In the present paper, the large amount of measurements from our previous work mentioned above and literature are gathered to refine the modeling of the nitrous oxide spectrum in two ways: (i) improvement of the intensity modeling for the principal isotopologue, "1"4N_2"1"6O, near 8000 cm"−"1 from a new fit of the relevant effective dipole moment parameters, (ii) global modeling of "1"4N_2"1"8O line positions from a new fit of the parameters of the global effective Hamiltonian using an exhaustive input dataset collected in the literature in the 12–8231 cm"−"1 region. The fitted set of 81 parameters allowed reproducing near 5800 measured line positions with an RMS deviation of 0.0016 cm"−"1. The dimensionless weighted standard deviation of the fit is 1.22. As an illustration of the improvement of the predictive capabilities of the obtained effective Hamiltonian, two new "1"4N_2"1"8O bands could be assigned in the CRDS spectrum in the 7915–8334 cm"−"1 spectral range. A line list at 296 K has been generated in the 0–10,700 cm"−"1 range for "1"4N_2"1"8O in natural abundance with a 10"−"3"0 cm/molecule intensity cutoff. - Highlights: • Line parameters of two new "1"4N_2"1"8O bands centered at 7966 cm"−"1 and at 8214 cm"−"1. • Refined sets of the "1"4N_2"1"6O effective dipole moment parameters for ΔP=13,14 series. • Global modeling of "1"4N_2"1"8O line positions and intensities in the 12–8231 cm"−"1 range. • 5800 observed of "1"4N_2"1"8O line positions reproduced with RMS=0.0016 cm"−"1. • List of "1"4N_2"1"8O line parameters in the 0– 10,700 cm"−"1 spectral range.

  7. Fiscal 1998 development report on the high-accuracy quantitative analysis technique of catalyst surfaces by electron spectroscopy; 1998 nendo denshi bunkoho ni yoru shokubai hyomen koseido teiryo bunseki gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project aims at development of the high-accuracy quantitative analysis technique by electron spectroscopy for surface analysis of catalysts and semiconductors. Since conventional analysis technique using an energy-fixed X-ray excitation source is inadequate to obtain satisfactory surface sensitivity and quantitative accuracy for catalysts, for development of the titled technique, this project makes experiment using energy-variable synchrotron radiation to modify the parameter on motion of low-speed electrons in solids which is obtained by Monte Carlo calculation. For establishment of the high-accuracy quantitative analysis technique of surface compositions of materials such as catalyst of which performance is dominated by utmost surface, the project studies the attenuation length of electrons in solids by electron spectroscopy using soft X-rays from synchrotron radiation. In this fiscal year, the project established the equipment and technique for high-accuracy quantitative analysis of the thickness and electron attenuation length of silicon oxide films on silicon wafers by electron spectroscopy. (NEDO)

  8. Assessment of marine and urban-industrial environments influence on built heritage sandstone using X-ray fluorescence spectroscopy and complementary techniques

    Science.gov (United States)

    Morillas, Héctor; García-Galan, Javier; Maguregui, Maite; Marcaida, Iker; García-Florentino, Cristina; Carrero, Jose Antonio; Madariaga, Juan Manuel

    2016-09-01

    The sandstone used in the construction of the tower of La Galea Fortress (Getxo, north of Spain) shows a very bad conservation state and a high percentage of sandstone has been lost. The fortress is located just on a cliff and close to the sea, and it experiments the direct influence of marine aerosol and also the impact of acid gases (SOx and NOx) coming from the surrounding industry and maritime traffic. This environment seems to be very harmful for the preservation of the sandstone used in it, promoting different pathologies (disintegration, alveolization, cracking or erosion blistering, salts crystallization on the pores, efflorescences etc.). In this work, a multianalytical methodology based on a preliminary in-situ screening of the affected sandstone using a handheld energy dispersive X-ray fluorescence spectrometer (HH-ED-XRF) and a subsequent characterization of extracted sample in the laboratory using elemental (μ-ED-XRF, Scanning Electron Microscope coupled to an X-Max Energy-Dispersive (SEM-EDS) and Inductively coupled plasma mass spectrometry (ICP-MS)) and molecular techniques (micro-Raman spectroscopy (μ-RS) and X-ray Diffraction (XRD)) was applied in order to characterize the original composition of this kind of stone and related deterioration products. With the whole methodology, it was possible to assess that the sandstone contain a notable percentage of calcite. The sulfation and nitration of this carbonate detected in the stone led to the dissolution process of the sandstone, promoting the observed material loss. Additionally, the presence of salts related with the influence of marine aerosol confirms that this kind of environment have influence on the conservation state of the sandstone building.

  9. The Number Density Evolution of Extreme Emission Line Galaxies in 3D-HST: Results from a Novel Automated Line Search Technique for Slitless Spectroscopy

    Science.gov (United States)

    Maseda, Michael V.; van der Wel, Arjen; Rix, Hans-Walter; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; Lundgren, Britt F.; Skelton, Rosalind E.; Whitaker, Katherine E.

    2018-02-01

    The multiplexing capability of slitless spectroscopy is a powerful asset in creating large spectroscopic data sets, but issues such as spectral confusion make the interpretation of the data challenging. Here we present a new method to search for emission lines in the slitless spectroscopic data from the 3D-HST survey utilizing the Wide-Field Camera 3 on board the Hubble Space Telescope. Using a novel statistical technique, we can detect compact (extended) emission lines at 90% completeness down to fluxes of 1.5(3.0)× {10}-17 {erg} {{{s}}}-1 {{cm}}-2, close to the noise level of the grism exposures, for objects detected in the deep ancillary photometric data. Unlike previous methods, the Bayesian nature allows for probabilistic line identifications, namely redshift estimates, based on secondary emission line detections and/or photometric redshift priors. As a first application, we measure the comoving number density of Extreme Emission Line Galaxies (restframe [O III] λ5007 equivalent widths in excess of 500 Å). We find that these galaxies are nearly 10× more common above z ∼ 1.5 than at z ≲ 0.5. With upcoming large grism surveys such as Euclid and WFIRST, as well as grisms featured prominently on the NIRISS and NIRCam instruments on the James Webb Space Telescope, methods like the one presented here will be crucial for constructing emission line redshift catalogs in an automated and well-understood manner. This work is based on observations taken by the 3D-HST Treasury Program and the CANDELS Multi-Cycle Treasury Program with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  10. Toward rapid analysis, forecast and discovery of bioactive compounds from herbs by jointly using thin layer chromatography and ratiometric surface-enhanced Raman spectroscopy technique.

    Science.gov (United States)

    Gu, Xiaoling; Jin, Yang; Dong, Fang; Cai, Yueqing; You, Zhengyi; You, Junhui; Zhang, Liying; Du, Shuhu

    2018-05-10

    Conventional isolation and identification of active compounds from herbs have been extensively reported by using various chromatographic and spectroscopic techniques. However, how to quickly discover new bioactive ingredients from natural sources still remains a challenging task due to the interference of their similar structures or matrices. Here, we present a grand approach for rapid analysis, forecast and discovery of bioactive compounds from herbs based on a hyphenated strategy of thin layer chromatography and ratiometric surface-enhanced Raman spectroscopy. The performance of the hyphenated strategy is first evaluated by analyzing four protoberberine alkaloids, berberine (BER), coptisine (COP), palmatine (PAT) and jatrorrhizine (JAT), from a typical herb Coptidis Rhizoma as an example. It has been demonstrated that this coupling method can identify the four compounds by characteristic peaks at 728, 708, 736 and 732 cm -1 , and especially discriminate BER and COP (with similar migration distances) by ratiometric Raman intensity (I 708 /I 728 ). The corresponding limits of detection are 0.1, 0.05, 0.1 and 0.5 μM, respectively, which are about 1-2 orders of magnitude lower than those of direct observation method under 254 nm UV lamp. Based on these findings, the proposed method further guides forecast and discovery of unknown compounds from traditional Chinese herb Typhonii Rhizoma. Results infer that two trace alkaloids (BER and COP) from the n-butanol extract of Typhonii Rhizoma are found for the first time. Moreover, in vitro experiments manifest that BER can effectively decrease the viability of human glioma U87 cells by inducing cell cycle arrest in a concentration-dependent manner. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Gamma Spectroscopy

    NARCIS (Netherlands)

    Niemantsverdriet, J.W.; Butz, Tilman; Ertl, G.; Knözinger, H.; Schüth, F.

    2008-01-01

    No abstract. The sections in this article are 1 Introduction 2 Mössbauer Spectroscopy 3 Time-Differential Perturbed Angular Correlations (TDPAC) 4 Conclusions and Outlook Keywords: Mössbauer spectroscopy; gamma spectroscopy; perturbed angular correlation; TDPAC

  12. Selected techniques in radioecology: Model development and comparison for internal dosimetry of rainbow trout (Oncorhynchus mykiss) and feasibiltiy assessment of reflectance spectroscopy use as a tool in phytoremediation

    Science.gov (United States)

    Martinez, Nicole

    Factors (DCFs) for whole body as well as selected organs of O. mykiss were computed using Monte Carlo modeling, and combined with the empirical models for predicting activity concentration, to estimate dose rates and ultimately determine cumulative radiation dose (microGy) to selected organs after several half-lives of either 131I or 99Mo. The different computational models provided similar results, especially for organs that were both the source and target of radiation (less than 30% difference between estimated doses). Part 2 considers the use of reflectance spectroscopy as a remediation tool through its potential to determine plant stress from metal contaminants. The studies in Part 2 further investigate the potential use of reflectance spectroscopy as a method for assessing metal stress in plants. In the first study, Arabidopsis thaliana plants were treated twice weekly in a laboratory setting with varying levels (0 mM, 0.5 mM, or 5 mM) of cesium chloride (CsCl) solution, and reflectance spectra were collected every week for three weeks using an ASD FieldSpec Pro spectroradiometer with both a contact probe and a field of view probe at 36.8 and 66.7 cm above the plant. As metal stress is known to mimic drought stress, plants were harvested each week after spectra collection for determination of relative water content and chlorophyll content. A visual assessment of the plants was also conducted using point observations on a uniform grid of 81 points. Two-way ANOVAs were performed on selected vegetation indices (VI) to determine the significance of the effects of treatment level and length of treatment. Linear regression was used to relate the most appropriate vegetation indices to the aforementioned endpoints and to compare results provided by the three different spectra collection techniques. One-way ANOVAs were performed on selected VI at each time point to determine which, if any, indices offered a significant prediction of the overall extent of Cs toxicity. Of the

  13. Astrophysical techniques

    CERN Document Server

    Kitchin, CR

    2013-01-01

    DetectorsOptical DetectionRadio and Microwave DetectionX-Ray and Gamma-Ray DetectionCosmic Ray DetectorsNeutrino DetectorsGravitational Radiation Dark Matter and Dark Energy Detection ImagingThe Inverse ProblemPhotographyElectronic ImagingScanningInterferometrySpeckle InterferometryOccultationsRadarElectronic ImagesPhotometryPhotometryPhotometersSpectroscopySpectroscopy SpectroscopesOther TechniquesAstrometryPolarimetrySolar StudiesMagnetometryComputers and The Internet.

  14. Antihydrogen Experiment Gravity Interferometry Spectroscopy

    CERN Multimedia

    Trezzi, D; Dassa, L; Rienacker, B; Khalidova, O; Ferrari, G; Krasnicky, D; Perini, D; Cerchiari, G; Belov, A; Boscolo, I; Sacerdoti, M G; Ferragut, R O; Nedelec, P; Hinterberger, A; Al-qaradawi, I; Malbrunot, C L S; Brusa, R S; Prelz, F; Manuzio, G; Riccardi, C; Fontana, A; Genova, P; Haider, S; Haug, F; Turbabin, A; Castelli, F; Testera, G; Lagomarsino, V E; Doser, M; Penasa, L; Gninenko, S; Cataneo, F; Zenoni, A; Cabaret, L; Comparat, D P; Zmeskal, J; Scampoli, P; Nesteruk, K P; Dudarev, A; Kellerbauer, A G; Mariazzi, S; Carraro, C; Zavatarelli, S M

    The AEGIS experiment (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) has the aim of carrying out the first measurement of the gravitational interaction of antimatter to a precision of 1%, by applying techniques from atomic physics, laser spectroscopy and interferometry to a beam of antihydrogen atoms. A further goal of the experiment is to carry out spectroscopy of the antihydrogen atoms in flight.

  15. Study of optoelectronic properties of thin film solar cell materials Cu2ZnSn(S,Se)4 using multiple correlative spatially-resolved spectroscopy techniques

    Science.gov (United States)

    Chen, Qiong

    Containing only earth abundant and environmental friendly elements, quaternary compounds Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe 4 (CZTSe) are considered as promising absorber materials for thin film solar cells. The best record efficiency for this type of thin film solar cell is now 12.6%. As a promising photovoltaic (PV) material, the electrical and optical properties of CZTS(Se) have not been well studied. In this work, an effort has been made to understand the optoelectronic and structural properties, in particular the spatial variations, of CZTS(Se) materials and devices by correlating multiple spatially resolved characterization techniques with sub-micron resolution. Micro-Raman (micro-Raman) spectroscopy was used to analyze the chemistry compositions in CZTS(Se) film; Micro-Photoluminescence (micro-PL) was used to determine the band gap and possible defects. Micro-Laser-Beam-Induced-Current (micro-LBIC) was used to examine the photo-response of CZTS(Se) solar cell in different illumination conditions. Micro-reflectance was used to estimate the reflectance loss. And Micro-I-V measurement was used to compare important electrical parameters from CZTS(Se) solar cells with different device structure or absorber compositions. Scanning electron microscopy and atomic force microscopy were used to characterize the surface morphology. Successfully integrating and correlating these techniques was first demonstrated during the course of this work in our laboratory, and this level of integration and correlation has been rare in the field of PV research. This effort is significant not only for this particular project and also for a wide range of research topics. Applying this approach, in conjunction with high-temperature and high-excitation-power optical spectroscopy, we have been able to reveal the microscopic scale variations among samples and devices that appeared to be very similar from macroscopic material and device characterizations, and thus serve as a very powerful tool

  16. Processes of the excitation energy migration and transfer in Ce3+-doped alkali gadolinium phosphates studied with time-resolved photoluminescence spectroscopy technique

    International Nuclear Information System (INIS)

    Stryganyuk, G.; Shalapska, T.; Voloshinovskii, A.; Gektin, A.; Krasnikov, A.; Zazubovich, S.

    2011-01-01

    Spectral-kinetic characteristics of Gd 3+ and Ce 3+ luminescence from a series of Ce 3+ -doped alkali gadolinium phosphates of MGdP 4 O 12 type (M=Li, Na, Cs) have been studied within 4.2-300 K temperature range using time-resolved luminescence spectroscopy techniques. The processes of energy migration along the Gd 3+ sub-lattice and energy transfer between the Gd 3+ and Ce 3+ ions have been investigated. Peculiarities of these processes have been compared for MGdP 4 O 12 phosphate hosts with different alkali metal ions. A contribution of different levels from the 6 P j multiplet of the lowest Gd 3+ excited state into the energy migration and transfer processes has been clarified. The phonon-assisted occupation of high-energy 6 P 5/2,3/2 levels by Gd 3+ in the excited 6 P j state has been revealed as a shift of Gd 3+6 P j → 8 S 7/2 emission into the short-wavelength spectral range upon the temperature increase. The relaxation of excited Gd 3+ via phonon-assisted population of Gd 3+6 P 5/2 level (next higher one to the lowest excited 6 P 7/2 ) is supposed to be responsible for the rise in probability of energy migration within the Gd 3+ sub-lattice initiating the Gd 3+ →Ce 3+ energy transfer at T 3+ →Ce 3+ energy transfer at T>150 K is explained by the increase in probability of Gd 3+ relaxation into the highest 6 P 3/2 level of the 6 P j multiplet. An efficient reversed Ce 3+ →Gd 3+ energy transfer has been revealed for the studied phosphates at 4.2 K. - Highlights: →We investigate the Gd 3+ -Ce 3+ energy transfer in alkali gadolinium phosphates. → Thermal population of Gd 3+6 P 5/2 level improves migration along the Gd sub-lattice. → Increasing overlap of Gd 3+ and Ce 3+ states enhances the Gd 3+ -Ce 3+ energy transfer. → In LiGdP 4 O 12 :Ce and NaGdP 4 O 12 :Ce an efficient Ce 3+ -Gd 3+ transfer occurs at 4-300 K. → An effective reverse Gd 3+ -Ce 3+ energy transfer becomes possible at T>150 K.

  17. New on-line method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS)

    Science.gov (United States)

    Affolter, S.; Fleitmann, D.; Leuenberger, M.

    2014-01-01

    A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us to simultaneously measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the on-line water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δD reliability. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water resulting in an artificial water background with well-known δD and δ18O values. The speleothem sample is placed into a copper tube, attached to the line and after system stabilisation is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain δD and δ18O isotopic composition of measured water aliquots. Precision is better than 1.5‰ for δD and 0.4‰ for δ18O for water measurement for an extended range (-210 to 0‰ for δD and -27 to 0‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to Isotope Ratio Mass Spectrometry (IRMS) technique.

  18. New online method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS)

    Science.gov (United States)

    Affolter, S.; Fleitmann, D.; Leuenberger, M.

    2014-07-01

    A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us simultaneously to measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the online water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δ D robustness. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water, resulting in an artificial water background with well-known δ D and δ18O values. The speleothem sample is placed in a copper tube, attached to the line, and after system stabilisation it is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements, a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain &delta D; and δ18O isotopic compositions of measured water aliquots. Precision is better than 1.5 ‰ for δ D and 0.4 ‰ for δ18O for water measurements for an extended range (-210 to 0 ‰ for δ D and -27 to 0 ‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to the isotope ratio mass

  19. The Relation between Non-adipose Muscle Fat and Hepatic Steatosis Studied with Localized 1H Magnetic Resonance Spectroscopy (1H MRS) and LC-MS Techniques

    NARCIS (Netherlands)

    Ginneken, van V.J.T.; Booms, Ronald; Verheij, Elwin; Vries, Evert De; Greef, Der Jan Van

    2016-01-01

    Aim/objective: In this study we investigated ectopic fat storage in the muscle and the liver using 1H Magnetic Resonance Spectroscopy (1H-MRS). The inability to store fat in adipose tissue leads to ectopic Triacylglycerol (TG) accumulation in muscle followed by the liver: the so called “overflow

  20. Fourier transform infrared photoacoustic spectroscopy study of physicochemical interaction between human dentin and etch-&-rinse adhesives in a simulated moist bond technique

    DEFF Research Database (Denmark)

    Ubaldini, Adriana L M; Baesso, Mauro L; Sehn, Elizandra

    2012-01-01

    systems: (a) 2-hydroxyethylmethacrylate (HEMA) and 4-methacryloxyethyl trimellitate anhydrate (4-META), and (b) HEMA. The Fourier transform infrared photoacoustic spectroscopy was performed before and after dentin treatment with 37% phosphoric acid, with adhesive systems and also for the adhesive systems...

  1. In vivo spectroscopy

    International Nuclear Information System (INIS)

    Williams, S.R.; Cady, E.B.

    1987-01-01

    The technique which the authors describe in this chapter provides alternative information to imaging, although based upon the same physical principles. The experiments are carried out differently and have instrumental requirements which are not met by a standard imaging system. Furthermore, although the clinical efficacy of NMR imaging has been proven, clinical spectroscopy is very much in its infancy. With the exception of some specific /sup 31/P applications not is not even clear how spectroscopic investigations will be performed. This is particularly true with regard to localization techniques for investigating other than superficial organs and and in the use of /sup 1/H spectroscopy. They attempt to show what information spectroscopy can provide in principle and point out some of the problems associated with such investigations. NMR has come to the notice of the clinical community mainly through its use as an imaging technique, and many may consider spectroscopy as a secondary discipline. NMR spectroscopy, however, has a longer history than imaging and has been a standard technique in chemistry laboratories for more than two decades. It is a technique without peer for structural analysis of molecules and no new chemical compound is discovered or synthesized without an NMR spectrum being taken. The influence of molecular structure on resonant frequency has been termed the chemical shift

  2. Positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Sundar, C.S.; Viswanathan, B.

    1996-01-01

    An overview of positron annihilation spectroscopy, the experimental techniques and its application to studies on defects and electronic structure of materials is presented. The scope of this paper is to present the requisite introductory material, that will enable a better appreciation of the subsequent specialized articles on the applications of positron annihilation spectroscopy to investigate various problems in materials science. (author). 31 refs., 3 figs

  3. Spectroscopy stepping stones

    International Nuclear Information System (INIS)

    Hammer, M.R.; Sturman, B.T.

    2003-01-01

    Determining the elemental composition of samples has long been a basic task of analytical science. Some very powerful and convenient approaches are based on the wavelength-specific absorption or emission of light by gas-phase atoms. Techniques briefly described as examples of analytical atomic spectrometry include atomic emission and absorption spectroscopy, inductively coupled plasma emission and mass spectroscopy and laser induced breakdown spectrometry

  4. Molecular spectroscopy

    International Nuclear Information System (INIS)

    Kokh, Eh.; Zonntag, B.

    1981-01-01

    The latest investigation results on molecular spectroscopy with application of synchrotron radiation in the region of vacuum ultraviolet are generalized. Some results on investigation of excited, superexcited and ionized molecule states with the use of adsorption spectroscopy, photoelectron spectroscopy, by fluorescent and mass-spectrometric methods are considered [ru

  5. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  6. Vibrational spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  7. Study of the oxidation of uranium by external and diffuse reflectance FTIR spectroscopy using remote-sensing and evacuable cell techniques

    Science.gov (United States)

    Powell, G. L.; Dobbins, A.; Cristy, S. S.; Cliff, T. L.; Meyer, H. M., III; Lucania, J.; Milosevic, Milan

    1994-01-01

    This report describes the application of reflectance FTIR spectroscopy to the measurement of the oxidation rate of uranium by environmental gases near room temperature. It also describes very efficient evacuable cells designed for 75 degree(s) external reflectance with polarized light and for diffuse reflectance using mid-infrared FTIR spectroscopy. These cells, along with functionally similar remote sensing accessories, have been applied to the study of the oxidation of uranium metal in air, oxygen, and water vapor by precisely measuring the 575 cm-1 band of UO2 and other properties of the corrosion film such as absorbed water and reflective losses caused by film degradation related to pitting or nucleation phenomena.

  8. Infrared and Raman spectroscopy: principles and spectral interpretation

    National Research Council Canada - National Science Library

    Larkin, Peter

    2011-01-01

    "Infrared and Raman Spectroscopy: Principles and Spectral Interpretation explains the background, core principles and tests the readers understanding of the important techniques of Infrared and Raman Spectroscopy...

  9. Laser-based absorption spectroscopy as a technique for rapid in-line analysis of respired gas concentrations of O2 and CO2.

    Science.gov (United States)

    Cummings, Beth; Hamilton, Michelle L; Ciaffoni, Luca; Pragnell, Timothy R; Peverall, Rob; Ritchie, Grant A D; Hancock, Gus; Robbins, Peter A

    2011-07-01

    The use of sidestream analyzers for respired gas analysis is almost universal. However, they are not ideal for measurements of respiratory gas exchange because the analyses are both temporally dissociated from measurements of respiratory flow and also not generally conducted under the same physical conditions. This study explores the possibility of constructing an all optical, fast response, in-line breath analyzer for oxygen and carbon dioxide. Using direct absorption spectroscopy with a diode laser operating at a wavelength near 2 μm, measurements of expired carbon dioxide concentrations were obtained with an absolute limit of detection of 0.04% at a time resolution of 10 ms. Simultaneously, cavity enhanced absorption spectroscopy at a wavelength near 760 nm was employed to obtain measurements of expired oxygen concentrations with an absolute limit of detection of 0.26% at a time resolution of 10 ms. We conclude that laser-based absorption spectroscopy is a promising technology for in-line analysis of respired carbon dioxide and oxygen concentrations.

  10. Nuclear gamma resonance absorption (Moessbauer) spectroscopy as an archaeometric technique to assess chemical states of iron in a Tupiguarani ceramic artifact from Corinto, Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Floresta, D.L.; Ardisson, J.D.; Fagundes, M.; Fabris, J.D.

    2013-01-01

    Archaeological ceramics of Tupiguarani Tradition are found in many parts throughout the Brazilian territory and have many similarities. Fragments of Tupiguarani pottery found in the archaeological site known as Beltrao, in the municipality of Corinto, state of Minas Gerais, were identified and collected by researchers of the LAEP/UFVJM, in Diamantina, also in Minas Gerais. A selected fragment of about 15 mm-thick, with a color gradation across the ceramic wall ranging from red, on one side, grayish in the middle and orange on the opposite side, was transversely cut and a series of subsamples of powdered materials were collected from different depths across the wall, in layer segments of ∼3 mm, from the orange side. These powdered subsamples were analyzed with X-ray fluorescence and diffraction spectroscopy and 57 Fe Moessbauer spectroscopy at room temperature (298 K) and at 80 K. According to the XRF results, the elementary composition does not clearly vary with the depth in the sample. The powder XRD analysis revealed the occurrence mainly of quartz and muscovite. Results of 57 Fe Moessbauer spectroscopy reveal that hematite is the magnetically ordered phase. An Fe 2+ component appears for the grayish subsample. According to these results, the red subsample seems to be the external part of the pottery, representing the side that had direct contact with fire used to burn the precursor clay in air for this primitive ceramics preparation. The grayish middle layer is probably due to burning clay mixed with some ashes containing residual carbon, under milder temperature than on the external . (author)

  11. Quantification of atmospheric formaldehyde by infrared absorption spectroscopy

    Science.gov (United States)

    Hoffnagle, John; Fleck, Derek; Rella, Chris; Kim-Hak, David

    2017-04-01

    Formaldehyde is a toxic, carcinogenic compound that can contaminate ambient air as a result of combustion or outgassing of commercial products such as adhesives used to fabricate plywood and to affix indoor carpeting. Like many small molecules, formaldehyde has an infrared absorption spectrum exhibiting bands of ro-vibrational transitions that are well resolved at low pressure and therefore well suited for optical analysis of formaldehyde concentration. We describe progress in applying cavity ring-down spectroscopy of the 2v5 band (the first overtone of the asymmetric C-H stretch, origin at 1770 nm) to the quantitative analysis of formaldehyde concentration in ambient air. Preliminary results suggest that a sensitivity of 1-2 ppb in a measurement interval of a few seconds, and 0.1-0.2 ppb in a few minutes, should be achievable with a compact, robust, and field-deployable instrument. Finally, we note that recent satellites monitoring snapshots of formaldehyde columns give insights into global formaldehyde production, migration and lifetime. The ability to monitor formaldehyde with a small and portable analyzer has the potential to aid in validation of these snapshots and to provide complementary data to show vertical dispersions with high spatial accuracy.

  12. Utilization of the statistics techniques for the analysis of the XPS (X-ray photoelectron spectroscopy) and Auger electronic spectra's deconvolutions

    International Nuclear Information System (INIS)

    Puentes, M.B.

    1987-01-01

    For the analysis of the XPS (X-ray photoelectron spectroscopy) and Auger spectra, it is important to performe the peaks' separation and estimate its intensity. For this purpose, a methodology was implemented, including: a spectrum's filter; b) substraction of the base line (or inelastic background); c) deconvolution (separation of the distribution that integrates the spectrum) and d) error of calculation of the mean estimation, comprising adjustment quality tests. A software (FORTRAN IV plus) that permits to use the methodology proposed from the experimental spectra was implemented. The quality of the methodology was tested with simulated spectra. (Author) [es

  13. Double resonance capacitance spectroscopy (DORCAS): A new experimental technique for assignment of X-ray absorption peaks to surface sites of semiconductor

    CERN Document Server

    Ishii, M

    2003-01-01

    As a new microspectroscopy for semiconductor surface analysis using an X-ray beam, double resonance capacitance spectroscopy (DORCAS) is proposed. For a microscopic X-ray absorption measurement, a local capacitance change owing to X-ray induced emission of localized electrons is detected by a microprobe. The applied bias voltage V sub b dependence of the capacitance also provides information on the surface density of state. The resonance of the Fermi energy with a surface level by V sub b control makes possible the selection of the observable surface site in the X-ray absorption measurements, i.e. site-specific spectroscopy. The double resonance of the surface site selection (V sub b resonance) and the resonant X-ray absorption of the selected site (photon energy h nu resonance) enhances the capacitance signal. The DORCAS measurement of the GaAs surface shows correlation peaks at h nu=10.402 keV and V sub b =-0.4 V and h nu=10.429 keV and V sub b =+0.1 V, indicating that these resonant X-ray absorption peaks ...

  14. Development of a method for the determination of caffeine anhydrate in various designed intact tablets [correction of tables] by near-infrared spectroscopy: a comparison between reflectance and transmittance technique.

    Science.gov (United States)

    Ito, Masatomo; Suzuki, Tatsuya; Yada, Shuichi; Kusai, Akira; Nakagami, Hiroaki; Yonemochi, Etsuo; Terada, Katsuhide

    2008-08-05

    Using near-infrared (NIR) spectroscopy, an assay method which is not affected by such elements of tablet design as thickness, shape, embossing and scored line was developed. Tablets containing caffeine anhydrate were prepared by direct compression at various compression force levels using different shaped punches. NIR spectra were obtained from these intact tablets using the reflectance and transmittance techniques. A reference assay was performed by high-performance liquid chromatography (HPLC). Calibration models were generated by the partial least-squares (PLS) regression. Changes in the tablet thickness, shape, embossing and scored line caused NIR spectral changes in different ways, depending on the technique used. As a result, noticeable errors in drug content prediction occurred using calibration models generated according to the conventional method. On the other hand, when the various tablet design elements which caused the NIR spectral changes were included in the model, the prediction of the drug content in the tablets was scarcely affected by those elements when using either of the techniques. A comparison of these techniques resulted in higher predictability under the tablet design variations using the transmittance technique with preferable linearity and accuracy. This is probably attributed to the transmittance spectra which sensitively reflect the differences in tablet thickness or shape as a result of obtaining information inside the tablets.

  15. Combining vibrational biomolecular spectroscopy with chemometric techniques for the study of response and sensitivity of molecular structures/functional groups mainly related to lipid biopolymer to various processing applications.

    Science.gov (United States)

    Yu, Gloria Qingyu; Yu, Peiqiang

    2015-09-01

    The objectives of this project were to (1) combine vibrational spectroscopy with chemometric multivariate techniques to determine the effect of processing applications on molecular structural changes of lipid biopolymer that mainly related to functional groups in green- and yellow-type Crop Development Centre (CDC) pea varieties [CDC strike (green-type) vs. CDC meadow (yellow-type)] that occurred during various processing applications; (2) relatively quantify the effect of processing applications on the antisymmetric CH3 ("CH3as") and CH2 ("CH2as") (ca. 2960 and 2923 cm(-1), respectively), symmetric CH3 ("CH3s") and CH2 ("CH2s") (ca. 2873 and 2954 cm(-1), respectively) functional groups and carbonyl C=O ester (ca. 1745 cm(-1)) spectral intensities as well as their ratios of antisymmetric CH3 to antisymmetric CH2 (ratio of CH3as to CH2as), ratios of symmetric CH3 to symmetric CH2 (ratio of CH3s to CH2s), and ratios of carbonyl C=O ester peak area to total CH peak area (ratio of C=O ester to CH); and (3) illustrate non-invasive techniques to detect the sensitivity of individual molecular functional group to the various processing applications in the recently developed different types of pea varieties. The hypothesis of this research was that processing applications modified the molecular structure profiles in the processed products as opposed to original unprocessed pea seeds. The results showed that the different processing methods had different impacts on lipid molecular functional groups. Different lipid functional groups had different sensitivity to various heat processing applications. These changes were detected by advanced molecular spectroscopy with chemometric techniques which may be highly related to lipid utilization and availability. The multivariate molecular spectral analyses, cluster analysis, and principal component analysis of original spectra (without spectral parameterization) are unable to fully distinguish the structural differences in the

  16. On the authenticity of eight Reales 1730 Mexican silver coins by X-ray diffraction and by energy dispersion spectroscopy techniques

    International Nuclear Information System (INIS)

    Rojas-Rodriguez, I.; Herrera, A.; Vazquez-Lopez, C.; Apolo, R.; Gonzalez-Hernandez, J.; Hernandez-Landaverde, M.A.; Rodriguez, M.E.

    2004-01-01

    Ancient silver Mexican coins made during the years 1730-1734, were analyzed non-destructively by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and by optical microscopy. Nine coins of denomination eight Reales were studied. These coins belong to the numismatic private collection in Mexico. Six elements (copper, aluminum, magnesium, silicon, chromium and silver) were determined quantitatively. The coins reveal a uniform Ag concentration. Some of the items are covered with patina. A strong positive correlation between Al and Cu content and also a strong negative correlation between S and Ag were determined. The weight of the coins varied between 26.1344 and 26.9913 g, which is a good indicator of the authenticity of the items. The purpose of this work is to investigate by precise means if some of the coins were falsified or if really all of them are authentic

  17. Feasibility of UV-VIS-Fluorescence spectroscopy combined with pattern recognition techniques to authenticate a new category of plant food supplements.

    Science.gov (United States)

    Boggia, Raffaella; Turrini, Federica; Anselmo, Marco; Zunin, Paola; Donno, Dario; Beccaro, Gabriele L

    2017-07-01

    Bud extracts, named also "gemmoderivatives", are a new category of natural products, obtained macerating meristematic fresh tissues of trees and plants. In the European Community these botanical remedies are classified as plant food supplements. Nowadays these products are still poorly studied, even if they are widely used and commercialized. Several analytical tools for the quality control of these very expensive supplements are urgently needed in order to avoid mislabelling and frauds. In fact, besides the usual quality controls common to the other botanical dietary supplements, these extracts should be checked in order to quickly detect if the cheaper adult parts of the plants are deceptively used in place of the corresponding buds whose harvest-period and production are extremely limited. This study aims to provide a screening analytical method based on UV-VIS-Fluorescence spectroscopy coupled to multivariate analysis for a rapid, inexpensive and non-destructive quality control of these products.

  18. Terahertz cyclotron resonance spectroscopy of an AlGaN/GaN heterostructure using a high-field pulsed magnet and an asynchronous optical sampling technique

    International Nuclear Information System (INIS)

    Spencer, B. F.; Smith, W. F.; Hibberd, M. T.; Dawson, P.; Graham, D. M.; Beck, M.; Bartels, A.; Guiney, I.; Humphreys, C. J.

    2016-01-01

    The effective mass, sheet carrier concentration, and mobility of electrons within a two-dimensional electron gas in an AlGaN/GaN heterostructure were determined using a laboratory-based terahertz cyclotron resonance spectrometer. The ability to perform terahertz cyclotron resonance spectroscopy with magnetic fields of up to 31 T was enabled by combining a high-field pulsed magnet with a modified asynchronous optical sampling terahertz detection scheme. This scheme allowed around 100 transmitted terahertz waveforms to be recorded over the 14 ms magnetic field pulse duration. The sheet density and mobility were measured to be 8.0 × 10 12  cm −2 and 9000 cm 2 V −1  s −1 at 77 K. The in-plane electron effective mass at the band edge was determined to be 0.228 ± 0.002m 0 .

  19. Selective Dissolution Techniques, X-Ray Diffraction and Moessbauer Spectroscopy Studies of Forms of Fe in Particle-Size Fractions of an Entic Haplustoll

    International Nuclear Information System (INIS)

    Acebal, S. G.; Aguirre, M. E.; Santamaria, R. M.; Mijovilovich, A.; Petrick, S.; Saragovi, C.

    2003-01-01

    Particle-size fractions (o = mean diameter, 5-2 μm, 2-1 μm, and 57 Fe Moessbauer spectroscopy (MS). Quartz, feldspar, smectite, illite and interstratified illite-smectite are the dominant minerals whereas Fe oxides and oxy-hydroxides are present in low concentration but increase as particle size decreases. Poorly crystallized oxides (highly Al-substituted hematite and goethite) amounts are lower, comparable to or slightly higher than the hematite amounts in the o 5-2 μm, 2-1 μm and 3+ and Fe 2+ are associated to the clay minerals and/or hydroxyl-interlayered 2:1 type material present; part of this Fe 3+ is located in the hydroxy-interlayers its amount being higher in the smallest fraction. Any possible changes after the PY and NaOH treatments were not detected by MS.

  20. Fourier transform infrared-attenuated total reflectance (FTIR-ATR spectroscopy and chemometric techniques for the determination of adulteration in petrodiesel/biodiesel blends

    Directory of Open Access Journals (Sweden)

    Armando Guerrero Peña

    2014-06-01

    Full Text Available We propose an analytical method based on fourier transform infrared-attenuated total reflectance (FTIR-ATR spectroscopy to detect the adulteration of petrodiesel and petrodiesel/palm biodiesel blends with African crude palm oil. The infrared spectral fingerprints from the sample analysis were used to perform principal components analysis (PCA and to construct a prediction model using partial least squares (PLS regression. The PCA results separated the samples into three groups, allowing identification of those subjected to adulteration with palm oil. The obtained model shows a good predictive capacity for determining the concentration of palm oil in petrodiesel/biodiesel blends. Advantages of the proposed method include cost-effectiveness and speed; it is also environmentally friendly.

  1. Study of neutron-rich nuclei structure around the N=28 shell closure using the in-beam gamma spectroscopy technique

    International Nuclear Information System (INIS)

    Bastin, B.

    2007-10-01

    For a few years now, a loss of magicity in neutron-rich nuclei near the neutron drip-line at N=28 has been suggested and observed. Deformation in these nuclei has been observed. The deformation was explained in S isotopes as being due to a moderate reduction of the N=28 shell closure together with a proton induced collectivity originating from the near degeneracy of the proton d3/2 and s1/2 orbitals. As a consequence, the observed deformation seems to result from a subtle interplay between neutron and proton excitations. Since the proton configuration in the Si isotopes is expected to be more stable due to the Z=14 sub-shell gap, 42 Si was considered as a key nucleus in order to distinguish the different effects responsible for the structural changes observed at N=28. Even if it is at the limits of our technical possibilities, an in-beam gamma-spectroscopy experiment using two-step fragmentation and one or several nucleons knockout reaction mechanisms was performed at GANIL. The measurement of the energy of the first excited state in 42 Si, combined with the observation of 38,40 Si and the spectroscopy of 41,43 P, has given evidence for the loss of magicity at N=28 far from stability. Modifications of the effective interaction used in modern shell model calculations have been completed following this investigation, increasing its predictive character. This study confirms the role of the tensor force and the density dependence of the spin-orbit interaction in the collapse of the N=28 shell closure. (author)

  2. Total Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Rubio, B.; Gelletly, W.

    2007-01-01

    The problem of determining the distribution of beta decay strength (B(GT)) as a function of excitation energy in the daughter nucleus is discussed. Total Absorption Spectroscopy is shown to provide a way of determining the B(GT) precisely. A brief history of such measurements and a discussion of the advantages and disadvantages of this technique, is followed by examples of two recent studies using the technique. (authors)

  3. Outlook for baryon spectroscopy

    International Nuclear Information System (INIS)

    Tripp, R.D.

    1976-09-01

    The review of baryon spectroscopy includes a number of new generation experiments with greatly improved statistics which have emerged and are enhancing experimental knowledge of baryon resonances. The future research directions are pointed out, and some problems and deficiencies which can be resolved with contemporary techniques are mentioned

  4. Laser magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Ferrari, C.A.

    1985-01-01

    The technique of laser resonance magnetic resonance allows one to study the high-resolution spectroscopy of transient paramagnetic species, viz, atoms, radicals, and molecular ions. This article is a brief exposition of the method, describing the principles, instrumentation and applicability of the IR and FIR-LMR and shows results of HF + . (Author) [pt

  5. Devising an endoluminal bimodal probe which combines autofluorescence and reflectance spectroscopy with high resolution MRI for early stage colorectal cancer diagnosis: technique, feasibility and preliminary in-vivo (rabbit) results

    Science.gov (United States)

    Ramgolam, A.; Sablong, R.; Bou-Saïd, B.; Bouvard, S.; Saint-Jalmes, H.; Beuf, O.

    2011-07-01

    Conventional white light endoscopy (WLE) is the most widespread technique used today for colorectal cancer diagnosis and is considered as the gold standard when coupled to biopsy and histology. However for early stage colorectal cancer diagnosis, which is very often characterised by flat adenomas, the use of WLE is quite difficult due to subtle or quasiinvisible morphological changes of the colonic lining. Figures worldwide point out that diagnosing colorectal cancer in its early stages would significantly reduce the death toll all while increasing the 5-year survival rate. Several techniques are currently being investigated in the scope of providing new tools that would allow such a diagnostic or assist actual techniques in so doing. We hereby present a novel technique where High spatial Resolution MRI (HR-MRI) is coupled to optical spectroscopy (autofluorescence and reflectance) in a bimodal endoluminal probe to extract morphological data and biochemical information respectively. The design and conception of the endoluminal probe along with the preliminary results obtained with an organic phantom and in-vivo (rabbit) are presented and discussed.

  6. Attenuated Total Reflectance Fourier transform infrared spectroscopy for determination of long chain free fatty acid concentration in oily wastewater using the double wavenumber extrapolation technique

    Science.gov (United States)

    Long Chain Free Fatty Acids (LCFFAs) from the hydrolysis of fat, oil and grease (FOG) are major components in the formation of insoluble saponified solids known as FOG deposits that accumulate in sewer pipes and lead to sanitary sewer overflows (SSOs). A Double Wavenumber Extrapolative Technique (DW...

  7. Frequency-Shifted Interferometry — A Versatile Fiber-Optic Sensing Technique

    Directory of Open Access Journals (Sweden)

    Fei Ye

    2014-06-01

    Full Text Available Fiber-optic sensing is a field that is developing at a fast pace. Novel fiber-optic sensor designs and sensing principles constantly open doors for new opportunities. In this paper, we review a fiber-optic sensing technique developed in our research group called frequency-shifted interferometry (FSI. This technique uses a continuous-wave light source, an optical frequency shifter, and a slow detector. We discuss the operation principles of several FSI implementations and show their applications in fiber length and dispersion measurement, locating weak reflections along a fiber link, fiber-optic sensor multiplexing, and high-sensitivity cavity ring-down measurement. Detailed analysis of FSI system parameters is also presented.

  8. High-resolution reflection spectroscopy

    International Nuclear Information System (INIS)

    Ducloy, Martial

    1997-01-01

    In this article some recent developments in selective reflection spectroscopy is reviewed and the various ways to extend Doppler free techniques to this spectroscopic field is discussed. Its main feature is to probe atomic gas close to the cell boundaries

  9. Effects of High Hydrostatic Pressure on Escherichia coli Ultrastructure, Membrane Integrity and Molecular Composition as Assessed by FTIR Spectroscopy and Microscopic Imaging Techniques

    Directory of Open Access Journals (Sweden)

    María Prieto-Calvo

    2014-12-01

    Full Text Available High hydrostatic pressure (HHP is a novel food processing technology that is considered as an attractive alternative to conventional heat treatments for the preservation of foods, due to its lethal effects on pathogenic and spoilage microorganisms, while causing minor effects on food quality and sensorial attributes. This study is aimed at investigating how HHP treatments at varying intensities in the range 50–900 MPa affect the viability, membrane integrity, ultrastructure and molecular composition of Escherichia coli. Results of membrane integrity tests (measurement of cellular leakage and monitoring of propidium iodide uptake through fluorescence microscopy and ultrastructural observations by transmission electron microscopy demonstrated that HHP gave rise to cellular enlargement, membrane damage or detachment, DNA and protein denaturation and loss of intracellular contents. Fourier-transform infrared (FTIR spectroscopy analyses evidenced minor changes in molecular composition in response to high pressures, which were mostly observed on the spectral region w4 (1200–900 cm−1, mainly informative of carbohydrates and polysaccharides of the cell wall. These findings suggest that exposure of E. coli cells to HHP causes alterations in their physical integrity while producing minor modifications in biochemical cellular composition. The current study increases the knowledge on the mechanisms of E. coli inactivation by HHP and provides valuable information for the design of more effective food preservation regimes based on the integration of mild HHP in combination with other food preservation strategies into a multi-target hurdle technology approach.

  10. Effects of high hydrostatic pressure on Escherichia coli ultrastructure, membrane integrity and molecular composition as assessed by FTIR spectroscopy and microscopic imaging techniques.

    Science.gov (United States)

    Prieto-Calvo, María; Prieto, Miguel; López, Mercedes; Alvarez-Ordóñez, Avelino

    2014-12-18

    High hydrostatic pressure (HHP) is a novel food processing technology that is considered as an attractive alternative to conventional heat treatments for the preservation of foods, due to its lethal effects on pathogenic and spoilage microorganisms, while causing minor effects on food quality and sensorial attributes. This study is aimed at investigating how HHP treatments at varying intensities in the range 50-900 MPa affect the viability, membrane integrity, ultrastructure and molecular composition of Escherichia coli. Results of membrane integrity tests (measurement of cellular leakage and monitoring of propidium iodide uptake through fluorescence microscopy) and ultrastructural observations by transmission electron microscopy demonstrated that HHP gave rise to cellular enlargement, membrane damage or detachment, DNA and protein denaturation and loss of intracellular contents. Fourier-transform infrared (FTIR) spectroscopy analyses evidenced minor changes in molecular composition in response to high pressures, which were mostly observed on the spectral region w4 (1200-900 cm-1), mainly informative of carbohydrates and polysaccharides of the cell wall. These findings suggest that exposure of E. coli cells to HHP causes alterations in their physical integrity while producing minor modifications in biochemical cellular composition. The current study increases the knowledge on the mechanisms of E. coli inactivation by HHP and provides valuable information for the design of more effective food preservation regimes based on the integration of mild HHP in combination with other food preservation strategies into a multi-target hurdle technology approach.

  11. Application of multivariate chemometric techniques for simultaneous determination of five parameters of cottonseed oil by single bounce attenuated total reflectance Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Talpur, M Younis; Kara, Huseyin; Sherazi, S T H; Ayyildiz, H Filiz; Topkafa, Mustafa; Arslan, Fatma Nur; Naz, Saba; Durmaz, Fatih; Sirajuddin

    2014-11-01

    Single bounce attenuated total reflectance (SB-ATR) Fourier transform infrared (FTIR) spectroscopy in conjunction with chemometrics was used for accurate determination of free fatty acid (FFA), peroxide value (PV), iodine value (IV), conjugated diene (CD) and conjugated triene (CT) of cottonseed oil (CSO) during potato chips frying. Partial least square (PLS), stepwise multiple linear regression (SMLR), principal component regression (PCR) and simple Beer׳s law (SBL) were applied to develop the calibrations for simultaneous evaluation of five stated parameters of cottonseed oil (CSO) during frying of French frozen potato chips at 170°C. Good regression coefficients (R(2)) were achieved for FFA, PV, IV, CD and CT with value of >0.992 by PLS, SMLR, PCR, and SBL. Root mean square error of prediction (RMSEP) was found to be less than 1.95% for all determinations. Result of the study indicated that SB-ATR FTIR in combination with multivariate chemometrics could be used for accurate and simultaneous determination of different parameters during the frying process without using any toxic organic solvent. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Terahertz cyclotron resonance spectroscopy of an AlGaN/GaN heterostructure using a high-field pulsed magnet and an asynchronous optical sampling technique

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B. F., E-mail: Ben.Spencer@manchester.ac.uk; Smith, W. F.; Hibberd, M. T.; Dawson, P.; Graham, D. M. [School of Physics and Astronomy and the Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom); Beck, M.; Bartels, A. [Laser Quantum GmbH, Max-Stromeyer-Str. 116, 78467 Konstanz (Germany); Guiney, I.; Humphreys, C. J. [Department of Materials Science and Metallurgy, 27 Charles Babbage Road, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2016-05-23

    The effective mass, sheet carrier concentration, and mobility of electrons within a two-dimensional electron gas in an AlGaN/GaN heterostructure were determined using a laboratory-based terahertz cyclotron resonance spectrometer. The ability to perform terahertz cyclotron resonance spectroscopy with magnetic fields of up to 31 T was enabled by combining a high-field pulsed magnet with a modified asynchronous optical sampling terahertz detection scheme. This scheme allowed around 100 transmitted terahertz waveforms to be recorded over the 14 ms magnetic field pulse duration. The sheet density and mobility were measured to be 8.0 × 10{sup 12 }cm{sup −2} and 9000 cm{sup 2} V{sup −1} s{sup −1} at 77 K. The in-plane electron effective mass at the band edge was determined to be 0.228 ± 0.002m{sub 0}.

  13. Molecular basis of structural make-up of feeds in relation to nutrient absorption in ruminants, revealed with advanced molecular spectroscopy: A review on techniques and models

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Md. Mostafizar [Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Yu, Peiqiang [Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

    2017-01-31

    Progress in ruminant feed research is no more feasible only based on wet chemical analysis, which is merely able to provide information on chemical composition of feeds regardless of their digestive features and nutritive value in ruminants. Studying internal structural make-up of functional groups/feed nutrients is often vital for understanding the digestive behaviors and nutritive values of feeds in ruminant because the intrinsic structure of feed nutrients is more related to its overall absorption. In this article, the detail information on the recent developments in molecular spectroscopic techniques to reveal microstructural information of feed nutrients and the use of nutrition models in regards to ruminant feed research was reviewed. The emphasis of this review was on (1) the technological progress in the use of molecular spectroscopic techniques in ruminant feed research; (2) revealing spectral analysis of functional groups of biomolecules/feed nutrients; (3) the use of advanced nutrition models for better prediction of nutrient availability in ruminant systems; and (4) the application of these molecular techniques and combination of nutrient models in cereals, co-products and pulse crop research. The information described in this article will promote better insight in the progress of research on molecular structural make-up of feed nutrients in ruminants.

  14. Improved intact soil-core carbon determination applying regression shrinkage and variable selection techniques to complete spectrum laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Bricklemyer, Ross S; Brown, David J; Turk, Philip J; Clegg, Sam M

    2013-10-01

    Laser-induced breakdown spectroscopy (LIBS) provides a potential method for rapid, in situ soil C measurement. In previous research on the application of LIBS to intact soil cores, we hypothesized that ultraviolet (UV) spectrum LIBS (200-300 nm) might not provide sufficient elemental information to reliably discriminate between soil organic C (SOC) and inorganic C (IC). In this study, using a custom complete spectrum (245-925 nm) core-scanning LIBS instrument, we analyzed 60 intact soil cores from six wheat fields. Predictive multi-response partial least squares (PLS2) models using full and reduced spectrum LIBS were compared for directly determining soil total C (TC), IC, and SOC. Two regression shrinkage and variable selection approaches, the least absolute shrinkage and selection operator (LASSO) and sparse multivariate regression with covariance estimation (MRCE), were tested for soil C predictions and the identification of wavelengths important for soil C prediction. Using complete spectrum LIBS for PLS2 modeling reduced the calibration standard error of prediction (SEP) 15 and 19% for TC and IC, respectively, compared to UV spectrum LIBS. The LASSO and MRCE approaches provided significantly improved calibration accuracy and reduced SEP 32-55% over UV spectrum PLS2 models. We conclude that (1) complete spectrum LIBS is superior to UV spectrum LIBS for predicting soil C for intact soil cores without pretreatment; (2) LASSO and MRCE approaches provide improved calibration prediction accuracy over PLS2 but require additional testing with increased soil and target analyte diversity; and (3) measurement errors associated with analyzing intact cores (e.g., sample density and surface roughness) require further study and quantification.

  15. Quantitative fluorescence spectroscopy in turbid media using fluorescence differential path length spectroscopy

    NARCIS (Netherlands)

    Amelink, Arjen; Kruijt, Bastiaan; Robinson, Dominic J.; Sterenborg, Henricus J. C. M.

    2008-01-01

    We have developed a new technique, fluorescence differential path length spectroscopy (FDPS), that enables the quantitative investigation of fluorophores in turbid media. FDPS measurements are made with the same probe geometry as differential path length spectroscopy (DPS) measurements. Phantom

  16. Laser spectroscopy

    International Nuclear Information System (INIS)

    Letokhov, V.S.

    1981-01-01

    This article describes recent progress in the application of laser atomic spectroscopy to study parameters of nuclei available in very small quantities; radioactive nuclei, rare isotopes, nuclear isomers, etc, for which study by conventional spectroscopic methods is difficult. (author)

  17. Detailed characterization of bio-oil from pyrolysis of non-edible seed-cakes by Fourier Transform Infrared Spectroscopy (FTIR) and gas chromatography mass spectrometry (GC-MS) techniques.

    Science.gov (United States)

    Sugumaran, Vatsala; Prakash, Shanti; Ramu, Emmandi; Arora, Ajay Kumar; Bansal, Veena; Kagdiyal, Vivekanand; Saxena, Deepak

    2017-07-15

    Bio-oil obtained from pyrolysis is highly complicated mixture with valued chemicals. In order to reduce the complexity for unambiguous characterization of components present in bio-oil, solvent extractions using different solvents with increasing polarity have been adopted. The fractions have been analyzed by Fourier transform infrared (FTIR) spectroscopy for identifying the functional groups and Gas chromatography-mass spectrometry (GC-MS), for detailed characterization of components present in various fractions, thereby providing in-depth information at molecular level of various components in bio-oil. This paper reveals the potential of the analytical techniques in identification and brings out the similarities as well as differences in the components present in the bio-oil obtained from two non-edible oil seed-cakes, viz., Jatropha and Karanjia. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2016-01-01

    Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses the foundati......Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses...

  19. Water stable isotope measurements of Antarctic samples by means of IRMS and WS-CRDS techniques

    Science.gov (United States)

    Michelini, Marzia; Bonazza, Mattia; Braida, Martina; Flora, Onelio; Dreossi, Giuliano; Stenni, Barbara

    2010-05-01

    of the sample in the box. In the WS-CRDS the path of laser is longer, producing higher-sensitivity measurements. The instrument is paired with an autosampler and can be used without it and the vaporizer to analyze directly the isotopic composition of the water vapour in the atmosphere. In addition, the instrument can be moved from the laboratory and also used for outdoor measurements. The more important improvements over traditional IRMS techniques are that WS-CRDS needs less sample in order to perform the analysis (water equilibration techniques) and the analyses are faster. Coversely, memory effects may affect the measurements so there is the need to increase the number of injection to have a high precision measurement. The laboratory of Isotope Geochemistry of the Department of Geosciences has recently acquired a WS-CRDS system from PICARRO. The isotopic data obtained with this new method have been compared with the ones obtained by means of IRMS methods. An HDO device coupled with a Thermo Finnigan Delta Plus Advantage mass spectrometer has been used, using the well know CO2 and H2/water equilibration technique. At the moment of the writing of the abstract the mean difference between the values obtained using PICARRO and using the traditional IRMS method is of the order of 0.1 per mil for the ratio 18O/16O and 1.00 per mil for the ratio D/H, but further measurements are currently underway. O'Keef A., Deacon D.A.G., 1988. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources, Rev. Sci. Instrum., 59, 2544.

  20. Evaluation of the accuracy of thermal dissociation CRDS and LIF techniques for atmospheric measurement of reactive nitrogen species

    Science.gov (United States)

    Womack, Caroline C.; Neuman, J. Andrew; Veres, Patrick R.; Eilerman, Scott J.; Brock, Charles A.; Decker, Zachary C. J.; Zarzana, Kyle J.; Dube, William P.; Wild, Robert J.; Wooldridge, Paul J.; Cohen, Ronald C.; Brown, Steven S.

    2017-05-01

    The sum of all reactive nitrogen species (NOy) includes NOx (NO2 + NO) and all of its oxidized forms, and the accurate detection of NOy is critical to understanding atmospheric nitrogen chemistry. Thermal dissociation (TD) inlets, which convert NOy to NO2 followed by NO2 detection, are frequently used in conjunction with techniques such as laser-induced fluorescence (LIF) and cavity ring-down spectroscopy (CRDS) to measure total NOy when set at > 600 °C or speciated NOy when set at intermediate temperatures. We report the conversion efficiency of known amounts of several representative NOy species to NO2 in our TD-CRDS instrument, under a variety of experimental conditions. We find that the conversion efficiency of HNO3 is highly sensitive to the flow rate and the residence time through the TD inlet as well as the presence of other species that may be present during ambient sampling, such as ozone (O3). Conversion of HNO3 at 400 °C, nominally the set point used to selectively convert organic nitrates, can range from 2 to 6 % and may represent an interference in measurement of organic nitrates under some conditions. The conversion efficiency is strongly dependent on the operating characteristics of individual quartz ovens and should be well calibrated prior to use in field sampling. We demonstrate quantitative conversion of both gas-phase N2O5 and particulate ammonium nitrate in the TD inlet at 650 °C, which is the temperature normally used for conversion of HNO3. N2O5 has two thermal dissociation steps, one at low temperature representing dissociation to NO2 and NO3 and one at high temperature representing dissociation of NO3, which produces exclusively NO2 and not NO. We also find a significant interference from partial conversion (5-10 %) of NH3 to NO at 650 °C in the presence of representative (50 ppbv) levels of O3 in dry zero air. Although this interference appears to be suppressed when sampling ambient air, we nevertheless recommend regular

  1. On-line identification of lysergic acid diethylamide (LSD) in tablets using a combination of a sweeping technique and micellar electrokinetic chromatography/77 K fluorescence spectroscopy.

    Science.gov (United States)

    Fang, Ching; Liu, Ju-Tsung; Lin, Cheng-Huang

    2003-03-01

    This work describes a novel method for the accurate determination of lysergic acid diethylamide (LSD) in tablets. A technique involving sweeping-micellar electrokinetic chromatography (MEKC) was used for the initial on-line concentration and separation, after which a cryogenic molecular fluorescence experiment was performed at 77 K. Using this approach, not only the separation of LSD from the tablet extract was achieved, but on-line spectra were readily distinguishable and could be unambiguously assigned. The results are in agreement with analyses by gas chromatography-mass spectrometry (GC-MS). Thus, this method, which was found to be accurate, sensitive and rapid, has the potential for use as a reliable complementary method to GC-MS in such analyses.

  2. Terahertz Spectroscopy and Imaging

    CERN Document Server

    Zeitler, Axel; Kuwata-Gonokami, Makoto

    2013-01-01

    "This book presents the current state of knowledge in the field of terahertz spectroscopy, providing a comprehensive source of information for beginners and experienced researchers alike whose interests lie in this area. The book aims to explain the fundamental physics that underpins terahertz  technology and to describe its key applications. Highlights of scientific research in the field of terahertz science are also outlined in some chapters, providing an overview as well as giving an insight into future directions for research.  Over the past decade terahertz spectroscopy has developed into one of the most rapidly growing areas of its kind, gaining an important impact across a wide range of scientific disciplines. Due to substantial advances in femtosecond laser technology, terahertz time-domain spectroscopy (THz-TDS) has established itself as the dominant spectroscopic technique for experimental scientists interested in measurements at this frequency range. In solids and liquids THz radiation is in reso...

  3. New analytical methods for materials characterization using the techniques of nuclear activation reactions induced by thermal neutrons and accelerated ion beams, coupled to gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Cincu, Emanuela

    1999-01-01

    This thesis is a comprehensive collection of the author's works in the field of 'Nuclear Activation Techniques with accelerated Charged Particles and Thermal Neutrons' carried out within the framework of the research contracts the author initiated and performed in the period 1990 - 1999. The works objective was to achieve a consistent and complete methodological and instrumental assembly for accurate elemental analysis of technological samples of interest for industry, medicine, and monitoring of the environmental radioactivity. The experiments were carried out using the IFIN-HH facilities: U-120 Cyclotron, 8 MV Tandem Van de Graaff accelerator, and the WWR-S nuclear reactor. Part of the reported works were initiated and performed in collaboration with partners from the chemical industry and metallurgic industry, wishing to employ the sensitive nuclear analytical techniques, which are able to put in evidence simultaneously major, minor elements, and impurities in the investigated samples. The impact with the challenging topics and the characteristics of some investigated technological samples, generated the studies having both theoretical and experimental features, presented in this thesis, as well as the original analytical and methodological solutions. The thesis structure has two parts: The 1st part (Chapter 1) is a survey of the literature until 1999, that concerns the theory of nuclear activation reactions with accelerated charged particles (CPAA) and thermal neutrons (NAA), evidencing the analytical performance of both techniques; details are also given about the 'critical' phenomena encountered in CPAA, whose origin is still under discussion in the literature. The 2 nd part of the thesis contains the original contributions of the author in the theoretical, methodological, and software fields (Chapters 2-8), the experimental results obtained, and the nuclear database software based on the 'Fox-Pro' operation system, conceived for processing the experimental

  4. Fragmentation of the C60 molecule in collision with light ions studied by a multi-correlation technique. Cross-sections, electron spectroscopy; Fragmentation de la molecule C60 par impact d'ions legers etudiee en multicorrelation. Sections efficaces, spectroscopie d'electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rentenier, A

    2004-04-01

    A quantitative study of the C60 fullerenes fragmentation in collision with light ions (H{sub n}{sup +} with n=1,2,3, He{sup q+} with q=1,2) in the velocity range 0,1 - 2,3 u.a.) is presented. The multi-correlation technique, developed between fragment ions and electrons with well defined energy, has enlightened some of the dependences and properties of fragmentation mechanisms (cross sections, electron spectroscopy, size distributions, kinetic energy of fragment ions, Campi's scatter plot, activation energies). The deposited energy hence appeared as an important parameter. Cross sections have been measured, for the first time, for all the collisional processes. Ionisation and capture only depends on the collision velocity. On the other hand, scaling laws with the deposited energy have been observed for the cross sections of multifragmentation, which depends on the collision energy and the nature of the projectile. The deposited energy has also been found as an essential parameter to understand the evolution of the charged fragment size distributions. The electron spectroscopy, achieved at an emission angle of 35 degrees, showed spectra peaked at important energies (from 5 to 20 eV). The spectra shape depends on the collision velocity. A first theoretical analysis points out the link between the observed energy distribution and the presence of a centrifugal potential barrier. Finally, correlation experiments between produced ions and electron energy reveal that electron energy increases with internal energy. (author)

  5. First measurement of the Rayleigh cross section

    NARCIS (Netherlands)

    Naus, H.; Ubachs, W.

    2000-01-01

    Rayleigh cross section for N2, Ar and SF6 was performed using the technique of cavity ring-down spectroscopy (CRDS). The experiment was based on the assumption that scattering cross section is equal to the extinction in the absence of absorption. The theory explains the molecular origin of

  6. EDITORIAL: Nano Meets Spectroscopy Nano Meets Spectroscopy

    Science.gov (United States)

    Birch, David J. S.

    2012-08-01

    The multidisciplinary two-day Nano Meets Spectroscopy (NMS) event was held at the National Physical Laboratory (NPL), Teddington, UK, in September 2011. The event was planned from the outset to be at the interface of several areas—in particular, spectroscopy and nanoscience, and to bring together topics and people with different approaches to achieving common goals in biomolecular science. Hence the meeting cut across traditional boundaries and brought together researchers using diverse techniques, particularly fluorescence and Raman spectroscopy. Despite engaging common problems, these techniques are frequently seen as mutually exclusive with the two communities rarely interacting at conferences. The meeting was widely seen to have lived up to its billing in good measure. It attracted the maximum capacity of ~120 participants, including 22 distinguished speakers (9 from outside the UK), over 50 posters and a vibrant corporate exhibition comprising 10 leading instrument companies and IOP Publishing. The organizers were Professor David Birch (Chair), Dr Karen Faulds and Professor Duncan Graham of the University of Strathclyde, Professor Cait MacPhee of the University of Edinburgh and Dr Alex Knight of NPL. The event was sponsored by the European Science Foundation, the Institute of Physics, the Royal Society of Chemistry, NPL and the Scottish Universities Physics Alliance. The full programme and abstracts are available at http://sensor.phys.strath.ac.uk/nms/program.php. The programme was quite ambitious in terms of the breadth and depth of scope. The interdisciplinary and synergistic concept of 'X meets Y' played well, cross-fertilization between different fields often being a source of inspiration and progress. Fluorescence and Raman spectroscopy provided the core, but the meeting had little repetition and also attracted contributions on more specialist techniques such as CARS, super-resolution, single molecule and chiral methods. In terms of application the

  7. The scavenging of the precursors of the solvated electrons fom the positron lifetime spectroscopy and the Doppler broadening of annihilation line shape technique

    International Nuclear Information System (INIS)

    Abbe, J.C.; Duplatre, G.; Maddock, A.G.; Haessler, A.

    1979-01-01

    The electron scavenging properties in water of two series of solutes are investigated, using the positron as a probe. For a better interpretation of the data, both the lifetime specroscopy and the Doppler broadening of annihilation line shape technique are used. All solutes inhibit the positronium (Ps) formation, by the scavenging of electron. The first series consists of the halate ions, that should follow the Hunt linear relation between the rate constant for reaction with the solvated electrons, ksub(e - sub(aq)+S) and that for its precursors(s), 1/C 37 . The Ps inhibition constants, k, are 0.14, 1.44 and 3.45M -1 for ClO 3 - , BrO 3 - and IO 3 - respectively. This sequence is quantitatively consistent with that of the respective ksub(e - sub(aq)+S). The second series includes the SeO 4 -- , Te(OH) 6 and BrO 4 - species, and the Ps inhibition constants are 5.62, 10.5 and 14.3 respectively. Theses values are much higher than expected from the ksub(e - sub(aq)+S) constants, on basis of the Hunt relation, in agreement with previous results from pulse radiolysis experiments

  8. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. II. EXPANDING THE METALLICITY RANGE FOR OLD CLUSTERS AND UPDATED ANALYSIS TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, Janet E.; Bernstein, Rebecca A.; McWilliam, Andrew [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States)

    2017-01-10

    We present abundances of globular clusters (GCs) in the Milky Way and Fornax from integrated-light (IL) spectra. Our goal is to evaluate the consistency of the IL analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of seven clusters from our previous publications and results for five new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from IL spectra agrees to ∼0.1 dex for GCs with metallicities as high as [Fe/H] = −0.3, but the abundances measured for more metal-rich clusters may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na i, Mg i, Al i, Si i, Ca i, Ti i, Ti ii, Sc ii, V i, Cr i, Mn i, Co i, Ni i, Cu i, Y ii, Zr i, Ba ii, La ii, Nd ii, and Eu ii. The elements for which the IL analysis gives results that are most similar to analysis of individual stellar spectra are Fe i, Ca i, Si i, Ni i, and Ba ii. The elements that show the greatest differences include Mg i and Zr i. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the IL results for other important elements.

  9. Moessbauer spectroscopy. Tutorial book

    International Nuclear Information System (INIS)

    Yoshida, Yutaka; Langouche, Guido

    2013-01-01

    First textbook on Moessbauer Spectroscopy covering the complete field. Offers a concise introduction to all aspects of Moessbauer spectroscopy by the leading experts in the field. Tutorials on Moessbauer Spectroscopy. Since the discovery of the Moessbauer Effect many excellent books have been published for researchers and for doctoral and master level students. However, there appears to be no textbook available for final year bachelor students, nor for people working in industry who have received only basic courses in classical mechanics, electromagnetism, quantum mechanics, chemistry and materials science. The challenge of this book is to give an introduction to Moessbauer Spectroscopy for this level. The ultimate goal of this book is to give this audience not only a scientific introduction to the technique, but also to demonstrate in an attractive way the power of Moessbauer Spectroscopy in many fields of science, in order to create interest among the readers in joining the community of Moessbauer spectroscopists. This is particularly important at times where in many Moessbauer laboratories succession is at stake.

  10. A Comparison between Electrochemical Impedance Spectroscopy and Incremental Capacity-Differential Voltage as Li-ion Diagnostic Techniques to Identify and Quantify the Effects of Degradation Modes within Battery Management Systems

    Science.gov (United States)

    Pastor-Fernández, Carlos; Uddin, Kotub; Chouchelamane, Gael H.; Widanage, W. Dhammika; Marco, James

    2017-08-01

    Degradation of Lithium-ion batteries is a complex process that is caused by a variety of mechanisms. For simplicity, ageing mechanisms are often grouped into three degradation modes (DMs): conductivity loss (CL), loss of active material (LAM) and loss of lithium inventory (LLI). State of Health (SoH) is typically the parameter used by the Battery Management System (BMS) to quantify battery degradation based on the decrease in capacity and the increase in resistance. However, the definition of SoH within a BMS does not currently include an indication of the underlying DMs causing the degradation. Previous studies have analysed the effects of the DMs using incremental capacity and differential voltage (IC-DV) and electrochemical impedance spectroscopy (EIS). The aim of this study is to compare IC-DV and EIS on the same data set to evaluate if both techniques provide similar insights into the causes of battery degradation. For an experimental case of parallelized cells aged differently, the effects due to LAM and LLI were found to be the most pertinent, outlining that both techniques are correlated. This approach can be further implemented within a BMS to quantify the causes of battery ageing which would support battery lifetime control strategies and future battery designs.

  11. Optogalvanic spectroscopy

    International Nuclear Information System (INIS)

    Pianarosa, P.; Demers, Y.; Gagne, J.M.

    1983-01-01

    Laser induced optogalvanic spectroscopy in a hollow cathode-produced plasma has been used to resolve the isotopic structure of some absorption lines in uranium. We have shown that the optogalvanic signal associated with any isotope can be related to the concentration of that isotope in a multi-isotopic sample. From the results we have obtained, optogalvanic spectroscopy of sputtered samples appears to be an interesting approach to the isotopic analysis of both natural and enriched uranium and could easily be applied to the analysis of other fissile elements, such as the plutonium isotopes

  12. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Price, W.C.

    1974-01-01

    A survey is given of the development of x-ray and ultraviolet photoelectron spectroscopy. Applications of photoelectron spectroscopy to studies of atomic electronic configurations are discussed, including photoelectron spectra of hydrides isoelectronic with the inert gases; photoelectron spectra of the halogen derivatives of methane; photoelectron spectra of multiple bonded diatomic molecules; spectra and structure of some multiple bonded polyatomic molecules; spectra and structure of triatomic molecules; and methods of orbital assignment of bands in photoelectron spectra. Physical aspects are considered, including intensities; selection rules; dependence of cross section on photoelectron energy; autoionization; angular distribution of photoelectrons; electron-molecule interactions; and transient species. (26 figures, 54 references) (U.S.)

  13. Spectroscopy in catalysis : an introduction

    NARCIS (Netherlands)

    Niemantsverdriet, J.W.

    2007-01-01

    Spectroscopy in Catalysis is an introduction to the most important analytical techniques that are nowadays used in catalysis and in catalytic surface chemistry. The aim of the book is to give the reader a feeling for the type of information that characterization techniques provide about questions

  14. Optical imaging and spectroscopy

    CERN Document Server

    Brady, David J

    2009-01-01

    An essential reference for optical sensor system design This is the first text to present an integrated view of the optical and mathematical analysis tools necessary to understand computational optical system design. It presents the foundations of computational optical sensor design with a focus entirely on digital imaging and spectroscopy. It systematically covers: Coded aperture and tomographic imaging Sampling and transformations in optical systems, including wavelets and generalized sampling techniques essential to digital system analysis Geometric, wave, and statis

  15. Electrochemical Behavior Assessment of As-Cast Mg-Y-RE-Zr Alloy in Phosphate Buffer Solutions (X Na3PO4 + Y Na2HPO4) Using Electrochemical Impedance Spectroscopy and Mott-Schottky Techniques

    Science.gov (United States)

    Fattah-alhosseini, Arash; Asgari, Hamed

    2018-05-01

    In the present study, electrochemical behavior of as-cast Mg-Y-RE-Zr alloy (RE: rare-earth alloying elements) was investigated using electrochemical tests in phosphate buffer solutions (X Na3PO4 + Y Na2HPO4). X-ray diffraction techniques and Scanning electron microscopy equipped with energy dispersive x-ray spectroscopy were used to investigate the microstructure and phases of the experimental alloy. Different electrochemical tests such as potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis were carried out in order to study the electrochemical behavior of the experimental alloy in phosphate buffer solutions. The PDP curves and EIS measurements indicated that the passive behavior of the as-cast Mg-Y-RE-Zr alloy in phosphate buffer solutions was weakened by an increase in the pH, which is related to formation of an imperfect and less protective passive layer on the alloy surface. The presence of the insoluble zirconium particles along with high number of intermetallic phases of RE elements mainly Mg24Y5 in the magnesium matrix can deteriorate the corrosion performance of the alloy by disrupting the protective passive layer that is formed at pH values over 11. These insoluble zirconium particles embedded in the matrix can detrimentally influence the passivation. The M-S analysis revealed that the formed passive layers on Mg-Y-RE-Zr alloy behaved as an n-type semiconductor. An increase in donor concentration accompanying solutions of higher alkalinity is thought to result in the formation of a less resistive passive layer.

  16. Vibrational Spectroscopy and Astrobiology

    Science.gov (United States)

    Chaban, Galina M.; Kwak, D. (Technical Monitor)

    2001-01-01

    Role of vibrational spectroscopy in solving problems related to astrobiology will be discussed. Vibrational (infrared) spectroscopy is a very sensitive tool for identifying molecules. Theoretical approach used in this work is based on direct computation of anharmonic vibrational frequencies and intensities from electronic structure codes. One of the applications of this computational technique is possible identification of biological building blocks (amino acids, small peptides, DNA bases) in the interstellar medium (ISM). Identifying small biological molecules in the ISM is very important from the point of view of origin of life. Hybrid (quantum mechanics/molecular mechanics) theoretical techniques will be discussed that may allow to obtain accurate vibrational spectra of biomolecular building blocks and to create a database of spectroscopic signatures that can assist observations of these molecules in space. Another application of the direct computational spectroscopy technique is to help to design and analyze experimental observations of ice surfaces of one of the Jupiter's moons, Europa, that possibly contains hydrated salts. The presence of hydrated salts on the surface can be an indication of a subsurface ocean and the possible existence of life forms inhabiting such an ocean.

  17. Bioimpedance Spectroscopy

    DEFF Research Database (Denmark)

    Klösgen, Beate; Rümenapp, Christine; Gleich, Bernhard

    2011-01-01

    causes relaxation processes with characteristic contributions to the frequency-dependent complex dielectric constant. These dipolar relaxations were initially described by Debye (Polare Molekeln 1929). They are the basis of impedance spectroscopy (K’Owino and Sadik Electroanalysis 17(23):2101–2113, 2005...

  18. Laser Spectroscopy and Frequency Combs

    International Nuclear Information System (INIS)

    Hänsch, Theodor W; Picqué, Nathalie

    2013-01-01

    The spectrum of a frequency comb, commonly generated by a mode-locked femtosecond laser consists of several hundred thousand precisely evenly spaced spectral lines. Such laser frequency combs have revolutionized the art measuring the frequency of light, and they provide the long-missing clockwork for optical atomic clocks. The invention of the frequency comb technique has been motivated by precision laser spectroscopy of the simple hydrogen atom. The availability of commercial instruments is facilitating the evolution of new applications far beyond the original purpose. Laser combs are becoming powerful instruments for broadband molecular spectroscopy by dramatically improving the resolution and recording speed of Fourier spectrometers and by creating new opportunities for highly multiplexed nonlinear spectroscopy, such as two-photon spectroscopy or coherent Raman spectroscopy. Other emerging applications of frequency combs range from fundamental research in astronomy, chemistry, or attosecond science to telecommunications and satellite navigation

  19. Astrophysical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kitchin, C R

    1984-01-01

    The subject is covered in chapters, entitled: detectors (optical and infrared detection; radio and microwave detection; X-ray and gamma-ray detection; cosmic ray detectors; neutrino detectors; gravitational radiation); imaging (photography; electronic imaging; scanning; interferometry; speckle interferometry; occultations; radar); photometry and photometers; spectroscopy and spectroscopes; other techniques (astrometry; polarimetry; solar studies; magnetometry). Appendices: magnitudes and spectral types of bright stars; north polar sequence; standard stars for the UBV photometric system; standard stars for the UVBY photometric system; standard stars for MK spectral types; standard stars for polarimetry; Julian date; catalogues; answers to the exercises.

  20. Recommendations concerning magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    1986-01-01

    In medicine the technique of nuclear magnetic resonance (NMR) is applied in the form of in vivo nuclear magnetic resonance spectroscopy (MRS). In vivo MRS can be carried out non-invasively. The committee of the Dutch Health Council briefly discusses the qualities and potentialities of the nuclei that will probably be used in future clinical spectroscopy: 31 P, 13 C, 1 H (and possibly 19 F and 23 Na). The committee discusses several possibilities of combining imaging and spectroscopy. The imaging of nuclei other than protons is also possible with MRS. Potential applications are considered in oncology, cardiology, neurology and hepatology. (Auth.)

  1. Fusion spectroscopy

    International Nuclear Information System (INIS)

    Peacock, N.J.

    1995-09-01

    This article traces developments in the spectroscopy of high temperature laboratory plasma used in controlled fusion research from the early 1960's until the present. These three and a half decades have witnessed many orders of magnitude increase in accessible plasma parameters such as density and temperature as well as particle and energy confinement timescales. Driven by the need to interpret the radiation in terms of the local plasma parameters, the thrust of fusion spectroscopy has been to develop our understanding of (i) the atomic structure of highly ionised atoms, usually of impurities in the hydrogen isotope fuel; (ii) the atomic collision rates and their incorporation into ionization structure and emissivity models that take into account plasma phenomena like plasma-wall interactions, particle transport and radiation patterns; (iii) the diagnostic applications of spectroscopy aided by increasingly sophisticated characterisation of the electron fluid. These topics are discussed in relation to toroidal magnetically confined plasmas, particularly the Tokamak which appears to be the most promising approach to controlled fusion to date. (author)

  2. Lithium ionic mobility study in xLi{sub 2}CO{sub 3}-yLiI (x = 95-70, y = 5-30 wt.%) solid electrolyte by impedance spectroscopy technique

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Mohd Khari; Ahmad, Azizah Hanom [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor D.E. (Malaysia); Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor D.E. (Malaysia)

    2015-08-28

    A detailed systematic study on the effects of different amount (wt.%) of LiI addition on the electrical conductivity and dielectric behavior of the xLi{sub 2}CO{sub 3}-xLiI (x = 95-70, y = 5-30 wt.%) electrolyte system was carried out. The samples with different compositions were prepared and ground by mechanical milling method. The electrical and dielectric properties of the samples over a range of frequency (50Hz – 1MHz) were investigated by deploying electrical impedance spectroscopy (EIS) technique in a series of temperature set (298–373K). Normally, Li{sub 2}CO{sub 3} itself shows a very low electrical conductivity (10{sup −5} Scm{sup −1}). However, the electrical conductivity of the system was found to be increased (10{sup −3} Scm{sup −1}) as the lithium salt (LiI) were introduced to the system. The dielectric analysis displayed that the activation energy was inversely proportional to the increment of LiI (wt.%). As the electrical conductivity reached their maximum value (4.63 × 10{sup −3} Scm{sup −1}) at the 20 wt.% of LiI, the activation energy was dropped to the minimum (0.1 eV). The electrical conductivity increases with the temperature (298 – 373K) indicate that the system obeys Arrhenius law.

  3. Department of Nuclear Spectroscopy and Technique: Overview

    International Nuclear Information System (INIS)

    Kozlowski, T.

    2000-01-01

    Full text: Research activities of the Department in 1999 were concentrated on medium and low energy nuclear physics, atomic physics of the exotic bare or single electron atoms and on selected applications of nuclear physics. Experiments in the medium energy physics are carried out using large facilities: ANKE in KFA Juelich (Germany) and SINDRUM 2 at PSI Villigen (Switzerland). In the low energy our physicists continue collaboration with Heavy Ion Laboratory of Warsaw University, and large international gamma multidetector facilities like GAMMASPHERE. The heavy ion beams of GSI in Darmstadt (Germany) and PSI are used for studies of atomic effects. Our C-30 proton cyclotron delivers beam to study modification of optical properties of laser crystals and our low background gamma detection facility is used to measure radioactive contamination of the environment. The theoretical work is devoted to study the fusion of the heavy nuclei with the particular interest in production of new isotopes with very small probabilities. The reader is invited to find some of our recent results on the next pages, together with a list of papers published this year. Nevertheless it is worthwhile to emphasize: Observation of helium like hole states in the ionized high Z atoms; Tests of the Langevin Dynamics of Nucleus-Nucleus Collisions; Study of Radiative Electron Capture into bare U ions; First lifetime measurements using the DSAM method on Warsaw Cyclotron; Optimisation of the electron beam flue gas purification using the genetic controller. Some of us are also involved in teaching and in supervision of students and graduate students. Financial support received from the State Committee for Scientific Research and Maria Sklodowska-Curie Polish-American Foundation is acknowledged. (author)

  4. Resonance ionization spectroscopy 1990

    International Nuclear Information System (INIS)

    Parks, J.E.; Omenetto, N.

    1991-01-01

    The Fifth International Symposium on Resonance Ionization Spectroscopy (RIS) and its Applications was held in Varese, Italy, 16-21 September 1990. Interest in RIS and its applications continues to grow, and RIS is expanding into a more diverse and mature field of study. This maturity was evident in this meeting both in the basic science and understanding of RIS processes and in the number of new and improved applications and techniques. The application of RIS techniques to molecular detection problems made remarkable progress since the last meeting two years ago. Subtle effects pertaining to isotopic discrimination received more theoretical attention, and there now seems to be good understanding of these effects, which can lead to correction procedures and/or methods to avoid isotopic effects. RIS applications were presented in which significant, real world problems were addressed, demonstrating its capability to solve problems that previously could not be accurately solved by other more traditional techniques. The contributions to the conference are grouped under the following major topic headings: physics applications of rare atoms; laser ionization mechanisms - spectroscopy; atomic, molecular and ion sources; molecular RIS; atomic RIS - Rydberg states; environmental trace analysis; biological and medical applications; state selected chemistry; new laser sources and techniques; ultra-high resolution and isotopic selectivity; surface and bulk analysis. (Author)

  5. IMPLEMENTACIÓN DE TÉCNICAS ESPECTROQUÍMICAS EN LA INVESTIGACIÓN ZOOARQUEOLÓGICA. CUANTIFICACIÓN DE ESTRONCIO UTILIZANDO LASER INDUCED BREAKDOWN SPECTROSCOPY (LIBS/ Implementation of spectrochemical techniques in zooarchaeological research...

    Directory of Open Access Journals (Sweden)

    Gabriela Srur

    2012-11-01

    Full Text Available Los estudios químicos sobre restos zooarqueológicos se vienen desarrollando con mayor intensidad en las últimas décadas, especialmente aquellos dedicados a la identificación de huellas químicas o diversos tipos de isótopos y sus relaciones. El objetivo de este trabajo es el de presentar dos procedimientos utilizados para la caracterización química de huesos en base a datos espectrométricos obtenidos mediante la técnica LIBS (Laser Induced Breakdown Spectroscopy. El primero denominado Adición Estándar, consiste en un procedimiento destructivo, con un grado de error estimable, mientras que el segundo, Reemplazo de la Matriz Ósea, constituye un método no invasivo y con un grado de error relativamente bajo. Con esto se espera lograr el desarrollo de un corpus metodológico y analítico que permita caracterizar de un modo eficiente y económico las huellas químicas de diverso material arqueofaunístico. En este sentido se intenta lograr una caracterización química de huesos arqueológicos con el fin de dar respuesta a cuestiones relacionadas tanto a la alimentación como a la movilidad de los animales en el pasado. Abstract Chemical studies on zooarchaeological remains have been most extensively developed in recent decades, especially those focused on the identification of chemical fingerprints or types of isotopes and their relationships. This paper aims at showing two procedures used for chemical characterization of bones on the basis of spectrometric data obtained by LIBS technique (Laser Induced Breakdown Spectroscopy. One called Standard Addition, a destructive procedure, with a high error degree; the other called Bone Matrix Replacement, a noninvasive method with a relatively low error degree. We expect to gather a methodological and analytical corpus to characterize, efficiently and inexpensively, the chemical fingerprints of diverse archaeofaunal material. Hence, we intend to achieve chemical characterization of

  6. Mössbauer spectroscopy.

    Science.gov (United States)

    Huynh, Boi Hanh

    2011-01-01

    Mössbauer spectroscopy has contributed significantly to the studies of Fe-containing proteins. Early applications yielded detailed electronic characterizations of hemeproteins, and thus enhanced our understanding of the chemical properties of this important class of proteins. The next stage of the applications was marked by major discoveries of several novel Fe clusters of complex structures, including the 8Fe7S P cluster and the mixed metal 1Mo7Fe M center in nitrogenase. Since early 1990 s, rapid kinetic techniques have been used to arrest enzymatic reactions for Mössbauer studies. A number of reaction intermediates were discovered and characterized, both spectroscopically and kinetically, providing unprecedented detailed molecular-level mechanistic information. This chapter gives a brief summary of the historical accounts and a concise description of some experimental and theoretical elements in Mössbauer spectroscopy that are essential for understanding Mössbauer spectra. Major biological applications are summarized at the end.

  7. Spectroscopy of neutral radium

    Energy Technology Data Exchange (ETDEWEB)

    Mol, Aran; De, Subhadeep; Jungmann, Klaus; Wilschut, Hans; Willmann, Lorenz [KVI, University of Groningen, Groningen (Netherlands)

    2008-07-01

    The heavy alkaline earth atoms radium is uniquely sensitive towards parity and time reversal symmetry violations due to a large enhancement of an intrinsic permanent electric dipole moment of the nucleous or the electron. Furthermore, radium is sensitive to atomic parity violation and the nuclear anapole moment. To prepare such experiments spectroscopy of relevant atomic states need to be done. At a later stage we will build a neutral atom trap for radium. We have built an atomic beam of the short lived isotope {sup 225}Ra with a flux of several 10{sup 4} atoms/sec. We are preparing the laser spectroscopy using this beam setup. In the preparation for efficient laser cooling and trapping we have successfully trapped barium, which is similar in it's requirements for laser cooling. The techniques which we have developed with barium can be used to trap rare radium isotopes. We report on the progress of the experiments.

  8. Admittance spectroscopy or deep level transient spectroscopy: A contrasting juxtaposition

    Science.gov (United States)

    Bollmann, Joachim; Venter, Andre

    2018-04-01

    A comprehensive understanding of defects in semiconductors remains of primary importance. In this paper the effectiveness of two of the most commonly used semiconductor defect spectroscopy techniques, viz. deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) are reviewed. The analysis of defects present in commercially available SiC diodes shows that admittance spectroscopy allows the identification of deep traps with reduced measurement effort compared to deep Level Transient Spectroscopy (DLTS). Besides the N-donor, well-studied intrinsic defects were detected in these diodes. Determination of their activation energy and defect density, using the two techniques, confirm that the sensitivity of AS is comparable to that of DLTS while, due to its well defined peak shape, the spectroscopic resolution is superior. Additionally, admittance spectroscopy can analyze faster emission processes which make the study of shallow defects more practical and even that of shallow dopant levels, possible. A comparative summary for the relevant spectroscopic features of the two capacitance methods are presented.

  9. Raman Spectroscopy of Microbial Pigments

    Science.gov (United States)

    Edwards, Howell G. M.; Oren, Aharon

    2014-01-01

    Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions. PMID:24682303

  10. Annual reports on NMR spectroscopy

    CERN Document Server

    Webb, Graham A; McCarthy, M J

    1995-01-01

    Over recent years, no other technique has grown to such importance as that of NMR spectroscopy. It is used in all branches of science where precise structural determination is required and where the nature of interactions and reactions in solution is being studied. Annual Reports on NMR Spectroscopy has established itself as a means for the specialist and non-specialist alike to become familiar with new applications of the technique in all branches of chemistry, including biochemistry, and pharmaceutics. This volume focuses on theoretical aspects of NMR nuclear shielding and on applications of

  11. NMR spectroscopy

    International Nuclear Information System (INIS)

    Gruenert, J.

    1989-01-01

    The book reviews the applications of NMR-spectroscopy in medicine and biology. The first chapter of about 40 pages summarizes the history of development and explains the chemical and physical fundamentals of this new and non-invasive method in an easily comprehensible manner. The other chapters summarize diagnostic results obtained with this method in organs and tissues, so that the reader will find a systematic overview of the available findings obtained in the various organ systems. It must be noted, however, that ongoing research work and new insight quite naturally will necessitate corrections to be done, as is the case here with some biochemical interpretations which would need adjustment to latest research results. NMR-spectroscopy is able to measure very fine energy differences on the molecular level, and thus offers insight into metabolic processes, with the advantage that there is no need of applying ionizing radiation in order to qualitatively or quantitatively analyse the metabolic processes in the various organ systems. (orig./DG) With 40 figs., 4 tabs [de

  12. Hadron spectroscopy

    International Nuclear Information System (INIS)

    Igi, K.

    1979-01-01

    This paper is related to mini-rapporteur talk on baryonium spectroscopy. First of all, the models of baryonium, namely the diquark model, the string picture, the linear baryonium and the bag model, are described. All of these models so far discussed are highly suggestive. In this paper, discussions are confined to the spectroscopy of the string and the bag models. Because of the color degree of freedom, the bag model has mock diquonium and mock mesonium besides true baryonium. It might be possible that the string model takes into account only a part of them. The constraints among baryonium, baryon and boson trajectories using duality and unitarity were proposed as a guide for classifying various spectra. Inequalities were derived as the modest and reliable constraints on baryonium intercepts from baryon and boson intercepts by imposing unitarity and Regge behaviors on scattering amplitudes. As a consequence of residue factorization and duality, the baryonium slopes were derived. The spin of S (1936) was also obtained. The baryonium containing s or c quarks can also be studied. Topics such as the EXD patterns of baryons, linear baryons, linear Regge trajectories for all Q-anti Q families, and the Al and two Q mesons, are presented in this paper. Comments on di-baryon are described. (Kato, T.)

  13. Hadron spectroscopy

    International Nuclear Information System (INIS)

    Oka, Makoto

    2012-01-01

    Spectra of hadrons show various and complex structures due to the strong coupling constants of the quantum chromodynamics (QCD) constituting its fundamental theory. For their understandings, two parameters, i.e., (1) the quark mass and (2) their excitation energies are playing important roles. In low energies, for example, rather simple structures similar to the positronium appear in the heavy quarks such as charms and bottoms. It has been, however, strongly suggested by the recent experiments that the molecular resonant state shows up when the threshold to decay to mesons is exceeded. On the other hand, chiral symmetry and its breaking play important roles in the dynamics of light quarks. Strange quarks are in between and show special behaviors. In the present lecture, the fundamental concept of the hadron spectroscopy based on the QCD is expounded to illustrate the present understandings and problems of the hadron spectroscopy. Sections are composed of 1. Introduction, 2. Fundamental Concepts (hadrons, quarks and QCD), 3. Quark models and exotic hadrons, 4. Lattice QCD and QCD sum rules. For sections 1 to 3, only outline of the concepts is described because of the limited space. Exotic hadrons, many quark pictures of light hadrons and number of quarks in hadrons are described briefly. (S. Funahashi)

  14. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Science.gov (United States)

    Leahy-Hoppa, Megan R.; Miragliotta, Joseph; Osiander, Robert; Burnett, Jennifer; Dikmelik, Yamac; McEnnis, Caroline; Spicer, James B.

    2010-01-01

    Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS), coherent Raman spectroscopy, and terahertz (THz) spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications. PMID:22399883

  15. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Megan R. Leahy-Hoppa

    2010-04-01

    Full Text Available Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS, coherent Raman spectroscopy, and terahertz (THz spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications.

  16. Handbook of Molecular Force Spectroscopy

    CERN Document Server

    Noy, Aleksandr

    2008-01-01

    "...Noy's Handbook of Molecular Force Spectroscopy is both a timely and useful summary of fundamental aspects of molecular force spectroscopy, and I believe it would make a worthwhile addition to any good scientific library. New research groups that are entering this field would be well advisedto study this handbook in detail before venturing into the exciting and challenging world of molecular force spectroscopy." Matthew F. Paige, University of Saskatchewan, Journal of the American Chemical Society Modern materials science and biophysics are increasingly focused on studying and controlling intermolecular interactions on the single-molecule level. Molecular force spectroscopy was developed in the past decade as the result of several unprecedented advances in the capabilities of modern scientific instrumentation, and defines a number of techniques that use mechanical force measurements to study interactions between single molecules and molecular assemblies in chemical and biological systems. Examples of these...

  17. Analysis of the technique Thermal Desorption Spectroscopy (TDS) and its Application for the Characterization of Metal -Hydrogen Systems; Analisis de la Tecnica Espectroscopia de Desorcion Termica (TDS) y su Applicacion para la Caracterizacion de Sistemas Metal-Hydrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Castro, F J [Comision Nacional de Energia Atomica, Centro Atomico Bariloche (Argentina)

    2000-07-01

    We present the theoretical and experimental developments made to study the desorption of hydrogen from metallic samples by Thermal Desorption Spectroscopy (TDS). With this technique gas desorption is stimulated by the programmed heating of the sample. To perform the study we set up a newly designed equipment and develop theoretical models of the kinetic processes involved. The equipment and the models are used to analyze the desorption process in a real system. We begin by analyzing the models developed to interpret the results of the experiments. These models considersimultaneously bulk diffusion and surface reaction processes in metal-hydrogen systems with one or two thermodynamic phases. We present numerical results, computer simulations and analytical approximations of the original models. Based on these results we analyze the main features of the spectra for the different relevant kinetic processes, and determine the changes induced in them when material parameters (activation energies, geometry) or experimental parameters (heating speed, initial concentration) are modified.We present the original equipment, designed and constructed during this work to perform the TDS experiments. We describe its main characteristics, its components, its range of operation and its sensibility. We also offer an analysis of the background spectrum. We use the Pd-H system to test the equipment and the models. The samples chosen, powders, granules, foils and wires, were previously characterized to analyze their composition, their morphology and their characteristic size. We show the results of Scanning Electron Microscopy (SEM) observation, X ray diffraction (XRD) and Auger Electron Spectroscopy (AES) analysis.We then present and analyze in depth the experimental desorption spectra of the palladium powder. Based on the analysis we determine the rate limiting step for desorption and the characteristic activation energies. When the system is on the b phase (hydride) the rate

  18. Espectroscopía NIR como Técnica Exploratoria Rápida para Detección de Amarillamiento Hojas Crisantemo (Dendranthema grandiflora var. Zembla / NIR Spectroscopy as Quick Exploratory Technique for Detection of Chrysanthemum Leaf Yellowing (Dendranthema

    Directory of Open Access Journals (Sweden)

    Juan Carlos Pérez Naranjo

    2014-03-01

    Full Text Available Resumen. El diagnóstico seguro de enfermedades en lasplantas depende de técnicas costosas, que requieren de tiempo y entrenamiento especializado. Esta investigación evaluó el uso de espectroscopia infrarroja cercana NIR (por sus siglas en ingles near-infrared para la detección rápida del “amarillamiento de hojas de crisantemo”, una enfermedad de etiología incierta que genera pérdidas económicas importantes. En este experimento se tomaron espectros infrarrojos en hojas con niveles de amarillamiento diferentes según la clasificación empleada por los agricultores (asintomáticas, síntomas intermedios y hojasdeformadas con síntomas avanzados. Mediante un análisis de componentes principales y con los valores de los espectros de esas muestras, se desarrolló un modelo de clasificación de hojas. Ese modelo aplicado en espectros de hojas tomados al azar separó adecuadamente el grupo de espectros NIR de hojas asintomáticas de un grupo indiferenciado de espectros obtenidos de hojas consíntomas intermedios o avanzados. Los resultados sugieren que para esta enfermedad es posible desarrollar un modelo de detección en muestras problema. Para ello, se requerirá incorporar al modelo un mayor número de muestras en rangos de enfermedad bien definidos. Estos resultados permiten vislumbrar las posibilidades del uso de esta técnica no destructiva, para detección temprana de los síntomas del amarillamiento foliar en crisantemo y como herramienta para el diseño de estrategias oportunas y efectivas demanejo de esta y otras enfermedades en las plantas. / Abstract. The safe diagnostic of plant diseases depends on expensive techniques which require time and specialized training. This study evaluated the use of near-infrared spectroscopy (NIR for the rapid detection of “chrysanthemum leaf yellowing”, a disease of unknown etiology causing important economic losses in Antioquia’s chrysanthemum main producing areas

  19. A novel task specific magnetic polymeric ionic liquid for selective preconcentration of potassium in oil samples using centrifuge-less dispersive liquid-liquid microextraction technique and its determination by flame atomic emission spectroscopy.

    Science.gov (United States)

    Beiraghi, Asadollah; Shokri, Masood

    2018-02-01

    In the present study a new centrifuge-less dispersive liquid-liquid microextraction technique based on application of a new task specific magnetic polymeric ionic liquid (TSMPIL) as a chelating and extraction solvent for selective preconcentration of trace amounts of potassium from oil samples is developed, for the first time. After extraction, the fine droplets of TSMPIL were transferred into an eppendorf tube and diluted to 500µL using distilled water. Then, the enriched analyte was determined by flame atomic emission spectroscopy (FAES). Several important factors affecting both the complexation and extraction efficiency including extraction time, rate of vortex agitator, amount of carbonyl iron powder, pH of sample solution, volume of ionic liquid as well as effects of interfering species were investigated and optimized. Under the optimal conditions, the limits of detection (LOD) and quantification (LOQ) were 0.5 and 1.6µgL -1 respectively with the preconcentration factor of 128. The precision (RSD %) for seven replicate determinations at 10µgL -1 of potassium was better than 3.9%. The relative recoveries for the spiked samples were in the acceptable range of 95-104%. The results demonstrated that no remarkable interferences are created by other various ions in the determination of potassium, so that the tolerance limits (W Ion /W K ) of major cations and anions were in the range of 2500-10,000. The purposed method was successfully applied for the analysis of potassium in some oil samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Nanosecond fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Leskovar, B.

    1985-03-01

    This article is a summary of a short course lecture given in conjunction with the 1984 Nuclear Science Symposium. Measuring systems for nanosecond fluorescence spectroscopy using single-photon counting techniques are presented. These involve systems based on relaxation-type spark gap light pulser and synchronously pumped mode-locked dye lasers. Furthermore, typical characteristics and optimization of operating conditions of the critical components responsible for the system time resolution are discussed. A short comparison of the most important deconvolution methods for numerical analysis of experimental data is given particularly with respect to the signal-to-noise ratio of the fluorescence signal. 22 refs., 8 figs

  1. Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Gopalaraman, C.P.

    1975-01-01

    General features of electron excited Auger electron spectroscopy (AES) which is a nondestructive technique for the analysis of surfaces upto about 15 Adeg depth with a detection limit of about 0.1% of a monolayer. Methods of measuring the Auger electron energies and recent improvements in the instrumentation are reviewed. Typical energy resolution is found to be about 0.5% which is specially suited for the detection of light elements. It is widely used in metallurgy, surface chemistry and thin film studies. (K.B.)

  2. XXII Conference on spectroscopy. Summaries of reports

    International Nuclear Information System (INIS)

    2001-01-01

    XXII Conference on spectroscopy took place 8-12 October 2001 in Zvenigorod, Moscow region. The recent advantages in the field of atomic and molecular spectroscopy were discussed. The current methods for elemental spectra analysis were considered. They are based on both traditional atomic emission, adsorption and Raman spectroscopic techniques and on introduction of the mass spectroscopy with the high-temperature plasma atomizer. The particular attention was given the application of spectroscopic methods for plasma diagnostics and air pollution control [ru

  3. Continuum and discrete pulsed cavity ring down laser absorption spectra of Br2 vapor.

    Science.gov (United States)

    Sharma, Ramesh C; Huang, Hong-Yi; Chuang, Wang-Ting; Lin, King-Chuen

    2005-07-01

    The absorption cross-sections at room temperature are reported for the first time, of Br2 vapor in overlapping bound-free and bound-bound transition of A(3)pi1u Br2. We obtained discrete absorption cross-section in the rotational structure, the continuum absorption cross-sections, and were also able to measure the absorption cross-section in separate contribution of A(3)pi1u Br2. The absorption cross-sections are increasing with increasing excitation energy in the wavelength region 510-535 nm.

  4. Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Zemcik, T.

    1984-01-01

    The emission and absorption of photons taking place without changes in the frequency spectrum of the crystal lattice are known as the Moessbauer effect. It takes place in the low energy levels of heavy nuclei in solid lattices at low temperatures. On the basis of the hyperfine structure of Moessbauer spectra the notions are explained of isomer shift, quadrupole splitting and magnetic splitting. The principle and function are explained of Moessbauer spectrometers and the methods of graphical processing of spectra, also the use of the least square fit. Moessbauer spectroscopy is nondestructive, highly sensitive and selective and makes structural resolution possible. It is used for quantitative and qualitative analysis of compounds. Examples are given of the use of this method for mineralogical and crystallo-chemical analysis of lunar minerals and rocks, for analysis of corrosion products of iron and for phase analysis of alloys. (M.D.)

  5. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Shirley, D.A.

    1976-01-01

    Research activities in photoelectron spectroscopy at Lawrence Radiation Laboratory during 1976 are described. Topics covered include: the orientation of CO on Pt(III) and Ni(III) surfaces from angle-resolved photoemission; photoemission from CO on Pt(III) in the range 40 eV less than or equal to dirac constant ω less than or equal to 150 eV; photoemission studies of electron states at clean surfaces using synchrotron radiation; angle and energy dependent photoemission studies of plasmon loss structure in Al and In; d-orbital directed photoemission from copper; interpretation of angle-resolved x-ray photoemission from valence bands; atomic cross-section effects in soft x-ray photoemission from Ag, Au, and Pt valence bands; x-ray photoelectron spectroscopic studies of the electronic structure of transition metal difluorides; x-ray photoemission investigation of the density of states of B'-NiAl; the electronic structure of SrTiO 3 and some simple related oxides; fluorescence lifetime measurements of np 5 (n+1)S' states in krypton and xenon; Zeeman beats in the resonance fluorescence of the 3P 1 , states in krypton and xenon; lifetime measurements of rare-gas dimers; configuration interaction effects in the atomic photoelectron spectra of Ba, Sm, Eu, and Yb; glow discharge lamps as electron sources for electron impact excitation; electron impact excitation of electron correlation states in Ca, Sr, and Ba; photoelectron spectroscopy of atomic and molecular bismuth; relativistic effects in the uv photoelectron spectra of group VI diatomic molecules; and relative gas-phase acidities and basicities from a proton potential model

  6. Layman friendly spectroscopy

    Science.gov (United States)

    Sentic, Stipo; Sessions, Sharon

    Affordable consumer grade spectroscopes (e.g. SCiO, Qualcomm Tricorder XPRIZE) are becoming more available to the general public. We introduce the concepts of spectroscopy to the public and K12 students and motivate them to delve deeper into spectroscopy in a dramatic participatory presentation and play. We use diffraction gratings, lasers, and light sources of different spectral properties to provide a direct experience of spectroscopy techniques. Finally, we invite the audience to build their own spectroscope--utilizing the APS SpectraSnapp cell phone application--and study light sources surrounding them in everyday life. We recontextualize the stigma that science is hard (e.g. ``Math, Science Popular Until Students Realize They're Hard,'' The Wall Street Journal) by presenting the material in such a way that it demonstrates the scientific method, and aiming to make failure an impersonal scientific tool--rather than a measure of one's ability, which is often a reason for shying away from science. We will present lessons we have learned in doing our outreach to audiences of different ages. This work is funded by the APS Outreach Grant ``Captain, we have matter matters!'' We thank New Mexico Tech Physics Department and Physics Club for help and technical equipment.

  7. The nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Goyer, Ph.

    1997-01-01

    The spectroscopy of nuclear magnetic resonance constitutes a major analytical technique in biological and organic analysis. This technique appears now in the programme of preparatory classes and its teaching is developed in the second year of DEUG. The following article reviews on the nuclear magnetic resonance and on the possibilities it offers to bring to the fore the physico-chemical properties of molecules. (N.C.)

  8. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  9. Noise and detection in ''optical'' modulation spectroscopy

    International Nuclear Information System (INIS)

    Montelatici, V.

    1975-01-01

    The measuring techniques suitable for ''optical'' modulation spectroscopy are analyzed and source of noise identified. The choice of optical detector is for photoelectrical devices. It is shown that the shot noise of phototubes is the most important noise source

  10. Attosecond transient absorption spectroscopy of molecular hydrogen

    International Nuclear Information System (INIS)

    Martín, Fernando; González-Castrillo, Alberto; Palacios, Alicia; Argenti, Luca; Cheng, Yan; Chini, Michael; Wang, Xiaowei; Chang, Zenghu

    2015-01-01

    We extend attosecond transient absorption spectroscopy (ATAS) to the study of hydrogen molecules, demonstrating the potential of the technique to resolve – simultaneously and with state resolution – both the electronic and nuclear dynamics. (paper)

  11. SIMP spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hochberg, Yonit [Ernest Orlando Lawrence Berkeley National Laboratory, University of California,Berkeley, CA 94720 (United States); Department of Physics, University of California,Berkeley, CA 94720 (United States); Kuflik, Eric [Department of Physics, LEPP, Cornell University,Ithaca NY 14853 (United States); Murayama, Hitoshi [Ernest Orlando Lawrence Berkeley National Laboratory, University of California,Berkeley, CA 94720 (United States); Department of Physics, University of California,Berkeley, CA 94720 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI),University of Tokyo Institutes for Advanced Study, University of Tokyo,Kashiwa 277-8583 (Japan); Center for Japanese Studies, University of California,Berkeley, CA 94720 (United States)

    2016-05-16

    We study the interactions between strongly interacting massive particle dark matter and the Standard Model via a massive vector boson that is kinetically mixed with the hypercharge gauge boson. The relic abundance is set by 3→2 self-interactions of the dark matter, while the interactions with the vector mediator enable kinetic equilibrium between the dark and visible sectors. We show that a wide range of parameters is phenomenologically viable and can be probed in various ways. Astrophysical and cosmological constraints are evaded due to the p-wave nature of dark matter annihilation into visible particles, while direct detection methods using electron recoils can be sensitive to parts of the parameter space. In addition, we propose performing spectroscopy of the strongly coupled dark sector at e{sup +}e{sup −} colliders, where the energy of a mono-photon can track the resonance structure of the dark sector. Alternatively, some resonances may decay back into Standard Model leptons or jets, realizing ‘hidden valley’ phenomenology at the LHC and ILC in a concrete fashion.

  12. SIMP spectroscopy

    International Nuclear Information System (INIS)

    Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi

    2016-01-01

    We study the interactions between strongly interacting massive particle dark matter and the Standard Model via a massive vector boson that is kinetically mixed with the hypercharge gauge boson. The relic abundance is set by 3→2 self-interactions of the dark matter, while the interactions with the vector mediator enable kinetic equilibrium between the dark and visible sectors. We show that a wide range of parameters is phenomenologically viable and can be probed in various ways. Astrophysical and cosmological constraints are evaded due to the p-wave nature of dark matter annihilation into visible particles, while direct detection methods using electron recoils can be sensitive to parts of the parameter space. In addition, we propose performing spectroscopy of the strongly coupled dark sector at e + e − colliders, where the energy of a mono-photon can track the resonance structure of the dark sector. Alternatively, some resonances may decay back into Standard Model leptons or jets, realizing ‘hidden valley’ phenomenology at the LHC and ILC in a concrete fashion.

  13. Planetary spectroscopy

    International Nuclear Information System (INIS)

    Fink, U.

    1988-01-01

    The main goal of the research is charge coupled device (CCD) spectroscopic and imaging studies of the solar system in support of spacecraft investigations. Studies include the physical behavior of comets, the atmosphere of the gaseous planets, and the solid surfaces of satellites and asteroids. The major observing program consisted of approximately 50 nights of photometry of Comet Halley in order to resolve the controversy over this comet's rotation period. This data is presently being analyzed. Additional observing projects included the spectroscopic occultation of Charon by Pluto, reflection spectroscopy of Mercury, and a spectrum of the satellite Oberon. Mercury data does not corroborate the Fe(++) absorption feature reported by McCord and Clark at 8800 A but instead potentially shows a weaker feature at longer wavelengths. This position is in much closer accord with expectations for Mercury since a band center near 8800 A implies too little Fe(++) on Mercury, especially if band shifts with temperature are considered. The Pluto project proved that the deep methane absorptions visible in their combined specta are due soley to Pluto with Charon showing a flat and featureless spectrum. It appears that if Charon ever contained a substantial methane component, the satellite's low surface gravity could not hold it and the methane evaporated and escaped

  14. Intermolecular spectroscopy

    International Nuclear Information System (INIS)

    Gelbart, W.M.

    1980-01-01

    In this article some of the theoretical background is presented for the following papers on 'Intermolecular Spectroscopy and Dynamical Properties of Dense Systems'. In Section 1 we outline a simple semi-classical description of the interaction between optical radiation and matter. The motion of a many-body polarizability is introduced; limiting forms of this complicated quantity lead to the familiar cases of light scattering spectra. In Section 2 we consider the linear response approximation, and the equation of motion for the many-body density matrix is solved to first order in the matter-radiation interaction. The often quoted fluctuation-dissipation theorem and the time-dependent, equilibrium correlation functions are discussed. Section 3 treats the problem of the local field. In Section 4 we consider the special case of collision-induced light scattering by atomic fluids in the low-density limit. This allows us to focus on determining the interaction polarizability for simple gases. Finally, in Section 5 we distinguish between collision-induced and multiple light scattering, and discuss the double-light-scattering analyses which provide new information about critical and thermodynamically unstable fluids. (KBE)

  15. Development of atomic spectroscopy technology

    International Nuclear Information System (INIS)

    Lee, Jong Min; Cha, Hyung Ki; Song, Kyu Seok; Yang, Ki Ho; Baik, Dae Hyun; Lee, Young Joo; Yi, Jong Hoon; Jeong, Do Young; Jeong, Eui Chang; Yoo, Byung Duk; Cha, Byung Heon; Kim, Seong Ho; Nam, Seong Mo; Kim, Sun Kuk; Lee, Byung Cheol; Choi, Hwa Lim; Ko, Dok Yung; Han, Jae Min; Rho, Si Pyo; Lim, Chang Hwan; Choi, An Seong

    1992-12-01

    This project is aimed for the 'Development of extraction and separation techniques for stable isotopes by atomic laser spectroscopy technique'. The project is devided by two sub-projects. One is the 'Development of the selective photoionization technology' and the other is 'Development of ultrasensitive spectroscopic analysis technololgy'. This year studies on Hg and Yb, both of which have 7 isotopes, have been performed and, as a result, it was proved that specific isotopes of these elements could be selectively extracted. In addition study on plasma extraction technique, development of atomizers, design of electron gun have been the result of the project in 1992. In second sub-project trace determination of Pb has been performed with laser resonance ionization spectroscopy. As a result 20 picogram of detection limit has been obtained. In addition to these results, design of high sensitive laser induced fluorescence detection system as well as remote sensing DIAL system have been done. (Author)

  16. Nuclear γ-ray spectroscopy of cool free atoms

    International Nuclear Information System (INIS)

    Rivlin, Lev A

    1999-01-01

    Consideration is given to the capabilities of gamma-ray spectroscopy of the nuclei of free neutral atoms cooled employing modern laser light-pressure techniques. This spectroscopy is comparable with the Mossbauer spectroscopy in respect of the expected resolving power. (laser applications and other topics in quantum electronics)

  17. Ultrafast surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Keller, Emily L; Brandt, Nathaniel C; Cassabaum, Alyssa A; Frontiera, Renee R

    2015-08-07

    Ultrafast surface-enhanced Raman spectroscopy (SERS) with pico- and femtosecond time resolution has the ability to elucidate the mechanisms by which plasmons mediate chemical reactions. Here we review three important technological advances in these new methodologies, and discuss their prospects for applications in areas including plasmon-induced chemistry and sensing at very low limits of detection. Surface enhancement, arising from plasmonic materials, has been successfully incorporated with stimulated Raman techniques such as femtosecond stimulated Raman spectroscopy (FSRS) and coherent anti-Stokes Raman spectroscopy (CARS). These techniques are capable of time-resolved measurement on the femtosecond and picosecond time scale and can be used to follow the dynamics of molecules reacting near plasmonic surfaces. We discuss the potential application of ultrafast SERS techniques to probe plasmon-mediated processes, such as H2 dissociation and solar steam production. Additionally, we discuss the possibilities for high sensitivity SERS sensing using these stimulated Raman spectroscopies.

  18. Binary and ternary recombination of D3+ ions at 80-130 K: Application of laser absorption spectroscopy

    Science.gov (United States)

    Dohnal, Petr; Hejduk, Michal; Rubovič, Peter; Varju, Jozef; Roučka, Štěpán; Plašil, Radek; Glosík, Juraj

    2012-11-01

    Recombination of D_3^+ ions with electrons at low temperatures (80-130 K) was studied using spectroscopic determination of D_3^+ ions density in afterglow plasmas. The use of cavity ring-down absorption spectroscopy enabled an in situ determination of the abundances of the ions in plasma and the translational and the rotational temperatures of the recombining ions. Two near infrared transitions at (5792.70 ± 0.01) cm-1 and at (5793.90 ± 0.01) cm-1 were used to probe the number densities of the lowest ortho state and of one higher lying rotational state of the vibrational ground state of D_3^+ ion. The results show that D_3^+ recombination with electrons consists of the binary and the third-body (helium) assisted process. The obtained binary recombination rate coefficients are in agreement with a recent theoretical prediction for electron-ion plasma in thermodynamic equilibrium with αbin(80 K) = (9.2 ± 2.0) × 10-8 cm3 s-1. The measured helium assisted ternary rate coefficients KHe are in agreement with our previously measured flowing afterglow data giving a value of KHe(80 K) = (1.2 ± 0.3) × 10-25 cm6 s-1.

  19. Binary and ternary recombination of D3+ ions at 80-130 K: application of laser absorption spectroscopy.

    Science.gov (United States)

    Dohnal, Petr; Hejduk, Michal; Rubovič, Peter; Varju, Jozef; Roučka, Štěpán; Plašil, Radek; Glosík, Juraj

    2012-11-21

    Recombination of D(3)(+) ions with electrons at low temperatures (80-130 K) was studied using spectroscopic determination of D(3)(+) ions density in afterglow plasmas. The use of cavity ring-down absorption spectroscopy enabled an in situ determination of the abundances of the ions in plasma and the translational and the rotational temperatures of the recombining ions. Two near infrared transitions at (5792.70 ± 0.01) cm(-1) and at (5793.90 ± 0.01) cm(-1) were used to probe the number densities of the lowest ortho state and of one higher lying rotational state of the vibrational ground state of D(3)(+) ion. The results show that D(3)(+) recombination with electrons consists of the binary and the third-body (helium) assisted process. The obtained binary recombination rate coefficients are in agreement with a recent theoretical prediction for electron-ion plasma in thermodynamic equilibrium with α(bin)(80 K) = (9.2 ± 2.0) × 10(-8) cm(3) s(-1). The measured helium assisted ternary rate coefficients K(He) are in agreement with our previously measured flowing afterglow data giving a value of K(He)(80 K) = (1.2 ± 0.3) × 10(-25) cm(6) s(-1).

  20. Variable angle correlation spectroscopy

    International Nuclear Information System (INIS)

    Lee, Y.K.; Lawrence Berkeley Lab., CA

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13 C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system

  1. Transit spectroscopy with GTC

    Directory of Open Access Journals (Sweden)

    Osorio M.R. Zapatero

    2013-04-01

    Full Text Available Thanks to different ground-based surveys and space missions, nowadays we have a fairly large sample of discovered extra-solar planets to study and, without a doubt, this number will increase in the future. One of the most succesful techniques that allows us to prove the physical properties and atmospheric composition of these exoplanets is transmission spectroscopy. The level of precision that is require to measure these effects provides a technical challenge that is solved by using big telescopes and stable instruments to reach low noise levels. In this article, we will discuss the use of the 10m class telescope GTC to observed planetary transits in spectroscopic mode and some of the results that we are currently obtaining.

  2. Fast beam radiofrequency spectroscopy

    International Nuclear Information System (INIS)

    Pipkin, F.M.

    1983-01-01

    The combination of a fast atom or ion beam derived from a small accelerator with radiofrequency spectroscopy methods provides a powerful method for measuring the fine structure of atomic and molecular systems. The fast beam makes possible measurements in which two separated oscillatory fields are used to obtain resonance lines whose widths are less than the natural line width due to the lifetimes of the states. The separated oscillatory field lines have, in addition, a number of features which make possible measurements with greater precision and less sensitivity to systematic errors. The fast beam also makes accessible multiple photon radiofrequency transitions whose line width is intrinsically narrower than that of the single photon transitions and which offer great potential for high precision measurements. This report focuses on the techniques and their promise. Recent measurements of the fine structure of H and He + are used as illustrations

  3. Baryon spectroscopy in COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Austregesilo, Alexander; Chung, Suh-Urk; Ketzer, Bernhard; Neubert, Sebastian; Paul, Stephan [Technische Universitaet Muenchen, Physik Department E18, D-85748 Garching (Germany)

    2010-07-01

    COMPASS is a fixed-target experiment at CERN SPS which investigates the structure and spectroscopy of hadrons. During in total 9 weeks in 2008 and 2009, a 190 GeV/c proton beam impinging on a liquid hydrogen target has been used primarily to study the production of exotic mesons and glueball candidates at central rapidities. As no bias on the rapidity was introduced by the trigger system, the data also yield the unique possibility to study diffractive dissociation of the beam proton while an inert target is assumed. To this end exclusive events with three charged particles including one proton in the final state have been extracted. We report on the status of the event selection studies and discuss the prospect of using partial wave analysis techniques, which have been successfully applied for diffractive dissociation reactions of pions in COMPASS.

  4. Trapping and spectroscopy of hydrogen

    International Nuclear Information System (INIS)

    Cesar, Claudio Lenz

    1997-01-01

    I review the results and techniques used by the MIT H↑ group to achieve a fractional resolution of 2 parts in 10 12 in the 1S-2S transition in hydrogen [Cesar, D. Fried, T. Killian, A. Polcyn, J. Sandberg, I.A. Yu, T. Greytak, D. Kleppner and J. Doyle, Two-photon spectroscopy of trapped atomic hydrogen, Phys. Rev. Lett. 77 (1996) 255.] With some improvements, this system should deliver 100 times higher resolution with an improved signal count rate getting us closer to an old advertised goal of a precision of 1 part in 10 18 . While these developments are very important for the proposed test of the CPT theorem through the comparison with anti-hydrogen, some of the techniques used with hydrogen are not applicable to anti-hydrogen and I discuss some difficulties and alternatives for the trapping and spectroscopy of anti-hydrogen

  5. High temperature impedance spectroscopy of barium stannate

    Indian Academy of Sciences (India)

    ... differential thermal analysis, thermogravimetric analysis and Fourier transform infrared techniques. Electrical properties were studied using a.c. impedance spectroscopy technique in the temperature range of 50–650 °C and frequency range of 10 Hz–13 MHz. The complex impedance plots at temperature ≥ 300 °C show ...

  6. Deep-ultraviolet cavity ringdown spectroscopy

    NARCIS (Netherlands)

    Sneep, M.C.; Hannemann, S.; van Duijn, E.J.; Ubachs, W.M.G.

    2004-01-01

    The sensitive optical detection technique of cavity ringdown spectroscopy is extended to the wavelength range 197-204 nm. A novel design narrowband Fourier-transform-limited laser is used, and the technique is applied to gas-phase extinction measurements in CO

  7. Developments in inverse photoemission spectroscopy

    International Nuclear Information System (INIS)

    Sheils, W.; Leckey, R.C.G.; Riley, J.D.

    1996-01-01

    In the 1950's and 1960's, Photoemission Spectroscopy (PES) established itself as the major technique for the study of the occupied electronic energy levels of solids. During this period the field divided into two branches: X-ray Photoemission Spectroscopy (XPS) for photon energies greater than ∼l000eV, and Ultra-violet Photoemission Spectroscopy (UPS) for photon energies below ∼100eV. By the 1970's XPS and UPS had become mature techniques. Like XPS, BIS (at x-ray energies) does not have the momentum-resolving ability of UPS that has contributed much to the understanding of the occupied band structures of solids. BIS moved into a new energy regime in 1977 when Dose employed a Geiger-Mueller tube to obtain density of unoccupied states data from a tantalum sample at a photon energy of ∼9.7eV. At similar energies, the technique has since become known as Inverse Photoemission Spectroscopy (IPS), in acknowledgment of its complementary relationship to UPS and to distinguish it from the higher energy BIS. Drawing on decades of UPS expertise, IPS has quickly moved into areas of interest where UPS has been applied; metals, semiconductors, layer compounds, adsorbates, ferromagnets, and superconductors. At La Trobe University an IPS facility has been constructed. This presentation reports on developments in the experimental and analytical techniques of IPS that have been made there. The results of a study of the unoccupied bulk and surface bands of GaAs are presented

  8. Spectroscopy, scattering, and KK molecules

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J. [Univ. of Mississippi, University, MS (United States)

    1994-04-01

    The author presents a pedagogical description of a new theoretical technique, based on the multichannel Schroedinger equation, for simultaneously applying the quark model to both meson spectroscopy and meson-meson scattering. This is an extension of an earlier analysis which led to the prediction that the f{sub o}(975) and a{sub o}(980) scalar mesons are K{bar K} molecular states.

  9. Neutron spectroscopy for confinement studies

    International Nuclear Information System (INIS)

    Zorn, R.

    2010-01-01

    Neutron spectroscopy is an important method for the study of microscopic dynamics because it captures the spatial as well as the temporal aspects of the atomic or molecular motion. In this article techniques will be presented which are of special importance for the study of confined systems. Many of these are based on the fact that neutron scattering is isotope-dependent. Possible sources of systematic errors in measurements of confined systems will be pointed out. (author)

  10. High resolution and high precision absorption spectroscopy using high finesse cavities: application to the study of molecules with atmospheric interest; Cavites de haute finesse pour la spectroscopie d'absorption haute sensibilite et haute precision: application a l'etude de molecules d'interet atmospherique

    Energy Technology Data Exchange (ETDEWEB)

    Motto-Ros, V.

    2005-12-15

    High finesse cavities are used to measure very weak absorption features. Two different methodologies are investigated and applied to the study of molecules with atmospheric interest. First, Continuous Wave - Cavity Ring Down Spectroscopy (CW-CRDS) is used to study the atmospheric spectra of water vapour in the near infrared range. These measurements are performed for temperature and pressure of atmospheric relevance for DIAL applications (Differential Absorption Lidar). This study, financed by the European Space Agency (ESA), goes with the WALES mission (Water Vapour Lidar Experiment in Space). The experimental setup was conceived in order to control pressure, temperature and relative humidity conditions. A particular attention is done to characterize and describe the spectrometer. Then, measurements of red Oxygen B band are performed to demonstrate the huge performance of Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS). The desired optical feedback is obtained by light injection into the high finesse cavity through a glass plate placed inside the cavity and closed to the Brewster angle. We show a measurement dynamical range of 5 orders of magnitude (10{sup -5} to 10{sup -10} /cm) and a sensitivity of 10{sup -10} /cm/{radical} Hz. Also, sampling absorption spectra by the super linear cavity frequency comb allows very precise frequency measurements. This is demonstrated by the determination of Oxygen pressure shifts with an absolute accuracy of around 5 x 10{sup -5} cm{sup -1}/atm. To our knowledge, we provide the highest accuracy ever reported for this parameter. (author)

  11. High resolution and high precision absorption spectroscopy using high finesse cavities: application to the study of molecules with atmospheric interest; Cavites de haute finesse pour la spectroscopie d'absorption haute sensibilite et haute precision: application a l'etude de molecules d'interet atmospherique

    Energy Technology Data Exchange (ETDEWEB)

    Motto-Ros, V

    2005-12-15

    High finesse cavities are used to measure very weak absorption features. Two different methodologies are investigated and applied to the study of molecules with atmospheric interest. First, Continuous Wave - Cavity Ring Down Spectroscopy (CW-CRDS) is used to study the atmospheric spectra of water vapour in the near infrared range. These measurements are performed for temperature and pressure of atmospheric relevance for DIAL applications (Differential Absorption Lidar). This study, financed by the European Space Agency (ESA), goes with the WALES mission (Water Vapour Lidar Experiment in Space). The experimental setup was conceived in order to control pressure, temperature and relative humidity conditions. A particular attention is done to characterize and describe the spectrometer. Then, measurements of red Oxygen B band are performed to demonstrate the huge performance of Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS). The desired optical feedback is obtained by light injection into the high finesse cavity through a glass plate placed inside the cavity and closed to the Brewster angle. We show a measurement dynamical range of 5 orders of magnitude (10{sup -5} to 10{sup -10} /cm) and a sensitivity of 10{sup -10} /cm/{radical} Hz. Also, sampling absorption spectra by the super linear cavity frequency comb allows very precise frequency measurements. This is demonstrated by the determination of Oxygen pressure shifts with an absolute accuracy of around 5 x 10{sup -5} cm{sup -1}/atm. To our knowledge, we provide the highest accuracy ever reported for this parameter. (author)

  12. electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Egerton, R.

    1997-01-01

    As part of a commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article describes the use of electron energy-loss spectroscopy. The physical and chemical properties of materials can be studied by considering the energy that electrons use as they travel through a solid, often in conjunction with other analytical techniques. The technique is often combined with electron diffraction and high-resolution imaging and can be used to provide elemental identification down to the atomic scale. 6 figs

  13. Electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Egerton, R.

    1997-01-01

    As part of the commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article discusses electron energy-loss spectroscopy. The physical and chemical properties of materials can be studied by considering the energy that electrons use as they travel through a solid, often in conjunction with other analytical techniques. The technique is often combined with electron diffraction and high-resolution imaging and can be used to provide elemental identification down to the atomic scale. (UK)

  14. Spectrometric techniques 3

    CERN Document Server

    Vanasse, George A

    2013-01-01

    Spectrometric Techniques, Volume III presents the applications of spectrometric techniques to atmospheric and space studies. This book reviews the spectral data processing and analysis techniques that are of broad applicability.Organized into five chapters, this volume begins with an overview of the instrumentation used for obtaining field data. This text then reviews the contribution that space-borne spectroscopy in the thermal IR has made to the understanding of the planets. Other chapters consider the instruments that have recorded the planetary emission spectra. This book discusses as well

  15. Spectrometric techniques 4

    CERN Document Server

    Vanasse, George A

    2013-01-01

    Spectrometric Techniques, Volume IV discusses three widely diversified areas of spectrometric techniques. The book focuses on three spectrometric methods. Chapter 1 discusses the phenomenology and applications of Coherent Anti-Stokes Raman Spectroscopy (CARS), the most commonly used optical technique that exploit the Raman effect. The second chapter is concerned with diffraction gratings and mountings for the Vacuum Ultraviolet Spectral Region. Chapter 3 accounts the uses of mass spectrometry, detectors, types of spectrometers, and ion sources. Physicists and chemists will find the book a go

  16. Spectrometric techniques 2

    CERN Document Server

    Vanasse, George A

    2013-01-01

    Spectrometric Techniques, Volume II provides information pertinent to vacuum ultraviolet techniques to complete the demonstration of the diversity of methods available to the spectroscopist interested in the ultraviolet visible and infrared spectral regions. This book discusses the specific aspects of the technique of Fourier transform spectroscopy.Organized into five chapters, this volume begins with an overview of the large number of systematic effects in the recording of an interferogram. This text then examines the design approach for a Fourier transform spectrometer with focus on optics.

  17. Near-infrared spectroscopy for cocrystal screening

    DEFF Research Database (Denmark)

    Allesø, Morten; Velaga, Sitaram; Alhalaweh, Amjad

    2008-01-01

    Near-infrared (NIR) spectroscopy is a well-established technique for solid-state analysis, providing fast, noninvasive measurements. The use of NIR spectroscopy for polymorph screening and the associated advantages have recently been demonstrated. The objective of this work was to evaluate...... the analytical potential of NIR spectroscopy for cocrystal screening using Raman spectroscopy as a comparative method. Indomethacin was used as the parent molecule, while saccharin and l-aspartic acid were chosen as guest molecules. Molar ratios of 1:1 for each system were subjected to two types of preparative...... retained in a physical mixture with the guest molecule, while liquid-assisted cogrinding did not induce any changes in the crystal lattice. The good chemical peak selectivity of Raman spectroscopy allowed a straightforward interpretation of sample data by analyzing peak positions and comparing to those...

  18. Photoacoustic spectroscopy for analytical measurements

    International Nuclear Information System (INIS)

    Haisch, Christoph

    2012-01-01

    Many different techniques, such as UV/vis absorption, IR spectroscopy, fluorescence and Raman spectroscopy are routinely applied in chemical (micro-)analysis and chemical imaging, and a large variety of instruments is commercially available. Up to now, opto- or photoacoustic (PA) and other optothermal (OT) methods are less common and only a limited number of instruments reached a level of application beyond prototypes in research laboratories. The underlying principle of all these techniques is the detection of local heating due to the conversion of light into heat by optical absorption. Considering the versatility, robustness and instrumental simplicity of many PA techniques, it is surprising that the number of commercial instruments based on such approaches is so sparse. The impetus of this review is to summarize basic principles and possible applications described in the literature, in order to foster routine application of these techniques in industry, process analysis and environmental screening. While the terms OT and PA methods cover a very wide range of methods and physical phenomena, this review will concentrate on techniques with applications for analytical measurements. (topical review)

  19. Spectroscopy and optical diagnostics for gases

    CERN Document Server

    Hanson, Ronald K; Goldenstein, Christopher S

    2016-01-01

    This text provides an introduction to the science that governs the interaction of light and matter (in the gas phase). It provides readers with the basic knowledge to exploit the light-matter interaction to develop quantitative tools for gas analysis (i.e. optical diagnostics) and understand and interpret the results of spectroscopic measurements. The authors pair the basics of gas‐phase spectroscopy with coverage of key optical diagnostic techniques utilized by practicing engineers and scientists to measure fundamental flow‐field properties. The text is organized to cover three sub‐topics of gas‐phase spectroscopy: (1) spectral line positions, (2) spectral line strengths, and (3) spectral lineshapes by way of absorption, emission, and scattering interactions. The latter part of the book describes optical measurement techniques and equipment. Key subspecialties include laser induced fluorescence, tunable laser absorption spectroscopy, and wavelength modulation spectroscopy. It is ideal for students an...

  20. Photoelectron spectroscopy an introduction to ultraviolet photoelectron spectroscopy in the gas phase

    CERN Document Server

    Eland, J H D

    2013-01-01

    Photoelectron Spectroscopy: An Introduction to Ultraviolet Photoelectronspectroscopy in the Gas Phase, Second Edition Photoelectron Spectroscopy: An Introduction to Ultraviolet PhotoelectronSpectroscopy in the Gas Phase, Second Edition aims to give practical approach on the subject of photoelectron spectroscopy, as well as provide knowledge on the interpretation of the photoelectron spectrum. The book covers topics such as the principles and literature of photoelectron microscopy; the main features and analysis of photoelectron spectra; ionization techniques; and energies from the photoelectron spectra. Also covered in the book are topics suc as photoelectron band structure and the applications of photoelectron spectroscopy in chemistry. The text is recommended for students and practitioners of chemistry who would like to be familiarized with the concepts of photoelectron spectroscopy and its importance in the field.

  1. Application of Raman spectroscopy for cancer diagnosis

    International Nuclear Information System (INIS)

    Krishnakumar, N.

    2011-01-01

    Cancer is the second leading causes of death next to heart diseases, Half of all cancer cases occur in developing countries. The conventional histopathology is usually the most trustable gold standard for pre-cancer and cancer diagnosis. However, the applicability of this method is more or less restricted because of the requirement of removing human tissues and the difficulty of real time diagnosis. Recently, there has been increased interest in 'optical biopsy' system using tissue spectroscopy to establish the pathological changes. Among optical based methods, Raman spectroscopy is a unique vibrational spectroscopic technique capable of probing biomolecular structures and conformation of tissues, and has excelled in the early detection of pre-cancer and cancer in the number of organs with high diagnostic specificity. Raman spectroscopy offers certain distinct advantages over than other optical diagnostic techniques such as high spatial resolution, use of less harmful NIR radiation, less or no sample preparation, no influence of water bands which facilitates in vivo/in situ measurements. This makes Raman spectroscopy also very useful for biomedical applications. Several research groups have demonstrated the efficacy of this technique in biomedical applications. The background and principle of these techniques will be discussed with some examples and discussions on how Raman spectroscopy can act as a promising technique for rapid in vivo diagnosis and detection of various cancers at the molecular level. (author)

  2. Optogalvanic photoionization spectroscopy

    International Nuclear Information System (INIS)

    Levesque, S.; Gagne, J.-M.; Babin, F.

    1997-01-01

    This paper presents, for the first time, a systematic study of an optogalvanic method for photoionization spectroscopy. The method is particularly attractive for refractory and complex atoms, such as lanthanides and actinides. The relevant characteristics of the hollow cathode discharges used for this study are discussed in detail, along with the experimental protocol for this spectroscopic method. The rapid optogalvanic effect, which results solely from photoionization, is also described. Finally, we present as an example of the application of this method, a table containing some of the recorded uranium photoionization lines in the 16 300-20 500 cm -1 range, along with typical samples of the uranium single-colour photoionization spectrum recorded using the rapid optogalvanic technique. A brief discussion of the sensitivity of the rapid optogalvanic effect is also presented. It appears that the rapid optogalvanic effect is very effective in the detection of highly excited levels. This technique permitted the observation of many new single-colour resonant ionization uranium lines. (Author)

  3. Introductory Raman spectroscopy

    CERN Document Server

    Ferraro, John R

    2012-01-01

    Praise for Introductory Raman Spectroscopy Highlights basic theory, which is treated in an introductory fashion Presents state-of-the-art instrumentation Discusses new applications of Raman spectroscopy in industry and research.

  4. Sub-Doppler spectroscopy

    International Nuclear Information System (INIS)

    Hansch, T.W.

    1983-01-01

    This chapter examines Doppler-free saturation spectroscopy, tunable cw sources, and Doppler-free two-photon spectroscopy. Discusses saturation spectroscopy; continuous wave saturation spectroscopy in the ultraviolet; and two-photon spectroscopy of atomic hydrogen 1S-2S. Focuses on Doppler-free laser spectroscopy of gaseous samples. Explains that in saturation spectroscopy, a monochromatic laser beam ''labels'' a group of atoms within a narrow range of axial velocities through excitation or optical pumping, and a Doppler-free spectrum of these selected atoms is observed with a second, counterpropagating beam. Notes that in two-photon spectroscopy it is possible to record Doppler-free spectra without any need for velocity selection by excitation with two counterpropagating laser beams whose first order Doppler shifts cancel

  5. Cancer diagnosis by infrared spectroscopy: methodological aspects

    Science.gov (United States)

    Jackson, Michael; Kim, Keith; Tetteh, John; Mansfield, James R.; Dolenko, Brion; Somorjai, Raymond L.; Orr, F. W.; Watson, Peter H.; Mantsch, Henry H.

    1998-04-01

    IR spectroscopy is proving to be a powerful tool for the study and diagnosis of cancer. The application of IR spectroscopy to the analysis of cultured tumor cells and grading of breast cancer sections is outlined. Potential sources of error in spectral interpretation due to variations in sample histology and artifacts associated with sample storage and preparation are discussed. The application of statistical techniques to assess differences between spectra and to non-subjectively classify spectra is demonstrated.

  6. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  7. Basic molecular spectroscopy

    CERN Document Server

    Gorry, PA

    1985-01-01

    BASIC Molecular Spectroscopy discusses the utilization of the Beginner's All-purpose Symbolic Instruction Code (BASIC) programming language in molecular spectroscopy. The book is comprised of five chapters that provide an introduction to molecular spectroscopy through programs written in BASIC. The coverage of the text includes rotational spectra, vibrational spectra, and Raman and electronic spectra. The book will be of great use to students who are currently taking a course in molecular spectroscopy.

  8. Handbook of Applied Solid State Spectroscopy

    CERN Document Server

    Vij, D. R

    2006-01-01

    Solid-State spectroscopy is a burgeoning field with applications in many branches of science, including physics, chemistry, biosciences, surface science, and materials science. Handbook of Applied Solid-State Spectroscopy brings together in one volume information about various spectroscopic techniques that is currently scattered in the literature of these disciplines. This concise yet comprehensive volume covers theory and applications of a broad range of spectroscopies, including NMR, NQR, EPR/ESR, ENDOR, scanning tunneling, acoustic resonance, FTIR, auger electron emission, x-ray photoelectron emission, luminescence, and optical polarization, and more. Emphasis is placed on fundamentals and current methods and procedures, together with the latest applications and developments in the field.

  9. Radiation damage analysis by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Siegel, R.W.

    1979-01-01

    The application of positron annihilation spectroscopy (PAS) to the characterization and study of defects in metals produced by radiation damage is discussed. The physical basis for the positron annihilation techniques (lifetime, Doppler broadening, angular correlation) is introduced and the techniques briefly described. Some examples of the application of PAS to radiation damage analysis are presented with a view toward elucidating the particular advantages of PAS over more traditional defect characterization techniques

  10. Symposium on atomic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Topics covered by the conference include: fast beam spectroscopy; astrophysical and other spectra; highly ionized spectroscopy; complex spectra; rydberg levels; fine structure, hyperfine structure and isotope shift; lineshapes; lifetimes, oscillator strengths and Einstein coefficients; and spectroscopy with lasers. Abstracts of the conference papers are presented. (GHT)

  11. Symposium on atomic spectroscopy

    International Nuclear Information System (INIS)

    1979-01-01

    Topics covered by the conference include: fast beam spectroscopy; astrophysical and other spectra; highly ionized spectroscopy; complex spectra; rydberg levels; fine structure, hyperfine structure and isotope shift; lineshapes; lifetimes, oscillator strengths and Einstein coefficients; and spectroscopy with lasers. Abstracts of the conference papers are presented

  12. Emerging technology: applications of Raman spectroscopy for prostate cancer.

    Science.gov (United States)

    Kast, Rachel E; Tucker, Stephanie C; Killian, Kevin; Trexler, Micaela; Honn, Kenneth V; Auner, Gregory W

    2014-09-01

    There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.

  13. Species authentication and geographical origin discrimination of herbal medicines by near infrared spectroscopy: A review

    OpenAIRE

    Wang, Pei; Yu, Zhiguo

    2015-01-01

    Near infrared (NIR) spectroscopy as a rapid and nondestructive analytical technique, integrated with chemometrics, is a powerful process analytical tool for the pharmaceutical industry and is becoming an attractive complementary technique for herbal medicine analysis. This review mainly focuses on the recent applications of NIR spectroscopy in species authentication of herbal medicines and their geographical origin discrimination. Keywords: Near infrared spectroscopy, Herbal medicine, Species...

  14. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  15. Transient Infrared Emission Spectroscopy

    Science.gov (United States)

    Jones, Roger W.; McClelland, John F.

    1989-12-01

    Transient Infrared Emission Spectroscopy (TIRES) is a new technique that reduces the occurrence of self-absorption in optically thick solid samples so that analytically useful emission spectra may be observed. Conventional emission spectroscopy, in which the sample is held at an elevated, uniform temperature, is practical only for optically thin samples. In thick samples the emission from deep layers of the material is partially absorbed by overlying layers.1 This self-absorption results in emission spectra from most optically thick samples that closely resemble black-body spectra. The characteristic discrete emission bands are severely truncated and altered in shape. TIRES bypasses this difficulty by using a laser to heat only an optically thin surface layer. The increased temperature of the layer is transient since the layer will rapidly cool and thicken by thermal diffusion; hence the emission collection must be correlated with the laser heating. TIRES may be done with both pulsed and cw lasers.2,3 When a pulsed laser is used, the spectrometer sampling must be synchronized with the laser pulsing so that only emission during and immediately after each laser pulse is observed.3 If a cw laser is used, the sample must move rapidly through the beam. The hot, transient layer is then in the beam track on the sample at and immediately behind the beam position, so the spectrometer field of view must be limited to this region near the beam position.2 How much self-absorption the observed emission suffers depends on how thick the heated layer has grown by thermal diffusion when the spectrometer samples the emission. Use of a pulsed laser synchronized with the spectrometer sampling readily permits reduction of the time available for heat diffusion to about 100 acs .3 When a cw laser is used, the heat-diffusion time is controlled by how small the spectrometer field of view is and by how rapidly the sample moves past within this field. Both a very small field of view and a

  16. Femtosecond Broadband Stimulated Raman Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Soo-Y; Yoon, Sagwoon; Mathies, Richard A

    2006-01-01

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique where a narrow bandwidth picosecond Raman pump pulse and a red-shifted broadband femtosecond Stokes probe pulse (with or without time delay between the pulses) act on a sample to produce a high resolution Raman gain spectrum with high efficiency and speed, free from fluorescence background interference. It can reveal vibrational structural information and dynamics of stationary or transient states. Here, the quantum picture for femtosecond broadband stimulated Raman spectroscopy (FSRS) is used to develop the semiclassical coupled wave theory of the phenomenon and to derive an expression for the measurable Raman gain in FSRS. The semiclassical theory is applied to study the dependence of lineshapes in FSRS on the pump-probe time delay and to deduce vibrational dephasing times in cyclohexane in the ground state

  17. Fundamentals of Protein NMR Spectroscopy

    CERN Document Server

    Rule, Gordon S

    2006-01-01

    NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data pr...

  18. Heavy quark spectroscopy and decay

    International Nuclear Information System (INIS)

    Schindler, R.H.

    1987-01-01

    The understanding of q anti q systems containing heavy, charmed, and bottom quarks has progressed rapidly in recent years, through steady improvements in experimental techniques for production and detection of their decays. These lectures are meant to be an experimentalist's review of the subject. In the first of two lectures, the existing data on the spectroscopy of the bound c anti c and b anti b systems will be discussed. Emphasis is placed on comparisons with the theoretical models. The second lecture covers the rapidly changing subject of the decays of heavy mesons (c anti q and b anti q), and their excited states. In combination, the spectroscopy and decays of heavy quarks are shown to provide interesting insights into both the strong and electroweak interactions of the heavy quarks. 103 refs., 39 figs

  19. Novel spectroscopic techniques with using soft x-ray

    International Nuclear Information System (INIS)

    Gejo, Tatsuo

    2010-01-01

    Recent progress of experimental techniques related to synchrotron radiation makes possible of detail investigation of molecular dynamics after irradiation of soft X-ray. We introduce several novel spectroscopic techniques with using soft X-ray: Symmetry-resolved zero kinetic energy electron spectroscopy, symmetry-resolved metastable photofragment spectroscopy, soft X-ray emission spectroscopy, time-resolved fluorescence spectroscopy, and time-resolved-fluorescence mass-selected-ion coincidence spectroscopy. We also show new techniques performed by other groups at BL27SU in SPring-8. (author)

  20. Parallelism between gradient temperature raman spectroscopy and differential scanning calorimetry results

    Science.gov (United States)

    Temperature dependent Raman spectroscopy (TDR) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDR and D...