WorldWideScience

Sample records for ring laser inertial

  1. A new systematic calibration method of ring laser gyroscope inertial navigation system

    Science.gov (United States)

    Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Xiong, Zhenyu; Long, Xingwu

    2016-10-01

    Inertial navigation system has been the core component of both military and civil navigation systems. Before the INS is put into application, it is supposed to be calibrated in the laboratory in order to compensate repeatability error caused by manufacturing. Discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed theories of error inspiration and separation in detail and presented a new systematic calibration method for ring laser gyroscope inertial navigation system. Error models and equations of calibrated Inertial Measurement Unit are given. Then proper rotation arrangement orders are depicted in order to establish the linear relationships between the change of velocity errors and calibrated parameter errors. Experiments have been set up to compare the systematic errors calculated by filtering calibration result with those obtained by discrete calibration result. The largest position error and velocity error of filtering calibration result are only 0.18 miles and 0.26m/s compared with 2 miles and 1.46m/s of discrete calibration result. These results have validated the new systematic calibration method and proved its importance for optimal design and accuracy improvement of calibration of mechanically dithered ring laser gyroscope inertial navigation system.

  2. Ring lasers - a brief history

    Science.gov (United States)

    Klein, Tony

    2017-10-01

    Used these days in inertial navigation, ring lasers are also used in recording the tiniest variations in the Earth's spin, as well in detecting earthquakes and even the drift of continents. How did it all begin?

  3. Solid-state ring laser gyroscope

    Science.gov (United States)

    Schwartz, S.

    The ring laser gyroscope is a rotation sensor used in most kinds of inertial navigation units. It usually consists in a ring cavity filled with a mixture of helium and neon, together with high-voltage pumping electrodes. The use of a gaseous gain medium, while resulting naturally in a stable bidirectional regime enabling rotation sensing, is however the main industrially limiting factor for the ring laser gyroscopes in terms of cost, reliability and lifetime. We study in this book the possibility of substituting for the gaseous gain medium a solid-state medium (diode-pumped Nd-YAG). For this, a theoretical and experimental overview of the lasing regimes of the solid-state ring laser is reported. We show that the bidirectional emission can be obtained thanks to a feedback loop acting on the states of polarization and inducing differential losses proportional to the difference of intensity between the counterpropagating modes. This leads to the achievement of a solid-state ring laser gyroscope, whose frequency response is modified by mode coupling effects. Several configurations, either mechanically or optically based, are then successively studied, with a view to improving the quality of this frequency response. In particular, vibration of the gain crystal along the longitudinal axis appears to be a very promising technique for reaching high inertial performances with a solid-state ring laser gyroscope. Gyrolaser à état solide. Le gyrolaser est un capteur de rotation utilisé dans la plupart des centrales de navigation inertielle. Dans sa forme usuelle, il est constitué d'une cavité laser en anneau remplie d'un mélange d'hélium et de néon pompé par des électrodes à haute tension. L'utilisation d'un milieu amplificateur gazeux, si elle permet de garantir naturellement le fonctionnement bidirectionnel stable nécessaire à la mesure des rotations, constitue en revanche la principale limitation industrielle des gyrolasers actuels en termes de coût, fiabilit

  4. Inertial effects in laser-driven ablation

    International Nuclear Information System (INIS)

    Harrach, R.J.; Szeoke, A.; Howard, W.M.

    1983-01-01

    The gasdynamic partial differential equations (PDE's) governing the motion of an ablatively accelerated target (rocket) contain an inertial force term that arises from acceleration of the reference frame in which the PDE's are written. We give a simple, intuitive description of this effect, and estimate its magnitude and parametric dependences by means of approximate analytical formulas inferred from our computer hydrocode calculations. Often this inertial term is negligible, but for problems in the areas of laser fusion and laser equation of state studies we find that it can substantially reduce the attainable hydrodynamic efficiency of acceleration and implosion

  5. Inertial thermonuclear fusion by laser

    International Nuclear Information System (INIS)

    Watteau, J.P.

    1993-12-01

    The principles of deuterium tritium (DT) magnetic or inertial thermonuclear fusion are given. Even if results would be better with heavy ions beams, most of the results on fusion are obtained with laser beams. Technical and theoretical aspects of the laser fusion are presented with an extrapolation to the future fusion reactor. (A.B.). 34 refs., 17 figs

  6. High-energy krypton fluoride lasers for inertial fusion.

    Science.gov (United States)

    Obenschain, Stephen; Lehmberg, Robert; Kehne, David; Hegeler, Frank; Wolford, Matthew; Sethian, John; Weaver, James; Karasik, Max

    2015-11-01

    Laser fusion researchers have realized since the 1970s that the deep UV light from excimer lasers would be an advantage as a driver for robust high-performance capsule implosions for inertial confinement fusion (ICF). Most of this research has centered on the krypton-fluoride (KrF) laser. In this article we review the advantages of the KrF laser for direct-drive ICF, the history of high-energy KrF laser development, and the present state of the art and describe a development path to the performance needed for laser fusion and its energy application. We include descriptions of the architecture and performance of the multi-kilojoule Nike KrF laser-target facility and the 700 J Electra high-repetition-rate KrF laser that were developed at the U.S. Naval Research Laboratory. Nike and Electra are the most advanced KrF lasers for inertial fusion research and energy applications.

  7. Inertial fusion by laser

    International Nuclear Information System (INIS)

    Dautray, R.; Watteau, J.-P.

    1980-01-01

    Following a brief historical survey of research into the effects of interaction of laser with matter, the principles of fusion by inertial confinement are described and the main parameters and possible levels given. The development of power lasers is then discussed with details of performances of the main lasers used in various laboratories, and with an assessment of the respective merits of neodymium glass, carbon dioxide or iodine lasers. The phenomena of laser radiation and its interaction with matter is then described, with emphasis on the results of experiments concerned with target implosion with the object of compressing and heating the mixture of heavy hydrogen and tritium to be ignited. Finally, a review is made of future possibilities opened up by the use of large power lasers which have recently become operational or are being constructed, and the ground still to be covered before a reactor can be produced [fr

  8. Laser fusion overview

    International Nuclear Information System (INIS)

    Nuckolls, J.

    1976-01-01

    Because of recent breakthroughs in the target area, and in the glass laser area, the scientific feasibility of laser fusion--and of inertial fusion--may be demonstrated in the early 1980's. Then the development in that time period of a suitable laser (or storage ring or other driving source) would make possible an operational inertial fusion reactor in this century. These are roughly the same time scales as projected by the Tokamak magnetic confinement approach. It thus appears that the 15-20 year earlier start by magnetic confinement fusion may be overcome. Because inertial confinement has been demonstrated, and inertial fusion reactors may operate on smaller scales than Tokamaks, laser fusion may have important technical and economic advantages

  9. GINGER (Gyroscopes IN General Relativity), a ring lasers array to measure the Lense-Thirring effect

    Science.gov (United States)

    Di Virgilio, Angela D. V.

    The purpose of the GINGER is to perform the first test of general relativity (not considering the gravitational redshift measurements) in a terrestrial laboratory, using light as a probe. The experiment will complement the ones in space, performed or under way, with an entirely different technique and at a far lower cost. The methodology is based on ring-lasers, which are extremely accurate rotation sensors and can not only sense purely kinematical rotations (Sagnac effect accounting for the Earth rotation, polar motion of the terrestrial axis, local rotational movements of the laboratory due to the Earth crust dynamics...), but also general relativistic contributions such as the de Sitter effect (coupling between the gravito-electric field of the earth and the kinematical rotation) and the Lense-Thirring effect (inertial frame dragging due to the angular momentum of the earth). In order to reveal the latter effects, ring-laser response must be improved to be able to measure the effective rotation vector (kinematic plus GR terms) with an accuracy of 1 part in 109 or better. This is a challenging technological aspect, which however has been accurately taken into account by designing a system of ring lasers that will be implemented in this project. A ring laser have been installed inside the underground laboratory of GranSasso, with the purpose to see if an underground location is the right choice for GINGER. The apparatus and the preliminary results will be discussed.

  10. Dragging of inertial frames in the composed black-hole-ring system

    International Nuclear Information System (INIS)

    Hod, Shahar

    2015-01-01

    A well-established phenomenon in general relativity is the dragging of inertial frames by a spinning object. In particular, due to the dragging of inertial frames by a ring orbiting a central black hole, the angular velocity Ω H BH-ring of the black-hole horizon in the composed black-hole-ring system is no longer related to the black-hole angular momentum J H by the simple Kerr-like (vacuum) relation Ω H Kerr (J H ) = J H /2M 2 R H (here M and R H are the mass and horizon-radius of the black hole, respectively). Will has performed a perturbative treatment of the composed black-hole-ring system in the regime of slowly rotating black holes and found the explicit relation Ω H BH-ring (J H = 0, J R , R) = 2J R /R 3 for the angular velocity of a central black hole with zero angular momentum, where J R and R are respectively the angular momentum of the orbiting ring and its proper circumferential radius. Analyzing a sequence of black-hole-ring configurations with adiabatically varying (decreasing) circumferential radii, we show that the expression found by Will for Ω H BH-ring (J H = 0, J R , R) implies a smooth transition of the central black-hole angular velocity from its asymptotic near-horizon value Ω H BH-ring (J H = 0, J R , R → R H + ) → 2J R /R H 3 (that is, just before the assimilation of the ring by the central black hole), to its final Kerr (vacuum) value Ω H Kerr (J H new )= J H new /2M new2 R H new [that is, after the adiabatic assimilation of the ring by the central black hole. Here J H new = J R , M new , and R H new are the new parameters of the resulting Kerr (vacuum) black hole after it assimilated the orbiting ring]. We use this important observation in order to generalize the result of Will to the regime of black-hole-ring configurations in which the central black holes possess non-zero angular momenta. In particular, it is shown that the continuity argument (namely, the characteristic smooth evolution of the black-hole angular velocity

  11. Unidirectional ring-laser operation using sum-frequency mixing

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Cheng, Haynes Pak Hay; Pedersen, Christian

    2010-01-01

    A technique enforcing unidirectional operation of ring lasers is proposed and demonstrated. The approach relies on sum-frequency mixing between a single-pass laser and one of the two counterpropagating intracavity fields of the ring laser. Sum-frequency mixing introduces a parametric loss for the...... where lossless second-order nonlinear materials are available. Numerical modeling and experimental demonstration of parametric-induced unidirectional operation of a diode-pumped solid-state 1342 nm cw ring laser are presented.......A technique enforcing unidirectional operation of ring lasers is proposed and demonstrated. The approach relies on sum-frequency mixing between a single-pass laser and one of the two counterpropagating intracavity fields of the ring laser. Sum-frequency mixing introduces a parametric loss...

  12. Dragging of inertial frames in the composed black-hole-ring system

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)

    2015-11-15

    A well-established phenomenon in general relativity is the dragging of inertial frames by a spinning object. In particular, due to the dragging of inertial frames by a ring orbiting a central black hole, the angular velocity Ω{sub H}{sup BH-ring} of the black-hole horizon in the composed black-hole-ring system is no longer related to the black-hole angular momentum J{sub H} by the simple Kerr-like (vacuum) relation Ω{sub H}{sup Kerr}(J{sub H}) = J{sub H}/2M{sup 2}R{sub H} (here M and R{sub H} are the mass and horizon-radius of the black hole, respectively). Will has performed a perturbative treatment of the composed black-hole-ring system in the regime of slowly rotating black holes and found the explicit relation Ω{sub H}{sup BH-ring}(J{sub H} = 0, J{sub R}, R) = 2J{sub R}/R{sup 3} for the angular velocity of a central black hole with zero angular momentum, where J{sub R} and R are respectively the angular momentum of the orbiting ring and its proper circumferential radius. Analyzing a sequence of black-hole-ring configurations with adiabatically varying (decreasing) circumferential radii, we show that the expression found by Will for Ω{sub H}{sup BH-ring}(J{sub H} = 0, J{sub R}, R) implies a smooth transition of the central black-hole angular velocity from its asymptotic near-horizon value Ω{sub H}{sup BH-ring}(J{sub H} = 0, J{sub R}, R → R{sub H}{sup +}) → 2J{sub R}/R{sub H}{sup 3} (that is, just before the assimilation of the ring by the central black hole), to its final Kerr (vacuum) value Ω{sub H}{sup Kerr}(J{sub H}{sup new})= J{sub H}{sup new}/2M{sup new2}R{sub H}{sup new} [that is, after the adiabatic assimilation of the ring by the central black hole. Here J{sub H}{sup new} = J{sub R}, M{sup new}, and R{sub H}{sup new} are the new parameters of the resulting Kerr (vacuum) black hole after it assimilated the orbiting ring]. We use this important observation in order to generalize the result of Will to the regime of black-hole-ring configurations

  13. Dragging of inertial frames in the composed black-hole–ring system

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar, E-mail: shaharhod@gmail.com [The Ruppin Academic Center, 40250, Emeq Hefer (Israel); The Hadassah Institute, 91010, Jerusalem (Israel)

    2015-11-19

    A well-established phenomenon in general relativity is the dragging of inertial frames by a spinning object. In particular, due to the dragging of inertial frames by a ring orbiting a central black hole, the angular velocity Ω{sub H}{sup BH-ring} of the black-hole horizon in the composed black-hole–ring system is no longer related to the black-hole angular momentum J{sub H} by the simple Kerr-like (vacuum) relation Ω{sub H}{sup Kerr}(J{sub H})=J{sub H}/2M{sup 2}R{sub H} (here M and R{sub H} are the mass and horizon-radius of the black hole, respectively). Will has performed a perturbative treatment of the composed black-hole–ring system in the regime of slowly rotating black holes and found the explicit relation Ω{sub H}{sup BH-ring}(J{sub H}=0,J{sub R},R)=2J{sub R}/R{sup 3} for the angular velocity of a central black hole with zero angular momentum, where J{sub R} and R are respectively the angular momentum of the orbiting ring and its proper circumferential radius. Analyzing a sequence of black-hole–ring configurations with adiabatically varying (decreasing) circumferential radii, we show that the expression found by Will for Ω{sub H}{sup BH-ring}(J{sub H}=0,J{sub R},R) implies a smooth transition of the central black-hole angular velocity from its asymptotic near-horizon value Ω{sub H}{sup BH-ring}(J{sub H}=0,J{sub R},R→R{sub H}{sup +})→2J{sub R}/R{sub H}{sup 3} (that is, just before the assimilation of the ring by the central black hole), to its final Kerr (vacuum) value Ω{sub H}{sup Kerr}(J{sub H}{sup new})=J{sub H}{sup new}/2M{sup new2}R{sub H}{sup new} [that is, after the adiabatic assimilation of the ring by the central black hole. Here J{sub H}{sup new}=J{sub R}, M{sup new}, and R{sub H}{sup new} are the new parameters of the resulting Kerr (vacuum) black hole after it assimilated the orbiting ring]. We use this important observation in order to generalize the result of Will to the regime of black-hole–ring configurations in which the

  14. Diode-pumped solid state laser for inertial fusion energy

    International Nuclear Information System (INIS)

    Payne, S.A.; Krupke, W.F.; Orth, C.D.

    1994-11-01

    The authors evaluate the prospect for development of a diode-pumped solid-state-laser driver in an inertial fusion energy power plant. Using a computer code, they predict that their 1 GWe design will offer electricity at 8.6 cents/kW · hr with the laser operating at 8.6% efficiency and the recycled power level at 31%. The results of their initial subscale experimental testbed of a diode-pumped solid state laser are encouraging, demonstrating good efficiencies and robustness

  15. Control of ring lasers by means of coupled cavities

    DEFF Research Database (Denmark)

    Buchhave, Preben; Abitan, Haim; Tidemand-Lichtenberg, Peter

    2000-01-01

    Variable phase coupling to an external ring is used to control a unidirectional ring laser. The observed behavior of the coupled rings is explained theoretically. We have found experimentally that by quickly changing the phase of the feedback from the external ring it is possible to Q......-switch the ring laser. Also, at certain values of the phase of the feedback in the external ring, instabilities in the total system occur and oscillations arise in the ring laser....

  16. Dynamics of long ring Raman fiber laser

    Science.gov (United States)

    Sukhanov, Sergey V.; Melnikov, Leonid A.; Mazhirina, Yulia A.

    2016-04-01

    The numerical model for dynamics of long fiber ring Raman laser is proposed. The model is based on the transport equations and Courant-Isaacson-Rees numerical method. Different regimes of a long ring fiber Raman laser are investigated.

  17. Inertial fusion with ultra-powerful lasers

    International Nuclear Information System (INIS)

    Tabak, M.; Hammer, J.; Glinsky, M.; Kruer, W.; Wilks, S.; Woodworth, J.; Campbell, E.M.; Perry, M.D.; Mason, R.

    1993-10-01

    Ultra-high intensity lasers can be used to ignite ICF capsules with a few tens of kilojoules of light and can lead to high gain with as little as 100 kilojoules of incident laser light. We propose a scheme with three phases. First, a capsule is imploded as in the conventional approach to inertial fusion to assemble a high density fuel configuration. Second, a hole is bored through capsule corona composed of ablated material, pushing critical density close to the high density core of the capsule, by employing the ponderomotive force associated with high intensity laser light. Finally, the fuel is ignited by suprathermal electrons, produced in the high intensity laser plasma interactions, which propagate from critical density to this high density core. This paper reviews two models of energy gain in ICF capsules and explains why ultra-high intensity lasers allow access to the model producing the higher gains. This new scheme also drastically reduces the difficulty of the implosion and thereby allows lower quality fabrication and less stringent beam quality and symmetry requirements from the implosion driver. The difficulty of the fusion scheme is transferred to the technological difficulty of producing the ultra-high-intensity laser and of transporting this energy to the fuel

  18. Ring cavity surface emitting semiconductor lasers

    International Nuclear Information System (INIS)

    Mujagic, E.

    2010-01-01

    Quantum cascade lasers (QCLs) are electrically driven semiconductor lasers, which have undergone a steady improvement since the first demonstration in 1994. These are now well established as reliable sources of coherent light in the mid-infrared (MIR) and terahertz (THz)range of the electromagnetic spectrum (3-300 μm). The rapid progress of this type of lasers is based on a high degree of freedom in tailoring the emission wavelength within a large variety of semiconductor heterostructure designs and materials. These properties have attracted the attention of various applications such as gas analysis, chemical sensing, spectral imaging and free-space telecommunication. In order to improve the selectivity, sensitivity and efficiency of today's sensor systems, high optical power, continuous wave and room temperature performance, single-mode operation and low divergence optical beams, are highly desirable qualities of a compact laser source in this field of research. Since all of these features cannot be provided by a conventional edge-emitting device at the same time, research has put focus on the development of surface emitting devices. Nowadays, the vertical cavity surface emitting lasers (VCSELs) are the most prominent representative for this type of light emitters. With its capability of producing narrow circular beams, the feasibility of two-dimensional arrays and on-wafer testing, such a coherent light source results in a reduction of the fabrication effort and production costs. Since the radiation in QCLs is strictly polarized normal to the epitaxial layer plane, fabrication of VCSELs based on QC structures is not viable. The subject of this work is the design and realization of 'ring cavity surface emitting lasers' (ring-CSELs). This type of lasers employs a circular ring cavity and a resonant distributed feedback (DFB) surface grating. Ring-CSELs were fabricated on the basis of MIR and THz QC structures, which cover a wavelength range from 4 μm to 93

  19. Upgrade of the LLNL Nova laser for inertial confinement fusion

    International Nuclear Information System (INIS)

    Murray, J.R.; Trenholme, J.B.; Hunt, J.T.; Frank, D.N.; Lowdermilk, W.H.; Storm, E.

    1991-01-01

    The Lawrence Livermore National Laboratory has proposed to construct an upgrade to the Nova glass laser facility to give an output energy of 1.5-2 megajoules at 350 nanometers wavelength in a nominally 3--5 nanosecond shaped pulse. The Nova Upgrade will be suitable for driving inertial fusion targets to ignition. This paper reviews the design proposed for the laser. 14 refs., 10 figs., 1 tab

  20. Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication.

    Science.gov (United States)

    Chandrahalim, Hengky; Chen, Qiushu; Said, Ali A; Dugan, Mark; Fan, Xudong

    2015-05-21

    We designed, fabricated, and characterized a monolithically integrated optofluidic ring resonator laser that is mechanically, thermally, and chemically robust. The entire device, including the ring resonator channel and sample delivery microfluidics, was created in a block of fused-silica glass using a 3-dimensional femtosecond laser writing process. The gain medium, composed of Rhodamine 6G (R6G) dissolved in quinoline, was flowed through the ring resonator. Lasing was achieved at a pump threshold of approximately 15 μJ mm(-2). Detailed analysis shows that the Q-factor of the optofluidic ring resonator is 3.3 × 10(4), which is limited by both solvent absorption and scattering loss. In particular, a Q-factor resulting from the scattering loss can be as high as 4.2 × 10(4), suggesting the feasibility of using a femtosecond laser to create high quality optical cavities.

  1. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  2. Laser diode pumped ND: Glass slab laser for inertial fusion energy

    International Nuclear Information System (INIS)

    Yamanaka, M.; Kanabe, T.; Matsui, H.

    2001-01-01

    As a first step of a driver development for the inertial fusion energy, we are developing a laser-diode-pumped zig-zag Nd:glass slab laser amplifier system HALNA 10 (High Average-power Laser for Nuclear-fusion Application) which can generate an output of 10 J per pulse at 1053 nm in 10 Hz operation. The water-cooled zig-zag Nd:glass slab is pumped from both sides by 803-nm AlGaAs laser-diode(LD) module; each LD module has an emitting area of 420 mm x 10 mm and two LD modules generated in total 218 (max.) kW peak power with 2.6kW/cm 2 peak intensity at 10 Hz repetition rate. We have obtained in a preliminary experiment a 8.5 J output energy at 0.5 Hz with beam quality of 2 times diffraction limited far-field pattern, which nearly confirmed our conceptual design. (author)

  3. Status of inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1987-04-01

    The technology advancement to high-power beams has also given birth to new technologies. That class of Free Electron Lasers that employs rf linacs, synchrotrons, and storage rings - although the use the tools of High Energy Physics (HEP) - was developed well behind the kinetic energy frontier. The induction linac, however, is something of an exception; it was born directly from the needs of the magnetic fusion program, and was not motivated by a high-energy physics application. The heavy-ion approach to inertial fusion starts with picking from the rich menu of accelerator technologies those that have, ab initio, the essential ingredients needed for a power plant driver: multigap acceleration - which leads to reliability/lifetime; electrical efficiency; repetition rate; and beams that can be reliably focused over a suitably long distance. The report describes the programs underway in Heavy Ion Fusion Accelerator Research as well as listing expected advances in driver, target, and beam quality areas in the inertial fusion power program

  4. Laser drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1983-01-01

    Inertial Confinement Fusion (ICF) is the technology that we are developing to access the vast stored energy potential of deuterium fuel located in the world's water supply. This form of fusion is accomplished by compressing and heating small volumes of D-T fuel to very high temperatures (greater than 100M 0 C) and to very high densities (greater than 1000 times the normal liquid density). Under these fuel conditions, a thermonuclear reaction can occur, leading to a net energy release compared to the energy used to heat the fuel initially. To accomplish the condition where fusion reactions begin, effective drivers are required. These are lasers or particle beam accelerators which can provide greater than 10 14 W/cm 2 over millimeter scale targets with an appropriately programmed intensity vs time. At present, we are using research lasers to obtain an understanding of the physics and engineering of fuel compression

  5. Surface emitting ring quantum cascade lasers for chemical sensing

    Science.gov (United States)

    Szedlak, Rolf; Hayden, Jakob; Martín-Mateos, Pedro; Holzbauer, Martin; Harrer, Andreas; Schwarz, Benedikt; Hinkov, Borislav; MacFarland, Donald; Zederbauer, Tobias; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Acedo, Pablo; Lendl, Bernhard; Strasser, Gottfried

    2018-01-01

    We review recent advances in chemical sensing applications based on surface emitting ring quantum cascade lasers (QCLs). Such lasers can be implemented in monolithically integrated on-chip laser/detector devices forming compact gas sensors, which are based on direct absorption spectroscopy according to the Beer-Lambert law. Furthermore, we present experimental results on radio frequency modulation up to 150 MHz of surface emitting ring QCLs. This technique provides detailed insight into the modulation characteristics of such lasers. The gained knowledge facilitates the utilization of ring QCLs in combination with spectroscopic techniques, such as heterodyne phase-sensitive dispersion spectroscopy for gas detection and analysis.

  6. Ring laser frequency biasing mechanism

    International Nuclear Information System (INIS)

    McClure, R.E.

    1975-01-01

    A ring laser cavity including a magnetically saturable member for differentially phase shifting the contradirectional waves propagating in the laser cavity, the phase shift being produced by the magneto-optic interaction occurring between the light waves and the magnetization in the cavity forming component as the light waves are reflected therefrom is described

  7. Control of a laser inertial confinement fusion-fission power plant

    Science.gov (United States)

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  8. Engineering design of the Nova Laser Facility for inertial-confinement fusion

    International Nuclear Information System (INIS)

    Simmons, W.W.; Godwin, R.O.; Hurley, C.A.

    1982-01-01

    The design of the Nova Laser Facility for inertial confinement fusion experiments at Lawrence Livermore National Laboratory is presented from an engineering perspective. Emphasis is placed upon design-to-performance requirements as they impact the various subsystems that comprise this complex experimental facility

  9. Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics

    International Nuclear Information System (INIS)

    Strozzi, D. J.; Bailey, D. S.; Michel, P.; Divol, L.; Sepke, S. M.

    2017-01-01

    The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated in this work via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. In conclusion, this model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling and data from hohlraum experiments on wall x-ray emission and capsule implosion shape.

  10. Aurora multikilojoule KrF laser system prototype for inertial confinement fusion

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Hanlon, J.A.; Mc Leod, J.; Kang, M.; Kortegaard, B.L.; Burrows, M.D.; Bowling, P.S.

    1987-01-01

    Aurora is the Los Alamos National Laboratory short-pulse, high-power, KrF laser system. It serves as an end-to-end technology demonstration for large-scale ultraviolet laser systems of interest for short wavelength, inertial confinement fusion (ICF) investigations. The systems is a prototype for using optical angular multiplexing and serial amplification by large electron-beam-driven KrF laser amplifiers to deliver stacked, 248-nm, 5-ns duration multikilojoule laser pulses to ICF targets using an --1-km-long optical beam path. The entire Aurora KrF laser system is described and the design features of the following major system components are summarized: front-end lasers, amplifier train, multiplexer, optical relay train, demultiplexer, target irradiation apparatus, and alignment and controls systems

  11. Laser plasma focus produced in a ring target

    International Nuclear Information System (INIS)

    Saint-Hilaire, G.; Szili, Z.

    1976-01-01

    A new geometry for generating a laser-produced plasma is presented. A toroidal mirror is used to focus a CO 2 laser beam on the inside wall of a copper ring target. The plasma produced converges at the center of the ring where an axial plasma focus is formed. High-speed photography shows details of a plasma generated at a distance from the target surface. This new geometry could have important applications in the field of x-ray lasers

  12. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    International Nuclear Information System (INIS)

    Deri, R.J.

    2011-01-01

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a ∼ 200 (micro)s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and

  13. Inertial-confinement fusion with lasers

    International Nuclear Information System (INIS)

    Betti, R.; Hurricane, O. A.

    2016-01-01

    The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications to national security and basic sciences. The U.S. is arguably the world leader in the inertial con fment approach to fusion and has invested in large facilities to pursue it with the objective of establishing the science related to the safety and reliability of the stockpile of nuclear weapons. Even though significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion

  14. Diagnostic measurements related to laser driven inertial confinement fusion

    International Nuclear Information System (INIS)

    Campbell, D.E.

    1979-01-01

    Scientists at the Lawrence Livermore Laboratory have been conducting laser driven inertial confinement fusion experiments for over five years. The first proof of the thermonuclear burn came at the Janus target irradiation facility in the spring of 1975. Since that time three succeedingly higher energy facilities have been constructed at Livermore, Cyclops, Argus and Shiva, where increased fusion efficiency has been demonstrated. A new facility, called Nova, is now in the construction phase and we are hopeful that scientific break even (energy released compared to incident laser energy on target) will be demonstrated here in early 1980's. Projected progress of the Livermore program is shown

  15. Relativistic self focussing of laser beams at fast ignitor inertial fusion with volume ignition

    International Nuclear Information System (INIS)

    Osman, F.; Castillo, R.; Hora, H.

    1999-01-01

    The alternative to the magnetic confinement fusion is inertial fusion energy mostly using lasers as drivers for compression and heating of pellets with deuterium and tritium fuel. Following the present technology of lasers with pulses of some megajoules energy and nanosecond duration, a power station for very low cost energy production (and without the problems of well erosion of magnetic confinement) could be available within 15 to 20 years. For the pellet compression, the scheme of spark ignition was mostly applied but its numerous problems with asymmetries and instabilities may be overcome by the alternative scheme of high gain volume ignition. This is a well established option of inertial fusion energy with lasers where a large range of possible later improvements is implied with respect to laser technology or higher plasma compression leading to energy production of perhaps five times below the present lowest level cost from fission reactors. A further improvement may be possible by the recent development of lasers with picosecond pulse duration using the fast igniter scheme which may reach even higher fusion gains with laser pulse energies of some 100 kilojoules

  16. Femtosecond laser-induced concentric ring microstructures on Zr-based metallic glass

    International Nuclear Information System (INIS)

    Ma Fengxu; Yang Jianjun; Xiaonong Zhu; Liang Chunyong; Wang Hongshui

    2010-01-01

    Surface morphological evolution of Zr-based metallic glass ablated by femtosecond lasers is investigated in atmosphere condition. Three types of permanent ring structures with micro-level spacing are observed for different laser shots and fluences. In the case of low laser fluences, the generation of annular patterns with nonthermal features is observed on the rippled structure with the subwavelength scale, and the ring spacing shows a decrease tendency from the center to the margin. While in the case of high laser fluences, the concentric rings formation within the laser spot is found to have evident molten traces and display the increasing ring spacing along the radial direction. Moreover, when the laser shots accumulation becomes large, the above two types of ring microstructures begin to develop into the common ablation craters. Analysis and discussion suggests that the stress-induced condensation of ablation vapors and the frozen thermocapillary waves on the molten surfaces should be responsible for the formation of two different types of concentric ring structures, respectively. Eventually, a processing window for each resulting surface microstructure type is obtained experimentally and indicates the possibility to control the morphological transitions among different types.

  17. Energy from inertial fusion

    International Nuclear Information System (INIS)

    1995-03-01

    This book contains 22 articles on inertial fusion energy (IFE) research and development written in the framework of an international collaboration of authors under the guidance of an advisory group on inertial fusion energy set up in 1991 to advise the IAEA. It describes the actual scientific, engineering and technological developments in the field of inertial confinement fusion (ICF). It also identifies ways in which international co-operation in ICF could be stimulated. The book is intended for a large audience and provides an introduction to inertial fusion energy and an overview of the various technologies needed for IFE power plants to be developed. It contains chapters on (i) the fundamentals of IFE; (ii) inertial confinement target physics; (iii) IFE power plant design principles (requirements for power plant drivers, solid state laser drivers, gas laser drivers, heavy ion drivers, and light ion drivers, target fabrication and positioning, reaction chamber systems, power generation and conditioning and radiation control, materials management and target materials recovery), (iv) special design issues (radiation damage in structural materials, induced radioactivity, laser driver- reaction chamber interfaces, ion beam driver-reaction chamber interfaces), (v) inertial fusion energy development strategy, (vi) safety and environmental impact, (vii) economics and other figures of merit; (viii) other uses of inertial fusion (both those involving and not involving implosions); and (ix) international activities. Refs, figs and tabs

  18. Semiconductor ring lasers coupled by a single waveguide

    Science.gov (United States)

    Coomans, W.; Gelens, L.; Van der Sande, G.; Mezosi, G.; Sorel, M.; Danckaert, J.; Verschaffelt, G.

    2012-06-01

    We experimentally and theoretically study the characteristics of semiconductor ring lasers bidirectionally coupled by a single bus waveguide. This configuration has, e.g., been suggested for use as an optical memory and as an optical neural network motif. The main results are that the coupling can destabilize the state in which both rings lase in the same direction, and it brings to life a state with equal powers at both outputs. These are both undesirable for optical memory operation. Although the coupling between the rings is bidirectional, the destabilization occurs due to behavior similar to an optically injected laser system.

  19. Optimal control of quantum rings by terahertz laser pulses.

    Science.gov (United States)

    Räsänen, E; Castro, A; Werschnik, J; Rubio, A; Gross, E K U

    2007-04-13

    Complete control of single-electron states in a two-dimensional semiconductor quantum-ring model is established, opening a path into coherent laser-driven single-gate qubits. The control scheme is developed in the framework of optimal-control theory for laser pulses of two-component polarization. In terms of pulse lengths and target-state occupations, the scheme is shown to be superior to conventional control methods that exploit Rabi oscillations generated by uniform circularly polarized pulses. Current-carrying states in a quantum ring can be used to manipulate a two-level subsystem at the ring center. Combining our results, we propose a realistic approach to construct a laser-driven single-gate qubit that has switching times in the terahertz regime.

  20. Coffee-ring effects in laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Hu, Jie-Bi; Chen, Yu-Chie; Urban, Pawel L

    2013-03-05

    This report focuses on the heterogeneous distribution of small molecules (e.g. metabolites) within dry deposits of suspensions and solutions of inorganic and organic compounds with implications for chemical analysis of small molecules by laser desorption/ionization (LDI) mass spectrometry (MS). Taking advantage of the imaging capabilities of a modern mass spectrometer, we have investigated the occurrence of "coffee rings" in matrix-assisted laser desorption/ionization (MALDI) and surface-assisted laser desorption/ionization (SALDI) sample spots. It is seen that the "coffee-ring effect" in MALDI/SALDI samples can be both beneficial and disadvantageous. For example, formation of the coffee rings gives rise to heterogeneous distribution of analytes and matrices, thus compromising analytical performance and reproducibility of the mass spectrometric analysis. On the other hand, the coffee-ring effect can also be advantageous because it enables partial separation of analytes from some of the interfering molecules present in the sample. We report a "hidden coffee-ring effect" where under certain conditions the sample/matrix deposit appears relatively homogeneous when inspected by optical microscopy. Even in such cases, hidden coffee rings can still be found by implementing the MALDI-MS imaging technique. We have also found that to some extent, the coffee-ring effect can be suppressed during SALDI sample preparation. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Review on Recent Developments in Laser Driven Inertial Fusion

    Directory of Open Access Journals (Sweden)

    M. Ghoranneviss

    2014-01-01

    Full Text Available Discovery of the laser in 1960 hopes were based on using its very high energy concentration within very short pulses of time and very small volumes for energy generation from nuclear fusion as “Inertial Fusion Energy” (IFE, parallel to the efforts to produce energy from “Magnetic Confinement Fusion” (MCF, by burning deuterium-tritium (DT in high temperature plasmas to helium. Over the years the fusion gain was increased by a number of magnitudes and has reached nearly break-even after numerous difficulties in physics and technology had been solved. After briefly summarizing laser driven IFE, we report how the recently developed lasers with pulses of petawatt power and picosecond duration may open new alternatives for IFE with the goal to possibly ignite solid or low compressed DT fuel thereby creating a simplified reactor scheme. Ultrahigh acceleration of plasma blocks after irradiation of picosecond (PS laser pulses of around terawatt (TW power in the range of 1020 cm/s2 was discovered by Sauerbrey (1996 as measured by Doppler effect where the laser intensity was up to about 1018 W/cm2. This is several orders of magnitude higher than acceleration by irradiation based on thermal interaction of lasers has produced.

  2. Optimization of the geometrical stability in square ring laser gyroscopes

    International Nuclear Information System (INIS)

    Santagata, R; Beghi, A; Cuccato, D; Belfi, J; Beverini, N; Virgilio, A Di; Ortolan, A; Porzio, A; Solimeno, S

    2015-01-01

    Ultra-sensitive ring laser gyroscopes are regarded as potential detectors of the general relativistic frame-dragging effect due to the rotation of the Earth. Our project for this goal is called GINGER (gyroscopes in general relativity), and consists of a ground-based triaxial array of ring lasers aimed at measuring the rotation rate of the Earth with an accuracy of 10 −14 rad s −1 . Such an ambitious goal is now within reach, as large-area ring lasers are very close to the required sensitivity and stability. However, demanding constraints on the geometrical stability of the optical path of the laser inside the ring cavity are required. Thus, we have begun a detailed study of the geometry of an optical cavity in order to find a control strategy for its geometry that could meet the specifications of the GINGER project. As the cavity perimeter has a stationary point for the square configuration, we identify a set of transformations on the mirror positions that allows us to adjust the laser beam steering to the shape of a square. We show that the geometrical stability of a square cavity strongly increases by implementing a suitable system to measure the mirror distances, and that the geometry stabilization can be achieved by measuring the absolute lengths of the two diagonals and the perimeter of the ring. (paper)

  3. Wavelength-selectable and steady single-mode erbium-doped fiber multiple ring laser

    Science.gov (United States)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang

    2017-11-01

    To achieve a stable and selectable C-band erbium-doped fiber (EDF) laser with single-longitudinal-mode output, a multiple ring architecture is proposed and demonstrated experimentally. In this work, we design a passively quadruple-ring structure in the cavity of an EDF laser to produce a Vernier effect with a mode filter for suppressing the multimode spikes significantly. In addition, the output performance and stability of the proposed EDF ring laser are discussed.

  4. Continuous-wave singly resonant optical parametric oscillator placed inside a ring laser

    DEFF Research Database (Denmark)

    Abitan, Haim; Buchhave, Preben

    2003-01-01

    A cw singly resonant optical parametric oscillator (SRO) was built and placed inside the cavity of a ring laser. The system consists of a diode-end-pumped Nd:YVO4 ring laser with intracavity periodically poled lithium niobate as the nonlinear gain medium of the SRO. When the laser was operated...... in a unidirectional mode, we obtained more than 520 mW of signal power in one beam. When the laser was operated in a bidirectional mode, we obtained 600 mW of signal power (300 mW in two separate beams). The power and the spectral features of the laser in the unidirectional and bidirectional modes were measured while...... the laser was coupled with the SRO. The results show that it is preferable to couple a SRO with a unidirectional ring laser....

  5. A unified modeling approach for physical experiment design and optimization in laser driven inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haiyan [Mechatronics Engineering School of Guangdong University of Technology, Guangzhou 510006 (China); Huang, Yunbao, E-mail: Huangyblhy@gmail.com [Mechatronics Engineering School of Guangdong University of Technology, Guangzhou 510006 (China); Jiang, Shaoen, E-mail: Jiangshn@vip.sina.com [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China); Jing, Longfei, E-mail: scmyking_2008@163.com [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China); Tianxuan, Huang; Ding, Yongkun [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-11-15

    Highlights: • A unified modeling approach for physical experiment design is presented. • Any laser facility can be flexibly defined and included with two scripts. • Complex targets and laser beams can be parametrically modeled for optimization. • Automatically mapping of laser beam energy facilitates targets shape optimization. - Abstract: Physical experiment design and optimization is very essential for laser driven inertial confinement fusion due to the high cost of each shot. However, only limited experiments with simple structure or shape on several laser facilities can be designed and evaluated in available codes, and targets are usually defined by programming, which may lead to it difficult for complex shape target design and optimization on arbitrary laser facilities. A unified modeling approach for physical experiment design and optimization on any laser facilities is presented in this paper. Its core idea includes: (1) any laser facility can be flexibly defined and included with two scripts, (2) complex shape targets and laser beams can be parametrically modeled based on features, (3) an automatically mapping scheme of laser beam energy onto discrete mesh elements of targets enable targets or laser beams be optimized without any additional interactive modeling or programming, and (4) significant computation algorithms are additionally presented to efficiently evaluate radiation symmetry on the target. Finally, examples are demonstrated to validate the significance of such unified modeling approach for physical experiments design and optimization in laser driven inertial confinement fusion.

  6. Free electron laser and microwave instability interplay in a storage ring

    Directory of Open Access Journals (Sweden)

    G. L. Orlandi

    2004-06-01

    Full Text Available Collective effects, such as the microwave instability, influence the longitudinal dynamics of an electron beam in a storage ring. In a storage ring free electron laser (FEL they can compete with the induced beam heating and thus be treated as a further concomitant perturbing source of the beam dynamics. Bunch length and energy spread measurements, carried out at the Super-ACO storage ring, can be correctly interpreted according to a broad-band impedance model. Quantitative estimations of the relative role that is played by the microwave instability and the laser heating in shaping the beam longitudinal dynamics have been obtained by the analysis of the equilibrium laser power. It has been performed in terms of either a theoretical limit, implemented with the measured beam longitudinal characteristics, or the numerical results obtained by a macroparticle tracking code, which includes the laser pulse propagation. Such an analysis, carried out for different operating points of the Super-ACO storage ring FEL, indicates that the laser heating counteracts the microwave instability.

  7. Effect of the laser wavelength: A long story of laser-plasma interaction physics for Inertial Confinement Fusion Teller Medal Lecture

    Directory of Open Access Journals (Sweden)

    Labaune Christine

    2013-11-01

    Full Text Available Laser-driven Inertial Confinement Fusion (ICF relies on the use of high-energy laser beams to compress and ignite a thermonuclear fuel with the ultimate goal of producing energy. Fusion is the holy grail of energy sources–combining abundant fuel with no greenhouse gas emissions, minimal waste products and a scale that can meet mankind's long-term energy demands. The quality and the efficiency of the coupling of the laser beams with the target are an essential step towards the success of laser fusion. A long-term program on laser-plasma interaction physics has been pursued to understand the propagation and the coupling of laser pulses in plasmas for a wide range of parameters.

  8. Effect of the laser wavelength: A long story of laser-plasma interaction physics for Inertial Confinement Fusion Teller Medal Lecture

    Science.gov (United States)

    Labaune, Christine

    2016-10-01

    Laser-driven Inertial Confinement Fusion (ICF) relies on the use of high-energy laser beams to compress and ignite a the1monuclear fuel with the ultimate goal of producing energy. Fusion is the holy grail of energy sources-combining abundant fuel with no greenhouse gas emissions, minimal waste products and a scale that can meet mankind's long-term energy demands. The quality and the efficiency of the coupling of the laser beams with the target are an essential step towards the success of laser fusion. A long-te1m program on laser-plasma interaction physics has been pursued to understand the propagation and the coupling of laser pulses in plasmas for a wide range of parameters.

  9. Summary of the status of lasers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1979-01-01

    Laser systems designed for plasma research are operating in many laboratories throughout the world. The laser performance itself has become reasonably consistant from laboratory to laboratory and the focusing properties of the laser beams are understood. The plasma physics data, obtained with these systems, also appears to be reasonably self-consistant and is of great interest for inertial fusion applications. These lasers are commonly providing output powers of 0.5 > 2 TW, and power densities on target of 10 13 -10- 16 W/cm 2 , pulse durations on the order of 100 psec to 3 nsec, wavelengths between 0.5 μ and 10 μ, and focal spot sizes of 100 μ or larger where focal spot edge effects are becoming less dominant. In addition, spurious target responses due to such behavior as pre-pulses, self-focusing, or imprecise focal spot measurement are being observed less often. The technical problems of large multi-beam systems, performing at the 10 TW level, have been overcome and these systems (e.g. the Shiva and Helios lasers) are providing high density compression data with ablative targets. The next step in laser design, the 100 to 300 kJ systems, are under construction and 1 MJ lasers are being contemplated

  10. Numerical Modelling of a Bidirectional Long Ring Raman Fiber Laser Dynamics

    Science.gov (United States)

    Sukhanov, S. V.; Melnikov, L. A.; Mazhirina, Yu A.

    2017-11-01

    The numerical model for the simulation of the dynamics of a bidirectional long ring Raman fiber laser is proposed. The model is based on the transport equations and Courant-Isaacson-Rees method. Different regimes of a bidirectional long ring Raman fiber laser and long time-domain realizations are investigated.

  11. Physics of inertial confinement pellets

    International Nuclear Information System (INIS)

    Mead, W.C.

    1979-01-01

    An overview of inertial confinement fusion pellet physics is given. A discussion is presented of current estimated ICF driver requirements and a couple of pellet examples. The physics of driver/plasma coupling for two drivers which are being considered, namely a laser driver and a heavy ion accelerator driver, is described. Progress towards inertial confinement fusion that has been made using laser drivers in target experiments to date is discussed

  12. Hybrid integrated single-wavelength laser with silicon micro-ring reflector

    Science.gov (United States)

    Ren, Min; Pu, Jing; Krishnamurthy, Vivek; Xu, Zhengji; Lee, Chee-Wei; Li, Dongdong; Gonzaga, Leonard; Toh, Yeow T.; Tjiptoharsono, Febi; Wang, Qian

    2018-02-01

    A hybrid integrated single-wavelength laser with silicon micro-ring reflector is demonstrated theoretically and experimentally. It consists of a heterogeneously integrated III-V section for optical gain, an adiabatic taper for light coupling, and a silicon micro-ring reflector for both wavelength selection and light reflection. Heterogeneous integration processes for multiple III-V chips bonded to an 8-inch Si wafer have been developed, which is promising for massive production of hybrid lasers on Si. The III-V layer is introduced on top of a 220-nm thick SOI layer through low-temperature wafer-boning technology. The optical coupling efficiency of >85% between III-V and Si waveguide has been achieved. The silicon micro-ring reflector, as the key element of the hybrid laser, is studied, with its maximized reflectivity of 85.6% demonstrated experimentally. The compact single-wavelength laser enables fully monolithic integration on silicon wafer for optical communication and optical sensing application.

  13. Extended investigation into continuous laser scanning of underground mine workings by means of Landis inertial navigation system

    Science.gov (United States)

    Belyaev, E. N.

    2017-10-01

    The paper investigates the method of applying mobile scanning systems (MSSs) with inertial navigators in the underground conditions for carrying out the surveying tasks. The available mobile laser scanning systems cannot be used in the underground environment since Global Positioning System (GPS) signals cannot be received in mines. This signal not only is necessary for space positioning, but also operates as the main corrective signal for the primary navigation system - the inertial navigation system. The idea of the method described in this paper consists in using MSSs with a different correction of the inertial system than GPS is.

  14. An overview of Aurora: a multi-kilojoule KrF laser system for inertial confinement fusion

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Bowling, P.S.; Burrows, M.D.; Kang, M.; Hanlon, J.; McLeod, J.; York, G.W.

    1986-01-01

    Aurora is a short-pulse high-power krypton-fluoride laser system that serves as an end-to-end technology demonstration prototype for large-scale ultraviolet laser systems of interest for short wavelength inertial confinement fusion (ICF) studies. The system is designed to employ optical angular multiplexing and serial amplification by electron-beam-driven KrF laser amplifiers to deliver 248 nm, 5-ns duration multi-kilojoule laser pulses to ICF targets using a beam train of approximately 1 km in length. The goals for the system are discussed and the design features of the major system components: front-end lasers, amplifier train, and the alignment and controls systems are summarised. (author)

  15. Progress in high gain inertial confinement fusion

    International Nuclear Information System (INIS)

    Sun Jingwen

    2001-01-01

    The author reviews the progress in laboratory high gain inertial confinement fusion (ICF), including ICF capsule physics, high-energy-density science, inertial fusion energy, the National Ignition Facility (NIF) and its design of ignition targets and the peta watt laser breakthrough. High power laser, particle beam, and pulsed power facilities around the world have established the new laboratory field of high-energy- density plasma physics and have furthered development of inertial fusion. New capabilities such as those provided by high-brightness peta watt lasers have enabled the study of matter feasible in conditions previously unachievable on earth. Science and technology developed in inertial fusion research have found near-term commercial use and have enabled steady progress toward the goal of fusion ignition and high gain in the laboratory, and have opened up new fields of study for the 21 st century

  16. A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms

    Energy Technology Data Exchange (ETDEWEB)

    Miake, Yudai; Mukaiyama, Takashi, E-mail: muka@ils.uec.ac.jp [Institute for Laser Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); O’Hara, Kenneth M. [Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802-6300 (United States); Gensemer, Stephen [CSIRO Manufacturing Flagship, Lindfield, NSW 2070 (Australia)

    2015-04-15

    We have constructed a solid-state light source for experiments with laser cooled lithium atoms based on a Nd:Y V O{sub 4} ring laser with second-harmonic generation. Unidirectional lasing, an improved mode selection, and a high output power of the ring laser were achieved by weak coupling to an external cavity which contained the lossy elements required for single frequency operation. Continuous frequency tuning is accomplished by controlling two piezoelectric transducers (PZTs) in the internal and the external cavities simultaneously. The light source has been utilized to trap and cool fermionic lithium atoms into the quantum degenerate regime.

  17. Progress in direct-drive inertial confinement fusion research at the Laboratory for Laser Energetics

    International Nuclear Information System (INIS)

    McCrory, R.L.

    2002-01-01

    Significant theoretical and experimental progress towards the validation of direct-drive inertial confinement fusion (ICF) has been recently made at the Laboratory for Laser Energetics (LLE). Direct-drive ICF offers the potential for high-gain implosions and is a leading candidate for an inertial fusion energy power plant. LLE's base-line direct-drive ignition design for NIF is an 'all-DT' design that has a 1-D gain of ∼45. Recent calculations show that targets composed of foam shells, wicked with DT, can potentially achieve 1-D gains of ∼100. LLE experiments are conducted on the OMEGA 60-beam, 30-kJ, UV laser system. Beam smoothing of OMEGA includes 1-THz, 2-D SSD and polarization smoothing. Cryogenic D2 and plastic shell (warm) spherical targets and a comprehensive suite of x-ray, nuclear, charged particle and optical diagnostics are used in these experiments. Future experiments will use cryogenic DT targets. (author)

  18. Amplitude and polarization asymmetries in a ring laser

    Science.gov (United States)

    Campbell, L. L.; Buholz, N. E.

    1971-01-01

    Asymmetric amplitude effects between the oppositely directed traveling waves in a He-Ne ring laser are analyzed both theoretically and experimentally. These effects make it possible to detect angular orientations of an inner-cavity bar with respect to the plane of the ring cavity. The amplitude asymmetries occur when a birefringent bar is placed in the three-mirror ring cavity, and an axial magnetic field is applied to the active medium. A simplified theoretical analysis is performed by using a first order perturbation theory to derive an expression for the polarization of the active medium, and a set of self-consistent equations are derived to predict threshold conditions. Polarization asymmetries between the oppositely directed waves are also predicted. Amplitude asymmetries similar in nature to those predicted at threshold occur when the laser is operating in 12-15 free-running modes, and polarization asymmetry occurs simultaneously.

  19. Aurora: A short-pulse multikilojoule KrF inertial fusion laser system

    International Nuclear Information System (INIS)

    Rosocha, L.A.

    1985-01-01

    Aurora is a laser system that serves as an operating technology demonstration prototype for large-scale high-energy KrF laser systems of interest for inertial fusion applications. This system will incorporate the following elements to achieve an end-to-end 248-nm laser fusion concept demonstration: an injection-locked oscillator-amplifier front end; an optical angular multiplexer to produce 96 encoded optical channels each of 5-nsec duration; a chain of four electron-beam-driven KrF laser amplifiers; automated alignment systems for beam alignment; a decoder to provide for pulse compression of some fraction of the total beam train to be delivered to target, and a target chamber to house and diagnose fusion targets. The front end configuration uses a stable resonator master oscillator to drive an injection-locked unstable resonator slave oscillator. An extension of existing technology has been used to develop an electrooptic switchout at 248 nm that produces a 5-nsec pulse from the longer slave oscillator pulse. This short pulse is amplified by a postamplifier. Using these discharge lasers, the front end then delivers at least 250 mJ of KrF laser light output to the optical encoder

  20. Modeling of anisotropic properties of double quantum rings by the terahertz laser field.

    Science.gov (United States)

    Baghramyan, Henrikh M; Barseghyan, Manuk G; Kirakosyan, Albert A; Ojeda, Judith H; Bragard, Jean; Laroze, David

    2018-04-18

    The rendering of different shapes of just a single sample of a concentric double quantum ring is demonstrated realizable with a terahertz laser field, that in turn, allows the manipulation of electronic and optical properties of a sample. It is shown that by changing the intensity or frequency of laser field, one can come to a new set of degenerated levels in double quantum rings and switch the charge distribution between the rings. In addition, depending on the direction of an additional static electric field, the linear and quadratic quantum confined Stark effects are observed. The absorption spectrum shifts and the additive absorption coefficient variations affected by laser and electric fields are discussed. Finally, anisotropic electronic and optical properties of isotropic concentric double quantum rings are modeled with the help of terahertz laser field.

  1. Progress in inertial fusion

    International Nuclear Information System (INIS)

    Hogan, W.; Storm, E.

    1985-10-01

    The requirements for high gain in inertial confinement are given in terms of target implosion requirements. Results of experimental studies of the laser/target interaction and of the dynamics of laser implosion. A report of the progress of advanced laser development is also presented. 3 refs., 8 figs., 1 tab

  2. Laser ablation under different electron heat conduction models in inertial confinement fusion

    Science.gov (United States)

    Li, Shuanggui; Ren, Guoli; Huo, Wen Yi

    2018-06-01

    In this paper, we study the influence of three different electron heat conduction models on the laser ablation of gold plane target. Different from previous studies, we concentrate on the plasma conditions, the conversion efficiency from laser into soft x rays and the scaling relation of mass ablation, which are relevant to hohlraum physics study in indirect drive inertial confinement fusion. We find that the simulated electron temperature in corona region is sensitive to the electron heat conduction models. For different electron heat conduction models, there are obvious differences in magnitude and spatial profile of electron temperature. For the flux limit model, the calculated conversion efficiency is sensitive to flux limiters. In the laser ablation of gold, most of the laser energies are converted into x rays. So the scaling relation of mass ablation rate is quite different from that of low Z materials.

  3. High-power single-mode cw dye ring laser

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, H W; Stein, L; Froelich, D; Fugger, B; Welling, H [Technische Univ. Hannover (Germany, F.R.). Inst. fuer Angewandte Physik

    1977-12-01

    Due to spatial hole burning, standing-wave dye lasers require a large amount of selectivity inside the cavity for single-mode operation. The output power of these lasers is limited by losses caused by the frequency selecting elements. In a travelling-wave laser, on the other hand, spatial hole burning does not exist, thereby eliminating the need for high selectivity. A travelling-wave cw dye laser was realized by unidirectional operation of a ring laser, yielding single mode output powers of 1.2 W at 595 nm and of 55 mW in the UV-region with intracavity frequency doubling.

  4. Higher-order paraxial theory of the propagation of ring rippled laser beam in plasma: Relativistic ponderomotive regime

    International Nuclear Information System (INIS)

    Purohit, Gunjan; Rawat, Priyanka; Chauhan, Prashant; Mahmoud, Saleh T.

    2015-01-01

    This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled laser beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate

  5. Utilizing wheel-ring architecture for stable and selectable single-longitudinal-mode erbium fiber laser

    Science.gov (United States)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai

    2018-03-01

    To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.

  6. Inertial Confinement Fusion at Los Alamos

    International Nuclear Information System (INIS)

    Cartwright, D.C.

    1989-09-01

    This report discusses the following topics on inertial confinement fusion: distribution of electron-beam energy in KrF laser media; electron collision processes in KrF laser media; Krf laser kinetics; and properties of the KrF laser medium

  7. Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing.

    Science.gov (United States)

    Wang, Qiang; Wang, Zhen; Chang, Jun; Ren, Wei

    2017-06-01

    We demonstrated a novel trace gas sensing method based on fiber-ring laser intracavity photoacoustic spectroscopy. This spectroscopic technique is a merging of photoacoustic spectroscopy (PAS) with a fiber-ring cavity for sensitive and all-fiber gas detection. A transmission-type PAS gas cell (resonant frequency f0=2.68  kHz) was placed inside the fiber-ring laser to fully utilize the intracavity laser power. The PAS signal was excited by modulating the laser wavelength at f0/2 using a custom-made fiber Bragg grating-based modulator. We used this spectroscopic technique to detect acetylene (C2H2) at 1531.6 nm as a proof of principle. With a low Q-factor (4.9) of the PAS cell, our sensor achieved a good linear response (R2=0.996) to C2H2 concentration and a minimum detection limit of 390 ppbv at 2-s response time.

  8. Inertial Confinement Fusion at Los Alamos

    International Nuclear Information System (INIS)

    Cartwright, D.C.

    1989-09-01

    This report discusses the following topics on Inertial Confinement Fusion: ICF contributions to science and technology; target fabrication; laser-target interaction; KrF laser development; advanced KrF lasers; KrF laser technology; and plasma physics for light-ion program

  9. Inertial fusion experiments and theory

    International Nuclear Information System (INIS)

    Mima, Kunioki; Tikhonchuk, V.; Perlado, M.

    2011-01-01

    Inertial fusion research is approaching a critical milestone, namely the demonstration of ignition and burn. The world's largest high-power laser, the National Ignition Facility (NIF), is under operation at the Lawrence Livermore National Laboratory (LLNL), in the USA. Another ignition machine, Laser Mega Joule (LMJ), is under construction at the CEA/CESTA research centre in France. In relation to the National Ignition Campaign (NIC) at LLNL, worldwide studies on inertial fusion applications to energy production are growing. Advanced ignition schemes such as fast ignition, shock ignition and impact ignition, and the inertial fusion energy (IFE) technology are under development. In particular, the Fast Ignition Realization Experiment (FIREX) at the Institute of Laser Engineering (ILE), Osaka University, and the OMEGA-EP project at the Laboratory for Laser Energetics (LLE), University Rochester, and the HiPER project in the European Union (EU) for fast ignition and shock ignition are progressing. The IFE technology research and development are advanced in the frameworks of the HiPER project in EU and the LIFE project in the USA. Laser technology developments in the USA, EU, Japan and Korea were major highlights in the IAEA FEC 2010. In this paper, the status and prospects of IFE science and technology are described.

  10. Plasma diagnostics using laser-excited coupled and transmission ring resonators

    International Nuclear Information System (INIS)

    Haas, R.A.

    1976-01-01

    In this paper a simple two-level laser model is used to investigate the frequency response of coupled-cavity laser interferometers. It is found that under certain circumstances, often satisfied by molecular gas lasers, the frequency response exhibits a resonant behavior. This behavior severely complicates the interpretation of coupled-cavity laser interferometer measurements of rapidly varying plasmas. To circumvent this limitation a new type of laser interferometer plasma diagnostic with significantly improved time response was developed. In this interferometer the plasma is located in one arm of a transmission ring resonator cavity that is excited by an externally positioned laser. Thus, the laser is decoupled from the interferometer cavity and the time response of the interferometer is then limited by the Q of the ring resonator cavity. This improved time response is acquired without loss of spatial resolution, but requires a more sensitive signal detector since the laser is no longer used as a detector as it is in conventional coupled-cavity laser interferometers. Thus, the new technique incorporates the speed of the Mach--Zender interferometer and the sensitivity of the coupled-cavity laser interferometer. The basic operating principles of this type of interferometer have been verified using a CO 2 laser

  11. Conceptual design and issues of the laser inertial fusion test (LIFT) reactor—targets and chamber systems

    Science.gov (United States)

    Norimatsu, T.; Kozaki, Y.; Shiraga, H.; Fujita, H.; Okano, K.; Members of LIFT Design Team

    2017-11-01

    We present the conceptual design of an experimental laser fusion plant known as the laser inertial fusion test (LIFT) reactor. The conceptual design aims at technically connecting a single-shot experiment and a commercial power plant. The LIFT reactor is designed on a three-phase scheme, where each phase has specific goals and the dedicated chambers of each phase are driven by the same laser. Technical issues related to the chamber technology including radiation safety to repeat burst mode operation are discussed in this paper.

  12. Development of laser diode pumped Nd:glass slab laser driver for the inertial fusion energy

    International Nuclear Information System (INIS)

    Yamanaka, Masanobu; Kanabe, Tadashi; Yasuhara, Ryo

    2002-01-01

    A diode-pumped solid state laser (DPSSL) is promising candidate of reactor driver for Inertial Fusion Energy (IFE). As a first step of a driver development for the IFE, we are developing a laser diode pumped zig-zag Nd:glass slab laser amplifier system HALNA 10 (High Average-power Laser for Nuclear-fusion Application) which can generated an output of 10 J per pulse at 1053 nm in 10 Hz operation. The water-cooled zig zag Nd:glass slab is pumped from both sides by 803 nm AIGaAs laser diode (LD) module, each LD module has an emitting area of 420 mm x 10 mm and two LD modules generate in total 218 (max.) kW peak power with 2.6 kW/cm 2 peak intensity at 10 Hz repetition rate. We have obtained in first-stage experiment 8.5 J output energy at 0.5 Hz with a beam quality of 2 times diffraction limited far-field pattern, which nearly confirmed our conceptual design. Since the key issue for the IFE DPSSL drive module were almost satisfactory, we have a confidence that a next 100 J x 10 Hz DPSSL module (HALNA 100) can be constructed. Thermal effects in laser slab, Faraday rotator, Faraday isolator and Pockets cell and their managements are discussed.

  13. Improving solar-pumped laser efficiency by a ring-array concentrator

    Science.gov (United States)

    Tibúrcio, Bruno D.; Liang, Dawei; Almeida, Joana; Matos, Rodrigo; Vistas, Cláudia R.

    2018-01-01

    We report here a compact pumping scheme for achieving large improvement in collection and conversion efficiency of a Nd:YAG solar-pumped laser by an innovative ring-array solar concentrator. An aspheric fused silica lens was used to further concentrate the solar radiation from the focal region of the 1.5-m-diameter ring-array concentrator to a 5.0-mm-diameter, 20-mm-length Nd:YAG single-crystal rod within a conical-shaped pump cavity, enabling multipass pumping to the laser rod. 67.3-W continuous-wave solar laser power was numerically calculated, corresponding to 38.2-W / m2 solar laser collection efficiency, being 1.22 and 1.27 times more than the state-of-the-art records by both heliostat-parabolic mirror and Fresnel lens solar laser systems, respectively. 4.0% conversion efficiency and 0.021-W brightness figure of merit were also numerically obtained, corresponding to 1.25 and 1.62 times enhancement over the previous records, respectively. The influence of tracking error on solar laser output power was also analyzed.

  14. Laser-Cooled Ions and Atoms in a Storage Ring

    International Nuclear Information System (INIS)

    Kleinert, J.; Hannemann, S.; Eike, B.; Eisenbarth, U.; Grieser, M.; Grimm, R.; Gwinner, G.; Karpuk, S.; Saathoff, G.; Schramm, U.; Schwalm, D.; Weidemueller, M.

    2003-01-01

    We review recent experiments at the Heidelberg Test Storage Ring which apply advanced laser cooling techniques to stored ion beams. Very high phase-space densities are achieved by three-dimensional laser cooling of a coasting 9 Be + beam at 7.3 MeV. Laser-cooled, trapped Cs atoms are used as an ultracold precision target for the study of ion-atom interactions with a 74 MeV beam of 12 C 6+ ions.

  15. Bistability of self-modulation oscillations in an autonomous solid-state ring laser

    International Nuclear Information System (INIS)

    Dudetskii, V Yu

    2013-01-01

    Bistable self-modulation regimes of generation for a ring YAG : Nd chip laser with the counterpropagating waves asymmetrically coupled via backward scattering are simulated numerically. Two branches of bistable self-modulation regimes of generation are found in the domain of the parametric resonance between the selfmodulation and relaxation oscillations. The self-modulation regimes observed in earlier experiments pertain to only one of the branches. Possible reasons for such a discrepancy are considered, related to the influence of technical and natural noise on the dynamics of solid-state ring lasers. (control of laser radiation parameters)

  16. Application of ring lasers to determine the directions to the poles of Earth's rotation

    International Nuclear Information System (INIS)

    Golyaev, Yu D; Kolbas, Yu Yu

    2012-01-01

    Application of a ring laser to determine the directions to the poles of Earth's rotation is considered. The maximum accuracy of determining the directions is calculated, physical and technical mechanisms that limit the accuracy are analysed, and the instrumental errors are estimated by the example of ring He — Ne lasers with Zeeman biasing. (laser applications and other topics in quantum electronics)

  17. Continuously tunable S and C+L bands ultra wideband erbium-doped fiber ring laser

    International Nuclear Information System (INIS)

    Wang, Q; Yu, Q X

    2009-01-01

    This paper presents an ultra wideband tunable silica-based erbium doped fiber ring laser (EDFRL) that can be continuously tuned in S and C+L bands from 1475 to 1619 nm. It is the first time that a fiber ring laser's tuning range reaches 144 nm using a standard silica-based C-band erbium-doped fiber as gain media. In the laser configuration two isolators are used in the fiber loop for suppressing the ASE in C-band and elevating the lasing gain in S-band. As a result the available lasing wavelength is extended toward the shorter wavelength of the gain bandwidth. The optimized erbium-doped fiber length, output coupling ratio and pumping laser power have been obtained through experimental study. This ring fiber laser has simple configuration, low threshold, flat laser spectral distribution and high signal-to-ASE-noise ratio. The laser will have many potential applications in fiber sensor wavelength interrogation, high-resolution spectroscopy and fiber optic communications

  18. Temperature Sensor Using a Multiwavelength Erbium-Doped Fiber Ring Laser

    Directory of Open Access Journals (Sweden)

    Silvia Diaz

    2017-01-01

    Full Text Available A novel temperature sensor is presented based on a multiwavelength erbium-doped fiber ring laser. The laser is comprised of fiber Bragg grating reflectors as the oscillation wavelength selecting filters. The performance of the temperature sensor in terms of both wavelength and laser output power was investigated, as well as the application of this system for remote temperature measurements.

  19. Industry's role in inertial fusion

    International Nuclear Information System (INIS)

    Glass, A.J.

    1983-01-01

    This paper is an address to the Tenth Symposium on Fusion Engineering. The speaker first addressed the subject of industry's role in inertial fusion three years earlier in 1980, outlining programs that included participation in the Shiva construction project, and the industrial participants' program set up in the laser fusion program to bring industrial scientists and engineers into the laboratory to work on laser fusion. The speaker is now the president of KMS Fusion, Inc., the primary industrial participant in the inertial fusion program. The outlook for fusion energy and the attitude of the federal government toward the fusion program is discussed

  20. Laser-Cooled Ions and Atoms in a Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Kleinert, J.; Hannemann, S.; Eike, B.; Eisenbarth, U.; Grieser, M.; Grimm, R.; Gwinner, G.; Karpuk, S.; Saathoff, G.; Schramm, U.; Schwalm, D.; Weidemueller, M., E-mail: m.weidemueller@mpi-hd.mpg.de [Max-Planck-Insitut fuer Kernphysik (Germany)

    2003-03-15

    We review recent experiments at the Heidelberg Test Storage Ring which apply advanced laser cooling techniques to stored ion beams. Very high phase-space densities are achieved by three-dimensional laser cooling of a coasting {sup 9}Be{sup +} beam at 7.3 MeV. Laser-cooled, trapped Cs atoms are used as an ultracold precision target for the study of ion-atom interactions with a 74 MeV beam of {sup 12}C{sup 6+} ions.

  1. Erbium-doped fiber ring laser with SMS modal interferometer for hydrogen sensing

    Science.gov (United States)

    Zhang, Ya-nan; Zhang, Lebin; Han, Bo; Peng, Huijie; Zhou, Tianmin; Lv, Ri-qing

    2018-06-01

    A hydrogen sensor based on erbium-doped fiber ring laser with modal interferometer is proposed. A single mode-multimode-single mode (SMS) modal interferometer structure coated with Pd/WO3 film is used as the sensing head, due to that it is easy to be fabricated and low cost. The sensing structure is inserted into an erbium-doped fiber ring laser in order to solve the problem of spectral confusion and improve the detection limit of the hydrogen sensor based on the SMS modal interferometer. The SMS sensing structure is acted as a fiber band-pass filter. When hydrogen concentration around the sensor is changed, it will induce the refractive index and strain variations of the Pd/WO3 film, and then shift the resonant spectrum of the SMS modal interferometer as well as the laser wavelength of the fiber ring laser. Therefore, the hydrogen concentration can be measured by monitoring the wavelength shift of the laser, which has high intensity and narrow full width half maximum. Experimental results demonstrate that the sensor has high sensitivity of 1.23 nm/%, low detection limit of 0.017%, good stability and excellent repeatability.

  2. Diode-pumped solid-state laser driver experiments for inertial fusion energy applications

    International Nuclear Information System (INIS)

    Marshall, C.D.; Payne, S.A.; Emanuel, M.E.; Smith, L.K.; Powell, H.T.; Krupke, W.F.

    1995-01-01

    Although solid-state lasers have been the primary means by which the physics of inertial confinement fusion (ICF) have been investigated, it was previously thought that solid-state laser technology could not offer adequate efficiencies for an inertial fusion energy (IFE) power plant. Orth and co-workers have recently designed a conceptual IFE power plant, however, with a high efficiency diode-pumped solid-state laser (DPSSL) driver that utilized several recent innovations in laser technology. It was concluded that DPSSLs could offer adequate performance for IFE with reasonable assumptions. This system was based on a novel diode pumped Yb-doped Sr 5 (PO 4 ) 3 F (Yb:S-FAP) amplifier. Because this is a relatively new gain medium, a project was established to experimentally validate the diode-pumping and extraction dynamics of this system at the smallest reasonable scale. This paper reports on the initial experimental results of this study. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm 2 using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0x10 -20 cm 2 . Up to 1.7 J/cm 3 of stored energy density was achieved in a 6x6x44 mm 3 Yb:S-FAP amplifier rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to ∼0.5 J per 1 ms pulse from a 3x3x30 mm 3 rod. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 μs pulses

  3. Broadband pulsed difference frequency generation laser source centered 3326 nm based on ring fiber lasers

    Science.gov (United States)

    Chen, Guangwei; Li, Wenlei

    2018-03-01

    A broadband pulsed mid-infrared difference frequency generation (DFG) laser source based on MgO-doped congruent LiNbO3 bulk is experimentally demonstrated, which employs a homemade pulsed ytterbium-doped ring fiber laser and a continuous wave erbium-doped ring fiber laser to act as seed sources. The experimental results indicate that the perfect phase match crystal temperature is about 74.5∘C. The maximum spectrum bandwidth of idler is about 60 nm with suitable polarization states of fundamental lights. The central wavelength of idlers varies from 3293 nm to 3333 nm over the crystal temperature ranges of 70.4-76∘C. A jump of central wavelength exists around crystal temperature of 72∘C with variation of about 30 nm. The conversion efficiency of DFG can be tuned with the crystal temperature and polarization states of fundamental lights.

  4. White-light laser cooling of ions in a storage ring

    International Nuclear Information System (INIS)

    Calabrese, R.; Guidi, V.; Lenisa, P.; Grimm, R.; Miesner, H.J.; Mariotti, E.; Siena Univ.; Moi, L.; Siena Univ.

    1996-01-01

    We propose the use of a white laser for laser cooling of ions in a storage ring. The use of a broad-band laser provides a radiation pressure force with wide velocity capture range and high magnitude, which is promising to improve the performance of both longitudinal and indirect transverse cooling. This wide-range force could also be suitable for direct transverse cooling of low-density beams. (orig.)

  5. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    International Nuclear Information System (INIS)

    Latkowski, J.F.; Kramer, K.J.; Abbott, R.P.; Morris, K.R.; DeMuth, J.; Divol, L.; El-Dasher, B.; Lafuente, A.; Loosmore, G.; Reyes, S.; Moses, G.A.; Fratoni, M.; Flowers, D.; Aceves, S.; Rhodes, M.; Kane, J.; Scott, H.; Kramer, R.; Pantano, C.; Scullard, C.; Sawicki, R.; Wilks, S.; Mehl, M.

    2010-01-01

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  6. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    Energy Technology Data Exchange (ETDEWEB)

    Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

    2010-12-07

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  7. Inertial fusion energy

    International Nuclear Information System (INIS)

    Decroisette, M.; Andre, M.; Bayer, C.; Juraszek, D.; Le Garrec, B.; Deutsch, C.; Migus, A.

    2005-01-01

    We first recall the scientific basis of inertial fusion and then describe a generic fusion reactor with the different components: the driver, the fusion chamber, the material treatment unit, the target factory and the turbines. We analyse the options proposed at the present time for the driver and for target irradiation scheme giving the state of art for each approach. We conclude by the presentation of LMJ (laser Megajoule) and NIF (national ignition facility) projects. These facilities aim to demonstrate the feasibility of laboratory DT ignition, first step toward Inertial Fusion Energy. (authors)

  8. Laser driven inertial fusion: the physical basis of current and recently proposed ignition experiments

    International Nuclear Information System (INIS)

    Atzeni, S

    2009-01-01

    A brief overview of the inertial fusion principles and schemes is presented. The bases for the laser driven ignition experiments programmed for the near future at the National Ignition Facility are outlined. These experiments adopt indirect-drive and aim at central ignition. The principles of alternate approaches, based on direct-drive and different routes to ignition (fast ignition and shock ignition) are also discussed. Gain curves are compared and discussed.

  9. UV laser ablation of silicon carbide ring surfaces for mechanical seal applications

    Science.gov (United States)

    Daurelio, Giuseppe; Bellosi, Alida; Sciti, Diletta; Chita, Giuseppe; Allegretti, Didio; Guerrini, Fausto

    2000-02-01

    Silicon carbide ceramic seal rings are treated by KrF excimer laser irradiation. Surface characteristics, induced by laser treatment, depend upon laser fluence, the number of laser pulses, their energy and frequency, the rotation rate of the ring and the processing atmosphere. It was ascertained that silicon carbide has to be processed under an inert atmosphere to avoid surface oxidation. Microstructural analyses of surface and cross section of the laser processed samples showed that the SiC surface is covered by a scale due to the melting/resolidification processes. At high fluence there are no continuous scales on the surfaces; materials is removed by decomposition/vaporization and the ablation depth is linearly dependent on the number of pulses. Different surface morphologies are observed. The evolution of surface morphology and roughness is discussed with reference to compositions, microstructure and physical and optical properties of the ceramic material and to laser processing parameters. Preliminary results on tribological behavior of the treated seals are reported.

  10. The theoretical and numerical models of the novel and fast tunable semiconductor ring laser

    Science.gov (United States)

    Zhu, Jiangbo; Zhang, Junwen; Chi, Nan; Yu, Siyuan

    2011-01-01

    Fast wavelength-tunable semiconductor lasers will be the key components in future optical packet switching networks. Especially, they are of great importance in the optical network nodes: transmitters, optical wavelength-routers, etc. In this paper, a new scheme of a next-generation fast tunable ring laser was given. Tunable lasers in this design have better wavelength tunability compared with others, for they are switched faster in wavelength and simpler to control with the injecting light from an external distributed Bragg-reflector(DBR). Then some discussion of the waveguide material system and coupler design of the ring laser were given. And we also derived the multimode rate equations corresponding to this scheme by analyzing some characteristics of the semiconductor ring cavity, directionality, nonlinear mode competition, optical injection locking, etc. We did MatLab simulation based on the new rate equations to research the process of mode competition and wavelength switching in the laser, and achieved the basic functions of a tunable laser. Finally some discussion of the impact of several key parameters was given.

  11. The non-planar single-frequency ring laser with variable output coupling

    Science.gov (United States)

    Wu, Ke-ying; Yang, Su-hui; Wei, Guang-hui

    2002-03-01

    We put forward a novel non-planar single-frequency ring laser, which consists of a corner cube prism and a specially cut Porro prism made by Nd:YAG crystal. The relative angle between the corner cube and the Porro prism could be adjusted to control the output coupling of the laser resonator and the polarization-state of the output laser. A 1.06 μm single-frequency laser with 1 W output has been obtained.

  12. Free electron laser on the ACO storage ring

    International Nuclear Information System (INIS)

    Elleaume, P.

    1984-06-01

    This dissertation presents the design and characteristics of a Free Electron Laser built on the electron storage ring ACO at Orsay. The weak optical gain available (approximately 0.1% per pass) necessitated the use of an optical klystron instead of an undulator and the use of mirror with extremely high reflectivity. The laser characteristics: spectra, micro and macro-temporal structures, transverse structure and power are presented. They are in very good agreement with a classical theory based on the Lorentz force and Maxwell equations [fr

  13. Survey of Laser Markets Relevant to Inertial Fusion Energy Drivers, information for National Research Council

    International Nuclear Information System (INIS)

    Bayramian, A.J.; Deri, R.J.; Erlandson, A.C.

    2011-01-01

    Development of a new technology for commercial application can be significantly accelerated by leveraging related technologies used in other markets. Synergies across multiple application domains attract research and development (R and D) talent - widening the innovation pipeline - and increases the market demand in common components and subsystems to provide performance improvements and cost reductions. For these reasons, driver development plans for inertial fusion energy (IFE) should consider the non-fusion technology base that can be lveraged for application to IFE. At this time, two laser driver technologies are being proposed for IFE: solid-state lasers (SSLs) and KrF gas (excimer) lasers. This document provides a brief survey of organizations actively engaged in these technologies. This is intended to facilitate comparison of the opportunities for leveraging the larger technical community for IFE laser driver development. They have included tables that summarize the commercial organizations selling solid-state and KrF lasers, and a brief summary of organizations actively engaged in R and D on these technologies.

  14. Fusion technologies for Laser Inertial Fusion Energy (LIFE∗

    Directory of Open Access Journals (Sweden)

    Kramer K.J.

    2013-11-01

    Full Text Available The Laser Inertial Fusion-based Energy (LIFE engine design builds upon on going progress at the National Ignition Facility (NIF and offers a near-term pathway to commercial fusion. Fusion technologies that are critical to success are reflected in the design of the first wall, blanket and tritium separation subsystems. The present work describes the LIFE engine-related components and technologies. LIFE utilizes a thermally robust indirect-drive target and a chamber fill gas. Coolant selection and a large chamber solid-angle coverage provide ample tritium breeding margin and high blanket gain. Target material selection eliminates the need for aggressive chamber clearing, while enabling recycling. Demonstrated tritium separation and storage technologies limit the site tritium inventory to attractive levels. These key technologies, along with the maintenance and advanced materials qualification program have been integrated into the LIFE delivery plan. This describes the development of components and subsystems, through prototyping and integration into a First Of A Kind power plant.

  15. High-power actively Q-switched single-mode 1342 nm Nd:YVO4 ring laser, injection-locked by a cw single-frequency microchip laser.

    Science.gov (United States)

    Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A

    2015-11-30

    In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.

  16. The use of ring lasers for the measurement of relativistic effects

    International Nuclear Information System (INIS)

    Denisov, V I; Zubrilo, A A; Kravtsov, Nikolai V; Pinchuk, V B

    1999-01-01

    The possibility of using a ring laser for the investigation of relativistic effects is analysed. It is shown that gravitational experiments permitting a refinement of certain (fundamental) aspects of the theory of gravitation will become possible in the near future. (laser applications and other topics in quantum electronics)

  17. Demonstration of frequency control and CW diode laser injection control of a titanium-doped sapphire ring laser with no internal optical elements

    Science.gov (United States)

    Bair, Clayton H.; Brockman, Philip; Hess, Robert V.; Modlin, Edward A.

    1988-01-01

    Theoretical and experimental frequency narrowing studies of a Ti:sapphire ring laser with no intracavity optical elements are reported. Frequency narrowing has been achieved using a birefringent filter between a partially reflecting reverse wave suppressor mirror and the ring cavity output mirror. Results of CW diode laser injection seeding are reported.

  18. Design descriptions of the Prometheus-L and -H inertial fusion energy drivers

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J. (TRW Inc., Bld. O1/1220, Redondo Beach, CA 90278 (United States)); Driemeyer, D.E. (McDonnell Douglas Aerospace Co. (MDAC), St. Louis, MO 63166 (United States)); Fornaca, S.W. (TRW Inc., Bld. O1/1220, Redondo Beach, CA 90278 (United States)); Maschke, A.W. (TRW Inc., Bld. O1/1220, Redondo Beach, CA 90278 (United States))

    1994-08-01

    Two innovative drivers have been designed for a prototype 1000MW thermonuclear power plant planned for operation early in the next century. The Prometheus-L driver is a 4MJ KrF master oscillator power amplifier laser system designed to operate at a 5.6Hz repetition rate. Output pulses from the KrF master oscillator are synchronized with the pulsed-power excitation of the KrF power amplifiers and the launching of the inertial fusion energy deuterium/tritium targets. The Prometheus-L laser architecture features 960 5kJ electric discharge KrF power amplifiers pumping 60 crossed stimulated rotational Raman scattering H[sub 2] amplifiers serving as beam accumulators. Pulse compression of the 60 accumulator beams is accomplished in 60 chirped, self-seeded SF[sub 6] stimulated Brillouin scattering pulse compressors. Grazing incidence metal focusing mirrors minimize back-streaming radiation damage from the target chamber. This architecture permits the laser driver to deliver spectrally broad-band, temporally complex optical pulses in 60 beam lines to implode the direct-drive IFE targets within a 5m radius target chamber.The Prometheus-H driver is a 7.8MJ 4GeV Pb[sup ++] heavy ion (HI) inertial fusion energy system designed to operate at a 3.5He repetition rate. The HI driver design is based on a short, ramped gradient, 5MeV accelerator, followed by a longer, 2km constant gradient, single beam linear accelerator operated in a 50kHz burst mode to generate sequentially 18 4GeV beamlets. A two-sided irradiation geometry was developed for indirect-drive HI targets. Six beamlets are used for the 45ns precursor HI pulses stored in two superconducting storage rings, 12 superconducting storage rings accumulate the 12 main beamlets, with a final buncher generating the 8ns HI pulses which arrive at the target chamber simultaneously. Final focusing is accomplished with large aperture triplet focusing magnets through Pb-vapor neutralization cells to reduce the effect of space charge.

  19. Progress in direct-drive inertial confinement fusion research at the laboratory for laser energetics

    International Nuclear Information System (INIS)

    McCrory, R.L.; Meyerhofer, D.D.; Loucks, S.J.

    2003-01-01

    Significant theoretical and experimental progress toward the validation of direct-drive inertial confinement fusion (ICF) has been made at the Laboratory for Laser Energetics (LLE). Direct-drive ICF offers the potential for high-gain implosions and is a leading candidate for an inertial fusion energy power plant. LLE's base-line direct-drive ignition design for the National Ignition Facility (NIF) is an 'all-DT' design that has a 1-D gain of ∼45 (∼30 when two-dimensional calculations are performed). The 'all-DT target' consists of a thin (∼3 μm) plastic shell enclosing a thick (∼330 μm) DT-ice layer. Recent calculations show that targets composed of foam shells, wicked with DT, can potentially achieve 1-D gains ∼100 at NIF energy levels (∼1.5 MJ). The addition of a 'picket' pulse to the beginning of the all-DT pulse shape reduces the target sensitivity to laser nonuniformities, increasing the potentially achievable gains. LLE experiments are conducted on the OMEGA 60-beam, 30-kJ, UV laser system. Beam smoothing includes 1-THz, 2-D SSD and polarization smoothing. Ignition-scaled cryogenic D 2 and plastic-shell spherical targets and a comprehensive suite of x-ray, nuclear, charged-particle, and optical diagnostics are used to understand the characteristics of the implosions. Recent cryogenic D 2 implosions with high adiabat (α ∼ 25) perform as predicted by one-dimensional (perfectly symmetric) simulations. Moderateconvergence- ratio (CR ∼ 15), high-adiabat (α ∼ 25), warm-capsule (surrogates for cryogenic capsules) implosions produce >30% of the 1-D predicted neutron yield and nearly 100% of the predicted fuel and shell areal densities. From a combination of x-ray, nuclear, and particle spectroscopy, a 'Lawson' fusion parameter (n i T i τi) of ∼7 x 10 20 m -3 keV was measured, the highest directly measured in inertial confinement fusion experiments to date. Estimates from cryogenic target performance give similar Lawson conditions. Future

  20. Laser cooling and ion beam diagnosis of relativistic ions in a storage ring

    International Nuclear Information System (INIS)

    Schroeder, S.

    1990-08-01

    Particle accelerator and storage ring technology has reached an advanced state, so that different heavy ion storage rings are coming into operation by now, capable of storing even fully stripped ions up to U 92+ . The main purpose of these machines are the accumulation of ions and the ability of improving the beam quality, that is the phase space density of the stored beams. This beam cooling is done successfully by the well established stochastic and electron cooling techniques. A new cooling method, the laser cooling, is taken over from atomic beam and ion trap experiments, where it has yielded extremely low temperatures of atomic samples. As a canditate at storage rings 7 Li + ions are stored in the Heidelberg TSR at 13.3 MeV. The ion beam properties of the metastable fraction like momentum spread, storage time and the influence of residual gas scattering are investigated by colinear laser spectroscopy in the experimental section of the TSR. An optical pumping experiment using two dye laser systems yields information about ion kinematics and velocity mixing processes in the ring. Lifetimes in the order of 100 ms for velocity classes marked in this way show that laser cooling can be applied to the stored 7 Li + beam. In an experimental situation of two strong counterpropagating laser beams, both tuned near resonance, a dramatic reduction of the ion beam momentum spread is observed. With a special geometrical control of laser and ion beam the longitudinal beam temperature is reduced from 260 K to at least 3 K with very high collection efficiency. (orig./HSI) [de

  1. Spatial-mode switchable ring fiber laser based on low mode-crosstalk all-fiber mode MUX/DEMUX

    Science.gov (United States)

    Ren, Fang; Yu, Jinyi; Wang, Jianping

    2018-05-01

    We report an all-fiber ring laser that emits linearly polarized (LP) modes based on the intracavity all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). Multiple LP modes in ring fiber laser are generated by taking advantage of mode MUX/DEMUX. The all-fiber mode MUX/DEMUX are composed of cascaded mode-selective couplers (MSCs). The output lasing mode of the ring fiber laser can be switched among the three lowest-order LP modes by employing combination of a mode MUX and a simple N × 1 optical switch. The slope efficiencies, optical spectra and mode profiles are measured.

  2. Injection seeded, diode pumped regenerative ring Nd:YAG amplifier for spaceborne laser ranging technology development

    Science.gov (United States)

    Coyle, D. Barry; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.

    1992-01-01

    A small, all solid state, regenerative ring amplifier designed as a prototype for space application is discussed. Novel features include dual side pumping of the Nd:YAG crystal and a triangular ring cavity design which minimizes the number of optical components and losses. The amplifier is relatively small (3 ns round trip time) even though standard optical elements are employed. The ring regeneratively amplifies a 100 ps single pulse by approximately 10(exp 5) at a repetition rate of 10 to 100 Hz. The amplifier is designed to be injection seeded with a pulsed, 100 ps laser diode at 1.06 microns, but another Nd:YAG laser system supplying higher pulse energies was employed for laboratory experiment. This system is a prototype laser oscillator for the Geoscience Laser Ranging System (GLRS) platform. Results on measurements of beam quality, astigmatism, and gain are given.

  3. Present status of inertial confinement fusion in Japan

    International Nuclear Information System (INIS)

    Yamanaka, Chiyoe

    1984-01-01

    The Japanese inertial fusion program has made important progress towards implosion fusion process and the technical development required for realizing the breakeven of inertial fusion energy. The key issues for the ICF research are the development of a high power driver, the pertinent pellet design for implosion by a super computer code, and the diagnostics of implosion process with high space and time resolution. The Institute of Laser Engineering (ILE), Osaka University, is the central laboratory for ICF research in Japan. The ILE Osaka has advanced the Kongo Project aiming at the breakeven of inertial fusion since 1980, and as the first phase, the Gekko 12 Nd glass laser of 20 kJ having 12 beams was constructed. The ILE has also the Lekko 8 CO 2 laser and the Reiden 4 light ion beam machine. In the second phase, a 100 kJ class driver will be provided. At the ILE, rare gas halide lasers such as KrF and ArF have been investigated. Laser plasma coupling, the scaling law for implosion pressure, the invention of a new type target ''Cannonball'', and the development of computer codes are described. Also the activities in universities, government laboratories and industrial companies are reported. (Kako, I.)

  4. Diode-pumped solid-state-laser drivers and the competitiveness of inertial fusion energy

    International Nuclear Information System (INIS)

    Orth, C.D.

    1993-12-01

    Based on five technical advances at LLNL and a new systems-analysis code that we have written, we present conceptual designs for diode-pumped solid-state laser (DPSSL) drivers for Inertial Fusion Energy (IFE) power plants. Such designs are based on detailed physics calculations for the drive, and on generic scaling relationships for the reactor and balance of plant (BOP). We describe the performance and economics of such power plants, show how sensitive these results are to changes in the major parameters, and indicate how technological improvements can make DPSSL-driven IFE plants more competitive

  5. Recent progress on the Los Alamos Aurora ICF [inertial confinement fusion] laser system

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Blair, L.S.

    1987-01-01

    Aurora is the Los Alamos short-pulse, high-power, krypton-fluoride laser system. It serves as an end-to-end technology demonstration prototype for large-scale ultraviolet laser systems for short wavelength inertial confinement fusion (ICF) investigations. The system is designed to employ optical angular multiplexing and serial amplification by electron-beam-driven KrF laser amplifiers to deliver stacked, 248-nm, 5-ns duration multikilojoule laser pulses to ICF-relevant targets. This paper presents a summary of the Aurora system and a discussion of the progress achieved in the construction and integration of the laser system. We concentrate on the main features of the following major system components: front-end lasers, amplifier train, multiplexer, optical relay train, demultiplexer, and the associated optical alignment system. During the past year, two major construction and integration tasks have been accomplished. The first task is the demonstration of 96-beam multiplexing and amplified energy extraction, as evidenced by the integrated operation of the front end, the multiplexer (12-fold and 8-fold encoders), the optical relay train, and three electron-beam-driven amplifiers. The second task is the assembly and installation of the demultiplexer optical hardware, which consists of over 300 optical components ranging in size from several centimeters square to over a meter square. 13 refs., 13 figs

  6. Infrared cavity ring-down spectroscopy with a CW diode laser system

    NARCIS (Netherlands)

    Hemerik, M.M.; Kroesen, G.M.W.; Doebele, H.F.; Muraoka, K.

    1999-01-01

    We report on the first measurements with our CRDS setup. Although the diode laser system was out of order, we were able to test the most important parts with the use of a CO laser. The first results show a ring-down time of 1.54 ~is, which is in perfect agreement with the predicted reflectivity of

  7. Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

    Science.gov (United States)

    Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric; Hansen, Stephanie B.; Jennings, Christopher; Kimmel, Mark W.; Knapp, Patrick; Lewis, Sean M.; Peterson, Kyle; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon E.; Slutz, Stephen A.; Sinars, Daniel B.; Smith, Ian C.; Speas, C. Shane; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

    2018-02-01

    The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.

  8. Inertial fusion sciences and applications 99: state of the art 1999

    International Nuclear Information System (INIS)

    Labaune, Ch.; Hogan, W.J.; Tanaka, K.A.

    2000-01-01

    This book brings together the texts of the communications presented at the conference 'Inertial fusion sciences and applications' held in Paris in 1999. These proceedings are shared into five sessions: laser fusion physics, fusion with particle beams, fusion with implosions, inertial fusion energy, and experimental applications of inertial fusion. (J.S.)

  9. Results and analysis of free-electron-laser oscillation in a high-energy storage ring

    International Nuclear Information System (INIS)

    Couprie, M.E.; Velghe, M.; Prazeres, R.; Jaroszynski, D.; Billardon, M.

    1991-01-01

    A storage-ring free-electron laser at Orsay has been operating since 1989 in the visible wavelength range. In contrast with previous experiments, it operates with positrons and at higher energies (600--800 MeV), with the storage ring Super-ACO (ACO denotes Anneau de Collisions d'Orsay). The optical gain, the laser power, the transverse profile, and the macrotemporal structure of the laser are analyzed. In particular, we show that the gain matrix possesses many off-diagonal elements, which results in lasing on a combination of noncylindrical Gaussian modes. The eigenmode of the laser oscillation is a combination of one or two main Gaussian modes and several higher-order modes, which results in most of the power being extracted in these modes

  10. Colloidal-Quantum-Dot Ring Lasers with Active Color Control.

    Science.gov (United States)

    le Feber, Boris; Prins, Ferry; De Leo, Eva; Rabouw, Freddy T; Norris, David J

    2018-02-14

    To improve the photophysical performance of colloidal quantum dots for laser applications, sophisticated core/shell geometries have been developed. Typically, a wider bandgap semiconductor is added as a shell to enhance the gain from the quantum-dot core. This shell is designed to electronically isolate the core, funnel excitons to it, and reduce nonradiative Auger recombination. However, the shell could also potentially provide a secondary source of gain, leading to further versatility in these materials. Here we develop high-quality quantum-dot ring lasers that not only exhibit lasing from both the core and the shell but also the ability to switch between them. We fabricate ring resonators (with quality factors up to ∼2500) consisting only of CdSe/CdS/ZnS core/shell/shell quantum dots using a simple template-stripping process. We then examine lasing as a function of the optical excitation power and ring radius. In resonators with quality factors >1000, excitons in the CdSe cores lead to red lasing with thresholds at ∼25 μJ/cm 2 . With increasing power, green lasing from the CdS shell emerges (>100 μJ/cm 2 ) and then the red lasing begins to disappear (>250 μJ/cm 2 ). We present a rate-equation model that can explain this color switching as a competition between exciton localization into the core and stimulated emission from excitons in the shell. Moreover, by lowering the quality factor of the cavity we can engineer the device to exhibit only green lasing. The mechanism demonstrated here provides a potential route toward color-switchable quantum-dot lasers.

  11. Target technologies for laser inertial confinement fusion: state-of-the-art and future perspective

    International Nuclear Information System (INIS)

    Zhang Lin; Du Kai

    2013-01-01

    Targets are physical base of the laser inertial confinement fusion (ICF) researches. The quality of the targets has extremely important influences on the reliabilities and degree of precision of the ICF experimental results. The characteristics of the ICF targets, such as complexity and microscale, high precision, determine that the target fabrication process must be a system engineering. This paper presents progresses on the fabrication technologies of ICF targets. The existing problem and the future needs of ICF target fabrication technologies are also discussed. (authors)

  12. Orthogonal linear polarization tunable-beat ring laser with a superluminescent diode

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Y.; Yoshino, T. [Department of Electronic Engineering, Faculty of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376 (Japan)

    1997-09-01

    An orthogonal linear polarization operated ring laser with a superluminescent diode has been demonstrated to generate a tunable optical beat signal. The ring cavity contains a superluminescent diode as the optical gain medium, Faraday rotators, and a variable phase retarder (Babinet-Soleil compensator). By controlling the retarder, we changed the beat frequency in the range from a few tens of megahertz to 100 MHz. {copyright} 1997 Optical Society of America

  13. A single-frequency, ring cavity Tm-doped fiber laser based on a CMFBG filter

    International Nuclear Information System (INIS)

    Li, Qi; Yan, Fengping; Peng, Wanjing; Liu, Shuo; Feng, Ting; Tan, Siyu; Liu, Peng

    2013-01-01

    A single-frequency (SF), continuous-wave (CW), ring cavity Tm-doped fiber laser has been proposed and demonstrated. A chirped moiré fiber grating (CMFBG) was used as an ultra-narrow filter in the laser cavity to ensure SF operation. When the launched pump power was fixed at 2 W, this proposed laser was in stable operation with a central wavelength, optical signal-to-noise ratio, and full width at half maximum of 1942.8140 nm, 47 dB, and 0.0522 nm, respectively, with a resolution of 0.05 nm. The maximum output power of this laser is 95 mW, a higher output power is restricted by the optical circulator that is used in the cavity. The SF operation of this laser was confirmed by the self-homodyne method. To the best of the authors’ knowledge, this is the first report on an SF, CW, ring cavity Tm-doped fiber laser with a CMFBG filter. (letter)

  14. Alignment of Duke free electron laser storage ring and optical beam delivery system

    International Nuclear Information System (INIS)

    Emamian, M.; Hower, N.

    1999-01-01

    Duke Free Electron Laser Laboratory (DFELL) hosts a 1.1 GeV electron beam storage ring facility which is capable of generating beams in the range of nearly monochromatic gamma rays to high peak power infra red (IR) laser. In this report specifications and procedures for alignment of OK-4 /Duke storage ring FEL wiggler and optical cavity mirrors will be discussed. The OK-4 FEL lasing has demonstrated a series of world record in the last few years. In August of this year the OK-4 FEL successfully commissioned to laser at 193.7 nm. Also in this article, alignment of the γ-ray and UV optical beam delivery system that is currently in progress will be described. (authors)

  15. The technology benefits of inertial confinement fusion research

    International Nuclear Information System (INIS)

    Powell, H.T.

    1999-01-01

    The development and demonstration of inertial fusion is incredibly challenging because it requires simultaneously controlling and precisely measuring parameters at extreme values in energy, space, and time. The challenges range from building megajoule (10 6 J) drivers that perform with percent-level precision to fabricating targets with submicron specifications to measuring target performance at micron scale (10 -6 m) with picosecond (10 -12 s) time resolution. Over the past 30 years in attempting to meet this challenge, the inertial fusion community around the world has invented new technologies in lasers, particle beams, pulse power drivers, diagnostics, target fabrication, and other areas. These technologies have found applications in diverse fields of industry and science. Moreover, simply assembling the teams with the background, experience, and personal drive to meet the challenging requirements of inertial fusion has led to spin-offs in unexpected directions, for example, in laser isotope separation, extreme ultraviolet lithography for microelectronics, compact and inexpensive radars, advanced laser materials processing, and medical technology. The experience of inertial fusion research and development of spinning off technologies has not been unique to any one laboratory or country but has been similar in main research centers in the US, Europe, and Japan. Strengthening and broadening the inertial fusion effort to focus on creating a new source of electrical power (inertial fusion energy [IFE]) that is economically competitive and environmentally benign will yield rich rewards in technology spin-offs. The additional challenges presented by IFE are to make drivers affordable, efficient, and long-lived while operating at a repetition rate of a few Hertz; to make fusion targets that perform consistently at high-fusion yield; and to create target chambers that can repetitively handle greater than 100-MJ yields while producing minimal radioactive by

  16. Free Electron Laser as Energy Driver for Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Saldin, E.L.; Shnejdmiller, E.A.; Ul'yanov, Yu.N.; Sarantsev, V.P.; Yurkov, M.V.

    1994-01-01

    A FEL based energy driver for Inertial Confinement Fusion (ICF) is proposed. The key element of the scheme is free electron laser system. Novel technical solutions reveal a possibility to construct the FEL system operating at radiation wavelength λ = 0.5 μm and providing flash energy E = 1 MJ and brightness 4 x 10 22 W cm -2 sr -1 within steering pulse duration 0.1-2 ns. Total energy efficiency of the proposed ICF energy driver is about of 11% and repetition rate is 40 Hz. Dimensions of such an ICF driver are comparable with those of heavy-ion ICF driver, while the problem of technical realization seems to be more realistic. It is shown that the FEL based ICF energy driver may be constructed at the present level of accelerator technique R and D. 27 refs., 10 figs., 3 tabs

  17. LASERS: Stimulated emission in a solid-state ring laser with a stimulated Brillouin scattering mirror

    Science.gov (United States)

    Barashkov, M. S.; Bel'dyugin, Igor'M.; Zolotarev, M. V.; Krymskiĭ, M. I.; Oshkin, S. P.; Umnov, A. F.; Kharchenko, M. A.

    1990-06-01

    The results are presented of an experimental investigation of a solid-state ring laser with a stimulated Brillouin scattering mirror and lasing initiated by a series of ~ 200-300 ns pulses of 1.06 μm wavelength. It is shown that this laser may be useful for the development of a source with radiation parameters controlled by an external signal (energy, transverse and time structure) and also of a low-threshold mirror for phase self-conjugation of radiation.

  18. Historic overview of inertial confinement fusion: What have we learned

    International Nuclear Information System (INIS)

    Glass, A.J.

    1986-01-01

    Although laser fusion has been the subject of research since the early 1960s, it has only been intensively studied for about 14 years. During that time, substantive advances have been made in our understanding of the complex physics of laser-heated plasmas, in the development of sophisticated diagnostic instrumentation, and in the technology of fusion targets and inertial fusion drivers. These advances will be reviewed. Of equal importance are the lessons learned in the economic and political arenas. These lessons may be of greater significance for scientific endeavors in other fields of research. The economic and political issues surrounding inertial fusion research will be discussed. Possible future directions for inertial fusion development will be presented

  19. Reflective variable optical attenuators and fibre ring lasers for wavelength-division multiplexing systems

    Science.gov (United States)

    Liu, He Liang

    Wavelength division multiplexing (WDM) optical fibre system is an important enabling technology to fulfill the demands for bandwidth in the modern information age. The main objective of this project is to study novel devices with the potential to enhance the performance of WDM systems. In particular, a novel reflective variable optical attenuator (RVOA) used for dynamic gain equalization (DGE) and fibre lasers based on an entirely new type of erbium-doped fibres with ultrawide tuning range were investigated theoretically and experimentally. We proposed a new type of RVOA device which could be potentially integrated with arrayed waveguide grating (AWG) to reduce the cost of DGE substantially. Initially, fibre-based RVOAs, fabricated with optical fibre components such as fibre coupler and Faraday rotator mirror, were investigated theoretically and experimentally. Larger attenuation range up to 22 dB was realized for fibre coupler-based ROVA with a Faraday rotator mirror and its polarization-dependent loss is about 0.5 dB. Then polymeric waveguide-based RVOAs were investigated theoretically and experimentally. Using an epoxy Novolak resin as core material and an UV-cured resin (Norland's NOA61) as cladding material, a polymeric waveguide RVOA was successfully fabricated. The dynamic 15 dB attenuation range was achieved and the PDL was less than 0.2 dB. The measured insertion loss of the polymeric waveguide RVOA was too large (about 18 dB) and was mainly induced by coupling loss, material loss and poor alignment. In the second part of the study, fibre ring lasers with continuous wavelength tuning over wide wavelength range and fibre ring lasers with discrete wavelength tuning were investigated. Tunable lasers are important devices in WDM systems because they could be employed as reserved sources and therefore avoiding the need to stock large inventory of lasers to cover the ITU-wavelength grid. In this project, erbium ions doped bismuth oxide glass fibres instead of

  20. SIRIUS-P: An inertially confined direct drive laser fusion power reactor

    International Nuclear Information System (INIS)

    Sviatoslavsky, I.N.; Kulcinski, G.L.; Moses, G.A.; Bruggink, D.; Engelstad, R.L.; Khater, H.Y.; Larsen, E.M.; Lovell, E.G.; MacFarlane, J.J.; Mogahed, E.A.; Peterson, R.R.; Sawan, M.E.; Wang, P.; Wittenberg, L.J.

    1993-03-01

    The SIRIUS-P conceptual design study is of a 1000 MWe laser driven inertial confinement fusion power reactor utilizing near symmetric illumination of direct drive targets. The reference driver is a KrF laser; however, any other laser capable of delivering short wavelength energy can be substituted. Sixty beams providing a total of 3.4 MJ of energy are used at a repetition rate of 6.7 Hz and a target gain of 118. The spherical chamber has an internal diameter of 6.5 m and consists of two independent components, a first wall assembly fabricated from a c/c composite and a blanket assembly made of SiC. First wall protection is provided by a xenon buffer gas at a pressure of 0.5 torr. The chamber is cooled by a flowing granular bed of solid ceramic material, TiO 2 for the first wall assembly and Li 2 O for the blanket assembly. The chamber is housed within a 42 m radius cylindrical reactor building which is 86 m high and which shares the same vacuum space as the chamber. All the laser beams are brought in at the bottom of the building, first onto a dielectrically coated final focusing mirror and finally onto a metallic grazing incidence mirror which reflects them into the chamber through beam ports open to the building. Neutron traps behind the grazing incidence mirrors are used to prolong the lifetimes of the final focusing optics. The nominal cost of electricity from this system is 65 mills/kwh assuming an 8% interest rate on capital

  1. A Novel Spectrometer for Measuring Laser-Produced Plasma X-Ray in Inertial Confinement Fusion

    Directory of Open Access Journals (Sweden)

    Zhu Gang

    2012-01-01

    Full Text Available In the experimental investigations of inertial confinement fusion, the laser-produced high-temperature plasma contains very abundant information, such as the electron temperature and density, ionization. In order to diagnose laser-plasma distribution in space and evolution in time, an elliptical curved crystal spectrometer has been developed and applied to diagnose X-ray of laser-produced plasma in 0.2~2.46 nm region. According to the theory of Bragg diffraction, four kinds of crystal including LiF, PET, MiCa, and KAP were chosen as dispersive elements. The distance of crystal lattice varies from 0.4 to 2.6 nm. Bragg angle is in the range of 30°~67.5°, and the spectral detection angle is in 55.4°~134°. The curved crystal spectrometer mainly consists of elliptical curved crystal analyzer, vacuum configuration, aligning device, spectral detectors and three-dimensional microadjustment devices. The spectrographic experiment was carried out on the XG-2 laser facility. Emission spectrum of Al plasmas, Ti plasma, and Au plasmas have been successfully recorded by using X-ray CCD camera. It is demonstrated experimentally that the measured wavelength is accorded with the theoretical value.

  2. Uniformity of spherical shock wave dynamically stabilized by two successive laser profiles in direct-drive inertial confinement fusion implosions

    Energy Technology Data Exchange (ETDEWEB)

    Temporal, M., E-mail: mauro.temporal@hotmail.com [Centre de Mathématiques et de Leurs Applications, ENS Cachan and CNRS, 61 Av. du President Wilson, F-94235 Cachan Cedex (France); Canaud, B. [CEA, DIF, F-91297 Arpajon Cedex (France); Garbett, W. J. [AWE plc, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Ramis, R. [ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2015-10-15

    The implosion uniformity of a directly driven spherical inertial confinement fusion capsule is considered within the context of the Laser Mégajoule configuration. Two-dimensional (2D) hydrodynamic simulations have been performed assuming irradiation with two laser beam cones located at 49° and 131° with respect to the axis of symmetry. The laser energy deposition causes an inward shock wave whose surface is tracked in time, providing the time evolution of its non-uniformity. The illumination model has been used to optimize the laser intensity profiles used as input in the 2D hydro-calculations. It is found that a single stationary laser profile does not maintain a uniform shock front over time. To overcome this drawback, it is proposed to use two laser profiles acting successively in time, in order to dynamically stabilize the non-uniformity of the shock front.

  3. Prospects for developing attractive inertial fusion concepts

    International Nuclear Information System (INIS)

    Cornwall, T.; Bodner, S.; Herrmannsfeldt, W.B.; Hogan, W.; Storm, E.; VanDevender, J.P.

    1986-01-01

    The authors discuss the role of inertial fusion in relationship to defense activities as well as in relation to energy alternatives. Other general advantages to inertial fusion besides maintaining the system more cheaply and easily, are discussed such as certain designs and the use of very short wavelength with a very modest laser intensity. A discussion on the direct illumination approach is offered. The progress made in high-gain target physics and the potential for development of solid-state lasers as a potential multimegajoule driver and a potential high-rep-rate fusion driver are discussed. Designs for reaction chambers are examined, as is the heavy-ion fusion program. Light-ion accelerators are also discussed

  4. Summary on inertial confinement fusion

    International Nuclear Information System (INIS)

    Meyer-Ter-Vehn, J.

    1995-01-01

    Highlights on inertial confinement during the fifteenth international conference on plasma physics and controlled nuclear fusion are briefly summarized. Specifically the following topics are discussed: the US National Ignition Facility presently planned by the US Department of Energy; demonstration of diagnostics for hot spot formation; declassification of Hohlraum target design; fusion targets, in particular, the Hohlraum target design for the National Ignition Facility (NIF), Hohlraum experiments, direct drive implosions, ablative Rayleigh-Taylor instabilities, laser imprinting (of perturbations by the laser on the laser target surface), hot spot formation and mixing, hot spot implosion experiments at Lawrence Livermore National Laboratory, Livermore, USA, time resolving hot spot dynamics at the Institute of Laser Engineering (ILE), Osaka, Japan, laser-plasma interaction

  5. Photoinduced electric currents in ring-shaped molecules by circularly polarized laser pulses

    International Nuclear Information System (INIS)

    Nobusada, Katsuyuki; Yabana, Kazuhiro

    2007-01-01

    We have theoretically demonstrated that circularly polarized laser pulses induce electric currents and magnetic moments in ring-shaped molecules Na 10 and benzene. The time-dependent adiabatic local density approximation is employed for this purpose, solving the time-dependent Kohn-Sham equation in real space and real time. It has been found that the electric currents are induced efficiently and persist continuously even after the laser pulses were switched off provided the frequency of the applied laser pulse is in tune with the excitation energy of the electronic excited state with the dipole strength for each molecular system. The electric currents are definitely revealed to be a second-order nonlinear optical response to the magnitude of the electric field. The magnetic dipole moments inevitably accompany the ring currents, so that the molecules are magnetized. The production of the electric currents and the magnetic moments in the present procedure is found to be much more efficient than that utilizing static magnetic fields

  6. Study of the use of methanol-filled Er-doped suspended-core fibres in a temperature-sensing ring laser system

    International Nuclear Information System (INIS)

    Martín, J C; Berdejo, V; Vallés, J A; Sánchez-Martín, J A; Díez, A; Andrés, M V

    2013-01-01

    We report on an experimental/numerical investigation into the use of methanol-filled Er-doped suspended-core fibres (SCFs) in temperature-sensing ring laser systems. We have adopted a ring laser configuration that includes an Er-doped SCF as a temperature-dependent attenuator (TDA) with a step-index Er-doped fibre (EDF) as the laser active medium. The laser performance dependence on the temperature was measured both in continuous wave (CW) and transient regimes. CW laser output power and build-up time values are compared with those of similar laser systems based on other types of Er-doped PCFs or using other laser configurations. A notable variation of 0.73% °C −1 was achieved in CW operation. Then, by means of parameters obtained by numerically fitting the experimental results, the potential sensing performance of the laser configuration with an SCF as a TDA is studied. Moreover, two ring cavity laser configurations (with the SCF acting basically as an attenuator or also as the active media) are compared and the influence of the position of the coupler inside the ring cavity and the contribution of the erbium doping to improve the sensor features are analysed. The longer interaction lengths compatible with laser action using the Er-doped SCF as a TDA could provide variations of laser output power up to 8.6% °C −1 for 90 mW pump power and a 1 m methanol-filled SCF. (paper)

  7. ULTRAVIOLET TRANSITIONS IN EUROPIUM STUDIED WITH A FREQUENCY-DOUBLED CW RING DYE-LASER

    NARCIS (Netherlands)

    Eliel, E.R.; Hogervorst, W.; van Leeuwen, K.A.H.; Post, B.H.

    1981-01-01

    High resolution laser spectroscopy has been applied to the study of three ultraviolet transitions in Europium at λ = 294.8, 295.1 and 295.8 nm. The tunable narrowband UV has been generated by intracavity frequency doubling in a cw ring dye laser using a temperate tuned, Brewster angled ADA crystal.

  8. Mode structure in an optically pumped D2O far infrared ring laser

    International Nuclear Information System (INIS)

    Yuan, D.C.; Soumagne, G.; Siegrist, M.R.

    1989-07-01

    The mode structures in an optically pumped D 2 O far infrared ring laser and a corresponding linear resonator have been compared. While single mode operation can be obtained over the whole useful pressure range in the ring structure, this is only possible at pressures greater than 8 Torr in the linear resonator case. A numerical model predicts quite well the pulse shape, pressure dependence and influence of the resonator quality in the ring cavity. (author) 12 figs., 8 refs

  9. Inertial Confinement Fusion quarterly report, January--March 1995. Volume 5, No. 2

    International Nuclear Information System (INIS)

    1995-01-01

    The ICF quarterly report is published by the Inertial Confinement Fusion Program at the Lawrence Livermore National Laboratory. Topics included this quarter include: the role of the National Ignition Facility in the development of Inertial Confinement Fusion, laser-plasma interactions in large gas-filled hohlraums, evolution of solid-state induction modulators for a heavy-ion recirculator, the National Ignition Facility project, and terminal-level relaxation in Nd-doped laser material

  10. Storage ring free electron laser, pulse propagation effects and microwave type instabilities

    International Nuclear Information System (INIS)

    Dattoli, G.; Mezi, L.; Renieri, A.; Migliorati, M.

    2000-01-01

    It has been developed a dynamical model accounting for the storage Ring Free Electron Laser evolution including pulse propagation effects and e-beam instabilities of microwave type. It has been analyzed the general conditions under which the on set of the laser may switch off the instability and focus everybody attention on the interplay between cavity mismatch, laser pulsed behavior and e-beam instability dynamics. Particular attention is also devoted to the laser operation in near threshold conditions, namely at an intracavity level just enough to counteract the instability, that show in this region new and interesting effects arises [it

  11. Laser reflectometry of submegahertz liquid meniscus ringing.

    Science.gov (United States)

    Farahi, R H; Passian, A; Jones, Y K; Tetard, L; Lereu, A L; Thundat, T G

    2009-10-15

    Optical techniques that permit nondestructive probing of interfacial dynamics of various media are of key importance in numerous applications such as ellipsometry, mirage effect, and all-optical switching. Characterization of the various phases of microjet droplet formation yields important information for volume control, uniformity, velocity, and rate. The ringing of the meniscus and the associated relaxation time that occurs after droplet breakoff affect subsequent drop formation and is an indicator of the physical properties of the fluid. Using laser reflectometry, we present an analysis of the meniscus oscillations in an orifice of a piezoelectric microjet.

  12. The properties of Ge quantum rings deposited by pulsed laser deposition.

    Science.gov (United States)

    Ma, Xiying

    2010-07-01

    SiGe ring-shape nanostructures have attracted much research interest because of the interesting morphology, mechanical, and electromagnetic properties. In this paper, we present the planar Ge nanorings with well-defined sharp edges self-assembled on Si (100) matrix prepared with pulsed laser deposition (PLD) in the present of Ar gas. The transforming mechanism of the droplets is discussed, which a dynamic deformation model has been developed to simulate the self-transforming process of the droplets. The rings were found to be formed in two steps: from droplets to cones and from cones to rings via an elastic self-deforming process, which were likely to be driven by the lateral strain of Ge/Si layers and the surface tension.

  13. Stimulated emission in a solid-state ring laser with an SBS mirror

    Science.gov (United States)

    Barashkov, M. S.; Bel'Diugin, I. M.; Zolotarev, M. V.; Krymskii, M. I.; Oshkin, S. P.

    1990-06-01

    Experimental data are presented on a solid-state ring laser with an SBS mirror in the case of the initiation of stimulated emission by a series of pulses 200-300 ns in duration at a wavelength of 1.06 micron. It is shown that this laser can be suitable for the development of a laser source with radiation parameters (energy and transverse and temporal structure) that are controlled by an external signal. It is also suitable for the development of a low-threshold phase-conjugating mirror.

  14. Studies of Lifetimes in an Ion Storage Ring Using Laser Technique

    International Nuclear Information System (INIS)

    Rostohar, Danijela; Derkatch, Anna; Hartman, Henrik; Norlin, Lars-Olov; Royen, Peder; Schef, Peter; Mannervik, Sven

    2003-01-01

    The laser-probing method for lifetime measurements of metastable levels, performed by applying the Fast Ion Beam Laser (FIBLAS) method to ions stored in a storage ring, has been developed by the Stockholm group. Recently, we have applied this method to lifetime measurements of close lying metastable levels. In this paper we discuss experimental studies of ions with complex structure and present the first experimentally obtained lifetimes of selected metastable levels in complex systems as Fe + , Eu + and La + .

  15. Controlling the optical field chaos in storage ring free-electron lasers

    International Nuclear Information System (INIS)

    Wang Wenjie

    1995-01-01

    The controlling of optical field chaos in a storage ring free-electron laser oscillator is discussed by using a phenomenal model. A novel method (which is called the 'beating method') of controlling chaos in a nonlinear dynamical system described by non-autonomous ordinary differential equations was developed. The result of theoretical analysis and numerical simulation shows that the optical field chaos in a storage ring free-electron laser oscillator can be suppressed and a periodic laser intensity can be obtained when a weak periodic control field is added to the optical cavity. The validity of this method of eliminating chaos is confirmed by the fact that the leading Lyapunov characteristic exponent of the system changes from a positive real number to a negative one. A further research is carried out, and it is found that only when the period of the control field equals to an integral multiple of that of the gain modulation in the optical cavity can the optical field chaos be suppressed. This means that the 'beating method' of controlling chaos is a kind of resonant method. A way to determine the 'best beating position' in the phase trajectory has also been obtained

  16. Laser - driven high - energy ions and their application to inertial confinement fusion

    International Nuclear Information System (INIS)

    Borghesi, M.

    2007-01-01

    The acceleration of high-energy ion beams (up to several tens of MeV per nucleon) following the interaction of short and intense laser pulses with solid targets has been one of the most important results of recent laser-plasma research [1]. The acceleration is driven by relativistic electrons, which acquire energy directly from the laser pulse and set up extremely large (∼TV/m) space charge fields at the target interfaces. The properties of laser-driven ion beams (high brightness and laminarity, high-energy cut-off, ultrashort burst duration) distinguish them from lower energy ions accelerated in earlier experiments at moderate laser intensities, and compare favourably with those of 'conventional' accelerator beams. In view of these properties, laser-driven ion beams can be employed in a number of innovative applications in the scientific, technological and medical areas. We will discuss in particular aspects of interest to their application in an Inertial Confinement Fusion context. Laser-driven protons are indeed being considered as a possible trigger for Fast Ignition of a precompressed fuel.[2] Recent results relating to the optimization of beam energy and focusing will be presented. These include the use of laser-driven impulsive fields for proton beam collimation and focusing [3], and the investigation of acceleration in presence of finite-scale plasma gradient. Proposed target developments enabling proton production at high repetition rate will also be discussed. Another important area of application of proton beams is diagnostic use in a particle probing arrangement for detection of density non-homogeneities [4] and electric/magnetic fields [5]. We will discuss the use of laser-driven proton beams for the diagnosis of magnetic and electric fields in planar and hohlraum targets and for the detection of fields associated to relativistic electron propagation through dense matter, an issue of high relevance for electron driven Fast Ignition. [1] M

  17. Inertial confinement fusion and related topics

    International Nuclear Information System (INIS)

    Starodub, A. N.

    2007-01-01

    The current state of different approaches (laser fusion, light and heavy ions, electron beam) to the realization of inertial confinement fusion is considered. From comparative analysis a conclusion is made that from the viewpoint of physics, technology, safety, and economics the most realistic way to future energetics is an electric power plant based on a hybrid fission-fusion reactor which consists of an external source of neutrons (based on laser fusion) and a subcritical two-cascade nuclear blanket, which yields the energy under the action of 14 MeV neutrons. The main topics on inertial confinement fusion such as the energy driver, the interaction between plasmas and driver beam, the target design are discussed. New concept of creation of a laser driver for IFE based on generation and amplification of radiation with controllable coherence is reported. The performed studies demonstrate that the laser based on generation and amplification of radiation with controllable coherence (CCR laser) has a number of advantages as compared to conventional schemes of lasers. The carried out experiments have shown a possibility of suppression of small-scale self-focusing, formation of laser radiation pulses with required characteristics, simplification of an optical scheme of the laser, good matching of laser-target system and achievement of homogeneous irradiation and high output laser energy density without using traditional correcting systems (phase plates, adaptive optics, space filters etc.). The results of the latest experiments to reach ultimate energy characteristics of the developed laser system are also reported. Recent results from the experiments aimed at studying of the physical processes in targets under illumination by the laser with controllable coherence of radiation are presented and discussed, especially such important laser-matter interaction phenomena as absorption and scattering of the laser radiation, the laser radiation harmonic generation, X

  18. Numerical analysis of Yb.sup.3+./sup. -sensitized Er.sup.3+./sup. -doped fibre-ring laser

    Czech Academy of Sciences Publication Activity Database

    Karásek, Miroslav; Kaňka, Jiří

    1998-01-01

    Roč. 145, č. 2 (1998), s. 133-137 ISSN 1350-2433 R&D Projects: GA AV ČR IAA267403 Keywords : optical fibre s * fibre lasers * numerical analysis * modelling * ring lasers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.628, year: 1998

  19. Stimulated emission in a solid-state ring laser with an SBS mirror

    Energy Technology Data Exchange (ETDEWEB)

    Barashkov, M.S.; Bel' diugin, I.M.; Zolotarev, M.V.; Krymskii, M.I.; Oshkin, S.P.

    1990-06-01

    Experimental data are presented on a solid-state ring laser with an SBS mirror in the case of the initiation of stimulated emission by a series of pulses 200-300 ns in duration at a wavelength of 1.06 micron. It is shown that this laser can be suitable for the development of a laser source with radiation parameters (energy and transverse and temporal structure) that are controlled by an external signal. It is also suitable for the development of a low-threshold phase-conjugating mirror. 5 refs.

  20. χ(2) Induced Non-Reciprocal Loss and/or Phase Shift for Unidirectional Operation of Ring Lasers

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Cheng, Haynes Pak Hay; Pedersen, Christian

    2010-01-01

    Numerical modelling and experimental validation of sum-frequency mixing enforcing stable unidirectional operation of a diode pumped solid-state 1342 nm ring laser with improved stability toward feedback.......Numerical modelling and experimental validation of sum-frequency mixing enforcing stable unidirectional operation of a diode pumped solid-state 1342 nm ring laser with improved stability toward feedback....

  1. Inertial fusion with hypervelocity impact

    International Nuclear Information System (INIS)

    Olariu, S.

    1998-01-01

    The physics of the compression and ignition processes in inertial fusion is to a certain extent independent of the nature of the incident energy pulse. The present strategy in the field of inertial fusion is to study several alternatives of deposition of the incident energy, and, at the same time, of conducting studies with the aid of available incident laser pulses. In a future reactor based on inertial fusion, the laser beams may be replaced by ion beams, which have a better energy efficiency. The main projects in the field of inertial fusion are the National Ignition Facility (NIF) in USA, Laser Megajoule (LMJ) in France, Gekko XII in Japan and Iskra V in Russia. NIF will be constructed at Lawrence Livermore National Laboratory, in California. LMJ will be constructed near Bordeaux. In the conventional approach to inertial confinement fusion, both the high-density fuel mass and the hot central spot are supposed to be produced by the deposition of the driver energy in the outer layers of the fuel capsule. Alternatively, the driver energy could be used only to produce the radial compression of the fuel capsule to high densities but relatively low temperatures, while the ignition of fusion reactions in the compressed capsule should be effected by a synchronized hypervelocity impact. Using this arrangement, it was supposed that a 54 μm projectile is incident with a velocity of 3 x 10 6 m s -1 upon a large-yield deuterium-tritium target at rest. The collision of the incident projectile and of the large-yield target takes place inside a high-Z cavity. A laser or heavy-ion pulse is converted at the walls of the cavity into X-rays, which compresses the incident projectile and the large-yield target in high-density states. The laser pulse and the movement of the incident projectile are synchronized such that the collision should take place when the densities are the largest. The collision converts the kinetic energy of the incident projectile into thermal energy, the

  2. Single-Frequency Nd:YAG Ring Lasers with Corner Cube Prism

    Science.gov (United States)

    Wu, Ke-Ying; Yang, Su-Hui; Zhao, Chang-Ming; Wei, Guang-Hui

    2000-10-01

    We put forward another form of the non-planar ring lasers, in which the corner cube prism is the key element and the Nd:YAG crystal is used as a Porro prism to enclose the ring resonator. The phase shift due to the total internal reflections of the three differently orientated reflection planes of the corner cube prism, Faraday rotation in the Nd:YAG crystal placed in a magnetic field and the different output coupling in S and P polarization form an optical diode and enforce the single-frequency generating power. A round trip analysis of the polarization properties of the resonator is made by the evaluation of Jones matrix.

  3. Micro-Fluidic Dye Ring Laser - Experimental Tuning of the Wavelength and Numerical Simulation of the Cavity Modes

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger

    2006-01-01

    We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view.......We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view....

  4. Direct-Drive Inertial Fusion Research at the University of Rochester's Laboratory for Laser Energetics: A Review

    International Nuclear Information System (INIS)

    McCrory, R.L.; Meyerhofer, D.D.; Loucks, S.J.; Skupsky, S.; Bahr, R.E.; Betti, R.; Boehly, T.R.; Craxton, R.S.; Collins, T.J.B.; Delettrez, J.A.; Donaldson, W.R.; Epstein, R.; Fletcher, K.A.; Freeman, C.; Frenje, J.A.; Glebov, V.Yu.; Goncharov, V.N.; Harding, D.R.; Jaanimagi, P.A.; Keck, R.L.; Kelly, J.H.; Kessler, T.J.; Kilkenny, J.D.; Knauer, J.P.; Li, C.K.; Lund, L.D.; Marozas, J.A.; McKenty, P.W.; Marshall, F.J.; Morse, S.F.B.; Padalino, S.; Petrasso, R.D.; Radha, P.B.; Regan, S.P.; Roberts, S.; Sangster, T.C.; Seguin, F.H.; Seka, W.; Smalyuk, V.A.; Soures, J.M.; Stoeckl, C.; Thorp, K.A.; Yaakobi, B.; Zuegel, J.D.

    2010-01-01

    This paper reviews the status of direct-drive inertial confinement fusion (ICF) research at the University of Rochester's Laboratory for Laser Energetics (LLE). LLE's goal is to demonstrate direct-drive ignition on the National Ignition Facility (NIF) by 2014. Baseline 'all-DT' NIF direct-drive ignition target designs have been developed that have a predicted gain of 45 (1-D) at a NIF drive energy of ∼1.6 MJ. Significantly higher gains are calculated for targets that include a DT-wicked foam ablator. This paper also reviews the results of both warm fuel and initial cryogenic-fuel spherical target implosion experiments carried out on the OMEGA UV laser. The results of these experiments and design calculations increase confidence that the NIF direct-drive ICF ignition goal will be achieved.

  5. [Reduction of decentration after LASIK using a modified eye tracker ring for the MEL-70 excimer laser].

    Science.gov (United States)

    Schulze, S; Nietgen, G; Sekundo, W

    2004-07-01

    The aim of this study was to determine and compare the rate of eccentric laser ablation after LASIK depending on the eye tracker ring used. All LASIK treatments were carried out using the MEL-70 flying spot excimer laser (Zeiss-Meditec, Jena). The flap was produced using a Corneal Shaper trade mark or Hansatome trade mark Microkeratome (B and L Surgical, Heidelberg). Initially we used an 11 mm eye tracker ring without hinge protector. At the end of February 2001 this ring was replaced by a 10 mm and a 9.5 mm ring with built-in hinge protector. An additional modification was introduced by us: at 1 mm separations little teeth-like spikes were engraved into the eyeward side of the ring, thus stabilising the position of the ring on the globe and allowing free liquid to flow through the spaces between each spike. The built-in calibration system of the corneal topography (TMS 3, Tomey, Erlangen) from patients with a follow-up of one month or longer was used to determine the distance between the centre of the ablation zone from the fixation point. In group I patients (old ring) 42 eyes were treated. In 4 eyes ablation was perfect, in 21 eyes the ablation centre was located 0.1 to 0.49 mm from the fixation point, in 11 eyes 0.51 to 0.99 mm and in 5 eyes 1.1 to 1.49 mm whereas one eye showed a decentred ablation of 1.53 mm. In group II (new ring) 42 eyes were investigated also. In 11 eyes ablation was perfect, in 20 eyes the ablation centre was located 0.1 to 0.49 mm from the fixation point, in 10 eyes 0.5 to 0.99 mm and one eye had an eccentric ablation of 1.28 mm from the fixation point. The further development of our eye tracker ring for the MEL-70 laser considerably reduced the rate of decentred ablations. An enhanced grip of the ring onto the globe reduces a slow slide during the laser procedure.

  6. Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers

    International Nuclear Information System (INIS)

    Wójcik, Aleksander K.; Belyanin, Alexey; Malara, Pietro; Blanchard, Romain; Mansuripur, Tobias S.; Capasso, Federico

    2013-01-01

    We propose a robust and reliable method of active mode locking of mid-infrared quantum cascade lasers and develop its theoretical description. Its key element is the use of an external ring cavity, which circumvents fundamental issues undermining the stability of mode locking in quantum cascade lasers. We show that active mode locking can give rise to the generation of picosecond pulses and phase-locked frequency combs containing thousands of the ring cavity modes

  7. Megajoule-class single-pulse KrF laser test facility as a logical step toward inertial fusion commercialization

    International Nuclear Information System (INIS)

    Harris, D.B.; Pendergrass, J.H.

    1985-01-01

    The cost and efficiency of megajoule-class KrF laser single pulse test facilities have been examined. A baseline design is described which illuminates targets with 5 MJ with shaped 10-ns pulses. The system uses 24 main amplifiers and operates with an optics operating fluence of 4.0 J/cm 2 . This system has 9.0% efficiency and costs $200/joule. Tradeoff studies indicate that large amplifier modules and high fluences lead to the lowest laser system costs, but that only a 20% cost savings can be realized by going to amplifier modules larger than 200 kJ and/or fluences greater than 4 J/cm 2 . The role of the megajoule-class single-pulse test facility towards inertial fusion commercialization will also be discussed

  8. Parametric study of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Chambonneau, M., E-mail: maxime.chambonneau@hotmail.fr; Grua, P.; Rullier, J.-L.; Lamaignère, L. [CEA CESTA, 15 Avenue des Sablières, CS 60001, 33116 Le Barp Cedex (France); Natoli, J.-Y. [Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, 13013 Marseille (France)

    2015-03-14

    With the use of multiple longitudinal modes nanosecond laser pulses at 1064 nm, laser damage sites at the exit surface of fused silica clearly and systematically exhibit ring patterns. It has been shown in our previous works that the apparent chronology of rings was closely related to the temporal shape of the laser pulses. This particular correspondence had suggested an explanation of the ring morphology formation based on the displacement of an ionization front in the surrounding air. To provide a former basis for this hypothesis and deeper understanding of ring pattern formation, additional experiments have been performed. First, the impact of fluence has been investigated, revealing that a wide variety of damage sites are produced within a very narrow fluence range; this fact involves the chronology of appearance of a surface plasma during the laser pulse. The sizes of the damage sites are proportional to the fluence of their expansion occurring between the beginning of the plasma and the end of the laser pulse. Second, specific experiments have been carried out at different angles of incidence, resulting in egg-shaped patterns rather than circular ones. This behavior can be explained by our previous hypothesis of creation of a plasma in air, its expansion being tightly conditioned by the illumination angle. This series of experiments, in which the angle of incidence is varied up to 80°, permits us to link quantitatively the working hypothesis of ionization front propagation with theoretical hydrodynamics modeling.

  9. Inertial confinement fusion: present status and future potential

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1984-01-01

    Power from inertial confinement fusion holds much promise for society. This paper points out many of the benefits relative to combustion of hydrocarbon fuels and fission power. Potential problems are also identified and put in perspective. The progress toward achieving inertial fusion power is described and results of recent work at the Lawrence Livermore National Laboratory are presented. Key phenomenological uncertainties are described and experimental goals for the Nova laser system are given. Several ICF reactor designs are discussed

  10. An asymmetric integrated extended cavity 20GHz mode-locked quantum well ring laser fabricated in the JePPIX technology platform

    NARCIS (Netherlands)

    Tahvili, M.S.; Barbarin, Y.; Ambrosius, H.P.M.M.; Smit, M.K.; Bente, E.A.J.M.; Leijtens, X.J.M.; Vries, de T.; Smalbrugge, E.; Bolk, J.

    2011-01-01

    In this paper, we present mode-locked operation of a monolithic 20GHz integrated extended cavity ring laser. The 4mm-long laser ring cavity incorporates a 750µm-long optical amplifier section (SOA), a separate 40µm long saturable absorber (SA) section, passive waveguide sections (shallow and deep

  11. 5-GHz passively mode-locked quantum dot ring laser diode at 1.5 μm

    NARCIS (Netherlands)

    Heck, M.J.R.; Renault, A.; Bente, E.A.J.M.; Oei, Y.S.; Smit, M.K.; Eikema, K.S.E.; Ubachs, W.; Anantathanasarn, S.; Nötzel, R.

    2008-01-01

    In this paper we present the first observation of passive mode-locking in a quantum dot (QD) ring laser operating at wavelengths around 1.5 µm. The device consists of an 18-mm long (electrically pumped) ring cavity, corresponding to a 5-GHz roundtrip frequency. The waveguide width is 2 µm. A

  12. Injection Characterization of Packaged Bi-Directional Diamond Shaped Ring Laser at 1550 NM

    National Research Council Canada - National Science Library

    Bussjager, Rebecca; Erdmann, Reinhard; Kovanis, Vassillios; McKeon, Brian; Fanto, Michael; Johns, Steve; Hayduk, Michael J; Osman, Joseph; Morrow, Alan; Green, Malcolm

    2006-01-01

    The Air Force Research Laboratory. Binoptics Corp. and Infotonics Technology Center worked collaboratively to package and characterize recently developed diode based ring lasers that operate at 1550 nm in a diamond shaped cavity...

  13. Tests of a grazing-incidence ring resonator free-electron laser

    International Nuclear Information System (INIS)

    Dowell, D.H.; Laucks, M.L.; Lowrey, A.R.; Adamski, J.L.; Pistoresi, D.J.; Shoffstall, D.R.; Bentz, M.P.; Burns, R.H.; Guha, J.; Sun, K.; Tomita, W.

    1991-01-01

    This paper reports on the Boeing free-electron laser (FEL) optical cavity that has been changed from a simple concentric cavity using two spherical mirrors to a larger grazing-incidence ring resonator. The new resonator consists of two mirror telescopes located at each end of the wiggler with a round-trip path length of approximately 133 m. Each telescope is a grazing-incidence hyperboloid followed by a normal-incidence paraboloid. Initial tests showed that poorly positioned ring focus and unreliable pointing alignment resulted in reduced and structured FEL output. (First lasing operation occurred on March 23 and 24, 1990.) Later efforts concentrated on improving the resonator alignment techniques and lowering the single-pass losses. FEL performance and reliability have significantly improved due to better ring alignment. The alignment procedure and recent lasing results are described. The effect the electron beam has on lasing is also discussed. Measurements are presented showing how FEL temporal output and wavelength are sensitive to electron beam energy variations

  14. Highly optimized tunable Er3+-doped single longitudinal mode fiber ring laser, experiment and model

    DEFF Research Database (Denmark)

    Poulsen, Christian; Sejka, Milan

    1993-01-01

    A continuous wave (CW) tunable diode-pumped Er3+-doped fiber ring laser, pumped by diode laser at wavelengths around 1480 nm, is discussed. Wavelength tuning range of 42 nm, maximum slope efficiency of 48% and output power of 14.4 mW have been achieved. Single longitudinal mode lasing...... with a linewidth of 6 kHz has been measured. A fast model of erbium-doped fiber laser was developed and used to optimize output parameters of the laser...

  15. Rapid-swept CW cavity ring-down laser spectroscopy for carbon isotope analysis

    International Nuclear Information System (INIS)

    Tomita, Hideki; Watanabe, Kenichi; Takiguchi, Yu; Kawarabayashi, Jun; Iguchi, Tetsuo

    2006-01-01

    With the aim of developing a portable system for an in field isotope analysis, we investigate an isotope analysis based on rapid-swept CW cavity ring-down laser spectroscopy, in which the concentration of a chemical species is derived from its photo absorbance. Such a system can identify the isotopomer and still be constructed as a quite compact system. We have made some basic experimental measurements of the overtone absorption lines of carbon dioxide ( 12 C 16 O 2 , 13 C 16 O 2 ) by rapid-swept cavity ring-down spectroscopy with a CW infrared diode laser at 6,200 cm -1 (1.6 μm). The isotopic ratio has been obtained as (1.07±0.13)x10 -2 , in good agreement with the natural abundance within experimental uncertainty. The detection sensitivity in absorbance has been estimated to be 3x10 -8 cm -1 . (author)

  16. Detecting mode hopping in single-longitudinal-mode fiber ring lasers based on an unbalanced fiber Michelson interferometer.

    Science.gov (United States)

    Ma, Mingxiang; Hu, Zhengliang; Xu, Pan; Wang, Wei; Hu, Yongming

    2012-10-20

    A method of detecting mode hopping for single-longitudinal-mode (SLM) fiber ring lasers has been proposed and experimentally demonstrated. The method that is based on an unbalanced Michelson interferometer (MI) utilizing phase generated carrier modulation instantly transforms mode-hopping dynamics into steep phase changes of the interferometer. Multiform mode hops in an SLM erbium-doped fiber ring laser with an 18.6 MHz mode spacing have been detected exactly in real-time domain and discussed in detail. Numerical results show that the MI-based method has a high testing sensitivity for identifying mode hopping, which will play a significant role in evaluating the output stability of SLM fiber lasers.

  17. Vernier effect-based multiplication of the Sagnac beating frequency in ring laser gyroscope sensors

    Science.gov (United States)

    Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2018-02-01

    A multiplication method of the Sagnac effect scale factor in ring laser gyroscopes is presented based on the Vernier effect of a dual-coupler passive ring resonator coupled to the active ring. The multiplication occurs when the two rings have comparable lengths or integer multiples and their scale factors have opposite signs. In this case, and when the rings have similar areas, the scale factor is multiplied by ratio of their length to their length difference. The scale factor of the presented configuration is derived analytically and the lock-in effect is analyzed. The principle is demonstrated using optical fiber rings and semiconductor optical amplifier as gain medium. A scale factor multiplication by about 175 is experimentally measured, demonstrating larger than two orders of magnitude enhancement in the Sagnac effect scale factor for the first time in literature, up to the authors' knowledge.

  18. Storage ring free electron lasers and saw-tooth instability

    CERN Document Server

    Dattoli, Giuseppe; Migliorati, M; Palumbo, L; Renieri, A

    1999-01-01

    We show that Free Electron Lasers (FEL) operating with storage rings may counteract beam instabilities of the Saw Tooth (STI) type. We use a model based on a set of equations that couple those describing the FEL evolution to those accounting for the STI dynamics. The analysis provides a clear picture of the FEL-STI mutual feedback and clarifies the mechanisms of the instability inhibition. The reliability of the results is supported by a comparison with fully numerical codes.

  19. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Friedman, A.

    1991-01-01

    This report describes the research status in the following areas of research in the field of heavy ion inertial fusion: (1) RF accelerators, storage rings, and synchrotrons; (2) induction linacs; (3) recirculation induction accelerator approach; (4) a new accelerator concept, the ''Mirrortron''; (5) general issues of transport, including beam merging, production of short, fat quadrupoles with nearly linear focusing, calculations of beam behaviour in image fields; 3-D electrostatic codes on drift compression with misalignments and transport around bends; (6) injectors, ion sources and RFQs, a.o., on the development of a 27 MHz RFQ to be used for the low energy portion of a new injector for all ions up to Uranium, and the development of a 2 MV carbon ion injector to provide 16 C + beams of 0.5 A each for ILSE; (7) beam transport from accelerator to target, reporting, a.o., the feasibility to suppress third-order aberrations; while Particle-in-Cell simulations on the propagation of a non-neutral ion beam in a low density gas identified photo-ionization by thermal X-rays from the target as an important source of defocusing; (9) heavy ion target studies; (10) reviewing experience with laser drivers; (11) ion cluster stopping and muon catalyzed fusion; (12) heavy ion systems, including the option of a fusion-fission burner. 1 tab

  20. Inertial confinement fusion (ICF)

    International Nuclear Information System (INIS)

    Nuckolls, J.

    1977-01-01

    The principal goal of the inertial confinement fusion program is the development of a practical fusion power plant in this century. Rapid progress has been made in the four major areas of ICF--targets, drivers, fusion experiments, and reactors. High gain targets have been designed. Laser, electron beam, and heavy ion accelerator drivers appear to be feasible. Record-breaking thermonuclear conditions have been experimentally achieved. Detailed diagnostics of laser implosions have confirmed predictions of the LASNEX computer program. Experimental facilities are being planned and constructed capable of igniting high gain fusion microexplosions in the mid 1980's. A low cost long lifetime reactor design has been developed

  1. Commercial applications of inertial confinement fusion

    International Nuclear Information System (INIS)

    Booth, L.A.; Frank, T.G.

    1977-05-01

    This report describes the fundamentals of inertial-confinement fusion, some laser-fusion reactor (LFR) concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation. In addition, other commercial energy-related applications, such as the production of fissionable fuels, of synthetic hydrocarbon-based fuels, and of process heat for a variety of uses, as well as the environmental and safety aspects of fusion energy, are discussed. Finally, the requirements for commercialization of laser fusion technologies are described

  2. Electron Shock Ignition of Inertial Fusion Targets

    International Nuclear Information System (INIS)

    Shang, W. L.; Betti, R.; Hu, S. X.; Woo, K.; Hao, L.

    2017-01-01

    Here, it is shown that inertial fusion targets designed with low implosion velocities can be shock ignited using laser–plasma interaction generated hot electrons (hot-e) to obtain high-energy gains. These designs are robust to multimode asymmetries and are predicted to ignite even for significantly distorted implosions. Electron shock ignition requires tens of kilojoules of hot-e, which can only be produced on a large laser facility like the National Ignition Facility, with the laser to hot-e conversion efficiency greater than 10% at laser intensities ~10 16 W/cm 2 .

  3. Switchable dual-wavelength single-longitudinal-mode erbium fiber laser utilizing a dual-ring scheme with a saturable absorber

    Science.gov (United States)

    Yang, Zi-Qing; Huang, Tzu-Jung; Chang, Yao-Jen; Yeh, Chien-Hung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang

    2018-06-01

    In this work, we propose and demonstrate a switchable dual-wavelength erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) output. Here, a dual-ring (DR) structure with an unpumped EDF of 2 m is designed to achieve SLM oscillation. Five fiber Bragg gratings (FBGs) are applied in the laser cavity serving as the reflective element to generate different dual-wavelength outputs. In the measurement, six sets of generated dual-wavelengths with various mode-spacing (Δλ) can be achieved via the five FBGs. Additionally, the stability performance of the proposed EDF DR laser is also demonstrated.

  4. Single-frequency blue light generation by single-pass sum-frequency generation in a coupled ring cavity tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    A generic approach for generation of tunable single frequency light is presented. 340 mW of near diffraction limited, single-frequency, and tunable blue light around 459 nm is generated by sum-frequency generation (SFG) between two tunable tapered diode lasers. One diode laser is operated in a ring...... cavity and another tapered diode laser is single-passed through a nonlinear crystal which is contained in the coupled ring cavity. Using this method, the single-pass conversion efficiency is more than 25%. In contrast to SFG in an external cavity, the system is entirely self-stabilized with no electronic...

  5. Present status of the NIJI-IV storage-ring free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, T.; Yamada, K.; Sei, N. [Electrotechnical Lab., Ibaraki (Japan)] [and others

    1995-12-31

    The tunable region of the free-electron-laser (FEL) wavelength with the NIJI-IV system is now 348{approximately}595 nm. After the lasing at 352 nm in 1994, the quality of the electron beam stored in the ring has been improved further, and the highest peak intensity of the laser obtained so far is more than 300 times as high as that of the resonated spontaneous emission. The macro-temporal structure of the lasing has been greatly improved. Recently, a single-bunch injection system was completed, and the system has been installed in the injector linac, which is expected to increase the peak stored-beam current. The commissioning and the test of the new system is under way. The beam transporting system from the linac to the ring is also being modified by increasing the number of quadrupole magnets. The experiments related to the FEL in the ultraviolet wavelength region will be begun in this coming May. The results and the status of the FEL experiments will be presented at the Conference.

  6. Inertial fusion science and technology for the next century

    International Nuclear Information System (INIS)

    Campbell, E M; Hogan, W J; Landes, S

    1999-01-01

    This paper reviews the leading edge of the basic and applied science and technology that use high-intensity facilities and looks at what opportunities lie ahead. The more than 15,000 experiments on the Nova laser since 1985 and many thousands more on other laser, particle beam, and pulsed power facilities around the world have established the new laboratory field of high-energy-density plasma physics and have furthered development of inertial fusion. New capabilities such as those provided by high-brightness femtosecond lasers have enabled the study of matter in conditions previously unachievable on earth. These experiments, along with advanced calculations now practical because of the progress in computing capability, have established the specifications for the National Ignition Facility and Laser MegaJoule and have enhanced new scientific fields such as laboratory astrophysics. Science and technology developed in inertial fusion have found near-term commercial use, have enabled steady progress toward the goal of fusion ignition and gain in the laboratory, and have opened up new fields of study for the 21st century

  7. Variable diameter CO2 laser ring-cutting system adapted to a zoom microscope for applications on polymer tapes.

    Science.gov (United States)

    Förster, Erik; Bohnert, Patrick; Kraus, Matthias; Kilper, Roland; Müller, Ute; Buchmann, Martin; Brunner, Robert

    2016-11-20

    This paper presents the conception and implementation of a variable diameter ring-cutting system for a CO2 laser with a working wavelength of 10.6 μm. The laser-cutting system is adapted to an observation zoom microscope for combined use and is applicable for the extraction of small circular areas from polymer films, such as forensic adhesive tapes in a single shot. As an important characteristic for our application, the variable diameter ring-cutting system provides telecentricity in the target area. Ring diameters are continuously tunable between 500 μm and 2 mm. A minimum width of less than 20 μm was found for the ring profile edge. The basic characteristics of the system, including telecentricity, were experimentally evaluated and demonstrated by cutting experiments on different polymer tapes and further exemplary samples.

  8. Investigation of longitudinal dynamic in laser electron storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Karnaukhov, I.; Zelinsky, A. E-mail: zelinsky@kipt.kharkov.ua; Telegin, Yu

    2001-09-01

    Longitudinal dynamic of electron beam due to radiation damping and quantum fluctuations in the storage ring with a laser-electron interaction section (Compton scattering) is investigated. This investigation was carried out by numerical simulations using the Monte Carlo method. The dependence of the steady-state energy spread of electron beam due to the Compton back scattering of photons on the electron beam energy and photon flash density were obtained. Simulation findings are compared with the analytical estimations by Z. Huang.

  9. Investigation of longitudinal dynamic in laser electron storage ring

    CERN Document Server

    Karnaukhov, I; Telegin, Yu P

    2001-01-01

    Longitudinal dynamic of electron beam due to radiation damping and quantum fluctuations in the storage ring with a laser-electron interaction section (Compton scattering) is investigated. This investigation was carried out by numerical simulations using the Monte Carlo method. The dependence of the steady-state energy spread of electron beam due to the Compton back scattering of photons on the electron beam energy and photon flash density were obtained. Simulation findings are compared with the analytical estimations by Z. Huang.

  10. Investigation of an He-Ne laser generating a beam with a ring-shaped intensity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, I I; Troitskii, IU V; Iakushkin, S V

    1987-02-01

    The paper examines an He-Ne laser regime with the simultaneous generation of TEM(01) and TEM(10) modes, forming a beam with a ring-shaped intensity distribution with total suppression of the TEM(00) mode. The ratio of the intensity at the ring crest to the intensity at the axis reached a value of 200 and was limited by scattering in the optical components of the resonator. A regime of mutual frequency locking of the TEM(01) and TEM(10) modes was achieved with total spatial coherence of the ring-shaped beam. 14 references.

  11. Modifications of the laser beam coherence inertial confinement fusion plasmas; Modifications des proprietes de coherence des faisceaux laser dans les plasmas de fusion par confinement inertiel

    Energy Technology Data Exchange (ETDEWEB)

    Grech, M

    2007-06-15

    Inertial confinement fusion by laser requires smoothed laser beam with well-controlled coherence properties. Such beams are made of many randomly distributed intensity maxima: the so-called speckles. As the laser beam propagates through plasma its temporal and spatial coherence can be reduced. This phenomenon is called plasma induced smoothing. For high laser intensities, instabilities developing independently inside the speckles are responsible for the coherence loss. At lower intensities, only collective effects, involving many speckles, can lead to induced smoothing. This thesis is a theoretical, numerical and experimental study of these mechanisms. Accounting for the partially incoherent behavior of the laser beams requires the use of statistical description of the laser-plasma interaction. A model is developed for the multiple scattering of the laser light on the self-induced density perturbations that is responsible for a spreading of the temporal and spatial spectra of the transmitted light. It also serves as a strong seed for the instability of forward stimulated Brillouin scattering that induces both, angular spreading and red-shift of the transmitted light. A statistical model is developed for this instability. A criterion is obtained that gives a laser power (below the critical power for filamentation) above which the instability growth is important. Numerical simulations with the interaction code PARAX and an experiment performed on the ALISE laser facility confirm the importance of these forward scattering mechanisms in the modification of the laser coherence properties. (author)

  12. A beamline for x-ray laser spectroscopy at the experimental storage ring at GSI

    International Nuclear Information System (INIS)

    Winters, D F A; Bagnoud, V; Ecker, B; Eisenbarth, U; Götte, S; Kuehl, Th; Stöhlker, Th; Zielbauer, B; Neumayer, P; Spielmann, C

    2013-01-01

    By combining an x-ray laser (XRL) with a heavy-ion storage ring, precision laser spectroscopy of the fine-structure splitting in heavy Li-like ions will be possible. An initial study has been performed to determine the feasibility of a first experiment at the experimental storage ring at GSI in Darmstadt, which also has great potential for the experiments planned for FAIR. We plan to perform a unique, direct and precise measurement of a fine-structure transition in a heavy Li-like ion. Such a measurement will test state-of-the-art atomic structure calculations in strong fields. This endeavour will require that the existing infrastructure is complemented by a dedicated beamline for the XRL. In this paper, we will discuss the details of this project and outline a proof-of-principle experiment. (paper)

  13. Inertial fusion with heavy ion beams

    International Nuclear Information System (INIS)

    Bock, R.; Hofmann, I.; Arnold, R.

    1984-01-01

    The underlying principle of inertial confinement is the irradiation of a small pellet filled with DT-fuel by laser or particle beams in order to compress the fuel and ignite it. As 'drivers' for this process large laser installations and light-ion devices have been built since then and the results obtained during the past few years have increased our confidence, that the ignition conditions might be reached. Further conditions, however, have to be fulfilled for operating a power plant. In particular, the driver needs to have enough efficiency to be economical, and for a continuous energy production a high repetition rate and availability is required. It is less than ten years since it was realized that heavy ion beams might be a promising candidate for achieving inertial confinement fusion (ICF). Due to the evolution of high-energy and heavy-ion physics during the past 25 years, accelerators have attained a high technical and technological standard and an excellent operational reliability. Nevertheless, the heavy ion driver for a fusion power plant requires beam specifications exceeding those of existing accelerators considerably. (Auth.)

  14. Modeling Xenon Purification Systems in a Laser Inertial Fusion Engine

    Science.gov (United States)

    Hopkins, Ann; Gentile, Charles

    2011-10-01

    A Laser Inertial Fusion Engine (LIFE) is a proposed method to employ fusion energy to produce electricity for consumers. However, before it can be built and used as such, each aspect of a LIFE power plant must first be meticulously planned. We are in the process of developing and perfecting models for an exhaust processing and fuel recovery system. Such a system is especially essential because it must be able to recapture and purify expensive materials involved in the reaction so they may be reused. One such material is xenon, which is to be used as an intervention gas in the target chamber. Using Aspen HYSYS, we have modeled several subsystems for exhaust processing, including a subsystem for xenon recovery and purification. After removing hydrogen isotopes using lithium bubblers, we propose to use cryogenic distillation to purify the xenon from remaining contaminants. Aspen HYSYS allows us to analyze predicted flow rates, temperatures, pressures, and compositions within almost all areas of the xenon purification system. Through use of Aspen models, we hope to establish that we can use xenon in LIFE efficiently and in a practical manner.

  15. Modeling multipulsing transition in ring cavity lasers with proper orthogonal decomposition

    International Nuclear Information System (INIS)

    Ding, Edwin; Shlizerman, Eli; Kutz, J. Nathan

    2010-01-01

    A low-dimensional model is constructed via the proper orthogonal decomposition (POD) to characterize the multipulsing phenomenon in a ring cavity laser mode locked by a saturable absorber. The onset of the multipulsing transition is characterized by an oscillatory state (created by a Hopf bifurcation) that is then itself destabilized to a double-pulse configuration (by a fold bifurcation). A four-mode POD analysis, which uses the principal components, or singular value decomposition modes, of the mode-locked laser, provides a simple analytic framework for a complete characterization of the entire transition process and its associated bifurcations. These findings are in good agreement with the full governing equation.

  16. System study of a diode-pumped solid-state-laser driver for inertial fusion energy

    International Nuclear Information System (INIS)

    Orth, C.D.; Payne, S.A.

    1995-01-01

    The present a conceptual design of a diode-pumped solid-state-laser (DPSSL) driver for an inertial fusion energy (IFE) power plant based on the maximized cost of electricity (COE) as determined in a comprehensive systems study. This study contained extensive detail for all significant DPSSL physics and costs, plus published scaling relationships for the costs of the target chamber and the balance of plant (BOP). Our DPSSL design offers low development cost because it is modular, can be fully tested functionally at reduced scale, and is based on mature solid-state-laser technology. Most of the parameter values that we used are being verified by experiments now in progress. Future experiments will address the few issues that remain. As a consequence, the economic and technical risk of our DPSSL driver concept is becoming rather low. Baseline performance at 1 GW e using a new gain medium [Yb 3+ -doped Sr 5 (PO 4 ) 3 F or Yb:S-FAP] includes a product of laser efficiency and target gain of ηG = 7, and a COE of 8.6 cents/kW·h, although values of ηG ≥ 11 and COEs ≤6.6 cents/kW·h are possible at double the assumed target gain of 76 at 3.7 MJ. We present a summary of our results, discuss why other more-common types of laser media do not perform as well as Yb:S-FAP, and present a simple model that shows where DPSSL development should proceed to reduce projected COEs

  17. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-01-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion-source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at. (Auth.)

  18. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-07-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at

  19. Inertial Waves and Steady Flows in a Liquid Filled Librating Cylinder

    Science.gov (United States)

    Subbotin, Stanislav; Dyakova, Veronika

    2018-05-01

    The fluid flow in a non-uniformly rotating (librating) cylinder about a horizontal axis is experimentally studied. In the absence of librations the fluid performs a solid-body rotation together with the cavity. Librations lead to the appearance of steady zonal flow in the whole cylinder and the intensive steady toroidal flows near the cavity corners. If the frequency of librations is twice lower than the mean rotation rate the inertial waves are excited. The oscillating motion associated with the propagation of inertial wave in the fluid bulk leads to the appearance of an additional steady flow in the Stokes boundary layers on the cavity side wall. In this case the heavy particles of the visualizer are assembled on the side wall into ring structures. The patterns are determined by the structure of steady flow, which in turn depends on the number of reflections of inertial wave beams from the cavity side wall. For some frequencies, inertial waves experience spatial resonance, resulting in inertial modes, which are eigenmodes of the cavity geometry. The resonance of the inertial modes modifies the steady flow structure close to the boundary layer that is manifested in the direct rebuilding of patterns. It is shown that the intensity of zonal flow, as well as the intensity of steady flows excited by inertial waves, is proportional to the square of the amplitude of librations.

  20. Inertial fusion: strategy and economic potential

    International Nuclear Information System (INIS)

    Nuckolls, J.H.

    1983-01-01

    Inertial fusion must demonstrate that the high target gains required for practical fusion energy can be achieved with driver energies not larger than a few megajoules. Before a multi-megajoule scale driver is constructed, inertial fusion must provide convincing experimental evidence that the required high target gains are feasible. This will be the principal objective of the NOVA laser experiments. Implosions will be conducted with scaled targets which are nearly hydrodynamically equivalent to the high gain target implosions. Experiments which demonstrate high target gains will be conducted in the early nineties when multi-megajoule drivers become available. Efficient drivers will also be demonstrated by this time period. Magnetic fusion may demonstrate high Q at about the same time as inertial fusion demonstrates high gain. Beyond demonstration of high performance fusion, economic considerations will predominate. Fusion energy will achieve full commercial success when it becomes cheaper than fission and coal. Analysis of the ultimate economic potential of inertial fusion suggests its costs may be reduced to half those of fission and coal. Relative cost escalation would increase this advantage. Fusions potential economic advantage derives from two fundamental properties: negligible fuel costs and high quality energy (which makes possible more efficient generation of electricity)

  1. Characterization of a 15 GHz integrated bulk InGaAsP passively modelocked ring laser at 1.53microm.

    Science.gov (United States)

    Barbarin, Yohan; Bente, Erwin A J M; Heck, Martijn J R; Oei, Y S; Nötzel, Richard; Smit, Meint K

    2006-10-16

    We report on an extensive characterization of a 15GHz integrated bulk InGaAsP passively modelocked ring laser at 1530 nm. The laser is modelocked for a wide range of amplifier currents and reverse bias voltages on the saturable absorber. We have measured a timing jitter of 7.1 ps (20 kHz - 80 MHz), which is low for an all-active device using bulk material and due to the ring configuration. Measured output pulses are highly chirped, a FWHM bandwidth is obtained of up to 4.5 nm. Such lasers with high bandwidth pulses and compatible with active-passive integration are of great interest for OCDMA applications.

  2. Reactor potential of the magnetically insulated inertial fusion (MICF) system

    International Nuclear Information System (INIS)

    Kammash, T.; Galbraith, D.L.

    1987-01-01

    The Magnetically Insulated Inertial Confinement Fusion (MICF) scheme is examined with regard to its potential as a power-producing reactor. This approach combines the favorable aspects of both magnetic and inertial fusions in that physical containment of the plasma is provided by a metallic shell while thermal insulation of its energy is provided by a strong, self-generated magnetic field. The plasma is created at the core of the target as a result of irradiation of the fuel-coated inner surface by a laser beam that enters through a hole in the spherical shell. The instantaneous magnetic field is generated by the current loops formed by the laser-heated, laser-ablated electrons, and preliminary experimental results at Osaka University have confirmed the presence of such a field. These same experiments have also yielded a Lawson parameter of about 5x10 12 cm -3 sec, and because of these unique properties, the plasma lifetimes in MICF have been shown to be about two orders of magnitude longer than conventional, pusher type inertial fusion schemes. In this paper a quasi one dimensional, time dependent set of particle and energy balance equations for the thermal species, namely, electrons, ions and thermal alphas which also allows for an appropriate set of fast alpha groups is utilized to assess the reactor prospects of a DT-burning MICF system. (author) [pt

  3. Microscopic study on lasing characteristics of the UVSOR storage ring free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Hama, H. [Institute for Molecular Science, Okazaki (Japan)]|[Graduate Univ. for Advanced Stuides, Okazaki (Japan); Yamazaki, J.; Kinoshita, T. [Institute for Molecular Science, Okazaki (Japan)] [and others

    1995-12-31

    Characteristics of storage ring free electron laser (SRFEL) at a short wavelength region (UV and visible) has been studied at the UVSOR facility, Institute for Molecular Science. We have measured the laser power evolution by using a biplanar photodiode, and the micro-macro temporal structure of both the laser and the electron bunch with a dualsweep streak camera. The saturated energy of the laser micropulse in the gain-switching (Q-switching) mode has been measured as a function of the ring current. We have not observed a limitation of the output power yet within the beam current can be stored. We have analyzed the saturated micropulse energy based on a model of gain reduction due to the bunch-heating. The bunch-heating process seems to be very complicate. We derived time dependent gain variations from the shape of macropulse and the bunch length. Those two gain variations are almost consistent with each other but slightly different in detail. The gain may be not only simply reduced by the energy spread but also affected by the phase space rotation due to synchrotron oscillation of the electron bunch. As reported in previous issue, the lasing macropulse consists of a couple of micropulses that are simultaneously evolved. From high resolution two-dimensional spectra taken by the dual-sweep streak camera, we noticed considerable internal substructures of the laser micropulse in both the time distribution and the spectral shape. There are a couple of peaks separated with almost same distance in a optical bunch. Such substructure does not seem to result from statistical fluctuations of laser seeds. Although the origin of the substructure of macropulse is not dear at the present, we are going to discuss about SRFEL properties.

  4. Inertial confinement: concept and early history

    International Nuclear Information System (INIS)

    Linhart, J.G.

    1986-01-01

    The concept of inertial confinement is linked to the general theme of energy compression and staging. It is shown how it arose from the ideas and experiments on dynamic pinches towards the end of the fifties and how the important key concept of a linear was further developed during the sixties. THe various attempts at driving linears to speeds in excess of 1 cm/μs are reviewed in chronological order, mentioning the important impetus given to this field by the consideration of laser as a driver. It is concluded that the field of inertial confinement fusion (ICF) is becoming ever richer in possibilities, and the understanding of the physics of high-energy density has reached now a satisfactory level

  5. Storage ring free electron laser, pulse propagation effects and microwave type instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, G.; Mezi, L.; Renieri, A. [ENEA, Divisione Fisica Applicata, Centro Ricerche Frascati, Frascati, RM (Italy); Migliorati, M. [Rome Univ. La Sapienza, Rome (Italy). Dipt. di Energetica

    2000-07-01

    It has been developed a dynamical model accounting for the storage Ring Free Electron Laser evolution including pulse propagation effects and e-beam instabilities of microwave type. It has been analyzed the general conditions under which the on set of the laser may switch off the instability and focus everybody attention on the interplay between cavity mismatch, laser pulsed behavior and e-beam instability dynamics. Particular attention is also devoted to the laser operation in near threshold conditions, namely at an intracavity level just enough to counteract the instability, that show in this region new and interesting effects arises. [Italian] Si sviluppa un modello dinamico per la descrizione dell'evoluzione di un laser ad elettroni liberi in anello di accumulazione con l'inclusione di effetti di propagazione d'impulso e di instabilita' a microonda. Si analizzano le condizioni per le quali l'instaurarsi dell'operazione laser puo' spegnere l'instabilita' e si focalizza l'attenzione sulla connessione fra desincronismo della cavita', comportamento pulsato del laser e comportamento instabile del fascio di elettroni: si analizza in particolare l'operazione laser quando il guadagno e' prossimo alle perdite della cavita' e si osservano effetti particolarmente interessanti.

  6. Status of the US inertial fusion program and the National Ignition Facility

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1997-01-01

    Research programs supported by the United States Office of Inertial Fusion and the NIF are summarized. The US inertial fusion program has developed an approach to high energy density physics and fusion ignition in the laboratory relying on the current physics basis of capsule drive by lasers and on the National Ignition Facility which is under construction. (AIP) copyright 1997 American Institute of Physics

  7. Inertial fusion energy

    International Nuclear Information System (INIS)

    Mima, K.

    2001-01-01

    Reviewed is the present status of the inertial confinement energy (IFE) research. The highlights of the IFE presentations are as follows. Toward demonstrating ignition and burning of imploded plasmas, ignition facilities of mega jule class blue laser system are under construction at Lawrence Livermore National Laboratory and the CEA laboratory of Bordeaux. The central ignition by both indirect drive and direct drive will be explored by the middle of 2010's. A new ignition concept so called 'fast ignition' has also been investigated intensively in the last two years. Peta watt level (1PW∼0.1PW output) CPA lasers have been used for heating solid targets and imploded plasmas. With 50J∼500J/psec pulses, solid targets are found to be heated up to 300eV. They were measured by X-ray spectroscopy, neutron energy spectrum, and so on. Summarized are also researches on simulation code developments, target design and fabrication, heavy ion beam fusion, Z-pinch based X-ray source, and laser driver technology. (author)

  8. Inertial fusion energy; L'energie de fusion inertielle

    Energy Technology Data Exchange (ETDEWEB)

    Decroisette, M.; Andre, M.; Bayer, C.; Juraszek, D. [CEA Bruyeres-le-Chatel, Dir. des Systemes d' Information (CEA/DIF), 91 (France); Le Garrec, B. [CEA Centre d' Etudes Scientifiques et Techniques d' Aquitaine, 33 - Le Barp (France); Deutsch, C. [Paris-11 Univ., 91 - Orsay (France); Migus, A. [Institut d' Optique Centre scientifique, 91 - Orsay (France)

    2005-07-01

    We first recall the scientific basis of inertial fusion and then describe a generic fusion reactor with the different components: the driver, the fusion chamber, the material treatment unit, the target factory and the turbines. We analyse the options proposed at the present time for the driver and for target irradiation scheme giving the state of art for each approach. We conclude by the presentation of LMJ (laser Megajoule) and NIF (national ignition facility) projects. These facilities aim to demonstrate the feasibility of laboratory DT ignition, first step toward Inertial Fusion Energy. (authors)

  9. Electron beam properties and impedance characterization for storage rings used for free electron lasers

    International Nuclear Information System (INIS)

    Dattoli, G.; Mezi, L.; Renieri, A.; Migliorati, M.; Walker, R.

    2000-01-01

    Good electron beam qualities and stability are the crucial features of Storage Rings dedicated to synchrotron radiation sources or to Free Electron Laser. Most of these characteristics depends on the coupling of the e-beam with the machine environment, which can be in turn modelled in terms of a characteristic impedance, whose absolute value and structure can be used to specify both the stability (longitudinal and transverse) of the beam and its qualities (energy spread, bunch length, peak current ...). In this paper are considered two specific examples of Storage Rings used for FEL operation and analyze their performances by means of semi analytical and numerical methods. The analysis is aimed at clarifying the dependence of beam energy spread and bunch length on beam current and at providing a set of parameters useful for the optimization of Free Electron Laser or synchrotron radiation sources [it

  10. Laser spectroscopy with a cooler ring at the ESR (GSI) and the TSR (MPI Heidelberg)

    International Nuclear Information System (INIS)

    Kuehl, T.; Borneis, S.; Greten, G.; Marx, D.; Neumann, R.; Schroeder, S.; Grieser, R.; Hoog, I.; Huber, G.; Klaft, I.; Klein, R.; Merz, P.; Balykin, V.; Bock, M.; Ellert, C.; Forck, P.; Grieser, M.; Grimm, R.; Habs, D.; Miesner, H.J.; Petrich, W.; Wanner, B.; Becker, C.; Schwalm, D.; Wolf, A.

    1992-01-01

    At the TSR cooler ring at Heidelberg, laser studies were carried out using singly charged lithium and beryllium ions. Laser spectroscopy of relativistic lithium ions (υ = 0.04c) yielded signals with a narrow linewidth, suitable for an experimental test of special relativity. A dramatic reduction of the beam temperature, as defined by the longitudinal velocity spread, was achieved via laser cooling in both cases. At the ion energies available at ESR it will become possible to prepare and store bare ions up to U 92+ . Electron cooling was successfully demonstrated for hydrogen-like Bi 82+ ions, where a laser experiment is scheduled to study the ground-state hyperfine splitting. (orig.)

  11. The US inertial confinement fusion (ICF) ignition programme and the inertial fusion energy (IFE) programme

    Science.gov (United States)

    Lindl, J. D.; Hammel, B. A.; Logan, B. Grant; Meyerhofer, David D.; Payne, S. A.; Sethian, John D.

    2003-12-01

    There has been rapid progress in inertial fusion in the past few years. This progress spans the construction of ignition facilities, a wide range of target concepts and the pursuit of integrated programmes to develop fusion energy using lasers, ion beams and z-pinches. Two ignition facilities are under construction, the national ignition facility (NIF) in the United States and the laser megajoule (LMJ) in France, and both projects are progressing towards an initial experimental capability. The laser integration line prototype beamline for LMJ and the first four beams of NIF will be available for experiments in 2003. The full 192 beam capability of NIF will be available in 2009 and ignition experiments are expected to begin shortly after that time. There is steady progress in target science and target fabrication in preparation for indirect-drive ignition experiments on NIF. Advanced target designs may lead to 5 10 times more yield than initial target designs. There has also been excellent progress on the science of ion beam and z-pinch-driven indirect-drive targets. Excellent progress on direct-drive targets has been obtained on the Omega laser at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko XII Petawatt facility and implosions suitable for fast ignition have been tested on the Omega laser. A broad-based programme to develop lasers and ion beams for inertial fusion energy (IFE) is under way with excellent progress in drivers, chambers, target fabrication and target injection. KrF and diode pumped solid

  12. The US inertial confinement fusion (ICF) ignition programme and the inertial fusion energy (IFE) programme

    International Nuclear Information System (INIS)

    Lindl, J D; Hammel, B A; Logan, B Grant; Meyerhofer, David D; Payne, S A; Sethian, John D

    2003-01-01

    There has been rapid progress in inertial fusion in the past few years. This progress spans the construction of ignition facilities, a wide range of target concepts and the pursuit of integrated programmes to develop fusion energy using lasers, ion beams and z-pinches. Two ignition facilities are under construction, the national ignition facility (NIF) in the United States and the laser megajoule (LMJ) in France, and both projects are progressing towards an initial experimental capability. The laser integration line prototype beamline for LMJ and the first four beams of NIF will be available for experiments in 2003. The full 192 beam capability of NIF will be available in 2009 and ignition experiments are expected to begin shortly after that time. There is steady progress in target science and target fabrication in preparation for indirect-drive ignition experiments on NIF. Advanced target designs may lead to 5-10 times more yield than initial target designs. There has also been excellent progress on the science of ion beam and z-pinch-driven indirect-drive targets. Excellent progress on direct-drive targets has been obtained on the Omega laser at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko XII Petawatt facility and implosions suitable for fast ignition have been tested on the Omega laser. A broad-based programme to develop lasers and ion beams for inertial fusion energy (IFE) is under way with excellent progress in drivers, chambers, target fabrication and target injection. KrF and diode pumped solid

  13. [Alternatives to femtosecond laser technology: subnanosecond UV pulse and ring foci for creation of LASIK flaps].

    Science.gov (United States)

    Vogel, A; Freidank, S; Linz, N

    2014-06-01

    In refractive corneal surgery femtosecond (fs) lasers are used for creating LASIK flaps, dissecting lenticules and for astigmatism correction by limbal incisions. Femtosecond laser systems are complex and expensive and cutting precision is compromised by the large focal length associated with the commonly used infrared (IR) wavelengths. Based on investigations of the cutting dynamics, novel approaches for corneal dissection using ultraviolet A (UVA) picosecond (ps) pulses and ring foci from vortex beams are presented. Laser-induced bubble formation in corneal stroma was investigated by high-speed photography at 1-50 million frames/s. Using Gaussian and vortex beams of UVA pulses with durations between 200 and 850 ps the laser energy needed for easy removal of flaps created in porcine corneas was determined and the quality of the cuts by scanning electron microscopy was documented. Cutting parameters for 850 ps are reported also for rabbit eyes. The UV-induced and mechanical stress were evaluated for Gaussian and vortex beams. The results show that UVA picosecond lasers provide better cutting precision than IR femtosecond lasers, with similar processing times. Cutting energy decreases by >50 % when the laser pulse duration is reduced to 200 ps. Vortex beams produce a short, donut-shaped focus allowing efficient and precise dissection along the corneal lamellae which results in a dramatic reduction of the absorbed energy needed for cutting and of mechanical side effects as well as in less bubble formation in the cutting plane. A combination of novel approaches for corneal dissection provides the option to replace femtosecond lasers by compact UVA microchip laser technology. Ring foci are also of interest for femtosecond laser surgery, especially for improved lenticule excision.

  14. Optical feedback in dfb quantum cascade laser for mid-infrared cavity ring-down spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Terabayashi, Ryohei, E-mail: terabayashi.ryouhei@h.mbox.nagoya-u.ac.jp; Sonnenschein, Volker, E-mail: volker@nagoya-u.jp; Tomita, Hideki, E-mail: tomita@nagoya-u.jp; Hayashi, Noriyoshi, E-mail: hayashi.noriyoshi@h.mbox.nagoya-u.ac.jp; Kato, Shusuke, E-mail: katou.shuusuke@f.mbox.nagoya-u.ac.jp; Jin, Lei, E-mail: kin@nuee.nagoya-u.ac.jp; Yamanaka, Masahito, E-mail: yamanaka@nuee.nagoya-u.ac.jp; Nishizawa, Norihiko, E-mail: nishizawa@nuee.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan); Sato, Atsushi, E-mail: atsushi.sato@sekisui.com; Nozawa, Kohei, E-mail: kohei.nozawa@sekisui.com; Hashizume, Kenta, E-mail: kenta.hashizume@sekisui.com; Oh-hara, Toshinari, E-mail: toshinari.ohara@sekisui.com [Sekisui Medical Co., Ltd., Drug Development Solutions Center (Japan); Iguchi, Tetsuo, E-mail: t-iguchi@nucl.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan)

    2017-11-15

    A simple external optical feedback system has been applied to a distributed feedback quantum cascade laser (DFB QCL) for cavity ring-down spectroscopy (CRDS) and a clear effect of feedback was observed. A long external feedback path length of up to 4m can decrease the QCL linewidth to around 50kHz, which is of the order of the transmission linewidth of our high finesse ring-down cavity. The power spectral density of the transmission signal from high finesse cavity reveals that the noise at frequencies above 20kHz is reduced dramatically.

  15. Present status of storage ring free electron laser experiment at ETL

    International Nuclear Information System (INIS)

    Yamazaki, T.; Nakamura, T.; Tomimasu, T.; Sugiyama, S.; Noguchi, T.

    1988-01-01

    Outline is described of the present status of the ETL storage-ring free electron laser project. The structure and the performance of the ETL-type transverse optical klystron are given. A modification of the dispersive section has decreased the degradation of the shape of the spontaneous-emission spectrum due to energy spread of the electron beam. Relevant parameters of the stored beam are presented. Measurement of the optical-cavity loss is under way. (author)

  16. Los Alamos National Laboratory progress and path to inertial confinement fusion commercialization

    International Nuclear Information System (INIS)

    Harris, D.B.; Dudziak, D.J.

    1989-01-01

    KrF lasers appear to be an attractive driver for inertial confinement fusion commercial applications such as electric power production. Los Alamos National Laboratory is working to develop the technology required to demonstrate that KrF lasers can satisfy all of the driver requirements. The latest experimental and theoretical results indicate that cost currently appears to be the main issue for KrF lasers. The Los Alamos program is working to reduce the cost of KrF laser systems by developing damage-resistant optical coatings, low-cost optical blanks, high-intrinsic-efficiency gas mixtures, low-cost and high-efficiency pulsed power, and optimized system architectures. Other potential issues may cause problems after the 5 kJ Aurora KrF laser system becomes operational, such as amplified spontaneous emission, cross talk or temporal pulse distortion. Design solutions to issues such as these have been identified and will be experimentally demonstrated on Aurora. Issues specific to commercial-application drivers, such as cost, gas flow, repetively pulsed power, and high reliability cannot be experimentally addressed at this time. Projections will be made on the ability of KrF lasers to satisfy these requirements. The path to commercialization of inertial fusion for KrF lasers is also described. (orig.)

  17. Saturation of the laser-induced narrowband coherent synchrotron radiation process: Experimental observation at a storage ring

    Science.gov (United States)

    Hosaka, M.; Yamamoto, N.; Takashima, Y.; Szwaj, C.; Le Parquier, M.; Evain, C.; Bielawski, S.; Adachi, M.; Zen, H.; Tanikawa, T.; Kimura, S.; Katoh, M.; Shimada, M.; Takahashi, T.

    2013-02-01

    We study the efficiency limitation affecting laser-induced coherent synchrotron radiation (CSR) at high laser power. Experiments are made on the UVSOR-II storage ring in conditions of narrowband terahertz CSR emission. While, at moderate power, CSR power increases quadratically with laser power, a noticeable decrease in efficiency and eventually a decrease in CSR power is observed experimentally at high power. Details of the underlying process are analyzed numerically. As the saturation effect depends almost instantaneously on the laser intensity, the saturation occurs locally in longitudinal space. This has important consequences on the modulation pattern induced on the electron bunch.

  18. Laser Program annual report 1984

    International Nuclear Information System (INIS)

    Rufer, M.L.; Murphy, P.W.

    1985-06-01

    The Laser Program Annual Report is part of the continuing series of reports documenting the progress of the unclassified Laser Fusion Program at the Lawrence Livermore National Laboratory (LLNL). As in previous years, the report is organized programmatically. The first section is an overview of the basic goals and directions of the LLNL Inertial Confinement Fusion (ICF) Program, and highlights the year's important accomplishments. Sections 2 through 7 provide the detailed information on the various program elements: Laser Systems and Operations, Target Design, Target Fabrication, Laser Experiments and Advanced Diagnostics, Advanced Laser Development, and Applications of Inertial Confinement Fusion. Individual sections will be indexed separately. 589 refs., 333 figs., 25 tabs

  19. Direct-drive inertial confinement fusion: A review

    Energy Technology Data Exchange (ETDEWEB)

    Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; Goncharov, V. N.; Harding, D. R.; Knauer, J. P.; McKenty, P. W.; Myatt, J. F.; Short, R. W.; Skupsky, S.; Theobald, W.; Collins, T. J. B.; Delettrez, J. A.; Hu, S. X.; Marozas, J. A.; Maximov, A. V.; Michel, D. T.; Radha, P. B.; Regan, S. P.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); and others

    2015-11-15

    The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline

  20. Direct-drive inertial confinement fusion: A review

    International Nuclear Information System (INIS)

    Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; Goncharov, V. N.; Harding, D. R.; Knauer, J. P.; McKenty, P. W.; Myatt, J. F.; Short, R. W.; Skupsky, S.; Theobald, W.; Collins, T. J. B.; Delettrez, J. A.; Hu, S. X.; Marozas, J. A.; Maximov, A. V.; Michel, D. T.; Radha, P. B.; Regan, S. P.; Sangster, T. C.

    2015-01-01

    The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline

  1. Dynamic synchronisation regions of a ring laser with the use of a periodic support

    International Nuclear Information System (INIS)

    Kuryatov, V N; Sudakov, V F

    2008-01-01

    The method is proposed for calculating dynamic synchronisation regions of a ring laser with a periodic frequency support of a special type. The proposed algorithm in essence taking into account the special type of the support allows the search for minimal widths of regions when the support parameters change. The widths of the regions are calculated as an example for the case of the harmonic carrier modulation as a harmonic envelope (three-frequency support) and an envelope of the 'soft' meander type (multifrequency support). (lasers, active media)

  2. Dependence of mis-alignment sensitivity of ring laser gyro cavity on cavity parameters

    Energy Technology Data Exchange (ETDEWEB)

    Sun Feng; Zhang Xi; Zhang Hongbo; Yang Changcheng, E-mail: sunok1234@sohu.com [Huazhong Institute of Electro-Optics - Wuhan National Lab for Optoelectronics, Wuhan, Hubei (China)

    2011-02-01

    The ring laser gyroscope (RLG), as a rotation sensor, has been widely used for navigation and guidance on vehicles and missiles. The environment of strong random-vibration and large acceleration may deteriorate the performance of the RLG due to the vibration-induced tilting of the mirrors. In this paper the RLG performance is theoretically analyzed and the parameters such as the beam diameter at the aperture, cavity mirror alignment sensitivities and power loss due to the mirror tilting are calculated. It is concluded that by carefully choosing the parameters, the significant loss in laser power can be avoided.

  3. Conceptual design of inertial confinement fusion power plant

    International Nuclear Information System (INIS)

    Mima, Kunioki; Yamanaka, Tatsuhiko; Nakai, Sadao

    1994-01-01

    Presented is the status of the conceptual design studies of inertial confinement fusion reactors. The recent achievements of the laser fusion research enable us to refine the conceptual design of the power plant. In the paper, main features of several new conceptual designs of ICF reactor; KOYO, SIRIUS-P, HYLIFE-II and so on are summarized. In particular, the target design and the reactor chamber design are described. Finally, the overview of the laser fusion reactor and the irradiation system is also described. (author)

  4. Theory of frequency synchronization in a ring laser

    Energy Technology Data Exchange (ETDEWEB)

    Radina, Tatiana V., E-mail: tatiana.radina@gmail.com

    2015-09-25

    The self-consistent problem of the frequency synchronization of counter-propagating waves in a ring laser is rigorously solved. An intrinsic nonlinear mechanism of the phase coupling between the waves is considered for the first time. This ineradicable coupling is provided by modulation of the population difference of the energy levels of the active medium atoms in the electromagnetic field of two counter-propagating waves. The theoretical limit for the range of phase locking between the counter-propagating waves is established. The general equation of phase synchronization is obtained from the solution of a self-consistent problem. The frequency-dependent boundaries of the synchronization band calculated in the framework of this approach show good agreement with experimental results published in the literature.

  5. Inertial fusion research: Annual technical report, 1985

    International Nuclear Information System (INIS)

    Larsen, J.T.; Terry, N.C.

    1986-03-01

    This report describes the inertial confinement fusion (ICF) research activities undertaken at KMS Fusion (KMSF) during 1985. It is organized into three main technical sections; the first covers fusion experiments and theoretical physics, the second is devoted to progress in materials development and target fabrication, and the third describes laser technology research. These three individual sections have been cataloged separately

  6. Representation-free description of light-pulse atom interferometry including non-inertial effects

    Energy Technology Data Exchange (ETDEWEB)

    Kleinert, Stephan, E-mail: stephan.kleinert@uni-ulm.de [Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Kajari, Endre; Roura, Albert [Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Schleich, Wolfgang P. [Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Texas A& M University Institute for Advanced Study (TIAS), Institute for Quantum Science and Engineering (IQSE) and Department of Physics and Astronomy, Texas A& M University College Station, TX 77843-4242 (United States)

    2015-12-30

    Light-pulse atom interferometers rely on the wave nature of matter and its manipulation with coherent laser pulses. They are used for precise gravimetry and inertial sensing as well as for accurate measurements of fundamental constants. Reaching higher precision requires longer interferometer times which are naturally encountered in microgravity environments such as drop-tower facilities, sounding rockets and dedicated satellite missions aiming at fundamental quantum physics in space. In all those cases, it is necessary to consider arbitrary trajectories and varying orientations of the interferometer set-up in non-inertial frames of reference. Here we provide a versatile representation-free description of atom interferometry entirely based on operator algebra to address this general situation. We show how to analytically determine the phase shift as well as the visibility of interferometers with an arbitrary number of pulses including the effects of local gravitational accelerations, gravity gradients, the rotation of the lasers and non-inertial frames of reference. Our method conveniently unifies previous results and facilitates the investigation of novel interferometer geometries.

  7. Prolate-Spheroid ('Rugby-Shaped') Hohlraum for Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Vandenboomgaerde, M.; Bastian, J.; Casner, A.; Galmiche, D.; Jadaud, J.-P.; Laffite, S.; Liberatore, S.; Malinie, G.; Philippe, F.

    2007-01-01

    A novel rugby-ball shaped hohlraum is designed in the context of the indirect-drive scheme of inertial-confinement fusion (ICF). Experiments were performed on the OMEGA laser and are the first use of rugby hohlraums for ICF studies. Analysis of experimental data shows that the hohlraum energetics is well understood. We show that the rugby-ball shape exhibits advantages over cylinder, in terms of temperature and of symmetry control of the capsule implosion. Simulations indicate that rugby hohlraum driven targets may be candidates for ignition in a context of early Laser MegaJoule experiments with reduced laser energy

  8. Laser Program annual report 1984

    Energy Technology Data Exchange (ETDEWEB)

    Rufer, M.L.; Murphy, P.W. (eds.)

    1985-06-01

    The Laser Program Annual Report is part of the continuing series of reports documenting the progress of the unclassified Laser Fusion Program at the Lawrence Livermore National Laboratory (LLNL). As in previous years, the report is organized programmatically. The first section is an overview of the basic goals and directions of the LLNL Inertial Confinement Fusion (ICF) Program, and highlights the year's important accomplishments. Sections 2 through 7 provide the detailed information on the various program elements: Laser Systems and Operations, Target Design, Target Fabrication, Laser Experiments and Advanced Diagnostics, Advanced Laser Development, and Applications of Inertial Confinement Fusion. Individual sections will be indexed separately. 589 refs., 333 figs., 25 tabs.

  9. The electron beam dynamics simulation in the laser-electron storage ring involving compton and intrabeam scattering

    International Nuclear Information System (INIS)

    Gladkikh, P.I.; Telegin, Yu.N.; Karnaukhov, I.M.

    2002-01-01

    The feasibility of the development of intense X-ray sources based on Compton scattering in laser-electron storage rings is discussed. The results of the electron beam dynamics simulation involving Compton and intrabeam scattering are presented

  10. The electron beam dynamics simulation in the laser-electron storage ring involving compton and intrabeam scattering

    CERN Document Server

    Gladkikh, P I; Karnaukhov, I M

    2002-01-01

    The feasibility of the development of intense X-ray sources based on Compton scattering in laser-electron storage rings is discussed. The results of the electron beam dynamics simulation involving Compton and intrabeam scattering are presented.

  11. The prospect of laser fusion energy

    International Nuclear Information System (INIS)

    Yamanaka, C.

    2000-01-01

    The inertial confinement fusion research has developed remarkably in these 30 years, which enables us to scope the inertial fusion energy in the next century. The recent progress in the ICF is briefly reviewed. The GEKKO XII n d glass laser has succeeded to get the long cherished world's purpose that was to compress a D-T fuel up to 1000 times the normal density. The neutron yield was some what less than the expected value. The MJ laser system is under construction expecting to ignite and bum a fuel. The alternative way is to use a PW short pulse laser for the fast ignition. The inertial fusion energy strategy is described with economic overviews on IFE power plants. Various applications of IFE are summarized. (author)

  12. Compression of magnetized target in the magneto-inertial fusion

    Science.gov (United States)

    Kuzenov, V. V.

    2017-12-01

    This paper presents a mathematical model, numerical method and results of the computer analysis of the compression process and the energy transfer in the target plasma, used in magneto-inertial fusion. The computer simulation of the compression process of magnetized cylindrical target by high-power laser pulse is presented.

  13. End-pumped Nd:YVO4 laser with reduced thermal lensing via the use of a ring-shaped pump beam.

    Science.gov (United States)

    Lin, Di; Andrew Clarkson, W

    2017-08-01

    A simple approach for alleviating thermal lensing in end-pumped solid-state lasers using a pump beam with a ring-shaped intensity distribution to decrease the radial temperature gradient is described. This scheme has been implemented in a diode-end-pumped Nd:YVO 4 laser yielding 14 W of TEM 00 output at 1.064 μm with a corresponding slope efficiency of 53% and a beam propagation factor (M 2 ) of 1.08 limited by available pump power. By comparison, the same laser design with a conventional quasi-top-hat pump beam profile of approximately equal radial extent yielded only 9 W of output before the power rolled over due to thermal lensing. Further investigation with the aid of a probe beam revealed that the thermal lens power was ∼30% smaller for the ring-shaped pump beam compared to the quasi-top-hat beam. The implications for further power scaling in end-pumped laser configurations are considered.

  14. Repetitive pulsed power technology for inertial-confinement fusion

    International Nuclear Information System (INIS)

    Prestwich, K.R.; Buttram, M.T.

    1983-01-01

    The pulsed power requirements for inertial-confinement fusion reactors are defined for ion-beam and laser drivers. Several megajoule beams with 100's of terrawatt peak powers must be delivered to the reactor chamber 1 to 10 times per second. Ion-beam drivers are relatively efficient requiring less energy storage in the pulsed-power system but more time compression in the power flow chain than gas lasers. These high peak powers imply very large numbers of components for conventional pulse-power systems. A new design that significantly reduces the number of components is presented

  15. Inertial fusion science in Europe

    International Nuclear Information System (INIS)

    Bigot, B.

    2006-01-01

    Europe has built significant laser facilities to study inertial confinement fusion since the beginning of this science. The goal is to understand the processes of ignition and propagation of thermonuclear combustion. Three routes toward fusion are pursued, each of which has advantages and difficulties. The conventional routes are using a central hot spot created by the same compression and heating laser beams, either with indirect or direct drive. A more recent route, 'fast ignition', has been actively studied since the 90's, increasing the need for very high energy lasers to create the hot spot; some European lasers of this kind are already functioning, others are under construction or planned. Among European facilities, Laser Mega Joule (LMJ), which is under construction, will be the most powerful tool at the end of the decade, along with NIF in the Usa, to study and obtain fusion. LMJ is designed not only to obtain fusion but also to carry out experiments on all laser-plasma physics themes thanks to its flexibility. This facility, mainly dedicated to defence programmes, will be accessible to the academic research community. On all these facilities, numerous results are and will be obtained in the fields of High Energy Density Physics and Ultra High Intensity. (author)

  16. FM-to-AM modulations induced by a weak residual reflection stack of sine-modulated pulses in inertial confinement fusion laser systems

    Science.gov (United States)

    Huang, Xiaoxia; Deng, Xuewei; Zhou, Wei; Hu, Dongxia; Guo, Huaiwen; Wang, Yuancheng; Zhao, Bowang; Zhong, Wei; Deng, Wu

    2018-02-01

    We report on frequency to amplitude modulation (FM-to-AM) conversion induced by a weak residual reflection stack of sine-modulated pulses in a complex laser system. Theoretical and experimental investigations reveal that when weak residual reflected pulses stack on the main pulse, the spectral intensity changes in the stacked region, which then converts to obvious AM. This kind of FM-to-AM effect often occurs in the tail of the pulse and cannot be eliminated by common compensation methods, which even enhance the modulation depth. Furthermore, the actual intensity modulation frequency and depth induced by the residual reflection stack are much higher and deeper than observed on the oscilloscope, which is harmful for safe operation of the laser facility and the driving power balance during inertial confinement fusion. To eliminate this kind of FM-to-AM effect, any possible on-axis and near-axis residual reflection in laser systems must be avoided.

  17. From Storage Rings to Free Electron Lasers for Hard X-Rays

    International Nuclear Information System (INIS)

    Nuhn, H

    2004-01-01

    The intensity of X-ray sources has increased at a rapid rate since the late 1960s by 10 orders of magnitude and more through the use of synchrotron radiation produced by bending magnets, wigglers and undulators. Three generations of radiation sources have been identified depending on amplitude and quality of the radiation provided. While user facilities of the third generation were being constructed a new concept of radiation generating devices was being developed that offers an even larger increase in peak and average brightness than had been achieved till then. The new concept of the X-ray Free Electron Laser based on the principle of Self-Amplified Spontaneous Emission will be the basis of fourth generation X-ray source user facilities of this century. The paper will start with a brief history of the development of x-ray sources, discuss some of the differences between storage ring and free electron laser based approaches, and close with an update of the present development of x-ray free electron laser user facilities

  18. From Storage Rings to Free Electron Lasers for Hard X-Rays

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, H

    2004-01-09

    The intensity of X-ray sources has increased at a rapid rate since the late 1960s by 10 orders of magnitude and more through the use of synchrotron radiation produced by bending magnets, wigglers and undulators. Three generations of radiation sources have been identified depending on amplitude and quality of the radiation provided. While user facilities of the third generation were being constructed a new concept of radiation generating devices was being developed that offers an even larger increase in peak and average brightness than had been achieved till then. The new concept of the X-ray Free Electron Laser based on the principle of Self-Amplified Spontaneous Emission will be the basis of fourth generation X-ray source user facilities of this century. The paper will start with a brief history of the development of x-ray sources, discuss some of the differences between storage ring and free electron laser based approaches, and close with an update of the present development of x-ray free electron laser user facilities.

  19. From storage rings to free electron lasers for hard x-rays

    International Nuclear Information System (INIS)

    Nuhn, Heinz-Dieter

    2004-01-01

    The intensity of x-ray sources has increased at a rapid rate since the late 1960s by ten orders of magnitude and more through the use of synchrotron radiation produced by bending magnets, wigglers and undulators. Three generations of radiation sources have been identified depending on amplitude and quality of the radiation provided. While user facilities of the third generation were being constructed, a new concept of radiation generating devices was being developed that offers an even larger increase in peak and average brightness than had been achieved till then. The new concept of the x-ray free electron laser based on the principle of self-amplified spontaneous emission will be the basis of fourth generation x-ray source user facilities of this century. The paper will start with a brief history of the development of x-ray sources, it will then discuss some of the differences between storage ring and free electron laser based approaches, and will close with an update of the present development of x-ray free electron laser user facilities

  20. Design considerations for a feedback system to control self-bunching in ion-storage rings

    International Nuclear Information System (INIS)

    Ziemann, V.

    2001-02-01

    We discuss the feasibility of a feedback system to cure self-bunching of the electron-cooled coasting ion-beam in CELSIUS. Such a system may also aid stable operation of accumulator rings for future spallation neutron sources or heavy ion rings used for inertial fusion energy production

  1. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    International Nuclear Information System (INIS)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-01-01

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion

  2. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    Science.gov (United States)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-12-01

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  3. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J. [Lawrence Livermore National Laboratory, Livermore, California, 94550 (United States)

    2015-12-15

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  4. Inertial fusion energy with krypton fluoride lasers

    International Nuclear Information System (INIS)

    Sethian, J.D.

    2010-01-01

    Complete text of publication follows. We are developing the science and technologies needed for a practical fusion energy source using high energy krypton fluoride (KrF) lasers. The physics basis for this work is a family of simulations that exploit the unique advantages of KrF lasers. KrF lasers provide uniform enough laser light to illuminate the capsule directly, greatly improving the laser-target coupling efficiency, as well as simplifying the target design. KrF's shorter wavelength allows higher ablation pressures and helps suppress laser-plasma instabilities. These advantages are being demonstrated on the NRL Nike KrF laser facility. A particularly promising approach is shock ignition, in which a high intensity laser pulse drives an intense shock at peak compression. Simulations with experimentally benchmarked codes predict a 1 MJ KrF laser can produce 200 MJ of pure fusion energy. We have similarly advanced the laser technology. We have developed a KrF laser, using technologies that scale to a reactor beamline, that fires 5 times per second for long duration runs and is projected be efficient enough for a reactor. The science and the technology for the key components are developed at the same time as part of a coherent system. A multi-institutional team from industry, national labs, and universities has developed credible solutions for these components. This includes methods to fabricate the spherical pellets on mass production basis, a means to repetitively inject the capsules into the chamber and precisely hit them with the laser, scaled tests to develop the laser optics, and designs for the reaction vessel. Based on these advances NRL and its collaborators have formulated a three stage plan that could lead to practical fusion energy on a much faster time scale than currently believed. Stage I develops full scale components: a laser beam line, target factory and injector, and chamber technologies. Stage II is the Fusion Test Facility (FTF). Simulations

  5. Study on the Dynamics of Laser Gyro Strapdown Inertial Measurement Unit System Based on Transfer Matrix Method for Multibody System

    Directory of Open Access Journals (Sweden)

    Gangli Chen

    2013-01-01

    Full Text Available The dynamic test precision of the strapdown inertial measurement unit (SIMU is the basis of estimating accurate motion of various vehicles such as warships, airplanes, spacecrafts, and missiles. So, it is paid great attention in the above fields to increase the dynamic precision of SIMU by decreasing the vibration of the vehicles acting on the SIMU. In this paper, based on the transfer matrix method for multibody system (MSTMM, the multibody system dynamics model of laser gyro strapdown inertial measurement unit (LGSIMU is developed; the overall transfer equation of the system is deduced automatically. The computational results show that the frequency response function of the LGSIMU got by the proposed method and Newton-Euler method have good agreements. Further, the vibration reduction performance and the attitude error responses under harmonic and random excitations are analyzed. The proposed method provides a powerful technique for studying dynamics of LGSIMU because of using MSTMM and its following features: without the global dynamics equations of the system, high programming, low order of system matrix, and high computational speed.

  6. Controllable continuous evolution of electronic states in a single quantum ring

    Science.gov (United States)

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk; Laroze, David

    2018-02-01

    An intense terahertz laser field is shown to have a profound effect on the electronic and optical properties of quantum rings where the isotropic and anisotropic quantum rings can now be treated on equal footing. We have demonstrated that in isotropic quantum rings the laser field creates unusual Aharonov-Bohm oscillations that are usually expected in anisotropic rings. Furthermore, we have shown that intense laser fields can restore the isotropic physical properties in anisotropic quantum rings. In principle, all types of anisotropies (structural, effective masses, defects, etc.) can evolve as in isotropic rings in our present approach. Most importantly, we have found a continuous evolution of the energy spectra and intraband optical characteristics of structurally anisotropic quantum rings to those of isotropic rings in a controlled manner with the help of a laser field.

  7. Development of heavy-ion accelerators as drivers for inertially confined fusion

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1979-06-01

    The commercialization of inertial confinement fusion is discussed in terms of power costs. A chapter on heavy ion accelerators covers the prinicpal components, beam loss mechanisms, and theoretical considerations. Other tyopics discussed include the following: (1) heavy ion fusion implementation plan, (2) driver with accumulator rings fed by an rf LINAC, (3) single pass driver with an induction LINAC, and (4) implementation scenarios

  8. Inertial Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Mima, K

    2012-09-15

    In 1917, Albert Einstein suggested the theory of stimulated emission of light that led to the development of the laser. The first laser, based on Einstein's theory, was demonstrated by the Maiman experiment in 1960. In association with the invention and developments of the laser, N.G. Basov, A. Prokorov and C.H. Towns received the Nobel prize for physics in 1963. On the other hand, it had been recognized that nuclear fusion energy is the energy source of our universe. It is the origin of the energy in our sun and in the stars. Right after the laser oscillation experiment, it was suggested by J. Nuckolls, E. Teller and S. Colgate in the USA and A. Sakharov in the USSR that nuclear fusion induced by lasers be used to solve the energy problem. Following the suggestion, the pioneering works for heating plasmas to a thermonuclear temperature with a laser were published by N. Basov, O.N. Krohin, J.M. Dawson, C.R. Kastler, H. Hora, F. Flux and S. Eliezer. The new concept of fusion ignition and burn by laser 'implosion' was proposed by J. Nuckolls, which extended the spherically imploding shock concept discovered by G. Guderley to the laser fusion concept. Since then, laser fusion research has started all over the world. For example, many inertial fusion energy (IFE) facilities have been constructed for investigating implosion physics: Lasers: GEKKO I, GEKKO II, GEKKO IV, GEKKO MII and GEKKO xII at ILE, Osaka University, Japan; JANUS, CYCLOPS, ARUGUS, SHIVA and NOVA at Lawrence Livermore National Laboratory (LLNL), USA; OMEGA at the Laboratory for Laser Energetics (LLE), University of Rochester, USA; PHEBUS at Limeil, Paris, France; the ASTERIx iodine laser at the Max-Planck-Institut fuer Plasmaphysik (IPP), Garching, Germany; MPI, GLECO at the Laboratoire d'Utilisation des Lasers Intenses (LULI), ecole Polytecnique, France; HELIOS at Los Alamos National Laboratory, USA; Shengan II at the Shanghai Institute of Optics and Fine Mechanics, China; VULCAN at the Rutherford

  9. Multiple-beam laser–plasma interactions in inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Myatt, J. F., E-mail: jmya@lle.rochester.edu; Zhang, J.; Maximov, A. V. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States); Short, R. W.; Seka, W.; Edgell, D. H.; Michel, D. T.; Igumenshchev, I. V. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627-0171 (United States); Hinkel, D. E.; Michel, P.; Moody, J. D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)

    2014-05-15

    The experimental evidence for multiple-beam laser-plasma instabilities of relevance to laser driven inertial confinement fusion at the ignition scale is reviewed, in both the indirect and direct-drive approaches. The instabilities described are cross-beam energy transfer (in both indirectly driven targets on the NIF and in direct-drive targets), multiple-beam stimulated Raman scattering (for indirect-drive), and multiple-beam two-plasmon decay instability (in direct drive). Advances in theoretical understanding and in the numerical modeling of these multiple beam instabilities are presented.

  10. VUV optical ring resonator for Duke storage ring free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H.; Litvinenko, V.N.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The conceptual design of the multifaceted-mirror ring resonator for Duke storage ring VUV FEL is presented. The expected performance of the OK-4 FEL with ring resonator is described. We discuss in this paper our plans to study reflectivity of VUV mirrors and their resistivity to soft X-ray spontaneous radiation from OK-4 undulator.

  11. Quasi-periodic synchronisation of self-modulation oscillations in a ring chip laser by an external periodic signal

    International Nuclear Information System (INIS)

    Aulova, T V; Kravtsov, Nikolai V; Lariontsev, E G; Chekina, S N

    2011-01-01

    The synchronisation of periodic self-modulation oscillations in a ring Nd:YAG chip laser under an external periodic signal modulating the pump power has been experimentally investigated. A new quasi-periodic regime of synchronisation of self-modulation oscillations is found. The characteristic features of the behaviour of spectral and temporal structures of synchronised quasi-periodic oscillations with a change in the external signal frequency are studied. (control of laser radiation parameters)

  12. Progress in inertial fusion research at Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Perkins, R.B.

    1981-01-01

    The Los Alamos Scientific Laboratory Inertial Confinement Fusion Program is reviewed. Experiments using the Helios CO 2 laser system delivering up to 6kJ on target are described. Because breakeven energy estimates for laser drivers of 1 μm and above have risen and there is a need for CO 2 experiments in the tens-of-kJ regime as soon as practical, a first phase of Antares construction is now directed toward completion of two of the six original modules in 1983. These modules are designed to deliver 40kJ of CO 2 laser light on target. (author)

  13. A Laser Technology Test Facility for Laser Inertial Fusion Energy (LIFE)

    International Nuclear Information System (INIS)

    Bayramian, A.J.; Campbell, R.W.; Ebbers, C.A.; Freitas, B.L.; Latkowski, J.; Molander, W.A.; Sutton, S.B.; Telford, S.; Caird, J.A.

    2010-01-01

    A LIFE laser driver needs to be designed and operated which meets the rigorous requirements of the NIF laser system while operating at high average power, and operate for a lifetime of >30 years. Ignition on NIF will serve to demonstrate laser driver functionality, operation of the Mercury laser system at LLNL demonstrates the ability of a diode-pumped solid-state laser to run at high average power, but the operational lifetime >30 yrs remains to be proven. A Laser Technology test Facility (LTF) has been designed to specifically address this issue. The LTF is a 100-Hz diode-pumped solid-state laser system intended for accelerated testing of the diodes, gain media, optics, frequency converters and final optics, providing system statistics for billion shot class tests. These statistics will be utilized for material and technology development as well as economic and reliability models for LIFE laser drivers.

  14. Inertial fusion in the nineties

    International Nuclear Information System (INIS)

    Harris, D.; Dudziak, D.J.; Cartwright, D.C.

    1987-01-01

    The 1980s have proven to be an exciting time for the inertial confinement fusion (ICF) program. Major new laser and light-ion drivers have been constructed and have produced some encouraging results. The 1990s will be a crucial time for the ICF program. A decision for proceeding with the next facility is scheduled for the early 1990s. If the decision is positive, planning and construction of this facility will occur. Depending on the time required for design and construction, this next-generation facility could become operational near the turn of the century

  15. Ring cavity for a Raman capillary waveguide amplifier

    Science.gov (United States)

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  16. Ring cavity for a Raman capillary waveguide amplifir

    Science.gov (United States)

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  17. Beam dynamics in Compton ring gamma sources

    Directory of Open Access Journals (Sweden)

    Eugene Bulyak

    2006-09-01

    Full Text Available Electron storage rings of GeV energy with laser pulse stacking cavities are promising intense sources of polarized hard photons which, via pair production, can be used to generate polarized positron beams. In this paper, the dynamics of electron bunches circulating in a storage ring and interacting with high-power laser pulses is studied both analytically and by simulation. Both the common features and the differences in the behavior of bunches interacting with an extremely high power laser pulse and with a moderate pulse are discussed. Also considerations on particular lattice designs for Compton gamma rings are presented.

  18. Generation of single-frequency tunable green light in a coupled ring tapered diode laser cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    in the broad wavelength range from 1049 nm to 1093 nm and the beam propagation factor is improved from M2 = 2.8 to below 1.1. The laser frequency is automatically locked to the cavity resonance frequency using optical feedback. Furthermore, we show that this adaptive external cavity approach leads to efficient......We report the realization of a tapered diode laser operated in a coupled ring cavity that significantly improves the coherence properties of the tapered laser and efficiently generates tunable light at the second harmonic frequency. The tapered diode laser is tunable with single-frequency output...... frequency doubling. More than 500 mW green output power is obtained by placing a periodically poled LiNbO3 crystal in the external cavity. The single frequency green output from the laser system is tunable in the 530 nm to 533 nm range limited by the LiNbO3 crystal. The optical to optical conversion...

  19. Nonequilibrium statistical physics in a dithered ring laser gyroscope or quantum noise in pure and applied physics

    International Nuclear Information System (INIS)

    Schleich, W.; Dobiasch, P.

    1986-01-01

    A brief review is given of quantum noise in ring laser gyroscopes. Some the basic elements of ring laser theory, such as the Sagnac effect, the locking effect, and the influence of quantumnoise on the mean beat frequency versus rotation rate are discussed. The Langevin equation for the ase difference between the counterpropagating waves in the presence of any periodic and time symmetric dither is cast into a form which alows a qualitative discussion of the resulting lock-in curve as well as an exact expression in terms of infinite matrix continued fractions. The details of the transformation of the stochastic variable and the derivation of the exact expression for f>t may be found in appendices. Exact results are presented for two special cases of the dithering function: the harmonic and the square-wave bias

  20. Application of quantum-dot multi-wavelength lasers and silicon photonic ring resonators to data-center optical interconnects

    Science.gov (United States)

    Beckett, Douglas J. S.; Hickey, Ryan; Logan, Dylan F.; Knights, Andrew P.; Chen, Rong; Cao, Bin; Wheeldon, Jeffery F.

    2018-02-01

    Quantum dot comb sources integrated with silicon photonic ring-resonator filters and modulators enable the realization of optical sub-components and modules for both inter- and intra-data-center applications. Low-noise, multi-wavelength, single-chip, laser sources, PAM4 modulation and direct detection allow a practical, scalable, architecture for applications beyond 400 Gb/s. Multi-wavelength, single-chip light sources are essential for reducing power dissipation, space and cost, while silicon photonic ring resonators offer high-performance with space and power efficiency.

  1. INJECTION EFFICIENCY IN COMPTON RING NESTOR

    Directory of Open Access Journals (Sweden)

    P. I. Gladkikh

    2017-12-01

    Full Text Available NESTOR is the hard X-ray source that is under commissioning at NSC KIPT. NESTOR based on the Compton scattering of laser photons on relativistic electrons. The structure of the facility can be represented as the following components: a linear accelerator, a transport channel, a storage ring, and a laser-optical system. Electrons are stored in the storage ring for energy of 40-200 MeV. Inevitable alignment errors of magnetic elements are strongly effect on the beam dynamics in the storage ring. These errors lead to a shift of the equilibrium orbit relative to the ideal one. Significant shift of the equilibrium orbit could lead to loss of the beam on physical apertures. Transverse sizes of electron and laser beams are only few tens of microns at the interaction point. The shift of electron beam at the interaction point could greatly complicate the operation adjustment of storage ring without sufficient beam position diagnostic system. This article presents the simulation results of the efficiency of electron beam accumulation in the NESTOR storage ring. Also, this article is devoted to electron beam dynamics due to alignment errors of magnetic element in the ring.

  2. The sensitivity theory for inertial confinement pellet fusion system

    International Nuclear Information System (INIS)

    Cai, Shaohui; Zhang, Yuquan.

    1986-01-01

    A sensitivity theory for inertial confinement pellet fusion system is developed based on a physical model similar to that embodied in the laser fusion code MEDUSA. The theory presented here can be an efficient tool for estimating the effects of many alternations in the data field. Our result is different from Greenspan's work in 1980. (author)

  3. Strong-field physics using lasers and relativistic heavy ions at the high-energy storage ring HESR at FAIR

    International Nuclear Information System (INIS)

    Kuehl, T; Bagnoud, V; Stoehlker, T; Litvinov, Y; Winters, D F A; Zielbauer, B; Backe, H; Spielmann, Ch; Seres, J; Tünnermann, A; Neumayer, P; Aurand, B; Namba, S; Zhao, H Y

    2014-01-01

    The HESR high-energy ion storage ring at FAIR will provide unprecedented possibilities for strong-field physics using novel laser sources on relativistic heavy ions. An overview on the planning will be given.

  4. Investigation of natural frequencies of laser inertial confinement fusion capsules using resonant ultrasound spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaojun [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Tang, Xing; Wang, Zongwei [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Chen, Qian; Qian, Menglu [Institute of Acoustic, Tongji University, Shanghai 200433 (China); Meng, Jie [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Tang, Yongjian [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Zou, Yaming; Shen, Hao [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Gao, Dangzhong, E-mail: dgaocn@163.com [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China)

    2017-01-15

    Highlights: • The frequency equation of isotropic multi-layer hollow spheres was derived using three-dimension (3D) elasticity theory and transfer matrix method. • The natural frequencies of the capsules with a millimeter-sized diameter are determined experimentally using resonant ultrasound spectrum (RUS) system. • The predicted natural frequencies of the frequency equation accord well with the observed results. • The theoretical and experimental investigation has proved the potential applicability of RUS to both metallic and non-metallic capsules. - Abstract: The natural frequency problem of laser inertial confinement fusion (ICF) capsules is one of the basic problems for determining non-destructively the elasticity modulus of each layer material using resonant ultrasound spectroscopy (RUS). In this paper, the frequency equation of isotropic one-layer hollow spheres was derived using three dimension (3D) elasticity theory and some simplified frequency equations were discussed under axisymmetric and spherical symmetry conditions. The corresponding equation of isotropic multi-layer hollow spheres was given employing transfer matrix method. To confirm the validity of the frequency equation and explore the feasibility of RUS for characterizing the ICF capsules, three representative capsules with a millimeter-sized diameter were determined by piezoelectric-based resonant ultrasound spectroscopy (PZT-RUS) and laser-based resonant ultrasound spectroscopy (LRUS) techniques. On the basis of both theoretical and experimental results, it is proved that the calculated and measured natural frequencies are accurate enough for determining the ICF capsules.

  5. High-power narrow-linewidth quasi-CW diode-pumped TEM00 1064 nm Nd:YAG ring laser.

    Science.gov (United States)

    Liu, Yuan; Wang, Bao-shan; Xie, Shi-yong; Bo, Yong; Wang, Peng-yuan; Zuo, Jun-wei; Xu, Yi-ting; Xu, Jia-lin; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2012-04-01

    We demonstrated a high average power, narrow-linewidth, quasi-CW diode-pumped Nd:YAG 1064 nm laser with near-diffraction-limited beam quality. A symmetrical three-mirror ring cavity with unidirectional operation elements and an etalon was employed to realize the narrow-linewidth laser output. Two highly efficient laser modules and a 90° quartz rotator for birefringence compensation were used for the high output power. The maximum average output power of 62.5 W with the beam quality factor M(2) of 1.15 was achieved under a pump power of 216 W at a repetition rate of 500 Hz, corresponding to the optical-to-optical conversion efficiency of 28.9%. The linewidth of the laser at the maximum output power was measured to be less than 0.2 GHz.

  6. KrF lasers as inertial fusion drivers

    International Nuclear Information System (INIS)

    Harris, D.B.; Berggren, R.R.; Kurnit, N.A.; Lowenthal, D.D.; Berger, R.G.; Eggleston, J.M.; Ewing, J.J.; Kushner, M.J.

    1986-01-01

    A new type of KrF laser system has been proposed that has a significantly higher efficiency than pure angular multiplexed KrF lasers. This system uses electron-beam-sustained discharge lasers to pump a high gain Raman amplifier. The discharge lasers can operate at a higher efficiency than e-beam pumped lasers, and the forward Raman scattering process has both a high gain and high quantum efficiency using the rotational transition. The Raman system cost and performance has been examined and compared to the pure angular multiplexed system. The discharge-Raman system has a higher efficiency (12% vs 9%) and a higher cost ($140/joule vs $100/joule). For an ICF power plant driver, the higher efficiency offsets the higher cost, making the discharge-Raman system appear to be an attractive alternative to the pure angular multiplexed system

  7. KrF lasers as inertial fusion drivers

    International Nuclear Information System (INIS)

    Harris, D.B.; Berggren, R.R.; Kurnit, N.A.; Lowenthal, D.D.; Berger, R.G.; Eggleston, J.M.; Ewing, J.J.; Kushner, M.J.

    1985-01-01

    A new type of KrF laser system has been proposed that has a significantly higher efficiency than pure angular multiplexed KrF lasers. This system uses electron-beam-sustained discharge lasers to pump a high gain Raman amplifier. The discharge lasers can operate at a higher efficiency than e-beam pumped lasers, and the forward Raman scattering process has both a high gain and high quantum efficiency using the rotational transition. The Raman system cost and performance has been examined and compared to the pure angular multiplexed system. The discharge-Raman system has a higher efficiency (12.3% vs 9.1%) and a higher cost ($140/joule vs $100/joule). For an ICF power plant driver, the higher efficiency offsets the higher cost, making the discharge-Raman system appear to be an attractive alternative to the pure angular multiplexed system

  8. Controllable Continuous evolution of electronic states in a single quantum ring

    OpenAIRE

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk; Laroze, David

    2017-01-01

    Intense terahertz laser field is shown to have a profound effect on the electronic and optical properties of quantum rings, where the isotropic and anisotropic quantum rings can now be treated on equal footing. We have demonstrated that in isotropic quantum rings the laser field creates irregular AB oscillations that are usually expected in anisotropic rings. Further, we have shown for the first time that intense laser fields can restore the {\\it isotropic} physical properties in anisotropic ...

  9. Is laser cooling for heavy-ion fusion feasible?

    International Nuclear Information System (INIS)

    Ho, D.D.-M.; Brandon, S.T.

    2010-01-01

    Heavy-ion beams, each with current in the kiloampere range and particle energy in the giga-electronvolt range, must be focused onto a millimetre-size spot to provide the power required for ignition of high-gain targets for inertial confinement fusion. However, the focal spot size is always enlarged by chromatic aberration generated by the thermal spread of the beam ions in the direction of beam propagation. Enlarged focal spot degrades the target performance. For high-current beams, the conventional remedy for chromatic aberration using sextupole magnets has been shown to be ineffective. If novel correction schemes can be found, then the spot size can be reduced to below that previously believed possible. Smaller spots can mean lower energy targets so that the heavy-ion fusion (HIF) scenario can look more attractive. Success in laser cooling of ion beams in storage rings has inspired us to explore the feasibility of applying laser cooling for HIF, and the recirculator configuration proposed for HIF appears to be well suited for this purpose. However, using particle-in-cell simulations and theoretical arguments, we demonstrate in this paper that although laser cooling of heavy-ion beams is feasible in principle, the rapid velocity-space diffusion of ions in the bump-in-tail distribution, set up by the cooling lasers, limits the velocity-space compressibility of the thermal spread along the beam. Consequently, laser cooling is impractical for high-current, heavy-ion beams for the proposed recirculator configuration. Nevertheless, if the recirculator architecture or the target requirement can reduce the beam current, then the cooling scheme described here would be useful. This scheme may also be applicable to the RF linac and storage ring approach to HIF.

  10. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology.

    Science.gov (United States)

    Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang

    2018-02-08

    A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.

  11. Continuous wave room temperature external ring cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.; Cockburn, J. W. [Physics and Astronomy Department, The University of Sheffield, S3 7RH Sheffield (United Kingdom); Hempler, N.; Maker, G. T.; Malcolm, G. P. A. [M Squared Lasers Ltd., G20 0SP Glasgow (United Kingdom)

    2015-06-29

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.

  12. Continuous wave room temperature external ring cavity quantum cascade laser

    International Nuclear Information System (INIS)

    Revin, D. G.; Hemingway, M.; Vaitiekus, D.; Cockburn, J. W.; Hempler, N.; Maker, G. T.; Malcolm, G. P. A.

    2015-01-01

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm −1 is realized by the incorporation of a diffraction grating into the cavity

  13. Electric field detection of coherent synchrotron radiation in a storage ring generated using laser bunch slicing

    International Nuclear Information System (INIS)

    Katayama, I.; Shimosato, H.; Bito, M.; Furusawa, K.; Adachi, M.; Zen, H.; Kimura, S.; Katoh, M.; Shimada, M.; Yamamoto, N.; Hosaka, M.; Ashida, M.

    2012-01-01

    The electric field of coherent synchrotron radiation (CSR) generated by laser bunch slicing in a storage ring has been detected by an electro-optic sampling method. The gate pulses for sampling are sent through a large-mode-area photonic-crystal fiber. The observed electric field profile of the CSR is in good agreement with the spectrum of the CSR observed using Fourier transform far-infrared spectrometry, indicating good phase stability in the CSR. The longitudinal density profiles of electrons modulated by laser pulses were evaluated from the electric field profile.

  14. Optical Analysis of Grazing Incidence Ring Resonators for Free-Electron Lasers

    Science.gov (United States)

    Gabardi, David Richard

    1990-08-01

    The design of resonators for free-electron lasers (FELs) which are to operate in the soft x-ray/vacuum ultraviolet (XUV) region of the spectrum is complicated by the fact that, in this wavelength regime, normal incidence mirrors, which would otherwise be used for the construction of the resonators, generally have insufficient reflectivities for this purpose. However, the use of grazing incidence mirrors in XUV resonators offers the possibility of (1) providing sufficient reflectivity, (2) a lessening of the mirrors' thermal loads due to the projection of the laser beam onto an oblique surface, and (3) the preservation of the FEL's tunability. In this work, the behavior of resonators employing grazing incidence mirrors in ring type configurations is explored. In particular, two designs, each utilizing four off-axis conic mirrors and a number of flats, are examined. In order to specify the location, orientation, and surface parameters for the mirrors in these resonators, a design algorithm has been developed based upon the properties of Gaussian beam propagation. Two computer simulation methods are used to perform a vacuum stability analysis of the two resonator designs. The first method uses paraxial ray trace techniques with the resonators' thin lens analogues while the second uses the diffraction-based computer simulation code GLAD (General Laser Analysis and Design). The effects of mirror tilts and deviations in the mirror surface parameters are investigated for a number of resonators designed to propagate laser beams of various Rayleigh ranges. It will be shown that resonator stability decreases as the laser wavelength for which the resonator was designed is made smaller. In addition, resonator stability will also be seen to decrease as the amount of magnification the laser beam receives as it travels around the resonator is increased.

  15. Review of Inertial Confinement Fusion

    Science.gov (United States)

    Haines, M. G.

    The physics of inertial confinement fusion is reviewed. The trend to short-wavelength lasers is argued, and the distinction between direct and indirect (soft X-ray) drive is made. Key present issues include the non-linear growth of Rayleigh-Taylor (R-T) instabilities, the seeding of this instability by the initial laser imprint, the relevance of self-generated magnetic fields, and the importance of parametric instabilities (stimulated Brillouin and Raman scattering) in gas-filled hohlraums. Experiments are reviewed which explore the R-T instability in both planar and converging geometry. The employment of various optical smoothing techniques is contrasted with the overcoating of the capsule by gold coated plastic foams to reduce considerably the imprint problem. The role of spontaneously generated magnetic fields in non-symmetric plasmas is discussed. Recent hohlraum compression results are presented together with gas bag targets which replicate the long-scale-length low density plasmas expected in NIF gas filled hohlraums. The onset of first Brillouin and then Raman scattering is observed. The fast ignitor scheme is a proposal to use an intense short pulse laser to drill a hole through the coronal plasma and then, with laser excited fast electrons, create a propagating thermonuclear spark in a dense, relatively cold laser-compressed target. Some preliminary results of laser hole drilling and 2-D and 3-D PIC simulations of this and the > 10^8 Gauss self-generated magnetic fields are presented. The proposed National Ignition Facility (NIF) is described.

  16. Intensity limits for propagation of 0.527 μm laser beams through large-scale-length plasmas for inertial confinement fusion

    International Nuclear Information System (INIS)

    Niemann, C.; Divol, L.; Froula, D.H.; Gregori, G.; Jones, O.; Kirkwood, R.K.; MacKinnon, A.J.; Meezan, N.B.; Moody, J.D.; Sorce, C.; Suter, L.J.; Glenzer, S.H.; Bahr, R.; Seka, W.

    2005-01-01

    We have established the intensity limits for propagation of a frequency-doubled (2ω, 527 nm) high intensity interaction beam through an underdense large-scale-length plasma. We observe good beam transmission at laser intensities at or below 2x10 14 W/cm 2 and a strong reduction at intensities up to 10 15 W/cm 2 due to the onset of parametric scattering instabilities. We show that temporal beam smoothing by spectral dispersion allows a factor of 2 higher intensities while keeping the beam spray constant, which establishes frequency-doubled light as an option for ignition and burn in inertial confinement fusion experiments

  17. Inertial Confinement Fusion quarterly report, October--December 1994. Volume 5, No. 1

    International Nuclear Information System (INIS)

    1995-01-01

    The ICF quarterly report is published by the Inertial Confinement Fusion Program at the Lawrence Livermore National Laboratory. Topics included in this issue include: system description and initial performance results for beamlet, design and performance of the beamlet amplifiers and optical switch, beamlet pulse-generation and wavefront-control system, large-aperture, high- damage-threshold optics for beamlet, beamlet pulsed power system, beamlet laser diagnostics, and beam propagation and frequency conversion modeling for the beamlet laser

  18. Inertial confinement fusion at NRL

    International Nuclear Information System (INIS)

    Bodner, S.E.; Boris, J.P.; Cooperstein, G.

    1979-01-01

    The NRL Inertial Confinement Fusion Program's emphasis has moved toward pellet concepts which use longer (approximately 10ns) lower intensity driver pulses than previously assumed. For laser drivers, this change was motivated by recent experiments at NRL with enhanced stimulated Brillouin backscatter. For ion drivers, the motivation is the possibility that substantial energy at 10-ns pulse lengths may soon be available. To accept these 10-ns pulses, it may be necessary to consider pellets of larger radius and thinner shell. The computational studies of Rayleigh-Taylor instability at NRL indicate the possibility of a dynamic stabilization of these thinner shells. (author)

  19. A Wavelet-based method for processing signal of fog in strap-down inertial systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, D.; Xiong, C.; Liu, H. [Huazhong University of Science & Technology, Wuhan (China)

    2009-07-01

    Fibre optical gyroscopes (FOGs) have been applied widely in many fields in contrast, with their counterparts such as mechanical gyroscopes and ring laser gyroscopes. The precision of FOG is affected significantly by bias drift, angle random walk temperature effects and noises. Especially, uncertain disturbances resulting from road irregularities often affect accuracy of strap-down inertial system (SINS). Hence, eliminating, uncertain disturbances from outputs of it FOG plays a crucial role to improve accuracy of SINS. This paper presents a wavelet-based method for denoising signals of FOGs in SINS used for exploring and rescuing robots in coal mines. Property of road irregularities in mines is taken into account as a key factor resulting in uncertain disturbances in this research. Both frequency band and amplitude of uncertain disturbances are introduced to choose filtering thresholds. Experimental results have demonstrated that the proposed method can efficiently eliminate uncertain disturbances due to road irregularities from outputs of FOGs and improve accuracy of surrogate data. It indicates that the proposed method has a significant potential in FOG-related applications.

  20. Inertial fusion results from Nova and implication for the future of ICF

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Cable, M.D.; Campbell, E.M.

    1988-10-01

    A key objective of the US Inertial Confinement Fusion Program is to obtain high yield (100-1000 MJ) implosions in a laboratory environment. This requires high grain from an inertial fusion target from a driver capable of delivering about 10 MJ. Recent results have been sufficiently encouraging that the US Department of Energy is planning for such a capability called the Laboratory Microfusion Facility (LMF). In the past two years, we have conducted implosion-related experiments with approximately 20 kJ of 0.35-μm laser light in 1-ns temporally flat-topped pulses. These experiments were done with the Nova laser, the primary US facility devoted to radiatively driven inertial confinement fusion. Our results show that we can accurately model a significant fraction of the phenomena required to obtain the fuel conditions needed for high gain. Both the x-ray conversion efficiency and the growth of Rayleigh-Taylor hydrodynamic instabilities are shown to be at acceptable levels. Targets designed so that the shape of the stagnated fuel can be imaged show that the x-ray drive in our hohlraums can be made isotropic to better than 3%. With this optimized drive and temporally unshaped laser pulses many critical implosion parameters are measured on targets designed for higher density. Good agreement is obtained with one-dimensional simulations. Maximum compressions of between 20--30 in radius are measured with a variety of diagnostics. Improvements in the driver technology are demonstrated; we anticipate operation of Nova at the 50-kJ level at 3ω. 18 refs., 6 figs., 1 tab

  1. Present status of Fast Ignition Realization EXperiment (FIREX) and inertial fusion energy development

    International Nuclear Information System (INIS)

    Azechi, H.; Fujimoto, Y.; Fujioka, S.

    2012-11-01

    Controlled thermonuclear ignition and subsequent burn will be demonstrated in a couple of years on the central ignition scheme. Fast ignition has the high potential to ignite a fuel using only about one tenth of laser energy necessary to the central ignition. This compactness may largely accelerate inertial fusion energy development. One of the most advanced fast ignition programs is the Fast Ignition Realization Experiment (FIREX). The goal of its first phase is to demonstrate ignition temperature of 5 keV, followed by the second phase to demonstrate ignition-and-burn. The second series experiment of FIREX-I from late 2010 to early 2011 has demonstrated a high (≈20%) coupling efficiency from laser to thermal energy of the compressed core, suggesting that one can achieve the ignition temperature at the laser energy below 10 kJ. Given the demonstrations of the ignition temperature at FIREX-I and the ignition-and-burn at the National Ignition Facility, the inertial fusion research would then shift from the plasma physics era to power generation era. (author)

  2. The role of the NIF in the development of inertial fusion energy

    International Nuclear Information System (INIS)

    Logan, B.G.

    1995-01-01

    Recent decisions by DOE to proceed with the National Ignition Facility (NIF) and the first half of the Induction Systems Linac Experiments (ILSE) can provide the scientific basis for inertial fusion ignition and high-repetition heavy-ion driver physics, respectively. Both are critical to Inertial Fusion Energy (IFE). A conceptual design has been completed for a 1.8-MJ, 500-TW, 0.35-microm-solid-state laser system, the NIF. The NIF will demonstrate inertial fusion ignition and gain for national security applications, and for IFE development. It will support science applications using high-power lasers. The demonstration of inertial fusion ignition and gain, along with the parallel demonstration of the feasibility of an efficient, high-repetition-rate driver, would provide the basis for a follow-on Engineering Test Facility (ETF) identified in the National Energy Policy Act of 1992. The ETF would provide an integrated testbed for the development and demonstration of the technologies needed for IFE power plants. In addition to target physics of ignition, the NIF will contribute important data on IFE target chamber issues, including neutron damage, activation, target debris clearing, operational experience in many areas prototypical to future IFE power plants, and an opportunity to provide tests of candidate low-cost IFE targets and injection systems. An overview of the NIF design and the target area environments relevant to conducting IFE experiments are described in Section 2. In providing this basic data for IFE, the NIF will provide confidence that an ETF can be successful in the integration of drivers, target chambers, and targets for IFE

  3. Laser-plasma interactions and applications

    CERN Document Server

    Neely, David; Bingham, Robert; Jaroszynski, Dino

    2013-01-01

    Laser-Plasma Interactions and Applications covers the fundamental and applied aspects of high power laser-plasma physics. With an internationally renowned team of authors, the book broadens the knowledge of young researchers working in high power laser-plasma science by providing them with a thorough pedagogical grounding in the interaction of laser radiation with matter, laser-plasma accelerators, and inertial confinement fusion. The text is organised such that the theoretical foundations of the subject are discussed first, in Part I. In Part II, topics in the area of high energy density physics are covered. Parts III and IV deal with the applications to inertial confinement fusion and as a driver of particle and radiation sources, respectively. Finally, Part V describes the principle diagnostic, targetry, and computational approaches used in the field. This book is designed to give students a thorough foundation in the fundamental physics of laser-plasma interactions. It will also provide readers with knowl...

  4. Inertial fusion research at Lawrence Livermore National Laboratory: program status and future applications

    International Nuclear Information System (INIS)

    Meier, W.R.; Hogan, W.J.

    1986-01-01

    The objectives of the Lawrence Livermore National Laboratory (LLNL) Laser Fusion Program are to understand and develop the science and technology required to utilize inertial confinement fusion (ICF) for both military and commercial applications. The results of recent experiments are described. We point out the progress in our laser studies, where we continue to develop and test the concepts, components, and materials for present and future laser systems. While there are many potential commercial applications of ICF, we limit our discussions to electric power production

  5. Performance requirements of an inertial-fusion-energy source for hydrogen production

    International Nuclear Information System (INIS)

    Hovingh, J.

    1983-01-01

    Performance of an inertial fusion system for the production of hydrogen is compared to a tandem-mirror-system hydrogen producer. Both systems use the General Atomic sulfur-iodine hydrogen-production cycle and produce no net electric power to the grid. An ICF-driven hydrogen producer will have higher system gains and lower electrical-consumption ratios than the design point for the tandem-mirror system if the inertial-fusion-energy gain eta Q > 8.8. For the ICF system to have a higher hydrogen production rate per unit fusion power than the tandem-mirror system requires that eta Q > 17. These can be achieved utilizing realistic laser and pellet performances

  6. Self-injection locking of the DFB laser through an external ring fiber cavity: Polarization behavior

    Directory of Open Access Journals (Sweden)

    J.L. Bueno Escobedo

    Full Text Available We study stability of self-injection locking realized with DFB laser coupled with an external fiber optic ring cavity. Polarization behavior of the radiation circulating in the feedback loop is reported. Two regimes of mode hopping have been observed; one of them is accompanied by polarization bistability involving two orthogonal polarization states. Keywords: Self-injection locking, Polarization, Optical fiber

  7. Digitally tunable dual wavelength emission from semiconductor ring lasers with filtered optical feedback

    International Nuclear Information System (INIS)

    Khoder, Mulham; Verschaffelt, Guy; Nguimdo, Romain Modeste; Danckaert, Jan; Leijtens, Xaveer; Bolk, Jeroen

    2013-01-01

    We report on a novel integrated approach to obtain dual wavelength emission from a semiconductor laser based on on-chip filtered optical feedback. Using this approach, we show experiments and numerical simulations of dual wavelength emission of a semiconductor ring laser. The filtered optical feedback is realized on-chip by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifiers are placed in the feedback loop in order to control the feedback strength of each wavelength channel independently. By tuning the current injected into each of the amplifiers, we can effectively cancel the gain difference between the wavelength channels due to fabrication and material dichroism, thus resulting in stable dual wavelength emission. We also explore the accuracy needed in the operational parameters to maintain this dual wavelength emission. (letter)

  8. Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber

    Science.gov (United States)

    Feng, Suchun; Lu, Shaohua; Peng, Wanjing; Li, Qi; Feng, Ting; Jian, Shuisheng

    2013-04-01

    A tunable single-polarization single-longitudinal-mode (SLM) erbium-doped fiber ring laser is proposed and demonstrated. For the first time as we know, a chirped moiré fiber Bragg grating (CMFBG) filter with ultra-narrow transmission band and a uniform fiber Bragg grating (UFBG) are used to select the laser longitudinal mode. The stable SLM operation of the fiber laser is guaranteed by the combination of the CMFBG filter and 3 m unpumped erbium-doped fiber acting as a saturable absorber. The single polarization operation of the fiber laser is obtained by using an inline broadband polarizer. A tuning range of about 0.7 nm with about 0.1 nm step is achieved by stretching the uniform FBG.

  9. Inertial Fusion Driven By Intense Heavy-Ion Beams

    International Nuclear Information System (INIS)

    Sharp, W.M.; Friedman, A.; Grote, D.P.; Barnard, J.J.; Cohen, R.H.; Dorf, M.A.; Lund, S.M.; Perkins, L.J.; Terry, M.R.; Logan, B.G.; Bieniosek, F.M.; Faltens, A.; Henestroza, E.; Jung, J.Y.; Kwan, J.W.; Lee, E.P.; Lidia, S.M.; Ni, P.A.; Reginato, L.L.; Roy, P.K.; Seidl, P.A.; Takakuwa, J.H.; Vay, J.-L.; Waldron, W.L.; Davidson, R.C.; Gilson, E.P.; Kaganovich, I.D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R.A.; Koniges, A.E.

    2011-01-01

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  10. COST-EFFECTIVE TARGET FABRICATION FOR INERTIAL FUSION ENERGY

    International Nuclear Information System (INIS)

    GOODIN, D.T; NOBILE, A; SCHROEN, D.G; MAXWELL, J.L; RICKMAN, W.S

    2004-03-01

    A central feature of an Inertial Fusion Energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. The IFE target fabrication programs are focusing on methods that will scale to mass production, and working closely with target designers to make material selections that will satisfy a wide range of required and desirable characteristics. Targets produced for current inertial confinement fusion experiments are estimated to cost about $2500 each. Design studies of cost-effective power production from laser and heavy-ion driven IFE have found a cost requirement of about $0.25-0.30 each. While four orders of magnitude cost reduction may seem at first to be nearly impossible, there are many factors that suggest this is achievable. This paper summarizes the paradigm shifts in target fabrication methodologies that will be needed to economically supply targets and presents the results of ''nth-of-a-kind'' plant layouts and concepts for IFE power plant fueling. Our engineering studies estimate the cost of the target supply in a fusion economy, and show that costs are within the range of commercial feasibility for laser-driven and for heavy ion driven IFE

  11. Formation of ring-patterned nanoclusters by laser–plume interaction

    International Nuclear Information System (INIS)

    Sivayoganathan, Mugunthan; Tan Bo; Venkatakrishnan, Krishnan

    2013-01-01

    This article reports for the first time a unique study performed to regulate the ring diameter of nanoclusters fabricated during femtosecond laser ablation of solids and a mechanism is proposed for the formation of those ring clusters. The ring nanoclusters are made out of nanoparticles with a range of 10–30 nm. Our experimental studies showed the synthesis of ring nanoclusters with random diameter distribution on metals, nonmetals, and semiconductors, such as titanium, aluminum, glasses, ceramics, graphite, and silicon. To regulate the ring size, the effects of laser parameters, such as wavelength, pulse duration, pulse energy, and repetition rate on the ring diameter are analyzed. The influence of ablated materials and the background gas on ring size is also elaborated in this article. The motion of plume species under the influence of ponderomotive force on free electrons possibly played a key role in the formation of the ring-patterned nanoclusters. This study could help to understand the fundamentals in laser ablative nanosynthesis as well as to produce nanostructures with organized ring diameter that controls the density and porosity of those 3D nanostructures.

  12. Ignition and Inertial Confinement Fusion at The National Ignition Facility

    International Nuclear Information System (INIS)

    Moses, E.

    2009-01-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm 3 -sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

  13. Osiris and SOMBRERO inertial confinement fusion power plant designs

    International Nuclear Information System (INIS)

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01

    Conceptual designs and assessments have been completed for two inertial fusion energy (IFE) electric power plants. The detailed designs and results of the assessment studies are presented in this report. Osiris is a heavy-ion-beam (HIB) driven power plant and SOMBRERO is a Krypton-Fluoride (KrF) laser-driven power plant. Both plants are sized for a net electric power of 1000 MWe

  14. Coherent x-rays and vacuum-ultraviolet radiation from storage-ring-based undulators and free electron lasers

    International Nuclear Information System (INIS)

    Kim, K.J.

    1984-12-01

    High-brightness electron storage rings and permanent-magnet technology provide a basis for the development of coherent radiation in the 10- to 1000-A (xuv) spectral range. The most assured route to the production of coherent x-rays and vuv is the simple interaction between properly constrained relativistic electrons and permanent-magnet undulators, a subject that is already well understood and where technology is well advanced. Other techniques are less well developed, but with increasing degrees of technical challenge they will provide additional coherence properties. Transverse optical klystrons (TOKs) provide an opportunity for additional coherence at certain harmonics of longer-wavelength lasers. Free electron lasers (FELs) extend coherence capabilities substantially through two possible routes: one is the development of suitable mirror coatings. Both FEL techniques would provide vuv radiation and soft x rays with extremely narrow spectral content. Research on all of these techniques (undulators, TOKs, and FELs) is possible in a single facility based on a high-brightness electron storage ring, referred to herein as a Coherent xuv Facility (CXF). Individual items from the report were prepared separately for the data base

  15. Inertial fusion and energy production

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1982-01-01

    Inertial-confinement fusion (ICF) is a technology for releasing nuclear energy from the fusion of light nuclei. For energy production, the most reactive hydrogen isotopes (deuterium (D) and tritium (T)) are commonly considered. The energy aplication requires the compression of a few milligrams of a DT mixture to great density, approximately 1000 times its liquid-state density, and to a high temperature, nearly 100 million 0 K. Under these conditions, efficient nuclear-fusion reactions occur, which can result in over 30% burn-up of the fusion fuel. The high density and temperature can be achieved by focusing very powerful laser or ion beams onto the target. The resultant ablation of the outer layers of the target compresses the fuel in the target, DT ignition occurs, and burn-up of the fuel results as the thermonuclear burn wave propagates outward. The DT-fuel burn-up occurs in about 199 picoseconds. On this short time scale, inertial forces are sufficiently strong to prevent target disassembly before fuel burn-up occurs. The energy released by the DT fusion is projected to be several hundred times greater than the energy delivered by the driver. The present statuds of ICF technology is described

  16. Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier

    Science.gov (United States)

    Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu

    2018-03-01

    In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.

  17. A tuneable, power efficient and narrow single longitudinal mode fibre ring laser using an inline dual-taper fibre Mach–Zehnder filter

    International Nuclear Information System (INIS)

    Ahmad, H; Dernaika, M; Alimadad, M; Ibrahim, M F; Lim, K S; Harun, S W; Kharraz, O M

    2014-01-01

    A tuneable single longitudinal mode fibre ring laser with dual-taper fibre filter is proposed and experimentally demonstrated in this paper. The single longitudinal mode operation, and power limitations for a Mach–Zehnder interferometer filter generated from a single mode fibre, are verified for the first time. Incorporating an in-line taper fibre Mach–Zehnder interferometer filter inside the laser ring cavity causes a spatial mode beating interference, resulting in a passive narrow band filter with the ability to generate stable single longitudinal modes. The single longitudinal mode achieves a side mode suppression ratio of more than 60 dB using low pump power. The tuneability of the fibre laser ranges from 1525 to 1562 nm using a passive band pass filter. A study of the stability and limitation of the single longitudinal mode in the Mach–Zehnder tapered fibre is also presented. (paper)

  18. The scientific benefits of inertially confined fusion research

    International Nuclear Information System (INIS)

    Key, M

    1999-01-01

    A striking feature of 25 years of research into inertially confined fusion (ICF) and inertial fusion energy (IFE) has been its significant impact in other fields of science. Most ICF facilities worldwide are now being used in part to support a wider portfolio of research than simply ICF. Reasons for this trend include the high intrinsic interest of the new science coupled with the relative ease and low marginal cost of adapting the facilities particularly lasers, to carry out experiments with goals other than ICF. The availability at ICF laboratories of sophisticated theory and modeling capability and advanced diagnostics has given added impetus. The expertise of ICF specialists has also triggered more lateral scientific spin-offs leading for example to new types of lasers and to related developments in basic science. In a generic sense, the facilities developed for ICF have made possible study of new regimes of the properties of matter at extremely high-energy density and the interaction of ultraintense light with matter. This general opportunity has been exploited in numerous and diverse specific lines of research. Examples elaborated below include laboratory simulation of astrophysical phenomena; studies of the equation of state (EOS) of matter under conditions relevant to the interior of planets and stars; development of uniquely intense sources of extreme ultraviolet (EUV) to hard x-ray emission, notably the x-ray laser; understanding of the physics of strong field interaction of light and matter; and related new phenomena such as laser-induced nuclear processes and high-field-electron accelerators. Some of these developments have potential themselves for further scientific exploitation such as the scientific use of advanced light sources. There are also avenues for commercial exploitation, for example the use of laser plasma sources in EUV lithography. Past scientific progress is summarized here and projections are made for new science that may flow from the

  19. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    Science.gov (United States)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  20. Long-time dynamics of laser-cooled ions in the TSR storage ring

    International Nuclear Information System (INIS)

    Mudrich, M.

    2000-01-01

    This diploma thesis studies experimentally the long-time dynamics of laser-cooled 9 Be + -beams at the TSR under different cooling conditions. The goal is to enlarge the understanding of ultra-cold, non-neutral plasma at high center-of-mass energies. By means of improved measurement capabilities one can now for the first time monitor the entire phase-space over a long time. This makes it possible to quantitatively analyse the possibilities and limitations of laser cooling at a storage ring. Under optimum cooling conditions a regime of high phase-space density is reached, close to the region where influences of Coulomb coupling are expected. Furthermore, a Monte-Carlo model is worked out that qualitatively describes the beam dynamics. The model includes the influence of transverse-longitudinal coupling due to intra beam scattering on the longitudinal phase-space distribution. At high phase-space density a sudden disappearance of intra beam collisions is observed experimentally and possible interpretations are given. (orig.)

  1. 5.7  W cw single-frequency laser at 671  nm by single-pass second harmonic generation of a 17.2  W injection-locked 1342  nm Nd : YVO4 ring laser using periodically poled MgO : LiNbO3.

    Science.gov (United States)

    Koch, Peter; Ruebel, Felix; Bartschke, Juergen; L'huillier, Johannes A

    2015-11-20

    We demonstrate a continuous wave single-frequency laser at 671.1 nm based on a high-power 888 nm pumped Nd:YVO4 ring laser at 1342.2 nm. Unidirectional operation of the fundamental ring laser is achieved with the injection-locking technique. A Nd:YVO4 microchip laser serves as the injecting seed source, providing a tunable single-frequency power of up to 40 mW. The ring laser emits a single-frequency power of 17.2 W with a Gaussian beam profile and a beam propagation factor of M2beam profile and a beam propagation factor of M2lasers. This work opens possibilities in cold atoms experiments with lithium, allowing the use of larger ensembles in magneto-optical traps or higher diffraction orders in atomic beam interferometers.

  2. Self-injection locking of the DFB laser through an external ring fiber cavity: Application for phase sensitive OTDR acoustic sensor

    Directory of Open Access Journals (Sweden)

    J.L. Bueno Escobedo

    Full Text Available Self-injection locking of DFB laser implemented through the laser coupling with an external fiber optic ring cavity allows its direct employment as an interrogating light source for a phase sensitive OTDR acoustic sensor. Distributed detection and localization of dynamic perturbations of the optical fiber is experimentally demonstrated at the distance of 9270 m. Keywords: Self-injection locking, Optical fiber resonator, φ-OTDR

  3. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission

  4. The National Ignition Facility and the Promise of Inertial Fusion Energy

    International Nuclear Information System (INIS)

    Moses, E.I.

    2010-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm 3 -sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm 3 , and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices, as well as the advantages of both pure fusion and fusion-fission schemes. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy.

  5. The National Ignition Facility and the Promise of Inertial Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Moses, E I

    2010-12-13

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices, as well as the advantages of both pure fusion and fusion-fission schemes. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy.

  6. Progress report 1986. Laser-matter interaction Greco

    International Nuclear Information System (INIS)

    1987-01-01

    Basic researches are based on laser-matter interaction, generation and study of dense and hot plasmas. The main aim is inertial fusion by laser; many researches are also engaged in other ways, basic ones such as X-ray laser and laser acceleration of particles, or applied ones such as X-ray sources or laser processing of materials [fr

  7. Reconfiguration of the multiwavelength operation of optical fiber ring lasers by the modifiable intra-cavity induced losses of an in-fiber tip probe modal Michelson interferometer

    Science.gov (United States)

    Salceda-Delgado, G.; Martinez-Rios, A.; Sierra-Hernandez, J. M.; Rodríguez-Carreón, V. C.; Toral-Acosta, D.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A. A.; Rojas-Laguna, R.

    2018-03-01

    A straightforward and versatile method for switching from single to different multiwavelength laser emission in ring cavity fiber lasers is proposed and demonstrated experimentally. The method is based on using the changeable interference pattern from an optical fiber modal Michelson interferometer as a wavelength selective filter into the ring cavity laser. The interferometer is constructed using a bi-conical tapered fiber and a single-mode fiber segment, with these being spliced together to form an optical fiber tip probe. When the length of the single-mode fiber piece is modified, the phase difference between the interfering modes of the interferometer causes a change in the interferometer free spectral range. As a consequence, the laser intra-cavity losses lead to gain competition, which allows us to adjust the number of simultaneously generated laser lines. A multiwavelength reconfiguration of the laser from one up to a maximum of eight emission lines was obtained, with a maximum SNR of around 47 dBm.

  8. Update on diode-pumped solid-state laser experiments for inertial fusion energy

    International Nuclear Information System (INIS)

    Marshall, C.; Smith, L.; Payne, S.

    1994-01-01

    The authors have completed the initial phase of the diode-pumped solid-state laser (DPSSL) experimental program to validate the expected pumping dynamics and extraction cross-sections of Yb 3+ -doped Sr 5 (PO 4 ) 3 F (Yb:S-FAP) crystals. Yb:S-FAP crystals up to 25 x 25 x 175 mm in size have been grown for this purpose which have acceptable loss characteristics ( 2 ). The saturation fluence for pumping has been measured to be 2.2 J/cm 2 using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain under saturated pumping conditions was measured. These measurements imply an emission cross section of 6.0 x 10 -20 cm 2 that falls within error bars of the previously reported value of 7.3 x 10 -20 cm 2 , obtained from purely spectroscopic techniques. The effects of radiation trapping on the emission lifetime have been quantified. The long lifetime of Yb:S-FAP has beneficial effects for diode-pumped amplifier designs, relative to materials with equivalent cross sections but shorter lifetimes, in that less peak pump intensity is required (thus lower diode costs) and that lower spontaneous emission rates lead to a reduction in amplified spontaneous emission. Consequently, up to 1.7 J/cm 3 of stored energy density was achieved in a 6x6x44 mm Yb:S-FAP amplifier rod; this stored energy density is large relative to typical flashlamp-pumped Nd:glass values of 0.3 to 0.5 J/cm 3 . A 2.4 kW peak power InGaAs diode array has been fabricated by Beach, Emanuel, and co-workers which meets the central wavelength, bandwidth, and energy specifications for the author's immediate experiments. These results further increase their optimism of being able to produce a ∼ 10% efficient diode-pumped solid state laser for inertial fusion energy

  9. Recent diagnostic development for inertial confinement fusion research at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.J.; Oertel, J.A.; Archuleta, T.N. [and others

    1997-09-01

    Inertial Confinement Fusion (ICF) experiments require sophisticated diagnostics with temporal resolution measured in tens of picoseconds and spatial resolutions measured in microns. The Los Alamos ICF Program is currently supporting a number of diagnostics on the Nova and Triden laser facilities, and is developing new diagnostics for use on the Omega laser facility. New systems and technologies are being developed for use on the National Ignition Facility, which is expected to be operational early in the next decade.

  10. Recent diagnostic development for inertial confinement fusion research at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Murphy, T.J.; Oertel, J.A.; Archuleta, T.N.

    1997-01-01

    Inertial Confinement Fusion (ICF) experiments require sophisticated diagnostics with temporal resolution measured in tens of picoseconds and spatial resolutions measured in microns. The Los Alamos ICF Program is currently supporting a number of diagnostics on the Nova and Triden laser facilities, and is developing new diagnostics for use on the Omega laser facility. New systems and technologies are being developed for use on the National Ignition Facility, which is expected to be operational early in the next decade

  11. Variable area manifolds for ring mirror heat exchangers

    Science.gov (United States)

    Eng, Albert; Senterfitt, Donald R.

    1988-05-01

    A laser ring mirror assembly is disclosed which supports and cools an annular ring mirror of a high powered laser with a cooling manifold which has a coolant flow design which is intended to reduce thermal distortions of the ring mirror by minimizing azimuthal variations in temperature around its circumference. The cooling manifold has complementary pairs of cooling passages each of which conduct coolant in opposite flow directions. The manifold also houses adjusters which vary the depth between the annular ring mirror and each cooling, and which vary the flow area of the cooling passage to produce a control over the cooling characteristics of the cooling manifold.

  12. Short-wavelength multiline erbium-doped fiber ring laser by a broadband long-period fiber grating inscribed in a taper transition

    International Nuclear Information System (INIS)

    Anzueto-Sánchez, G; Martínez-Rios, A

    2014-01-01

    A stable multiwavelength all-fiber erbium-doped fiber ring laser (EDFRL) based on a broadband long-period fiber grating (LPFG) inscribed in a fiber taper transition is presented. The LPFG’s characteristics were engineered to provide a higher loss at the natural lasing wavelength of the laser cavity. The LPFG inscribed on a taper transition provided a depth greater than 25 dB, and posterior chemical etching provided a broad notch band to inhibit laser generation on the long-wavelength side of the EDF gain. Up to four simultaneous laser wavelengths are generated in the range of 1530–1535 nm. (paper)

  13. Overview of the Los Alamos National Laboratory Inertial Confinement Fusion Program

    International Nuclear Information System (INIS)

    Harris, D.B.

    1991-01-01

    The Los Alamos Inertial Confinement Fusion (ICF) Program is focused on preparing for a National Ignition Facility. Target physics research is addressing specific issues identified for the Ignition Facility target, and materials experts are developing target fabrication techniques necessary for the advanced targets. We are also working with Lawrence Livermore National Laboratory on the design of the National Ignition Facility target chamber. Los Alamos is also continuing to develop the KrF laser-fusion driver for ICF. We are modifying the Aurora laser to higher intensity and shorter pulses and are working with the Naval Research Laboratory on the development of the Nike KrF laser. 9 refs., 1 fig., 2 tabs

  14. Present status of inertial confinement fusion reactor design

    International Nuclear Information System (INIS)

    Mima, Kunioki; Ido, Shunji; Nakai, Sadao.

    1986-01-01

    Since inertial nuclear fusion reactors do not require high vacuum and high magnetic field, the structure of the reactor cavity becomes markedly simple as compared with tokamak type fusion reactors. In particular, since high vacuum is not necessary, liquid metals such as lithium and lead can be used for the first wall, and the damage of reactor structures by neutrons can be prevented. As for the core, the energy efficiency of lasers is not very high, accordingly it must be designed so that the pellet gain due to nuclear fusion becomes sufficiently high, and typically, the gain coefficient from 100 to 200 is necessary. In this paper, the perspective of pellet gain, the plan from the present status to the practical reactors, and the conceptual design of the practical reactors are discussed. The plan of fuel ignition, energy break-even and high gain by the implosion mode, of which the uncertain factor due to uneven irradiation and instability was limited to the minimum, was clarified. The scenario of the development of laser nuclear fusion reactors is presented, and the concept of the reactor system is shown. The various types of nuclear fusion-fission hybrid reactors are explained. As for the design of inertial fusion power reactors, the engineering characteristics of the core, the conceptual design, water fall type reactors and DD fuel reactors are discussed. (Kako, I.)

  15. Ring-like spatial distribution of laser accelerated protons in the ultra-high-contrast TNSA-regime

    Science.gov (United States)

    Becker, G. A.; Tietze, S.; Keppler, S.; Reislöhner, J.; Bin, J. H.; Bock, L.; Brack, F.-E.; Hein, J.; Hellwing, M.; Hilz, P.; Hornung, M.; Kessler, A.; Kraft, S. D.; Kuschel, S.; Liebetrau, H.; Ma, W.; Polz, J.; Schlenvoigt, H.-P.; Schorcht, F.; Schwab, M. B.; Seidel, A.; Zeil, K.; Schramm, U.; Zepf, M.; Schreiber, J.; Rykovanov, S.; Kaluza, M. C.

    2018-05-01

    The spatial distribution of protons accelerated from submicron-thick plastic foil targets using multi-terawatt, frequency-doubled laser pulses with ultra-high temporal contrast has been investigated experimentally. A very stable, ring-like beam profile of the accelerated protons, oriented around the target’s normal direction has been observed. The ring’s opening angle has been found to decrease with increasing foil thicknesses. Two-dimensional particle-in-cell simulations reproduce our results indicating that the ring is formed during the expansion of the proton density distribution into the vacuum as described by the mechanism of target-normal sheath acceleration. Here—in addition to the longitudinal electric fields responsible for the forward acceleration of the protons—a lateral charge separation leads to transverse field components accelerating the protons in the lateral direction.

  16. The laser principles and application techniques

    International Nuclear Information System (INIS)

    Maillet, H.

    1990-01-01

    In this book on laser applications chapter 4 is devoted to uranium isotopic separation and chapter 5 to laser inertial fusion, other topics include machining, medical applications, measurements, military applications, holography, reprography, telecommunications, compact discs, light shows and safety [fr

  17. Amplitude characteristics of a solid-state ring laser with active mode locking

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, E.M.; Klochan, E.L.; Lariontsev, E.G.

    1986-09-01

    A system of equations is obtained for the parameters of ultrashort light pulses (USLP) in a solid-state ring laser (SSRL) with periodic loss modulation. Allowance is made for the coupling between counterpropagating USLP due to backscattering in the modulator. The regime of counter-propagating wave frequency capture (CPWFC) is studied. It is shown that the coupling of counterpropagating waves due to backscattering at the modulator ends leads to the suppression of one of the counterpropagating waves during an increase in the detuning of the modulation frequency relative to its optimal value. The influence of rotation on the amplitude characteristics of an SSRL in the CPWFC regime is studied. 9 references.

  18. Application of inertial measuring unit in air navigation for ALS and DAP

    African Journals Online (AJOL)

    This article describes the inertial measuring device IMU, as well as its use in airborne laser scanning and digital aerial photography. This device is used during the operation of a scanning unit and an aerial photo camera. The structure of an additional connection for a digital video camera is proposed, which will record video ...

  19. 50-fs pulse generation directly from a colliding-pulse mode-locked Ti:sapphire laser using an antiresonant ring mirror

    Science.gov (United States)

    Naganuma, Kazunori; Mogi, Kazuo

    1991-05-01

    50-fs pulses were directly generated from a colliding-pulse mode-locked Ti:sapphire laser. To achieve the colliding-pulse mode locking, a miniature antiresonant ring containing an organic saturable dye jet was employed as the end mirror for the linear cavity laser. Based on measured dispersion of intracavity elements, a prism pair was implemented to control the cavity dispersion. The generated pulses have no linear chirp but do exhibit parabolic instantaneous frequency owing to third-order dispersion introduced by the prism pair.

  20. Inter-dependence of the electron beam excitations with the free electron laser stability on the super-ACO storage ring

    CERN Document Server

    Couprie, Marie Emmanuelle; Nutarelli, D; Renault, E; Billardon, M

    1999-01-01

    Storage ring free electron lasers have a complex dynamics as compared to the LINAC driven FEL sources since both the laser and the recirculating electron beam behaviours are involved. Electron beam perturbations can strongly affect the FEL operation (start-up, stability) whereas the FEL can stabilize beam instabilities. Experimental analysis together with simulations are reported here. Improvements of the Super-ACO FEL for users is discussed, and consequences are given in terms of electron beam tolerances for a source development for users.

  1. Advanced Solid-state Lasers - to Ignition and Beyond

    International Nuclear Information System (INIS)

    Marshall, C.; Bibeau, C.; Orth, C; Meier, W.R.; Payne, S.; Sutton, S.

    1998-01-01

    This brochure concentrates on the diode-pumped solid-state laser. Surrounding it on the cover are some of the primary technological developments that make it a candidate for the means by which inertial confinement fusion will create inertial fusion energy as an inexhaustible source of electric power

  2. Optical engineering for high power laser applications

    International Nuclear Information System (INIS)

    Novaro, M.

    1993-01-01

    Laser facilities for Inertial Confinement Fusion (I.C.F.) experiments require laser and X ray optics able to withstand short pulse conditions. After a brief recall of high power laser system arrangements and of the characteristics of their optics, the authors will present some X ray optical developments

  3. Robust gap repair in the contractile ring ensures timely completion of cytokinesis.

    OpenAIRE

    Silva, AM; Osório, DS; Pereira, AJ; Maiato, H; Pinto, IM; Rubinstein, B; Gassmann, R; Telley, IA; Carvalho, AX

    2016-01-01

    Cytokinesis in animal cells requires the constriction of an actomyosin contractile ring, whose architecture and mechanism remain poorly understood. We use laser microsurgery to explore the biophysical properties of constricting rings in Caenorhabditis elegans embryos. Laser cutting causes rings to snap open. However, instead of disintegrating, ring topology recovers and constriction proceeds. In response to severing, a finite gap forms and is repaired by recruitment of new material in an acti...

  4. Inertial Confinement Fusion Quarterly Report: April--June 1993. Volume 3, Number 3

    Energy Technology Data Exchange (ETDEWEB)

    MacGowan, B.J.; Kotowski, M.; Schleich, D. [eds.

    1993-11-01

    This issue of the ICF Quarterly contains six articles describing recent advances in Lawrence Livermore National Laboratory`s inertial confinement fusion (ICF) program. The current emphasis of the ICF program is in support of DOE`s National Ignition Facility (NIF) initiative for demonstrating ignition and gain with a 1-2 MJ glass laser. The articles describe recent Nova experiments and investigations tailored towards enhancing understanding of the key physics and technological issues for the NIF. Titles of the articles are: development of large-aperture KDP crystals; inner-shell photo-ionized X-ray lasers; X-ray radiographic measurements of radiation-driven shock and interface motion in solid density materials; the role of nodule defects in laser-induced damage of multilayer optical coatings; techniques for Mbar to near-Gbar equation-of-state measurements with the Nova laser; parametric instabilities and laser-beam smoothing.

  5. Heavy ion storage rings

    International Nuclear Information System (INIS)

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented. 35 refs

  6. Using Inertial Sensors in Smartphones for Curriculum Experiments of Inertial Navigation Technology

    Directory of Open Access Journals (Sweden)

    Xiaoji Niu

    2015-03-01

    Full Text Available Inertial technology has been used in a wide range of applications such as guidance, navigation, and motion tracking. However, there are few undergraduate courses that focus on the inertial technology. Traditional inertial navigation systems (INS and relevant testing facilities are expensive and complicated in operation, which makes it inconvenient and risky to perform teaching experiments with such systems. To solve this issue, this paper proposes the idea of using smartphones, which are ubiquitous and commonly contain off-the-shelf inertial sensors, as the experimental devices. A series of curriculum experiments are designed, including the Allan variance test, the calibration test, the initial leveling test and the drift feature test. These experiments are well-selected and can be implemented simply with the smartphones and without any other specialized tools. The curriculum syllabus was designed and tentatively carried out on 14 undergraduate students with a science and engineering background. Feedback from the students show that the curriculum can help them gain a comprehensive understanding of the inertial technology such as calibration and modeling of the sensor errors, determination of the device attitude and accumulation of the sensor errors in the navigation algorithm. The use of inertial sensors in smartphones provides the students the first-hand experiences and intuitive feelings about the function of inertial sensors. Moreover, it can motivate students to utilize ubiquitous low-cost sensors in their future research.

  7. Design considerations for a digital feedback system to control self-bunching in ion-storage rings

    Directory of Open Access Journals (Sweden)

    V. Ziemann

    2001-04-01

    Full Text Available We discuss the feasibility of a digital feedback system to cure self-bunching of the electron-cooled coasting ion beam in ion-storage rings such as CELSIUS [S. Holm, A. Johansson, S. Kullander, and D. Reistad, Phys. Scr. 34, 513–532 (1986]. Such a system is based on a fast digital filter that acts as a tunable artificial wake potential. It may also aid stable operation of accumulator rings for future spallation neutron sources or heavy ion rings used for inertial fusion energy production.

  8. Inertial Confinement Fusion quarterly report, April--June 1995. Volume 5, No. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The ICF Quarterly Reports is published four times each fiscal year by the Inertial Confinement Fusion Program at the Lawrence Livermore National Laboratory. The journal reports selected current research within the ICF Program. Major areas of investigation presented here include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology.

  9. Inertial confinement fusion target

    International Nuclear Information System (INIS)

    Bourdier, A.

    2001-12-01

    A simple, zero-dimensional model describing the temporal behaviour of an imploding-shell, magnetized fuel inertial confinement fusion target is formulated. The addition of a magnetic field to the fuel reduces thermal conduction losses. As a consequence, it might lead to high gains and reduce the driver requirements. This beneficial effect of the magnetic field on thermonuclear gains is confirmed qualitatively by the zero-dimensional model results. Still, the extent of the initial-condition space for which significant gains can occur is not, by far, as large as previously reported. One-dimensional CEA code simulations which confirm this results are also presented. Finally, we suggest to study the approach proposed by Hasegawa. In this scheme, the laser target is not imploded, and the life-time of the plasma can be very much increased. (author)

  10. The laser thermonuclear fusion

    International Nuclear Information System (INIS)

    Coutant, J.; Dautray, R.; Decroisette, M.; Watteau, J.P.

    1987-01-01

    Principle of the thermonuclear fusion by inertial confinement: required characteristics of the deuterium-tritium plasma and of the high power lasers to be used Development of high power lasers: active media used; amplifiers; frequency conversion; beam quality; pulse conditioning; existing large systems. The laser-matter interaction: collision and collective interaction of the laser radiation with matter; transport of the absorbed energy; heating and compression of deuterium-tritium; diagnoses and their comparison with the numerical simulation of the experiment; performances. Conclusions: difficulties to overcome; megajoule lasers; other energy source: particles beams [fr

  11. Advances in inertial confinement fusion at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Moses, Edward I.

    2010-01-01

    The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory-temperatures over 100 million K, densities of 1000 g/cm 3 , and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

  12. Advances in Inertial Confinement Fusion at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Moses, E.

    2009-01-01

    The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory - temperatures over 100 million K, densities of 1,000 g/cm3, and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

  13. High-accuracy self-calibration method for dual-axis rotation-modulating RLG-INS

    Science.gov (United States)

    Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Long, Xingwu

    2017-05-01

    Inertial navigation system has been the core component of both military and civil navigation systems. Dual-axis rotation modulation can completely eliminate the inertial elements constant errors of the three axes to improve the system accuracy. But the error caused by the misalignment angles and the scale factor error cannot be eliminated through dual-axis rotation modulation. And discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed the effect of calibration error during one modulated period and presented a new systematic self-calibration method for dual-axis rotation-modulating RLG-INS. Procedure for self-calibration of dual-axis rotation-modulating RLG-INS has been designed. The results of self-calibration simulation experiment proved that: this scheme can estimate all the errors in the calibration error model, the calibration precision of the inertial sensors scale factor error is less than 1ppm and the misalignment is less than 5″. These results have validated the systematic self-calibration method and proved its importance for accuracy improvement of dual -axis rotation inertial navigation system with mechanically dithered ring laser gyroscope.

  14. Magnetic and inertial fusion status and development plans

    International Nuclear Information System (INIS)

    Correll, D.; Storm, E.

    1987-01-01

    Controlled fusion, pursued by investigators in both the magnetic and inertial confinement research programs, continues to be a strong candidate as an intrinsically safe and virtually inexhaustible long-term energy source. We describe the status of magnetic and inertial confinement fusion in terms of the accomplishments made by the research programs for each concept. The improvement in plasma parameters (most frequently discussed in terms of the Tn tau product of ion temperature, T, density, n, and confinement time, tau) can be linked with the construction and operation of experimental facilities. The scientific progress exhibited by larger scale fusion experiments within the US, such as Princeton Plasma Physics Laboratory's Fusion Test Reactor for magnetic studies and Lawrence Livermore National Laboratory's Nova laser for inertial studies, has been optimized by the theoretical advances in plasma and computational physics. Both TFTR and Nova have exhibited ion temperatures in excess of 10 keV at confinement parameters of n tau near 10 13 cm -3 . sec. At slightly lower temperatures (near a few keV), the value of n tau has exceeded 10 14 cm -3 . sec in both devices. Near-term development plans in fusion research include experiments within the US, Europe, and Japan to improve the plasma performance to reach conditions where the rate of fusion energy production equals or exceeds the heating power incident upon the plasma. 9 refs., 7 figs

  15. Micromachining of inertial confinement fusion targets

    International Nuclear Information System (INIS)

    Gobby, P.L.; Salzer, L.J.; Day, R.D.

    1996-01-01

    Many experiments conducted on today's largest inertial confinement fusion drive lasers require target components with sub-millimeter dimensions, precisions of a micron or less and surface finishes measured in nanometers. For metal and plastic, techniques using direct machining with diamond tools have been developed that yield the desired parts. New techniques that will be discussed include the quick-flip locator, a magnetically held kinematic mount that has allowed the direct machining of millimeter-sized beryllium hemishells whose inside and outside surface are concentric to within 0.25 micron, and an electronic version of a tracer lathe which has produced precise azimuthal variations of less than a micron

  16. NRL inertial confinement fusion theory program. 1979 annual report, October 1978 - December 1979

    International Nuclear Information System (INIS)

    1980-01-01

    This is the 1979 annual report of the NRL Inertial Confinement Fusion Theory Program. It covers research performed from October 1978 through December 1979. Research in each of the four current program areas is reported: laser light absorption;fluid dynamics of ablative acceleration; development of computational techniques, and Rayleigh-Taylor stabilization techniques

  17. The laser principles and application techniques. 2. ed.

    International Nuclear Information System (INIS)

    Maillet, H.

    1986-01-01

    Specialists of each field gathered to give a complete overview of laser techniques possibilities. Operation principles, properties and the different kinds of lasers are detailed. Inertial fusion, isotope separation, medecine are part of the laser application fields presented, and application techniques in these fields are described [fr

  18. Prospect of laser fusion power generation

    International Nuclear Information System (INIS)

    Nakai, Sadao

    1998-01-01

    Inertial fusion ignition, burn and energy gain are expected to be achieved within the first decade of next century with new Megajoule laser facilities which are under construction in the USA and France. Fusion reactor design studies indicate that Inertial Fusion Energy(IFE) power plants are technically feasible and have attractive safety and environmental features. The recent progress on implosion physics and relevant technologies require us to consider a strategic approach toward IFE development. The design study for a laser fusion power plant KOYO has been conducted as a joint program of universities, national laboratories and industries in Japan and also with international collaborations. The progress of high power laser technology gives us feasible project toward a laser driven IFE Power Plant. The technical breakthrough in the field of diode pumped solid state laser (DPSSL) has opened wide application of power laser to industrial technologies. Laser fusion energy development will be proceeded jointly with industrial photonics research and development. International collaborations are also promoted for efficient progress and activation of R and D on advanced technologies which are required for IFE and also useful for modern industries. (author). 7 refs., 1 tab., 7 figs

  19. Raman-Brillouin interplay for inertial confinement fusion relevant laser–plasma interaction

    Czech Academy of Sciences Publication Activity Database

    Riconda, C.; Weber, Stefan A.

    2016-01-01

    Roč. 4, Jul (2016), 1-16, č. článku e23. ISSN 2095-4719 R&D Projects: GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : inertial confinement fusion * kinetic effects * laser- plasma interaction Subject RIV: BL - Plasma and Gas Discharge Physics

  20. Early history of experimental inertial confinement fusion and diagnostics in China

    International Nuclear Information System (INIS)

    Wang Chuanke; Jiang Shao'en; Ding Yongkun

    2014-01-01

    The early history of China's research on experimental laser inertial confinement fusion (ICF) and diagnostics technology is reviewed. The long and difficult path started from scratch, from learning the basics, looking up the literature and copying experiments, to independent research and development of comprehensive experimental facilities. This article fills a gap in the history of China's ICF experimental and diagnostics research. (authors)

  1. The HiPER project for inertial confinement fusion and some experimental results on advanced ignition schemes

    Czech Academy of Sciences Publication Activity Database

    Batani, D.; Koenig, M.; Baton, S.; Perez, F.; Gizzi, L.A.; Koester, P.; Labate, L.; Honrubia, J.; Antonelli, L.; Morace, A.; Volpe, L.; Santos, J.; Schurtz, G.; Hulin, S.; Kozlová, Michaela; Nejdl, Jaroslav; Rus, Bedřich

    2011-01-01

    Roč. 53, č. 12 (2011), s. 1-13 ISSN 0741-3335 R&D Projects: GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional research plan: CEZ:AV0Z10100523 Keywords : HiPER Project * PALS * laser- plasma coupling * fast electrons * inertial fusion Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.425, year: 2011

  2. Inertial navigation without accelerometers

    Science.gov (United States)

    Boehm, M.

    The Kennedy-Thorndike (1932) experiment points to the feasibility of fiber-optic inertial velocimeters, to which state-of-the-art technology could furnish substantial sensitivity and accuracy improvements. Velocimeters of this type would obviate the use of both gyros and accelerometers, and allow inertial navigation to be conducted together with vehicle attitude control, through the derivation of rotation rates from the ratios of the three possible velocimeter pairs. An inertial navigator and reference system based on this approach would probably have both fewer components and simpler algorithms, due to the obviation of the first level of integration in classic inertial navigators.

  3. Photo excitation and laser detachment of C60 − anions in a storage ring

    DEFF Research Database (Denmark)

    Støchkel, Kristian; Andersen, Jens Ulrik

    2013-01-01

    (REMPED) has been repeated both at room temperature and with the trap cooled to liquid nitrogen temperature. However, wavelength dependence of the overlap of the strongly focused laser beam with the ion beam introduces distortions of the absorption spectrum. We have therefore applied a new method......, combining the IR light with a slightly delayed, powerful UV pulse (266 nm). After absorption of three UV photons, the ions decay by delayed (thermal) electron emission, and time spectra are recorded for varying wavelength. The fraction of ions heated by absorption of a single IR photon is then extracted...... level, is much weaker in the new measurements and could be an H g vibrational sideband. Also earlier studies of direct laser detachment from C60 − in the storage ring ASTRID have been revisited, with ions cooled by liquid nitrogen in the ion trap. We confirm the previous measurement with a determination...

  4. Prospects for inertial fusion as an energy source

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1989-01-01

    Progress in the Inertial Confinement Fusion (ICF) Program has been very rapid in the last few years. Target physics experiments with laboratory lasers and in underground nuclear tests have shown that the drive conditions necessary to achieve high gain can be achieved in the laboratory with a pulse-shaped driver of about 10 MJ. Requirements and designs for a Laboratory Microfusion Facility (LMF) have been formulated. Research on driver technology necessary for an ICF reactor is making progress. Prospects for ICF as an energy source are very promising. 11 refs., 5 figs

  5. Status and perspectives of heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Bock, R.

    1989-04-01

    For energy production by inertial confinement fusion the heavy ion accelerator is the most promising driver candidate. A conceptual design study, HIBALL, showed for the first time that a concept of an accelerator driven power station should be feasible. Two accelerator concepts, an rf-linac with storage rings and an induction linac, both investigated in the framework of national programs during the last decade, can be seriously taken into account as driver candidates. Two accelerator facilities now under construction or design, SIS/ESR at GSI and MBE-4/ISLE at LBL, are conceived to study key issues of both driver concepts. Present activities and some new ideas on driver concepts are reviewed. (orig.)

  6. Using Inertial Sensors in Smartphones for Curriculum Experiments of Inertial Navigation Technology

    OpenAIRE

    Niu, Xiaoji; Wang, Qingjiang; Li, You; Li, Qingli; Liu, Jingnan

    2015-01-01

    Inertial technology has been used in a wide range of applications such as guidance, navigation, and motion tracking. However, there are few undergraduate courses that focus on the inertial technology. Traditional inertial navigation systems (INS) and relevant testing facilities are expensive and complicated in operation, which makes it inconvenient and risky to perform teaching experiments with such systems. To solve this issue, this paper proposes the idea of using smartphones, which are ubi...

  7. Thermal management in inertial fusion energy slab amplifiers

    International Nuclear Information System (INIS)

    Sutton, S.B.; Albrecht, G.F.

    1995-01-01

    As the technology associated with the development of solid-state drivers for inertial fusion energy (IFE) has evolved, increased emphasis has been placed on the development of an efficient approach for managing the waste heat generated in the laser media. This paper addresses the technical issues associated with the gas cooling of large aperture slabs, where the laser beam propagates through the cooling fluid. It is shown that the major consequence of proper thermal management is the introduction of simple wedge, or beam steering, into the system. Achieving proper thermal management requires careful consideration of the geometry, cooling fluid characteristics, cooling flow characteristics, as well as the thermal/mechanical/optical characteristics of the laser media. Particularly important are the effects of cooling rate variation and turbulent scattering on the system optical performance. Helium is shown to have an overwhelming advantage with respect to turbulent scattering losses. To mitigate cooling rate variations, the authors introduce the concept of flow conditioning. Finally, optical path length variations across the aperture are calculated. A comparison of two laser materials (S-FAP and YAG) shows the benefit of a nearly a-thermal material on optical variations in the system

  8. Demonstration of Ion Kinetic Effects in Inertial Confinement Fusion Implosions and Investigation of Magnetic Reconnection Using Laser-Produced Plasmas

    Science.gov (United States)

    Rosenberg, M. J.

    2016-10-01

    Shock-driven laser inertial confinement fusion (ICF) implosions have demonstrated the presence of ion kinetic effects in ICF implosions and also have been used as a proton source to probe the strongly driven reconnection of MG magnetic fields in laser-generated plasmas. Ion kinetic effects arise during the shock-convergence phase of ICF implosions when the mean free path for ion-ion collisions (λii) approaches the size of the hot-fuel region (Rfuel) and may impact hot-spot formation and the possibility of ignition. To isolate and study ion kinetic effects, the ratio of N - K =λii /Rfuel was varied in D3He-filled, shock-driven implosions at the Omega Laser Facility and the National Ignition Facility, from hydrodynamic-like conditions (NK 0.01) to strongly kinetic conditions (NK 10). A strong trend of decreasing fusion yields relative to the predictions of hydrodynamic models is observed as NK increases from 0.1 to 10. Hydrodynamics simulations that include basic models of the kinetic effects that are likely to be present in these experiments-namely, ion diffusion and Knudsen-layer reduction of the fusion reactivity-are better able to capture the experimental results. This type of implosion has also been used as a source of monoenergetic 15-MeV protons to image magnetic fields driven to reconnect in laser-produced plasmas at conditions similar to those encountered at the Earth's magnetopause. These experiments demonstrate that for both symmetric and asymmetric magnetic-reconnection configurations, when plasma flows are much stronger than the nominal Alfvén speed, the rate of magnetic-flux annihilation is determined by the flow velocity and is largely insensitive to initial plasma conditions. This work was supported by the Department of Energy Grant Number DENA0001857.

  9. Osiris and SOMBRERO inertial fusion power plant designs - summary, conclusions, and recommendations

    International Nuclear Information System (INIS)

    Meier, Wayne R.

    1994-01-01

    An 18 month study to evaluate the potential of inertial fusion energy (IFE) for electric power production has been completed. The primary objective of the study was to provide the US Department of Energy with an evaluation of the potential of inertial fusion for electric power production. The study included the conceptual design of two inertial fusion power plants. Osiris uses an induction linac heavy ion beam driver, and SOMBRERO uses a krypton fluoride laser driver. Conceptual designs were completed for the reactors, power conversion and plant facilities, and drivers. Environmental and safety aspects, technical issues, technology development needs, and economics of the final point designs were assessed and compared. This paper summarizes the results and conclusions of the conceptual designs and results of the assessment studies. We conclude that IFE has the potential of producing technically credible designs with environmental, safety, and economics characteristics that are just as attractive as magnetic fusion. Realizing this potential will require additional research and development on target physics, chamber design, target production and injection systems, and drivers. ((orig.))

  10. Terrestrial and extraterrestrial superresonators as drivers for an inertial confinement fusion reactor

    International Nuclear Information System (INIS)

    Seifritz, W.; Vath, W.

    1992-01-01

    This paper reports on the recirculating power fraction of a laser-driven inertial confinement fusion (ICF) reactor which can be reduced by using laser diodes to pump a neodymium solid-state laser. To overcome the high costs of two-dimensional arrays of laser diodes, two types of superresonators are proposed: a terrestrially based one and an extraterrestrially based one on a geostationary orbit. Both are designed in such a way that a sequence of short laser pulses (10 to 20 ns wide), each with an energy of 5 to 10 MJ and a frequency of 10 Hz, are produced to trigger a deuterium-tritium ICF reactor. The terrestrial superresonator needs a much smaller number of two-dimensional laser diode arrays than a conventionally pumped once-through solid-state laser system, and the extraterrestrial resonator is pumped by means of concentrated solar radiation. In practice, at least an order of magnitude fewer laser diodes and crystalline calcium fluoride gain media are needed to meet the requirements of a laser driver for an ICF reactor. If, finally, a liquid neodymium laser system could be used for an ICF reactor, the cooling of the gain slabs would be facilitated substantially

  11. Hybrid indirect-drive/direct-drive target for inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Lindsay John

    2018-02-27

    A hybrid indirect-drive/direct drive for inertial confinement fusion utilizing laser beams from a first direction and laser beams from a second direction including a central fusion fuel component; a first portion of a shell surrounding said central fusion fuel component, said first portion of a shell having a first thickness; a second portion of a shell surrounding said fusion fuel component, said second portion of a shell having a second thickness that is greater than said thickness of said first portion of a shell; and a hohlraum containing at least a portion of said fusion fuel component and at least a portion of said first portion of a shell; wherein said hohlraum is in a position relative to said first laser beam and to receive said first laser beam and produce X-rays that are directed to said first portion of a shell and said fusion fuel component; and wherein said fusion fuel component and said second portion of a shell are in a position relative to said second laser beam such that said second portion of a shell and said fusion fuel component receive said second laser beam.

  12. Laser fusion

    International Nuclear Information System (INIS)

    Key, M.H.; Oxford Univ.

    1990-04-01

    The use of lasers to drive implosions for the purpose of inertially confined fusion is an area of intense activity where progress compares favourably with that made in magnetic fusion and there are significant prospects for future development. In this brief review the basic concept is summarised and the current status is outlined both in the area of laser technology and in the most recent results from implosion experiments. Prospects for the future are also considered. (author)

  13. Energy production by means of inertially confined plasmas

    International Nuclear Information System (INIS)

    Hoernqvist, N.; Witalis, E.

    1984-01-01

    An account is given, about the general but rather intricate physical principles which are fundamental for the ignition, propagation and burning of some listed energy-producing nuclear fusion reactions. Further, the theory is extended to describe the necessary but high performance combination studied or proposed to be achieved by the radiation sources (drivers) in order to bring about, in particular, the increase density of the nuclear fuel by means of a radiation-driven ablative compression. The analysis is extended by conditions and limitations also for technical and economic reasons. This leads to the identification followed by discussions of five critical parameters, each of which is a necessary condition to obtain inertial fusion. In the sequel, components and assemblies for inertial fusion are described, i.e. drivers (lasers, light ions, x-radiation, heavy ions), the structure and properties of fuel pellets and reactor proposals. Special regard is given to known or anticipated limitations of technical, physical or economic nature. A brief description is given about progress and present situation for magnetic confinement fusion. This provides a background of an attempt for a comparison with inertial fusion. It is then claimed that none of these two main-line techiques of fusion research can at present be regarded or expected to be more likely to succeed in providing economic fusion energy production. In the summary recommendations are given about theoretical studies in combination with close observations of the general and international progress of research. An experimental effort, however, is considered as too much of an expensive venture, in particular with regard to present uncertainties in judging techniques involving accelerator-generated heavy ions and x-ray generation methods for driving the implosion processes of inertial fusion. (Author)

  14. Optimizing ring-based CSR sources

    International Nuclear Information System (INIS)

    Byrd, J.M.; De Santis, S.; Hao, Z.; Martin, M.C.; Munson, D.V.; Li, D.; Nishimura, H.; Robin, D.S.; Sannibale, F.; Schlueter, R.D.; Schoenlein, R.; Jung, J.Y.; Venturini, M.; Wan, W.; Zholents, A.A.; Zolotorev, M.

    2004-01-01

    Coherent synchrotron radiation (CSR) is a fascinating phenomenon recently observed in electron storage rings and shows tremendous promise as a high power source of radiation at terahertz frequencies. However, because of the properties of the radiation and the electron beams needed to produce it, there are a number of interesting features of the storage ring that can be optimized for CSR. Furthermore, CSR has been observed in three distinct forms: as steady pulses from short bunches, bursts from growth of spontaneous modulations in high current bunches, and from micro modulations imposed on a bunch from laser slicing. These processes have their relative merits as sources and can be improved via the ring design. The terahertz (THz) and sub-THz region of the electromagnetic spectrum lies between the infrared and the microwave . This boundary region is beyond the normal reach of optical and electronic measurement techniques and sources associated with these better-known neighbors. Recent research has demonstrated a relatively high power source of THz radiation from electron storage rings: coherent synchrotron radiation (CSR). Besides offering high power, CSR enables broadband optical techniques to be extended to nearly the microwave region, and has inherently sub-picosecond pulses. As a result, new opportunities for scientific research and applications are enabled across a diverse array of disciplines: condensed matter physics, medicine, manufacturing, and space and defense industries. CSR will have a strong impact on THz imaging, spectroscopy, femtosecond dynamics, and driving novel non-linear processes. CSR is emitted by bunches of accelerated charged particles when the bunch length is shorter than the wavelength being emitted. When this criterion is met, all the particles emit in phase, and a single-cycle electromagnetic pulse results with an intensity proportional to the square of the number of particles in the bunch. It is this quadratic dependence that can

  15. Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser.

    Science.gov (United States)

    Zhang, Shumin; Lu, Fuyun; Dong, Xinyong; Shum, Ping; Yang, Xiufeng; Zhou, Xiaoqun; Gong, Yandong; Lu, Chao

    2005-11-01

    We report the passive mode-locking at harmonics of the free spectral range (FSR) of the intracavity multi-channel filter in a fiber ring laser. The laser uses a sampled fiber Bragg grating (SFBG) with a free spectral range (FSR) of 0.8 nm, or 99 GHz at 1555 nm, and a length of highly nonlinear photonic crystal fiber with low and flat dispersion. Stable picosecond soliton pulse trains with twofold to sevenfold enhancement in the repetition rate, relative to the FSR of the SFBG, have been achieved. The passive mode-locking mechanism that is at play in this laser relies on a dissipative four-wave mixing process and switching of repetition rate is realized simply by adjustment of the intracavity polarization controllers.

  16. Multiple excitation regenerative amplifier inertial confinement system

    International Nuclear Information System (INIS)

    George, V.E.; Haas, R.A.; Krupke, W.F.; Schlitt, L.G.

    1980-01-01

    The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation

  17. UV-laser microdissection system - A novel approach for the preparation of high-resolution stable isotope records (δ13C/δ18O) from tree rings

    Science.gov (United States)

    Schollaen, Karina; Helle, Gerhard

    2013-04-01

    Intra-annual stable isotope (δ13C and δ18O) studies of tree rings at various incremental resolutions have been attempting to extract valuable seasonal climatic and environmental information or assessing plant ecophysiological processes. For preparing high-resolution isotope samples normally wood segments or cores are mechanically divided in radial direction or cut in tangential direction. After mechanical dissection, wood samples are ground to a fine powder and either cellulose is extracted or bulk wood samples are analyzed. Here, we present a novel approach for the preparation of high-resolution stable isotope records from tree rings using an UV-laser microdissection system. Firstly, tree-ring cellulose is directly extracted from wholewood cross-sections largely leaving the wood anatomical structure intact and saving time as compared to the classical procedure. Secondly, micro-samples from cellulose cross-sections are dissected with an UV-Laser dissection microscope. Tissues of interest from cellulose cross-sections are identified and marked precisely with a screen-pen and dissected via an UV-laser beam. Dissected cellulose segments were automatically collected in capsules and are prepared for stable isotope (δ13C and δ18O) analysis. The new techniques facilitate inter- and intra-annual isotope analysis on tree-ring and open various possibilities for comparisons with wood anatomy in plant eco-physiological studies. We describe the design and the handling of this novel methodology and discuss advantages and constraints given by the example of intra-annual oxygen isotope analysis on tropical trees.

  18. Greco Laser-matter interaction

    International Nuclear Information System (INIS)

    1986-01-01

    Research program in 1985 at GRECO ILM (Group of Coordinated Research: Interaction Laser Matter) continued with its principal direction in fundamental physics of laser inertial confinement; also researches on X-ray lasers hare been undergone and new high power laser application fields with particle acceleration, material processing and X-ray sources. A six beam laser was operated. Wavelength effects were studied. Atomic physics was deeply stressed as dense medium diagnostics from multicharged ions. Research development in ultra-dense medium was also important X-ray laser research gave outstanding results. New research fields were developed this year: laser acceleration of particles by wave beating or Raman instability; dense laser produced plasma use as X-ray source; material processing by laser shocks [fr

  19. Performance of Shiva as a laser fusion irradiation facility

    International Nuclear Information System (INIS)

    Speck, D.R.; Bliss, E.S.; Glaze, J.A.; Johnson, B.C.; Manes, K.R.; Ozarski, R.G.; Rupert, P.R.; Simmons, W.W.; Swift, C.D.; Thompson, C.E.

    1979-01-01

    Shiva is a 20 beam Nd:Glass Laser and Target Irradiation Facility at the Lawrence Livermore Laboratory. The laser system and integrated target facility evolved during the last year from a large, untested, experimental laser system to a target irradiation facility which has provided significant laser driven inertial confinement fusion data. The operation of the facility is discussed

  20. Advanced laser-backlit grazing-incidence x-ray imaging systems for inertial confinement fusion research. II. Tolerance analysis

    International Nuclear Information System (INIS)

    Bennett, Guy R.; Folta, James A.

    2001-01-01

    Two example ultrahigh-spatial resolution laser-backlit grazing-incidence x-ray microscope designs for inertial confinement fusion (ICF) research have been described [Appl. Opt. 40, 4570 (2001)]. Here details of fabrication, assembly, and optical surface errors that are characteristic of present state-of-the-art superpolished multilayer-coated spherical mirrors are given. They indicate that good image qualities can be expected; in particular, <0.5-μm spatial resolution at very high x-ray energies (up to 25 keV) appears to be feasible. Existing ICF imaging diagnostics approach ∼2 μm spatial at low (<2 keV) energy. The improvement in resolution compared with that of other grazing-incidence devices is attributed to a fortuitous residual on-axis aberration dependence on short wavelengths; recent advances in mirror fabrication, including a new thin-film deposition technique to correct figure errors precisely in one dimension; and novel design. For even higher resolution, a means of creating precise aspherical mirrors of spheric-quality microroughness may be possible by use of the same deposition technique

  1. Spin transport in non-inertial frame

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com

    2014-09-01

    The influence of acceleration and rotation on spintronic applications is theoretically investigated. In our formulation, considering a Dirac particle in a non-inertial frame, different spin related aspects are studied. The spin current appearing due to the inertial spin–orbit coupling (SOC) is enhanced by the interband mixing of the conduction and valence band states. Importantly, one can achieve a large spin current through the k{sup →}.p{sup →} method in this non-inertial frame. Furthermore, apart from the inertial SOC term due to acceleration, for a particular choice of the rotation frequency, a new kind of SOC term can be obtained from the spin rotation coupling (SRC). This new kind of SOC is of Dresselhaus type and controllable through the rotation frequency. In the field of spintronic applications, utilizing the inertial SOC and SRC induced SOC term, theoretical proposals for the inertial spin filter, inertial spin galvanic effect are demonstrated. Finally, one can tune the spin relaxation time in semiconductors by tuning the non-inertial parameters.

  2. Compact laser interferometer for translation and tilt measurement as optical readout for the LISA inertial sensor

    Science.gov (United States)

    Schuldt, Thilo; Gohlke, Martin; Weise, Dennis; Johann, Ulrich; Peters, Achim; Braxmaier, Claus

    2007-10-01

    The space mission LISA (Laser Interferometer Space Antenna) aims at detecting gravitational waves in the frequency range 30 μ Hz to 1Hz. Free flying proof masses inside the satellites act as inertial sensors and represent the end mirrors of the interferometer. In the current baseline design, LISA utilizes an optical readout of the position and tilt of the proof mass with respect to the satellite housing. This readout must have ~ 5pm/√Hz sensitivity for the translation measurement (for frequencies above 2.8mHz with an ƒ -2 relaxation down to 30 μHz) and ~ 10 nrad/√Hz sensitivity for the tilt measurement (for frequencies above 0.1mHz with an ƒ -1 relaxation down to 30 μHz). The University of Applied Sciences Konstanz (HTWG) - in collaboration with Astrium GmbH, Friedrichshafen, and the Humboldt-University Berlin - therefore develops a highly symmetric heterodyne interferometer implementing differential wavefront sensing for the tilt measurement. We realized a mechanically highly stable and compact setup. In a second, improved setup we measured initial noise levels below 5 pm/√Hz and 10 nrad/√Hz, respectively, for frequencies above 10mHz.

  3. X-ray laser interferometry: A new tool for AGEX

    International Nuclear Information System (INIS)

    Wan, A.S.; Moreno, J.C.; Libby, S.B.

    1995-10-01

    Collisionally pumped soft x-ray lasers now operate over a wavelength range extending from 4--40 nm. With the recent advances in the development of multilayer mirrors and beamsplitters in the soft x-ray regime, we can utilize the unique properties of x-ray lasers to study large, rapidly evolving laser-driven plasmas with high electron densities. By employing a shorter wavelength x-ray laser, as compared to using conventional optical laser as the probe source, we can access a much higher density regime while reducing refractive effects which limit the spatial resolution and data interpretation. Using a neon-like yttrium x-ray laser which operates at a wavelength of 15.5 mn, we have performed a series of soft x-ray laser interferometry experiments, operated in the skewed Mach-Zehnder configuration, to characterize plasmas relevant to both weapons and inertial confinement fusion. The two-dimensional density profiles obtained from the interferograms allow us to validate and benchmark our numerical models used to study the physics in the high-energy density regime, relevant to both weapons and inertial confinement fusion

  4. Pre-Amplifier Module for Laser Inertial Confinement Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Heebner, J E; Bowers, M W

    2008-02-06

    The Pre-Amplifier Modules (PAMs) are the heart of the National Ignition Facility (NIF), providing most of the energy gain for the most energetic laser in the world. Upon completion, NIF will be the only laboratory in which scientists can examine the fusion processes that occur inside stars, supernovae, and exploding nuclear weapons and that may someday serve as a virtually inexhaustible energy source for electricity. Consider that in a fusion power plant 50 cups of water could provide the energy comparable to 2 tons of coal. Of paramount importance for achieving laser-driven fusion ignition with the least energy input is the synchronous and symmetric compression of the target fuel--a condition known as laser power balance. NIF's 48 PAMs thus must provide energy gain in an exquisitely stable and consistent manner. While building one module that meets performance requirements is challenging enough, our design has already enabled the construction and fielding of 48 PAMs that are stable, uniform, and interchangeable. PAM systems are being tested at the University of Rochester's Laboratory for Laser Energetics, and the Atomic Weapons Enterprise of Great Britain has purchased the PAM power system.

  5. Ring-Interferometric Sol-Gel Bio-Sensor

    Science.gov (United States)

    Bearman, Gregory (Inventor); Cohen, David (Inventor)

    2006-01-01

    A biosensor embodying the invention includes a sensing volume having an array of pores sized for immobilizing a first biological entity tending to bind to a second biological entity in such a manner as to change an index of refraction of the sensing volume. The biosensor further includes a ring interferometer, one volumetric section of the ring interferometer being the sensing volume, a laser for supplying light to the ring interferometer, and a photodetector for receiving light from the interferometer.

  6. HiPER: The European path to laser energy

    Directory of Open Access Journals (Sweden)

    Edwards Chris

    2013-11-01

    Full Text Available While for decades, energy production relying on laser inertial fusion has been a strong motivation for the development in Europe of a few high-energy laser facilities and dedicated scientific programs, the HiPER initiative launched in 2004 fostered an ambitious large-scale coordinated European program toward inertial fusion energy. Anticipating the successful demonstration of fusion ignition and gain at the National Ignition Facility (NIF in the USA, scientists and engineers from across Europe are developing the case for a next generation laser fusion facility, HiPER, to be constructed in Europe. The single-facility build strategy of HiPER (High Power Laser Energy Research Facility aims at first demonstrating some key elements of a fusion reactor in a high rep-rate few-second cycle mode, before addressing energy production on a high rep-rate continuous mode in a second area.

  7. Shock-timing experiments for Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Debras, G.

    2012-01-01

    The Laser Megajoule (LMJ), which should achieve energy gain in an indirect drive inertial confinement fusion configuration, is being built in France by the CEA (Commissariat a l'Energie Atomique et aux Energies Alternatives). To achieve thermonuclear ignition, the compression of a spherical target will have to be controlled by a series of accurately timed centripetal shocks, with a finely tuned level. A first experiment, performed in 2010 on the LIL (Ligne d'Integration Laser) facility at CEA, has allowed us to study the coalescence of two planar shocks in an indirectly-driven sample of polystyrene, within the framework of shock timing. The main objectives were to validate the experimental concept and the numerical simulations, as a proof-of-principle for future shock-timing campaigns. The main diagnostics used for this study are VISAR (Velocity Interferometer System for Any Reflection) and an optical shock breakout diagnostic, taking into account optical perturbations caused by X-rays. In another experiment, conducted on the LULI (Laboratoire pour l'Utilisation des Lasers Intenses) laser facility in 2010, we studied the timing of two planar directly-driven shocks using the same diagnostics. This latter study is related to the shock ignition concept, with the long-term perspective of energy production. This thesis presents these two experiments and their results. (author) [fr

  8. Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Thio, Francis Y.C.

    2008-01-01

    An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

  9. Dragging of inertial frames.

    Science.gov (United States)

    Ciufolini, Ignazio

    2007-09-06

    The origin of inertia has intrigued scientists and philosophers for centuries. Inertial frames of reference permeate our daily life. The inertial and centrifugal forces, such as the pull and push that we feel when our vehicle accelerates, brakes and turns, arise because of changes in velocity relative to uniformly moving inertial frames. A classical interpretation ascribed these forces to acceleration relative to some absolute frame independent of the cosmological matter, whereas an opposite view related them to acceleration relative to all the masses and 'fixed stars' in the Universe. An echo and partial realization of the latter idea can be found in Einstein's general theory of relativity, which predicts that a spinning mass will 'drag' inertial frames along with it. Here I review the recent measurements of frame dragging using satellites orbiting Earth.

  10. Diagnostic technique for measuring fusion reaction rate for inertial confinement fusion experiments at Shen Guang-III prototype laser facility

    International Nuclear Information System (INIS)

    Wang Feng; Peng Xiao-Shi; Liu Shen-Ye; Xu Tao; Kang Dong-Guo

    2013-01-01

    A study is conducted using a two-dimensional simulation program (Lared-s) with the goal of developing a technique to evaluate the effect of Rayleigh-Taylor growth in a neutron fusion reaction region. Two peaks of fusion reaction rate are simulated by using a two-dimensional simulation program (Lared-s) and confirmed by the experimental results. A neutron temporal diagnostic (NTD) system is developed with a high temporal resolution of ∼ 30 ps at the Shen Guang-III (SG-III) prototype laser facility in China, to measure the fusion reaction rate history. With the shape of neutron reaction rate curve and the spherical harmonic function in this paper, the degree of Rayleigh-Taylor growth and the main source of the neutron yield in our experiment can be estimated qualitatively. This technique, including the diagnostic system and the simulation program, may provide important information for obtaining a higher neutron yield in implosion experiments of inertial confinement fusion

  11. ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)

    International Nuclear Information System (INIS)

    Caird, J.A.; Agrawal, V.; Bayramian, A.; Beach, R.; Britten, J.; Chen, D.; Cross, R.; Ebbers, C.; Erlandson, A.; Feit, M.; Freitas, B.; Ghosh, C.; Haefner, C.; Homoelle, D.; Ladran, T.; Latkowski, J.; Molander, W.; Murray, J.; Rubenchik, S.; Schaffers, K.; Siders, C.W.; Stappaerts, E.; Sutton, S.; Telford, S.; Trenholme, J.; Barty, C.J.

    2008-01-01

    We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd:glass laser technology developed for the National Ignition Facility (NIF), along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE's High Average Power Laser (HAPL) Program and embodied in LLNL's Mercury laser system. We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster's angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of $0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive

  12. Some remarks on the design of HIF current multiplication rings

    International Nuclear Information System (INIS)

    Reich, K.H.

    1983-12-01

    The conceptual design of heavy ion fusion drivers has now reached a state, where the overall approach has become fairly clear. One design features an RF linac plus current and beam multiplication rings. The present remarks concern the assignment of multiturn injection, beam storage and bunching to an optimized number of rings and transport lines, as well as some criteria for their designs. The main parameter constraints are discussed, showing how they can be met, although there is little flexibility at the present stage of understanding and technology. A shortened version of this report is scheduled for presentation at the ''INS International Symposium on Heavy Ion Accelerators and Their Application to Inertial Fusion'' Tokyo, January 23-27 1984. (author)

  13. Hydrodynamic instabilities in inertial confinement fusion

    International Nuclear Information System (INIS)

    Freeman, J.R.

    1977-01-01

    Inertial confinement fusion targets generally consist of hollow high-density spheres filled with low density thermonuclear fuel. Targets driven ablatively by electrons, ions, or lasers are potentially unstable during the initial acceleration phase. Later in time, the relatively low density fuel decelerates the dense inner portion of the sphere (termed the pusher), permitting unstable growth at the fuel-pusher interface. The instabilities are of the Rayleigh-Taylor variety, modified by thermal and viscous diffusion and convection. These problems have been analyzed by many in recent years using both linearized perturbation methods and direct numerical simulation. Examples of two-dimensional simulations of the fuel-pusher instability in electron beam fusion targets will be presented, along with a review of possible stabilization mechanisms

  14. Heavy ion inertial fusion - an overview

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1983-09-01

    Energetic heavy ions represent an alternative to laser light and light ions as ''drivers'' for supplying energy for inertial confinement fusion. To induce ignition of targets containing thermonuclear fuel, an energy of several megajoules has to be focused on to a target with radius a few millimetres in a time of some tens of nanoseconds. Serious study of the use of heavy ion drivers for producing useful power in this way has been underway for seven years, though funding has been at a low level. In this paper the requirements for targets, accelerator, and reactor vessel for containing the thermonuclear explosion are surveyed, and some of the problems to be solved before the construction of a power station can realistically be contemplated are discussed. (author)

  15. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility

    Directory of Open Access Journals (Sweden)

    Wanguo Zheng

    2017-09-01

    Full Text Available The SG-Ⅲ laser facility (SG-Ⅲ is the largest laser driver for inertial confinement fusion (ICF researches in China, which has 48 beamlines and can deliver 180 kJ ultraviolet laser energy in 3 ns. In order to meet the requirements of precise physics experiments, some new functionalities need to be added to SG-Ⅲ and some intrinsic laser performances need upgrade. So at the end of SG-Ⅲ's engineering construction, the 2-year laser performance upgrade project started. This paper will introduce the newly added functionalities and the latest laser performance of SG-Ⅲ. With these function extensions and performance upgrade, SG-Ⅲ is now fully prepared for precise ICF experiments and solidly paves the way towards fusion ignition.

  16. Use of a reflective semiconductor optical amplifier and dual-ring architecture design to produce a stable multi-wavelength fiber laser

    International Nuclear Information System (INIS)

    Yeh, Chien-Hung; Chow, Chi-Wai; Lu, Shao-Sheng

    2014-01-01

    In this work, we propose and demonstrate a multi-wavelength laser source produced by utilizing a C-band reflective semiconductor optical amplifier (RSOA) with a dual-ring fiber cavity. Here, the laser cavity consists of an RSOA, a 1 × 2 optical coupler, a 2 × 2 optical coupler and a polarization controller. As a result, thirteen to eighteen wavelengths around the L band could be generated simultaneously when the bias current of the C-band RSOA was driven at 30–70 mA. In addition, the output stabilities of the power and wavelength are also discussed. (paper)

  17. Use of a reflective semiconductor optical amplifier and dual-ring architecture design to produce a stable multi-wavelength fiber laser

    Science.gov (United States)

    Yeh, Chien-Hung; Chow, Chi-Wai; Lu, Shao-Sheng

    2014-05-01

    In this work, we propose and demonstrate a multi-wavelength laser source produced by utilizing a C-band reflective semiconductor optical amplifier (RSOA) with a dual-ring fiber cavity. Here, the laser cavity consists of an RSOA, a 1 × 2 optical coupler, a 2 × 2 optical coupler and a polarization controller. As a result, thirteen to eighteen wavelengths around the L band could be generated simultaneously when the bias current of the C-band RSOA was driven at 30-70 mA. In addition, the output stabilities of the power and wavelength are also discussed.

  18. INERTIAL TECHNOLOGIES IN SYSTEMS FOR STABILIZATION OF GROUND VEHICLES EQUIPMENT

    Directory of Open Access Journals (Sweden)

    Olha Sushchenko

    2016-12-01

    Full Text Available Purpose: The vibratory inertial technology is a recent modern inertial technology. It represents the most perspective approach to design of inertial sensors, which can be used in stabilization and tracking systems operated on vehicles of the wide class. The purpose of the research is to consider advantages of this technology in comparison with laser and fiber-optic ones. Operation of the inertial sensors on the ground vehicles requires some improvement of the Coriolis vibratory gyroscope with the goal to simplify information processing, increase reliability, and compensate bias. Methods: Improvement of the Coriolis vibratory gyroscope includes introducing of the phase detector and additional excitation unit. The possibility to use the improved Coriolis vibratory gyroscope in the stabilization systems operated on the ground vehicles is shown by means of analysis of gyroscope output signal. To prove efficiency of the Coriolis vibratory gyroscope in stabilization system the simulation technique is used. Results: The scheme of the improved Coriolis vibratory gyroscope including the phase detector and additional excitation unit is developed and analyzed. The way to compensate bias is determined. Simulation of the stabilization system with the improved Coriolis vibratory gyroscope is carried out. Expressions for the output signals of the improved Coriolis vibratory gyroscope are derived. The error of the output signal is estimated and the possibility to use the modified Coriolis vibratory gyroscope in stabilization systems is proved. The results of stabilization system simulation are given. Their analysis is carried out. Conclusions: The represented results prove efficiency of the proposed technical decisions. They can be useful for design of stabilization platform with instrumental equipment operated on moving vehicles of the wide class.

  19. Synchronisation and desynchronisation of self-modulation oscillations in a ring chip laser under the action of a periodic signal and noise

    International Nuclear Information System (INIS)

    Dudetskiy, V Yu; Lariontsev, E G; Chekina, S N

    2014-01-01

    The effect of pump noise on the synchronisation of selfmodulation oscillations in a solid-state ring laser with periodic pump modulation is studied numerically and experimentally. It is found that, in contrast to desynchronisation that usually occurs under action of noise in the case of 1/1 synchronisation of self-oscillations by a periodic signal, the effect of noise on 1/2 synchronisation may be positive, namely, at a sufficiently low intensity, pump noise is favourable for synchronisation of self-oscillations, for narrowing of their spectrum, and for increasing the signal-to-noise ratio. (lasers)

  20. Helios, a 20 TW CO2 laser fusion facility

    International Nuclear Information System (INIS)

    Ladish, J.S.

    1979-01-01

    Since June 1978 the Los Alamos Scientific Laboratory's Helios CO 2 laser fusion facility has been committed to an experimental target program to investigate the feasibility of laser produced inertial confinement fusion. This system is briefly described, and preliminary experimental results are reported

  1. IAEA technical committee on advances in inertial confinement systems

    International Nuclear Information System (INIS)

    Peacock, N.J.

    1980-01-01

    In the United Kingdom there is no national inertial confinement programme directed towards civil reactor use. The programme for Controlled Fusion Research, which forms part of the UKAEA Research Group activities, is located at the Culham Laboratory. At this centre, fusion research is devoted entirely to magnetic confinement systems. A fraction of the total effort involves the development and use of powerful lasers for diagnostic purposes, for toroidal plasma refuelling schemes, for basic studies of laser-plasma interactions, highly-ionised atoms and XUV light gain experiments, and for certain commercial applications. Within the universities there is a widespread interest in laser systems and laser-plasma interactions. The substantial research facilities in the Laser Division of the Rutherford Laboratory (SRC) provides a focus for these activities. These lasers are operated as a university users' facility. A two beam, neodymium in phosphate, glass laser (operating at 0.6 TW/beam, but presently being upgraded) is the Rutherford Laboratory's major laser system for implosion and compression studies. Sophisticated radiation diagnostics are a feature of this work. In a single-beam mode, the glass laser has been used for a great deal of laser-plasma interaction physics e.g. non-linear absorption, inhibited heat conduction and harmonic self-generation. Atomic structure of highly-ionised atoms, plasma line broadening and XUV light gain experiments are also active research topics. Concurrent with upgrading the glass laser facility to 6 x 1 TW beams, experiments on harmonic conversion of the output to 2ω 0 , 4ω 0 are being pursued. Electron beam-pumped, rare-gas halide, eximer systems operating in the blue region of the spectrum are also being investigated. The universities provide a considerable back-up for the work at the Rutherford Laser Division. (J.P.N.)

  2. SBS pulse compression for excimer inertial fusion energy drivers

    International Nuclear Information System (INIS)

    Linford, G.J.

    1994-01-01

    A key requirement for the development of commercial fusion power plants utilizing inertial confinement fusion (ICF) as a source of thermonuclear power is the availability of reliable, efficient laser drivers. These laser drivers must be capable of delivering UV optical pulses having energies of the order of 5MJ to cryogenic deuterium-tritium (D/T) ICF targets. The current requirements for laser ICF target irradiation specify the laser wavelength, λ ca. 250 nm, pulse duration, τ p ca. 6 ns, bandwidth, Δλ ca. 0.1 nm, polarization state, etc. Excimer lasers are a leading candidate to fill these demanding ICF driver requirements. However, since excimer lasers are not storage lasers, the excimer laser pulse duration, τ pp , is determined primarily by the length of the excitation pulse delivered to the excimer laser amplifier. Pulsed power associated with efficiently generating excimer laser pulses has a time constant, τ pp which falls in the range, 30 τ p pp p . As a consequence, pulse compression is needed to convert the long excimer laser pulses to pulses of duration τ p . These main ICF driver pulses require, in addition, longer, lower power precursor pulses delivered to the ICF target before the arrival of the main pulse. Although both linear and non-linear optical (NLO) pulse compression techniques have been developed, computer simulations have shown that a ''chirped,'' self-seeded, stimulated Brillouin scattering (SBS) pulse compressor cell using SF 6 at a density, ρ ca. 1 amagat can efficiently compress krypton fluoride (KrF) laser pulses at λ=248 nm. In order to avoid the generation of output pulses substantially shorter than τ p , the optical power in the chirped input SBS ''seed'' beams was ramped. Compressed pulse conversion efficiencies of up to 68% were calculated for output pulse durations of τ p ca. ns

  3. A Fiber Optic PD Sensor Using a Balanced Sagnac Interferometer and an EDFA-Based DOP Tunable Fiber Ring Laser

    Science.gov (United States)

    Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming

    2014-01-01

    A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified. PMID:24824371

  4. Robust gap repair in the contractile ring ensures timely completion of cytokinesis.

    Science.gov (United States)

    Silva, Ana M; Osório, Daniel S; Pereira, Antonio J; Maiato, Helder; Pinto, Inês Mendes; Rubinstein, Boris; Gassmann, Reto; Telley, Ivo Andreas; Carvalho, Ana Xavier

    2016-12-19

    Cytokinesis in animal cells requires the constriction of an actomyosin contractile ring, whose architecture and mechanism remain poorly understood. We use laser microsurgery to explore the biophysical properties of constricting rings in Caenorhabditis elegans embryos. Laser cutting causes rings to snap open. However, instead of disintegrating, ring topology recovers and constriction proceeds. In response to severing, a finite gap forms and is repaired by recruitment of new material in an actin polymerization-dependent manner. An open ring is able to constrict, and rings repair from successive cuts. After gap repair, an increase in constriction velocity allows cytokinesis to complete at the same time as controls. Our analysis demonstrates that tension in the ring increases while net cortical tension at the site of ingression decreases throughout constriction and suggests that cytokinesis is accomplished by contractile modules that assemble and contract autonomously, enabling local repair of the actomyosin network. Consequently, cytokinesis is a highly robust process impervious to discontinuities in contractile ring structure. © 2016 Silva et al.

  5. Review of the Inertial Fusion Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2004-03-29

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of “drivers” for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  6. Review of the Inertial Fusion Energy Program

    International Nuclear Information System (INIS)

    2004-01-01

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of @@@drivers@@@ for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  7. The Electra KrF Laser Program

    National Research Council Canada - National Science Library

    Sethian, J. D; Hegeler, F; Myers, M; Friedman, M; Obenschain, S; Lehmberg, R; Giuliani, J; Kepple, P; Swanekamp, S; Smith, I

    2002-01-01

    Electra is a repetitively pulsed, electron-beam pumped, Krypton Fluoride "KrF" laser that will develop the technologies that can meet the Inertial Fusion Energy "IFE" requirements for durability, efficiency, and cost...

  8. A novel image encryption algorithm based on synchronized random bit generated in cascade-coupled chaotic semiconductor ring lasers

    Science.gov (United States)

    Li, Jiafu; Xiang, Shuiying; Wang, Haoning; Gong, Junkai; Wen, Aijun

    2018-03-01

    In this paper, a novel image encryption algorithm based on synchronization of physical random bit generated in a cascade-coupled semiconductor ring lasers (CCSRL) system is proposed, and the security analysis is performed. In both transmitter and receiver parts, the CCSRL system is a master-slave configuration consisting of a master semiconductor ring laser (M-SRL) with cross-feedback and a solitary SRL (S-SRL). The proposed image encryption algorithm includes image preprocessing based on conventional chaotic maps, pixel confusion based on control matrix extracted from physical random bit, and pixel diffusion based on random bit stream extracted from physical random bit. Firstly, the preprocessing method is used to eliminate the correlation between adjacent pixels. Secondly, physical random bit with verified randomness is generated based on chaos in the CCSRL system, and is used to simultaneously generate the control matrix and random bit stream. Finally, the control matrix and random bit stream are used for the encryption algorithm in order to change the position and the values of pixels, respectively. Simulation results and security analysis demonstrate that the proposed algorithm is effective and able to resist various typical attacks, and thus is an excellent candidate for secure image communication application.

  9. Suppressing Two-Plasmon Decay with Laser Frequency Detuning

    Science.gov (United States)

    Follett, R. K.; Shaw, J. G.; Myatt, J. F.; Palastro, J. P.; Short, R. W.; Froula, D. H.

    2018-03-01

    Three-dimensional laser-plasma interaction simulations show that laser frequency detuning by an amount achievable with current laser technology can be used to suppress the two-plasmon decay (TPD) instability and the corresponding hot-electron generation. For the plasma conditions and laser configuration in a direct-drive inertial confinement fusion implosion on the OMEGA laser, the simulations show that ˜0.7 % laser frequency detuning is sufficient to eliminate TPD-driven hot-electron generation in current experiments. This allows for higher ablation pressures in future implosion designs by using higher laser intensities.

  10. Applications of UV-storage ring free electron lasers: the case of super-ACO

    CERN Document Server

    Nahon, L; Couprie, Marie Emmanuelle; Merola, F; Dumas, P; Marsi, M; Taleb-Ibrahimi, A; Nutarelli, D; Roux, R; Billardon, M

    1999-01-01

    The potential of UV-storage ring free electron lasers (SRFELs) for the performance of original application experiments is shown with a special emphasis concerning their combination with the naturally synchronized synchrotron radiation (SR). The first two-color FEL+SR experiment, performed in surface science at Super-ACO is reported. The experimental parameters found to be the most important as gathered from the acquired experience, are underlined and discussed. Finally, future prospects for the scientific program of the Super-ACO FEL are presented with two-color experiments combining the FEL with SR undulator-based XUV and VUV beamlines as well as with a SR white light bending magnet beamline emiting in the IR-UV (20 mu m-0.25 mu m).

  11. Inertial Fusion Program. Progress report, January-December 1980

    International Nuclear Information System (INIS)

    1982-05-01

    This report summarizes research and development effort in support of the Inertial Confinement Fusion program, including absorption measurements with an integrating sphere, generation of high CO 2 -laser harmonics in the backscattered light from laser plasmas, and the effects of hydrogen target contamination on the hot-electron temperature and transport. The development of new diagnostics is outlined and measurements taken with a proximity-focused x-ray streak camera are presented. High gain in phase conjugation using germanium was demonstrated, data were obtained on retropulse isolation by plasmas generated from metal shutters, damage thresholds for copper mirrors at high fluences were characterized, and phase conjugation in the ultraviolet was demonstrated. Significant progress in the characterization of targets, new techniques in target coating, and important advances in the development of low-density, small-cell-size plastic foam that permit highly accurate machining to any desired shape are presented. The results of various fusion reactor system studies are summarized

  12. Inertial Fusion Program. Progress report, January-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    This report summarizes research and development effort in support of the Inertial Confinement Fusion program, including absorption measurements with an integrating sphere, generation of high CO/sub 2/-laser harmonics in the backscattered light from laser plasmas, and the effects of hydrogen target contamination on the hot-electron temperature and transport. The development of new diagnostics is outlined and measurements taken with a proximity-focused x-ray streak camera are presented. High gain in phase conjugation using germanium was demonstrated, data were obtained on retropulse isolation by plasmas generated from metal shutters, damage thresholds for copper mirrors at high fluences were characterized, and phase conjugation in the ultraviolet was demonstrated. Significant progress in the characterization of targets, new techniques in target coating, and important advances in the development of low-density, small-cell-size plastic foam that permit highly accurate machining to any desired shape are presented. The results of various fusion reactor system studies are summarized.

  13. Experimental study of fast electron transport and of the propagation of shock waves generated by laser in the framework of inertial fusion

    International Nuclear Information System (INIS)

    Sakaki, T.

    2016-01-01

    This document presents 3 experiments carried out within the framework of inertial fusion. The first experiment was devoted to the study of fast electron beam transport in a compressed target. The implosion of the target with a cylindrical geometry was carried out with the GEKKO XII laser facility (ILE Osaka, Japan). The fast electron beam was generated by the LFEX laser (∼10"1"9 W/cm"2) and its propagation through the compressed cylinder was observed with several X-ray diagnostics. This experiment showed the guiding effect of the electron beam resulting from self-generated magnetic fields. Furthermore, the results of this experiment were in good agreement with numerical simulations. Two other experiments were performed to study the propagation of strong shock waves created by lasers in a plasma. They were carried out with different laser systems. In the first experiment with the Gekko XII laser, we observed the creation and the propagation of two successive shock waves in an ablation plasma in CH and Be. The objective of characterizing the amplification of a transmitted shock by the collision of two counter-propagating shocks has been partially realized. The comparison of the experimental results with the hydrodynamic simulations enabled us to confirm an amplification of the shock by a factor 2 in pressure in the condition of this experiment. The shot with a Be target allowed the development and validation of the diagnostic method of X-ray radiography for shock wave propagation. The second experiment was performed with PHELIX GSI laser (Darmstadt, Germany). The purpose of this experiment was to study the generation of strong shocks. They were applied to study the equation of state of carbon in the WDM state. The condition of pressure and density for the carbon were obtained by deducing the pressure and the velocity of the shock wave chronometric diagnostics employed in this experiment. In this experiment, diamond was at the metallic liquid phase with a pressure

  14. Cavity Ring-down Spectroscopic System And Method

    KAUST Repository

    Alquaity, Awad Bin Saud

    2015-05-14

    A system and method for cavity ring-down spectroscopy can include a pulsed quantum cascade laser, an optical ring-down cavity, a photodetector, and an oscilloscope. The system and method can produce pulse widths of less than 200 ns with bandwidths greater than 300 pm, as well as provide temporal resolution of greater than 10 .mu.s.

  15. Cavity Ring-down Spectroscopic System And Method

    KAUST Repository

    Alquaity, Awad Bin Saud; Farooq, Aamir

    2015-01-01

    A system and method for cavity ring-down spectroscopy can include a pulsed quantum cascade laser, an optical ring-down cavity, a photodetector, and an oscilloscope. The system and method can produce pulse widths of less than 200 ns with bandwidths greater than 300 pm, as well as provide temporal resolution of greater than 10 .mu.s.

  16. A tunable narrow-line-width multi-wavelength Er-doped fiber laser based on a high birefringence fiber ring mirror and an auto-tracking filter

    Science.gov (United States)

    Jia, Xiu-jie; Liu, Yan-ge; Si, Li-bin; Guo, Zhan-cheng; Fu, Sheng-gui; Kai, Gui-yun; Dong, Xiao-yi

    2008-01-01

    A novel multi-wavelength erbium-doped fiber laser operating in C-band is proposed and successfully demonstrated. The wavelength interval between the wavelengths is about 0.22 nm. The 3 dB bandwidth of the laser is about 0.012 nm, and the output power reaches 4.8 mW. By using a high birefringence fiber ring mirror (HiBi-FLM) and a tunable FBG, the laser realizes switchable and tunable characteristic. The mode hopping can be effectively prevented. Moreover, this laser can improve wavelength stability significantly by taking advantage of an un-pumped Er3+-doped fiber at the standing-wave section. The laser can operate in stable narrow-line-width with single-, dual-wavelength, and unstable triple-wavelength output at room temperature.

  17. Multi-scale description of the laser-plasma interaction: application to the physics of shock ignition in inertial confinement fusion

    International Nuclear Information System (INIS)

    Colaitis, Arnaud

    2015-01-01

    This manuscript presents a novel formulation of the Laser-Plasma Interaction (LPI) at hydrodynamical scales, that couples the plasma dynamics with linear and nonlinear LPI processes. The standard Ray Tracing model, based on Geometrical Optics, is not well suited for that purpose because it does not readily describe the laser intensity distribution in plasma. We propose an alternative model formulated for a Lagrangian hydrodynamic code. It is based on the ray-based Paraxial Complex Geometrical Optics (PCGO) that describes Gaussian optical beamlets. A method for modeling non-Gaussian laser beams smoothed by Phase Plates is presented, that allows to create intensity variations that reproduce the beam envelope, contrast and high-intensity statistics predicted by paraxial laser propagation codes. We propose in line reduced models for the non-linear laser-plasma interaction, in the case of the Cross-Beam Energy Transfer (CBET) and the generation of Hot Electrons (HE). The in line CBET model is validated against a time-dependent conventional paraxial electromagnetic wave propagation code, in a well-defined plasma configuration with density and velocity profiles corresponding to an inhomogeneous plasma. Good agreement is found past a transient period on the picosecond time scale, notably for the spatial distribution of density perturbations and laser intensities in the interaction region. Application of the model to a direct-drive Inertial Confinement Fusion (ICF) configuration shows that CBET significantly degrades the irradiation symmetry by amplifying low frequency modes and reducing the laser-capsule coupling efficiency, ultimately leading to large modulations of the shell areal density and lower convergence ratios. The LPI/HE model predicts the HE fluxes, temperatures, angular dispersion and direction from the laser intensity of PCGO beamlets from simplified expressions based on theoretical models and scaling laws obtained in kinetic simulations. The HE beams

  18. Fast cooling of bunches in compton storage rings*

    CERN Document Server

    Bulyak, E; Zimmermann, F

    2011-01-01

    We propose an enhancement of laser radiative cooling by utilizing laser pulses of small spatial and temporal dimensions, which interact only with a fraction of an electron bunch circulating in a storage ring. We studied the dynamics of such electron bunch when laser photons scatter off the electrons at a collision point placed in a section with nonzero dispersion. In this case of ‘asymmetric cooling’, the stationary energy spread is much smaller than under conditions of regular scattering where the laser spot size is larger than the electron beam; and the synchrotron oscillations are damped faster. Coherent oscillations of large amplitude may be damped within one synchrotron period, so that this method can support the rapid successive injection of many bunches in longitudinal phase space for stacking purposes. Results of extensive simulations are presented for the performance optimization of Compton gamma-ray sources and damping rings.

  19. Numerical simulations of inertial confinement fusion hohlraum with LARED-integration code

    International Nuclear Information System (INIS)

    Li Jinghong; Li Shuanggui; Zhai Chuanlei

    2011-01-01

    In the target design of the Inertial Confinement Fusion (ICF) program, it is common practice to apply radiation hydrodynamics code to study the key physical processes happened in ICF process, such as hohlraum physics, radiation drive symmetry, capsule implosion physics in the radiation-drive approach of ICF. Recently, many efforts have been done to develop our 2D integrated simulation capability of laser fusion with a variety of optional physical models and numerical methods. In order to effectively integrate the existing codes and to facilitate the development of new codes, we are developing an object-oriented structured-mesh parallel code-supporting infrastructure, called JASMIN. Based on two-dimensional three-temperature hohlraum physics code LARED-H and two-dimensional multi-group radiative transfer code LARED-R, we develop a new generation two-dimensional laser fusion code under the JASMIN infrastructure, which enable us to simulate the whole process of laser fusion from the laser beams' entrance into the hohlraum to the end of implosion. In this paper, we will give a brief description of our new-generation two-dimensional laser fusion code, named LARED-Integration, especially in its physical models, and present some simulation results of holhraum. (author)

  20. Accelerator aspects of heavy ion induced inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Boehme, D

    1983-01-01

    Besides the possibilities of the magnetic fusion those of inertial fusion have increasingly found interest. Bundled photon and corpuscular beams shall be symetrically focussed from the outside on a pellet with the fusion fuel being compressed far beyond the density of the ordinary solids. Laser, light ion and heavy ion beams can be used as driver beams. The GSI took over the project leadership for a five years' research programme with formulated questions on heavy ion fusion. The project is promoted by the BMFT. During the international symposium the opportunity of intensive discussions on research work in this field in different countries was made use of.

  1. Temperature dependence of parametric instabilities in the context of the shock-ignition approach to inertial confinement fusion

    Czech Academy of Sciences Publication Activity Database

    Weber, Stefan A.; Riconda, C.

    2015-01-01

    Roč. 3, Feb (2015), e6 ISSN 2095-4719 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 Keywords : inertial confinement fusion * shock ignition * laser- plasma interaction * parametric instabilities Subject RIV: BL - Plasma and Gas Discharge Physics

  2. Ignition on the National Ignition Facility: a path towards inertial fusion energy

    International Nuclear Information System (INIS)

    Moses, Edward I.

    2009-01-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0 MJ of light at the fundamental wavelength of 1053 nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications. The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus

  3. Ignition on the National Ignition Facility: a path towards inertial fusion energy

    Science.gov (United States)

    Moses, Edward I.

    2009-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0 MJ of light at the fundamental wavelength of 1053 nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications. The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus

  4. Mode-locking peculiarities in an all-fiber erbium-doped ring ultrashort pulse laser with a highly-nonlinear resonator

    Science.gov (United States)

    Dvoretskiy, Dmitriy A.; Sazonkin, Stanislav G.; Kudelin, Igor S.; Orekhov, Ilya O.; Pnev, Alexey B.; Karasik, Valeriy E.; Denisov, Lev K.

    2017-12-01

    Today ultrashort pulse (USP) fiber lasers are in great demand in a frequency metrology field, THz pulse spectroscopy, optical communication, quantum optics application, etc. Therefore mode-locked (ML) fiber lasers have been extensively investigated over the last decade due the number of scientific, medical and industrial applications. It should be noted, that USP fiber lasers can be treated as an ideal platform to expand future applications due to the complex ML nonlinear dynamics in a laser resonator. Up to now a series of novel ML regimes have been investigated e.g. self-similar pulses, noise-like pulses, multi-bound solitons and soliton rain generation. Recently, we have used a highly nonlinear germanosilicate fiber (with germanium oxides concentration in the core 50 mol. %) inside the resonator for more reliable and robust launching of passive mode-locking based on the nonlinear polarization evolution effect in fibers. In this work we have measured promising and stable ML regimes such as stretched pulses, soliton rain and multi-bound solitons formed in a highly-nonlinear ring laser and obtained by intracavity group velocity dispersion (GVD) variation in slightly negative region. As a result, we have obtained the low noise ultrashort pulse generation with duration 59 dB) and relative intensity noise <-101 dBc / Hz.

  5. Nondestructive Inspection System for Special Nuclear Material Using Inertial Electrostatic Confinement Fusion Neutrons and Laser Compton Scattering Gamma-Rays

    Science.gov (United States)

    Ohgaki, H.; Daito, I.; Zen, H.; Kii, T.; Masuda, K.; Misawa, T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Kando, M.; Fujimoto, S.

    2017-07-01

    A Neutron/Gamma-ray combined inspection system for hidden special nuclear materials (SNMs) in cargo containers has been developed under a program of Japan Science and Technology Agency in Japan. This inspection system consists of an active neutron-detection system for fast screening and a laser Compton backscattering gamma-ray source in coupling with nuclear resonance fluorescence (NRF) method for precise inspection. The inertial electrostatic confinement fusion device has been adopted as a neutron source and two neutron-detection methods, delayed neutron noise analysis method and high-energy neutron-detection method, have been developed to realize the fast screening system. The prototype system has been constructed and tested in the Reactor Research Institute, Kyoto University. For the generation of the laser Compton backscattering gamma-ray beam, a race track microtron accelerator has been used to reduce the size of the system. For the NRF measurement, an array of LaBr3(Ce) scintillation detectors has been adopted to realize a low-cost detection system. The prototype of the gamma-ray system has been demonstrated in the Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology. By using numerical simulations based on the data taken from these prototype systems and the inspection-flow, the system designed by this program can detect 1 kg of highly enriched 235U (HEU) hidden in an empty 20-ft container within several minutes.

  6. Laser program annual report, 1980

    International Nuclear Information System (INIS)

    Coleman, L.W.; Krupke, W.F.; Strack, J.R.

    1981-06-01

    Volume 3 is comprised of three sections, beginning with Section 8 on Advanced Lasers. Both theoretical and experimental research and development activities on advanced laser systems are presented here. Section 9 contains the results of studies in areas of energy and military applications, including those relating to electrical energy production by inertial confinement fusion systems. Finally, Section 10 presents results from selected activities in the Advanced Isotope Separation Program

  7. Laser program annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, L.W.; Krupke, W.F.; Strack, J.R. (eds.)

    1981-06-01

    Volume 3 is comprised of three sections, beginning with Section 8 on Advanced Lasers. Both theoretical and experimental research and development activities on advanced laser systems are presented here. Section 9 contains the results of studies in areas of energy and military applications, including those relating to electrical energy production by inertial confinement fusion systems. Finally, Section 10 presents results from selected activities in the Advanced Isotope Separation Program.

  8. Rugged Packaging for Damage Resistant Inertial Fusion Energy Optics

    Energy Technology Data Exchange (ETDEWEB)

    Stelmack, Larry

    2003-11-17

    The development of practical fusion energy plants based on inertial confinement with ultraviolet laser beams requires durable, stable final optics that will withstand the harsh fusion environment. Aluminum-coated reflective surfaces are fragile, and require hard overcoatings resistant to contamination, with low optical losses at 248.4 nanometers for use with high-power KrF excimer lasers. This program addresses the definition of requirements for IFE optics protective coatings, the conceptual design of the required deposition equipment according to accepted contamination control principles, and the deposition and evaluation of diamondlike carbon (DLC) test coatings. DLC coatings deposited by Plasma Immersion Ion Processing were adherent and abrasion-resistant, but their UV optical losses must be further reduced to allow their use as protective coatings for IFE final optics. Deposition equipment for coating high-performance IFE final optics must be designed, constructed, and operated with contamination control as a high priority.

  9. Progress in inertial fusion research at the Los Alamos Scientific Laboratory. Paper No. IAEA-CN-38/B-2

    International Nuclear Information System (INIS)

    Perkins, R.B.

    1980-01-01

    The Los Alamos Scientific Laboratory Inertial Confinement Fusion Program is reviewed. Experiments using the Helios CO 2 laser system delivering up to 6 kJ on target are described. Because breakeven energy estimates for laser drivers of 1 μm and above have risen and there is a need for CO 2 experiments in the tens-of-kilojoule regime as soon as practical, a first phase of Antares construction is now directed toward completion of two of the six original modules in 1983. These modules are designed to deliver 40 kJ of CO 2 laser light on target

  10. The Physics of Inertial Fusion

    International Nuclear Information System (INIS)

    Lebedev, S

    2004-01-01

    The growing effort in inertial confinement fusion (ICF) research, with the upcoming new MJ class laser facilities, NIF in USA and LMJ in France, and the upgraded MJ z-pinch ZR facility in the USA, makes the appearance of this book by Atzeni and Meyer-ter-Vehn very timely. This book is an excellent introduction for graduate or masters level students and for researchers just entering the field. It is written in a very pedagogical way with great attention to the basic understanding of the physical processes involved. The book should also be very useful to researchers already working in the field as a reference containing many key formulas from different relevant branches of physics; experimentalists will especially appreciate the presence of 'ready-to-use' numerical formulas written in convenient practical units. The book starts with a discussion of thermonuclear reactions and conditions required to achieve high gain in ICF targets, emphasizing the importance of high compression of the D-T fuel, and compares the magnetic confinement fusion and inertial confinement fusion approaches. The next few chapters discuss in detail the basic concepts of ICF: the hydrodynamics of a spherically imploding capsule, ignition and energy gain. This is followed by a thorough discussion of the physics of thermal waves, ablative drive and hydrodynamic instabilities, with primary focus on the Rayleigh--Taylor instability. The book also contains very useful chapters discussing the properties of hot dense matter (ionization balance, equation of state and opacity) and the interaction of laser and energetic ion beams with plasma. The book is based on and reflects the research interests of the authors and, more generally, the European activity in this area. This could explain why, in my opinion, some topics are covered in less detail than they deserve, e.g. the chapter on hohlraum physics is too brief. On the other hand, the appearance in the book of an interesting chapter on the concept of

  11. The laser and its uses: 50 years after its invention

    International Nuclear Information System (INIS)

    Besnard, P.; Favennec, P.N.

    2011-01-01

    The laser, 50 years after its invention, has become a major player in modern technologies with its efficient partner the optical fiber. This book reviews the numerous applications of laser in diverse fields such as telecommunication, metrology, optical radar, surface treatment, medicine. The last chapter is dedicated to inertial fusion through the presentation of the Megajoule laser (LMJ) project

  12. ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)

    Energy Technology Data Exchange (ETDEWEB)

    Caird, J A; Agrawal, V; Bayramian, A; Beach, R; Britten, J; Chen, D; Cross, R; Ebbers, C; Erlandson, A; Feit, M; Freitas, B; Ghosh, C; Haefner, C; Homoelle, D; Ladran, T; Latkowski, J; Molander, W; Murray, J; Rubenchik, S; Schaffers, K; Siders, C W; Stappaerts, E; Sutton, S; Telford, S; Trenholme, J; Barty, C J

    2008-10-28

    We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd:glass laser technology developed for the National Ignition Facility (NIF), along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE's High Average Power Laser (HAPL) Program and embodied in LLNL's Mercury laser system. We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster's angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of $0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive.

  13. Laser-plasma accelerators, acceleration of particles through laser-matter interaction at ultra-high intensity

    International Nuclear Information System (INIS)

    Lefebvre, E.

    2010-01-01

    This series of slides overviews the development of powerful lasers for inertial confinement fusion (Icf) at NIF (National Ignition Facility, Usa) and LMJ (Laser Megajoule, France) facilities. Then the principle of laser wakefield acceleration is presented and the possibility of designing compact accelerators delivering 200 GeV/m while conventional RF accelerators reach only 50 MeV/m, is considered. This technical breakthrough will bring important gains in terms of size, cost and new uses for accelerators. While Icf will use nanosecond (10 -9 s) laser pulses, wakefield accelerators will use femtosecond (10 -15 s) laser pulses which means more power but less energy. The electrons accelerated by laser can produce a multi-MeV X radiation useful for industrial radiography or cancer treatment. (A.C.)

  14. A Smartphone Inertial Balance

    Science.gov (United States)

    Barrera-Garrido, Azael

    2017-01-01

    In order to measure the mass of an object in the absence of gravity, one useful tool for many decades has been the inertial balance. One of the simplest forms of inertial balance is made by two mass holders or pans joined together with two stiff metal plates, which act as springs.

  15. Laser Propulsion - Quo Vadis

    International Nuclear Information System (INIS)

    Bohn, Willy L.

    2008-01-01

    First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community

  16. Recent advances in long wavelength quantum dot lasers and amplifiers

    NARCIS (Netherlands)

    Nötzel, R.; Bente, E.A.J.M.; Smit, M.K.; Dorren, H.J.S.

    2009-01-01

    We demonstrate 1.55-µm InAs/InGaAsP/InP (100) quantum dot (QD) shallow and deep etched Fabry-Pérot and ring lasers, micro-ring lasers, mode-locked lasers, Butt-joint integrated lasers, polarization control of gain, and wavelength conversion in QD amplifiers.

  17. Inertially Stabilized Platforms for Precision Pointing Applications to Directed-Energy Weapons and Space-Based Lasers (Preprint)

    National Research Council Canada - National Science Library

    Negro, J; Griffin, S

    2006-01-01

    .... This article addresses directed-energy-weapon (DEW) precision pointing requirements and implementation alternatives in the context of strapdown and stable-platform inertial-reference technologies...

  18. A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition

    Science.gov (United States)

    Kuang, Longyu; Li, Hang; Jing, Longfei; Lin, Zhiwei; Zhang, Lu; Li, Liling; Ding, Yongkun; Jiang, Shaoen; Liu, Jie; Zheng, Jian

    2016-10-01

    A novel ignition hohlraum for indirect-drive inertial confinement fusion is proposed, which is named three-axis cylindrical hohlraum (TACH). TACH is a kind of 6 laser entrance holes (LEHs) hohlraum, which is orthogonally jointed of three cylindrical hohlraums. Laser beams are injected through every entrance hole with the same incident angle of 55°. A view-factor simulation result shows that the time-varying drive asymmetry of TACH is less than 1.0% in the whole drive pulse period without any supplementary technology. Coupling efficiency of TACH is close to that of 6 LEHs spherical hohlraum with corresponding size. Its plasma-filling time is close to that of typical cylindrical ignition hohlraum. Its laser plasma interaction has as low backscattering as the outer cone of the cylindrical ignition hohlraum. Therefore, TACH combines most advantages of various hohlraums and has little predictable risk, providing an important competitive candidate for ignition hohlraum.

  19. Summary of inertial fusion

    International Nuclear Information System (INIS)

    Lindl, J.

    2003-01-01

    There has been rapid progress in inertial fusion since the last IAEA meeting. This progress spans the construction of ignition facilities, a wide range of target concepts, and the pursuit of integrated programs to develop fusion energy using lasers and ion beams. Two ignition facilities are under construction (NIF in the U.S. and LMJ in France) and both projects are progressing toward an initial experimental capability. The LIL prototype beamline for LMJ and the first 4 beams of NIF will be available for experiments in about 1 year. Ignition experiments are expected to begin in 7-9 years at both facilities. There is steady progress in the target science and target fabrication in preparation for indirect drive ignition experiments on NIF and LMJ. Advanced target designs may lead to 5-10 times more yield than initial target designs. There has been excellent progress on the science of ion beam and z-pinch driven indirect drive targets. Excellent progress on direct-drive targets have been obtained at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko Petawatt facility. A broad based program to develop lasers and ions beams for IFE is under way with excellent progress in drivers, chambers, target fabrication and target injection. KrF and Diode Pumped Solid-State lasers (DPSSL) are being developed in conjunction with dry-wall chambers and direct drive targets. Induction accelerators for heavy ions are being developed in conjunction with thick-liquid protected wall chambers and indirect-drive targets. (author)

  20. Line Laser and Triple Laser Quantification of the Difference in International Roughness Index between Textured and Non-Textured Strips

    Science.gov (United States)

    2017-07-01

    Practitioners have often wondered whether, during ride measurement with inertial devices, the motion of the laser through pavement texture introduces non representative values of international roughness index (IRI), particularly in certain textures. ...

  1. Thermonuclear plasma physic: inertial confinement fusion

    International Nuclear Information System (INIS)

    Bayer, Ch.; Juraszek, D.

    2001-01-01

    Inertial Confinement Fusion (ICF) is an approach to thermonuclear fusion in which the fuel contained in a spherical capsule is strongly compressed and heated to achieve ignition and burn. The released thermonuclear energy can be much higher than the driver energy, making energetic applications attractive. Many complex physical phenomena are involved by the compression process, but it is possible to use simple analytical models to analyze the main critical points. We first determine the conditions to obtain fuel ignition. High thermonuclear gains are achieved if only a small fraction of the fuel called hot spot is used to trigger burn in the main fuel compressed on a low isentrope. A simple hot spot model will be described. The high pressure needed to drive the capsule compression are obtained by the ablation process. A simple Rocket model describe the main features of the implosion phase. Several parameters have to be controlled during the compression: irradiation symmetry, hydrodynamical stability and when the driver is a laser, the problems arising from interaction of the EM wave with the plasma. Two different schemes are examined: Indirect Drive which uses X-ray generated in a cavity to drive the implosion and the Fast Ignitor concept using a ultra intense laser beam to create the hot spot. At the end we present the Laser Megajoule (LMJ) project. LMJ is scaled to a thermonuclear gain of the order of ten. (authors)

  2. Lasers and power systems for inertial confinement fusion reactors

    International Nuclear Information System (INIS)

    Stark, E.E. Jr.

    1978-01-01

    After discussing the role of lasers in ICF and the candidate lasers, several important areas of technology requirements are discussed. These include the beam transport system, the pulsed power system and the gas flow system. The system requirements, state of the art, as well as needs and prospects for new technology developments are given. Other technology issues and promising developments are described briefly

  3. Inertial Confinement Fusion R and D and Nuclear Proliferation

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2011-01-01

    In a few months, or a few years, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory may achieve fusion gain using 192 powerful lasers to generate x-rays that will compress and heat a small target containing isotopes of hydrogen. This event would mark a major milestone after decades of research on inertial confinement fusion (ICF). It might also mark the beginning of an accelerated global effort to harness fusion energy based on this science and technology. Unlike magnetic confinement fusion (ITER, 2011), in which hot fusion fuel is confined continuously by strong magnetic fields, inertial confinement fusion involves repetitive fusion explosions, taking advantage of some aspects of the science learned from the design and testing of hydrogen bombs. The NIF was built primarily because of the information it would provide on weapons physics, helping the United States to steward its stockpile of nuclear weapons without further underground testing. The U.S. National Academies' National Research Council is now hosting a study to assess the prospects for energy from inertial confinement fusion. While this study has a classified sub-panel on target physics, it has not been charged with examining the potential nuclear proliferation risks associated with ICF R and D. We argue here that this question urgently requires direct and transparent examination, so that means to mitigate risks can be assessed, and the potential residual risks can be balanced against the potential benefits, now being assessed by the NRC. This concern is not new (Holdren, 1978), but its urgency is now higher than ever before.

  4. Laser-plasma interaction with an adaptive optics wavefront-corrected laser beam

    International Nuclear Information System (INIS)

    Lewis, K.

    2008-12-01

    The propagation of an intense laser beam trough a preformed plasma is of particular interest in order to achieve laser inertial confinement fusion. Experiments carried out with a near-diffraction limited laser beam, producing a single hot spot interacting with the plasma, delivered new results, presented in this Ph.D. dissertation. In particular the first experimental observation of the filament instability confirms the numerous theoretical and numerical studies on the subject. Beam spreading and filament-ion thresholds are studied thanks to near-field and far-field images, with respect to laser intensity, time and space, and plasma transverse velocity. Same diagnostics have been applied to the stimulated Brillouin scattered light, enabling the first observation of the transverse Brillouin activity in the plasma. (author)

  5. Effects of laser wavelength and density scale length on absorption of ultrashort intense lasers on solid-density targets

    Energy Technology Data Exchange (ETDEWEB)

    Susumu, Kato; Eiichi, Takahashi; Tatsuya, Aota; Yuji, Matsumoto; Isao, Okuda; Yoshiro, Owadano [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan)

    2004-07-01

    The interaction of intense laser pulses with overdense plasmas has attracted much interest for the fast igniter concept in inertial fusion energy. Hot electron temperatures and electron energy spectra in the course of interaction between intense laser pulse and overdense plasmas are reexamined from a viewpoint of the difference in laser wavelength. The hot electron temperature measured by a particle-in-cell simulation is scaled by I rather than I{lambda}{sup 2} at the interaction with overdense plasmas with fixed ions, where I and {lambda} are the laser intensity and wavelength, respectively. (authors)

  6. A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model: Measurement of Earth's dragging of inertial frames.

    Science.gov (United States)

    Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C; Koenig, Rolf; Ries, John; Gurzadyan, Vahe; Matzner, Richard; Penrose, Roger; Sindoni, Giampiero; Paris, Claudio; Khachatryan, Harutyun; Mirzoyan, Sergey

    2016-01-01

    We present a test of general relativity, the measurement of the Earth's dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. We measure [Formula: see text], where [Formula: see text] is the Earth's dragging of inertial frames normalized to its general relativity value, 0.002 is the 1-sigma formal error and 0.05 is our preliminary estimate of systematic error mainly due to the uncertainties in the Earth gravity model GGM05S. Our result is in agreement with the prediction of general relativity.

  7. Physics of laser fusion. Volume III. High-power pulsed lasers

    International Nuclear Information System (INIS)

    Holzrichter, J.F.; Eimerl, D.; George, E.V.; Trenholme, J.B.; Simmons, W.W.; Hunt, J.T.

    1982-09-01

    High-power pulsed lasers can deliver sufficient energy on inertial-confinement fusion (ICF) time scales (0.1 to 10 ns) to heat and compress deuterium-tritium fuel to fusion-reaction conditions. Several laser systems have been examined, including Nd:glass, CO 2 , KrF, and I 2 , for their ICF applicability. A great deal of developmental effort has been applied to the Nd:glass laser and the CO 2 gas laser systems; these systems now deliver > 10 4 J and 20 x 10 12 W to ICF targets. We are constructing the Nova Nd:glass laser at LLNL to provide > 100 kJ and > 100 x 10 12 W of 1-μm radiation for fusion experimentation in the mid-1980s. For ICF target gain > 100 times the laser input, we expect that the laser driver must deliver approx. 3 to 5 MJ of energy on a time scale of 10 to 20 ns. In this paper we review the technological status of fusion-laser systems and outline approaches to constructing high-power pulsed laser drivers

  8. The NIF: An international high energy density science and inertial fusion user facility

    Directory of Open Access Journals (Sweden)

    Moses E.I.

    2013-11-01

    Full Text Available The National Ignition Facility (NIF, a 1.8-MJ/500-TW Nd:Glass laser facility designed to study inertial confinement fusion (ICF and high-energy-density science (HEDS, is operational at Lawrence Livermore National Laboratory (LLNL. A primary goal of NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC, an international effort to achieve fusion ignition in the laboratory. To date, all of the capabilities to conduct implosion experiments are in place with the goal of demonstrating ignition and developing a predictable fusion experimental platform in 2012. The results from experiments completed are encouraging for the near-term achievement of ignition. Capsule implosion experiments at energies up to 1.6 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 15%. Important national security and basic science experiments have also been conducted on NIF. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of laser-driven Inertial Fusion Energy (IFE. This paper will describe the results achieved so far on the path toward ignition, the beginning of fundamental science experiments and the plans to transition NIF to an international user facility providing access to HEDS and fusion energy researchers around the world.

  9. The NIF: An international high energy density science and inertial fusion user facility

    Science.gov (United States)

    Moses, E. I.; Storm, E.

    2013-11-01

    The National Ignition Facility (NIF), a 1.8-MJ/500-TW Nd:Glass laser facility designed to study inertial confinement fusion (ICF) and high-energy-density science (HEDS), is operational at Lawrence Livermore National Laboratory (LLNL). A primary goal of NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC), an international effort to achieve fusion ignition in the laboratory. To date, all of the capabilities to conduct implosion experiments are in place with the goal of demonstrating ignition and developing a predictable fusion experimental platform in 2012. The results from experiments completed are encouraging for the near-term achievement of ignition. Capsule implosion experiments at energies up to 1.6 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 15%. Important national security and basic science experiments have also been conducted on NIF. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of laser-driven Inertial Fusion Energy (IFE). This paper will describe the results achieved so far on the path toward ignition, the beginning of fundamental science experiments and the plans to transition NIF to an international user facility providing access to HEDS and fusion energy researchers around the world.

  10. Prospect for inertial fusion energy

    International Nuclear Information System (INIS)

    Yamanaka, C.

    1994-01-01

    This paper presents recent inertial fusion experiments at Osaka. The inertial fusion energy reactor used for these experiments was designed according to some principles based on environmental, social and safety considerations. (TEC). 1 fig., 1 ref

  11. Investigation toward laser driven IFE (inertial fusion energy) power plant

    International Nuclear Information System (INIS)

    Nakai, S.; Kozaki, Y.; Izawa, Y.; Yamanaka, M.; Kanabe, T.; Kato, Y.; Norimatsu, T.; Nagai, K.; Nakatsuka, M.; Jitsuno, T.; Yamanaka, T.

    2000-01-01

    Based on the conceptual design of Laser Driven IFE Power Plant, the technical and physical issues have been examined. R and D on key issues which affect the feasibility of power plant has been performed taking into account the collaboration in the field of laser driver, fuel pellet, reaction chamber and system design. The coordination and collaboration organization of reactor technology experts in Japan on Laser Driven IFE Power Plant are reviewed. (authors)

  12. Inertial wave beams and inertial wave modes in a rotating cylinder with time-modulated rotation rate

    Science.gov (United States)

    Borcia, Ion D.; Ghasemi V., Abouzar; Harlander, Uwe

    2014-05-01

    Inertial gravity waves play an crucial role in atmospheres, oceans, and the fluid inside of planets and moons. In the atmosphere, the effect of rotation is neglected for small wavelength and the waves bear the character of internal gravity waves. For long waves, the hydrostatic assumption is made which in turn makes the atmosphere inelastic with respect to inertial motion. In contrast, in the Earth's interior, pure inertial waves are considered as an important fundamental part of the motion. Moreover, as the deep ocean is nearly homogeneous, there the inertial gravity waves bear the character of inertial waves. Excited at the oceans surface mainly due to weather systems the waves can propagate downward and influence the deep oceans motion. In the light of the aforesaid it is important to understand better fundamental inertial wave dynamics. We investigate inertial wave modes by experimental and numerical methods. Inertial modes are excited in a fluid filled rotating annulus by modulating the rotation rate of the outer cylinder and the upper and lower lids. This forcing leads to inertial wave beams emitted from the corner regions of the annulus due to periodic motions in the boundary layers (Klein et al., 2013). When the forcing frequency matches with the eigenfrequency of the rotating annulus the beam pattern amplitude is increasing, the beams broaden and mode structures can be observed (Borcia et al., 2013a). The eigenmodes are compared with analytical solutions of the corresponding inviscid problem (Borcia et al, 2013b). In particular for the pressure field a good agreement can be found. However, shear layers related to the excited wave beams are present for all frequencies. This becomes obvious in particular in the experimental visualizations that are done by using Kalliroscope particles, highlighting relative motion in the fluid. Comparing the eigenfrequencies we find that relative to the analytical frequencies, the experimental and numerical ones show a small

  13. Femtoslicing in Storage Rings

    CERN Document Server

    Khan, Shaukat

    2005-01-01

    The generation of ultrashort synchrotron radiation pulses by laser-induced energy modulation of electrons and their subsequent transverse displacement, now dubbed "femtoslicing," was demonstrated at the Advanced Light Source in Berkeley. More recently, a femtoslicing user facility was commissioned at the BESSY storage ring in Berlin, and another project is in progress at the Swiss Light Source. The paper reviews the principle of femtoslicing, its merits and shortcomings, as well as the variations of its technical implementation. Various diagnostics techniques to detect successful laser-electron interaction are discussed and experimental results are presented.

  14. Laser modulator for LISA pathfinder

    Science.gov (United States)

    Voland, C.; Lund, G.; Coppoolse, W.; Crosby, P.; Stadler, M.; Kudielka, K.; Özkan, C.

    2017-11-01

    LISA Pathfinder is an ESA experiment to demonstrate the key technologies needed for the LISA mission to detect gravitational waves in space. The LISA Pathfinder spacecraft represents one arm of the LISA interferometer, containing an optical metrology system and two proof masses as inertial references for the drag-free control system. The LISA Pathfinder payload consists of two drag-free floating test masses located in the inertial sensors with their control electronics and an optical metrology subsystem. The optical metrology subsystem monitors the movement of both test masses relative to each other and to the spacecraft with very high sensitivity and resolution. This is achieved with a heterodyne Mach- Zehnder interferometer. This interferometer requires as input two coherent laser beams with a heterodyne frequency difference of a few kHz. To generate the two laser beams with a heterodyne frequency difference a Nd:YAG laser is used together with the Laser Modulator. The Nd:YAG laser generates a single coherent laser signal at a wavelength of 1064nm which is fibre coupled to the Laser Modulator. The Laser Modulator then generates the two optical beams with the required heterodyne frequency offset. In addition, the Laser Modulator is required to perform laser amplitude stabilization and optical path difference control for the two optical signals. The Laser Modulator consists of an optical unit - the LMU - and RF synthesiser, power amplification and control electronics. These electronics are all housed in the Laser Modulator Electronics (LME). The LMU has four primary functions: • Splitting of the input laser beam into two paths for later superposition in the interferometer. • Applying different frequency shifts to each of the beams. • Providing amplitude modulation control to each of the beams. • Providing active control of the optical path length difference between the two optical paths. The present paper describes the design and performance of the LMU

  15. Laser for fusion energy

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1995-01-01

    Solid state lasers have proven to be very versatile tools for the study and demonstration of inertial confinement fusion principles. When lasers were first contemplated to be used for the compression of fusion fuel in the late 1950s, the laser output energy levels were nominally one joule and the power levels were 10 3 watts (pulse duration's of 10 -3 sec). During the last 25 years, lasers optimized for fusion research have been increased in power to typically 100,000 joules with power levels approaching 10 14 watts. As a result of experiments with such lasers at many locations, DT target performance has been shown to be consistent with high gain target output. However, the demonstration of ignition and gain requires laser energies of several megajoules. Laser technology improvements demonstrated over the past decade appear to make possible the construction of such multimegajoule lasers at affordable costs. (author)

  16. Hydrodynamic modelling of the shock ignition scheme for inertial confinement fusion

    International Nuclear Information System (INIS)

    Vallet, Alexandra

    2014-01-01

    The shock ignition concept in inertial confinement fusion uses an intense power spike at the end of an assembly laser pulse. The key features of shock ignition are the generation of a high ablation pressure, the shock pressure amplification by at least a factor of a hundred in the cold fuel shell and the shock coupling to the hot-spot. In this thesis, new semi-analytical hydrodynamic models are developed to describe the ignitor shock from its generation up to the moment of fuel ignition. A model is developed to describe a spherical converging shock wave in a pre-heated hot spot. The self-similar solution developed by Guderley is perturbed over the shock Mach number Ms ≥≥1. The first order correction accounts for the effects of the shock strength. An analytical ignition criterion is defined in terms of the shock strength and the hot-spot areal density. The ignition threshold is higher when the initial Mach number of the shock is lower. A minimal shock pressure of 20 Gbar is needed when it enters the hot-spot. The shock dynamics in the imploding shell is then analyzed. The shock is propagating into a non inertial medium with a high radial pressure gradient and an overall pressure increase with time. The collision with a returning shock coming from the assembly phase enhances further the ignitor shock pressure. The analytical theory allows to describe the shock pressure and strength evolution in a typical shock ignition implosion. It is demonstrated that, in the case of the HiPER target design, a generation shock pressure near the ablation zone on the order of 300-400 Mbar is needed. An analysis of experiments on the strong shock generation performed on the OMEGA laser facility is presented. It is shown that a shock pressure close to 300 Mbar near the ablation zone has been reached with an absorbed laser intensity up to 2 * 10 15 W:cm -2 and a laser wavelength of 351 nm. This value is two times higher than the one expected from collisional laser absorption only

  17. High-energy 4ω probe laser for laser-plasma experiments at Nova

    International Nuclear Information System (INIS)

    Glenzer, S.H.; Weiland, T.L.; Bower, J.; MacKinnon, A.J.; MacGowan, B.J.

    1999-01-01

    For the characterization of inertial confinement fusion plasmas, we implemented a high-energy 4ω probe laser at the Nova laser facility. A total energy of >50 J at 4ω, a focal spot size of order 100 μm, and a pointing accuracy of 100 μm was demonstrated for target shots. This laser provides intensities of up to 3x10 14 Wcm -2 and therefore fulfills high-power requirements for laser-plasma interaction experiments. The 4ω probe laser is now routinely used for Thomson scattering. Successful experiments were performed in gas-filled hohlraums at electron densities of n e >2x10 21 cm -3 which represents the highest density plasma so far being diagnosed with Thomson scattering. copyright 1999 American Institute of Physics

  18. SBS pulse compression for excimer inertial fusion energy drivers

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J. [TRW Space and Electronics Group, Redondo Beach, CA (United States). Space and Technology Div.

    1994-12-31

    A key requirement for the development of commercial fusion power plants utilizing inertial confinement fusion (ICF) as a source of thermonuclear power is the availability of reliable, efficient laser drivers. These laser drivers must be capable of delivering UV optical pulses having energies of the order of 5MJ to cryogenic deuterium-tritium (D/T) ICF targets. The current requirements for laser ICF target irradiation specify the laser wavelength, {lambda} ca. 250 nm, pulse duration, {tau}{sub p} ca. 6 ns, bandwidth, {Delta}{lambda} ca. 0.1 nm, polarization state, etc. Excimer lasers are a leading candidate to fill these demanding ICF driver requirements. However, since excimer lasers are not storage lasers, the excimer laser pulse duration, {tau}{sub pp}, is determined primarily by the length of the excitation pulse delivered to the excimer laser amplifier. Pulsed power associated with efficiently generating excimer laser pulses has a time constant, {tau}{sub pp} which falls in the range, 30 {tau}{sub p}<{tau}{sub pp}<100{tau}{sub p}. As a consequence, pulse compression is needed to convert the long excimer laser pulses to pulses of duration {tau}{sub p}. These main ICF driver pulses require, in addition, longer, lower power precursor pulses delivered to the ICF target before the arrival of the main pulse. Although both linear and non-linear optical (NLO) pulse compression techniques have been developed, computer simulations have shown that a ``chirped,`` self-seeded, stimulated Brillouin scattering (SBS) pulse compressor cell using SF{sub 6} at a density, {rho} ca. 1 amagat can efficiently compress krypton fluoride (KrF) laser pulses at {lambda}=248 nm. In order to avoid the generation of output pulses substantially shorter than {tau}{sub p}, the optical power in the chirped input SBS ``seed`` beams was ramped. Compressed pulse conversion efficiencies of up to 68% were calculated for output pulse durations of {tau}{sub p} ca. ns.

  19. Formation of x-ray Newton’s rings from nano-scale spallation shells of metals in laser ablation

    Directory of Open Access Journals (Sweden)

    Masaharu Nishikino

    2017-01-01

    Full Text Available The initial stages of the femtosecond (fs laser ablation process of gold, platinum, and tungsten were observed by single-shot soft x-ray imaging technique. The formation and evolution of soft x-ray Newton’s rings (NRs were found for the first time. The soft x-ray NRs are caused by the interference between the bulk ablated surface and nanometer-scale thin spallation layer; they originate from the metal surface at pump energy fluence of around 1 J/cm2 and work as a flying soft x-ray beam splitter.

  20. Laser plasma interactions in hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Kruer, W.L.

    1994-10-05

    Lasers plasma instabilities are an important constraint in x-ray driven inertial confinement fusion. In hohlraums irradiated with 1.06 {mu}m light on the Shiva laser, plasma instabilities were extremely deleterious, driving the program to the use of shorter wavelength light. Excellent coupling has been achieved in hohlraums driven with 0.35 {mu}m light on the Nova laser. Considerable attention is being given to the scaling of this excellent coupling to the larger hohlraums for an ignition target. Various instability control mechanisms such as large plasma wave damping and laser beam incoherence are discussed, as well as scaling experiments to check the instability levels.

  1. On inertial range scaling laws

    International Nuclear Information System (INIS)

    Bowman, J.C.

    1994-12-01

    Inertial-range scaling laws for two- and three-dimensional turbulence are re-examined within a unified framework. A new correction to Kolmogorov's k -5/3 scaling is derived for the energy inertial range. A related modification is found to Kraichnan's logarithmically corrected two-dimensional enstrophy cascade law that removes its unexpected divergence at the injection wavenumber. The significance of these corrections is illustrated with steady-state energy spectra from recent high-resolution closure computations. The results also underscore the asymptotic nature of inertial-range scaling laws. Implications for conventional numerical simulations are discussed

  2. MIGRATION OF SMALL MOONS IN SATURN's RINGS

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-02-20

    The motions of small moons through Saturn's rings provide excellent tests of radial migration models. In theory, torque exchange between these moons and ring particles leads to radial drift. We predict that moons with Hill radii r {sub H} {approx} 2-24 km should migrate through the A ring in 1000 yr. In this size range, moons orbiting in an empty gap or in a full ring eventually migrate at the same rate. Smaller moons or moonlets-such as the propellers-are trapped by diffusion of disk material into corotating orbits, creating inertial drag. Larger moons-such as Pan or Atlas-do not migrate because of their own inertia. Fast migration of 2-24 km moons should eliminate intermediate-size bodies from the A ring and may be responsible for the observed large-radius cutoff of r {sub H} {approx} 1-2 km in the size distribution of the A ring's propeller moonlets. Although the presence of Daphnis (r {sub H} Almost-Equal-To 5 km) inside the Keeler gap challenges this scenario, numerical simulations demonstrate that orbital resonances and stirring by distant, larger moons (e.g., Mimas) may be important factors. For Daphnis, stirring by distant moons seems the most promising mechanism to halt fast migration. Alternatively, Daphnis may be a recent addition to the ring that is settling into a low inclination orbit in {approx}10{sup 3} yr prior to a phase of rapid migration. We provide predictions of observational constraints required to discriminate among possible scenarios for Daphnis.

  3. Error Analysis of Inertial Navigation Systems Using Test Algorithms

    OpenAIRE

    Vaispacher, Tomáš; Bréda, Róbert; Adamčík, František

    2015-01-01

    Content of this contribution is an issue of inertial sensors errors, specification of inertial measurement units and generating of test signals for Inertial Navigation System (INS). Given the different levels of navigation tasks, part of this contribution is comparison of the actual types of Inertial Measurement Units. Considering this comparison, there is proposed the way of solving inertial sensors errors and their modelling for low – cost inertial navigation applications. The last part is ...

  4. UV-laser-based microscopic dissection of tree rings - a novel sampling tool for δ(13) C and δ(18) O studies.

    Science.gov (United States)

    Schollaen, Karina; Heinrich, Ingo; Helle, Gerhard

    2014-02-01

    UV-laser-based microscopic systems were utilized to dissect and sample organic tissue for stable isotope measurements from thin wood cross-sections. We tested UV-laser-based microscopic tissue dissection in practice for high-resolution isotopic analyses (δ(13) C/δ(18) O) on thin cross-sections from different tree species. The method allows serial isolation of tissue of any shape and from millimetre down to micrometre scales. On-screen pre-defined areas of interest were automatically dissected and collected for mass spectrometric analysis. Three examples of high-resolution isotopic analyses revealed that: in comparison to δ(13) C of xylem cells, woody ray parenchyma of deciduous trees have the same year-to-year variability, but reveal offsets that are opposite in sign depending on whether wholewood or cellulose is considered; high-resolution tree-ring δ(18) O profiles of Indonesian teak reflect monsoonal rainfall patterns and are sensitive to rainfall extremes caused by ENSO; and seasonal moisture signals in intra-tree-ring δ(18) O of white pine are weighted by nonlinear intra-annual growth dynamics. The applications demonstrate that the use of UV-laser-based microscopic dissection allows for sampling plant tissue at ultrahigh resolution and unprecedented precision. This new technique facilitates sampling for stable isotope analysis of anatomical plant traits like combined tree eco-physiological, wood anatomical and dendroclimatological studies. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  5. Circular lasers for telecommunications and rf/photonics applications

    Science.gov (United States)

    Griffel, Giora

    2000-04-01

    Following a review of ring resonator research in the past decade we shall report a novel bi-level etching technique that permits the use of standard photolithography for coupling to deeply-etched ring resonator structures. The technique is employed to demonstrate InGaAsP laterally- coupled racetrack ring resonators laser with record low threshold currents of 66 mA. The racetrack laser have curved sections of 150 micrometers radius with negligible bending loss. The lasers operate CW single mode up to nearly twice threshold with a 26 dB side-mode-suppression ratio. We shall also present a transfer matrix formalism for the analysis of ring resonator arrays and indicate application examples for flat band filter synthesis.

  6. Micro-system inertial sensing technology overview.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, James Joe

    2009-02-01

    The purpose of this report is to provide an overview of Micro-System technology as it applies to inertial sensing. Transduction methods are reviewed with capacitance and piezoresistive being the most often used in COTS Micro-electro-mechanical system (MEMS) inertial sensors. Optical transduction is the most recent transduction method having significant impact on improving sensor resolution. A few other methods are motioned which are in a R&D status to hopefully allow MEMS inertial sensors to become viable as a navigation grade sensor. The accelerometer, gyroscope and gravity gradiometer are the type of inertial sensors which are reviewed in this report. Their method of operation and a sampling of COTS sensors and grade are reviewed as well.

  7. On stimulated scattering of laser light in inertial fusion energy targets

    International Nuclear Information System (INIS)

    Nikolic, Lj; Skoric, M.M.; Ishiguro, S.; Sato, T.

    2002-11-01

    Propagation of a laser light through regions of an underdense plasma is an active research topic in laser fusion. In particular, a large effort has been invested in studies of stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) which can reflect laser energy and produce energetic particles to preheat a fusion energy target. Experiments, theory and simulations agree on a complex interplay between various laser-plasma instabilities. By particle-in-cell simulations of an underdense electron-plasma, we have found, apart from the standard SRS, a strong backscattering near the electron plasma frequency at densities beyond the quarter critical. This novel instability, recognized in recent experiments as stimulated laser scattering on a trapped electron-acoustic mode (SEAS), is absent from a classical theory of laser-parametric instabilities. A parametric excitation of SEAS instability, is explained by a three-wave resonant decay of the incident laser light into a standing backscattered wave and a slow trapped electron acoustic wave (ω p ). Large SEAS pulsations, eventually suppressed by relativistic heating of electrons, are observed in our simulations. This phenomenon seems relevant to future hohlraum target and fast ignition experiments. (author)

  8. Theory of gravitational-inertial field of universe. 2

    International Nuclear Information System (INIS)

    Davtyan, O.K.

    1978-01-01

    Application of the equations of the gravitational-inertial field to the problem of free motion in the inertial field (to the cosmologic problem) leads to results according to which (1) all Galaxies in the Universe 'disperse' from each other according to Hubble's law, (2) the 'dispersion' of bodies represents a free motion in the inertial field and Hubble's law represents a law of motion of free body in the inertial field, (3) for arbitrary mean distribution densities of space masses different from zero the space is Lobachevskian. All critical systems (with Schwarzschild radius) are specific because they exist in maximal-inertial and gravitational potentials. The Universe represents a critical system, it exists under the Schwarzschild radius. In high-potential inertial and gravitational fields the material mass in a static state or in motion with deceleration is subject to an inertial and gravitational 'annihilation'. At the maximal value of inertial and gravitational potentials (= c 2 ) the material mass is being completely 'evaporated' transforming into radiation mass. The latter is being concentrated in the 'horizon' of the critical system. All critical systems-black holes-represent geon systems, i.e. local formations of gravitational-electromagnetic radiations, held together by their own gravitational and inertial fields. The Universe, being a critical system, is 'wrapped' in a geon crown. (author)

  9. Atomic iodine laser

    International Nuclear Information System (INIS)

    Fisk, G.A.; Gusinow, M.A.; Hays, A.K.; Padrick, T.D.; Palmer, R.E.; Rice, J.K.; Truby, F.K.; Riley, M.E.

    1978-05-01

    The atomic iodine photodissociation laser has been under intensive study for a number of years. The physics associated with this system is now well understood and it is possible to produce a 0.1 nsec (or longer) near-diffraction-limited laser pulse which can be amplified with negligible temporal distortion and little spatial deformation. The output of either a saturated or unsaturated amplifier consists of a high-fidelity near-diffraction-limited, energetic laser pulse. The report is divided into three chapters. Chapter 1 is a survey of the important areas affecting efficient laser operation and summarizes the findings of Chap. 2. Chapter 2 presents detailed discussions and evaluations pertinent to pumps, chemical regeneration, and other elements in the overall laser system. Chapter 3 briefly discusses those areas that require further work and the nature of the work required to complete the full-scale evaluation of the applicability of the iodine photodissociation laser to the inertial confinement program

  10. Fourth-generation storage rings

    International Nuclear Information System (INIS)

    Galayda, J. N.

    1999-01-01

    It seems clear that a linac-driven free-electron laser is the accepted prototype of a fourth-generation facility. This raises two questions: can a storage ring-based light source join the fourth generation? Has the storage ring evolved to its highest level of performance as a synchrotrons light source? The answer to the second question is clearly no. The author thinks the answer to the first question is unimportant. While the concept of generations has been useful in motivating thought and effort towards new light source concepts, the variety of light sources and their performance characteristics can no longer be usefully summed up by assignment of a ''generation'' number

  11. Laser plasma instability experiments with KrF lasers

    International Nuclear Information System (INIS)

    Weaver, J. L.; Karasik, M.; Serlin, V.; Obenschain, S.; Chan, L-Y.; Kehne, D.; Schmitt, A. J.; Colombant, D.; Velikovich, A.; Oh, J.; Lehmberg, R. H.; Afeyan, B.; Phillips, L.; Seely, J.; Brown, C.; Feldman, U.; Aglitskiy, Y.; Mostovych, A. N.; Holland, G.

    2007-01-01

    Deleterious effects of laser-plasma instability (LPI) may limit the maximum laser irradiation that can be used for inertial confinement fusion. The short wavelength (248 nm), large bandwidth, and very uniform illumination available with krypton-fluoride (KrF) lasers should increase the maximum usable intensity by suppressing LPI. The concomitant increase in ablation pressure would allow implosion of low-aspect-ratio pellets to ignition with substantial gain (>20) at much reduced laser energy. The proposed KrF-laser-based Fusion Test Facility (FTF) would exploit this strategy to achieve significant fusion power (150 MW) with a rep-rate system that has a per pulse laser energy well below 1 MJ. Measurements of LPI using the Nike KrF laser are presented at and above intensities needed for the FTF (I∼2x10 15 W/cm 2 ). The results to date indicate that LPI is indeed suppressed. With overlapped beam intensity above the planar, single beam intensity threshold for the two-plasmon decay instability, no evidence of instability was observed via measurements of (3/2)ω o and (1/2)ω o harmonic emissions

  12. Advanced lasers for fusion

    International Nuclear Information System (INIS)

    Krupke, W.F.; George, E.V.; Haas, R.A.

    1979-01-01

    Laser drive systems' performance requirements for fusion reactors are developed following a review of the principles of inertial confinement fusion and of the technical status of fusion research lasers (Nd:glass; CO 2 , iodine). These requirements are analyzed in the context of energy-storing laser media with respect to laser systems design issues: optical damage and breakdown, medium excitation, parasitics and superfluorescence depumping, energy extraction physics, medium optical quality, and gas flow. Three types of energy-storing laser media of potential utility are identified and singled out for detailed review: (1) Group VI atomic lasers, (2) rare earth solid state hybrid lasers, and (3) rare earth molecular vapor lasers. The use of highly-radiative laser media, particularly the rare-gas monohalide excimers, are discussed in the context of short pulse fusion applications. The concept of backward wave Raman pulse compression is considered as an attractive technique for this purpose. The basic physics and device parameters of these four laser systems are reviewed and conceptual designs for high energy laser systems are presented. Preliminary estimates for systems efficiencies are given. (Auth.)

  13. Numerical investigation into the highly nonlinear heat transfer equation with bremsstrahlung emission in the inertial confinement fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Habibi, M.; Oloumi, M.; Hosseinkhani, H.; Magidi, S. [Plasma and Fusion Research School, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2015-10-15

    A highly nonlinear parabolic partial differential equation that models the electron heat transfer process in laser inertial fusion has been solved numerically. The strong temperature dependence of the electron thermal conductivity and heat loss term (Bremsstrahlung emission) makes this a highly nonlinear process. In this case, an efficient numerical method is developed for the energy transport mechanism from the region of energy deposition into the ablation surface by a combination of the Crank-Nicolson scheme and the Newton-Raphson method. The quantitative behavior of the electron temperature and the comparison between analytic and numerical solutions are also investigated. For more clarification, the accuracy and conservation of energy in the computations are tested. The numerical results can be used to evaluate the nonlinear electron heat conduction, considering the released energy of the laser pulse at the Deuterium-Tritium (DT) targets and preheating by heat conduction ahead of a compression shock in the inertial confinement fusion (ICF) approach. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

    International Nuclear Information System (INIS)

    Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Hahn, K. D.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Ruiz, C. L.; Sinars, D. B.; Harding, E. C.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Smith, I. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Harvey-Thompson, A. J.; Hess, M. H.

    2015-01-01

    The magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 10 12 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm 3 . In these experiments, up to 5 × 10 10 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm 2 , this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 10 10 . An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source

  15. Mode-selective symmetry control for indirect-drive inertial confinement fusion hohlraums

    International Nuclear Information System (INIS)

    Vesey, R. A.; Slutz, S. A.; Herrmann, M. C.; Mehlhorn, T. A.; Campbell, R. B.

    2008-01-01

    Achieving a high degree of radiation symmetry is a critical feature of target designs for indirect-drive inertial confinement fusion. Typically, the radiation flux incident on the capsule is required to be uniform to 1% or better. It is generally possible to design a hohlraum that provides low values of higher-order asymmetry (Legendre mode P 10 and above) due to geometric averaging effects. Because low-order intrinsic asymmetry (e.g., Legendre modes P 2 and P 4 ) are less strongly reduced by geometric averaging alone, the development of innovative control techniques has been an active area of research in the inertial fusion community over the years. Shields placed inside the hohlraum are one example of a technique that has often been proposed and incorporated into hohlraum target designs. Simple mathematical considerations are presented indicating that radiation shields may be designed to specifically tune lower-order modes (e.g., P 4 ) without deleterious effects on the higher order modes. Two-dimensional view factor and radiation-hydrodynamics simulations confirm these results and support such a path to achieving a highly symmetric x-ray flux. The term ''mode-selective'' is used because these shields, essentially ring structures offset from the capsule, are designed to affect only a specific Legendre mode (or multiple modes) of interest

  16. Inertial Sensor-Based Gait Recognition: A Review

    Science.gov (United States)

    Sprager, Sebastijan; Juric, Matjaz B.

    2015-01-01

    With the recent development of microelectromechanical systems (MEMS), inertial sensors have become widely used in the research of wearable gait analysis due to several factors, such as being easy-to-use and low-cost. Considering the fact that each individual has a unique way of walking, inertial sensors can be applied to the problem of gait recognition where assessed gait can be interpreted as a biometric trait. Thus, inertial sensor-based gait recognition has a great potential to play an important role in many security-related applications. Since inertial sensors are included in smart devices that are nowadays present at every step, inertial sensor-based gait recognition has become very attractive and emerging field of research that has provided many interesting discoveries recently. This paper provides a thorough and systematic review of current state-of-the-art in this field of research. Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait. Furthermore, these approaches have also revealed considerable breakthrough by realistic use in uncontrolled circumstances, showing great potential for their further development and wide applicability. PMID:26340634

  17. Application of Mobile Laser Scanning for Lean and Rapid Highway Maintenance and Construction

    Science.gov (United States)

    2015-08-28

    Mobile Terrestrial Laser Scanning (MTLS) is an emerging technology that combines the use of a laser scanner(s), the Global Navigation Satellite System (GNSS), and an Inertial Measurement Unit (IMU) on a vehicle to collect geo-spatial data. The overal...

  18. Inertial fusion program in Japan and ignition experiment facility by laser

    International Nuclear Information System (INIS)

    Nakai, S.

    1989-01-01

    The recent progress in laser fusion research is remarkable with respect to obtaining the high density and high temperature plasma which produces thermonuclear neutrons of 10 13 per shot (pellet gain of 0.2%) and to the understanding of implosion physics. Data bases for laser fusion have been accumulated and technologies for advanced experiments have been developed, both of which enable us to make the reserarch step toward the fusion ignition experiment and the achievement of the breakeven condition, which is estimated to be possible with a 100 kJ blue laser. The demonstration of high gain pellets requires laser energy in the range MJ in blue light. The design studies of the MJ laser are continue in the framework of the solid state laser at ILE. The design studies on the commercial reactor of ICF have proceeded and several conceptual designs have been proposed. These designs utilize a liquid metal first wall and blanket which enable long life for commercial use. As a consequence, the ICF reactor has technically a high feasibility for commercial application. (orig.)

  19. Inertial confinement fusion and fast ignitor studies

    International Nuclear Information System (INIS)

    Willi, O.; Barringer, L.; Bell, A.

    1999-01-01

    The paper discusses inertial confinement fusion research carried out at several different laser facilities including the VULCAN laser at the Rutherford Appleton Laboratory, the TRIDENT laser at the Los Alamos National Laboratory and the PHEBUS laser at Limeil. Low density foam targets were irradiated either with nanosecond laser or soft x-ray pulses. Laser imprinting was studied and in particular saturation of areal density perturbations induced by near-single mode laser imprinting has been observed. Several issues important for the foam buffered direct drive scheme were investigated. These studies included measurements of the absolute levels of Stimulated Brillouin and Raman Scattering observed from laser irradiated low density foam targets either bare or overcoated with a thin layer of gold. A novel scheme is proposed to increase the pressure in indirectly driven targets. Low density foams that are mounted onto a foil target are heated with an intense pulse of soft x-ray radiation. If the foam is heated supersonically the pressure generated is not only the ablation pressure but the combined pressure due to ablation at the foam/foil interface and the heated foam material. The scheme was confirmed on planar targets. Brominated foil targets overcoated with a low density foam were irradiated by a soft x-ray pulse emitted from a hohlraum. The pressure was obtained by comparing the rear side trajectory of the driven target observed by soft x-ray radiography to one dimensional radiation hydrodynamic simulations. Further, measurements were carried out to observe the transition from super- to subsonic propagation of an ionisation front in low density chlorinated foam targets irradiated by an intense soft x-ray pulse both in open and confined geometry. The diagnostic for these measurements was K-shell point projection absorption spectroscopy. In the fast ignitor area the channeling and guiding of picosecond laser pulses through underdense plasmas, preformed density

  20. Inertial confinement fusion and fast ignitor studies

    International Nuclear Information System (INIS)

    Willi, O.; Barringer, L.; Bell, A.

    2001-01-01

    The paper discusses inertial confinement fusion research carried out at several different laser facilities including the VULCAN laser at the Rutherford Appleton Laboratory, the TRIDENT laser at the Los Alamos National Laboratory and the PHEBUS laser at Limeil. Low density foam targets were irradiated either with nanosecond laser or soft x-ray pulses. Laser imprinting was studied and in particular saturation of areal density perturbations induced by near-single mode laser imprinting has been observed. Several issues important for the foam buffered direct drive scheme were investigated. These studies included measurements of the absolute levels of Stimulated Brillouin and Raman Scattering observed from laser irradiated low density foam targets either bare or overcoated with a thin layer of gold. A novel scheme is proposed to increase the pressure in indirectly driven targets. Low density foams that are mounted onto a foil target are heated with an intense pulse of soft x-ray radiation. If the foam is heated supersonically the pressure generated is not only the ablation pressure but the combined pressure due to ablation at the foam/foil interface and the heated foam material. The scheme was confirmed on planar targets. Brominated foil targets overcoated with a low density foam were irradiated by a soft x-ray pulse emitted from a hohlraum. The pressure was obtained by comparing the rear side trajectory of the driven target observed by soft x-ray radiography to one dimensional radiation hydrodynamic simulations. Further, measurements were carried out to observe the transition from super- to subsonic propagation of an ionisation front in low density chlorinated foam targets irradiated by an intense soft x-ray pulse both in open and confined geometry. The diagnostic for these measurements was K-shell point projection absorption spectroscopy. In the fast ignitor area the channeling and guiding of picosecond laser pulses through underdense plasmas, preformed density

  1. Cavity ring-down technique for measurement of reflectivity of high ...

    Indian Academy of Sciences (India)

    Laser & Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400 085,. India. *Corresponding author. E-mail: gsridhar@barc.gov.in. Abstract. A simple, accurate and reliable method for measuring the reflectivity of laser- ... Keywords. Cavity ring-down method; reflectivity measurement; optical resonator.

  2. New issues and direction in the U.S. Inertial Confinement Fusion Program

    International Nuclear Information System (INIS)

    Sluyter, M.M.

    1995-01-01

    In pursuit of its goal of developing a laboratory microfusion capability for both defense and other applications, the US Inertial Confinement Fusion (ICF) Program has developed a set of laser and light ion research facilities which, with their supporting components, represent the most advanced set of high energy density physics research capabilities in the world. The US ICF Program is considering both direct and indirect drive as a path to ignition. In the former, a deuterium-tritium (DT) filled spherical capsule is directly imploded using laser light, while in the latter driver (laser or light ion) energy is converted to x-rays which are then used to implode a capsule. The latter results in greater drive symmetry and reduced hydrodynamic instability at a cost in efficiency. The Program's major direct drive laser facilities are the NIKE KrF laser at the Naval Research Laboratory (NRL) and the Nd-glass OMEGA Upgrade laser at the University of Rochester. The 40-kJ Nova laser at the Lawrence Livermore National Laboratory (LLNL), completed in 1984, is the Program's major indirect drive facility. In addition to their Program related work, a number of these facilities are now available to outside users through a proposal submission process. The next few years are expected to be very exciting for ICF as experiments commence on OMEGA Upgrade and NIKE and efforts continue to construct the National Ignition Facility (NIF) a large glass laser which is designed to demonstrate ignition in the laboratory

  3. Molten Salt Fuel Version of Laser Inertial Fusion Fission Energy (LIFE)

    International Nuclear Information System (INIS)

    Moir, R.W.; Shaw, H.F.; Caro, A.; Kaufman, L.; Latkowski, J.F.; Powers, J.; Turchi, P.A.

    2008-01-01

    Molten salt with dissolved uranium is being considered for the Laser Inertial Confinement Fusion Fission Energy (LIFE) fission blanket as a backup in case a solid-fuel version cannot meet the performance objectives, for example because of radiation damage of the solid materials. Molten salt is not damaged by radiation and therefore could likely achieve the desired high burnup (>99%) of heavy atoms of 238 U. A perceived disadvantage is the possibility that the circulating molten salt could lend itself to misuse (proliferation) by making separation of fissile material easier than for the solid-fuel case. The molten salt composition being considered is the eutectic mixture of 73 mol% LiF and 27 mol% UF 4 , whose melting point is 490 C. The use of 232 Th as a fuel is also being studied. ( 232 Th does not produce Pu under neutron irradiation.) The temperature of the molten salt would be ∼550 C at the inlet (60 C above the solidus temperature) and ∼650 C at the outlet. Mixtures of U and Th are being considered. To minimize corrosion of structural materials, the molten salt would also contain a small amount (∼1 mol%) of UF 3 . The same beryllium neutron multiplier could be used as in the solid fuel case; alternatively, a liquid lithium or liquid lead multiplier could be used. Insuring that the solubility of Pu 3+ in the melt is not exceeded is a design criterion. To mitigate corrosion of the steel, a refractory coating such as tungsten similar to the first wall facing the fusion source is suggested in the high-neutron-flux regions; and in low-neutron-flux regions, including the piping and heat exchangers, a nickel alloy, Hastelloy, would be used. These material choices parallel those made for the Molten Salt Reactor Experiment (MSRE) at ORNL. The nuclear performance is better than the solid fuel case. At the beginning of life, the tritium breeding ratio is unity and the plutonium plus 233 U production rate is ∼0.6 atoms per 14.1 MeV neutron

  4. Fast all-optical multistate flip-flop operation realized by a single self-sustained micro-ring laser memory cell

    International Nuclear Information System (INIS)

    Wang, Zhuoran; Yuan, Guohui

    2013-01-01

    We investigate all-optical multistate flip-flop operation realized by a single self-sustained micro-ring laser memory cell based on a time-domain multi-mode nonlinear model. Each state is written by the corresponding 100 ps-width input non-return-to-zero (NRZ) pulse carrying the directional and wavelength information, and the cell remains in the written state until another trigger arrives. The effects of key parameters including the detuning frequency and injection power ratio on the injection locking and flipping regions of different modes in both directions of the micro-ring device are studied. By optimizing the operation conditions, we simulate the minimal switching speed for each mode. The fast switching speed of less than 20 ps and up to ten mode flip-flop operation indicate that this single optical memory cell can support ten states at a data rate of at least 10 Gbps, which is particularly valuable for the realization of future all-optical networking and functional sub-system technology. (letter)

  5. Developmental Test of the Honeywell Laser Inertial Navigation System (LINS)

    Science.gov (United States)

    1975-11-01

    The ISA contains three Systron Donner 4841F-10 single axis accelerometers and three Honeywell GG1300- AEOI laser gyros in an orthogonal strapdown...DIAG.1,kM AN.D PHYSICAL CHARACTERISTICS The GG1300- AEOI laser gyro, shown schematically in Figure 2, has the following performance goals which were

  6. Alternate laser fusion drivers

    International Nuclear Information System (INIS)

    Pleasance, L.D.

    1979-11-01

    One objective of research on inertial confinement fusion is the development of a power generating system based on this concept. Realization of this goal will depend on the availability of a suitable laser or other system to drive the power plant. The primary laser systems used for laser fusion research, Nd 3+ : Glass and CO 2 , have characteristics which may preclude their use for this application. Glass lasers are presently perceived to be incapable of sufficiently high average power operation and the CO 2 laser may be limited by and issues associated with target coupling. These general perceptions have encouraged a search for alternatives to the present systems. The search for new lasers has been directed generally towards shorter wavelengths; most of the new lasers discovered in the past few years have been in the visible and ultraviolet region of the spectrum. Virtually all of them have been advocated as the most promising candidate for a fusion driver at one time or another

  7. Fusion energy in an inertial electrostatic confinement device using a magnetically shielded grid

    Energy Technology Data Exchange (ETDEWEB)

    Hedditch, John, E-mail: john.hedditch@sydney.edu.au; Bowden-Reid, Richard, E-mail: rbow3948@physics.usyd.edu.au; Khachan, Joe, E-mail: joe.khachan@sydney.edu.au [School of Physics, The University of Sydney, Sydney, New South Whales 2006 (Australia)

    2015-10-15

    Theory for a gridded inertial electrostatic confinement (IEC) fusion system is presented, which shows a net energy gain is possible if the grid is magnetically shielded from ion impact. A simplified grid geometry is studied, consisting of two negatively biased coaxial current-carrying rings, oriented such that their opposing magnetic fields produce a spindle cusp. Our analysis indicates that better than break-even performance is possible even in a deuterium-deuterium system at bench-top scales. The proposed device has the unusual property that it can avoid both the cusp losses of traditional magnetic fusion systems and the grid losses of traditional IEC configurations.

  8. Survey and alignment of the Fermilab recycler antiproton storage ring

    International Nuclear Information System (INIS)

    Arics, Babatunde O.O.

    1999-01-01

    In June of 1999 Fermilab commissioned a newly constructed antiproton storage ring, the 'Recycler Ring', in the Main Injector tunnel directly above the Main Injector beamline. The Recycler Ring is a fixed 8 GeV kinetic energy storage ring and is constructed of strontium ferrite permanent magnets. The 3319.4-meter-circumference Recycler Ring consists of 344 gradient magnets and 100 quadrupoles all of which are permanent magnets. This paper discusses the methods employed to survey and align these permanent magnets within the Recycler Ring with the specified accuracy. The Laser Tracker was the major instrument used for the final magnet alignment. The magnets were aligned along the Recycler Ring with a relative accuracy of ±0.25 mm. (author)

  9. Neutron penumbral imaging of laser-fusion targets

    International Nuclear Information System (INIS)

    Lerche, R.A.; Ress, D.B.

    1988-01-01

    Using a new technique, penumbral coded-aperture imaging, the first neutron images of laser-driven, inertial-confinement fusion targets were obtained. With these images the deuterium-tritium burn region within a compressed target can be measured directly. 4 references, 11 figures

  10. Inertial Confinement Fusion Annual Report 1997

    International Nuclear Information System (INIS)

    Correll, D

    1998-01-01

    The ICF Annual Report provides documentation of the achievements of the LLNL ICF Program during the fiscal year by the use of two formats: (1) an Overview that is a narrative summary of important results for the fiscal year and (2) a compilation of the articles that previously appeared in the ICF Quarterly Report that year. Both the Overview and Quarterly Report are also on the Web at http://lasers.llnl.gov/lasers/pubs/icfq.html. Beginning in Fiscal Year 1997, the fourth quarter issue of the ICF Quarterly was no longer printed as a separate document but rather included in the ICF Annual. This change provided a more efficient process of documenting our accomplishments with-out unnecessary duplication of printing. In addition we introduced a new document, the ICF Program Monthly Highlights. Starting with the September 1997 issue and each month following, the Monthly Highlights will provide a brief description of noteworthy activities of interest to our DOE sponsors and our stakeholders. The underlying theme for LLNL's ICF Program research continues to be defined within DOE's Defense Programs missions and goals. In support of these missions and goals, the ICF Program advances research and technology development in major interrelated areas that include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology. While in pursuit of its goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application of inertial fusion energy for civilian power production. ICF technologies continue to have spin-off applications for additional government and industrial use. In addition to these topics, the ICF Annual Report covers non-ICF funded, but related, laser research and development and associated applications. We also

  11. Numerical methods for Lagrangian hydrodynamics applied to inertial fusion

    International Nuclear Information System (INIS)

    Maire, P.H.; Breil, J.; Galera, S.; Schurtz, G.

    2009-01-01

    CHIC is a code of Lagrangian hydrodynamics and implosion that has been developed since 2003 for the simulation of plasma experiments concerning inertial fusion. The transport of electron energy is assured with the Spitzer-Harm diffusion model with flux limiter. The propagation of the laser beams inside the plasma is computed by an algorithm of 3-dimensional beam launching that takes into account refraction as well as collisional absorption. The self-generated transverse magnetic fields are assessed by a magnetohydrodynamics model that stems from a generalized Ohm's law. The coupling with electron energy transport is assured with Braginskii conduction model. The validation of this code has been performed with various plasma experiments. (A.C.)

  12. Manipulating femtosecond spin-orbit torques with laser pulse sequences to control magnetic memory states and ringing

    Science.gov (United States)

    Lingos, P. C.; Wang, J.; Perakis, I. E.

    2015-05-01

    Femtosecond (fs) coherent control of collective order parameters is important for nonequilibrium phase dynamics in correlated materials. Here, we propose such control of ferromagnetic order based on using nonadiabatic optical manipulation of electron-hole (e -h ) photoexcitations to create fs carrier-spin pulses with controllable direction and time profile. These spin pulses are generated due to the time-reversal symmetry breaking arising from nonperturbative spin-orbit and magnetic exchange couplings of coherent photocarriers. By tuning the nonthermal populations of exchange-split, spin-orbit-coupled semiconductor band states, we can excite fs spin-orbit torques that control complex magnetization pathways between multiple magnetic memory states. We calculate the laser-induced fs magnetic anisotropy in the time domain by using density matrix equations of motion rather than the quasiequilibrium free energy. By comparing to pump-probe experiments, we identify a "sudden" out-of-plane magnetization canting displaying fs magnetic hysteresis, which agrees with switchings measured by the static Hall magnetoresistivity. This fs transverse spin-canting switches direction with magnetic state and laser frequency, which distinguishes it from the longitudinal nonlinear optical and demagnetization effects. We propose that sequences of clockwise or counterclockwise fs spin-orbit torques, photoexcited by shaping two-color laser-pulse sequences analogous to multidimensional nuclear magnetic resonance (NMR) spectroscopy, can be used to timely suppress or enhance magnetic ringing and switching rotation in magnetic memories.

  13. KrF laser kinetics studies

    International Nuclear Information System (INIS)

    Mandl, A.; Klimek, D.; Parks, J.H.

    1984-01-01

    A series of measurements characterizing an e beam pumped KrF* laser was carried out using a 200-nsec e-beam pulse having a rise time of 25 nsec at current densities up to 50 A/cm 2 . These pump conditions are relevent for inertial confinement fusion laser drivers. The measurements include fluorescence efficiency, sidelight suppression of the fluorescence during lasing, and laser energy output over a wide range of laser parameters including: total density 0.5--2.0 amagats, temperature 300--400 K, fluorine density 0.15%--0.5%, current density 38--50 A/cm 2 and various mirror transmissions. This data was used to verify and refine a model of KrF* kinetics which was then used to estimate the performance of an angular multiplexed power amplifier suitable for laser fusion applications

  14. Neutronics of Laser Fission-Fusion Systems

    International Nuclear Information System (INIS)

    Velarde, G.

    1976-01-01

    Neutronics of Fission-Fusion microsystems inertially confined by Lasers are analysed by transport calculation, both stationary (DTF, TIHOC) and time dependent (TDA, TIHEX), discussing the results obtained for the basic parameters of the fission process (multiplication factor, neutron generation time and Rossi-∞). (Author) 14 refs

  15. Neutronics of Laser Fission-Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, G

    1976-07-01

    Neutronics of Fission-Fusion microsystems inertially confined by Lasers are analysed by transport calculation, both stationary (DTF, TIHOC) and time dependent (TDA, TIHEX), discussing the results obtained for the basic parameters of the fission process (multiplication factor, neutron generation time and Rossi-{infinity}). (Author) 14 refs.

  16. Recent progress in inertial confinement fusion at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.; Manes, K.R.

    1979-01-01

    The Shiva and Argus laser systems at Livermore have been developed to study the physics of inertial confinement fusion. Both laser system designs are predicated on the use of large aperture Nd-glass disk amplifiers and high power spatial filters. During the past year we have irradiated DT filled microshell targets with and without polymer coatings. Recently new instruments have been developed to investigate implosion dynamics and to determine the maximum fuel density achieved by these imploded fusion pellets. A series of target irradiations with thin wall microshells at 15 to 20 TW, exploding pusher designs, resulted in a maximum neutron yield of 3 x 10 10 . Polymer coated microshells designed for high compression were subjected to 4 kJ for 0.2 ns and reached fuel densities of 2.0 to 3.0 gm/cm 3 . Results of these and other recent experiments will be reviewed

  17. Inertial fusion commercial power plants

    International Nuclear Information System (INIS)

    Logan, B.G.

    1994-01-01

    This presentation discusses the motivation for inertial fusion energy, a brief synopsis of five recently-completed inertial fusion power plant designs, some general conclusions drawn from these studies, and an example of an IFE hydrogen synfuel plant to suggest that future fusion studies consider broadening fusion use to low-emission fuels production as well as electricity

  18. Dynamic response of materials on subnanosecond time scales, and beryllium properties for inertial confinement fusion

    International Nuclear Information System (INIS)

    Swift, Damian C.; Tierney, Thomas E.; Luo Shengnian; Paisley, Dennis L.; Kyrala, George A.; Hauer, Allan; Greenfield, Scott R.; Koskelo, Aaron C.; McClellan, Kenneth J.; Lorenzana, Hector E.; Kalantar, Daniel; Remington, Bruce A.; Peralta, Pedro; Loomis, Eric

    2005-01-01

    During the past few years, substantial progress has been made in developing experimental techniques capable of investigating the response of materials to dynamic loading on nanosecond time scales and shorter, with multiple diagnostics probing different aspects of the behavior. These relatively short time scales are scientifically interesting because plastic flow and phase changes in common materials with simple crystal structures--such as iron--may be suppressed, allowing unusual states to be induced and the dynamics of plasticity and polymorphism to be explored. Loading by laser-induced ablation can be particularly convenient: this technique has been used to impart shocks and isentropic compression waves from ∼1 to 200 GPa in a range of elements and alloys, with diagnostics including line imaging surface velocimetry, surface displacement (framed area imaging), x-ray diffraction (single crystal and polycrystal), ellipsometry, and Raman spectroscopy. A major motivation has been the study of the properties of beryllium under conditions relevant to the fuel capsule in inertial confinement fusion: magnetically driven shock and isentropic compression shots at Z were used to investigate the equation of state and shock melting characteristics, complemented by laser ablation experiments to investigate plasticity and heterogeneous response from the polycrystalline microstructure. These results will help to constrain acceptable tolerances on manufacturing, and possible loading paths, for inertial fusion ignition experiments at the National Ignition Facility. Laser-based techniques are being developed further for future material dynamics experiments, where it should be possible to obtain high quality data on strength and phase changes up to at least 1 TPa

  19. A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. Measurement of Earth's dragging of inertial frames

    Energy Technology Data Exchange (ETDEWEB)

    Ciufolini, Ignazio [Universita del Salento, Dipartimento Ingegneria dell' Innovazione, Lecce (Italy); Sapienza Universita di Roma, Scuola di Ingegneria Aerospaziale, Rome (Italy); Paolozzi, Antonio; Paris, Claudio [Sapienza Universita di Roma, Scuola di Ingegneria Aerospaziale, Rome (Italy); Museo della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome (Italy); Pavlis, Erricos C. [University of Maryland, Joint Center for Earth Systems Technology (JCET), Baltimore County (United States); Koenig, Rolf [GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam (Germany); Ries, John [University of Texas at Austin, Center for Space Research, Austin (United States); Gurzadyan, Vahe; Khachatryan, Harutyun; Mirzoyan, Sergey [Alikhanian National Laboratory and Yerevan State University, Center for Cosmology and Astrophysics, Yerevan (Armenia); Matzner, Richard [University of Texas at Austin, Theory Center, Austin (United States); Penrose, Roger [University of Oxford, Mathematical Institute, Oxford (United Kingdom); Sindoni, Giampiero [Sapienza Universita di Roma, DIAEE, Rome (Italy)

    2016-03-15

    We present a test of general relativity, the measurement of the Earth's dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. We measure μ = (0.994 ± 0.002) ± 0.05, where μ is the Earth's dragging of inertial frames normalized to its general relativity value, 0.002 is the 1-sigma formal error and 0.05 is our preliminary estimate of systematic error mainly due to the uncertainties in the Earth gravity model GGM05S. Our result is in agreement with the prediction of general relativity. (orig.)

  20. Contributions of the National Ignition Facility to the development of Inertial Fusion Energy

    International Nuclear Information System (INIS)

    Tobin, M.; Logan, G.; Diaz De La Rubia, T.; Schrock, V.; Schultz, K.; Tokheim, R.; Abdou, M.; Bangerter, R.

    1994-06-01

    The Department of Energy is proposing to construct the National Ignition Facility (NIF) to embark on a program to achieve ignition and modest gain in the laboratory early in the next century. The NIF will use a ≥ 1.8-MJ, 0.35-mm laser with 192 independent beams, a fifty-fold increase over the energy of the Nova laser. System performance analyses suggest yields as great as 20 MJ may be achievable. The benefits of a micro-fusion capability in the laboratory include: essential contributions to defense programs, resolution of important Inertial Fusion Energy issues, and unparalleled conditions of energy density for basic science and technology research. We have begun to consider the role the National Ignition Facility will fill in the development of Inertial Fusion Energy. While the achievement of ignition and gain speaks for itself in terms of its impact on developing IFE, we believe there are areas of IFE development such as fusion power technology, IFE target design and fabrication, and understanding chamber dynamics, that would significantly benefit from NIF experiments. In the area of IFE target physics, ion targets will be designed using the NIF laser, and feasibility of high gain targets will be confirmed. Target chamber dynamics experiments will benefit from x-ray and debris energies that mimic in-IFE-chamber conditions. Fusion power technology will benefit from using single-shot neutron yields to measure spatial distribution of neutron heating, activation, and tritium breeding in relevant materials. IFE target systems will benefit from evaluating low-cost target fabrication techniques by testing such targets on NIF. Additionally, we believe it is feasible to inject up to four targets and engage them with the NIF laser by triggering the beams in groups of ∼50 separated in time by ∼0.1 s. Sub-ignition neutron yields would allow an indication of symmetry achieved in such proof-of-principle rep-rate experiments

  1. Lightweight, Miniature Inertial Measurement System

    Science.gov (United States)

    Tang, Liang; Crassidis, Agamemnon

    2012-01-01

    A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.

  2. Synchronisation of self-oscillations in a solid-state ring laser with pump modulation in the region of parametric resonance between self-modulation and relaxation oscillations

    International Nuclear Information System (INIS)

    Dudetskiy, V Yu; Lariontsev, E G; Chekina, S N

    2014-01-01

    The synchronisation of the self-modulation oscillation frequency in a Nd : YAG ring laser by an external periodic signal modulating the pump power in the region of parametric resonance between self-modulation and relaxation oscillations is studied theoretically and experimentally. The characteristic features of synchronisation processes in lasers operating in the self-modulation regime of the first kind and in the regime with a doubled self-modulation period are considered. Two bistable branches of synchronisation of self-modulation oscillations are found by numerical calculation. The experimental data agree well with the numerical simulation results for one of these branches, but the other branch of bistable self-modulation oscillations was not observed experimentally. (control of laser radiation parameters)

  3. Inertial algorithms for the stationary Navier-Stokes equations

    NARCIS (Netherlands)

    Hou, Yanren; Mattheij, R.M.M.

    2003-01-01

    Several kind of new numerical schemes for the stationary Navier-Stokes equations based on the virtue of Inertial Manifold and Approximate Inertial Manifold, which we call them inertial algorithms in this paper, together with their error estimations are presented. All these algorithms are constructed

  4. First demonstration of laser engagement of 1-Hz-injected flying pellets and neutron generation

    Science.gov (United States)

    Komeda, Osamu; Nishimura, Yasuhiko; Mori, Yoshitaka; Hanayama, Ryohei; Ishii, Katsuhiro; Nakayama, Suisei; Kitagawa, Yoneyoshi; Sekine, Takashi; Sato, Nakahiro; Kurita, Takashi; Kawashima, Toshiyuki; Kan, Hirofumi; Nakamura, Naoki; Kondo, Takuya; Fujine, Manabu; Azuma, Hirozumi; Motohiro, Tomoyoshi; Hioki, Tatsumi; Kakeno, Mitsutaka; Sunahara, Atsushi; Sentoku, Yasuhiko; Miura, Eisuke

    2013-01-01

    Pellet injection and repetitive laser illumination are key technologies for realizing inertial fusion energy. Numerous studies have been conducted on target suppliers, injectors, and tracking systems for flying pellet engagement. Here we for the first time demonstrate the pellet injection, counter laser beams' engagement and neutron generation. Deuterated polystyrene (CD) bead pellets, after free-falling for a distance of 18 cm at 1 Hz, are successfully engaged by two counter laser beams from a diode-pumped, ultra-intense laser HAMA. The laser energy, pulse duration, wavelength, and the intensity are 0.63 J per beam, 104 fs, and 811 nm, 4.7 × 1018 W/cm2, respectively. The irradiated pellets produce D(d,n)3He-reacted neutrons with a maximum yield of 9.5 × 104/4π sr/shot. Moreover, the laser is found out to bore a straight channel with 10 μm-diameter through the 1-mm-diameter beads. The results indicate potentially useful technologies and findings for the next step in realizing inertial fusion energy. PMID:24008696

  5. Power Laser Ablation Symposia

    CERN Document Server

    Phipps, Claude

    2007-01-01

    Laser ablation describes the interaction of intense optical fields with matter, in which atoms are selectively driven off by thermal or nonthermal mechanisms. The field of laser ablation physics is advancing so rapidly that its principal results are seen only in specialized journals and conferences. This is the first book that combines the most recent results in this rapidly advancing field with authoritative treatment of laser ablation and its applications, including the physics of high-power laser-matter interaction. Many practical applications exist, ranging from inertial confinement fusion to propulsion of aerostats for pollution monitoring to laser ignition of hypersonic engines to laser cleaning nanoscale contaminants in high-volume computer hard drive manufacture to direct observation of the electronic or dissociative states in atoms and molecules, to studying the properties of materials during 200kbar shocks developed in 200fs. Selecting topics which are representative of such a broad field is difficu...

  6. Design and performance of large area monolithic electron guns for the Aurora KrF laser system

    International Nuclear Information System (INIS)

    Kang, M.; Rosocha, L.A.; Romero, V.O.; Van Haaften, F.W.; Brucker, J.P.

    1985-01-01

    Aurora is an inertial confinement fusion laser system using optical angular multiplexing and a chain of four cold cathode electron beam driven KrF laser amplifiers to produce 10 to 20 kJ of optical energy

  7. Molecular spectrum of laterally coupled quantum rings under intense terahertz radiation.

    Science.gov (United States)

    Baghramyan, Henrikh M; Barseghyan, Manuk G; Laroze, David

    2017-09-05

    We study the influence of intense THz laser radiation and electric field on molecular states of laterally coupled quantum rings. Laser radiation shows the capability to dissociate quantum ring molecule and add 2-fold degeneracy to the molecular states at the fixed value of the overlapping size between rings. It is shown that coupled to decoupled molecular states phase transition points form almost a straight line with a slope equal to two. In addition, the electric field direction dependent energy spectrum shows unexpected oscillations, demonstrating strong coupling between molecular states. Besides, intraband absorption is considered, showing both blue and redshifts in its spectrum. The obtained results can be useful for the controlling of degeneracy of the discrete energy spectrum of nanoscale structures and in the tunneling effects therein.

  8. Love waves trains observed after the MW 8.1 Tehuantepec earthquake by an underground ring laser gyroscope

    Science.gov (United States)

    Simonelli, A.; Belfi, J.; Beverini, N.; Di Virgilio, A.; Giacomelli, U.; De Luca, G.; Igel, H.

    2017-12-01

    We report the observation and analysis of the MW 8.1 Tehuantepec earthquake-induced rotational ground motion as observed by the Gingerino ring laser gyroscope (RLG).This instrument is located inside the National laboratory of the "Istituto Nazionale di Fisica Nucleare" in Gran Sasso (Italy) in a deep underground environment.We compare the vertical rotation rate with the horizontal acceleration measured by a co-located broadband seismometer. This analysis, performed by means of a wavelet-based correlation method, permits to identify the G1,G2,G3,G4 onsets of the surface Love waves in the 120 to 280 seconds period range.

  9. Cryogenic systems for inertial fusion energy

    International Nuclear Information System (INIS)

    Chatain, D.; Perin, J.P.; Bonnay, P.; Bouleau, E.; Chichoux, M.; Communal, D.; Manzagol, J.; Viargues, F.; Brisset, D.; Lamaison, V.; Paquignon, G.

    2008-01-01

    The Low Temperatures Laboratory of CEA/Grenoble (France) is involved in the development of cryogenic systems for inertial fusion since a ten of years. A conceptual design for the cryogenic infrastructure of the Laser MegaJoule (LMJ) facility has been proposed. Several prototypes have been designed, built and tested like for example the 1500 bars cryo-compressor for the targets filling, the target positioner and the thermal shroud remover. The HIPER project will necessitate the development of such equipments. The main difference is that this time, the cryogenic targets are direct drive targets. The first phase of HIPER experiments is a single shot period. Based oil the experience gained the last years, not only by our laboratory but also by Omega and G.A teams, we could design the new HIPER equipments for this phase. Some experimental results obtained with the prototypes of the LMJ cryogenic system are given and a first conceptual design for the HIPER single shot cryogenic system is shown. (authors)

  10. High-density and high-ρR fuel assembly for fast-ignition inertial confinement fusion

    International Nuclear Information System (INIS)

    Betti, R.; Zhou, C.

    2005-01-01

    Scaling relations to optimize implosion parameters for fast-ignition inertial confinement fusion are derived and used to design high-gain fast-ignition targets. A method to assemble thermonuclear fuel at high densities, high ρR, and with a small-size hot spot is presented. Massive cryogenic shells can be imploded with a low implosion velocity V I on a low adiabat α using the relaxation-pulse technique. While the low V I yields a small hot spot, the low α leads to large peak values of the density and areal density. It is shown that a 750 kJ laser can assemble fuel with V I ≅1.7x10 7 cm/s, α≅0.7, ρ≅400 g/cc, ρR≅3 g/cm 2 , and a hot-spot volume of less than 10% of the compressed core. If fully ignited, this fuel assembly can produce high gains of interest to inertial fusion energy applications

  11. Solid state lasers II; Proceedings of the Meeting, Los Angeles, CA, Jan. 24, 25, 1991

    International Nuclear Information System (INIS)

    Dube, G.

    1991-01-01

    Topics presented include an upgrade of the LLNL Nova laser for inertial confinement fusion, the design and energy characteristics of a multisegment glass-disk amplifier, a wavemeter for tuning solid state lasers, and the fabrication of laser materials by laser-heated pedestal growth. Also presented are the suppression of relaxation oscillations in flash-pumped 2-micron lasers, diode pumping of tunable Cr-doped lasers, 2D periodic structures in a solid state laser resonator, and single-frequency solid state lasers and amplifiers

  12. Relativistic electron transport in a solid target: study of heating in the framework of inertial fusion

    International Nuclear Information System (INIS)

    Martinolli, E.

    2003-04-01

    This work is dedicated to the study of the energy deposition of fast electrons in matter. This topic is of prime importance for inertial fusion driven by laser since relativistic electrons are produced in laser-matter interaction for a laser operating in ultra-intense regime. This thesis is made up of: a theoretical chapter dealing with the generation and transport of fast electrons, of 2 chapters reporting experimental data obtained with optical and X-rays diagnostics at the laser facilities of LULI in France and RAL in U.K., and of a chapter dedicated to the simulation of electron transport by using a Monte-Carlo code combined to a hybrid collisional-electromagnetic PIC code. A new spectrometer has been designed: the detection of Kα rays coming from a fluorescent layer embedded in the target has allowed us to assess the size of the electron beam and the level of ionisation. (A.C.)

  13. Laser fusion experiments at LLL

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, H.G.

    1980-06-16

    These notes present the experimental basis and status for laser fusion as developed at LLL. Two other chapters, one authored by K.A. Brueckner and the other by C. Max, present the theoretical implosion physics and laser plasma interaction physics. The notes consist of six sections. The first is an introductory section which provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

  14. Laser fusion experiments at LLL

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1980-01-01

    These notes present the experimental basis and status for laser fusion as developed at LLL. Two other chapters, one authored by K.A. Brueckner and the other by C. Max, present the theoretical implosion physics and laser plasma interaction physics. The notes consist of six sections. The first is an introductory section which provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future

  15. Empirical evidence for inertial mass anisotropy

    International Nuclear Information System (INIS)

    Heller, M.; Siemieniec, G.

    1985-01-01

    A several attempts at measuring the possible deviations from inertial mass isotropy caused by a non-uniform distribution of matter are reviewed. A simple model of the inertial mass anisotropy and the results of the currently performed measurements concerning this effect are presented. 34 refs. (author)

  16. On-body inertial sensor location recognition

    NARCIS (Netherlands)

    Weenk, D.; van Beijnum, Bernhard J.F.; Goaied, Salma; Baten, Christian T.M.; Hermens, Hermanus J.; Veltink, Petrus H.

    2015-01-01

    Introduction and past research: In previous work we presented an algorithm for automatically identifying the body segment to which an inertial sensor is attached during walking [1]. Using this method, the set-up of inertial motion capture systems becomes easier and attachment errors are avoided. The

  17. Polarized gas targets for storage rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1990-01-01

    It is widely recognized that polarized gas targets in electron storage rings represent a new opportunity for precision nuclear physics studies. New developments in polarized target technology specific to internal applications will be discussed. In particular, polarized gas targets have been used in the VEPP-3 electron ring in Novosibirsk. A simple storage cell was used to increase the total target thickness by a factor of 15 over the simple gas jet target from an atomic beam source. Results from the initial phase of this project will be reported. In addition, the plans for increasing the luminosity by an additional order or magnitude will be presented. The application of this work to polarized hydrogen and deuterium targets for the HERA ring will be noted. The influence of beam-induced depolarization, a phenomena encountered in short-pulse electron storage rings, will be discussed. Finally, the performance tests of laser-driven sources will be presented. 8 refs., 12 figs., 1 tab

  18. Accuracy enhancement of laser induced breakdown spectra using permittivity and size optimized plasma confinement rings.

    Science.gov (United States)

    Li, An; Guo, Shuai; Wazir, Nasrullah; Chai, Ke; Liang, Liang; Zhang, Min; Hao, Yan; Nan, Pengfei; Liu, Ruibin

    2017-10-30

    The inevitable problems in laser induced breakdown spectroscopy are matrix effect and statistical fluctuation of the spectral signal, which can be partly avoided by utilizing a proper confined unit. The dependences of spectral signal enhancement on relative permittivity were studied by varying materials to confine the plasma, which include polytetrafluoroethylene(PTFE), nylon/dacron, silicagel, and nitrile-butadiene rubber (NBR) with the relative permittivity 2.2, ~3.3, 3.6, 8~13, 15~22. We found that higher relative permittivity rings induce stronger enhancement ability, which restricts the energy dissipation of plasma better and due to the reflected electromagnetic wave from the wall of different materials, the electromagnetic field of plasma can be well confined and makes the distribution of plasma more orderly. The spectral intensities of the characteristic lines Si I 243.5 nm and Si I 263.1 nm increased approximately 2 times with relative permittivity values from 2.2 to ~20. The size dependent enhancement of PTFE was further checked and the maximum gain was realized by using a confinement ring with a diameter size of 5 mm and a height of 3 mm (D5mmH3mm), and the rings with D2mmH1mm and D3mmH2mm also show higher enhancement factor. In view of peak shift, peak lost and accidental peaks in the obtained spectra were properly treated in data progressing; the spectral fluctuation decreased drastically for various materials with different relative permittivities as confined units, which means the core of plasma is stabilized, attributing to the confinement effect. Furthermore, the quantitative analysis in coal shows wonderful results-the prediction fitting coefficient R 2 reaches 0.98 for ash and 0.99 for both volatile and carbon.

  19. Integrated Microwave Photonic Isolators: Theory, Experimental Realization and Application in a Unidirectional Ring Mode-Locked Laser Diode

    Directory of Open Access Journals (Sweden)

    Martijn J.R. Heck

    2015-09-01

    Full Text Available A novel integrated microwave photonic isolator is presented. It is based on the timed drive of a pair of optical modulators, which transmit a pulsed or oscillating optical signal with low loss, when driven in phase. A signal in the reverse propagation direction will find the modulators out of phase and, hence, will experience high loss. Optical and microwave isolation ratios were simulated to be in the range up to 10 dB and 20 dB, respectively, using parameters representative for the indium phosphide platform. The experimental realization of this device in the hybrid silicon platform showed microwave isolation in the 9 dB–22 dB range. Furthermore, we present a design study on the use of these isolators inside a ring mode-locked laser cavity. Simulations show that unidirectional operation can be achieved, with a 30–50-dB suppression of the counter propagating mode, at limited driving voltages. The potentially low noise and feedback-insensitive operation of such a laser makes it a very promising candidate for use as on-chip microwave or comb generators.

  20. Switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer

    Science.gov (United States)

    Zhou, Yuxin; Wang, Xin; Tang, Zijuan; Lou, Shuqin

    2018-05-01

    In this paper, a switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer is proposed. The in-line Mach–Zehnder interferometer is fabricated by splicing a large-core fiber between two segments of single mode fibers, in which the first splicing point is tapered and the second splicing point is connected directly. By carefully rotating the polarization controller, switchable single-, dual-, triple- and quad-wavelength lasing outputs can be obtained with a side mode suppression ratio higher than 50 dB. The maximal peak power difference of multi-wavelength lasing is 3.67 dB, demonstrating a good power equalization performance. Furthermore, the proposed laser is proven to be very stable at room temperature. The wavelength shifts and peak power fluctuations are less than 0.02 nm and 1.3 dB over half an hour. In addition, stable quintuple-wavelength lasing with a side mode suppression ratio higher than 50 dB can also be realized when the filter length is changed.

  1. Theory of inertial waves in rotating fluids

    Science.gov (United States)

    Gelash, Andrey; L'vov, Victor; Zakharov, Vladimir

    2017-04-01

    The inertial waves emerge in the geophysical and astrophysical flows as a result of Earth rotation [1]. The linear theory of inertial waves is known well [2] while the influence of nonlinear effects of wave interactions are subject of many recent theoretical and experimental studies. The three-wave interactions which are allowed by inertial waves dispersion law (frequency is proportional to cosine of the angle between wave direction and axes of rotation) play an exceptional role. The recent studies on similar type of waves - internal waves, have demonstrated the possibility of formation of natural wave attractors in the ocean (see [3] and references herein). This wave focusing leads to the emergence of strong three-wave interactions and subsequent flows mixing. We believe that similar phenomena can take place for inertial waves in rotating flows. In this work we present theoretical study of three-wave and four-wave interactions for inertial waves. As the main theoretical tool we suggest the complete Hamiltonian formalism for inertial waves in rotating incompressible fluids [4]. We study three-wave decay instability and then present statistical description of inertial waves in the frame of Hamiltonian formalism. We obtain kinetic equation, anisotropic wave turbulence spectra and study the problem of parametric wave turbulence. These spectra were previously found in [5] by helicity decomposition method. Taking this into account we discuss the advantages of suggested Hamiltonian formalism and its future applications. Andrey Gelash thanks support of the RFBR (Grant No.16-31-60086 mol_a_dk) and Dr. E. Ermanyuk, Dr. I. Sibgatullin for the fruitful discussions. [1] Le Gal, P. Waves and instabilities in rotating and stratified flows, Fluid Dynamics in Physics, Engineering and Environmental Applications. Springer Berlin Heidelberg, 25-40, 2013. [2] Greenspan, H. P. The theory of rotating fluids. CUP Archive, 1968. [3] Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E

  2. Interaction between shock wave and single inertial bubbles near an elastic boundary.

    Science.gov (United States)

    Sankin, G N; Zhong, P

    2006-10-01

    The interaction of laser-generated single inertial bubbles (collapse time = 121 mus) near a silicon rubber membrane with a shock wave (55 MPa in peak pressure and 1.7 mus in compressive pulse duration) is investigated. The interaction leads to directional, forced asymmetric collapse of the bubble with microjet formation toward the surface. Maximum jet penetration into the membrane is produced during the bubble collapse phase with optimal shock wave arrival time and stand-off distance. Such interaction may provide a unique acoustic means for in vivo microinjection, applicable to targeted delivery of macromolecules and gene vectors to biological tissues.

  3. Inertial-range spectrum of whistler turbulence

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2010-02-01

    Full Text Available We develop a theoretical model of an inertial-range energy spectrum for homogeneous whistler turbulence. The theory is a generalization of the Iroshnikov-Kraichnan concept of the inertial-range magnetohydrodynamic turbulence. In the model the dispersion relation is used to derive scaling laws for whistler waves at highly oblique propagation with respect to the mean magnetic field. The model predicts an energy spectrum for such whistler waves with a spectral index −2.5 in the perpendicular component of the wave vector and thus provides an interpretation about recent discoveries of the second inertial-range of magnetic energy spectra at high frequencies in the solar wind.

  4. Inertial confinement fusion quarterly report, April--June 1994. Volume 4, Number 3

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M.J. [ed.

    1994-06-01

    This issue of the ICF Quarterly contains six articles covering a wide range of activities within the Inertial Confinement Fusion (ICF) Program. It concentrates on target design; theoretical spectral analysis of ICF capsule surfaces; laser fusion experimental methods; and an alternative ICF design, based on ultrafast, ultrapowerful lasers. A key issue for the success of the ICF process is the hydrodynamic stability of the imploding capsule. There are two primary sources of instability growth in the ICF process: (1) asymmetries in the x-ray flux that drive the compression lead to asymmetric in the imploding surface; (2) imperfections on the capsule surface can grow into large perturbations, degrading the capsule performance. In recent years, a great deal of effort, both experimentally and theoretically, has been spent to enhance the Program`s ability to measure, model, and minimize instability growth during an implosion. Four the articles in this issue discuss this subject.

  5. Mapping in inertial frames

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1989-05-01

    World space mapping in inertial frames is used to examine the Lorentz covariance of symmetry operations. It is found that the Galilean invariant concepts of simultaneity (S), parity (P), and time reversal symmetry (T) are not Lorentz covariant concepts for inertial observers. That is, just as the concept of simultaneity has no significance independent of the Lorentz inertial frame, likewise so are the concepts of parity and time reversal. However, the world parity (W) [i.e., the space-time reversal symmetry (P-T)] is a truly Lorentz covariant concept. Indeed, it is shown that only those mapping matrices M that commute with the Lorentz transformation matrix L (i.e., [M,L] = 0) are the ones that correspond to manifestly Lorentz covariant operations. This result is in accordance with the spirit of the world space Mach's principle. Since the Lorentz transformation is an orthogonal transformation while the Galilean transformation is not an orthogonal transformation, the formal relativistic space-time mapping theory used here does not have a corresponding non-relativistic counterpart. 12 refs

  6. Laser-Plasma Modeling Using PERSEUS Extended-MHD Simulation Code for HED Plasmas

    Science.gov (United States)

    Hamlin, Nathaniel; Seyler, Charles

    2017-10-01

    We discuss the use of the PERSEUS extended-MHD simulation code for high-energy-density (HED) plasmas in modeling the influence of Hall and electron inertial physics on laser-plasma interactions. By formulating the extended-MHD equations as a relaxation system in which the current is semi-implicitly time-advanced using the Generalized Ohm's Law, PERSEUS enables modeling of extended-MHD phenomena (Hall and electron inertial physics) without the need to resolve the smallest electron time scales, which would otherwise be computationally prohibitive in HED plasma simulations. We first consider a laser-produced plasma plume pinched by an applied magnetic field parallel to the laser axis in axisymmetric cylindrical geometry, forming a conical shock structure and a jet above the flow convergence. The Hall term produces low-density outer plasma, a helical field structure, flow rotation, and field-aligned current, rendering the shock structure dispersive. We then model a laser-foil interaction by explicitly driving the oscillating laser fields, and examine the essential physics governing the interaction. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.

  7. Application of FEL technique for constructing high-intensity, monochromatic, polarized gamma-sources at storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N. [Automatic Systems Corporation, Samara (Russian Federation)] [and others

    1995-12-31

    A possibility to construct high-intensity tunable monochromatic{gamma}-source at high energy storage rings is discussed. It is proposed to produce {gamma}-quanta by means of Compton backscattering of laser photons on electrons circulating in the storage. The laser light wavelength is chosen in such a way that after the scattering, the electron does not leave the separatrix. So as the probability of the scattering is rather small, energy oscillations are damped prior the next scattering. As a result, the proposed source can operate in {open_quotes}parasitic{close_quote} mode not interfering with the main mode of the storage ring operation. Analysis of parameters of existent storage rings (PETRA, ESRF, Spring-8, etc) shows that the laser light wavelength should be in infrared, {lambda}{approximately} 10 - 400 {mu}m, wavelength band. Installation at storage rings of tunable free-electron lasers with the peak and average output power {approximately} 10 MW and {approximately} 1 kW, respectively, will result in the intensity of the {gamma}-source up to {approximately} 10{sup 14}s{sup -1} with tunable {gamma}-quanta energy from several MeV up to several hundreds MeV. Such a {gamma}-source will reveal unique possibilities for precision investigations in nuclear physics.

  8. A three axis turntable's online initial state measurement method based on the high-accuracy laser gyro SINS

    Science.gov (United States)

    Gao, Chunfeng; Wei, Guo; Wang, Qi; Xiong, Zhenyu; Wang, Qun; Long, Xingwu

    2016-10-01

    As an indispensable equipment in inertial technology tests, the three-axis turntable is widely used in the calibration of various types inertial navigation systems (INS). In order to ensure the calibration accuracy of INS, we need to accurately measure the initial state of the turntable. However, the traditional measuring method needs a lot of exterior equipment (such as level instrument, north seeker, autocollimator, etc.), and the test processing is complex, low efficiency. Therefore, it is relatively difficult for the inertial measurement equipment manufacturers to realize the self-inspection of the turntable. Owing to the high precision attitude information provided by the laser gyro strapdown inertial navigation system (SINS) after fine alignment, we can use it as the attitude reference of initial state measurement of three-axis turntable. For the principle that the fixed rotation vector increment is not affected by measuring point, we use the laser gyro INS and the encoder of the turntable to provide the attitudes of turntable mounting plat. Through this way, the high accuracy measurement of perpendicularity error and initial attitude of the three-axis turntable has been achieved.

  9. Common pass decentered annular ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, D. A.; Waite, T. R.

    1985-04-30

    An optical resonator having an annular cylindrical gain region for use in a chemical laser or the like in which two ring-shaped mirrors having substantially conical reflecting surfaces are spaced apart along a common axis of revolution of the respective conical surfaces. A central conical mirror reflects incident light directed along said axis radially outwardly to the reflecting surface of a first one of the ring-shaped mirrors. The radial light rays are reflected by the first ring mirror to the second ring mirror within an annular cylindrical volume concentric with said common axis and forming a gain region. Light rays impinging on the second ring mirror are reflected to diametrically opposite points on the same conical mirror surfaces and back to the first ring mirror through the same annular cylindrical volume. The return rays are then reflected by the conical mirror surface of the first ring mirror back to the central conical mirror. The mirror surfaces are angled such that the return rays are reflected back along the common axis by the central mirror in a concentric annular cylindrical volume. A scraper mirror having a central opening centered on said axis and an offset opening reflects all but the rays passing through the two openings in an output beam. The rays passing through the second opening are reflected back through the first opening to provide feedback.

  10. Achieving Translationally Invariant Trapped Ion Rings

    Science.gov (United States)

    Urban, Erik; Li, Hao-Kun; Noel, Crystal; Hemmerling, Boerge; Zhang, Xiang; Haeffner, Hartmut

    2017-04-01

    We present the design and implementation of a novel surface ion trap design in a ring configuration. By eliminating the need for wire bonds through the use of electrical vias and using a rotationally invariant electrode configuration, we have realized a trap that is able to trap up to 20 ions in a ring geometry 45um in diameter, 400um above the trap surface. This large trapping height to ring diameter ratio allows for global addressing of the ring with both lasers and electric fields in the chamber, thereby increasing our ability to control the ring as a whole. Applying compensating electric fields, we measure very low tangential trap frequencies (less than 20kHz) corresponding to rotational barriers down to 4mK. This measurement is currently limited by the temperature of the ions but extrapolation indicates the barrier can be reduced much further with more advanced cooling techniques. Finally, we show that we are able to reduce this energy barrier sufficiently such that the ions are able to overcome it either through thermal motion or rotational motion and delocalize over the full extent of the ring. This work was funded by the Keck Foundation and the NSF.

  11. Real-Time 200 Gb/s (4x56.25 Gb/s) PAM-4 Transmission over 80 km SSMF using Quantum-Dot Laser and Silicon Ring-Modulator

    DEFF Research Database (Denmark)

    Eiselt, Nicklas; Griesser, Helmut; Eiselt, Michael

    2017-01-01

    We report real-time 4x56.26-Gb/s DWDM PAM-4 transmission over 80-km SSMF with novel optical transmitter sub-assembly comprising multi-wavelength quantum-dot laser and silicon ring modulators. Pre-FEC BERs below 1E-4 are achieved after 80-km, allowing error-free operation with HD-FEC...

  12. Physics of laser fusion. Volume II. Diagnostics of experiments on laser fusion targets at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, H.G.

    1982-01-01

    These notes present the experimental basis and status for laser fusion as developed at LLNL. There are two other volumes in this series: Vol. I, by C.E. Max, presents the theoretical laser-plasma interaction physics; Vol. III, by J.F. Holzrichter et al., presents the theory and design of high-power pulsed lasers. A fourth volume will present the theoretical implosion physics. The notes consist of six sections. The first, an introductory section, provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLNL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLNL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

  13. Physics of laser fusion. Volume II. Diagnostics of experiments on laser fusion targets at LLNL

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1982-01-01

    These notes present the experimental basis and status for laser fusion as developed at LLNL. There are two other volumes in this series: Vol. I, by C.E. Max, presents the theoretical laser-plasma interaction physics; Vol. III, by J.F. Holzrichter et al., presents the theory and design of high-power pulsed lasers. A fourth volume will present the theoretical implosion physics. The notes consist of six sections. The first, an introductory section, provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLNL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLNL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future

  14. Performance results for Beamlet: A large aperture multipass Nd glass laser

    International Nuclear Information System (INIS)

    Campbell, J.H.; Barker, C.E.; VanWonterghem, B.M.; Speck, D.R.; Behrendt, W.C.; Murray, J.R.; Caird, J.A.; Decker, D.E.; Smith, I.C.

    1995-01-01

    The Beamlet laser is a large aperture, flashlamp pumped Nd: glass laser that is a scientific prototype of an advanced Inertial Fusion laser. Beamlet has achieved third harmonic, conversion efficiency of near 80% with its nominal 35cm x 35cm square beam at mean 3ω fluences in excess of 8 J/cm 2 (3-ns). Beamlet uses an adaptive optics system to correct for aberrations and achieve less than 2 x diffraction limited far field spot size

  15. First Observation of Cross-Beam Energy Transfer Mitigation for Direct-Drive Inertial Confinement Fusion Implosions Using Wavelength Detuning at the National Ignition Facility.

    Science.gov (United States)

    Marozas, J A; Hohenberger, M; Rosenberg, M J; Turnbull, D; Collins, T J B; Radha, P B; McKenty, P W; Zuegel, J D; Marshall, F J; Regan, S P; Sangster, T C; Seka, W; Campbell, E M; Goncharov, V N; Bowers, M W; Di Nicola, J-M G; Erbert, G; MacGowan, B J; Pelz, L J; Yang, S T

    2018-02-23

    Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Mitigating CBET is demonstrated for the first time in inertial-confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3  Å UV) of the interacting beams. We show that, in polar direct-drive, wavelength detuning increases the equatorial region velocity experimentally by 16% and alters the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure.

  16. Intensification of rare gas halide lasers with application to laser fusion

    International Nuclear Information System (INIS)

    Jacobs, R.R.; Eimerl, D.; Goldhar, J.; Murray, J.R.; Rapoport, W.R.; Schlitt, L.; Swingle, J.C.

    1980-01-01

    The two techniques of backward-wave Raman pulse compression and pulse stacking are reviewed in the context of using KrF lasers as drivers in inertial confinement fusion. Experimental and theoretical results on Raman pulse compression in methane are presented including data on 70 to 75% pump energy extraction by the counter propagating Stokes wave. Results from on-going pulse stacker/Raman compressor experiments are also described, along with future investigations in this general area

  17. Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation

    International Nuclear Information System (INIS)

    Luo, A-P; Luo, Z-C; Xu, W-C; Dvoyrin, V V; Mashinsky, V M; Dianov, E M

    2011-01-01

    We demonstrate a tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser by using nonlinear polarization rotation (NPR) technique. Exploiting the spectral filtering effect caused by the combination of the polarizer and intracavity birefringence, the wavelength separation of dual-wavelength mode-locked pulses can be flexibly tuned between 2.38 and 20.45 nm. Taking the advantage of NPR-induced intensity-dependent loss to suppress the mode competition, the stable dual-wavelength pulses output is obtained at room temperature. Moreover, the dual-wavelength switchable operation is achieved by simply rotating the polarization controllers (PCs)

  18. The GEO 600 laser system

    CERN Document Server

    Zawischa, I; Danzmann, K; Fallnich, C; Heurs, M; Nagano, S; Quetschke, V; Welling, H; Willke, B

    2002-01-01

    Interferometric gravitational wave detectors require high optical power, single frequency lasers with very good beam quality and high amplitude and frequency stability as well as high long-term reliability as input light source. For GEO 600 a laser system with these properties is realized by a stable planar, longitudinally pumped 12 W Nd:YAG rod laser which is injection-locked to a monolithic 800 mW Nd:YAG non-planar ring oscillator. Frequency control signals from the mode cleaners are fed to the actuators of the non-planar ring oscillator which determines the frequency stability of the system. The system power stabilization acts on the slave laser pump diodes which have the largest influence on the output power. In order to gain more output power, a combined Nd:YAG-Nd:YVO sub 4 system is scaled to more than 22 W.

  19. Systems Modeling For The Laser Fusion-Fission Energy (LIFE) Power Plant

    International Nuclear Information System (INIS)

    Meier, W.R.; Abbott, R.; Beach, R.; Blink, J.; Caird, J.; Erlandson, A.; Farmer, J.; Halsey, W.; Ladran, T.; Latkowski, J.; MacIntyre, A.; Miles, R.; Storm, E.

    2008-01-01

    A systems model has been developed for the Laser Inertial Fusion-Fission Energy (LIFE) power plant. It combines cost-performance scaling models for the major subsystems of the plant including the laser, inertial fusion target factory, engine (i.e., the chamber including the fission and tritium breeding blankets), energy conversion systems and balance of plant. The LIFE plant model is being used to evaluate design trade-offs and to identify high-leverage R and D. At this point, we are focused more on doing self consistent design trades and optimization as opposed to trying to predict a cost of electricity with a high degree of certainty. Key results show the advantage of large scale (>1000 MWe) plants and the importance of minimizing the cost of diodes and balance of plant cost

  20. Physics of laser fusion. Volume IV. The future development of high-power solid-state laser systems

    International Nuclear Information System (INIS)

    Emmett, J.L.; Krupke, W.F.; Trenholme, J.B.

    1982-11-01

    Solid state lasers, particularly neodymium glass systems, have undergone intensive development during the last decade. In this paper, we review solid state laser technology in the context of high-peak-power systems for inertial confinement fusion. Specifically addressed are five major factors: efficiency, wavelength flexibility, average power, system complexity, and cost; these factors today limit broader application of the technology. We conclude that each of these factors can be greatly improved within current fundamental physical limits. We further conclude that the systematic development of new solid state laser madia, both vitreous and crystalline, should ultimately permit the development of wavelength-flexible, very high average power systems with overall efficiencies in the range of 10 to 20%