WorldWideScience

Sample records for rigid-plastic seismic design

  1. Rigid-plastic seismic design of reinforced concrete structures

    DEFF Research Database (Denmark)

    Costa, Joao Domingues; Bento, R.; Levtchitch, V.

    2007-01-01

    structural strength with respect to a pre-defined performance parameter using a rigid-plastic response spectrum, which is characteristic of the ground motion alone. The maximum strength demand at any point is solely dependent on the intensity of the ground motion, which facilitates the task of distributing......In this paper a new seismic design procedure for Reinforced Concrete (R/C) structures is proposed-the Rigid-Plastic Seismic Design (RPSD) method. This is a design procedure based on Non-Linear Time-History Analysis (NLTHA) for systems expected to perform in the non-linear range during a lifetime...... earthquake event. The theoretical background is the Theory of Plasticity (Rigid-Plastic Structures). Firstly, a collapse mechanism is chosen and the corresponding stress field is made safe outside the regions where plastic behaviour takes place. It is shown that this allows the determination of the required...

  2. The study of elastio-plastic seismic analysis for rigid-frame structures

    OpenAIRE

    陳, 珉; 青木, 徹彦

    2000-01-01

    Elastic and elastio-plastic earthquake-resistant analysis of frame construction is mainly studied in this paper. In elastic stage, response and vibrated characteristics of symmetrical and unsymmetrical structure are investigated by comparing the results of plane and space analysis. The effect of approaching angle of seismic wave to vibrated characteristics of structure under different column/beam rate are discussed. In elastio-plastic stage, four kinds of plastic mode with different plastic p...

  3. Studies on the seismic buckling design guideline of FBR main vessels. 9. Buckling evaluation under elastic-plastic seismic response

    International Nuclear Information System (INIS)

    Hagiwara, Yutaka; Yamamoto, Kohsuke; Kawamoto, Yoji; Nakagawa, Masaki; Akiyama, Hiroshi

    1998-01-01

    Plastic shear-bending buckling under seismic loadings is one of the major problems in the structural design of FBR main vessels. Pseudo-dynamic and dynamic buckling tests of cylinders were performed in order to study the effects of nonlinear seismic response on buckling strength, ductility, and plastic response reduction. The buckling strength formulae and the rule for ductility factors both derived from static tests were confirmed to be valid for the tests under dynamic loads. The displacement-constant rule for response reduction effect was modified by acceleration amplification factor in order to maintain applicability for various spectral profiles of seismic excitations. The response reduction estimated by the proposed rule was reasonably conservative for all cases of the pseudo-dynamic and the dynamic tests. Finally, a seismic safety assessment rule was proposed for plastic shear-bending buckling of cylinders, which include the proposed response reduction rule. (author)

  4. Investigation of optimal seismic design methodology for piping systems supported by elasto-plastic dampers. Part. 2. Applicability for seismic waves with various frequency characteristics

    International Nuclear Information System (INIS)

    Ito, Tomohiro; Michiue, Masashi; Fujita, Katsuhisa

    2010-01-01

    In this study, the applicability of a previously developed optimal seismic design methodology, which can consider the structural integrity of not only piping systems but also elasto-plastic supporting devices, is studied for seismic waves with various frequency characteristics. This methodology employs a genetic algorithm and can search the optimal conditions such as the supporting location and the capacity and stiffness of the supporting devices. Here, a lead extrusion damper is treated as a typical elasto-plastic damper. Numerical simulations are performed using a simple piping system model. As a result, it is shown that the proposed optimal seismic design methodology is applicable to the seismic design of piping systems subjected to seismic waves with various frequency characteristics. The mechanism of optimization is also clarified. (author)

  5. Investigation of optimal seismic design methodology for piping systems supported by elasto-plastic dampers. Part 1. Evaluation functions

    International Nuclear Information System (INIS)

    Ito, Tomohiro; Michiue, Masashi; Fujita, Katsuhisa

    2009-01-01

    In this study, the optimal seismic design methodology that can consider the structural integrity of not only the piping systems but also elasto-plastic supporting devices is developed. This methodology employs a genetic algorithm and can search the optimal conditions such as the supporting location, capacity and stiffness of the supporting devices. Here, a lead extrusion damper is treated as a typical elasto-plastic damper. Four types of evaluation functions are considered. It is found that the proposed optimal seismic design methodology is very effective and can be applied to the actual seismic design for piping systems supported by elasto-plastic dampers. The effectiveness of the evaluation functions is also clarified. (author)

  6. Influence of plastic deformation on seismic response of piping

    International Nuclear Information System (INIS)

    Yao Yanping; Chen Yong; Lu Mingwan

    2000-01-01

    On the basis of a brief summary of linear elastic seismic analysis methods, the importance for consideration of plastic deformation during the dynamic response analysis of piping system is indicated. The present methods of considering plasticity and the disadvantages of these methods are discussed. And the authors point out that in order to reduce the conservatism of present codes and to put forward appropriate and realistic piping seismic design methods, the key is to understand the plastic dynamic failure mode for piping under seismic excitation and to calculate the inelastic energy dissipation. The analysis and evaluation are applicable to nuclear piping systems

  7. Alternate seismic support for pipeline systems in nuclear power plants

    International Nuclear Information System (INIS)

    Muthumani, K.; Gopalakrishnan, N.; Sathish Kumar, K.; Sreekala, R.; Rama Rao, G.V.; Reddy, G.R.; Parulekar, Y.M.

    2008-01-01

    Failure free design of supporting systems for pipe lines carrying highly toxic or radioactive liquids at very high temperature is an important issue in the safety aspect for a nuclear power plant installation which is a key topic for researchers all around the world. Generally, these pipeline systems are designed to be held rigid by conventional snubber supports for protection from earthquakes. The piping design must balance seismic deformations and other deformations due to thermal effect. A rigid pipeline system using conventional snubber supports always leads to an increase in thermal stresses; hence a rational seismic design for pipeline supporting systems becomes essential. Contrary to this rigid design, it is possible to design a flexible pipeline system and to decrease the seismic response by increasing the damping through the use of passive energy absorbing elements, which dissipate vibration energy. This paper presents the experimental and analytical studies carried out on modeling yielding type elasto-plastic passive energy-absorbing elements to be used in a passive energy-dissipating device for the control of large seismic deformations of pipelines subjected to earthquake loading. (author)

  8. 49 CFR 178.925 - Standards for rigid plastic Large Packagings.

    Science.gov (United States)

    2010-10-01

    ... manufacture of the tested design type, retesting may be omitted if changes in the carbon black content, the... or chemical properties of the material of construction. (3) No used material other than production residues or regrind from the same manufacturing process may be used in the manufacture of rigid plastic...

  9. Performance Based Plastic Design of Concentrically Braced Frame attuned with Indian Standard code and its Seismic Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Sejal Purvang Dalal

    2015-12-01

    Full Text Available In the Performance Based Plastic design method, the failure is predetermined; making it famous throughout the world. But due to lack of proper guidelines and simple stepwise methodology, it is not quite popular in India. In this paper, stepwise design procedure of Performance Based Plastic Design of Concentrically Braced frame attuned with the Indian Standard code has been presented. The comparative seismic performance evaluation of a six storey concentrically braced frame designed using the displacement based Performance Based Plastic Design (PBPD method and currently used force based Limit State Design (LSD method has also been carried out by nonlinear static pushover analysis and time history analysis under three different ground motions. Results show that Performance Based Plastic Design method is superior to the current design in terms of displacement and acceleration response. Also total collapse of the frame is prevented in the PBPD frame.

  10. Rigid-Plastic Post-Buckling Analysis of Columns and Quadratic Plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe

    2008-01-01

    the compressive load as a function of the transverse displacement. An estimate of the magnitude of the transverse displacement prior to the forming of the collapse mechanism is introduced into the compressive load function, determined by the virtual work equation, thereby revealing a qualified estimate...... yield lines accommodate differential rotations of rigid parts and the area “collapse” yield lines accommodate local area changes of the rigid parts thereby preserving compatibility of the rigid parts of a plate. The approach will be illustrated for rigid plastic column analysis and for a quadratic plate...

  11. Numerical rigid plastic modelling of shear capacity of keyed joints

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao

    2015-01-01

    Keyed shear joints are currently designed using simple and conservative design formulas, yet these formulas do not take the local mechanisms in the concrete core of the joint into account. To investigate this phenomenon a rigid, perfectly plastic finite element model of keyed joints is used....... The model is formulated for second-order conic optimisation as a lower bound problem, which yields a statically admissible stress field that satisfies the yield condition in every point. The dual solution to the problem can be interpreted as the collapse mode and will be used to analyse the properties...

  12. Unified Creep Plasticity Damage (UCPD) Model for Rigid Polyurethane Foams.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hinnerichs, Terry D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lo, Chi S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model was developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.

  13. Inelastic seismic response of precast concrete frames with constructed plastic hinges

    Science.gov (United States)

    Sucuoglu, H.

    1995-07-01

    A modified seismic design concept is introduced for precast concrete frames in which beam plastic hinges with reduced yield capacities are constructed away from the precast beam-column connections arranged at the column faces. Plastic hinge location and yield capacity are employed as the basic parameters of an analytical survey in which the inelastic dynamic responses of a conventional precast frame and its modified counterparts are calculated and compared under two earthquake excitations by using a general purpose computer program for dynamic analysis of inelastic frames (left bracket) 1, 2 (right bracket). An optimum design is obtained by providing plastic hinges on precast beams located at one depth away from the beam ends, in which primary (negative) bending moment yield capacities are reduced between one-third and one-quarter of the beam design end moments. With such plastic hinge configurations, precast beam-column connections at the column faces can be designed to remain elastic under strong earthquake excitations.

  14. 21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polymer modifiers in semirigid and rigid vinyl...: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3790 Polymer modifiers in semirigid and rigid vinyl chloride plastics. The polymers identified in paragraph (a) of this...

  15. Elasto-plastic impact of hemispherical shell impacting on hard rigid sphere

    Science.gov (United States)

    Raftopoulos, D. D.; Spicer, A. L.

    1976-01-01

    An analysis of plastic stress waves for cylindrical metallic projectile in impact is extended to an analysis of a hemispherical shell suffereing plastic deformation during the process of impact. It is assumed that the hemispherical shell with a prescribed launch velocity impinges a fixed rigid sphere of diameter equal to the internal diameter of the shell. The dynamic biaxial state of stress present in the shell during deformation is investigated. The analysis is valuable for studying the state of stress during large plastic deformation of a hemispherical shell.

  16. Rigid-Plastic Approximations for Predicting Plastic Deformation of Cylindrical Shells Subject to Dynamic Loading

    Directory of Open Access Journals (Sweden)

    Michelle S. Hoo Fatt

    1996-01-01

    Full Text Available A theoretical approach was developed for predicting the plastic deformation of a cylindrical shell subject to asymmetric dynamic loads. The plastic deformation of the leading generator of the shell is found by solving for the transverse deflections of a rigid-plastic beam/string-on-foundation. The axial bending moment and tensile force in the beam/string are equivalent to the longitudinal bending moments and membrane forces of the shell, while the plastic foundation force is equivalent to the shell circumferential bending moment and membrane resistances. Closed-form solutions for the transient and final deformation profile of an impulsive loaded shell when it is in a “string” state were derived using the eigenfunction expansion method. These results were compared to DYNA 3D predictions. The analytical predictions of the transient shell and final centerline deflections were within 25% of the DYNA 3D results.

  17. Enhanced seismic criteria for piping

    International Nuclear Information System (INIS)

    Touboul, F. . E-mail francoise.touboul@cea.fr; Blay, N.; Sollogoub, P.; Chapuliot, S.

    2006-01-01

    In situ or laboratory experiments have shown that piping systems exhibit satisfactory seismic behavior. Seismic motion is not severe enough to significantly damage piping systems unless large differential motions of anchorage are imposed. Nevertheless, present design criteria for piping are very severe and require a large number of supports, which creates overly rigid piping systems. CEA, in collaboration with EDF, FRAMATOME and IRSN, has launched a large R and D program on enhanced design methods which will be less severe, but still conservative, and compatible with defect justification during operation. This paper presents the background of the R and D work on this matter, and CEA proposed equations. Our approach is based on the difference between the real behavior (or the best estimated computed one) with the one supposed by codified methods. Codified criteria are applied on an elastically calculated behavior that can be significantly different from the real one: the effect of plasticity may be very meaningful, even with low incursion in the plastic domain. Moreover, and particularly in piping systems, the elastic follow-up effect affects stress distribution for both seismic and thermal loads. For seismic load, we have proposed to modify the elastic moment limitation, based on the interpretation of experimental results on piping systems. The methods have been validated on more industrial cases, and some of the consequences of the changes have been studied: modification of the drawings and of the number of supports, global displacements, forces in the supports, stability of potential defects, etc. The basic aim of the studies undertaken is to make a decision on the stress classification problem, one that is not limited to seismic induced stresses, and to propose simplified methods for its solution

  18. Tile-based rigidization surface parametric design study

    Science.gov (United States)

    Giner Munoz, Laura; Luntz, Jonathan; Brei, Diann; Kim, Wonhee

    2018-03-01

    Inflatable technologies have proven useful in consumer goods as well as in more recent applications including civil structures, aerospace, medical, and robotics. However, inflatable technologies are typically lacking in their ability to provide rigid structural support. Particle jamming improves upon this by providing structures which are normally flexible and moldable but become rigid when air is removed. Because these are based on an airtight bladder filled with loose particles, they always occupy the full volume of its rigid state, even when not rigidized. More recent developments in layer jamming have created thin, compact rigidizing surfaces replacing the loose volume of particles with thinly layered surface materials. Work in this area has been applied to several specific applications with positive results but have not generally provided the broader understanding of the rigidization performance as a function of design parameters required for directly adapting layer rigidization technology to other applications. This paper presents a parametric design study of a new layer jamming vacuum rigidization architecture: tile-based vacuum rigidization. This form of rigidization is based on layers of tiles contained within a thin vacuum bladder which can be bent, rolled, or otherwise compactly stowed, but when deployed flat, can be vacuumed and form a large, flat, rigid plate capable of supporting large forces both localized and distributed over the surface. The general architecture and operation detailing rigidization and compliance mechanisms is introduced. To quantitatively characterize the rigidization behavior, prototypes rigidization surfaces are fabricated and an experimental technique is developed based on a 3-point bending test. Performance evaluation metrics are developed to describe the stiffness, load-bearing capacity, and internal slippage of tested prototypes. A set of experimental parametric studies are performed to better understand the impact of

  19. Seismic behavior and design of wall-EDD-frame systems

    Directory of Open Access Journals (Sweden)

    Oren eLavan

    2015-06-01

    Full Text Available Walls and frames have different deflection lines and, depending on the seismic mass they support, may often poses different natural periods. In many cases, wall-frame structures present an advantageous behavior. In these structures the walls and the frames are rigidly connected. Nevertheless, if the walls and the frames were not rigidly connected, an opportunity for an efficient passive control strategy would arise: Connecting the two systems by energy dissipation devices (EDDs to result in wall-EDD-frame systems. This, depending on the parameters of the system, is expected to lead to an efficient energy dissipation mechanism.This paper studies the seismic behavior of wall-EDD-frame systems in the context of retrofitting existing frame structures. The controlling non-dimensional parameters of such systems are first identified. This is followed by a rigorous and extensive parametric study that reveals the pros and cons of the new system versus wall-frame systems. The effect of the controlling parameters on the behavior of the new system are analyzed and discussed. Finally, tools are given for initial design of such retrofitting schemes. These enable both choosing the most appropriate retrofitting alternative and selecting initial values for its parameters.

  20. The development of design method of nuclear piping system supported by elasto-plastic support structures (part 2)

    International Nuclear Information System (INIS)

    Endo, R.; Murota, M.; Kawabata, J-I.; Hirose, J.; Nekomoto, Y.; Takayama, Y.; Kobayashi, H.

    1995-01-01

    The conventional seismic design method of nuclear piping system is very conservative because of the accumulation of various safety factors in the design process, and nuclear piping systems are thought to have a large safety margin. Considering this situations, research program was promoted to furthermore rationalize nuclear power plants by reducing the amount of support structures and reducing the piping's seismic response through vibration energy absorption resulting from the elasto-plastic behavior of piping support structures. The research had the following three stages. In the first stage, we selected conventional piping support structures in light-water reactors that exhibited elasto-plastic behavior, and studied the effect of displacement and the vibration frequency on the stiffness and on the energy absorption by testing these models. In the second stage, vibration tests were performed using piping models with support structures on shaking tables. The piping vibration characteristics were clarified by sinusoidal sweep tests and the piping response characteristics by seismic wave vibration tests when the support structures were in an elasto-plastic condition. In the third stage, a general method was developed to evaluate the characteristics of a variety of support structures in the tests. A simplified analysis method was also developed to evaluate the piping seismic response using the piping model test result. To expand the results mentioned above, we also established a new seismic design method of piping systems that allowed support structures to have elasto-plastic behavior. This paper reports the newly developed seismic design method based on the results of experiments conducted under the joint research program of Japanese electric power companies (The Japan Atomic Power Co., Hokkaido EPC, Tohoku EPC, Tokyo EPC, Chubu EPC, Hokuriku EPC, Kansai EPC, Chugoku EPC, Shikoku EPC, Kyushu EPC) and nuclear plant makers (Hitachi Ltd., Toshiba Co., MHI Ltd., HEC Ltd

  1. An investigation on the effect of gusset plate connection rigidity on the seismic behavior of special concentrically braced frames

    Directory of Open Access Journals (Sweden)

    Ali Esnaashari

    2016-12-01

    Full Text Available Special concentrically braced frames (SCBFs are commonly used to resist lateral loads in buildings. The bracing system sustains large deformations due to inelastic behavior in bracing members (buckling and yielding in tension. Generally, in the conventional modeling strategy, the effect of gusset plates in providing beam-column connections rigidity and hence, improving the post-buckling performance of these frames is not taken into account. This paper deals with the effect of gusset plate rigidity on the seismic behavior of SCBFs using Roeder’s proposed model in the literature. In this paper, four 3, 6, 9 and 12-story SCBFs were designed and modeled using two distinct methods: conventional method with hinged connections and Roeder’s method with semi-rigid connections. Then, the models behavior was investigated with both pushover analysis and nonlinear time-history analysis using OpenSees software. The results showed that lateral load capacity of the frames modeled with the Roeder’s proposed model are about 10% larger than the conventional method’s capacity. Also, it was found that the semi-rigid model leads to a less drift ratios and more overstrength factors.

  2. Two Back Stress Hardening Models in Rate Independent Rigid Plastic Deformation

    Science.gov (United States)

    Yun, Su-Jin

    In the present work, the constitutive relations based on the combination of two back stresses are developed using the Armstrong-Frederick, Phillips and Ziegler’s type hardening rules. Various evolutions of the kinematic hardening parameter can be obtained by means of a simple combination of back stress rate using the rule of mixtures. Thus, a wide range of plastic deformation behavior can be depicted depending on the dominant back stress evolution. The ultimate back stress is also determined for the present combined kinematic hardening models. Since a kinematic hardening rule is assumed in the finite deformation regime, the stress rate is co-rotated with respect to the spin of substructure obtained by incorporating the plastic spin concept. A comparison of the various co-rotational rates is also included. Assuming rigid plasticity, the continuum body consists of the elastic deformation zone and the plastic deformation zone to form a hybrid finite element formulation. Then, the plastic deformation behavior is investigated under various loading conditions with an assumption of the J2 deformation theory. The plastic deformation localization turns out to be strongly dependent on the description of back stress evolution and its associated hardening parameters. The analysis for the shear deformation with fixed boundaries is carried out to examine the deformation localization behavior and the evolution of state variables.

  3. Role of intrachain rigidity in the plasticization of intrinsically microporous triptycene-based polyimide membranes in mixed-Gas CO2/CH4 separations

    KAUST Repository

    Swaidan, Raja

    2014-11-11

    Based on high-pressure pure- and mixed-gas (50:50) CO2/CH4 separation properties of two intrinsically microporous triptycene-based polyimides (TPDA-TMPD and TPDA-6FpDA), the intrachain rigidity central to "conventional PIM" design principles is not a singular solution to intrinsic plasticization resistance. Despite the significant intrachain rigidity in TPDA-TMPD, a 300% increase in PMIX(CH4), 50% decrease in α(CO2/CH4) from 24 to 12, and continuous increase in PMIX(CO2) occurred from 4 to 30 bar. On the other hand, the more flexible and densely packed TPDA-6FpDA exhibited a slight upturn in PMIX(CO2) at 20 bar similar to a dense cellulose acetate (CA) film, also reported here, despite a 4-fold higher CO2 sorption capacity. Microstructural investigations suggest that the interconnected O2- and H2-sieving ultramicroporosity of TPDA-TMPD is more sensitive to slight CO2-induced dilations and is the physical basis for a more extensive and accelerated plasticization. Interchain rigidity, potentially by interchain interactions, is emphasized and may be facilitated by intrachain mobility.

  4. The problem solution on wedge penetration in an initially anisotropic medium within the rigid-plastic scheme

    Science.gov (United States)

    Chanyshev, AI; Abdulin, IM

    2018-03-01

    Two problems are solved in the paper: on ultimate loads in the initial stage of indentation of an absolutely rigid smooth wedge into a layer of an initially anisotropic plastic medium and in the final stage when the tool penetrates through the layer. The problems are solved with Chanyshev’s constitutive relations of plasticity of the initially anisotropic medium based on use of the eigen elasticity tensors.

  5. Recent results of a seismically isolated optical table prototype designed for advanced LIGO

    International Nuclear Information System (INIS)

    Sannibale, V; Abbott, B; Boschi, V; Coyne, D; DeSalvo, R; Aso, Y; Marka, S; Ottaway, D; Stochino, A

    2008-01-01

    The Horizontal Access Module Seismic Attenuation System (HAM-SAS) is a mechanical device expressly designed to isolate a multipurpose optical table and fit in the tight space of the LIGO HAM Ultra-High-Vacuum chamber. Seismic attenuation in the detectors' sensitivity frequency band is achieved with state of the art passive mechanical attenuators. These devices should provide an attenuation factor of about 70dB above 10Hz at the suspension point of the Advanced LIGO triple pendulum suspension. Automatic control techniques are used to position the optical table and damp rigid body modes. Here, we report the main results obtained from the full scale prototype installed at the MIT LIGO Advanced System Test Interferometer (LASTI) facility. Seismic attenuation performance, control strategies, improvements and limitations are also discussed

  6. Calculation of NPP pipeline seismic stability

    International Nuclear Information System (INIS)

    Kirillov, A.P.; Ambriashvili, Yu.K.; Kaliberda, I.V.

    1982-01-01

    A simplified design procedure of seismic pipeline stability of NPP at WWER reactor is described. The simplified design procedure envisages during the selection and arrangement of pipeline saddle and hydraulic shock absorbers use of method of introduction of resilient mountings of very high rigidity into the calculated scheme of the pipeline and performance of calculations with step-by-step method. It is concluded that the application of the design procedure considered permits to determine strains due to seismic loads, to analyze stressed state in pipeline elements and supporting power of pipe-line saddle with provision for seismic loads to plan measures on seismic protection

  7. Estimation of Cyclic Interstory Drift Capacity of Steel Framed Structures and Future Applications for Seismic Design

    Directory of Open Access Journals (Sweden)

    Edén Bojórquez

    2014-01-01

    Full Text Available Several studies have been devoted to calibrate damage indices for steel and reinforced concrete members with the purpose of overcoming some of the shortcomings of the parameters currently used during seismic design. Nevertheless, there is a challenge to study and calibrate the use of such indices for the practical structural evaluation of complex structures. In this paper, an energy-based damage model for multidegree-of-freedom (MDOF steel framed structures that accounts explicitly for the effects of cumulative plastic deformation demands is used to estimate the cyclic drift capacity of steel structures. To achieve this, seismic hazard curves are used to discuss the limitations of the maximum interstory drift demand as a performance parameter to achieve adequate damage control. Then the concept of cyclic drift capacity, which incorporates information of the influence of cumulative plastic deformation demands, is introduced as an alternative for future applications of seismic design of structures subjected to long duration ground motions.

  8. Seismic Performance Evaluation of Reinforced Concrete Frames Subjected to Seismic Loads

    Science.gov (United States)

    Zameeruddin, Mohd.; Sangle, Keshav K.

    2017-06-01

    Ten storied-3 bays reinforced concrete bare frame designed for gravity loads following the guidelines of IS 456 and IS 13920 for ductility is subjected to seismic loads. The seismic demands on this building were calculated by following IS 1893 for response spectra of 5% damping (for hard soil type). Plastic hinges were assigned to the beam and column at both ends to represent the failure mode, when member yields. Non-linear static (pushover) analysis was performed to evaluate the performance of the building in reference to first (ATC 40), second (FEMA 356) and next-generation (FEMA 440) performance based seismic design procedures. Base shear against top displacement curve of structure, known as pushover curve was obtained for two actions of plastic hinge behavior, force-controlled (brittle) and deformation-controlled (ductile) actions. Lateral deformation corresponding to performance point proves the building capability to sustain a certain level of seismic loads. The failure is represented by a sequence of formation of plastic hinges. Deformation-controlled action of hinges showed that building behaves like strong-column-weak-beam mechanism, whereas force-controlled action showed formation of hinges in the column. The study aims to understand the first, second and next generation performance based design procedure in prediction of actual building responses and their conservatism into the acceptance criteria.

  9. Risk based seismic design criteria

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1999-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2) What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the safe-shutdown-earthquake (SSE) ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented. (orig.)

  10. Task force activity to take the effect of elastic-plastic behaviour into account on the seismic safety evaluation of nuclear piping systems

    International Nuclear Information System (INIS)

    Nakamura, Izumi; Shiratori, Masaki; Morishita, Masaki; Otani, Akihito; Shibutani, Tadahito

    2015-01-01

    According to investigations of several nuclear power plants (NPPs) hit by actual seismic events and a number of experimental researches on the failure behavior of piping systems under seismic loads, it is recognized that piping systems used in NPPs include a large seismic safety margin until boundary failure. Since the stress assessment based on the elastic analysis does not reflect actual seismic capability of piping systems including plastic region, it is necessary to develop a rational procedures to estimate the elastic-plastic behavior of piping systems under a large seismic load. With the aim of establishing a procedure that takes into account the elastic-plastic behavior effect in the seismic safety estimation of nuclear piping systems, a task force activity has been planned. Through the activity, the authors intend to establish guidelines to estimate the elastic-plastic behavior of piping systems rationally and conservatively, and to provide new rational seismic safety criteria taking the effect of elastic-plastic behavior into account. As the first step of making out the analysis guideline, benchmark analyses are conducted for a pipe element test and a piping system test. In this paper, the outline of the research activity and the preliminary results of benchmark analyses are described. (author)

  11. Establishing seismic design criteria to achieve an acceptable seismic margin

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1997-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2). What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the Safe Shutdown Earthquake ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented

  12. An investigation of elastic-plastic seismic analysis of piping systems under high level of earthquake motion

    International Nuclear Information System (INIS)

    Liu, T.H.; Patel, R.B.; Condrac, R.

    1993-01-01

    The current design by rules of the ASME Section III Code for the nuclear power plant piping system is principally based on the elastic design concept Such design often results in a more rigid piping system, structurally, that may not be so desirable from the viewpoint of long term plant operation. The so called 'elastic design' approach has failed to utilize the ductility that steel pipe exhibits, and therefore, the resulting system maintains a great deal of reserve margin in seismic design. This study does not attempt to assess the amount of this reserve margin but provides some findings and discussions with respect to dynamic inelastic analysis results in the piping system design. Using a test correlation analysis it was found that, while the analytical tools that exist are conservative for low strain levels, further studies with loadings at high strain levels are recommended for a more reasonable design. (author)

  13. Experimental and numerical response of rigid slender blocks with geometrical defects under seismic excitation

    Directory of Open Access Journals (Sweden)

    Mathey Charlie

    2015-01-01

    Full Text Available The present work investigates on the influence of small geometrical defects on the behavior of slender rigid blocks. A comprehensive experimental campaign was carried out on one of the shake tables of CEA/Saclay in France. The tested model was a massive steel block with standard manufacturing quality. Release, free oscillations tests as well as shake table tests revealed a non-negligible out-of-plane motion even in the case of apparently plane initial conditions or excitations. This motion exhibits a highly reproducible part for a short duration that was used to calibrate a numerical geometrically asymmetrical model. The stability of this model when subjected to 2 000 artificial seismic horizontal bidirectional signals was compared to the stability of a symmetrical one. This study showed that the geometrical imperfections slightly increase the rocking and overturning probabilities under bidirectional seismic excitations in a narrow range of peak ground acceleration.

  14. Research on performance-based seismic design criteria

    Institute of Scientific and Technical Information of China (English)

    谢礼立; 马玉宏

    2002-01-01

    The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and economic development. A new performance-based seismic design criterion that is composed of three components is presented in this paper. It can not only effectively control the economic losses and casualty, but also ensure the building(s function in proper operation during earthquakes. The three components are: classification of seismic design for buildings, determination of seismic design intensity and/or seismic design ground motion for controlling seismic economic losses and casualties, and determination of the importance factors in terms of service periods of buildings. For controlling the seismic human losses, the idea of socially acceptable casualty level is presented and the (Optimal Economic Decision Model( and (Optimal Safe Decision Model( are established. Finally, a new method is recommended for calculating the importance factors of structures by adjusting structures service period on the base of more important structure with longer service period than the conventional ones. Therefore, the more important structure with longer service periods will be designed for higher seismic loads, in case the exceedance probability of seismic hazard in different service period is same.

  15. The development of the design method of nuclear piping system supported by elasto-plastic support structures (Part 1)

    International Nuclear Information System (INIS)

    Endo, R.; Murota, M.; Kawahata, J.-I.; Sato, T.; Mekomoto, Y.; Takayama, Y.; Kobayashi, H.; Hirose, J.

    1993-01-01

    The conventional aseismic design method of nuclear piping system is very conservative because of the accumulation of various safety factors in the design process, and nuclear piping systems are thought to have a large safety margin. Considering this situation, we promoted research to further rationalize nuclear power plants by reducing the amount of support structures and reducing the piping seismic response through vibration energy absorption resulting from the elasto-plastic behavior of piping support structures. The research has the following three stages. In the first stage, we select conventional piping support structures in Japanese light-water reactors that exhibit elasto-plastic behavior, and study the displacement dependency and the vibration frequency dependency on the stiffness and the energy absorption by testing their model. In the second stage, we make a piping test model with support structures whose characteristics have already been obtained, and perform vibration tests on a shaking table. In this way, we analyze the piping vibration characteristics by sinusoidal wave sweep tests and the piping response characteristics by seismic wave vibration tests, when the support structures are in an elasto-plastic condition. In the third stage, a general method is developed to evaluate the characteristics of the support structures obtained in the tests and it is applied to the evaluation of the characteristics of general support structures. A simplified analysis method is developed to evaluate the piping seismic response using the piping model test result. To expand the results mentioned above, we are developing a seismic design method of piping systems that allows support structures to have elasto-plastic behaviour. This paper reports the results of experiments conducted under the joint research program of Japanese electric power companies with support elements in the first stage and those with piping models in the second stage

  16. Verification of the Seismic Performance of a Rigidly Connected Modular System Depending on the Shape and Size of the Ceiling Bracket

    Directory of Open Access Journals (Sweden)

    Seungjae Lee

    2017-03-01

    Full Text Available Modular systems have been mostly researched in relatively low-rise structures but, lately, their applications to mid- to high-rise structures began to be reviewed, and research interest in new modularization subjects has increased. The application of modular systems to mid- to high-rise structures requires the structural stability of the frame and connections that consist of units, and the evaluation of the stiffness of structures that are combined in units. However, the combination of general units causes loss of the cross-section of columns or beams, resulting in low seismic performance and hindering installation works in the field. In addition, the evaluation of a frame considering such a cross-sectional loss is not easy. Therefore, it is necessary to develop a joint that is stable and easy to install. In the study, a rigidly connected modular system was proposed as a moment-resisting frame for a unit modular system, and their joints were developed and their performances were compared. The proposed system changed the ceiling beam into a bracket type to fasten bolts. It can be merged with other seismic force-resisting systems. To verify the seismic performance of the proposed system, a cyclic loading test was conducted, and the rigidly connected joint performance and integrated behavior at the joint of modular units were investigated. From the experimental results, the maximum resisting force of the proposed connection exceeded the theoretical parameters, indicating that a rigid joint structural performance could be secured.

  17. Bearing capacity and rigidity of short plastic-concrete-tubal vertical columns under transverse load

    Science.gov (United States)

    Dolzhenko, A. V.; Naumov, A. E.; Shevchenko, A. E.

    2018-03-01

    The results of mathematical modeling in determining strain-stress distribution parameters of a short plastic-concrete-tubal vertical column under horizontal load as those in vertical constructions are described. Quantitative parameters of strain-stress distribution during vertical and horizontal loads and horizontal stiffness were determined by finite element modeling. The internal stress in the concrete column core was analyzed according to equivalent stress in Mohr theory of failure. It was determined that the bearing capacity of a short plastic- concrete-tubal vertical column is 25% higher in resistibility and 15% higher in rigidness than those of the caseless concrete columns equal in size. Cracks formation in the core of a short plastic-concrete-tubal vertical column happens under significantly bigger horizontal loads with less amount of concrete spent than that in caseless concrete columns. The significant increase of bearing capacity and cracking resistance of a short plastic-concrete-tubal vertical column under vertical and horizontal loads allows recommending them as highly effective and highly reliable structural wall elements in civil engineering.

  18. Seismic design standardization of nuclear facilities

    International Nuclear Information System (INIS)

    Reddy, G.R.; Vaze, K.K.

    2011-01-01

    Full text: Structures, Systems and Components (SSCs) of Nuclear Facilities have to be designed for normal operating loads such as dead weight, pressure, temperature etc., and accidental loads such as earthquakes, floods, extreme, wind air craft impact, explosions etc. Man made accidents such as aircraft impact, explosions etc., some times may be considered as design basis event and some times taken care by providing administrative controls. This will not be possible in the case of natural events such as earthquakes, flooding, extreme winds etc. Among natural events earthquakes are considered as most devastating and need to be considered as design basis event. It is generally felt design of SSCs for earthquake loads is very time consuming and expensive. Conventional seismic design approaches demands for large number of supports for systems and components. This results in large space occupation and in turn creates difficulties for maintenance and in service inspection of systems and components. In addition, complete exercise of design need to be repeated for plants being located at different sites due to different seismic demands. However, advanced seismic response control methods will help to standardize the seismic design meeting the safety and economy. These methods adopt passive, semi active and active devices, and base isolators to control the seismic response. In nuclear industry, it is advisable to go for passive devices to control the seismic responses. Ideally speaking, these methods will make the designs made for normal loads can also satisfy the seismic demand without calling for change in material, geometry, layout etc. in the SSCs. This paper explain the basic ideas of seismic response control methods, demonstrate the effectiveness of control methods through case studies and eventually give the procedure to be adopted for seismic design standardization of nuclear facilities

  19. Russian regulatory approaches to seismic design and seismic analysis of NPP piping

    International Nuclear Information System (INIS)

    Kaliberda, Y.V.

    2003-01-01

    The paper presents an overview of Russian regulatory approaches to seismic design and seismic analysis of NPP piping. The paper is focused on categorization and seismic analysis of nuclear power plant items (piping, equipment, supports, valves, but not building structures). The paper outlines the current seismic recommendations, corresponding methods with the examples of calculation models. The paper considers calculation results of the mechanisms of dynamic behavior and the problems of developing a rational and economical approaches to seismic design and seismic protection. (author)

  20. Seismic response of bridge pier on rigid caisson foundation in soil stratum

    Science.gov (United States)

    Tsigginos, C.; Gerolymos, N.; Assimaki, D.; Gazetas, G.

    2008-03-01

    An analytical method to study the seismic response of a bridge pier supported on a rigid caisson foundation embedded in a deep soil stratum underlain by a homogeneous half space is developed. The method reproduces the kinematic and inertial responses, using translational and rotational distributed Winkler springs and dashpots to simulate the soil-caisson interaction. Closed-form solutions are given in the frequency domain for vertical harmonic S-wave excitation. Comparison with results from finite element (FE) analysis and other available solutions demonstrates the reliability of the model. Results from parametric studies are given for the kinematic and inertial responses. The modification of the fundamental period and damping ratio of the bridge due to soil-structure interaction is graphically illustrated.

  1. Development of Canadian seismic design approach and overview of seismic standards

    Energy Technology Data Exchange (ETDEWEB)

    Usmani, A. [Amec Foster Wheeler, Toronto, ON (Canada); Aziz, T. [TSAziz Consulting Inc., Mississauga, ON (Canada)

    2015-07-01

    Historically the Canadian seismic design approaches have evolved for CANDU® nuclear power plants to ensure that they are designed to withstand a design basis earthquake (DBE) and have margins to meet the safety requirements of beyond DBE (BDBE). While the Canadian approach differs from others, it is comparable and in some cases more conservative. The seismic requirements are captured in five CSA nuclear standards which are kept up to date and incorporate lessons learnt from recent seismic events. This paper describes the evolution of Canadian approach, comparison with others and provides an overview and salient features of CSA seismic standards. (author)

  2. Seismic capacity of a reinforced concrete frame structure without seismic detailing and limited ductility seismic design in moderate seismicity

    International Nuclear Information System (INIS)

    Kim, J. K.; Kim, I. H.

    1999-01-01

    A four-story reinforced concrete frame building model is designed for the gravity loads only. Static nonlinear pushover analyses are performed in two orthogonal horizontal directions. The overall capacity curves are converted into ADRS spectra and compared with demand spectra. At several points the deformed shape, moment and shear distribution are calculated. Based on these results limited ductility seismic design concept is proposed as an alternative seismic design approach in moderate seismicity resign

  3. Conceptual design by analysis of KALIMER seismic isolation

    International Nuclear Information System (INIS)

    You, Bong; Koo, Kyung Hoi; Lee, Jae Han

    1996-06-01

    The objectives of this report are to preliminarily evaluate the seismic isolation performance of KALIMER (Korea Advance LIquid MEtal Reactor) by seismic analyses, investigate the design feasibility, and find the critical points of KALIMER reactor structures. The work scopes performed in this study are 1) the establishment of seismic design basis, 2) the development of seismic analysis model of KALIMER, 3) the modal analysis, 4) seismic time history analysis, 5) the evaluations of seismic isolation performance and seismic design margins, and 6) the evaluation of seismic capability of KALIMER. The horizontal fundamental frequency of KALIMER reactor structure is 8 Hz, which is far remote from the seismic isolation frequency, 0.7 Hz. The vertical first and second natural frequencies are about 2 Hz and 8 Hz respectively. These vertical natural frequencies are in a dominant ground motion frequency bands, therefore these modes will result in large vertical response amplifications. From the results of seismic time history analyses, the horizontal isolation performance is great but the large vertical amplifications are occurred in reactor structures. The RV Liner has the smallest seismic design margin as 0.18. From the results of seismic design margins evaluation, the critical design change are needed in the support barrel, separation plate, and baffle plate points. The seismic capability of KALIMER is about 0.35g. This value can be increased by the design changes of the separation plate and etc.. 11 tabs., 29 figs., 7 refs. (Author) .new

  4. NRC Seismic Design Margins Program Plan

    International Nuclear Information System (INIS)

    Cummings, G.E.; Johnson, J.J.; Budnitz, R.J.

    1985-08-01

    Recent studies estimate that seismically induced core melt comes mainly from earthquakes in the peak ground acceleration range from 2 to 4 times the safe shutdown earthquake (SSE) acceleration used in plant design. However, from the licensing perspective of the US Nuclear Regulatory Commission, there is a continuing need for consideration of the inherent quantitative seismic margins because of, among other things, the changing perceptions of the seismic hazard. This paper discusses a Seismic Design Margins Program Plan, developed under the auspices of the US NRC, that provides the technical basis for assessing the significance of design margins in terms of overall plant safety. The Plan will also identify potential weaknesses that might have to be addressed, and will recommend technical methods for assessing margins at existing plants. For the purposes of this program, a general definition of seismic design margin is expressed in terms of how much larger that the design basis earthquake an earthquake must be to compromise plant safety. In this context, margin needs to be determined at the plant, system/function, structure, and component levels. 14 refs., 1 fig

  5. Position paper: Seismic design criteria

    International Nuclear Information System (INIS)

    Farnworth, S.K.

    1995-01-01

    The purpose of this paper is to document the seismic design criteria to be used on the Title 11 design of the underground double-shell waste storage tanks and appurtenant facilities of the Multi-Function Waste Tank Facility (MWTF) project, and to provide the history and methodologies for determining the recommended Design Basis Earthquake (DBE) Peak Ground Acceleration (PGA) anchors for site-specific seismic response spectra curves. Response spectra curves for use in design are provided in Appendix A

  6. Seismic design practices for power systems

    International Nuclear Information System (INIS)

    Schiff, A.J.

    1991-01-01

    In this paper, the evolution of seismic design practices in electric power systems is reviewed. In California the evolution had led to many installation practices that are directed at improving the seismic ruggedness of power system facilities, particularly high voltage substation equipment. The primary means for substantiating the seismic ruggedness of important, hard to analyze substation equipment is through vibration testing. Current activities include system evaluations, development of emergency response plans and their exercise, and review elements that impact the entire system, such as energy control centers and communication systems. From a national perspective there is a need to standardize seismic specifications, identify a seismic specialist within each utility and enhance communications among these specialists. There is a general need to incorporate good seismic design practices on a national basis emphasizing new construction

  7. Research on high level radioactive waste repository seismic design criteria

    International Nuclear Information System (INIS)

    Jing Xu

    2012-01-01

    Review seismic hazard analysis principle and method in site suitable assessment process of Yucca Mountain Project, and seismic design criteria and seismic design basis in primary design process. Demonstrated spatial character of seismic hazard by calculated regional seismic hazard map. Contrasted different level seismic design basis to show their differences and relation. Discussed seismic design criteria for preclosure phrase of high level waste repository and preference goal under beyond design basis ground motion. (author)

  8. Design of semi-rigid type of flexible pavements

    Directory of Open Access Journals (Sweden)

    Pranshoo Solanki

    2017-03-01

    Full Text Available The primary objective of the study presented in this paper is to develop design curves for performance prediction of stabilized layers and to compare semi-rigid flexible pavement designs between the empirical AASHTO 1993 and the mechanistic-empirical pavement design methodologies. Specifically, comparisons were made for a range of different sections consisting of cementitious layers stabilized with different types and percentages of additives. It is found that the design thickness is influenced by the type of soil, additive, selection of material property and design method. Cost comparisons of sections stabilized with different percentage and type of additives showed that CKD-stabilization provides economically low cost sections as compared to lime- and CFA-stabilized sections. Knowledge gained from the parametric analysis of different sections using AASHTO 1993 and MEPDG is expected to be useful to pavement designers and others in implementation of the new MEPDG for future pavement design. Keywords: Semi-rigid, Mechanistic, Resilient modulus, Fatigue life, Reliability, Traffic

  9. Salt Repository Project input to seismic design: Revision 0

    International Nuclear Information System (INIS)

    1987-12-01

    The Salt Repository Program (SRP) Input to Seismic Design (ISD) documents the assumptions, rationale, approaches, judgments, and analyses that support the development of seismic-specific data and information to be used for shaft design in accordance with the SRP Shaft Design Guide (SDG). The contents of this document are divided into four subject areas: (1) seismic assessment, (2) stratigraphy and material properties for seismic design, (3) development of seismic design parameters, and (4) host media stability. These four subject areas have been developed considering expected conditions at a proposed site in Deaf Smith County, Texas. The ISD should be used only in conjunction with seismic design of the exploratory and repository shafts. Seismic design considerations relating to surface facilities are not addressed in this document. 54 refs., 55 figs., 18 tabs

  10. Seismic design of reactors in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Akira [Mitsui Shipbuilding and Engineering Co. Ltd., Tokyo (Japan); Kuchiya, Masao; Yasuda, Naomitsu; Kitanaka, Tsutomu; Ogawa, Kazuhiko; Sakuraba, Koichi; Izawa, Naoki; Takeshita, Isao

    1997-03-01

    Basic concept and calculation method for the seismic design of the main equipment of the reactors in NUCEF (Nuclear Fuel Cycle Safety Engineering Research Facility) are described with actual calculation examples. The present paper is published to help the seismic design of the equipment and application of the authorization for the design and constructing of facilities. (author)

  11. Review of nuclear piping seismic design requirements

    International Nuclear Information System (INIS)

    Slagis, G.C.; Moore, S.E.

    1994-01-01

    Modern-day nuclear plant piping systems are designed with a large number of seismic supports and snubbers that may be detrimental to plant reliability. Experimental tests have demonstrated the inherent ruggedness of ductile steel piping for seismic loading. Present methods to predict seismic loads on piping are based on linear-elastic analysis methods with low damping. These methods overpredict the seismic response of ductile steel pipe. Section III of the ASME Boiler and Pressure Vessel Code stresses limits for piping systems that are based on considerations of static loads and hence are overly conservative. Appropriate stress limits for seismic loads on piping should be incorporated into the code to allow more flexible piping designs. The existing requirements and methods for seismic design of piping systems, including inherent conservations, are explained to provide a technical foundation for modifications to those requirements. 30 refs., 5 figs., 3 tabs

  12. Application of seismic refraction tomography for tunnel design in Santa Clara Mountain, San Juan, Argentina Application of seismic refraction tomography for tunnel design in Santa Clara Mountain, San Juan, Argentina

    Directory of Open Access Journals (Sweden)

    Imhof Armando Luis

    2011-12-01

    Full Text Available

    A geophysical survey involving seismic refraction tomography (SRT for mapping 'P' waves was carried out in Sierra Santa Clara, San Juan Province, Argentina in July 2009. The purpose of the geophysical survey was to determine the degree of fracturing and the rigidity of the rock mass through which it is planned to build a 290 m long road tunnel traversing the mountain almost perpendicular to the axis thereof, at around 100 m depth from the summit.

    Several difficulties arose from the operational point of view which made it almost impossible to conduct fieldwork in normal circumstances. Firstly, the topography had almost 45° slopes and 100 m research depths which would have involved having had to use explosives to generate seismic waves reaching sensors which had sufficient signal-to-noise ratio for distinguishing them. Legal restrictions regarding the use of explosives on the one hand and insufficient power when using hammer blows on the other made it necessary to design and build a gas-powered gun to achieve the minimum energy (2 kJ required for detecting seismic signals.

    Secondly, using conventional interpretation methods involving layered models was inoperable in such geological structures; seismic tomography methods were thus used which make use of the velocity gradient concept (both lateral and in-depth. This allowed mapping subsurface velocity variations in the form of velocity contour lines.

    The methodology used with the new seismic waves' source generator, as well as SRT application in this type of geological structure, demonstrated that satisfactory results could be obtained for this kind of geophysical study for geotechnical purposes.

    A geophysical survey involving seismic refraction tomography (SRT for mapping 'P' waves was

  13. A Hammer-Impact, Aluminum, Shear-Wave Seismic Source

    Science.gov (United States)

    Haines, Seth

    2007-01-01

    Near-surface seismic surveys often employ hammer impacts to create seismic energy. Shear-wave surveys using horizontally polarized waves require horizontal hammer impacts against a rigid object (the source) that is coupled to the ground surface. I have designed, built, and tested a source made out of aluminum and equipped with spikes to improve coupling. The source is effective in a variety of settings, and it is relatively simple and inexpensive to build.

  14. Singular solutions for the rigid plastic double slip and rotation model under plane strain

    Science.gov (United States)

    Alexandrov, S.; Lyamina, E.

    2018-02-01

    In the mechanics of granular and other materials the system of equations comprising the rigid plastic double slip and rotation model together with the stress equilibrium equations under plane strain conditions forms a hyperbolic system. Boundary value problems for this system of equations can involve a frictional interface. An envelope of characteristics may coincide with this interface. In this case, the solution is singular. In particular, some components of the strain rate tensor approach infinity in the vicinity of the frictional interface. Such behavior of solutions is in qualitative agreement with experimental data that show that a narrow layer of localized plastic deformation is often generated near frictional interfaces. The present paper deals with asymptotic analysis of the aforementioned system of equations in the vicinity of an envelope of characteristics. It is shown that the shear strain rate and the spin component in a local coordinate system connected to the envelope follow an inverse square root rule in its vicinity.

  15. Design experience on seismically isolated buildings

    International Nuclear Information System (INIS)

    Giuliani, G.C.

    1989-01-01

    This paper describes the practical problems associated with the structural design of a group of seismically isolated buildings now under construction in Ancona, Italy. These structures are the first seismically isolated buildings in Italy. Taking into account previous earthquakes, the structural design of these new buildings was performed according to an acceleration spectrum which was different from its Zone 2 seismic code and which provided protection for stronger ground motions. To minimize the cost of the structure, the buildings used ribbed plate decks, thus reducing the amount of material and the mass of the structures to be isolated. The design requirements, dynamic analysis performed, structural design, and practical engineering employed are reported in this paper. A comparison between the costs of a conventionally designed and a base-isolated structure is also reported. The tests undertaken for certifying the mechanical properties of the isolators for both static and dynamic loads are also described, as is the full-scale dynamic test which is scheduled for next year (1990) for one of the completed buildings. Lessons learned in this design effort are potentially applicable to seismic base isolation for nuclear power plants

  16. Seismic behavior with sliding of overhead travelling crane

    International Nuclear Information System (INIS)

    Komori, Akio; Ueki, Takashi; Hirata, Masami; Hoshii, Tsutomu; Kashiwazaki, Akihiro.

    1989-01-01

    In this study, the seismic behavior of an overhead travelling crane with the sliding between travelling wheels and rails is examined. First, the dynamic characteristic test of the actual crane installed in a reactor building and the sliding test of the rigid-element model to observe the basic sliding characteristic were performed. Next, to examine the dynamic response with sliding, shaking tests using the scaled model of an actual crane were conducted. From these results, useful design information about seismic behavior of an overhead travelling crane was obtained. It was also observed that numerical predictions considering sliding behavior have good agreement with the experimental results and are applicable to seismic design. (author)

  17. A perturbation model for the oscillatory flow of a Bingham plastic in rigid and periodically displaced tubes.

    Science.gov (United States)

    De Chant, L J

    1999-10-01

    An approximate analytical model for the pulsatile flow of an ideal Bingham plastic fluid in both a rigid and a periodically displaced tube has been developed using regular perturbation methods. Relationships are derived for the velocity field and dimensionless flow rate. The solution compares adequately with available experimentally measured oscillatory non-Newtonian fluid flow data. These solutions provide useful analytical models supporting experimental and computation studies of arterial blood flow.

  18. Doppler ultrasound compatible plastic material for use in rigid flow models.

    Science.gov (United States)

    Wong, Emily Y; Thorne, Meghan L; Nikolov, Hristo N; Poepping, Tamie L; Holdsworth, David W

    2008-11-01

    A technique for the rapid but accurate fabrication of multiple flow phantoms with variations in vascular geometry would be desirable in the investigation of carotid atherosclerosis. This study demonstrates the feasibility and efficacy of implementing numerically controlled direct-machining of vascular geometries into Doppler ultrasound (DUS)-compatible plastic for the easy fabrication of DUS flow phantoms. Candidate plastics were tested for longitudinal speed of sound (SoS) and acoustic attenuation at the diagnostic frequency of 5 MHz. Teflon was found to have the most appropriate SoS (1376 +/- 40 m s(-1) compared with 1540 m s(-1) in soft tissue) and thus was selected to construct a carotid bifurcation flow model with moderate eccentric stenosis. The vessel geometry was machined directly into Teflon using a numerically controlled milling technique. Geometric accuracy of the phantom lumen was verified using nondestructive micro-computed tomography. Although Teflon displayed a higher attenuation coefficient than other tested materials, Doppler data acquired in the Teflon flow model indicated that sufficient signal power was delivered throughout the depth of the vessel and provided comparable velocity profiles to that obtained in the tissue-mimicking phantom. Our results indicate that Teflon provides the best combination of machinability and DUS compatibility, making it an appropriate choice for the fabrication of rigid DUS flow models using a direct-machining method.

  19. Seismic test for safety evaluation of low level radioactive wastes containers

    International Nuclear Information System (INIS)

    Ohoka, Makoto; Horikiri, Morito

    1998-08-01

    Seismic safety of three-piled container system used in Tokai reprocessing center was confirmed by seismic test and computational analysis. Two types of container were evaluated, for low level noninflammable radioactive solid wastes, and for used filters wrapped by large plastic bags. Seismic integrity of three-piled containers was confirmed by evaluating response characteristics such as acceleration and displacement under the design earthquake condition S1, which is the maximum earthquake expected at the stored site during the storage time. Computational dynamic analysis was also performed, and several conclusions described below were made. (1) Response characteristics of the bottom board and the side board were different. The number of pile did not affect the response characteristics of the bottom board of each container. They behaved as a rigid body. (2) The response of the side board was larger than that of the bottom board. (3) The response depended on the direction in each board, either side or bottom. The response acceleration became larger to the seismic wave perpendicular to the plane which has the entrance for fork lift and the radioactive warning mark. (4) The maximum horizontal response displacement under the S1 seismic wave was approximately 10 mm. It is so small that it does not affect the seismic safety. (5) The stoppers to prevent fall down had no influence to the response acceleration. (6) There was no fall down to the S1 seismic wave and 2 times of S1 seismic wave, which was the maximum input condition of the test. (7) The response of the bottom board of the containers, which are main elements of fall down, had good agreements both in the test and in the computational analysis. (author)

  20. On seismic design of cable trays and their supports

    International Nuclear Information System (INIS)

    Hartmann, B.

    1978-01-01

    Codes presently in force for design of nuclear power plants require seismic qualification for all electric equipment. In the case of cable trays and their supports one usually attempts to meet the requirements of the code by stiffening a standardized design. This procedure leads to impracticall,imensions for the mountings and, above all, to the loss of the modular character. With strong earthquakes however, it may become irrational at all. This paper suggests an alternate strategy. It starts with a standardized system again, adding some units. These are on the one hand diagonal bracing elements, arbitrarily to arrange, thus gaining a more or less rigid supporting framework. And on the other hand as an essential modification, elastomer rubber pads are inserted as spring bearings. With these pads between the supporting and the adjoining structure, the assembly becomes tractable with respect to earthquake qualification. The question of material properties is also addressed. The elastomer pads have to be chosen so as to fulfil all expected functions under usual as well as extreme environmental conditions. (Author)

  1. Durable bistable auxetics made of rigid solids

    Science.gov (United States)

    Shang, Xiao; Liu, Lu; Rafsanjani, Ahmad; Pasini, Damiano

    2018-02-01

    Bistable Auxetic Metamaterials (BAMs) are a class of monolithic perforated periodic structures with negative Poisson's ratio. Under tension, a BAM can expand and reach a second state of equilibrium through a globally large shape transformation that is ensured by the flexibility of its elastomeric base material. However, if made from a rigid polymer, or metal, BAM ceases to function due to the inevitable rupture of its ligaments. The goal of this work is to extend the unique functionality of the original kirigami architecture of BAM to a rigid solid base material. We use experiments and numerical simulations to assess performance, bistability and durability of rigid BAMs at 10,000 cycles. Geometric maps are presented to elucidate the role of the main descriptors of BAM architecture. The proposed design enables the realization of BAM from a large palette of materials, including elastic-perfectly plastic materials and potentially brittle materials.

  2. Seismic passive earth resistance using modified pseudo-dynamic method

    Science.gov (United States)

    Pain, Anindya; Choudhury, Deepankar; Bhattacharyya, S. K.

    2017-04-01

    In earthquake prone areas, understanding of the seismic passive earth resistance is very important for the design of different geotechnical earth retaining structures. In this study, the limit equilibrium method is used for estimation of critical seismic passive earth resistance for an inclined wall supporting horizontal cohesionless backfill. A composite failure surface is considered in the present analysis. Seismic forces are computed assuming the backfill soil as a viscoelastic material overlying a rigid stratum and the rigid stratum is subjected to a harmonic shaking. The present method satisfies the boundary conditions. The amplification of acceleration depends on the properties of the backfill soil and on the characteristics of the input motion. The acceleration distribution along the depth of the backfill is found to be nonlinear in nature. The present study shows that the horizontal and vertical acceleration distribution in the backfill soil is not always in-phase for the critical value of the seismic passive earth pressure coefficient. The effect of different parameters on the seismic passive earth pressure is studied in detail. A comparison of the present method with other theories is also presented, which shows the merits of the present study.

  3. Seismic analysis and design of NPP structures

    International Nuclear Information System (INIS)

    de Carvalho Santos, S.H.; da Silva, R.E.

    1989-01-01

    Numerical methods for static and dynamic analysis of structures, as well as for the design of individual structural elements under the applied loads are under continuous development, being very sophisticated methods nowadays available for the engineering practice. Nevertheless, this sophistication will be useless if some important aspects necessary to assure full compatability between analysis and design are disregarded. Some of these aspects are discussed herein. This paper presents an integrated approach for the seismic analysis and design of NPP structures: the development of models for the seismic analysis, the distribution of the global seismic forces among the seismic-resistant elements and the criteria for the design of the individual elements for combined static and dynamic forces are the main topics to be discussed herein. The proposed methodology is illustrated. Some examples taken from the project practice are presented for illustration the exposed concepts

  4. Seismic performance of a grout-repaired construction defect in a column plastic hinge

    International Nuclear Information System (INIS)

    Budek, A.

    2006-01-01

    A column built to test the use of high-strength transverse reinforcement in seismically-loaded shear-critical columns was found to have a construction defect. The column was built to be loaded in double bending and as such was expected to develop two plastic hinges, one at each end of column. In the plastic hinge region at the column top, a void was formed because the concrete could not pass through the load stub's reinforcing steel cage. This void was repaired using nonshrink grout placed in a fluid state. The column was tested after repair and performed satisfactorily. The grouted repair was able to support large plastic rotations and allowed the column to reach a high level of ductility. The only effects of the repair were slightly reduced concrete dilation and stiffness in the repaired hinge. (author)

  5. Upgrading of seismic design of nuclear power plant building

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Hiroshi [Tokyo Univ. (Japan). Faculty of Engineering; Kitada, Yoshio

    1997-03-01

    In Japan seismic design methodology of nuclear power plant (NPP) structures has been established as introduced in the previous session. And yet efforts have been continued to date to upgrade the methodology, because of conservative nature given to the methodology in regard to unknown phenomena and technically-limited modeling involved in design analyses. The conservative nature tends to produce excessive safety margins, and inevitably send NPP construction cost up. Moreover, excessive seismic design can increase the burden on normal plant operation, though not necessarily contributing to overall plant safety. Therefore, seismic engineering has put to many tests and simulation analyses in hopes to rationalize seismic design and enhance reliability of seismic safety of NPPs. In this paper, we describe some studies on structural seismic design of NPP underway as part of Japan`s effort to upgrade existing seismic design methodology. Most studies described here are carried out by NUPEC (Nuclear Power Engineering Company) funded by MITI (the Ministry of International Trade and Industry Japan), though, similar studies with the same motive are also carrying out by nuclear industries such as utilities, NPP equipment and system manufacturers and building constructors. This paper consists of three sections, each introducing studies relating to NPP structural seismic design, new siting technology, and upgrading of the methodology of structural design analyses. (J.P.N.)

  6. Upgrading of seismic design of nuclear power plant building

    International Nuclear Information System (INIS)

    Akiyama, Hiroshi; Kitada, Yoshio.

    1997-01-01

    In Japan seismic design methodology of nuclear power plant (NPP) structures has been established as introduced in the previous session. And yet efforts have been continued to date to upgrade the methodology, because of conservative nature given to the methodology in regard to unknown phenomena and technically-limited modeling involved in design analyses. The conservative nature tends to produce excessive safety margins, and inevitably send NPP construction cost up. Moreover, excessive seismic design can increase the burden on normal plant operation, though not necessarily contributing to overall plant safety. Therefore, seismic engineering has put to many tests and simulation analyses in hopes to rationalize seismic design and enhance reliability of seismic safety of NPPs. In this paper, we describe some studies on structural seismic design of NPP underway as part of Japan's effort to upgrade existing seismic design methodology. Most studies described here are carried out by NUPEC (Nuclear Power Engineering Company) funded by MITI (the Ministry of International Trade and Industry Japan), though, similar studies with the same motive are also carrying out by nuclear industries such as utilities, NPP equipment and system manufacturers and building constructors. This paper consists of three sections, each introducing studies relating to NPP structural seismic design, new siting technology, and upgrading of the methodology of structural design analyses. (J.P.N.)

  7. Displacement Based Seismic Design Criteria

    International Nuclear Information System (INIS)

    Costello, J.F.; Hofmayer, C.; Park, Y.J.

    1999-01-01

    The USNRC has initiated a project to determine if any of the likely revisions to traditional earthquake engineering practice are relevant to seismic design of the specialized structures, systems and components of nuclear power plants and of such significance to suggest that a change in design practice might be warranted. As part of the initial phase of this study, a literature survey was conducted on the recent changes in seismic design codes/standards, on-going activities of code-writing organizations/communities, and published documents on displacement-based design methods. This paper provides a summary of recent changes in building codes and on-going activities for future codes. It also discusses some technical issues for further consideration

  8. Structural concepts and details for seismic design

    International Nuclear Information System (INIS)

    Johnson, M.W.; Smietana, E.A.; Murray, R.C.

    1991-01-01

    As a part of the DOE Natural Phenomena Hazards Program, a new manual has been developed, entitled UCRL-CR-106554, open-quotes Structural Concepts and Details for Seismic Design.close quotes This manual describes and illustrates good practice for seismic-resistant design

  9. Seismic design considerations for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Soni, R.S.; Kushwaha, H.S.; Venkat Raj, V.

    2001-01-01

    During the last few decades, there have been considerable advances in the field of a seismic design of nuclear structures and components housed inside a Nuclear power Plant (NPP). The seismic design and qualification of theses systems and components are carried out through the use of well proven and established theoretical as well as experimental means. Many of the related research works pertaining to these methods are available in the published literature, codes, guides etc. Contrary to this, there is very little information available with regards to the seismic design aspects of the nuclear fuel cycle facilities. This is probably on account of the little importance attached to these facilities from the point of view of seismic loading. In reality, some of these facilities handle a large inventory of radioactive materials and, therefore, these facilities must survive during a seismic event without giving rise to any sort of undue radiological risk to the plant personnel and the public at large. Presented herein in this paper are the seismic design considerations which are adopted for the design of nuclear fuel cycle facilities in India. (author)

  10. Development of seismic design method for piping system supported by elastoplastic damper. 3. Vibration test of three-dimensional piping model and its response analysis

    International Nuclear Information System (INIS)

    Namita, Yoshio; Kawahata, Jun-ichi; Ichihashi, Ichiro; Fukuda, Toshihiko.

    1995-01-01

    Component and piping systems in current nuclear power plants and chemical plants are designed to employ many supports to maintain safety and reliability against earthquakes. However, these supports are rigid and have a slight energy-dissipating effect. It is well known that applying high-damping supports to the piping system is very effective for reducing the seismic response. In this study, we investigated the design method of the elastoplastic damper [energy absorber (EAB)] and the seismic design method for a piping system supported by the EAB. Our final goal is to develop technology for applying the EAB to the piping system of an actual plant. In this paper, the vibration test results of the three-dimensional piping model are presented. From the test results, it is confirmed that EAB has a large energy-dissipating effect and is effective in reducing the seismic response of the piping system, and that the seismic design method for the piping system, which is the response spectrum mode superposition method using each modal damping and requires iterative calculation of EAB displacement, is applicable for the three-dimensional piping model. (author)

  11. Seismic analysis for conceptual design of HCCR TBM-set

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won, E-mail: dwlee@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Seong Dae; Jin, Hyung Gon; Lee, Eo Hwak; Kim, Suk-Kwon; Yoon, Jae Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon, Republic of Korea (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • The seismic analysis of KO HCCR TBM-set are performed. • The seismic envents like SL-1, SL-2, and SMHV are selected and evaluated with FEM code (ANSYS). • The results of the stresses and deformations are confirmed to meet the design criteria. - Abstract: Using the conceptual design of the Korean helium cooled ceramic reflector (HCCR) test blanket module (TBM) including the TBM-shield for testing in ITER, a seismic analysis is performed. According to the ITER TBM port plug (TBM PP) system load specifications, seismic events are selected as SL-1 (seismic level-1), SL-2 (seismic level-2), and SMHV (seismes maximaux historiquement vraisemblables, Maximum Histroically Probable Earthquakes). In a modal analysis a total of 50 modes are obtained. Then, a spectra response analysis for each seismic event is carried out using ANSYS based on the modal analysis results. For each event, the obtained Tresca stress is evaluated to confirm the design integrity, by comparing the resulting stress to the design criteria. The Tresca strain and displacement are also estimated for the HCCR TBM-set. From the analysis, it was concluded that the maximum stresses by the seismic events meet the design criteria, and the displacements are lower than the designed gap from the TBM PP frame. The results are provided to a load combination analysis.

  12. H infinity controller design to a rigid-flexible satellite with two vibration modes

    International Nuclear Information System (INIS)

    De Souza, A G; De Souza, L C G

    2015-01-01

    The satellite attitude control system (ACS) design becomes more complex when the satellite structure has components like, flexible solar panels, antennas and mechanical manipulators. These flexible structures can interact with the satellite rigid parts during translational and/or rotational manoeuvre damaging the ACS pointing accuracy. Although, a well-designed controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to suppress such disturbances thus affecting the satellite attitude acquisition. This paper deals with the rigid-flexible satellite ACS design using the H infinity method. The rigid-flexible satellite is represented by a beam connected to a central rigid hub at one end and free at the other one. The equations of motions are obtained considering small flexible deformations and the Euler-Bernoulli hypothesis. The results of the simulations have shown that the H-infinity controller was able to control the rigid motion and suppress the vibrations. (paper)

  13. Seismic design of nuclear power plants - an assessment

    International Nuclear Information System (INIS)

    Howard, G.E.; Ibanez, P.; Smith, C.B.

    1976-01-01

    This paper presents a review and evaluation of the design standards and the analytical and experimental methods used in the seismic design of nuclear power plants with emphasis on United States practice. Three major areas were investigated: (a) soils, siting, and seismic ground motion specification; (b) soil-structure interaction; and (c) the response of major nuclear power plant structures and components. The purpose of this review and evaluation program was to prepare an independent assessment of the state-of-the-art of the seismic design of nuclear power plants and to identify seismic analysis and design research areas meriting support by the various organizations comprising the 'nuclear power industry'. Criteria used for evaluating the relative importance of alternative research areas included the potential research impact on nuclear power plant siting, design, construction, cost, safety, licensing, and regulation. (Auth.)

  14. Understanding geological processes: Visualization of rigid and non-rigid transformations

    Science.gov (United States)

    Shipley, T. F.; Atit, K.; Manduca, C. A.; Ormand, C. J.; Resnick, I.; Tikoff, B.

    2012-12-01

    reasoning within the panels of science experts. In a second study, individual differences in reasoning about brittle deformations were correlated with reasoning about ductile deformations (e.g., what a bent plastic sheet would look like when unbent). Students who were good at visualizing what something looked like before it was broken were also good at visualizing what something looked like before it was bent, and this skill was not correlated to reasoning about rigid rotations. These findings suggest the cognitive processes that support reasoning about rigid and non-rigid events may differ and thus may require different types of support and training. We do not know if differences between experts and novices result from experience or self-selection, or both. Nevertheless, the range of spatial skill evinced by novices and experts strongly argues for designing visualizations to support a variety of users.

  15. Design experience on seismically isolated buildings

    International Nuclear Information System (INIS)

    Giuliani, G.C.

    1991-01-01

    This paper describes the practical problems associated with the structural design of seismically isolated buildings now under construction in Ancona, Italy. These structures are the first seismically isolated buildings in Italy. The Ancona region is in zone 2 of the Italian Seismic Code. It has a design acceleration of 0.07 g which corresponds to a ground surface acceleration of 0.25 g. The last significant earthquake was recorded on June 14, 1972, having a single shock-type wave with a peak acceleration of 0.53 g. Taking into account the aforesaid earthquake, the structural design of these new buildings was performed according to an acceleration spectrum which was different from the zone 2 seismic code and which provided protection for stronger ground motions. To minimize the cost of the structure, the buildings used ribbed plate decks, thus reducing the amount of material and the mass of the structures to be isolated. The design requirements, dynamic analysis performed, structural design, and practical engineering employed are reported in this paper. A comparison between the costs of a conventionally designed and a base-isolated structure is also reported. It shows a net savings of 7% for the base-isolated structure. The tests undertaken for certifying the mechanical properties of the isolators for both static and dynamic loads are also described, as is the full-scale dynamic test which is scheduled for next year (1990) for one of the completed buildings. (orig.)

  16. A seismic design of nuclear reactor building structures applying seismic isolation system in a seismicity region-a feasibility case study in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Tetsuo [The University of Tokyo, Tokyo (Japan); Yamamoto, Tomofumi; Sato, Kunihiko [Mitsubishi Heavy Industries, Ltd., Kobe (Japan); Jimbo, Masakazu [Toshiba Corporation, Yokohama (Japan); Imaoka, Tetsuo [Hitachi-GE Nuclear Energy, Ltd., Hitachi (Japan); Umeki, Yoshito [Chubu Electric Power Co. Inc., Nagoya (Japan)

    2014-10-15

    A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB) is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1) the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2) the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3) the responses of isolated reactor building fall below the range of the prescribed criteria.

  17. Seismic site evaluation practice and seismic design guide for NPP in Continent of China

    Energy Technology Data Exchange (ETDEWEB)

    Yuxian, Hu [State Seismological Bureau, Beijing, BJ (China). Inst. of Geophysics

    1997-03-01

    Energy resources, seismicity, NPP and related regulations of the Continent of China are briefly introduced in the beginning and two codes related to the seismic design of NPP, one on siting and another on design, are discussed in some detail. The one on siting is an official code of the State Seismological Bureau, which specifies the seismic safety evaluation requirements of various kinds of structures, from the most critic and important structures such as NPP to ordinary buildings, and including also engineering works in big cities. The one on seismic design of NPP is a draft subjected to publication now, which will be an official national code. The first one is somewhat unique but the second one is quite similar to those in the world. (author)

  18. Seismic site evaluation practice and seismic design guide for NPP in Continent of China

    International Nuclear Information System (INIS)

    Hu Yuxian

    1997-01-01

    Energy resources, seismicity, NPP and related regulations of the Continent of China are briefly introduced in the beginning and two codes related to the seismic design of NPP, one on siting and another on design, are discussed in some detail. The one on siting is an official code of the State Seismological Bureau, which specifies the seismic safety evaluation requirements of various kinds of structures, from the most critic and important structures such as NPP to ordinary buildings, and including also engineering works in big cities. The one on seismic design of NPP is a draft subjected to publication now, which will be an official national code. The first one is somewhat unique but the second one is quite similar to those in the world. (author)

  19. Seismic Design of a Single Bored Tunnel: Longitudinal Deformations and Seismic Joints

    Science.gov (United States)

    Oh, J.; Moon, T.

    2018-03-01

    The large diameter bored tunnel passing through rock and alluvial deposits subjected to seismic loading is analyzed for estimating longitudinal deformations and member forces on the segmental tunnel liners. The project site has challenges including high hydrostatic pressure, variable ground profile and high seismic loading. To ensure the safety of segmental tunnel liner from the seismic demands, the performance-based two-level design earthquake approach, Functional Evaluation Earthquake and Safety Evaluation Earthquake, has been adopted. The longitudinal tunnel and ground response seismic analyses are performed using a three-dimensional quasi-static linear elastic and nonlinear elastic discrete beam-spring elements to represent segmental liner and ground spring, respectively. Three components (longitudinal, transverse and vertical) of free-field ground displacement-time histories evaluated from site response analyses considering wave passage effects have been applied at the end support of the strain-compatible ground springs. The result of the longitudinal seismic analyses suggests that seismic joint for the mitigation measure requiring the design deflection capacity of 5-7.5 cm is to be furnished at the transition zone between hard and soft ground condition where the maximum member forces on the segmental liner (i.e., axial, shear forces and bending moments) are induced. The paper illustrates how detailed numerical analyses can be practically applied to evaluate the axial and curvature deformations along the tunnel alignment under difficult ground conditions and to provide the seismic joints at proper locations to effectively reduce the seismic demands below the allowable levels.

  20. Calculation of anti-seismic design for Xi'an pulsed reactor

    International Nuclear Information System (INIS)

    Li Shuian

    2002-01-01

    The author describes the reactor safety rule, safety regulation and design code that must be observed to anti-seismic design in Xi'an pulsed reactor. It includes the classification of reactor installation, determination of seismic loads, calculate contents, program, method, results and synthetically evaluation. According to the different anti-seismic structure character of reactor installation, an appropriate method was selected to calculate the seismic response. The results were evaluated synthetically using the design code and design requirement. The evaluate results showed that the anti-seismic design function of reactor installation of Xi'an pules reactor is well, and the structure integrality and normal property of reactor installation can be protect under the designed classification of the earthquake

  1. Safety design guides for seismic requirements for CANDU 9

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide for seismic requirements for CANDU 9 describes the seismic design philosophy, defines the applicable earthquakes and identifies the structures and systems requiring seismic qualification to ensure that the essential safety function can be adequately satisfied following earthquake. The detailed requirements for structures, systems and components which must be seismically qualified are specified in the Appendix. The change status of the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. 1 fig., (Author) .new

  2. Seismic Margin of 500MWe PFBR Beyond Safe Shutdown Earthquake

    International Nuclear Information System (INIS)

    Sajish, S.D.; Chellapandi, P.; Chetal, S.C.

    2012-01-01

    Summary: • Seismic design aspects of safety related systems and components of PFBR is discussed with a focus on reactor assembly components. • PFBR is situated in a low seismic area with a peak ground acceleration value of 0.156 g. • The design basis ground motion parameters for the seismic design are evaluated by deterministic method and confirmed by probabilistic seismic hazard analysis. • Review of the seismic design of various safety related systems and components indicate that margin is available to meet any demand due to an earthquake beyond SSE. • Reactor assembly vessels are the most critical components w.r.t seismic loading. • Minimum safety margin is 1.41 for plastic deformation and 1.46 against buckling. • From the preliminary investigation we come to the conclusion that PFBR can withstand an earthquake up to 0.22 g without violating any safety limits. • Additional margin can be estimated by detailed fragility analysis and seismic margin assessment methods

  3. Seismic performance of geosynthetic-soil retaining wall structures

    Science.gov (United States)

    Zarnani, Saman

    Vertical inclusions of expanded polystyrene (EPS) placed behind rigid retaining walls were investigated as geofoam seismic buffers to reduce earthquake-induced loads. A numerical model was developed using the program FLAC and the model validated against 1-g shaking table test results of EPS geofoam seismic buffer models. Two constitutive models for the component materials were examined: elastic-perfectly plastic with Mohr-Coulomb (M-C) failure criterion and non-linear hysteresis damping model with equivalent linear method (ELM) approach. It was judged that the M-C model was sufficiently accurate for practical purposes. The mechanical property of interest to attenuate dynamic loads using a seismic buffer was the buffer stiffness defined as K = E/t (E = buffer elastic modulus, t = buffer thickness). For the range of parameters investigated in this study, K ≤50 MN/m3 was observed to be the practical range for the optimal design of these systems. Parametric numerical analyses were performed to generate design charts that can be used for the preliminary design of these systems. A new high capacity shaking table facility was constructed at RMC that can be used to study the seismic performance of earth structures. Reduced-scale models of geosynthetic reinforced soil (GRS) walls were built on this shaking table and then subjected to simulated earthquake loading conditions. In some shaking table tests, combined use of EPS geofoam and horizontal geosynthetic reinforcement layers was investigated. Numerical models were developed using program FLAC together with ELM and M-C constitutive models. Physical and numerical results were compared against predicted values using analysis methods found in the journal literature and in current North American design guidelines. The comparison shows that current Mononobe-Okabe (M-O) based analysis methods could not consistently satisfactorily predict measured reinforcement connection load distributions at all elevations under both static

  4. Role of intrachain rigidity in the plasticization of intrinsically microporous triptycene-based polyimide membranes in mixed-Gas CO2/CH4 separations

    KAUST Repository

    Swaidan, Raja; Ghanem, Bader; Al-Saeedi, Majed; Litwiller, Eric; Pinnau, Ingo

    2014-01-01

    is not a singular solution to intrinsic plasticization resistance. Despite the significant intrachain rigidity in TPDA-TMPD, a 300% increase in PMIX(CH4), 50% decrease in α(CO2/CH4) from 24 to 12, and continuous increase in PMIX(CO2) occurred from 4 to 30

  5. Optimum design for pipe-support allocation against seismic loading

    International Nuclear Information System (INIS)

    Hara, Fumio; Iwasaki, Akira

    1996-01-01

    This paper deals with the optimum design methodology of a piping system subjected to a seismic design loading to reduce its dynamic response by selecting the location of pipe supports and whereby reducing the number of pipe supports to be used. The author employs the Genetic Algorithm for obtaining a reasonably optimum solution of the pipe support location, support capacity and number of supports. The design condition specified by the support location, support capacity and the number of supports to be used is encored by an integer number string for each of the support allocation candidates and they prepare many strings for expressing various kinds of pipe-support allocation state. Corresponding to each string, the authors evaluate the seismic response of the piping system to the design seismic excitation and apply the Genetic Algorithm to select the next generation candidates of support allocation to improve the seismic design performance specified by a weighted linear combination of seismic response magnitude, support capacity and the number of supports needed. Continuing this selection process, they find a reasonably optimum solution to the seismic design problem. They examine the feasibility of this optimum design method by investigating the optimum solution for 5, 7 and 10 degree-of-freedom models of piping system, and find that this method can offer one a theoretically feasible solution to the problem. They will be, thus, liberated from the severe uncertainty of damping value when the pipe support guaranties the design capacity of damping. Finally, they discuss the usefulness of the Genetic Algorithm for the seismic design problem of piping systems and some sensitive points when it will be applied to actual design problems

  6. Basic concepts about application of dual vibration absorbers to seismic design of nuclear piping systems

    International Nuclear Information System (INIS)

    Hara, F.; Seto, K.

    1987-01-01

    The design value of damping for nuclear piping systems is a vital parameter in ensuring safety in nuclear plants during large earthquakes. Many experiments and on-site tests have been undertaken in nuclear-industry developed countries to determine rational design values. However damping value in nuclear piping systems is so strongly influenced by many piping parameters that it shows a tremendous dispersion in its experimental values. A new trend has recently appeared in designing nuclear pipings, where they attempt to use a device to absorb vibration energy induced by seismic excitation. A typical device is an energy absorbing device, made of a special material having a high capacity of plasticity, which is installed between the piping and the support. This paper deals with the basic study of application of dual vibration absorbers to nuclear piping systems to accomplish high damping value and reduce consequently seismic response at resonance frequencies of a piping system, showing their effectiveness from not only numerical calculation but also experimental evaluation of the vibration responses in a 3D model piping system equipped with dual two vibration absorbers

  7. Comparative study of codes for the seismic design of structures

    Directory of Open Access Journals (Sweden)

    S. H. C. Santos

    Full Text Available A general evaluation of some points of the South American seismic codes is presented herein, comparing them among themselves and with the American Standard ASCE/SEI 7/10 and with the European Standard Eurocode 8. The study is focused in design criteria for buildings. The Western border of South America is one of the most seismically active regions of the World. It corresponds to the confluence of the South American and Nazca plates. This region corresponds roughly to the vicinity of the Andes Mountains. This seismicity diminishes in the direction of the comparatively seismically quieter Eastern South American areas. The South American countries located in its Western Border possess standards for seismic design since some decades ago, being the Brazilian Standard for seismic design only recently published. This study is focused in some critical topics: definition of the recurrence periods for establishing the seismic input; definition of the seismic zonation and design ground motion values; definition of the shape of the design response spectra; consideration of soil amplification, soil liquefaction and soil-structure interaction; classification of the structures in different importance levels; definition of the seismic force-resisting systems and respective response modification coefficients; consideration of structural irregularities and definition of the allowable procedures for the seismic analyses. A simple building structure is analyzed considering the criteria of the several standards and obtained results are compared.

  8. Seismic design and evaluation criteria based on target performance goals

    International Nuclear Information System (INIS)

    Murray, R.C.; Nelson, T.A.; Kennedy, R.P.; Short, S.A.

    1994-04-01

    The Department of Energy utilizes deterministic seismic design/evaluation criteria developed to achieve probabilistic performance goals. These seismic design and evaluation criteria are intended to apply equally to the design of new facilities and to the evaluation of existing facilities. In addition, the criteria are intended to cover design and evaluation of buildings, equipment, piping, and other structures. Four separate sets of seismic design/evaluation criteria have been presented each with a different performance goal. In all these criteria, earthquake loading is selected from seismic hazard curves on a probabilistic basis but seismic response evaluation methods and acceptable behavior limits are deterministic approaches with which design engineers are familiar. For analytical evaluations, conservatism has been introduced through the use of conservative inelastic demand-capacity ratios combined with ductile detailing requirements, through the use of minimum specified material strengths and conservative code capacity equations, and through the use of a seismic scale factor. For evaluation by testing or by experience data, conservatism has been introduced through the use of an increase scale factor which is applied to the prescribed design/evaluation input motion

  9. Seismic design features of the ACR Nuclear Power Plant

    International Nuclear Information System (INIS)

    Elgohary, M.; Saudy, A.; Aziz, T.

    2003-01-01

    Through their worldwide operating records, CANDU Nuclear Power Plants (NPPs) have repeatedly demonstrated safe, reliable and competitive performance. Currently, there are fourteen CANDU 6 single unit reactors operating or under construction worldwide. Atomic Energy of Canada Limited's (AECL) Advanced CANDU Reactor - the ACR. - is the genesis of a new generation of technologically advanced reactors founded on the CANDU reactor concept. The ACR is the next step in the evolution of the CANDU product line. The ACR products (ACR-700 and ACR-1000) are based on CANDU 6 (700 MWe class) and CANDU 9 (900 MWe class) reactors, therefore continuing AECL's successful approach of offering CANDU plants that appeal to a broad segment of the power generation market. The ACR products are based on the proven CANDU technology and incorporate advanced design technologies. The ACR NPP seismic design complies with Canadian standards that were specifically developed for nuclear seismic design and also with relevant International Atomic Energy Agency (IAEA) Safety Design Standards and Guides. However, since the ACR is also being offered to several markets with many potential sites and different regulatory environments, there is a need to develop a comprehensive approach for the seismic design input parameters. These input parameters are used in the design of the standard ACR product that is suitable for many sites while also maintaining its economic competitiveness. For this purpose, the ACR standard plant is conservatively qualified for a Design Basis Earthquake (DBE) with a peak horizontal ground acceleration of 0.3g for a wide range of soil/rock foundation conditions and Ground Response Spectra (GRS). These input parameters also address some of the current technical issues such as high frequency content and near field effects. In this paper, the ACR seismic design philosophy and seismic design approach for meeting the safety design requirements are reviewed. Also the seismic design

  10. Seismic isolation design guidelines for KALIMER(Revision A)

    International Nuclear Information System (INIS)

    Yoo, B; Koo, Gyeong Hoi; Lee, J. H.

    2000-04-01

    The main purpose of this report is to develop the seismic isolation design guideline for KALIMER(Korea Advanced LIquid MEtal Reactor). The proposed design rules(revision A) are only applicable to the seismic isolation design with using the high damping laminated rubber bearings. When using other seismic isolation devices and applying to 3-dimensional isolation, the proposed guidelines shall be modified and added with proper research data. The rules described in this report are based on the research results performed up to now but needed to be upgraded and verified with more detail research works for the future

  11. SEISMIC DESIGN CRITERIA FOR NUCLEAR POWER REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R. A.

    1963-10-15

    The nature of nuclear power reactors demands an exceptionally high degree of seismic integrity. Considerations involved in defining earthquake resistance requirements are discussed. Examples of seismic design criteria and applications of the spectrum technique are described. (auth)

  12. Building configuration and seismic design: The architecture of earthquake resistance

    Science.gov (United States)

    Arnold, C.; Reitherman, R.; Whitaker, D.

    1981-05-01

    The architecture of a building in relation to its ability to withstand earthquakes was determined. Aspects of round motion which are significant to building behavior are discussed. Results of a survey of configuration decisions that affect the performance of buildings with a focus on the architectural aspects of configuration design are provided. Configuration derivation, building type as it relates to seismic design, and seismic design, and seismic issues in the design process are examined. Case studies of the Veterans' Administration Hospital in Loma Linda, California, and the Imperial Hotel in Tokyo, Japan, are presented. The seismic design process is described paying special attention to the configuration issues. The need is stressed for guidelines, codes, and regulations to ensure design solutions that respect and balance the full range of architectural, engineering, and material influences on seismic hazards.

  13. Seismic verification of the Italian PEC fast reactor and effects of seismic conditions on the design

    International Nuclear Information System (INIS)

    Martelli, A.; Cecchini, F.; Masoni, P.; Maresca, G.; Castoldi, A.

    1988-01-01

    This paper deals with the aseismic design features of the Italian PEC fast reactor and the effects of seismic conditions on the reactor design. More precisely, after some notes on the main plant features, the paper reports on the design earthquakes adopted, the seismic monitoring procedures and the related actions, the design requirements, criteria and methods, and also provides a brief summary of the main research and development studies performed in support of design analysis. For the above-mentioned items, comparisons with the other fast reactors of the European Community countries are presented. Furthermore, the paper stresses the design modifications adopted to guarantee PEC seismic safety

  14. A SEISMIC DESIGN OF NUCLEAR REACTOR BUILDING STRUCTURES APPLYING SEISMIC ISOLATION SYSTEM IN A HIGH SEISMICITY REGION –A FEASIBILITY CASE STUDY IN JAPAN-

    Directory of Open Access Journals (Sweden)

    TETSUO KUBO

    2014-10-01

    Full Text Available A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1 the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2 the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3 the responses of isolated reactor building fall below the range of the prescribed criteria.

  15. Towards Improved Considerations of Risk in Seismic Design (Plinius Medal Lecture)

    Science.gov (United States)

    Sullivan, T. J.

    2012-04-01

    The aftermath of recent earthquakes is a reminder that seismic risk is a very relevant issue for our communities. Implicit within the seismic design standards currently in place around the world is that minimum acceptable levels of seismic risk will be ensured through design in accordance with the codes. All the same, none of the design standards specify what the minimum acceptable level of seismic risk actually is. Instead, a series of deterministic limit states are set which engineers then demonstrate are satisfied for their structure, typically through the use of elastic dynamic analyses adjusted to account for non-linear response using a set of empirical correction factors. From the early nineties the seismic engineering community has begun to recognise numerous fundamental shortcomings with such seismic design procedures in modern codes. Deficiencies include the use of elastic dynamic analysis for the prediction of inelastic force distributions, the assignment of uniform behaviour factors for structural typologies irrespective of the structural proportions and expected deformation demands, and the assumption that hysteretic properties of a structure do not affect the seismic displacement demands, amongst other things. In light of this a number of possibilities have emerged for improved control of risk through seismic design, with several innovative displacement-based seismic design methods now well developed. For a specific seismic design intensity, such methods provide a more rational means of controlling the response of a structure to satisfy performance limit states. While the development of such methodologies does mark a significant step forward for the control of seismic risk, they do not, on their own, identify the seismic risk of a newly designed structure. In the U.S. a rather elaborate performance-based earthquake engineering (PBEE) framework is under development, with the aim of providing seismic loss estimates for new buildings. The PBEE framework

  16. Structural Analysis and Seismic Design for Cold Neutron Laboratory Building

    International Nuclear Information System (INIS)

    Wu, Sangik; Kim, Y. K.; Kim, H. R.

    2007-05-01

    This report describes all the major results of the dynamic structural analysis and seismic design for the Cold Neutron Laboratory Building which is classified in seismic class II. The results are summarized of the ground response spectrum as seismic input loads, mechanical properties of subsoil, the buoyancy stability due to ground water, the maximum displacement of the main frame under the seismic load and the member design. This report will be used as a basic design report to maintenance its structural integrity in future

  17. Assessment of seismic design response factors of concrete wall buildings

    Science.gov (United States)

    Mwafy, Aman

    2011-03-01

    To verify the seismic design response factors of high-rise buildings, five reference structures, varying in height from 20- to 60-stories, were selected and designed according to modern design codes to represent a wide range of concrete wall structures. Verified fiber-based analytical models for inelastic simulation were developed, considering the geometric nonlinearity and material inelasticity of the structural members. The ground motion uncertainty was accounted for by employing 20 earthquake records representing two seismic scenarios, consistent with the latest understanding of the tectonic setting and seismicity of the selected reference region (UAE). A large number of Inelastic Pushover Analyses (IPAs) and Incremental Dynamic Collapse Analyses (IDCAs) were deployed for the reference structures to estimate the seismic design response factors. It is concluded that the factors adopted by the design code are adequately conservative. The results of this systematic assessment of seismic design response factors apply to a wide variety of contemporary concrete wall buildings with various characteristics.

  18. Seismic resistance design of nuclear power plant building structures in Japan

    International Nuclear Information System (INIS)

    Kitano, Takehito

    1997-01-01

    Japan is one of the countries where earthquakes occur most frequently in the world and has incurred a lot of disasters in the past. Therefore, the seismic resistance design of a nuclear power plant plays a very important role in Japan. This report describes the general method of seismic resistance design of a nuclear power plant giving examples of PWR and BWR type reactor buildings in Japan. Nuclear facilities are classified into three seismic classes and is designed according to the corresponding seismic class in Japan. Concerning reactor buildings, the short-term allowable stress design is applied for the S1 seismic load and it is confirmed that the structures have a safety margin against the S2 seismic load. (J.P.N.)

  19. Seismic resistance design of nuclear power plant building structures in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kitano, Takehito [Kansai Electric Power Co., Inc., Osaka (Japan)

    1997-03-01

    Japan is one of the countries where earthquakes occur most frequently in the world and has incurred a lot of disasters in the past. Therefore, the seismic resistance design of a nuclear power plant plays a very important role in Japan. This report describes the general method of seismic resistance design of a nuclear power plant giving examples of PWR and BWR type reactor buildings in Japan. Nuclear facilities are classified into three seismic classes and is designed according to the corresponding seismic class in Japan. Concerning reactor buildings, the short-term allowable stress design is applied for the S1 seismic load and it is confirmed that the structures have a safety margin against the S2 seismic load. (J.P.N.)

  20. Relationship between dilatancy, stresses and plastic dissipation in a granular material with rigid grains

    Science.gov (United States)

    Evesque, Pierre; Stefani, Christian

    1991-11-01

    By considering a drained cohesionless granular sample made up of rigid grains and submitted to a triaxial test, we derive an equation relating the dilatancy K, the deviatoric stress q and the confining pressure p to the energy losses D_plastic due to plastic yielding. We demonstrate that the system is contracting (K le 0) at q = 0, when q is increasing and that spontaneous uncontrolled yielding begins occurring when dilatancy K is maximum. We also demonstrate the existence of the characteristic state introduced by Luong and Habib and the existence of the critical state of Schofield and Wroth. Finally, we give a method to determine the plastic losses during a triaxial cell test using the experimental data. En utilisant un postulat de reproductibilité des essais triaxiaux et une relation liant l'énergie dissipée, la dilatance K et les contraintes imposées à un échantillon, on démontre qu'un matériau granulaire ne peut que se contracter après avoir subi une contrainte de confinement isotrope (i.e. q = 0), que la rupture spontanée a lieu après un maximum de dilatance, qu'il existe un état caractéristique (au sens de Luong et Habib) et qu'il existe un état “ critique ” (au sens de Schofield et Wroth). Nous donnons de plus une méthode pour estimer la dissipation-plastique durant un essai triaxial à partir des résultats expérimentaux.

  1. Seismic design principles for the German fast breeder reactor SNR2

    International Nuclear Information System (INIS)

    Rangette, A.M.; Peters, K.A.

    1988-01-01

    The leading aim of a seismic design is, besides protection against seismic impacts, not to enhance the overall risk in the absence of seismic vibrations and, secondly, to avoid competition between operational needs and a seismic structural design. This approach is supported by avoiding overconservatism in the assumption of seismic loads and in the calculation of the structural response. Accordingly the seismic principles are stated as follows: restriction to German or equivalent low seismicity sites with intensities (SSE) lower VIII at frequency lower than 10 -4 /year; best estimate of seismic input-data without further conservatism; no consideration of OBE. The structural design principles are: 1. The secondary character of the seismic excitation is explicitly accounted for; 2. Energy absorption is allowed for by ductility of materials and construction. Accordingly strain criteria are used for failure predictions instead of stress criteria. (author). 1 fig

  2. 49 CFR 192.121 - Design of plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of the...

  3. Overview of seismic resistant design of Indian Nuclear Power Plants

    International Nuclear Information System (INIS)

    Sharma, G.K.; Hawaldar, R.V.K.P.; Vinod Kumar

    2007-01-01

    Safe operation of a Nuclear Power Plant (NPP) is of utmost importance. NPPs consist of various Structure, System and Equipment (SS and E) that are designed to resist the forces generated due to a natural phenomenon like earthquake. An earthquake causes severe oscillatory ground motion of short duration. Seismic resistant design of SS and E calls for evaluation of effect of severe ground shaking for assuring the structural integrity and operability during and after the occurrence of earthquake event. Overall exercise is a multi-disciplinary approach. First of standardized 220 MWe design reactor is Narora Atomic Power Station. Seismic design was carried out as per state of art then, for the first time. The twelve 220 MWe reactors and two 540 MWe reactors designed since 1975 have been seismically qualified for the earthquake loads expected in the region. Seismic design of 700 MWe reactor is under advanced stage of finalization. Seismic re-evaluation of six numbers of old plants has been completed as per latest state of art. Over the years, expertise have been developed at Nuclear Power Corporation of India Limited, Bhabha Atomic Research Centre, prominent educational institutes, research laboratories and engineering consultants in the country in the area of seismic design, analysis and shake table testing. (author)

  4. Study on design method for seismically isolated FBR plants

    International Nuclear Information System (INIS)

    Hirata, Kazuta; Yabana, Shuichi; Ohtori, Yasuki; Ishida, Katsuhiko; Sawada, Yoshihiro; Shiojiri; Hiroo; Mazda, Taiji

    1998-01-01

    CRIEPI conducted 'Demonstration test on FBR seismic isolation system' from 1987 to 1996 under contract with Ministry of International Trade and Industry, Japan. In the demonstration test, base isolation technologies are prepared and demonstrated to apply to FBR and the design guidelines are proposed. In this report overall contents of the design guidelines entitled Design guidelines for seismically base isolated FBR plants' are included. The design guidelines, as a rule, are limited to apply to FBR plants where entire reactor building is isolated in the horizontal direction using laminated rubber bearings as isolators. The design guidelines and its concepts, however, will be useful for the development of similar guidelines for other isolation systems using different type of isolation methods and other nuclear facilities. The design guidelines consist of three parts and appendices. The first part is 'Policy for Safety Design of Base Isolated FBR Plants' specifying the principles and the requirements in the planning and the design for the safety of base isolated FBR plants. The second part is Policy for Seismic Design of Base Isolated FBR' describing the principles and the requirements in the seismic design and the evaluation of safety for base isolated FBR plants. The third part is 'Design Methods for Seismic Isolated FBR Plants' detailing the methods, procedures and parameters to be used in the design and the evaluation of safety fro base isolated FBR plants. In appendices examples of design procedures for base isolated reactor building and laminated rubber bearings as well as various test data on laminated rubber bearings, etc. are shown. (author)

  5. Key issues in european reactor seismic design

    International Nuclear Information System (INIS)

    Cicognani, G.; Martelli, A.

    1984-01-01

    The paper focuses on the main problems which have arisen in FBR design in Europe due to seismic conditions. Its first part, derived from the final report of a CEC-Belgonucleaire study contract, clarifies how ''real'' is the seismic problem for each site. Then, the second and main part deals with the studies carried out in the european countries on the relevant subjects, typical of FBRs or related to specific needs of single FBRs: these studies, for which contributions were provided by ENEA, CEA, NNC and INTERATOM, concern mainly the numerical and experimental analysis of the core, the reactor vessel, the shut-down system and the reactor building of FBRs under construction or in advanced design phase. Attention is also paid to the studies started for future purposes, the feed-backs on the design due to seismic conditions, and the instructions for future reactors

  6. Seismic design and performance of nuclear safety related RC structures based on new seismic design principle

    International Nuclear Information System (INIS)

    Murugan, R.; Sivathanu Pillai, C.; Chattopadhyaya, S.; Sundaramurthy, C.

    2011-01-01

    Full text: Seismic design of safety related Reinforced Concrete (RC) structures of Nuclear power plants (NPP) in India as per the present AERB codal procedures tries to ensure predominantly elastic behaviour under OBE so that the features of Nuclear Power Plant (NPP) necessary for continued safe operation are designed to remain functional and prevent accident (collapse) of NPP under SSE for which certain Structures, Systems and Components (SSCs) those are necessary to ensure the capability to shut down the reactor safely, are designed to remain functional. While the seismic design principles of non safety related structures as per Indian code (IS 1893-2002) are ensuring elastic behaviour under DBE and inelastic behaviour under MCE by utilizing ductility and energy dissipation capacity of the structure effectively. The design principle of AERB code is ensuring elastic behaviour under OBE and is not enlightening much inference about the overall structural behaviour under SSE (only ensuring the capability of certain SSCs required for safe shutdown of reactor). Various buildings and structures of Indian Nuclear power plant are classified from the basis of associated safety functions in a descending order in according with their roles in preventions and mitigation of an accident or support functions for prevention. This paper covers a comprehensive seismic analysis and design methodology based on the AERB codal provisions followed for safety related RC structure taking Diesel Generator Building of PFBR as a case study and study and investigates its performance under OBE and SSE by carrying out Non-linear static Pushover analysis. Based on the analysis, observed variations, recommendations are given for getting the desired performance level so as to implement performance based design in the future NPP design

  7. Application of thermodynamics-based rate-dependent constitutive models of concrete in the seismic analysis of concrete dams

    Directory of Open Access Journals (Sweden)

    Leng Fei

    2008-09-01

    Full Text Available This paper discusses the seismic analysis of concrete dams with consideration of material nonlinearity. Based on a consistent rate-dependent model and two thermodynamics-based models, two thermodynamics-based rate-dependent constitutive models were developed with consideration of the influence of the strain rate. They can describe the dynamic behavior of concrete and be applied to nonlinear seismic analysis of concrete dams taking into account the rate sensitivity of concrete. With the two models, a nonlinear analysis of the seismic response of the Koyna Gravity Dam and the Dagangshan Arch Dam was conducted. The results were compared with those of a linear elastic model and two rate-independent thermodynamics-based constitutive models, and the influences of constitutive models and strain rate on the seismic response of concrete dams were discussed. It can be concluded from the analysis that, during seismic response, the tensile stress is the control stress in the design and seismic safety evaluation of concrete dams. In different models, the plastic strain and plastic strain rate of concrete dams show a similar distribution. When the influence of the strain rate is considered, the maximum plastic strain and plastic strain rate decrease.

  8. Sensitivity of seismic design parameters to input variables

    International Nuclear Information System (INIS)

    Wium, D.J.W.

    1987-01-01

    The probabilistic method introduced by Cornell (1968) has been used to a large extent for this purpose. Due to its probabilistic approach, this technique provides a sound basis for studying the influence of the dominant parameters in such a model. Although the Southern African region is not well known for its seismicity, a number of events in the recent past has focussed the attention on some seismically active areas where special attention may be needed in defining the correct design parameters. The relatively sparse historical seismic data has been used to develop a mathematical model which represents this region. This paper briefly discusses this model, and uses it as a basis for evaluating the influence of the uncertainty in each of the principal parameters, being the seismicity of the region, the attenuation of seismic waves after an event, and models that can be used to arrive at engineering design values. (orig./HP)

  9. RIGID AND NON-RIGID KINEMATIC EXCITATION FOR MULTIPLY-SUPPORTED SYSTEM: ONCE MORE ABOUT THE CONTRIBUTION OF DAMPING TO THE DYNAMIC LOADS IN SEISMIC ANALYSIS

    Directory of Open Access Journals (Sweden)

    Alexander G. Tyapin

    2018-03-01

    Full Text Available Development of linear equations of motion for seismic analysis is discussed in the paper. The paper continues the discussion: the author does not agree with colleagues putting damping matrix into the right-hand part of the equation of motion describing dynamic loads. This disagreement refers to the most popular case of “rigid” motion of multiple supports. In this paper the author follows the logic of general “non-rigid” support motion and points out a step in the equation development when the transition to “rigid” support motion (as a particular case of “non-rigid” motion is spoiled by the opponents. In the author’s opinion, the mistake is in the implementation of the Rayleigh damping model for the right-hand part of the equation. This is in the contradiction with physical logic, as damping in the Rayleigh model is not really “internal”: due to the participation of mass matrix it works on rigid displacements, which is impossible for internal damping.

  10. Seismic analysis response factors and design margins of piping systems

    International Nuclear Information System (INIS)

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01

    The objective of the simplified methods project of the Seismic Safety Margins Research Program is to develop a simplified seismic risk methodology for general use. The goal is to reduce seismic PRA costs to roughly 60 man-months over a 6 to 8 month period, without compromising the quality of the product. To achieve the goal, it is necessary to simplify the calculational procedure of the seismic response. The response factor approach serves this purpose. The response factor relates the median level response to the design data. Through a literature survey, we identified the various seismic analysis methods adopted in the U.S. nuclear industry for the piping system. A series of seismic response calculations was performed. The response factors and their variabilities for each method of analysis were computed. A sensitivity study of the effect of piping damping, in-structure response spectra envelop method, and analysis method was conducted. In addition, design margins, which relate the best-estimate response to the design data, are also presented

  11. Integrated structural design of nuclear power plants for high seismic areas

    International Nuclear Information System (INIS)

    Rieck, P.J.

    1979-01-01

    A design approach which structurally interconnects NPP buildings to be located in high seismic areas is described. The design evolution of a typical 600 MWe steel cylindrical containment PWR is described as the plant is structurally upgraded for higher seismic requirements, while maintaining the original plant layout. The plant design is presented as having separate reactor building and auxiliary structures for a low seismic area (0.20 g) and is structurally combined at the foundation for location in a higher seismic area (0.30 g). The evolution is completed by a fully integrated design which structurally connects the reactor building and auxiliary structures at superstructure elevations as well as foundation levels for location in very severe seismic risk areas (0.50 g). (orig.)

  12. The guideline and practical procedures for earthquake-resistant design of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Watabe, M.

    1985-01-01

    The Guideline for the aseismic design of nuclear reactor facilities, revised in 1981, is introduced. The basic philosophy entails structural integrity against a major earthquake, rigid structure for less deformation and foundation on rock. The classification of facilities is then explained. Some practical examples are tabulated. In the light of the above classifications, evaluation procedures for aseismic design are defined. Design basis earthquake ground motions, S1 and S2, are defined. S1 is the maximum possible earthquake ground motion, while S2 is the maximum credible one. The relation between active faults and S1, S2 motions is explained, seismic forces induced by S1 and S2 are expressed in terms of response spectra. Static seismic coefficient procedures are also applied to evaluate seismic forces, as a minimum guide-line based on dynamic analysis. Combinations of seismic forces and allowable limits are then explained. In the second part of the paper, seismic analysis for reactor buildings as a part of design practice is outlined. There are three major key points in practical aseismic design. The first one is input design earthquake motions, in which soil/foundation interaction problems are also included. In practice, ground motions at the free field rock surface have to be convoluted or deconvoluted to obtain base rock motions, which are applied to estimate input design earthquake motions by way of finite element analysis or a lumped mass lattice model. Also introduced is dynamic modelling of the reactor building with its non-linear behaviour represented by plastic deformation of reinforced concrete members as well as by uplift characteristics of foundations. Then an evaluation of aseismic safety is introduced. (author)

  13. Preliminary seismic design of dynamically coupled structural systems

    International Nuclear Information System (INIS)

    Pal, N.; Dalcher, A.W.; Gluck, R.

    1977-01-01

    In this paper, the analysis criteria for coupling and decoupling, which are most commonly used in nuclear design practice, are briefly reviewed and a procedure outlined and demonstrated with examples. Next, a criterion judged to be practical for preliminary seismic design purposes is defined. Subsequently, a technique compatible with this criterion is suggested. A few examples are presented to test the proposed procedure for preliminary seismic design purposes. Limitations of the procedure are also discussed and finally, the more important conclusions are summarized

  14. A basis for standardized seismic design (SSD) for nuclear power plants/critical facilities

    International Nuclear Information System (INIS)

    O'Hara, T.F.; Jacobson, J.P.; Bellini, F.X.

    1991-01-01

    US Nuclear Power Plants (NPP's) are designed, engineered and constructed to stringent standards. Their seismic adequacy is assured by compliance with regulatory standards and demonstrated by both probabilistic risk assessments (PRAs) and seismic margin studies. However, present seismic siting criteria requires improvement. Proposed changes to siting criteria discussed here will provide a predictable licensing process and a stable regulatory environment. Two recent state-of-the-art studies evaluate the seismic design for all eastern US (EUS) NPP'S: a Lawrence Livermore National Labs study (LLNL, 1989) funded by the NRC and similar research by the Electric Power Research Institute (EPRI, 1989) supported by the utilities. Both confirm that Appendix A 10CFR Part 100 has not provided consistent seismic design levels for all sites. Standardized Seismic Design (SSD) uses a probabilistic framework to accommodate alternative deterministic interpretations. It uses seismic hazard input from EPRI or LLNL to produce consistent bases for future seismic design. SSD combines deterministic and probabilistic insights to provide a comprehensive approach for determining a future site's acceptable seismic design basis

  15. Effects of applying three-dimensional seismic isolation system on the seismic design of FBR

    International Nuclear Information System (INIS)

    Hirata, Kazuta; Yabana, Shuichi; Kanazawa, Kenji; Matsuda, Akihiro

    1997-01-01

    In this study conceptional three-dimensional seismic isolation system for fast breeder reactor (FBR) is proposed. Effects of applying three-dimensional seismic isolation system on the seismic design for the FBR equipment are evaluated quantitatively. From the evaluation, it is concluded following effects are expected by applying the three-dimensional seismic isolation system to the FBR and the effects are evaluated quantitatively. (1) Reduction of membrane thickness of the reactor vessel (2) Suppression of uplift of fuels by reducing vertical seismic response of the core (3) Reduction of the supports for the piping system (4) Three-dimensional base isolation system for the whole reactor building is advantageous to the combined isolation system of horizontal base isolation for the reactor building and vertical isolation for the equipment. (author)

  16. Hysteresis behavior of seismic isolators in earthquakes near a fault ...

    African Journals Online (AJOL)

    Seismic performance and appropriate design of structures located near the faults has always been a major concern of design engineers. Because during an earthquake; the effects of plasticity will make differences in characteristics of near field records. These pulsed movements at the beginning of records will increase the ...

  17. Designing heavy metal oxide glasses with threshold properties from network rigidity.

    Science.gov (United States)

    Chakraborty, Shibalik; Boolchand, P; Malki, M; Micoulaut, M

    2014-01-07

    Here, we show that a new class of glasses composed of heavy metal oxides involving transition metals (V2O5-TeO2) can surprisingly be designed from very basic tools using topology and rigidity of their underlying molecular networks. When investigated as a function of composition, such glasses display abrupt changes in network packing and enthalpy of relaxation at Tg, underscoring presence of flexible to rigid elastic phase transitions. We find that these elastic phases are fully consistent with polaronic nature of electronic conductivity at high V2O5 content. Such observations have new implications for designing electronic glasses which differ from the traditional amorphous electrolytes having only mobile ions as charge carriers.

  18. Shakedown Analysis of Composite Steel-Concrete Frame Systems with Plastic and Brittle Elements Under Seismic Action

    Directory of Open Access Journals (Sweden)

    Alawdin Piotr

    2017-06-01

    Full Text Available In this paper the earthquake analysis of composite steel-concrete frames is performed by finding solution of the optimization problem of shakedown analysis, which takes into account the nonlinear properties of materials. The constructions are equipped with systems bearing structures of various elastic-plastic and brittle elements absorbing energy of seismic actions. A mathematical model of this problem is presented on the base of limit analysis theory with partial redistribution of self-stressed internal forces. It is assumed that the load varies randomly within the specified limits. These limits are determined by the possible direction and magnitude of seismic loads. The illustrative example of such analysis of system is introduced. Some attention has been paid to the practical application of the proposed mathematical model.

  19. Shakedown Analysis of Composite Steel-Concrete Frame Systems with Plastic and Brittle Elements Under Seismic Action

    Science.gov (United States)

    Alawdin, Piotr; Bulanov, George

    2017-06-01

    In this paper the earthquake analysis of composite steel-concrete frames is performed by finding solution of the optimization problem of shakedown analysis, which takes into account the nonlinear properties of materials. The constructions are equipped with systems bearing structures of various elastic-plastic and brittle elements absorbing energy of seismic actions. A mathematical model of this problem is presented on the base of limit analysis theory with partial redistribution of self-stressed internal forces. It is assumed that the load varies randomly within the specified limits. These limits are determined by the possible direction and magnitude of seismic loads. The illustrative example of such analysis of system is introduced. Some attention has been paid to the practical application of the proposed mathematical model.

  20. IDEF method for designing seismic information system in CTBT verification

    International Nuclear Information System (INIS)

    Zheng Xuefeng; Shen Junyi; Jin Ping; Zhang Huimin; Zheng Jiangling; Sun Peng

    2004-01-01

    Seismic information system is of great importance for improving the capability of CTBT verification. A large amount of money has been appropriated for the research in this field in the U.S. and some other countries in recent years. However, designing and developing a seismic information system involves various technologies about complex system design. This paper discusses the IDEF0 method to construct function models and the IDEF1x method to make information models systemically, as well as how they are used in designing seismic information system in CTBT verification. (authors)

  1. Design of the Caltrans Seismic Response Modification Device (SRMD) test facility

    International Nuclear Information System (INIS)

    Benzoni, G.; Seible, F.

    1998-01-01

    In the Seismic retrofit design of California's Toll Bridges, seismic isolation is used in several bridges to limit the seismic force input into the superstructure and to avoid costly superstructure retrofit measures which would require partial lane closures and traffic interruptions. Isolation bearings and dampers of the size required for these large span bridges have not been built or tested to date. This paper describes the design and construction of a full scale testing facility which will allow the real-time 6-DOF dynamic characterization of the seismic response modification devices designed for California's Toll Bridges. (author)

  2. Seismic design of piping systems

    International Nuclear Information System (INIS)

    Anglaret, G.; Beguin, J.L.

    1986-01-01

    This paper deals with the method used in France for the PWR nuclear plants to derive locations and types of supports of auxiliary and secondary piping systems taking earthquake in account. The successive steps of design are described, then the seismic computation method and its particular conditions of applications for piping are presented. The different types of support (and especially seismic ones) are described and also their conditions of installation. The method used to compare functional tests results and computation results in order to control models is mentioned. Some experiments realised on site or in laboratory, in order to validate models and methods, are presented [fr

  3. 49 CFR 192.191 - Design pressure of plastic fittings.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design pressure of plastic fittings. 192.191... Components § 192.191 Design pressure of plastic fittings. (a) Thermosetting fittings for plastic pipe must conform to ASTM D 2517, (incorporated by reference, see § 192.7). (b) Thermoplastic fittings for plastic...

  4. Seismic Design Guidelines For Port Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Bernal, Alberto; Blazquez, Rafael

    In order to mitigate hazards and losses due to earthquakes, seismic design methodologies have been developed and implemented in design practice in many regions since the early twentieth century, often in the form of codes and standards. Most of these methodologies are based on a force-balance app...

  5. Preliminary seismic design cost-benefit assessment of the tuff repository waste-handling facilities

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Abrahamson, N.; Hadjian, A.H.

    1989-02-01

    This report presents a preliminary assessment of the costs and benefits associated with changes in the seismic design basis of waste-handling facilities. The objectives of the study are to understand the capability of the current seismic design of the waste-handling facilities to mitigate seismic hazards, evaluate how different design levels and design measures might be used toward mitigating seismic hazards, assess the costs and benefits of alternative seismic design levels, and develop recommendations for possible modifications to the seismic design basis. This preliminary assessment is based primarily on expert judgment solicited in an interdisciplinary workshop environment. The estimated costs for individual attributes and the assumptions underlying these cost estimates (seismic hazard levels, fragilities, radioactive-release scenarios, etc.) are subject to large uncertainties, which are generally identified but not treated explicitly in this preliminary analysis. The major conclusions of the report do not appear to be very sensitive to these uncertainties. 41 refs., 51 figs., 35 tabs

  6. Response Analysis of an RC Cooling Tower Under Seismic and Windstorm Effects

    Directory of Open Access Journals (Sweden)

    D. Makovička

    2006-01-01

    Full Text Available The paper compares the RC structure of a cooling tower unit under seismic loads and under strong wind loads. The calculated values of the envelopes of the displacements and the internal forces due to seismic loading states are compared with the envelopes of the loading states due to the dead, operational and live loads, wind and temperature actions. The seismic effect takes into account the seismic area of ground motion 0.3 g and the ductility properties of a relatively rigid structure. The ductility is assessed as the reduction in seismic load. In this case the actions of wind pressure are higher than the seismicity effect under ductility correction. The seismic effects, taking into account the ductility properties of the structure, are lower than the actions of the wind pressure. The other static loads, especially temperature action due to the environment and surface insulation are very important for the design of the structure. 

  7. Seismic Dynamic Damage Characteristics of Vertical and Batter Pile-supported Wharf Structure Systems

    Directory of Open Access Journals (Sweden)

    Li Jiren

    2015-10-01

    Full Text Available Considering a typical steel pipe pile-supported wharf as the research object, finite element analytical models of batter and vertical pile structures were established under the same construction site, service, and geological conditions to investigate the seismic dynamic damage characteristics of vertical and batter pile-supported wharf structures. By the numerical simulation and the nonlinear time history response analysis of structure system and the moment–axial force relation curve, we analyzed the dynamic damage characteristics of the two different structures of batter and vertical piles under different seismic ground motions to provide reasonable basis and reference for designing and selecting a pile-supported wharf structure. Results showed that the axial force of batter piles was dominant in the batter pile structure and that batter piles could effectively bear and share seismic load. Under the seismic ground motion with peak ground acceleration (PGA of 350 Gal and in consideration of the factors of the design requirement of horizontal displacement, the seismic performance of the batter pile structure was better than that of the vertical pile structure. Under the seismic ground motion with a PGA of 1000 Gal, plastic failure occurred in two different structures. The contrastive analysis of the development of plastic damage and the absorption and dissipation for seismic energy indicated that the seismic performance of the vertical pile structure was better than that of the batter pile structure.

  8. Considerations for developing seismic design criteria for nuclear waste storage repositories

    International Nuclear Information System (INIS)

    Owen, G.N.; Yanev, P.I.; Scholl, R.E.

    1980-04-01

    The function of seismic design criteria is to reduce the potential for hazards that may arise during various stages of the repository life. During the operational phase, the major concern is with the possible effects of earthquakes on surface facilities, underground facilities, and equipment. During the decommissioned phase, the major concern is with the potential effects of earthquakes on the geologic formation, which may result in a reduction in isolation capacity. Existing standards and guides or criteria used for the static and seismic design of licensed nuclear facilities were reviewed and evaluated for their applicability to repository design. This report is directed mainly toward the development of seismic design criteria for the underground structures of repositories. An initial step in the development of seismic design criteria for the underground structures of repositories is the development of performance criteria, or minimum standards of acceptable behavior. A number of possible damage modes are identified for the operating phase of the repository; however, no damage modes are foreseen that would perturb the long-term function of the repository, except for the possibility of increased permeability within the rock mass. Subsequent steps in formulating acceptable seismic design criteria for the underground structures involve the quantification of the design process. The report discusses the necessity of specifying the form of ground motion that would be needed for seismic analysis and the procedures that may be used for making ground motion predictions. Further discussions outline what is needed for analysis, including rock properties, failure criteria, modeling techniques, seismic hardening criteria for the host rock mass, and probabilistic considerations

  9. Seismic design ampersand analysis considerations for high level nuclear waste repositories

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1993-01-01

    A high level nuclear waste repository, like the one at Nevada's Yucca Mountain that is being investigated for site suitability, will have some unique seismic design and analysis considerations. These are discussed, and a design philosophy that can rationally account for the unique performance objectives of such facilities is presented. A case is made for the use of DOE's performance goal-based seismic design and evaluation methodology that is based on a hybrid open-quotes deterministicclose quotes and open-quotes probabilisticclose quotes concept. How and to what extent this methodology should be modified to adopt it for a potential site like Yucca Mountain is also outlined. Finally, the issue of designing for seismic fault rupture is discussed briefly, and the desirability of using the proposed seismic design philosophy in fault rupture evaluation is described

  10. Seismic design and analysis considerations for high level nuclear waste repositories

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1993-01-01

    A high level nuclear waste repository, like the one at Nevada's Yucca Mountain that is being investigated for site suitability, will have some unique seismic design and analysis considerations. These are discussed, and a design philosophy that can rationally account for the unique performance objectives of such facilities is presented. A case is made for the use of DOE's performance goal-based seismic design and evaluation methodology that is based on a hybrid ''deterministic'' and ''probabilistic'' concept. How and to what extent this methodology should be modified to adopt it for a potential site like Yucca Mountain is also outlined. Finally, the issue of designing for seismic fault rupture is discussed briefly, and the desirability of using the proposed seismic design philosophy in fault rupture evaluation is described

  11. Seismic qualification of piping systems based on strain criteria

    International Nuclear Information System (INIS)

    Peters, K.; Rangette, A.

    1988-01-01

    Typical LMFBR piping is characterized by elevated temperature and low pressure levels. Taking into account operational conditions only these characteristics demand for and allow flexible piping design. The overestimation of the damage potential of seismic loading by e.g. improper failure criteria usually contradicts operational needs producing the known result of excessive ''snubberism'' and reduction of operational margins. As a matter of fact, due to its transiency seismic loading is essentially secondary provoking the natural design requirement ductility instead of stiffness and rigidity - i.e. exclusion of failure by strain control instead of stress control - and thus avoiding the LMFBR typical competition between operational needs and seismic qualification. The design requirement ductility needs judgement mechanisms, i.e. suitable load descriptions, allowed strain levels and strain evaluation tools. A simplified method for strain range estimation and the underlying basic ideas are roughly outlined. The status of verification and experience gained so far is described. The results achieved suggest that the qualification of piping based on ductility requirement controlled by strain criteria is not out of reach. (author)

  12. 49 CFR 192.123 - Design limitations for plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design limitations for plastic pipe. 192.123... Design limitations for plastic pipe. (a) Except as provided in paragraph (e) and paragraph (f) of this section, the design pressure may not exceed a gauge pressure of 100 psig (689 kPa) for plastic pipe used...

  13. Development of an evaluation method for seismic isolation systems of nuclear power facilities. Seismic design analysis methods for crossover piping system

    International Nuclear Information System (INIS)

    Tai, Koichi; Sasajima, Keisuke; Fukushima, Shunsuke; Takamura, Noriyuki; Onishi, Shigenobu

    2014-01-01

    This paper provides seismic design analysis methods suitable for crossover piping system, which connects between seismic isolated building and non-isolated building in the seismic isolated nuclear power plant. Through the numerical study focused on the main steam crossover piping system, seismic response spectrum analysis applying ISM (Independent Support Motion) method with SRSS combination or CCFS (Cross-oscillator, Cross-Floor response Spectrum) method has found to be quite effective for the seismic design of multiply supported crossover piping system. (author)

  14. Seismic hazard maps for earthquake-resistant construction designs

    International Nuclear Information System (INIS)

    Ohkawa, Izuru

    2004-01-01

    Based on the idea that seismic phenomena in Japan varying in different localities are to be reflected in designing specific nuclear facilities in specific site, the present research program started to make seismic hazard maps representing geographical distribution of seismic load factors. First, recent research data on historical earthquakes and materials on active faults in Japan have been documented. Differences in character due to different localities are expressed by dynamic load in consideration of specific building properties. Next, hazard evaluation corresponding to seismic-resistance factor is given as response index (spectrum) of an adequately selected building, for example a nuclear power station, with the help of investigation results of statistical analysis. (S. Ohno)

  15. Seismic evaluation of non-seismically designed existing Magnox nuclear power plants

    International Nuclear Information System (INIS)

    Kunar, R.R.

    1984-01-01

    The philosophy and method adopted for the seismic assessment of three existing Magnox nuclear stations in the United Kingdom are presented in this paper. The plants were not seismically designed. The particular procedures that were applied were tailored to suit the difficulties of lack of data which is somewhat inevitable for plants designed and built about 25 to 30 years ago. Special procedures included on-site testing with a portable shake table, low vibration testing using a structural dynamics analyser, and on-site inspections. The low vibration testing was most invaluable in detecting differences between 'as-built' conditions and the engineering drawings. From the point of view of economics, this was more effective than conducting full structural surveys to determine the as-built conditions. The testing results also provided confidence in the answers from numerical models. The philosophy adopted for the Magnox reactors in the seismic assessment was to determine what peak ground accelerations the sites can sustain and then evaluate the chances of exceeding the ground accelerations over the remaining lifetime of the plants. The peak ground acceleration for each site was determined on the basis of the criteria of safe shutdown and prevention of significant off-site radiological exposure

  16. The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models

    KAUST Repository

    van Dinther, Y.

    2013-04-01

    The physics governing the seismic cycle at seismically active subduction zones remains poorly understood due to restricted direct observations in time and space. To investigate subduction zone dynamics and associated interplate seismicity, we validate a continuum, visco-elasto-plastic numerical model with a new laboratory approach (Paper 1). The analogous laboratory setup includes a visco-elastic gelatin wedge underthrusted by a rigid plate with defined velocity-weakening and -strengthening regions. Our geodynamic simulation approach includes velocity-weakening friction to spontaneously generate a series of fast frictional instabilities that correspond to analog earthquakes. A match between numerical and laboratory source parameters is obtained when velocity-strengthening is applied in the aseismic regions to stabilize the rupture. Spontaneous evolution of absolute stresses leads to nucleation by coalescence of neighboring patches, mainly occurring at evolving asperities near the seismogenic zone limits. Consequently, a crack-, or occasionally even pulse-like, rupture propagates toward the opposite side of the seismogenic zone by increasing stresses ahead of its rupture front, until it arrests on a barrier. The resulting surface displacements qualitatively agree with geodetic observations and show landward and, from near the downdip limit, upward interseismic motions. These are rebound and reversed coseismically. This slip increases adjacent stresses, which are relaxed postseismically by afterslip and thereby produce persistent seaward motions. The wide range of observed physical phenomena, including back-propagation and repeated slip, and the agreement with laboratory results demonstrate that visco-elasto-plastic geodynamic models with rate-dependent friction form a new tool that can greatly contribute to our understanding of the seismic cycle at subduction zones.

  17. The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models

    KAUST Repository

    van Dinther, Y.; Gerya, T. V.; Dalguer, L. A.; Corbi, F.; Funiciello, F.; Mai, Paul Martin

    2013-01-01

    The physics governing the seismic cycle at seismically active subduction zones remains poorly understood due to restricted direct observations in time and space. To investigate subduction zone dynamics and associated interplate seismicity, we validate a continuum, visco-elasto-plastic numerical model with a new laboratory approach (Paper 1). The analogous laboratory setup includes a visco-elastic gelatin wedge underthrusted by a rigid plate with defined velocity-weakening and -strengthening regions. Our geodynamic simulation approach includes velocity-weakening friction to spontaneously generate a series of fast frictional instabilities that correspond to analog earthquakes. A match between numerical and laboratory source parameters is obtained when velocity-strengthening is applied in the aseismic regions to stabilize the rupture. Spontaneous evolution of absolute stresses leads to nucleation by coalescence of neighboring patches, mainly occurring at evolving asperities near the seismogenic zone limits. Consequently, a crack-, or occasionally even pulse-like, rupture propagates toward the opposite side of the seismogenic zone by increasing stresses ahead of its rupture front, until it arrests on a barrier. The resulting surface displacements qualitatively agree with geodetic observations and show landward and, from near the downdip limit, upward interseismic motions. These are rebound and reversed coseismically. This slip increases adjacent stresses, which are relaxed postseismically by afterslip and thereby produce persistent seaward motions. The wide range of observed physical phenomena, including back-propagation and repeated slip, and the agreement with laboratory results demonstrate that visco-elasto-plastic geodynamic models with rate-dependent friction form a new tool that can greatly contribute to our understanding of the seismic cycle at subduction zones.

  18. Displacement of Pile-Reinforced Slopes with a Weak Layer Subjected to Seismic Loads

    Directory of Open Access Journals (Sweden)

    Haizuo Zhou

    2016-01-01

    Full Text Available The presence of a weak layer in a slope requires special attention because it has a negative impact on slope stability. However, limited insight into the seismic stability of slopes with a weak layer exists. In this study, the seismic stability of a pile-reinforced slope with a weak thin layer is investigated. Based on the limit analysis theory, a translational failure mechanism for an earth slope is developed. The rotational rigid blocks in the previous rotational-translational failure mechanism are replaced by continuous deformation regions, which consist of a sequence of n rigid triangles. The predicted static factor of safety and collapse mechanism in two typical examples of slopes with a weak layer compare well with the results obtained from the available literature and by using the Discontinuity Layout Optimization (DLO technique. The lateral forces provided by the stabilizing piles are evaluated using the theory of plastic deformation. An analytical solution for estimating the critical yield acceleration coefficient for the pile-reinforced slopes is derived. Based on the proposed translational failure mechanism and the corresponding critical yield acceleration coefficient, Newmark’s analytical procedure is employed to evaluate the cumulative displacement. Considering different real earthquake acceleration records as input motion, the effect of stabilizing piles and varying the spacing of piles on the cumulative displacement of slopes with a weak layer is investigated.

  19. Evaluation of seismic margins for an in-plant piping system

    International Nuclear Information System (INIS)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.

    1991-01-01

    Earthquake experience as well as experiments indicate that, in general, piping systems are quite rugged in resisting seismic loadings. Therefore there is a basis to hold that the seismic margin against pipe failure is very high for systems designed according to current practice. However, there is very little data, either from tests or from earthquake experience, on the actual margin or excess capacity (against failure from seismic loading) of in-plant piping systems. Design of nuclear power plant piping systems in the US is governed by the criteria given in the ASME Boiler and Pressure Vessel (B ampersand PV) Code, which assure that pipe stresses are within specified allowable limits. Generally linear elastic analytical methods are used to determine the stresses in the pipe and forces in pipe supports. The objective of this study is to verify that piping designed according to current practice does indeed have a large margin against failure and to quantify the excess capacity for piping and dynamic pipe supports on the basis of data obtained in a series of high-level seismic experiments (designated SHAM) on an in-plant piping system at the HDR (Heissdampfreaktor) Test Facility in Germany. Note that in the present context, seismic margin refers to the deterministic excess capacities of piping or supports compared to their design capacities. The excess seismic capacities or margins of a prototypical in-plant piping system and its components are evaluated by comparing measured inputs and responses from high-level simulated seismic experiments with design loads and allowables. Large excess capacities are clearly demonstrated against pipe and overall system failure with the lower bound being about four. For snubbers the lower bound margin is estimated at two and for rigid strut supports at five. 4 refs., 2 figs., 2 tabs

  20. Views on seismic design standardization of structures, systems and components of nuclear facilities

    International Nuclear Information System (INIS)

    Reddy, G.R.

    2011-01-01

    Structures, Systems and Components (SSCs) of nuclear facilities have to be designed for normal operating loads such as dead weight, pressure, temperature etc., and accidental loads such as earthquakes, floods, extreme, wind air craft impact, explosions etc. Manmade accidents such as aircraft impact, explosions etc., sometimes may be considered as design basis event and sometimes taken care by providing administrative controls. This will not be possible in the case of natural events such as earthquakes, flooding, extreme winds etc. Among natural events earthquakes are considered as most devastating and need to be considered as design basis event which has certain annual frequency specified in design codes. For example nuclear power plants are designed for a seismic event has 10000 year return period. It is generally felt that design of SSCs for earthquake loads is very time consuming and expensive. Conventional seismic design approaches demands for large number of supports for systems and components. This results in large space occupation and in turn creates difficulties for maintenance and in service inspection of systems and components. In addition, complete exercise of design need to be repeated for plants being located at different sites due to different seismic demands. However, advanced seismic response control methods will help to standardize the seismic design meeting the safety and economy. These methods adopt passive, semi active and active devices, and base isolators to control the seismic response. In nuclear industry, it is advisable to go for passive devices to control the seismic responses. Ideally speaking, these methods will make the designs made for normal loads can also satisfy the seismic demand without calling for change in material, geometry, layout etc. in the SSCs. This paper explain the basic ideas of seismic response control methods, demonstrate the effectiveness of control methods through case studies and eventually give the procedure to

  1. Civil Works Seismic Designs

    International Nuclear Information System (INIS)

    1985-12-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. This rule defines: - the parameters characterizing the design seismic motions - the calculation methods - the mathematical schematization principles on which calculations are based - the use of the seismic response for the structure checking - the content of the documents to be presented

  2. Study of seismic design bases and site conditions for nuclear power plants

    International Nuclear Information System (INIS)

    1980-04-01

    This report presents the results of an investigation of four topics pertinent to the seismic design of nuclear power plants: Design accelerations by regions of the continental United States; review and compilation of design-basis seismic levels and soil conditions for existing nuclear power plants; regional distribution of shear wave velocity of foundation materials at nuclear power plant sites; and technical review of surface-founded seismic analysis versus embedded approaches

  3. Study of seismic design bases and site conditions for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    This report presents the results of an investigation of four topics pertinent to the seismic design of nuclear power plants: Design accelerations by regions of the continental United States; review and compilation of design-basis seismic levels and soil conditions for existing nuclear power plants; regional distribution of shear wave velocity of foundation materials at nuclear power plant sites; and technical review of surface-founded seismic analysis versus embedded approaches.

  4. Seismic-design questions typify nuclear obstacles

    International Nuclear Information System (INIS)

    Strauss, S.D.

    1979-01-01

    The trade-off between safe design of nuclear power plants and cost is considered. As an example, seismic protection problems at the Beaver Valley station of Duquesne Light Co. and their resolution by Stone and Webster Engineering are discussed

  5. Incremental-hinge piping analysis methods for inelastic seismic response prediction

    International Nuclear Information System (INIS)

    Jaquay, K.R.; Castle, W.R.; Larson, J.E.

    1989-01-01

    This paper proposes nonlinear seismic response prediction methods for nuclear piping systems based on simplified plastic hinge analyses. The simplified plastic hinge analyses utilize an incremental series of flat response spectrum loadings and replace yielded components with hinge elements when a predefined hinge moment is reached. These hinge moment values, developed by Rodabaugh, result in inelastic energy dissipation of the same magnitude as observed in seismic tests of piping components. Two definitions of design level equivalent loads are employed: one conservatively based on the peaks of the design acceleration response spectra, the other based on inelastic frequencies determined by the method of Krylov and Bogolyuboff recently extended by Lazzeri to piping. Both definitions account for piping system inelastic energy dissipation using Newmark-Hall inelastic response spectrum reduction factors and the displacement ductility results of the incremental-hinge analysis. Two ratchet-fatigue damage models are used: one developed by Rodabaugh that conservatively correlates Markl static fatigue expressions to seismic tests to failure of piping components; the other developed by Severud that uses the ratchet expression of Bree for elbows and Edmunds and Beer for straights, and defines ratchet-fatigue interaction using Coffin's ductility based fatigue equation. Comparisons of predicted behavior versus experimental results are provided for a high-level seismic test of a segment of a representative nuclear plant piping system. (orig.)

  6. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    Science.gov (United States)

    Handayani, Gunawan

    2015-04-01

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  7. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    International Nuclear Information System (INIS)

    Handayani, Gunawan

    2015-01-01

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented

  8. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    Energy Technology Data Exchange (ETDEWEB)

    Handayani, Gunawan [The Earth Physics and Complex Systems Research Group (Jl. Ganesa 10 Bandung Indonesia) gunawanhandayani@gmail.com (Indonesia)

    2015-04-16

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  9. Simplified non-linear time-history analysis based on the Theory of Plasticity

    DEFF Research Database (Denmark)

    Costa, Joao Domingues

    2005-01-01

    This paper aims at giving a contribution to the problem of developing simplified non-linear time-history (NLTH) analysis of structures which dynamical response is mainly governed by plastic deformations, able to provide designers with sufficiently accurate results. The method to be presented...... is based on the Theory of Plasticity. Firstly, the formulation and the computational procedure to perform time-history analysis of a rigid-plastic single degree of freedom (SDOF) system are presented. The necessary conditions for the method to incorporate pinching as well as strength degradation...

  10. Damping considerations in CANDU feeder pipe design and analysis

    International Nuclear Information System (INIS)

    Usmani, S.A.; Saleem, M.A.; So, G.

    1990-01-01

    Recent developments in pipe damping indicate a trend towards more realistic and less conservative values, which result in less rigid and safer pipe designs. The CANDU-PHW (Canada deuterium uranium, pressurized heavy water) reactor feeder pipe designs have applied similar approaches which permit seismic qualifications without overly restraining these compact arrays of pipes to cater for the large creep and thermal anchor movement. This paper reviews the feeder design aspects, especially pertaining to the design provisions, experimental verification and analytical modelling for seismic qualification in the light of recent pipe dynamic developments. Using illustrative examples, comparison of seismic analysis results is provided for the ASME Code Case N-411 dampings, and those traditionally used in the feeder seismic qualification. The results confirm acceptability of the traditional approach which permit simplified analysis to demonstrate seismic qualificationqualification of CANDU feeder pipes

  11. Study of seismic responses of Candu-3 reactor building using isolator bearings

    International Nuclear Information System (INIS)

    Biswas, J.K.

    1992-01-01

    Seismic isolator bearings are known to increase reliability, reduce cost and increase the potential sitings for nuclear power plants located in regions of high seismicity. High seismic activities in Canada occur mainly in the western coast, the Grand Banks and regions of Quebec along the St. Lawrence river. In Canada, nuclear power plants are located in Ontario, Quebec and New Brunswick where the seismicity levels are low to moderate. Consequently, seismic isolator bearings have not been used in the existing nuclear power plants in Canada. The present paper examines the effect of using seismic isolator bearings in the design for the new CANDU3 which would be suitable for regions having high seismicity. The CANDU3 Nuclear Power Plant is rated at 450 MW of net output power and is a smaller version of its predecessor CANDU6 successfully operating in Canada and abroad. The design of CANDU3 is being developed by AECL CANDU. Advanced technologies for design, construction and plant operation have been utilized. During the conceptual development of the CANDU3 design, various design options including the use of isolator bearings were considered. The present paper presents an overview of seismic isolation technology and summarizes the analytical work for predicting the seismic behavior of the CANDU3 reactor building. A lumped-parameter dynamic model for the reactor building is used for the analysis. The characteristics of the bearings are utilized in the analysis work. The time-history modal analysis has been used to compute the seismic responses. Seismic responses of the reactor building with and without isolator bearings are compared. The isolator bearings are found to reduce the accelerations of the reactor building. As a result, a lower level of seismic qualification for components and systems would be required. The use of these bearings however increases rigid body seismic displacements of the structure requiring special considerations in the layout and interfaces for

  12. Multi performance option in direct displacement based design

    Directory of Open Access Journals (Sweden)

    Muljati Ima

    2017-01-01

    Full Text Available Compare to traditional method, direct displacement based design (DDBD offers the more rational design choice due to its compatibility with performance based design which is controlled by the targeted displacement in design. The objectives of this study are: 1 to explore the performance of DDBD for design Level-1, -2 and -3; 2 to determine the most appropriate design level based on material efficiency and damage risk; and 3 to verify the chosen design in order to check its performance under small-, moderate- and severe earthquake. As case study, it uses regular concrete frame structures consists of fourand eight-story with typical plan, located in low- and high-risk seismicity area. The study shows that design Level-2 (repairable damage is the most appropriate choice. Nonlinear time history analysis is run for each case study in order to verify their performance based on parameter: story drift, damage indices, and plastic mechanism. It can be concluded that DDBD performed very well in predicting seismic demand of the observed structures. Design Level-2 can be chosen as the most appropriate design level. Structures are in safe plastic mechanism under all level of seismicity although some plastic hinges formed at some unexpected locations.

  13. Wind/seismic comparison for upgrading existing structures

    International Nuclear Information System (INIS)

    Giller, R.A.

    1989-01-01

    This paper depicts the analysis procedures and methods used to evaluate three existing building structures for extreme wind loads. The three structures involved in this evaluation are located at the US Department of Energy's Hanford Site near Richland, Washington. This site is characterized by open flat grassland with few surrounding obstructions and has extreme winds in lieu of tornados as a design basis accident condition. This group of buildings represents a variety of construction types, including a concrete stack, a concrete load-bearing wall structure, and a rigid steel-frame building. The three structures included in this group have recently been evaluated for response to the design basis earthquake that included non-linear time history effects. The resulting loads and stresses from the wind analyses were compared to the loads and stresses resulting from seismic analyses. This approach eliminated the need to prepare additional capacity calculations that were already contained in the seismic evaluations

  14. Optimal design of water supply networks for enhancing seismic reliability

    International Nuclear Information System (INIS)

    Yoo, Do Guen; Kang, Doosun; Kim, Joong Hoon

    2016-01-01

    The goal of the present study is to construct a reliability evaluation model of a water supply system taking seismic hazards and present techniques to enhance hydraulic reliability of the design into consideration. To maximize seismic reliability with limited budgets, an optimal design model is developed using an optimization technique called harmony search (HS). The model is applied to actual water supply systems to determine pipe diameters that can maximize seismic reliability. The reliabilities between the optimal design and existing designs were compared and analyzed. The optimal design would both enhance reliability by approximately 8.9% and have a construction cost of approximately 1.3% less than current pipe construction cost. In addition, the reinforcement of the durability of individual pipes without considering the system produced ineffective results in terms of both cost and reliability. Therefore, to increase the supply ability of the entire system, optimized pipe diameter combinations should be derived. Systems in which normal status hydraulic stability and abnormal status available demand could be maximally secured if configured through the optimal design. - Highlights: • We construct a seismic reliability evaluation model of water supply system. • We present technique to enhance hydraulic reliability in the aspect of design. • Harmony search algorithm is applied in optimal designs process. • The effects of the proposed optimal design are improved reliability about by 9%. • Optimized pipe diameter combinations should be derived indispensably.

  15. Seismic design criteria for special isotope separation plant structures

    International Nuclear Information System (INIS)

    Wrona, M.W.; Wuthrich, S.J.; Rose, D.L.; Starkey, J.

    1989-01-01

    This paper describes the seismic criteria for the design of the Special Isotope Separation (SIS) production plant. These criteria are derived from the applicable Department of Energy (DOE) orders, references and proposed standards. The SIS processing plant consistent of Load Center Building (LCB), Dye Pump Building (DPB), Laser Support Building (LSB) and Plutonium Processing Building (PPB). The facility-use category for each of the SIS building structures is identified and the applicable seismic design criteria and parameters are selected

  16. Development of rational design technique for frame steel structure combining seismic resistance and economic performance

    International Nuclear Information System (INIS)

    Kato, Motoki; Morishita, Kunihiro; Shimono, Masaki; Chuman, Yasuharu; Okafuji, Takashi; Monaka, Toshiaki

    2015-01-01

    Anti-seismic designs have been applied to plant support steel frames for years. Today, a rational structure that further improves seismic resistance and ensures economic performance is required in response to an increase of seismic load on the assumption of predicted future massive earthquakes. For satisfying this requirement, a steel frame design method that combines a steel frame weight minimizing method, which enables economic design through simultaneous minimization of multiple steel frame materials, and a seismic response control design technology that improves seismic resistance has been established. Its application in the design of real structures has been promoted. This paper gives an overview of this design technology and presents design examples to which this design technology is applied. (author)

  17. Evaluation of seismic criteria used in design of INEL facilities

    International Nuclear Information System (INIS)

    Young, G.A.

    1977-01-01

    This report provides the results of an independent evaluation of seismic studies that were made to establish the seismic acceleration levels and the response spectra used in the design of vital facilities at Idaho National Engineering Laboratory. A comparison of the procedures used to define the seismic acceleration values and response spectra at INEL with the requirements of the Nuclear Regulatory Commission showed that additional geologic studies would probably be required in order to fulfill NRC regulations. Recommendations are made on justifiable changes in the acceleration values and response spectra used at INEL. The geologic, geophysical, and seismological studies needed to provide a better understanding of the tectonic processes in the Snake River plains and the surrounding region are identified. Both potential and historical acceleration values are evaluated on a probability basis to permit a risk assessment approach to the design of new facilities and facility modifications. Studies conducted to develop seismic criteria for the design of the Loss of Fluid Test reactor and the New Waste Calcining Facility were selected as typical examples of criteria development previously used in the design of INEL facilities

  18. Non-uniform plastic deformation of micron scale objects

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, J. W.

    2003-01-01

    Significant increases in apparent flow strength are observed when non-uniform plastic deformation of metals occurs at the scale ranging from roughly one to ten microns. Several basic plane strain problems are analyzed numerically in this paper based on a new formulation of strain gradient...... plasticity. The problems are the tangential and normal loading of a finite rectangular block of material bonded to rigid platens and having traction-free ends, and the normal loading of a half-space by a flat, rigid punch. The solutions illustrate fundamental features of plasticity at the micron scale...... that are not captured by conventional plasticity theory. These include the role of material length parameters in establishing the size dependence of strength and the elevation of resistance to plastic flow resulting from constraint on plastic flow at boundaries. Details of the finite element method employed...

  19. Final report of the cooperative study on seismic isolation design. The second stage

    Energy Technology Data Exchange (ETDEWEB)

    Uryu, Mitsuru; Terada, Syuji; Shioya, Tsutomu (and others)

    1999-05-01

    The applicability of the seismic isolation design onto the nuclear fuel facilities, which must clear severe criteria of integrity, has been examined. Following the first stage of the cooperative study, conducted from 1988 to 1991, the second stage included critical vibration testing, seismic observation of seismic isolation building and founded buildings of non-isolation, with the objectives of clarifying the policies on critical design of seismic isolation building. Integrity of the seismic isolation piping system was tested by means of static deformation test, with variable inner water pressure and relative deformation. (Yamamoto, A.)

  20. BNL NONLINEAR PRE TEST SEISMIC ANALYSIS FOR THE NUPEC ULTIMATE STRENGTH PIPING TEST PROGRAM

    International Nuclear Information System (INIS)

    DEGRASSI, G.; HOFMAYER, C.; MURPHY, C.; SUZUKI, K.; NAMITA, Y.

    2003-01-01

    The Nuclear Power Engineering Corporation (NUPEC) of Japan has been conducting a multi-year research program to investigate the behavior of nuclear power plant piping systems under large seismic loads. The objectives of the program are: to develop a better understanding of the elasto-plastic response and ultimate strength of nuclear piping; to ascertain the seismic safety margin of current piping design codes; and to assess new piping code allowable stress rules. Under this program, NUPEC has performed a large-scale seismic proving test of a representative nuclear power plant piping system. In support of the proving test, a series of materials tests, static and dynamic piping component tests, and seismic tests of simplified piping systems have also been performed. As part of collaborative efforts between the United States and Japan on seismic issues, the US Nuclear Regulatory Commission (USNRC) and its contractor, the Brookhaven National Laboratory (BNL), are participating in this research program by performing pre-test and post-test analyses, and by evaluating the significance of the program results with regard to safety margins. This paper describes BNL's pre-test analysis to predict the elasto-plastic response for one of NUPEC's simplified piping system seismic tests. The capability to simulate the anticipated ratcheting response of the system was of particular interest. Analyses were performed using classical bilinear and multilinear kinematic hardening models as well as a nonlinear kinematic hardening model. Comparisons of analysis results for each plasticity model against test results for a static cycling elbow component test and for a simplified piping system seismic test are presented in the paper

  1. Seismic design practice for Indian pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Chhatre, A.G.; Ingole, S.M.; Bhardwaj, S.A.

    1996-01-01

    Nuclear power plants designed in India in the last twenty years have been designed for earthquake loading using the current licensing practices. Designers and equipment suppliers have therefore been required to consider seismic loading as a major load case. In India, the nuclear power plants have been seismically qualified using state-of-the-art techniques involving both seismic analysis and testing to ensure that the power plant is capable of safely surviving an earthquake that the plant is likely to experience during their operating life. Guidelines and criteria for meeting the qualification requirements are followed as given in various AERB (Indian Atomic Energy Regulatory Board), NRC, IAEA guides, ASME codes and IEEE standards. In this paper various methods available for qualification of structures, systems, mechanical and electrical equipment are explained. The approach and guidelines used within Indian nuclear industry which are evolved from simple analytical requirements to the more elaborate current requirements involving complex analysis and testing on shake table are also summarized

  2. Model design for Large-Scale Seismic Test Program at Hualien, Taiwan

    International Nuclear Information System (INIS)

    Tang, H.T.; Graves, H.L.; Chen, P.C.

    1991-01-01

    The Large-Scale Seismic Test (LSST) Program at Hualien, Taiwan, is a follow-on to the soil-structure interaction (SSI) experiments at Lotung, Taiwan. The planned SSI studies will be performed at a stiff soil site in Hualien, Taiwan, that historically has had slightly more destructive earthquakes in the past than Lotung. The LSST is a joint effort among many interested parties. Electric Power Research Institute (EPRI) and Taipower are the organizers of the program and have the lead in planning and managing the program. Other organizations participating in the LSST program are US Nuclear Regulatory Commission (NRC), the Central Research Institute of Electric Power Industry (CRIEPI), the Tokyo Electric Power Company (TEPCO), the Commissariat A L'Energie Atomique (CEA), Electricite de France (EdF) and Framatome. The LSST was initiated in January 1990, and is envisioned to be five years in duration. Based on the assumption of stiff soil and confirmed by soil boring and geophysical results the test model was designed to provide data needed for SSI studies covering: free-field input, nonlinear soil response, non-rigid body SSI, torsional response, kinematic interaction, spatial incoherency and other effects. Taipower had the lead in design of the test model and received significant input from other LSST members. Questions raised by LSST members were on embedment effects, model stiffness, base shear, and openings for equipment. This paper describes progress in site preparation, design and construction of the model and development of an instrumentation plan

  3. Lunar seismicity, structure, and tectonics

    Science.gov (United States)

    Lammlein, D. R.; Latham, G. V.; Dorman, J.; Nakamura, Y.; Ewing, M.

    1974-01-01

    Natural seismic events have been detected by the long-period seismometers at Apollo stations 16, 14, 15, and 12 at annual rates of 3300, 1700, 800, and 700, respectively, with peak activity at 13- to 14-day intervals. The data are used to describe magnitudes, source characteristics, and periodic features of lunar seismicity. In a present model, the rigid lithosphere overlies an asthenosphere of reduced rigidity in which present-day partial melting is probable. Tidal deformation presumably leads to critical stress concentrations at the base of the lithosphere, where moonquakes are found to occur. The striking tidal periodicities in the pattern of moonquake occurrence and energy release suggest that tidal energy is the dominant source of energy released as moonquakes. Thus, tidal energy is dissipated by moonquakes in the lithosphere and probably by inelastic processes in the asthenosphere.

  4. Seismic design considerations of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    2001-10-01

    An Advisory Group Meeting (AGM) on Seismic Technologies of Nuclear Fuel Cycle Facilities was convened in Vienna from 12 to 14 November 1997. The main objective of the meeting was the investigation of the present status of seismic technologies in nuclear fuel cycle facilities in Member States as a starting point for understanding of the most important directions and trends of national initiatives, including research and development, in the area of seismic safety. The AGM gave priority to the establishment of a consistent programme for seismic assessment of nuclear fuel cycle facilities worldwide. A consultants meeting subsequently met in Vienna from 16 to 19 March 1999. At this meeting the necessity of a dedicated programme was further supported and a technical background to the initiative was provided. This publication provides recommendations both for the seismic design of new plants and for re-evaluation projects of nuclear fuel cycle facilities. After a short introduction of the general IAEA approach, some key contributions from Member State participants are presented. Each of them was indexed separately

  5. Update of bridge design standards in Alabama for AASHTO LRFD seismic design requirements.

    Science.gov (United States)

    2013-11-01

    The Alabama Department of Transportation (ALDOT) has been required to update their bridge design to the LRFD Bridge Design Specifications. This transition has resulted in changes to the seismic design standards of bridges in the state. Multiple bridg...

  6. Seismic analysis, evaluation and upgrade design for a DOE exhaust stack building

    International Nuclear Information System (INIS)

    Malik, L.E.; Maryak, M.E.

    1991-01-01

    An exhaust stack building of a nuclear reactor facility with complex structural configuration has been analyzed and evaluated and retrofitted for seismic forces. The building was built in the 1950's and had not been designed to resist seismic forces. A rigorous analysis and evaluation program was implemented to minimize costly retrofits required to upgrade the building to resist high seismic forces. Seismic evaluations were performed for the building in its as-is configuration, and as modified for several upgrade schemes. Soil-structure-interaction, basemat flexibility and the influence of the nearby reactor building were considered in rigorous seismic analyses. These analyses and evaluations enabled limited upgrades to qualify the stack building for the seismic forces. Some of the major conclusions of this study are: (1) a phased approach of seismic analyses, utilizing simplified models to evaluate practicable upgrade schemes, and, then incorporating the most suitable scheme in a rigorous model to obtain design forces for upgrades, is an efficient and cost-effective approach for seismic qualification of nuclear facilities to higher seismic criteria; and, (2) finalizing the upgrade of a major nuclear facility is an iterative process, which continues throughout the construction of the upgrades

  7. Plastic footwear for leprosy.

    Science.gov (United States)

    Antia, N H

    1990-03-01

    The anaesthetic foot in leprosy poses the most major problem in the rehabilitation of its patients. Various attempts have been made to produce protective footwear such as the microcellular rubber-car-tyre sandals. Unfortunately these attempts have had little success on a large scale because of the inability to produce them in large numbers and the stigma attached to such unusual footwear. While such footwear may be superior to the 'tennis' shoe in protecting the foot from injury by the penetration of sharp objects, it fails to distribute the weight-bearing forces which is the major cause of plantar damage and ulceration in the anaesthetic foot. This can be achieved by providing rigidity to the sole, as demonstrated by the healing of ulcers in plaster of paris casts or the rigid wooden clog. A new type of moulded plastic footwear has been evolved in conjunction with the plastic footwear industry which provides footwear that can be mass produced at a low price and which overcomes the stigma of leprosy. Controlled rigidity is provided by the incorporation of a spring steel shank between the sponge insole and the hard wearing plastic sole. Trials have demonstrated both the acceptability of the footwear and its protective effects as well as its hard wearing properties.

  8. Design approach of seismic interface for cryoline with Tokamak building for ITER

    International Nuclear Information System (INIS)

    Badgujar, S.; Sarkar, B.; Vaghela, H.; Shah, N.; Naik, H.B.

    2012-01-01

    ITER Tokamak building is designed with seismic isolation pads to protect the Tokamak components from seismic events. Two main cryolines, designated as cryolines between buildings (Mg and CP), runs from interconnection box in cryoplant building to the Tokamak building. The lines outside Tokamak building are supported by seismically non-isolated supports. The cryoline design at the interface between seismically isolated and non-isolated support systems needs to be studied to fulfill the functional requirements. One of the options for interface, universal expansion joint has been modeled in CATIA with actual thickness of each ply and inter-ply distance, analyzed in ANSYS using contact definition, as a part of the preliminary study. The bellows have been checked by design calculation as per EJMA standard for the specified movements. The paper will present approach for conceptual design of interface, problem definition and boundary conditions, methodology for analysis and preliminary results of stress pattern for expansion joints. (author)

  9. Seismic analysis of a reactor building with eccentric layout

    International Nuclear Information System (INIS)

    Itoh, T.; Deng, D.Z.F.; Lui, K.

    1987-01-01

    Conventional design for a reactor building in a high seismic area has adopted an essentially concentric layout in response to fear of excessive torsional effect due to horizontal seismic load on an eccentric plant. This concentric layout requirement generally results in an inflexible arrangement of the plant facilities and thus increases the plant volume. This study is performed to investigate the effect of eccentricity on the overall seismic structural response and to provide technical information in this regard to substantiate the volume reduction of the overall power plant. The plant layout is evolved from the Bechtel standard plan of a PWR plant by integrating the reactor building and the auxiliary building into a combined building supported on a common basemat. This plant layout is optimized for volume utilization and to reduce the length of piping systems. The mass centers at various elevations of the combined building do not coincide with the rigidity center (RC) of the respective floor and the geometric center of the basemat, thus creating an eccentric response of the building in a seismic environment. Therefore, the torsional effects of the structure have to be taken into account in the seismic analysis

  10. Design and analysis of fractional order seismic transducer for displacement and acceleration measurements

    Science.gov (United States)

    Veeraian, Parthasarathi; Gandhi, Uma; Mangalanathan, Umapathy

    2018-04-01

    Seismic transducers are widely used for measurement of displacement, velocity, and acceleration. This paper presents the design of seismic transducer in the fractional domain for the measurement of displacement and acceleration. The fractional order transfer function for seismic displacement and acceleration transducer are derived using Grünwald-Letnikov derivative. Frequency response analysis of fractional order seismic displacement transducer (FOSDT) and fractional order seismic acceleration transducer (FOSAT) are carried out for different damping ratio with the different fractional order, and the maximum dynamic measurement range is identified. The results demonstrate that fractional order seismic transducer has increased dynamic measurement range and less phase distortion as compared to the conventional seismic transducer even with a lower damping ratio. Time response of FOSDT and FOSAT are derived analytically in terms of Mittag-Leffler function, the effect of fractional behavior in the time domain is evaluated from the impulse and step response. The fractional order system is found to have significantly reduced overshoot as compared to the conventional transducer. The fractional order seismic transducer design proposed in this paper is illustrated with a design example for FOSDT and FOSAT. Finally, an electrical equivalent of FOSDT and FOSAT is considered, and its frequency response is found to be in close agreement with the proposed fractional order seismic transducer.

  11. Seismic design criteria for the system 80+ advanced light water reactor

    International Nuclear Information System (INIS)

    Manrique, M.A.; Dermitzakis, S.N.; Gerdes, L.D.; Kennedy, R.P.; Idriss, I.M.; Cassidy, J.R.

    1991-01-01

    This paper presents the development of seismic design criteria in support of design certification by the Nuclear Regulatory Commission (NRC) of the ABB-Combustion Engineering's System 80+ Standard Design. The design certification effort is sponsored by the US Department of Energy (DOE). The development of the design criteria included: (a) development of the seismic control motion, (b) development of generic soil profiles for anticipated sites, (c) generation of in-structure response spectra and design loads for structures and equipment through soil-structure interaction (SSI) analyses, and (d) acceptance criteria for future construction sites

  12. Design response spectra-compliant real and synthetic GMS for seismic analysis of seismically isolated nuclear reactor containment building

    Directory of Open Access Journals (Sweden)

    Ahmer Ali

    2017-06-01

    Full Text Available Due to the severe impacts of recent earthquakes, the use of seismic isolation is paramount for the safety of nuclear structures. The diversity observed in seismic events demands ongoing research to analyze the devastating attributes involved, and hence to enhance the sustainability of base-isolated nuclear power plants. This study reports the seismic performance of a seismically-isolated nuclear reactor containment building (NRCB under strong short-period ground motions (SPGMs and long-period ground motions (LPGMs. The United States Nuclear Regulatory Commission-based design response spectrum for the seismic design of nuclear power plants is stipulated as the reference spectrum for ground motion selection. Within the period range(s of interest, the spectral matching of selected records with the target spectrum is ensured using the spectral-compatibility approach. NRC-compliant SPGMs and LPGMs from the mega-thrust Tohoku earthquake are used to obtain the structural response of the base-isolated NRCB. To account for the lack of earthquakes in low-to-moderate seismicity zones and the gap in the artificial synthesis of long-period records, wavelet-decomposition based autoregressive moving average modeling for artificial generation of real ground motions is performed. Based on analysis results from real and simulated SPGMs versus LPGMs, the performance of NRCBs is discussed with suggestions for future research and seismic provisions.

  13. Design response spectra-compliant real and synthetic GMS for seismic analysis of seismically isolated nuclear reactor containment building

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmer [ENVICO Consultants Co. Ltd., Seoul (Korea, Republic of); Abu-Hayah, Nadin; Kim, Doo Kie [Civil and Environmental Engineering, Kunsan National University, Gunsan (Korea, Republic of); Cho, Sung Gook [Innose Tech Co., Ltd., Incheon (Korea, Republic of)

    2017-06-15

    Due to the severe impacts of recent earthquakes, the use of seismic isolation is paramount for the safety of nuclear structures. The diversity observed in seismic events demands ongoing research to analyze the devastating attributes involved, and hence to enhance the sustainability of base-isolated nuclear power plants. This study reports the seismic performance of a seismically-isolated nuclear reactor containment building (NRCB) under strong short-period ground motions (SPGMs) and long-period ground motions (LPGMs). The United States Nuclear Regulatory Commission-based design response spectrum for the seismic design of nuclear power plants is stipulated as the reference spectrum for ground motion selection. Within the period range(s) of interest, the spectral matching of selected records with the target spectrum is ensured using the spectral-compatibility approach. NRC-compliant SPGMs and LPGMs from the mega-thrust Tohoku earthquake are used to obtain the structural response of the base-isolated NRCB. To account for the lack of earthquakes in low-to-moderate seismicity zones and the gap in the artificial synthesis of long-period records, wavelet-decomposition based autoregressive moving average modeling for artificial generation of real ground motions is performed. Based on analysis results from real and simulated SPGMs versus LPGMs, the performance of NRCBs is discussed with suggestions for future research and seismic provisions.

  14. Seismic design of equipment and piping systems for nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Minematsu, Akiyoshi

    1997-01-01

    The philosophy of seismic design for nuclear power plant facilities in Japan is based on 'Examination Guide for Seismic Design of Nuclear Power Reactor Facilities: Nuclear Power Safety Committee, July 20, 1981' (referred to as 'Examination Guide' hereinafter) and the present design criteria have been established based on the survey of governmental improvement and standardization program. The detailed design implementation procedure is further described in 'Technical Guidelines for Aseismic Design of Nuclear Power Plants, JEAG4601-1987: Japan Electric Association'. This report describes the principles and design procedure of the seismic design of equipment/piping systems for nuclear power plant in Japan. (J.P.N.)

  15. Seismic design of equipment and piping systems for nuclear power plants in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Minematsu, Akiyoshi [Tokyo Electric Power Co., Inc. (Japan)

    1997-03-01

    The philosophy of seismic design for nuclear power plant facilities in Japan is based on `Examination Guide for Seismic Design of Nuclear Power Reactor Facilities: Nuclear Power Safety Committee, July 20, 1981` (referred to as `Examination Guide` hereinafter) and the present design criteria have been established based on the survey of governmental improvement and standardization program. The detailed design implementation procedure is further described in `Technical Guidelines for Aseismic Design of Nuclear Power Plants, JEAG4601-1987: Japan Electric Association`. This report describes the principles and design procedure of the seismic design of equipment/piping systems for nuclear power plant in Japan. (J.P.N.)

  16. Automatic seismic support design of piping system by an object oriented expert system

    International Nuclear Information System (INIS)

    Nakatogawa, T.; Takayama, Y.; Hayashi, Y.; Fukuda, T.; Yamamoto, Y.; Haruna, T.

    1990-01-01

    The seismic support design of piping systems of nuclear power plants requires many experienced engineers and plenty of man-hours, because the seismic design conditions are very severe, the bulk volume of the piping systems is hyge and the design procedures are very complicated. Therefore we have developed a piping seismic design expert system, which utilizes the piping design data base of a 3 dimensional CAD system and automatically determines the piping support locations and support styles. The data base of this system contains the maximum allowable seismic support span lengths for straight piping and the span length reduction factors for bends, branches, concentrated masses in the piping, and so forth. The system automatically produces the support design according to the design knowledge extracted and collected from expert design engineers, and using design information such as piping specifications which give diameters and thickness and piping geometric configurations. The automatic seismic support design provided by this expert system achieves in the reduction of design man-hours, improvement of design quality, verification of design result, optimization of support locations and prevention of input duplication. In the development of this system, we had to derive the design logic from expert design engineers and this could not be simply expressed descriptively. Also we had to make programs for different kinds of design knowledge. For these reasons we adopted the object oriented programming paradigm (Smalltalk-80) which is suitable for combining programs and carrying out the design work

  17. Seismic considerations in sealing a potential high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Richardson, A.M.; Lin, Ming

    1992-01-01

    The potential repository system is intended to isolate high-level radioactive waste at Yucca Mountain. One subsystem that may contribute to achieving this objective is the sealing subsystem. This subsystem is comprised of sealing components in the shafts, ramps, underground network of drifts, and the exploratory boreholes. Sealing components can be rigid, as in the case of a shaft seal, or can be more compressible, as in the case of drift fill comprised of mined rockfill. This paper presents the preliminary seismic response of discrete sealing components in welded and nonwelded tuff. Special consideration is given to evaluating the stress in the seal, and the behavior of the interface between the seal and the rock. The seismic responses are computed using both static and dynamic analyses. Also presented is an evaluation of the maximum seismic response encountered by a drift seal with respect to the angle of incidence of the seismic wave. Mitigation strategies and seismic design considerations are proposed which can potentially enhance the overall response of the sealing component and subsequently, the performance of the overall repository system

  18. Refer to AP1000 for discussing the betterment of seismic design of internal nuclear power plant

    International Nuclear Information System (INIS)

    Gong Zhenbang; Zhang Renyan

    2014-01-01

    As a reference technique of AP1000, This paper discussed the betterment of seismic design of nuclear power plant in three ways. (1) Establish design criteria and guidelines for protection from seismic interaction; (2) Nuclear power plant seismic design of eliminating or weaken operation-basis earthquake; (3) Develop the seismic margin analysis (SMA) of the nuclear power plant. These three aspect are frontier technology in internal seismic design of internal nuclear power plant, and also these three technology are related intimately. (authors)

  19. Upgrading accuracy of designed seismic vibration on concept of the land conditions

    International Nuclear Information System (INIS)

    Tamura, Keichi; Kaneko, Masahiro; Honda, Toshiki; Chiba, Hikaru

    1998-01-01

    In this study, some investigations on design procedure of designed seismic vibration were conducted on concept of amplification of the seismic vibration and nonlinearity of the system at the place largely changing topographic and land conditions. In this fiscal year, after collecting and arranging the topographic and land conditions at settling place of the nuclear facilities and their circumferences, some investigations on effect of the seismic vibration amplified at surface layer of grounds on behavior of nonlinear system as well as arrangement of relationship between the topographic and land conditions and seismic vibration amplifying properties at the surface layer of grounds were conducted. (G.K.)

  20. Design and development of indigenous seismic switch for nuclear reactors

    International Nuclear Information System (INIS)

    Varghese, Shiju; Shah, Jay; Limaye, P.K.; Soni, N.L; Patel, R.J.

    2016-01-01

    After Fukushima incident it has become a regulatory requirement to have automatic reactor trip on detection of earthquake beyond OBE level. Seismic Switches that meets the technical specifications required for nuclear reactor use were not available in the market. Hence, on Nuclear Power Corporation of India Ltd (NPCIL's) request, Refuelling Technology Division, BARC has developed Seismic Switches (electronic earthquake detectors) required for this application. Functionality of the system was successfully tested using a Shake Table. Two different designs of seismic switches have been developed. One is a microcontroller based system (digital) and the other is fully analogue electronics (analog) based. These switches are designed to meet the technical requirements of Class IA systems of nuclear reactors. It is also designed to meet other qualification tests such as EMI/EMC, climatic, vibration, and reliability requirements. In addition to nuclear industry seismic switches are having potential use in oil and gas, power plants, buildings and other industrial installations. These technologies are currently available for technology transfer and details are published in BARC website. This paper describes the requirements, principle of operation and features and testing of the developed systems. (author)

  1. Seismic response analysis with liquid-structure interaction

    International Nuclear Information System (INIS)

    Thomas, R.G.; Harrop, L.P.

    1983-06-01

    A linear transient finite element stress analysis of a water filled tank has been carried out using the proprietary computer code ANSYS. The containment structure was represented as rigidly fixed to ground. The flexibility of the tank wall was modelled together with the hydrostatic and hydrodynamic effects of the water contents and attached concentrated masses. The foundations were considered to be laid in solid rock, and no soil-structure interaction effects were included. The seismic input was a ground response spectrum conservatively representing both the Temblor and Parkfield modified time history records. It was found that the response of the structure was greatest at the front end (furthest from the point at which the tank is connected to a rigid internal structure), and that this was dominated by the fundamental mode. Higher modes are important at the back end. Buckling at the front end of the tank has been identified as a potential failure mechanism, and attention has also been called to the tensile capacity of the wall to base junction in this region. The requirement for a proper criterion against which to assess the margin against plastic collapse in a safe shutdown analysis has been noted. In certain regions the structure does not shake-down under the repeated reversed cyclic loading, and the need for an assessment of the implications of this for fatigue resistance has been indicated. (author)

  2. Computer Aided Design of The Cooling System for Plastic Injection Molds

    Directory of Open Access Journals (Sweden)

    Hakan GÜRÜN

    2009-02-01

    Full Text Available The design of plastic injection molds and their cooling systems affect both the dimension, the shape, the quality of a plastic part and the cycle time of process and the cost of mold. In this study, the solid model design of a plastic injection mold and the design of cooling sysytem were possibly carried out without the designer interaction. Developed program permited the use of three types of the cooling system and the different cavity orientations and the multible plastic part placement into the mold cores. The program which was developed by using Visual LISP language and the VBA (Visual BASIC for Application modules, was applicated in the AutoCAD software domain. Trial studies were presented that the solid model design of plastic injection molds and the cooling systems increased the reliability, the flexibility and the speed of the design.

  3. Athermal design and analysis of glass-plastic hybrid lens

    Science.gov (United States)

    Yang, Jian; Cen, Zhaofeng; Li, Xiaotong

    2018-01-01

    With the rapid development of security market, the glass-plastic hybrid lens has gradually become a choice for the special requirements like high imaging quality in a wide temperature range and low cost. The reduction of spherical aberration is achieved by using aspherical surface instead of increasing the number of lenses. Obviously, plastic aspherical lens plays a great role in the cost reduction. However, the hybrid lens has a priority issue, which is the large thermal coefficient of expansion of plastic, causing focus shift and seriously affecting the imaging quality, so the hybrid lens is highly sensitive to the change of temperature. To ensure the system operates normally in a wide temperature range, it is necessary to eliminate the influence of temperature on the hybrid lens system. A practical design method named the Athermal Material Map is summarized and verified by an athermal design example according to the design index. It includes the distribution of optical power and selection of glass or plastic. The design result shows that the optical system has excellent imaging quality at a wide temperature range from -20 ° to 70 °. The method of athermal design in this paper has generality which could apply to optical system with plastic aspherical surface.

  4. Differences in safety margins between nuclear and conventional design standards with regards to seismic hazard definition and design criteria

    International Nuclear Information System (INIS)

    Elgohary, M.; Saudy, A.; Orbovic, N.; Dejan, D.

    2006-01-01

    With the surging interest in new build nuclear all over the world and a permanent interest in earthquake resistance of nuclear plants, there is a need to quantify the safety margins in nuclear buildings design in comparison to conventional buildings in order to increase the public confidence in the safety of nuclear power plants. Nuclear (CAN3-N289 series) and conventional (NBCC 2005) seismic standards have different approaches regarding the design of civil structures. The origin of the differences lays in the safety philosophy behind the seismic nuclear and conventional standards. Conventional seismic codes contain the minimal requirement destined primarily to safeguard against major structural failure and loss of life. It doesn't limit damage to a certain acceptable degree or maintain function. Nuclear seismic code requires that structures, systems and components important to safety, withstand the effects of earthquakes. The requirement states that for equipment important to safety, both integrity and functionality should be ascertained. The seismic hazard is generally defined on the basis of the annual probability of exceedence (return period). There is a major difference on the return period and the confidence level for design earthquakes between the conventional and the nuclear seismic standards. The seismic design criteria of conventional structures are based on the use of Force Modification Factors to take into account the energy dissipation by incursion in non-elastic domain and the reserve of strength. The use of such factors to lower intentionally the seismic input is consistent with the safety philosophy of the conventional seismic standard which is the 'non collapse' rather than the integrity and/or the operability of the structures or components. Nuclear seismic standard requires that the structure remain in the elastic domain; energy dissipation by incursion in non-elastic domain is not allowed for design basis earthquake conditions. This is

  5. The regulatory requirements, design bases, researches and assessments in the field of Ukrainian NPP's seismic safety

    International Nuclear Information System (INIS)

    Mykolaychuk, O.; Mayboroda, O.; Krytskyy, V.; Karnaukhov, O.

    2001-01-01

    State Nuclear Regulatory Authority of Ukraine (SNRA) pays large attention to problem of nuclear installations seismic stability. As a result the seismic design regulatory guides is revised, additional seismic researches of NPP sites are conducted, seismic reassessment of NPP designs were begun. The experts involved address all seismic related factors under close contact with the staff of NPP, design institutes and research organizations. This document takes stock on the situation and the research programs. (author)

  6. Standard guide for preparation of plastics and polymeric specimens for microstructural examination

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This guide covers recommended procedures and guidelines for the preparation of plastic and polymeric specimens for microstructural examination by light and electron microscopy. 1.2 This guide is applicable to most semi-rigid and rigid plastics, including engineering plastics. This guide is also applicable to some non-rigid plastics. 1.3 The procedures and guidelines presented in this guide are those which generally produce satisfactory specimens. This guide does not describe the variations in techniques required to solve individual problems. 1.4 Many detailed descriptions of grinding and polishing of plastics and polymers are available (1-7). 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  7. Assessment of the impact of degraded shear wall stiffnesses on seismic plant risk and seismic design loads

    International Nuclear Information System (INIS)

    Klamerus, E.W.; Bohn, M.P.; Johnson, J.J.; Asfura, A.P.; Doyle, D.J.

    1994-02-01

    Test results sponsored by the USNRC have shown that reinforced shear wall (Seismic Category I) structures exhibit stiffnesses and natural frequencies which are smaller than those calculated in the design process. The USNRC has sponsored Sandia National Labs to perform an evaluation of the effects of the reduced frequencies on several existing seismic PRAs in order to determine the seismic risk implications inherent in these test results. This report presents the results for the re-evaluation of the seismic risk for three nuclear power plants: the Peach Bottom Atomic Power Station, the Zion Nuclear Power Plant, and Arkansas Nuclear One -- Unit 1 (ANO-1). Increases in core damage frequencies for seismic initiated events at Peach Bottom were 25 to 30 percent (depending on whether LLNL or EPRI hazard curves were used). At the ANO-1 site, the corresponding increases in plant risk were 10 percent (for each set of hazard curves). Finally, at Zion, there was essentially no change in the computed core damage frequency when the reduction in shear wall stiffness was included. In addition, an evaluation of deterministic ''design-like'' structural dynamic calculations with and without the shear stiffness reductions was made. Deterministic loads calculated for these two cases typically increased on the order of 10 to 20 percent for the affected structures

  8. Degradation studies on plasticized PVC films submited to gamma radiation

    Directory of Open Access Journals (Sweden)

    Vinhas Glória Maria

    2003-01-01

    Full Text Available Poly (vinyl chloride, PVC, is a rigid polymer and for several of its applications must be compounded with plasticizing agents. The plasticizers minimize the dipolar interactions, which exist between the polymer's chains, promoting their mobility. In this work we studied the properties of PVC/plasticizer systems submitted to different doses of gamma radiation. We have used four commercial plasticizers amongt them di(2-ethylhexyl phthalate, DEHP, which is present in a great number of commercial applications. The PVC/plasticizer systems have been studied as films made by the solvent evaporation technique. Irradiated and non-irradiated films have been characterized by viscosimetric analysis, mechanical essays and infrared spectroscopy. The results have shown that the rigid, non plasticized, PVC film presented the greatest degradation index, while among the plasticized films the one which presented the larger degradation index due to chain scission was the DEHP plasticized PVC.

  9. Seismic retrofitting of Apsara reactor building

    International Nuclear Information System (INIS)

    Reddy, G.R.; Parulekar, Y.M.; Sharma, A.; Rao, K.N.; Narasimhan, Rajiv; Srinivas, K.; Basha, S.M.; Thomas, V.S.; Soma Kumar, K.

    2006-01-01

    Seismic analysis of Apsara Reactor building was carried out and was found not meeting the current seismic requirements. Due to the building not qualifying for seismic loads, a retrofit scheme using elasto-plastic dampers is proposed. Following activities have been performed in this direction: Carried out detailed seismic analysis of Apsara reactor building structure incorporating proposed seismic retrofit. Demonstrating the capability of the retrofitted structure to with stand the earth quake level for Trombay site as per the current standards by analysis and by model studies. Implementation of seismic retrofit program. This paper presents the details of above aspects related to Seismic analysis and retrofitting of Apsara reactor building. (author)

  10. Seismic design and evaluation criteria for DOE facilities (DOE-STD-1020-XX)

    International Nuclear Information System (INIS)

    Short, S.A.; Kennedy, R.P.; Murray, R.C.

    1993-01-01

    Seismic design and evaluation criteria for DOE facilities are provided in DOE-STD-1020-XX. The criteria include selection of design/evaluation seismic input from probabilistic seismic hazard curves combined with commonly practiced deterministic response evaluation methods and acceptance criteria with controlled levels of conservatism. Conservatism is intentionally introduced in specification of material strengths and capacities, in the allowance of limited inelastic behavior and by a seismic load factor. These criteria are based on the performance or risk goals specified in DOE 5480.28. Criteria have been developed following a graded approach for several performance goals ranging from that appropriate for normal-use facilities to that appropriate for facilities involving hazardous or critical operations. Performance goals are comprised of desired behavior and of the probability of not achieving that behavior. Following the seismic design/evaluation criteria of DOE-STD-1020-XX is sufficient to demonstrate that the probabilistic performance or risk goals are achieved. The criteria are simple procedures but with a sound, rigorous basis for the achievement of goals

  11. A Survey study on design procedure of Seismic Base Isolation ...

    African Journals Online (AJOL)

    Adding shear walls or braced frames can decrease the potential damage caused by earthquakes.We can isolate the structures from the ground using the Seismic Base Isolation Systems that is flexible approach to decrease the potential damage. In this research we present information on the design procedure of seismic ...

  12. Seismic proving test of ultimate piping strength (current status of preliminary tests)

    International Nuclear Information System (INIS)

    Suzuki, K.; Namita, Y.; Abe, H.; Ichihashi, I.; Suzuki, K.; Ishiwata, M.; Fujiwaka, T.; Yokota, H.

    2001-01-01

    In 1998 Fiscal Year, the 6 year program of piping tests was initiated with the following objectives: i) to clarify the elasto-plastic response and ultimate strength of nuclear piping, ii) to ascertain the seismic safety margin of the current seismic design code for piping, and iii) to assess new allowable stress rules. In order to resolve extensive technical issues before proceeding on to the seismic proving test of a large-scale piping system, a series of preliminary tests of materials, piping components and simplified piping systems is intended. In this paper, the current status of the material tests and the piping component tests is reported. (author)

  13. Sliding behaviors of elastic cylindrical tanks under seismic loading

    International Nuclear Information System (INIS)

    Kobayashi, N.

    1993-01-01

    There is a paper that reports on the occurrence of sliding in several oil tanks on Alaskan earthquake of 1964. This incident appears to be in need of further investigation for the following reasons: First, in usual seismic designing of cylindrical tanks ('tanks'), sliding is considered to occur when the lateral inertial force exceeds the static friction force. When the tank in question can be taken as a rigid body, this rule is known to hold true. If the tank is capable of undergoing a considerable amount of elastic deformation, however, its applicability has not been proved. Second, although several studies have been done on the critical conditions for static sliding the present author is unaware of like ones made on the dynamic sliding, except for the pioneering work of Sogabe, in which they have empirically indicated possibility of sliding to occur under the force of sloshing. Third, this author has shown earlier on that tanks, if not anchored properly, will start rocking, inducing uplifting of the base plate, even at a relatively small seismic acceleration of 10 gal or so. The present study has been conducted with these observations for the background. Namely, based on a notion that elastic deformation given rise to by rocking oscillation should be incorporated as an important factor in any set of critical conditions for the onset of sliding, a series of shaking table experiments were performed for rigid steel block to represent the rigid tanks ('rigid model') and a model tank having a same sort of plate thickness-to-diameter ratio as industrial tanks to represent the elastic cylindrical tanks ('elastic model'). Following observations have been obtained for the critical condition of the onset of sliding: (1) sliding of rigid tanks will occur when the lateral force given rise to by oscillation exceeds the static, or the Coulombic, friction force. (2) if vertical oscillation is imposed on the lateral oscillation, the lateral force needed to induce sliding of a

  14. Seismic design and analysis of nuclear fuel cycle facilities in France

    International Nuclear Information System (INIS)

    Sollogoub, P.

    2001-01-01

    Methodology for seismic design of nuclear fuel facilities and power plants in France is described. After the description of regulatory and normative texts for seismic design, different elements are examined: definition of ground motion, analysis methods, new trends, reevaluation and specificity of Fuel Cycle Facilities. R/D developments are explicated in each part. Their final objective are to better quantify the margins of each step which, in relation with safety analysis,lead to balanced design, analysis and retrofit rules. (author)

  15. Extreme loads seismic testing of conduit systems

    International Nuclear Information System (INIS)

    Howard, G.E.; Ibanez, P.; Harrison, S.; Shi, Z.T.

    1991-01-01

    Rigid steel conduit (thin-wall tubes with threaded connections) containing electrical cabling are a common feature in nuclear power plants. Conduit systems are in many cases classified in U.S.A. practice as Seismic Category I structures. this paper summarizes results and others aspects of a dynamic test program conducted to investigate conduit systems seismic performance under three-axis excitation for designs representative at a nuclear power plant sited near Ft. Worth, Texas (a moderate seismic zone), with a Safe Shutdown Earthquake (SSE) of 0.12 g. Test specimens where subjected to postulated seismic events, including excitation well in excess of Safe Shutdown Earthquake events typical for U.S.A. nuclear power stations. A total of 18 conduit systems of 9-meter nominal lengths were shake table mounted and subjected to a variety of tests. None of the specimens suffered loss of load capacity when subjected to a site-enveloping Safe Shutdown Earthquake (SSE). Clamp/attachment hardware failures only began to occur when earthquake input motion was scaled upward to minimum values of 2.3-4.6 times site enveloping SSE response spectra. Tensile and/or shear failure of clamp attachment bolts or studs was the failure mode in all case in which failure was induced. (author)

  16. Seismic design criteria and their application to major hazard plant within the United Kingdom

    International Nuclear Information System (INIS)

    Alderson, M.A.H.G.

    1982-12-01

    The nature of seismic motions and the implications are briefly described and the development of seismic design criteria for nuclear power plants in various countries is described including possible future developments. The seismicity of the United Kingdom is briefly reviewed leading to the present position on seismic design criteria for nuclear power plants within the United Kingdom. Damage from past destructive earthquakes is reviewed and the existing codes of practice and standards are described. Finally the effect of earthquakes on major hazard plant is discussed in general terms including the seismic analysis of a typical plant item. (author)

  17. APPLICATION OF RIGID LINKS IN STRUCTURAL DESIGN MODELS

    Directory of Open Access Journals (Sweden)

    Sergey Yu. Fialko

    2017-09-01

    Full Text Available A special finite element modelling rigid links is proposed for the linear static and buckling analysis. Unlike the classical approach based on the theorems of rigid body kinematics, the proposed approach preserves the similarity between the adjacency graph for a sparse matrix and the adjacency graph for nodes of the finite element model, which allows applying sparse direct solvers more effectively. Besides, the proposed approach allows significantly reducing the number of nonzero entries in the factored stiffness matrix in comparison with the classical one, which greatly reduces the duration of the solution. For buckling problems of structures containing rigid bodies, this approach gives correct results. Several examples demonstrate its efficiency.

  18. Elastic-Plastic Behaviour of Ultrasonic Assisted Compression of Polyvinyl Chloride (PVC) Foam

    Science.gov (United States)

    Muhalim, N. A. D.; Hassan, M. Z.; Daud, Y.

    2018-04-01

    The present study aims to investigate the elastic-plastic behaviour of ultrasonic assisted compression of PVC closed-cell foam. A series of static and ultrasonic compression test of PVC closed-cell foam were conducted at a constant cross head speed of 30 mm/min on dry surface condition. For quasi-static test, specimen was compressed between two rigid platens using universal testing machine. In order to evaluate the specimen behavior under ultrasonic condition, specimen was placed between a specifically design double-slotted block horn and rigid platen. The horn was designed and fabricated prior to the test as a medium to transmit the ultrasonic vibration from the ultrasonic transducer to the working specimen. It was tuned to a frequency of 19.89 kHz in longitudinal mode and provided an average oscillation amplitude at 6 µm on the uppermost surface. Following, the characteristics of stress-strain curves for quasi-static and ultrasonic compression tests were analyzed. It was found that the compressive stress was significantly reduced at the onset of superimposed ultrasonic vibration during plastic deformation.

  19. Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 2. Evaluation of seismic designs: a review of seismic design requirements for Nuclear Power Plant Piping

    Energy Technology Data Exchange (ETDEWEB)

    1985-04-01

    This document reports the position and recommendations of the NRC Piping Review Committee, Task Group on Seismic Design. The Task Group considered overlapping conservation in the various steps of seismic design, the effects of using two levels of earthquake as a design criterion, and current industry practices. Issues such as damping values, spectra modification, multiple response spectra methods, nozzle and support design, design margins, inelastic piping response, and the use of snubbers are addressed. Effects of current regulatory requirements for piping design are evaluated, and recommendations for immediate licensing action, changes in existing requirements, and research programs are presented. Additional background information and suggestions given by consultants are also presented.

  20. German seismic regulations

    International Nuclear Information System (INIS)

    Danisch, Ruediger

    2002-01-01

    Rules and regulations for seismic design in Germany cover the following: seismic design of conventional buildings; and seismic design of nuclear facilities. Safety criteria for NPPs, accident guidelines, and guidelines for PWRs as well as safety standards are cited. Safety standards concerned with NPPs seismic design include basic principles, soil analysis, design of building structures, design of mechanical and electrical components, seismic instrumentation, and measures to be undertaken after the earthquake

  1. Multimodal network design for sustainable household plastic recycling

    NARCIS (Netherlands)

    Bing Xiaoyun, Xiaoyun; Groot, J.J.; Bloemhof, J.M.; Vorst, van der J.G.A.J.

    2013-01-01

    Purpose – This research studies a plastic recycling system from a reverse logistics angle and investigates the potential benefits of a multimodality strategy to the network design of plastic recycling. This research aims to quantify the impact of multimodality on the network, to provide decision

  2. Review Article: Numerical analysis of the seismic behaviour of earth dam

    Directory of Open Access Journals (Sweden)

    Y. Parish

    2009-03-01

    Full Text Available The present study concerns analysis of the seismic response of earth dams. The behaviour of both the shell and core of the dam is described using the simple and popular non associated Mohr-Coulomb criterion. The use of this constitutive model is justified by the difficulty to obtain constitutive parameters for more advanced constitutive relations including isotropic and kinematic hardening. Analyses with real earthquake records show that the seismic loading induces plasticity in a large part of the shell and in the lower part of the core. Analysis shows that plasticity should be considered in the analysis of the seismic response of the dam, because it leads to a decrease in the natural frequencies of the dam together to energy dissipation, which could significantly affect the seismic response of the dam. Plastic analysis constitutes also a good tool for the verification of the stability of the dam under seismic loading.

  3. Seismic hazard, risk, and design for South America

    Science.gov (United States)

    Petersen, Mark D.; Harmsen, Stephen; Jaiswal, Kishor; Rukstales, Kenneth S.; Luco, Nicolas; Haller, Kathleen; Mueller, Charles; Shumway, Allison

    2018-01-01

    We calculate seismic hazard, risk, and design criteria across South America using the latest data, models, and methods to support public officials, scientists, and engineers in earthquake risk mitigation efforts. Updated continental scale seismic hazard models are based on a new seismicity catalog, seismicity rate models, evaluation of earthquake sizes, fault geometry and rate parameters, and ground‐motion models. Resulting probabilistic seismic hazard maps show peak ground acceleration, modified Mercalli intensity, and spectral accelerations at 0.2 and 1 s periods for 2%, 10%, and 50% probabilities of exceedance in 50 yrs. Ground shaking soil amplification at each site is calculated by considering uniform soil that is applied in modern building codes or by applying site‐specific factors based on VS30">VS30 shear‐wave velocities determined through a simple topographic proxy technique. We use these hazard models in conjunction with the Prompt Assessment of Global Earthquakes for Response (PAGER) model to calculate economic and casualty risk. Risk is computed by incorporating the new hazard values amplified by soil, PAGER fragility/vulnerability equations, and LandScan 2012 estimates of population exposure. We also calculate building design values using the guidelines established in the building code provisions. Resulting hazard and associated risk is high along the northern and western coasts of South America, reaching damaging levels of ground shaking in Chile, western Argentina, western Bolivia, Peru, Ecuador, Colombia, Venezuela, and in localized areas distributed across the rest of the continent where historical earthquakes have occurred. Constructing buildings and other structures to account for strong shaking in these regions of high hazard and risk should mitigate losses and reduce casualties from effects of future earthquake strong ground shaking. National models should be developed by scientists and engineers in each country using the best

  4. A procedure for the determination of scenario earthquakes for seismic design based on probabilistic seismic hazard analysis

    International Nuclear Information System (INIS)

    Hirose, Jiro; Muramatsu, Ken

    2002-03-01

    This report presents a study on the procedures for the determination of scenario earthquakes for seismic design of nuclear power plants (NPPs) based on probabilistic seismic hazard analysis (PSHA). In the recent years, the use of PSHA, which is a part of seismic probabilistic safety assessment (PSA), to determine the design basis earthquake motions for NPPs has been proposed. The identified earthquakes are called probability-based scenario earthquakes (PBSEs). The concept of PBSEs originates both from the study of US NRC and from Ishikawa and Kameda. The assessment of PBSEs is composed of seismic hazard analysis and identification of dominant earthquakes. The objectives of this study are to formulate the concept of PBSEs and to examine the procedures for determining the PBSEs for a domestic NPP site. This report consists of three parts, namely, procedures to compile analytical conditions for PBSEs, an assessment to identify PBSEs for a model site using the Ishikawa's concept and the examination of uncertainties involved in analytical conditions. The results obtained from the examination of PBSEs using Ishikawa's concept are as follows. (a) Since PBSEs are expressed by hazard-consistent magnitude and distance in terms of a prescribed reference probability, it is easy to obtain a concrete image of earthquakes that determine the ground response spectrum to be considered in the design of NPPs. (b) Source contribution factors provide the information on the importance of the earthquake source regions and/or active faults, and allows the selection of a couple of PBSEs based on their importance to the site. (c) Since analytical conditions involve uncertainty, sensitivity analyses on uncertainties that would affect seismic hazard curves and identification of PBSEs were performed on various aspects and provided useful insights for assessment of PBSEs. A result from this sensitivity analysis was that, although the difference in selection of attenuation equations led to a

  5. Integrated seismic design of structure and control systems

    CERN Document Server

    Castaldo, Paolo

    2014-01-01

    The structural optimization procedure presented in this book makes it possible to achieve seismic protection through integrated structural/control system design. In particular, it is explained how slender structural systems with a high seismic performance can be achieved through inclusion of viscous and viscoelastic dampers as an integral part of the system. Readers are provided with essential introductory information on passive structural control and passive energy dissipation systems. Dynamic analyses of both single and multiple degree of freedom systems are performed in order to verify the achievement of pre-assigned performance targets, and it is explained how the optimal integrated design methodology, also relevant to retrofitting of existing buildings, should be applied. The book illustrates how structural control research is opening up new possibilities in structural forms and configurations without compromising structural performance.

  6. Innovative design of viscoelastic dampers for seismic mitigation

    International Nuclear Information System (INIS)

    Tsai, C.S.

    1993-01-01

    In this paper, an advanced and more reliable design of viscoelastic dampers for seismic mitigation of high-rise buildings is presented. The innovative design of energy-absorbing devices has some advantages, compared to the classical design, as follows: One, the device is directly subjected to shear strains and forces due to story drifts; two, the device can support its own weight during normal operations, and maintain stable for large deformations during earthquakes; three, the device can reduce the responses of a structure to horizontal as well as vertical seismic loadings; and four, the device can also decrease the responses of the floor system of a building. In this study, a ten-story building is given as an example to express the merits obtained from the new system. Comparisons of the building equipped with classical and proposed devices of viscoelastic dampers are carefully studied. Numerical results show that the energy-absorbing capacity of the new device is superior to the classical one, especially for vertical vibrations. (orig.)

  7. Seismic considerations in the design of atomic power plants

    International Nuclear Information System (INIS)

    Arya, A.S.; Chandrasekaran, A.R.; Thakkar, S.K.

    1975-01-01

    A seismic design is one of the most important factors for the safety of nuclear power plants constructed in seismic areas. The various considerations in the design of atomic power plant structures and components to achieve high degree (near absolute) of safety during future probable earthquakes is described as follows: (a) determination of design earthquake parameters for SSE and OBE (b) fixing time history accelerograms and acceleration response spectra (c) mathematical modelling of the reactor building considering soil-structure interaction (d) deciding allowable stresses, damping factors and serviceability limits like drift, displacements and crack widths (e) tests for determining stiffness and damping characteristics of components in-situ before commissioning of plant. The main questions that arise under various items requiring further research investigations or development work are pointed out for discussion. (author)

  8. Seismic considerations in sealing a potential high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Richardson, A.M.; Lin, Ming

    1993-01-01

    The potential repository system is intended to isolate high-level radioactive waste at Yucca Mountain according the performance objective--10 CFR 60.112. One subsystem that may contribute to achieving this objective is the sealing subsystem. This subsystem is comprised of sealing components in the shafts, ramps, underground network of drifts, and the exploratory boreholes. Sealing components can be rigid, as in the case of a shaft seal, or can be more compressible, as in the case of drift fill comprised of mined rockfill. This paper presents the preliminary seismic response of discrete sealing components in welded and nonwelded tuff. Special consideration is given to evaluating the stress in the seal, and the behavior of the interface between the seal and the rock. The seismic responses are computed using both static and dynamic analyses. Also presented is an evaluation of the maximum seismic response encountered by a drift seal with respect to the angle of incidence of the seismic wave. Mitigation strategies and seismic design considerations are proposed which can potentially enhance the overall response of the sealing component and subsequently, the performance of the overall repository system

  9. Study on Seismic Behavior of Recycled Concrete Energy-efficient Homes Structure Wall

    Directory of Open Access Journals (Sweden)

    Dong Lan

    2016-01-01

    Full Text Available The main point is to study the seismic behavior of the lattice type recycled concrete energy saving wall under low-cyclic loading,to provide the basis for the seismic performance of application of recycled concrete lattice wall in energy-saving residential structure. Design two walls with the same structure measures, include Lattice type recycled concrete wall and natural concrete wall, they are tested under low-cycle repetitive loading, compared failure mode and seismic performance in different reinforcement conditions of side column. The bearing capacity and ductility of recycled aggregate concrete are better than natural aggregate concrete, The stiffness degradation curves and the skeleton curves of the walls are basically the same, both of them have better seismic energy dissipation capacity. Lattice type concrete wall is good at seismic performance, recycled aggregate concrete is good at plastic deformation ability, it is advantageous to seismic energy dissipation of wall, it can be applied in energy efficient residential structure wall.

  10. Toward predicting clay landslide with ambient seismic noise

    Science.gov (United States)

    Larose, E. F.; Mainsant, G.; Carriere, S.; Chambon, G.; Michoud, C.; Jongmans, D.; Jaboyedoff, M.

    2013-12-01

    Clay-rich pose critical problems in risk management worldwide. The most widely proposed mechanism leading to such flow-like movements is the increase in water pore pressure in the sliding mass, generating partial or complete liquefaction. This solid-to-liquid transition results in a dramatic reduction of mechanical rigidity, which could be detected by monitoring shear wave velocity variations, The ambient seismic noise correlation technique has been applied to measure the variation in the seismic surface wave velocity in the Pont Bourquin landslide (Swiss Alps). This small but active composite earthslide-earthflow was equipped with continuously recording seismic sensors during spring and summer 2010, and then again from fall 2011 on. An earthslide of a few thousand cubic meters was triggered in mid-August 2010, after a rainy period. This article shows that the seismic velocity of the sliding material, measured from daily noise correlograms, decreased continuously and rapidly for several days prior to the catastrophic event. From a spectral analysis of the velocity decrease, it was possible to determine the location of the change at the base of the sliding layer. These results are confirmed by analogous small-scale experiments in the laboratory. These results demonstrate that ambient seismic noise can be used to detect rigidity variations before failure and could potentially be used to predict landslides.

  11. SEISMIC FRAGILITY ANALYSIS OF IMPROVED RC FRAMES USING DIFFERENT TYPES OF BRACING

    Directory of Open Access Journals (Sweden)

    HAMED HAMIDI JAMNANI

    2017-04-01

    Full Text Available Application of bracings to increase the lateral stiffness of building structures is a technique of seismic improvement that engineers frequently have recourse to. Accordingly, investigating the role of bracings in concrete structures along with the development of seismic fragility curves are of overriding concern to civil engineers. In this research, an ordinary RC building, designed according to the 1st edition of Iranian seismic code, was selected for examination. According to FEMA 356 code, this building is considered to be vulnerable. To improve the seismic performance of this building, 3 different types of bracings, which are Concentrically Braced Frames, Eccentrically Braced Frames and Buckling Restrained Frames were employed, and each bracing element was distributed in 3 different locations in the building. The researchers developed fragility curves and utilized 30 earthquake records on the Peak Ground Acceleration seismic intensity scale to carry out a time history analysis. Tow damage scale, including Inter-Story Drifts and Plastic Axial Deformation were also used. The numerical results obtained from this investigation confirm that Plastic Axial Deformation is more reliable than conventional approaches in developing fragility curves for retrofitted frames. In lieu of what is proposed, the researchers selected the suitable damage scale and developed and compared log-normal distribution of fragility curves first for the original and then for the retrofitted building.

  12. Procedure for seismic evaluation and design of small bore piping

    International Nuclear Information System (INIS)

    Bilanin, W.; Sills, S.

    1991-01-01

    Simplified methods for the seismic design of small bore piping in nuclear power plants have teen used for many years. Various number of designers have developed unique methods to treat the large number of class 2 and 3 small bore piping systems. This practice has led to a proliferation of methods which are not standardized in the industry. These methods are generally based on enveloping the results of rigorous dynamic or conservative static analysis and result in an excessive number of supports and unrealistically high support loadings. Experience and test data have become available which warranted taking another look at the present methods for analysis of small bore piping. A recently completed Electric Power Research Institute and NCIG (a utility group) activity developed a new procedure for the seismic design and evaluation of small bore piping which provides significant safety and cost benefits. The procedure streamlines the approach to inertial stresses, which is the main feature that achieves the new benefits. Criteria in the procedure for seismic anchor movement and support design are based analysis and focus the designer on credible failure mechanisms. A walkdown of the as-constructed piping system to identify and eliminate undesirable piping features such as adverse spatial interaction is required

  13. Cracking of open traffic rigid pavement

    Directory of Open Access Journals (Sweden)

    Niken Chatarina

    2017-01-01

    Full Text Available The research is done by observing the growth of real structure cracking in Natar, Lampung, Indonesia compared to C. Niken’s et al research and literature study. The rigid pavement was done with open traffic system. There are two main crack types on Natar rigid pavement: cracks cross the road, and cracks spreads on rigid pavement surface. The observation of cracks was analyzed by analyzing material, casting, curing, loading and shrinkage mechanism. The relationship between these analysis and shrinkage mechanism was studied in concrete micro structure. Open traffic make hydration process occur under vibration; therefore, fresh concrete was compressed and tensioned alternately since beginning. High temperature together with compression, cement dissociation, the growth of Ca2+ at very early age leads abnormal swelling. No prevention from outside water movement leads hydration process occur with limited water which caused spreads fine cracks. Limited water improves shrinkage and plastic phase becomes shorter; therefore, rigid pavement can’t accommodate the abnormal swelling and shrinking alternately and creates the spread of cracks. Discontinuing casting the concrete makes both mix under different condition, the first is shrink and the second is swell and creates weak line on the border; so, the cracks appear as cracks across the road.

  14. Plasticity Approach to Shear Design

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1998-01-01

    The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...... in uncracked concrete. Good agree between theory and tests has been found.Keywords: dsign, plasticity, reinforced concrete, reinforcement, shear, web crushing....

  15. The Ductile Design Concept for Seismic Actions in Miscellaneous Design Codes

    Directory of Open Access Journals (Sweden)

    M. Budescu

    2009-01-01

    Full Text Available The concept of ductility estimates the capacity of the structural system and its components to deform prior to collapse, without a substantial loss of strength, but with an important energy amount dissipated. Consistent with the „Applied Technology Council” (ATC-34, from 1995, it was agreed that the reduction seismic response factor to decrease the design force. The purpose of this factor is to transpose the nonlinear behaviour of the structure and the energy dissipation capacity in a simplified form that can be used in the design stage. Depending on the particular structural model and the design standard the used values are different. The paper presents the characteristics of the ductility concept for the structural system. Along with this the general way of computing the reserve factor with the necessary explanations for the parameters that determine the behaviour factor are described. The purpose of this paper is to make a comparison between different international norms for the values and the distribution of the behaviour factor. The norms from the following countries are taken into consideration: the United States of America, New Zealand, Japan, Romania and the European general seismic code.

  16. Superplastic flow of two-phase ceramics containing rigid inclusions-zirconia/mullite composites

    International Nuclear Information System (INIS)

    Yoon, C.K.; Chen, I.W.

    1990-01-01

    A continuum theory for non-newtonian flow of a two-phase composite containing rigid inclusions is presented. It predicts flow suppression by a factor of (1 - V) q , where V is the volume fraction of the rigid inclusion and q depends on the stress exponent and the inclusion shape. Stress concentrations in the rigid inclusion have also been evaluated. As the stress exponent increases, flow suppression is more pronounced even though stress concentration is less severe. To test this theory, superplastic flow of zirconia/mullite composites, in which zirconia is a soft, non-Newtonian super-plastic matrix and mullite is a rigid phase of various size, shape, and amount, is studied. The continuum theory is found to describe the two-phase superplastic flow reasonably well

  17. Seismic upgrading of the spent fuel storage building at Kozloduy NPP

    International Nuclear Information System (INIS)

    Alexandrov, A.; Borov, V.; Jordanov, M.; Karamanski, T.; Mihaylov, K.

    2001-01-01

    The Spent Fuel Storage Building at Kozloduy NPP site has been analysed for new review level earthquake with 0.2 g peak ground acceleration (compared to the initial design basis earthquake with 0.1 g PGA). The preliminary seismic analysis of the existing building structure using the 5% site specific response spectrum showed the need of seismic structural upgrading. Two upgrading concepts were evaluated on the basis of several factors. The main factor considered was preventing the collapse of the hall structure and the travelling cranes on the fuel storage area during and after a SSE. A three dimensional finite element model was created for the investigation of the seismic response of the existing structure and for the design of the building upgrading. The modelling of the heavy travelling crane and its sub-crane structure was one of the key points. Different configurations of the new upgrading and strengthening structures were investigated. Some interesting conclusions have been drawn from the experience in analysing and upgrading of such a complex industrial structure, comprised of elements with substantial differences in material, rigidity, construction and general behaviour. (author)

  18. SEISMIC DESIGN OF TWO STOREY REINFORCED CONCRETE BUILDING IN MALAYSIA WITH LOW CLASS DUCTILITY

    Directory of Open Access Journals (Sweden)

    MOHD IRWAN ADIYANTO

    2014-02-01

    Full Text Available Since Malaysia is not located in active seismic fault zones, majority of buildings in Malaysia had been designed according to BS8110, which not specify any seismic provision. After experienced several tremors originating from neighbouring countries especially from Sumatra, Indonesia, the Malaysian start to ask questions on integrity of existing structures in Malaysia to withstand the earthquake load. The question also arises regarding the economical effect in term of cost of construction if seismic design has to be implemented in Malaysian construction industry. If the cost is increasing, how much the increment and is it affordable? This paper investigated the difference of steel reinforcement and concrete volume required when seismic provision is considered in reinforced concrete design of 2 storey general office building. The regular office building which designed based on BS8110 had been redesigned according to Eurocode 2 with various level of reference peak ground acceleration, agR reflecting Malaysian seismic hazard for ductility class low. Then, the all frames had been evaluated using a total of 800 nonlinear time history analyses considering single and repeated earthquakes to simulate the real earthquake event. It is observed that the level of reference peak ground acceleration, agR and behaviour factor, q strongly influence the increment of total cost. For 2 storey RC buildings built on Soil Type D with seismic consideration, the total cost of material is expected to increase around 6 to 270%, depend on seismic region. In term of seismic performance, the repeated earthquake tends to cause increasing in interstorey drift ratio around 8 to 29% higher compared to single earthquake.

  19. Seismic design assessment by experimental methods. Notes from the workshop. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The workshop intended to provide training on the application of experimental techniques (mainly laboratory testing) as support to the seismic design of structures, equipment and components for nuclear power plants. The focus was on the activities planned by Nuclear Power Institute of China (NPIC) in the near future, and most of the lectures provided by the attendees, dealing with these national activities, were the basis for the discussion with the IAEA experts. Special modules were identified for the workshop, dealing with: Numerical models: detailing and comparison techniques; On site testing of structures and equipment; Special problems: Leak before Break (LBB), thermal effects, combination of seismic with other loads; General seismic behavior and design criteria for fuel assembly and core structures; Seismic qualification methodologies for reactor core, mechanical components, I and C and piping; Balancing analysis and test in seismic qualification; Design of mock-up: selection of seismic input, detailing, scaling and similitudes, selection of sensors and their location; Test planning and conduct, basic documents and specifications; Quality assurance and technical procedures in laboratory testing; Data processing techniques and interface with the numerical models. The material used for presentations by the lecturers and by the national attendees is collected in this volume together with some background literature provided by the experts with up to date references and procedures. A special chapter is added to these proceedings with the content of the discussion, for future reference and as a complement to the lectures content, more oriented to the specific, immediate needs of the attendees.

  20. Seismic design assessment by experimental methods. Notes from the workshop. Working material

    International Nuclear Information System (INIS)

    2001-01-01

    The workshop intended to provide training on the application of experimental techniques (mainly laboratory testing) as support to the seismic design of structures, equipment and components for nuclear power plants. The focus was on the activities planned by Nuclear Power Institute of China (NPIC) in the near future, and most of the lectures provided by the attendees, dealing with these national activities, were the basis for the discussion with the IAEA experts. Special modules were identified for the workshop, dealing with: Numerical models: detailing and comparison techniques; On site testing of structures and equipment; Special problems: Leak before Break (LBB), thermal effects, combination of seismic with other loads; General seismic behavior and design criteria for fuel assembly and core structures; Seismic qualification methodologies for reactor core, mechanical components, I and C and piping; Balancing analysis and test in seismic qualification; Design of mock-up: selection of seismic input, detailing, scaling and similitudes, selection of sensors and their location; Test planning and conduct, basic documents and specifications; Quality assurance and technical procedures in laboratory testing; Data processing techniques and interface with the numerical models. The material used for presentations by the lecturers and by the national attendees is collected in this volume together with some background literature provided by the experts with up to date references and procedures. A special chapter is added to these proceedings with the content of the discussion, for future reference and as a complement to the lectures content, more oriented to the specific, immediate needs of the attendees

  1. Outline of the seismic design guideline of an FBR - a tentative draft

    International Nuclear Information System (INIS)

    Akiyama, Hiroshi; Ohtsubo, Hideomi; Nakamura, Hideharu; Matsuura, Shinichi; Hagiwara, Yutaka; Yuhara, Tetsuo; Hirayama, Hiroshi; Kokubo, Kunio; Ooka, Yuji.

    1993-01-01

    Central Research Institute of Electric Power Industry (Japan) is carrying out the Demonstration Test and Research Program of Buckling of FBR (FY 1987-FY 1993). The first half of the research program was finished after establishing a seismic buckling design guideline (a tentative draft). The purpose of this paper is to describe the dynamic buckling characteristics of FBR main vessels and the outline of the rationalized buckling design guideline for seismic loadings. (orig.)

  2. Reduction of seismic response long-span PC cable-stayed bridge by passive dampers; Damper ni yoru saidai PC shachokyo no jishinji oto no teigen

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, T.; Yamanobe, S.; Niihara, Y. [Kajima Corp., Tokyo (Japan)

    1994-10-31

    It is important in designing a PC cable-stayed bridge to properly estimate the seismic response of the bridge for reduction of the response. In this paper, an improvement of the seismic resistance of PC cable-stayed bridges when dampers are installed between the deck and piers and lateral vibration of the deck is restricted is investigated using a time history response model. PC cable-stayed bridges with a span length of 400 m, particularly two types of bridges of harp and semi-harp are investigated and the following is found by analyzing the case where there are installed hysteresis type dampers (with 1 cm yield displacement and secondary rigidity assumed to be 1/10 times that of initial rigidity, the initial rigidity being parametrically changed.) or viscous type dampers (a damping factor is changed.) The result shows that the dampers can reduce the seismic response of a PC cable-stayed bridge and that a semi-harp configuration of stay cables where stay cable members are substantially vertically arranged is more effective than a harp configuration for the seismic performance of PC cable-stayed bridges. The damper partly bear inertial force of the bridge upon earthquake whereby tension of the stay cable members is reduced and bending moment of the deck is reduced. There is existing an optimum characteristic value of the damper concerning the bending moment of the piers. 5 refs., 7 figs., 2 tabs.

  3. Design of small diameter HT/HP sour service reeled rigid pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Daniel; Gouveia, Joao; Tardelli, Luciano [Tecnitas, Rio de Janeiro, RJ (Brazil)], e-mail: daniel.carneiro@br.bureauveritas.com; Parrilha, Rafael [Bureau Veritas Group, London (United Kingdom); Oazen, Eduardo; Cardoso, Carlos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-12-19

    The paper presents an overview of the challenges overcome in the engineering design of two 219 mm diameter, 6 km length oil production pipelines, to be installed by reeling at Espirito Santo Basin, offshore Brazilian coast in 1500 m water depth. The high temperature and high pressure (HT/HP) operating conditions and sour content associated with the small diameter required to single well oil production would usually lead to flexible flow line solution in Brazilian fields. The decision of employing small diameter thick-walled rigid C-Mn steel pipelines with thick thermal insulation made necessary extensive engineering work to achieve a safe and robust thermal expansion control arrangement, including the design of walking mitigation and buckle initiation apparatus; a feasible weld acceptance criterion covering both high cycle fatigue due to pipe lay and vortex induced vibration (VIV) at free spans, and high strain low cycle fatigue and fracture growth induced by reeling installation and in-service lateral buckling. Several studies were performed using highly non-linear three-dimensional finite element models considering: pipe-soil interaction with full 3D seabed bathymetry; load history maintained from pipe lay to operational cycles, including temperature transient effects; high plastic strains (including steel properties de-rating due to high temperature) and section ovalization; mechanical contact between pipe and appurtenances during both installation and operational phases. Pipe-soil interaction comprised embedment considering dynamic effects of pipe lay and full non-linear lateral and axial response curves including break-out and residual resistance. Strain concentration factors due to field joints were evaluated using detailed solid models considering non-linear response of both steel and insulation materials. Susceptibility to VIV at free spans was assessed considering post loaded deformed span natural frequencies, including multi-span interaction effects and

  4. Current status of ground motions evaluation in seismic design guide for nuclear power facilities. Investigation on IAEA and US.NRC

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ito, Hiroshi; Hirata, Kazuta

    2009-01-01

    Recently, IAEA (International Atomic Energy Agency) and US.NRC (US. Nuclear Regulatory Commission) published several standards and technical reports on seismic design and safety evaluation for nuclear power facilities. This report summarizes the current status of the international guidelines on seismic design and safety evaluation for nuclear power facilities in order to explore the future research topics. The main results obtained are as follows: 1 IAEA: (1) In the safety standard series, two levels are defined as seismic design levels, and design earthquake ground motion is determined corresponding to each seismic design level. (2) A new framework on seismic design which consists of conventional deterministic method and risk-based method is discussed in the technical report although the framework is not adopted in the safety guidelines. 2 USA: (1) US.NRC discusses a performance-based seismic design framework which has been originally developed by the private organization (American Society of Civil Engineers). (2) Design earthquakes and earthquake ground motion are mainly evaluated and determined based on probabilistic seismic hazard evaluations. 3 Future works: It should be emphasized that IAEA and US.NRC have investigated the implementation of risk-based concept into seismic design. The implementation of risk-based concept into regulation and seismic design makes it possible to consider various uncertainties and to improve accountability. Therefore, we need to develop the methods for evaluating seismic risk of structures, and to correlate seismic margin and seismic risk quantitatively. Moreover, the probabilistic method of earthquake ground motions, that is required in the risk-based design, should be applied to sites in Japan. (author)

  5. Criteria for seismic evaluation and potential design fixes for WWER type nuclear power plants

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-01-01

    The purpose for this document is to provide a criteria for the seismic evaluation and development of potential design fixes for structures, systems and components for the WWER type Nuclear power plants. The design fixes are divided into two categories, detailed and easy fixes. Detailed fixes are typically applicable to building structures, components for which there is little or no seismic capacity information, large tanks and vital systems and components which make up the reactor cooling system and components which perform support or auxiliary functions. In case of the design of 'easy fixes', the criteria presented may be used for both the seismic design as well as for the evaluation of structures, systems and components to which easy fix design applies. Easy fixes are situations where seismic capacities of structures, systems and components can be significantly increased with relatively minor, inexpensive fixes usually associated with anchorage modification of safety related structures, systems and components or those that could interact with safety related structures, systems and components. Often these fixes can be accomplished while the plant is in operation

  6. Criteria for seismic evaluation and potential design fixes for WWER type nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J D [Stevenson and Associates, Cleveland, OH (United States)

    1995-07-01

    The purpose for this document is to provide a criteria for the seismic evaluation and development of potential design fixes for structures, systems and components for the WWER type Nuclear power plants. The design fixes are divided into two categories, detailed and easy fixes. Detailed fixes are typically applicable to building structures, componentsfor which there is little or no seismic capacity information, large tanks and vital systems and components which make up the reactor cooling system and components which perform support or auxiliary functions. In case of the design of 'easy fixes', the criteria presented may be used for both the seismic design as well as for the evaluation of structures, systems and components to which easy fix design applies. Easy fixes are situations where seismic capacities of structures, systems and components can be significantly increased with relatively minor, inexpensive fixes usually associated with anchorage modification of safety related structures, systems and components or those that could interact with safety related structures, systems and components. Often these fixes can be accomplished while the plant is in operation.

  7. Seismic design principles for the German fast breeder reactor SNR 2

    International Nuclear Information System (INIS)

    Busch, K.A.; Peters, K.A.; Rosenhauer, W.

    1987-01-01

    The safety issue of an adequate and optimized external event protection is of course that unnecessary hardware precautions might promote internal disturbances or hamper their control. It has up to now not satisfactorily been realized that the only serious context for seismic impacts on a fast reactor is their attributed potential of overriding core disruptive accident prevention, see e.g. GRS 1982. General and exaggerated antiseismic design features not focussed upon this point may as well turn out to be non-negligible initators in the absence of seismic vibrations. Unexpected snubber difficulties requiring additional reactor scrams and decay heat removal phases may be named as a simple example. The presented seismic design principles reflect the progress made in the concerned fields of analysis and do serve on the other hand as guidelines for research and development efforts under work. (orig./GL)

  8. Design requirements, criteria and methods for seismic qualification of CANDU power plants

    International Nuclear Information System (INIS)

    Singh, N.; Duff, C.G.

    1979-10-01

    This report describes the requirements and criteria for the seismic design and qualification of systems and equipment in CANDU nuclear power plants. Acceptable methods and techniques for seismic qualification of CANDU nuclear power plants to mitigate the effects or the consequences of earthquakes are also described. (auth)

  9. Yield Frequency Spectra and seismic design of code-compatible RC structures: an illustrative example

    DEFF Research Database (Denmark)

    Katsanos, Evangelos; Vamvatsikos, Dimitrios

    2017-01-01

    with given yield displacement and capacity curve shape. For the 8-story case study building, deformation checking is the governing limit state. A conventional code-based design was performed using seismic intensities tied to the desired MAF for safety checking. Then, the YFS-based approach was employed......The seismic design of an 8-story reinforced concrete space frame building is undertaken using a Yield Frequency Spectra (YFS) performance-based approach. YFS offer a visual representation of the entire range of a system’s performance in terms of the mean annual frequency (MAF) of exceeding...... to redesign the resulting structure working backwards from the desired MAF of response (rather than intensity) to estimate an appropriate value of seismic intensity for use within a typical engineering design process. For this high-seismicity and high-importance midrise building, a stiffer system with higher...

  10. Computational strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems...... of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...... oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale....

  11. Seismic Design of ITER Component Cooling Water System-1 Piping

    Science.gov (United States)

    Singh, Aditya P.; Jadhav, Mahesh; Sharma, Lalit K.; Gupta, Dinesh K.; Patel, Nirav; Ranjan, Rakesh; Gohil, Guman; Patel, Hiren; Dangi, Jinendra; Kumar, Mohit; Kumar, A. G. A.

    2017-04-01

    The successful performance of ITER machine very much depends upon the effective removal of heat from the in-vessel components and other auxiliary systems during Tokamak operation. This objective will be accomplished by the design of an effective Cooling Water System (CWS). The optimized piping layout design is an important element in CWS design and is one of the major design challenges owing to the factors of large thermal expansion and seismic accelerations; considering safety, accessibility and maintainability aspects. An important sub-system of ITER CWS, Component Cooling Water System-1 (CCWS-1) has very large diameter of pipes up to DN1600 with many intersections to fulfill the process flow requirements of clients for heat removal. Pipe intersection is the weakest link in the layout due to high stress intensification factor. CCWS-1 piping up to secondary confinement isolation valves as well as in-between these isolation valves need to survive a Seismic Level-2 (SL-2) earthquake during the Tokamak operation period to ensure structural stability of the system in the Safe Shutdown Earthquake (SSE) event. This paper presents the design, qualification and optimization of layout of ITER CCWS-1 loop to withstand SSE event combined with sustained and thermal loads as per the load combinations defined by ITER and allowable limits as per ASME B31.3, This paper also highlights the Modal and Response Spectrum Analyses done to find out the natural frequency and system behavior during the seismic event.

  12. Studies on Pounding Response Considering Structure-Soil-Structure Interaction under Seismic Loads

    Directory of Open Access Journals (Sweden)

    Peizhen Li

    2017-12-01

    Full Text Available Pounding phenomena considering structure–soil–structure interaction (SSSI under seismic loads are investigated in this paper. Based on a practical engineering project, this work presents a three-dimensional finite element numerical simulation method using ANSYS software. According to Chinese design code, the models of adjacent shear wall structures on Shanghai soft soil with the rigid foundation, box foundation and pile foundation are built respectively. In the simulation, the Davidenkov model of the soil skeleton curve is assumed for soil behavior, and the contact elements with Kelvin model are adopted to simulate pounding phenomena between adjacent structures. Finally, the dynamic responses of adjacent structures considering the pounding and SSSI effects are analyzed. The results show that pounding phenomena may occur, indicating that the seismic separation requirement for adjacent buildings of Chinese design code may not be enough to avoid pounding effect. Pounding and SSSI effects worsen the adjacent buildings’ conditions because their acceleration and shear responses are amplified after pounding considering SSSI. These results are significant for studying the effect of pounding and SSSI phenomena on seismic responses of structures and national sustainable development, especially in earthquake prevention and disaster reduction.

  13. Vibration characteristics of the seismically isolated building supported by the elastomers and the elasto-plastic dampers

    International Nuclear Information System (INIS)

    Mazda, Taiji; Shiojiri, Hiroo; Aoyagi, Sakae; Sawada, Yoshihiro; Kawai, Nobuyasu; Harada, Osamu; Ohtsuka, Susume; Abe, Isamu.

    1989-01-01

    Recently, the seismic isolation has become one of the popular methods in the design of important structures or equipment against the earthquakes. However, the demonstration data on reliability of seismically isolated structures are not enough, therefore it is expected to accumulate such data. Based on the above recognition, the vibration tests of a base isolated building were carried out in Tsukuba Science City. After that, many earthquake records have been obtained at the building, and they made clear the dynamic characteristics of the structure. In order to make clear the dynamic behavior of the building, furthermore, seismic response analyses were executed by using Lumped Mass model, and the results of the analyses roughly agreed with the observed results. (author)

  14. Seismic analysis, evaluation and upgrade design for a nuclear facility exhaust stack building

    International Nuclear Information System (INIS)

    Malik, L.E.; Kabir, A.F.

    1991-01-01

    This paper reports on an exhaust stack building of a nuclear reactor facility with complex structural configuration that has been analyzed and evaluated for seismic forces. This building was built in the 1950's and had not been designed to resist seismic forces. A very rigorous analysis and evaluation program was implemented to minimize the costly retrofits required to upgrade the building to resist high seismic forces. The seismic evaluations were performed for the building in its as-is configuration, and as modified for several upgrade schemes. Soil-structure-interaction, base mat flexibility and the influence of the nearby reactor building have been considered in the seismic analyses. The rigorous analyses and evaluation enabled limited upgrades to qualify the stack building for the seismic forces

  15. Effect of cyclic plastic pre-strain on low cycle fatigue life

    International Nuclear Information System (INIS)

    Kanno, Satoshi; Nakane, Motoki; Yorikawa, Morio; Takagi, Yoshio

    2010-01-01

    In order to evaluate structural integrity of nuclear components subjected large seismic load which produce locally plastic strain, low cycle fatigue life was examined using cyclic plastic pre-strained materials of austenitic steel (SUS316, SUS316L, SUS304TP: JIS (Japanese Industrial Standards)) and ferritic steel (SFVQ1A, STS480, STPT410, SFVC2B, SS400: JIS). It was not found that cyclic plastic pre-strain up to range of 16%, 2.5 times affected on low cycle fatigue life. The validity of existing procedure of fatigue life estimation based on usage factor was confirmed when large seismic load brought nuclear materials cyclic plastic strain. (author)

  16. Seismic energy dissipation study of linear fluid viscous dampers in steel structure design

    Directory of Open Access Journals (Sweden)

    A. Ras

    2016-09-01

    Full Text Available Energy dissipation systems in civil engineering structures are sought when it comes to removing unwanted energy such as earthquake and wind. Among these systems, there is combination of structural steel frames with passive energy dissipation provided by Fluid Viscous Dampers (FVD. This device is increasingly used to provide better seismic protection for existing as well as new buildings and bridges. A 3D numerical investigation is done considering the seismic response of a twelve-storey steel building moment frame with diagonal FVD that have linear force versus velocity behaviour. Nonlinear time history, which is being calculated by Fast nonlinear analysis (FNA, of Boumerdes earthquake (Algeria, May 2003 is considered for the analysis and carried out using the SAP2000 software and comparisons between unbraced, braced and damped structure are shown in a tabulated and graphical format. The results of the various systems are studied to compare the structural response with and without this device of the energy dissipation thus obtained. The conclusions showed the formidable potential of the FVD to improve the dissipative capacities of the structure without increasing its rigidity. It is contributing significantly to reduce the quantity of steel necessary for its general stability.

  17. Seismic design of circular-section concrete-lined underground openings: Preclosure performance considerations for the Yucca Mountain Site

    International Nuclear Information System (INIS)

    Richardson, A.M.; Blejwas, T.E.

    1992-01-01

    Yucca Mountain, the potential site of a repository for high-level radioactive waste, is situated in a region of natural and man-made seismicity. Underground openings excavated at this site must be designed for worker safety in the seismic environment anticipated for the preclosure period. This includes accesses developed for site characterization regardless of the ultimate outcome of the repository siting process. Experience with both civil and mining structures has shown that underground openings are much more resistant to seismic effects than surface structures, and that even severe dynamic strains can usually be accommodated with proper design. This paper discusses the design and performance of lined openings in the seismic environment of the potential site. The types and ranges of possible ground motions (seismic loads) are briefly discussed. Relevant historical records of underground opening performance during seismic loading are reviewed. Simple analytical methods of predicting liner performance under combined in situ, thermal, and seismic loading are presented, and results of calculations are discussed in the context of realistic performance requirements for concrete-lined openings for the preclosure period. Design features that will enhance liner stability and mitigate the impact of the potential seismic load are reviewed. The paper is limited to preclosure performance concerns involving worker safety because present decommissioning plans specify maintaining the option for liner removal at seal locations, thus decoupling liner design from repository postclosure performance issues

  18. Review of public comments on proposed seismic design criteria

    International Nuclear Information System (INIS)

    Philippacopoulos, A.J.; Shaukat, S.K.; Chokshi, N.C.; Bagchi, G.; Nuclear Regulatory Commission, Washington, DC; Nuclear Regulatory Commission, Washington, DC

    1989-01-01

    During the first quarter of 1988, the Nuclear Regulatory Commission (NRC) prepared a proposed Revision 2 to the NUREG-0800 Standard Review Plan (SRP) Sections 2.5.2 (Vibratory Ground Motion), 3.7.1 (Seismic Design Parameters), 3.7.2 (Seismic Systems Analysis) and 3.7.3 (Seismic Subsystem Analysis). The proposed Revision 2 to the SRP was a result of many years' work carried out by the NRC and the nuclear industry on the Unresolved Safety Issue (USI) A-40: ''Seismic Design Criteria.'' The background material related to NRC's efforts for resolving the A-40 issue is described in NUREG-1233. In June 1988, the proposed Revision 2 of the SRP was issued by NRC for public review and comments. Comments were received from Sargent and Lundy Engineers, Westinghouse Electric Corporation, Stevenson and Associates, Duke Power Company, General Electric Company and Electric Power Research Institute. In September 1988, Brookhaven National Laboratory (BNL) and its consultants (C.J. Costantino, R.P. Kennedy, J. Stevenson, M. Shinozuka and A.S. Veletsos) were requested to carry out a review of the comments received from the above six organizations. The objective of this review was to assist the NRC staff with the evaluation and resolution of the public comments. This review was initiated during October 1988 and it was completed on January 1989. As a result of this review, a set of modifications to the above mentioned sections of the SRP were recommended by BNL and its consultants. This paper summarizes the recommended modifications. 4 refs

  19. Earthquake response spectra for seismic design of nuclear power plants in the UK

    International Nuclear Information System (INIS)

    Bommer, Julian J.; Papaspiliou, Myrto; Price, Warren

    2011-01-01

    Highlights: → Seismic design of UK nuclear power plants usually based on PML response spectra. → We review derivation of PML spectra in terms of earthquake data used and procedure. → The data include errors and represent a small fraction of what is now available. → Seismic design loads in current practice are derived as mean uniform hazard spectra. → The need to capture epistemic uncertainty makes use of single equation indefensible. - Abstract: Earthquake actions for the seismic design of nuclear power plants in the United Kingdom are generally based on spectral shapes anchored to peak ground acceleration (PGA) values obtained from a single predictive equation. Both the spectra and the PGA prediction equation were derived in the 1980s. The technical bases for these formulations of seismic loading are now very dated if compared with the state-of-the-art in this field. Alternative spectral shapes are explored and the options, and the associated benefits and challenges, for generating uniform hazard response spectra instead of fixed shapes anchored to PGA are discussed.

  20. Overcoming barriers to high performance seismic design using lessons learned from the green building industry

    Science.gov (United States)

    Glezil, Dorothy

    NEHRP's Provisions today currently governing conventional seismic resistant design. These provisions, though they ensure the life-safety of building occupants, extensive damage and economic losses may still occur in the structures. This minimum performance can be enhanced using the Performance-Based Earthquake Engineering methodology and passive control systems like base isolation and energy dissipation systems. Even though these technologies and the PBEE methodology are effective reducing economic losses and fatalities during earthquakes, getting them implemented into seismic resistant design has been challenging. One of the many barriers to their implementation has been their upfront costs. The green building community has faced some of the same challenges that the high performance seismic design community currently faces. The goal of this thesis is to draw on the success of the green building industry to provide recommendations that may be used overcome the barriers that high performance seismic design (HPSD) is currently facing.

  1. Geodynamic Constraints on the Sources of Seismic Anisotropy Beneath Madagascar

    Science.gov (United States)

    Rajaonarison, T. A.; Stamps, D. S.; Fishwick, S.

    2017-12-01

    The rheological structure of the lithosphere-asthenosphere system controls the degree in which the mantle drives surface motions. Seismic anisotropy is a proxy to infer information about previous tectonic events imprinted in lithospheric structures and/or asthenospheric flow pattern in regions absent of active volcanism, however, distinguishing between the shallow and deeper sources, respectively, remains ambiguous. Madagascar is an ideal natural laboratory to study the sources of anisotropy and the rheological implications for lithosphere-asthenosphere system because 1) active volcanism is minimal or absent, 2) there are well-exposed tectonic fabrics for comparison, and 3) numerous geological and geophysical observations provides evidence of present-day tectonic activities. Recent studies suggest new seismic anisotropy observations in southern Madagascar are sourced from both fossilized lithospheric structure and asthenospheric flow driven by rigid lithospheric plate motion. In this work we compare geodynamic simulations of the lithosphere-asthenosphere system with seismic anisotropy data set that includes all of Madagascar. We use the numerical code Advanced Solver for Problems in Earth's ConvecTion (ASPECT) to calculate instantaneous deformation in the lithosphere and edge-driven convective flow in the asthenosphere accounting for variations in buoyancy forces and temperature dependent viscosity. The initial temperature conditions are based on interpretations from high resolution regional surface wave tomography. We assume visco-plastic rheology for a uniform crust, dislocation creep for a laterally varying mantle lithospheric structure, and diffusion creep for the asthenosphere. To test for the source of anisotropy we compare our velocity solution azimuths with azimuths of anisotropy at 25 km depth intervals. Calculated asthenospheric flow aligns with measured seismic anisotropy with a 15° WRMS at 175 km depth and possibly down to 250 km suggesting the

  2. Size effects in crystal plasticity

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    Numerical analyses of plasticity size effects have been carried out for different problems using a developed strain gradient crystal plasticiy theory. The theory employs higher order stresses as work conjugates to slip gradients and uses higher order boundary conditions. Problems on localization...... of plastic flow in a single crystal, grain boundary effects in a bicrystal, and grain size effects in a polycrystal are studied. Single crystals containing micro-scale voids have also been analyzed at different loading conditions with focus on the stress and deformation fields around the voids, on void...... growth and interaction between neighboring voids, and on a comparison between the developed strain gradient crystal plasticity theory and a discrete dislocation plasticity theory. Furthermore, voids and rigid inclusions in isotropic materials have been studied using a strain gradient plasticity theory...

  3. Seismic re-evaluation of Mochovce nuclear power plant. Seismic reevaluation of civil structures

    International Nuclear Information System (INIS)

    Podrouzek, P.

    1997-01-01

    In this contribution, an overview of seismic design procedures used for reassessment of seismic safety of civil structures at the Mochovce NPP in Slovak Republic presented. As an introduction, the objectives, history, and current status of seismic design of the NPP have been explained. General philosophy of design methods, seismic classification of buildings, seismic data, calculation methods, assumptions on structural behavior under seismic loading and reliability assessment were described in detail in the subsequent section. Examples of calculation models used for dynamic calculations of seismic response are given in the last section. (author)

  4. Preclosure seismic design methodology for a geologic repository at Yucca Mountain. Revision 1

    International Nuclear Information System (INIS)

    1996-08-01

    This topical report is the second in a series of three reports being developed by the US Department of Energy (DOE) to document the preclosure seismic design of structures, systems, and components (SSCs) that are important to the radiological safety of the potential repository at Yucca Mountain, Nevada. The first topical report, Methodology to Assess Fault Displacement and Vibratory Ground Motion Hazards at Yucca Mountain, YMP/TR-002-NP, was submitted to the US Nuclear Regulatory Commission (NRC) staff for review and comment in 1994 and has been accepted by the staff. The DOE plans to implement this methodology in fiscal year 1997 to develop probabilistic descriptions of the vibratory ground motion hazard and the fault displacement hazard at the Yucca Mountain site. The second topical report (this report) describes the DOE methodology and acceptance criteria for the preclosure seismic design of SSCs important to safety. A third report, scheduled for fiscal year 1998, will document the results of the probabilistic seismic hazard assessment (conducted using the methodology in the first topical report) and the development of the preclosure seismic design inputs. This third report will be submitted to NRC staff for review and comment as a third topical report or as a design study report

  5. SEISMIC DESIGN REQUIREMENTS SELECTION METHODOLOGY FOR THE SLUDGE TREATMENT and M-91 SOLID WASTE PROCESSING FACILITIES PROJECTS

    International Nuclear Information System (INIS)

    RYAN GW

    2008-01-01

    In complying with direction from the U.S. Department of Energy (DOE), Richland Operations Office (RL) (07-KBC-0055, 'Direction Associated with Implementation of DOE-STD-1189 for the Sludge Treatment Project,' and 08-SED-0063, 'RL Action on the Safety Design Strategy (SDS) for Obtaining Additional Solid Waste Processing Capabilities (M-91 Project) and Use of Draft DOE-STD-I 189-YR'), it has been determined that the seismic design requirements currently in the Project Hanford Management Contract (PHMC) will be modified by DOE-STD-1189, Integration of Safety into the Design Process (March 2007 draft), for these two key PHMC projects. Seismic design requirements for other PHMC facilities and projects will remain unchanged. Considering the current early Critical Decision (CD) phases of both the Sludge Treatment Project (STP) and the Solid Waste Processing Facilities (M-91) Project and a strong intent to avoid potentially costly re-work of both engineering and nuclear safety analyses, this document describes how Fluor Hanford, Inc. (FH) will maintain compliance with the PHMC by considering both the current seismic standards referenced by DOE 0 420.1 B, Facility Safety, and draft DOE-STD-1189 (i.e., ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, and ANSI ANS 2.26-2004, Categorization of Nuclear Facility Structures, Systems and Components for Seismic Design, as modified by draft DOE-STD-1189) to choose the criteria that will result in the most conservative seismic design categorization and engineering design. Following the process described in this document will result in a conservative seismic design categorization and design products. This approach is expected to resolve discrepancies between the existing and new requirements and reduce the risk that project designs and analyses will require revision when the draft DOE-STD-1189 is finalized

  6. Diseño e implementación del sistema de gestión de inventarios en la planta Funza de Amcor Rigid Plastics de Colombia

    OpenAIRE

    Figueroa Rodríguez, Usbaldo

    2012-01-01

    Los altos costos de inventarios han llevado a Amcor Rigid Plastics de Colombia a desarrollar e implementar modelos de control y gestión de inventarios con el propósito de obtener mayores niveles de servicio a costos adecuados. Este estudio se realiza con el fin de generar una evaluación completa de esta gestión y proponer de manera justificada y con bases sólidas la utilización de estos modelos, a partir del análisis del comportamiento de la demanda de las referencias que produce y vende la c...

  7. Design integration of favorable geometry, structural support and containment

    International Nuclear Information System (INIS)

    Purcell, J.A.; McGehee, G.A.

    1991-07-01

    In designs for fissile processes at Savannah River site, different approaches have been used to provide engineered margins of safety for criticality with containment and seismic resistance as additional requirements. These requirements are frequently at odds in engineered systems. This paper proposes a plan to take advantage of vessels with favorable geometry to provide seismic resistance and to support a glovebox for containment. Thin slab tanks, small diameter pencil tanks, annular tanks, and other novel designs have been used for criticality safety. The requirement for DBE seismic resistance and rigid control of dimensions leads the designer to consider annular tanks for meeting these requirements. The high strength of annular tanks may logically be used to support secondary containment. Hands-on access to all instruments, piping etc. within containment can be provided through gloveports, thus a specialized glovebox. This paper examines the advantages of using an annular tank design to provide favorable geometry, structural support and containment

  8. Assessment of seismic wave effects on soil-structure interaction

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1977-03-01

    It is normally assumed in the seismic analysis of structures that the free-field motion which is used as input is the same for all points on a given level beneath the foundation mat. This represents a simplification, as not all particles of soil describe the same motion simultaneously. As the foundation mat of the structure is rigid in the horizontal direction, it will tend to average the ground motion. Abandoning the assumption of the uniformity of the input motion may lead to a reduction of the translational motion which a foundation mat will experience, as the displacement components will cancel each other to a certain extent. This is of considerable interest for the design of nuclear power plants which are very stiff, large structures. To investigate these effects, the extremely complex phenomenon of the passage of a seismic wave has to be simplified considerably. It is the purpose of this paper to determine if wave passage effects can be determined from the simplified analyses currently used

  9. Designing in seismic areas in the third millennium: modern technologies

    International Nuclear Information System (INIS)

    Martelli, Alessandro

    2015-01-01

    The World Conference on Seismic Isolation, Energy Dissipation and Active Vibrations Control of Structures, which took place in Sendai (Japan) on September 24-26, 2013. Other papers presented at this conference deal with the use of the traditional approach. More updated information on the application of the AS systems became available at the ASSISi 14. World Conference, held in San Diego (California, USA) on September 7-11, 2015. Most SI systems rely on the use of rubber bearings (RBs), such as the High Damping natural Rubber Bearings (HDRBs), Neoprene Bearings (NBs), Lead Rubber Bearings (LRBs), or (especially in Japan) Low Damping Rubber Bearings (LDRBs) in parallel with dampers; in buildings, some plane surfaces steel-Teflon (PTFE) Sliding Devices (SDs) are frequently added to the RBs to support their light parts without unnecessarily stiffening the SI system (which would make it less effective) and (if they are significantly asymmetric in the horizontal plane) to minimize the torsion effects (the effects of the vertical asymmetries are drastically reduced by the quasi 'rigid body motion' of the seismically isolated superstructure). Another type of isolators, which has been used in Italy after the 2009 Abruzzo earthquake, is the so-called Curved Surface Slider (CSS), which derived from the US Friction Pendulum (FPS) and the subsequent German Seismic Isolation Pendulum (SIP). Finally, rolling isolators (in particular Ball Bearings, BBs, and Sphere Bearings) are also applied: they are very effective and find numerous applications (more than 200 in 2013) to protect buildings in Japan, but not in Italy, because there they have been judged to be too expensive (however, they have already been used, even in Italy, to protect precious masterpieces and other contents of museums, as well as costly equipment, including that of operating-rooms in hospitals). It shall be stressed that, to the knowledge of the author, all structures protected by RBs that were located

  10. Consideration on the relation between dynamic seismic motion and static seismic coefficient for the earthquake proof design of slope around nuclear power plant

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Kitahara, Yoshihiro; Hirata, Kazuta

    1986-01-01

    When the large cutting slopes are constructed closed to around nuclear power plants, it is important to evaluate the stability of the slopes during the strong earthquake. In the evaluation, it may be useful to clarify relationship between the static seismic coefficient and dynamic seismic force corresponded to the basic seismic motion which is specified for designing the nuclear power facilities. To investigate this relation some numerical analyses are conducted in this paper. As the results, it is found that dynamic forces considering the amplified responses of the slopes subjected to the basic seismic motion with a peak acceleration of 500 gals at the toe of the slopes, are approximately equal to static seismic force which generates in the slopes when the seismic coefficients of k = 0.3 is applied. (author)

  11. The 1994 Forum on Appropriate Criteria and Methods for Seismic Design of Nuclear Piping

    International Nuclear Information System (INIS)

    Slagis, G.C.

    1995-01-01

    A record of the 1994 Forum on Appropriate Criteria and Methods for Seismic Design of Nuclear Piping is provided. The focus of the forum was the design-by-rule method for seismic design of piping. Issues such as acceptance criteria, ductility considerations, demonstration of margin, training, verification and costs were discussed. The use of earthquake experience data, including the recent Northridge earthquake, to justify a design-by-rule method was explored. The majority of the participants felt there are not significant advantages to developing a design-by-rule approach for new plant design. One major disadvantage was considered by many to be training. Extensive training will be required to properly implement a design-by-rule approach. Verification of designs was considered by the majority to be equally important for design-by-rule as for design-by-analysis. If a design-by-rule method is going to be effective, the method will have to be based on ductility considerations (UBC approach). A significant issue will be justification of seismic margins with liberal rules. The UBC approach is being questioned by some because of the recent structural cracking problems in the Northridge earthquake

  12. Ambient seismic noise monitoring of a clay landslide: Toward failure prediction

    Science.gov (United States)

    Mainsant, Guénolé; Larose, Eric; Brönnimann, Cornelia; Jongmans, Denis; Michoud, Clément; Jaboyedoff, Michel

    2012-03-01

    Given that clay-rich landslides may become mobilized, leading to rapid mass movements (earthflows and debris flows), they pose critical problems in risk management worldwide. The most widely proposed mechanism leading to such flow-like movements is the increase in water pore pressure in the sliding mass, generating partial or complete liquefaction. This solid-to-liquid transition results in a dramatic reduction of mechanical rigidity in the liquefied zones, which could be detected by monitoring shear wave velocity variations. With this purpose in mind, the ambient seismic noise correlation technique has been applied to measure the variation in the seismic surface wave velocity in the Pont Bourquin landslide (Swiss Alps). This small but active composite earthslide-earthflow was equipped with continuously recording seismic sensors during spring and summer 2010. An earthslide of a few thousand cubic meters was triggered in mid-August 2010, after a rainy period. This article shows that the seismic velocity of the sliding material, measured from daily noise correlograms, decreased continuously and rapidly for several days prior to the catastrophic event. From a spectral analysis of the velocity decrease, it was possible to determine the location of the change at the base of the sliding layer. These results demonstrate that ambient seismic noise can be used to detect rigidity variations before failure and could potentially be used to predict landslides.

  13. A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model

    DEFF Research Database (Denmark)

    Sönmez, Ümit; Tutum, Cem Celal

    2008-01-01

    In this work, a new compliant bistable mechanism design is introduced. The combined use of pseudo-rigid-body model (PRBM) and the Elastica buckling theory is presented for the first time to analyze the new design. This mechanism consists of the large deflecting straight beams, buckling beams...... and the buckling Elastica solution for an original compliant mechanism kinematic analysis. New compliant mechanism designs are presented to highlight where such combined kinematic analysis is required....

  14. Dynamic plastic buckling of cylindrical and spherical shells

    International Nuclear Information System (INIS)

    Jones, N.; Okawa, D.M.

    1975-01-01

    A theoretical analysis is developed to predict the dynamic plastic buckling of a long, impulsively loaded cylindrical shell in order to examine various features of plastic buckling and to assess the importance of several approximations with previous authors have introduced in dynamic plastic buckling studies. The influence of a time-dependent circumferential membrane force, the sharpness of the peaks in the displacement and velocity amplification functions, the restrictions which are implicit when employing the Prandtl-Reuss equations in this class of problems, and the limitations due to elastic unloading are examined in some detail. A summary of all previously published theoretical investigations known to the authors is undertaken for the dynamic plastic behavior of cylindrical shells and rings which are made from rigid-plastic, rigid-visco-plastic, elastic-plastic and elastic-visco-plastic materials and subjected to initial axisymmetric impulsive velocity fields. The theoretical predictions of the dominant motions, critical mode numbers, and threshold impulses are compared and critically reviewed. An experimental investigation was also undertaken into the dynamic plastic buckling of circular rings subjected to uniformly distributed external impulsive velocities. It appears that no experiments have been reported previously on mild steel cylindrical shells with an axial length (L) less than four times the shell radius (R). The experimental values of the average final radial deflections, critical mode numbers and dimensions of the permanent wrinkles in the mild steel and some aliminium 6,061 T6 specimens are compared with all the previously published theoretical predictions and experimental results on cylindrical shells with various axial lengths. (orig./HP) [de

  15. Seismic design of steel moment resisting frames-European versus American practice

    International Nuclear Information System (INIS)

    Naqash, M.T.; Matteis, G.D.; Luca, A.D.

    2012-01-01

    This paper provides an overview on the design philosophy of moment resisting frames (MRF) according to the seismic provisions of Eurocode 8 and American Institute of Steel Construction (AISC). A synopsis of the main recommendations of the two codes is briefly described. Then in order to examine the structural efficiency of the design principles of MRF according to the aforementioned codes, a case study is developed in which spatial and perimeter moment resisting frames of 12, 6 and 3 storeys residential building are considered. In the case of EC8, Ductility Class Medium (DCM) with behaviour factor of 4 and Ductility Class High (DCH) with behaviour factor of 6.5 for 6-storey frames are used, while only DCH is employed in the design of 12 and 3 storey frames. When dealing with AISC/American Society of Civil Engineers (ASCE) code, special moment resisting frame (SMF) with response modification factor of 8 is employed in the design. The outcomes from the design are illustrated in terms of frame performance, section profiles, strength-demand to capacity ratios, drift-demand to capacity ratios and structural weight, thus allowing the understanding of pros and cons of the design criteria and the capacity design rules of the two codes. The main purpose of the current paper is to compare the seismic design rules of the two codes with a parametric analysis developed by a case study in order to let the technician knows about the importance and influence of some important parameters which are given in the capacity design rules of the two codes. This study will be a benchmark for further analysis on the two codes for seismic design of steel structures. (author)

  16. Stem cell plasticity.

    Science.gov (United States)

    Lakshmipathy, Uma; Verfaillie, Catherine

    2005-01-01

    The central dogma in stem cell biology has been that cells isolated from a particular tissue can renew and differentiate into lineages of the tissue it resides in. Several studies have challenged this idea by demonstrating that tissue specific cell have considerable plasticity and can cross-lineage restriction boundary and give rise to cell types of other lineages. However, the lack of a clear definition for plasticity has led to confusion with several reports failing to demonstrate that a single cell can indeed differentiate into multiple lineages at significant levels. Further, differences between results obtained in different labs has cast doubt on some results and several studies still await independent confirmation. In this review, we critically evaluate studies that report stem cell plasticity using three rigid criteria to define stem cell plasticity; differentiation of a single cell into multiple cell lineages, functionality of differentiated cells in vitro and in vivo, robust and persistent engraft of transplanted cells.

  17. Impact of Reservoir Fluid Saturation on Seismic Parameters: Endrod Gas Field, Hungary

    Science.gov (United States)

    El Sayed, Abdel Moktader A.; El Sayed, Nahla A.

    2017-12-01

    Outlining the reservoir fluid types and saturation is the main object of the present research work. 37 core samples were collected from three different gas bearing zones in the Endrod gas field in Hungary. These samples are belonging to the Miocene and the Upper - Lower Pliocene. These samples were prepared and laboratory measurements were conducted. Compression and shear wave velocity were measured using the Sonic Viewer-170-OYO. The sonic velocities were measured at the frequencies of 63 and 33 kHz for compressional and shear wave respectively. All samples were subjected to complete petrophysical investigations. Sonic velocities and mechanical parameters such as young’s modulus, rigidity, and bulk modulus were measured when samples were saturated by 100%-75%-0% brine water. Several plots have been performed to show the relationship between seismic parameters and saturation percentages. Robust relationships were obtained, showing the impact of fluid saturation on seismic parameters. Seismic velocity, Poisson’s ratio, bulk modulus and rigidity prove to be applicable during hydrocarbon exploration or production stages. Relationships among the measured seismic parameters in gas/water fully and partially saturated samples are useful to outline the fluid type and saturation percentage especially in gas/water transitional zones.

  18. Circuit design on plastic foils

    CERN Document Server

    Raiteri, Daniele; Roermund, Arthur H M

    2015-01-01

    This book illustrates a variety of circuit designs on plastic foils and provides all the information needed to undertake successful designs in large-area electronics.  The authors demonstrate architectural, circuit, layout, and device solutions and explain the reasons and the creative process behind each. Readers will learn how to keep under control large-area technologies and achieve robust, reliable circuit designs that can face the challenges imposed by low-cost low-temperature high-throughput manufacturing.   • Discusses implications of problems associated with large-area electronics and compares them to standard silicon; • Provides the basis for understanding physics and modeling of disordered material; • Includes guidelines to quickly setup the basic CAD tools enabling efficient and reliable designs; • Illustrates practical solutions to cope with hard/soft faults, variability, mismatch, aging and bias stress at architecture, circuit, layout, and device levels.

  19. SEISMIC DISTRESS AND PROTECTION OF FLEXIBLE MEMBRANE LINERS OF SOLID WASTE LANDFILLS

    DEFF Research Database (Denmark)

    Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos

    2011-01-01

    Seismic distress of solid waste landfills may result from any of the two consequences of a seismic event: (a) the transient ground deformation related to seismic wave propagation, (b) the permanent ground deformation caused by abrupt fault dislocation. Design provisions for solid waste landfills...... prohibit the construction of landfills in the vicinity of an active fault aiming to prevent the latter. Nonetheless, the impact of applied permanent deformation on the system components of landfills and on the waste mass has not been fully demonstrated yet. For this purpose, efficient finite......-element analyses were performed, taking also into account the potential slip displacement development along the interfaces formulated on each side of the flexible membrane liner (FML). It is shown that base fault dislocation causes significant plastic strains at each one of the components of the waste landfill...

  20. Reduction of seismic loads in cable tray hangers

    International Nuclear Information System (INIS)

    Pearce, B.K.; Jackson, J.E.; Dixon, M.W.; Bourne, F.R.

    1984-01-01

    A study has been conducted to partially assess the feasibility of using flexible rather than rigid support systems for carrying electrical and control cables in nuclear power plants. Using analytical and experimental studies, it was found that a flexible hanger design with appropriate stiffness and damping characteristics could be used to isolate trays from hanger vibration and significantly reduce hanger loads during seismic events if the connectors could be adequately tuned to account for system variables. Finite element techniques were used to select a flexible connector for a specified base hanger system. Tests were conducted on one-third-scale models to establish values for some of the parameters and to partially verify the analytical methods. For the hanger systems considered, introduction of the flexible connector allowed support-hanger loads and hanger displacements to be reduced greatly while satisfying tray displacement constraints. It appears that a flexible-connector system can provide better dynamic response than the conventional type system using rigid connectors. This conclusion is valid for all variations in system parameters studied. Although the flexible-connector concept looks very promising based on this study, substantial work, including full-scale testing, must be completed before this concept can be validated for actual plant designs. (orig.)

  1. Inelastic seismic behavior of post-installed anchors for nuclear safety related structures: Generation of experimental database

    Energy Technology Data Exchange (ETDEWEB)

    Mahadik, Vinay, E-mail: vinay.mahadik@iwb.uni-stuttgart.de; Sharma, Akanshu; Hofmann, Jan

    2016-02-15

    Highlights: • Experiments for evaluating seismic behavior of anchors were performed. • Two undercut anchor products in use in nuclear facilities were considered. • Monotonic tension, shear and cycling tension tests at different crack widths. • Crack cycling tests at constant, in-phase and out-of phase tension loads. • Characteristics for the two anchors as a function of crack width were identified. - Abstract: Post installed (PI) anchors are often employed for connections between concrete structure and components or systems in nuclear power plants (NPP) and related facilities. Standardized practices for nuclear related structures demand stringent criteria, which an anchor has to satisfy in order to qualify for use in NPP related structures. In NPP and related facilities, the structure–component interaction in the event of an earthquake depends on the inelastic behavior of the concrete structure, the component system and also the anchorage system that connects them. For analysis, anchorages are usually assumed to be rigid. Under seismic actions, however, it is known that anchors may undergo significant plastic displacement and strength degradation. Analysis of structure–component interaction under seismic loads calls for numerical models simulating inelastic behavior of anchorage systems. A testing program covering different seismic loading scenarios in a reasonably conservative manner is required to establish a basis for generating numerical models of anchorage systems. Currently there is a general lack of modeling techniques to consider the inelastic behavior of anchorages in structure–component interaction under seismic loads. In this work, in view of establishing a basis for development of numerical models simulating the inelastic behavior of anchors, seismic tests on two different undercut anchors qualified for their use in NPP related structures were carried out. The test program was primarily based on the DIBt-KKW-Leitfaden (2010) guidelines

  2. Design study of plastic film heat exchanger

    Science.gov (United States)

    Guyer, E. C.; Brownell, D. L.

    1986-02-01

    This report presents the results of an effort to develop and design a unique thermoplastic film heat exchanger for use in an industrial heat pump evaporator system and other energy recovery applications. The concept for the exchanger is that of individual heat exchange elements formed by two adjoining and freely hanging plastic films. Liquid flows downward in a regulated fashion between the films due to the balance of hydrostatic and frictional forces. The fluid stream on the outside of film may be a free-falling liquid film, a condensing gas, or a noncondensing gas. The flow and structural principles are similar to those embodied in an earlier heat exchange system developed for use in waste water treatment systems (Sanderson). The design allows for high heat transfer rates while working within the thermal and structural limitations of thermoplastic materials. The potential of this new heat exchanger design lies in the relatively low cost of plastic film and the high inherent corrosion and fouling resistance. This report addresses the selection of materials, the potential heat transf er performance, the mechanical design and operation of a unit applied in a low pressure steam recovery system, and the expected selling price in comparison to conventional metallic shell and tube heat exchangers.

  3. Die design and process optimization of plastic gear extrusion

    Science.gov (United States)

    Zhang, Lei; Fu, Zhihong; Yao, Chen; Zang, Gongzheng; Wan, Yue

    2018-01-01

    The flow velocity of the melt in the extruder was simulated by using software Polyflow, and the size of the die channel with the best flow uniformity was obtained. The die profile shape is obtained by reverse design. The length of the shaping section is determined by Ansys transient thermal analysis. According to the simulation results, the design and manufacture of extrusion die of plastic gear and vacuum cooling setting were obtained. The influence of the five process parameters on the precision of the plastic gear were studied by the single factor analysis method, such as the die temperature T, the screw speed R, the die spacing S, the vacuum degree M and the hauling speed V. The optimal combination of process parameters was obtained by using the neural network particle swarm optimization algorithm(T = 197.05 °C, R = 9.04rpm, S = 67mm, M = -0.0194MPa). The tooth profile deviation of the extruded plastic gear can reach 9 level of accuracy.

  4. Design and implementation of a unified certification management system based on seismic business

    Science.gov (United States)

    Tang, Hongliang

    2018-04-01

    Many business software for seismic systems are based on web pages, users can simply open a browser and enter their IP address. However, how to achieve unified management and security management of many IP addresses, this paper introduces the design concept based on seismic business and builds a unified authentication management system using ASP technology.

  5. Seismic slope stability of embankments: a comparative study on EC8 provisions

    DEFF Research Database (Denmark)

    Zania, Varvara; Tsompanakis, Y.; Psarropoulos, P.N.

    2011-01-01

    According to EC8 provisions, seismic stability assessment of natural slopes is currently performed based on simplified methods i.e. the pseudostatic and the Newmark’s sliding block method. The application of these methods requires the beforehand consideration of major assumptions necessary...... for the selection of either the seismic coefficient or the acceleration time history of the rigid block. Although both ULS and SLS are defined according to acceptable level of deformations at the slope, the assigned level of displacements is not clarified. In the current study the seismic slope stability...

  6. Fitting an MSD (mini scleral design) rigid contact lens in advanced keratoconus with INTACS.

    Science.gov (United States)

    Dalton, Kristine; Sorbara, Luigina

    2011-12-01

    Keratoconus is a bilateral degenerative disease characterized by a non-inflammatory, progressive central corneal ectasia (typically asymmetric) and decreased vision. In its early stages it may be managed with spectacles and soft contact lenses but more commonly it is managed with rigid contact lenses. In advanced stages, when contact lenses can no longer be fit, have become intolerable, or corneal damage is severe, a penetrating keratoplasty is commonly performed. Alternative surgical techniques, such as the use of intra-stromal corneal ring segments (INTACS) have been developed to try and improve the fit of rigid contact lenses in keratoconic patients and avoid penetrating keratoplasties. This case report follows through the fitting of rigid contact lenses in an advanced keratoconic cornea after an INTACS procedure and discusses clinical findings, treatment options, and the use of mini-scleral and scleral lens designs as they relate to the challenges encountered in managing such a patient. Mini-scleral and scleral lenses are relatively easy to fit, and can be of benefit to many patients, including advanced keratoconic patients, post-INTAC patients and post-penetrating keratoplasty patients. 2011 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  7. PBMR phase 1 study: Seismic and structural design consideration - An overview of principles

    International Nuclear Information System (INIS)

    Wium, D.J.W.

    1997-01-01

    This paper briefly reviews the principles involved in the planning and design of the proposed facility to cater for seismic and structural loads. The conceptual layout is discussed, as well as the different load characteristics and scenarios. An outline is given of model used to estimate the seismic loads, whereafter the different analytical models are discussed. (author)

  8. Seismic isolation of buildings using composite foundations based on metamaterials

    Science.gov (United States)

    Casablanca, O.; Ventura, G.; Garescı, F.; Azzerboni, B.; Chiaia, B.; Chiappini, M.; Finocchio, G.

    2018-05-01

    Metamaterials can be engineered to interact with waves in entirely new ways, finding application on the nanoscale in various fields such as optics and acoustics. In addition, acoustic metamaterials can be used in large-scale experiments for filtering and manipulating seismic waves (seismic metamaterials). Here, we propose seismic isolation based on a device that combines some properties of seismic metamaterials (e.g., periodic mass-in-mass systems) with that of a standard foundation positioned right below the building for isolation purposes. The concepts on which this solution is based are the local resonance and a dual-stiffness structure that preserves large (small) rigidity for compression (shear) effects. In other words, this paper introduces a different approach to seismic isolation by using certain principles of seismic metamaterials. The experimental demonstrator tested on the laboratory scale exhibits a spectral bandgap that begins at 4.5 Hz. Within the bandgap, it filters more than 50% of the seismic energy via an internal dissipation process. Our results open a path toward the seismic resilience of buildings and a critical infrastructure to shear seismic waves, achieving higher efficiency compared to traditional seismic insulators and passive energy-dissipation systems.

  9. Fast Bayesian optimal experimental design for seismic source inversion

    KAUST Repository

    Long, Quan

    2015-07-01

    We develop a fast method for optimally designing experiments in the context of statistical seismic source inversion. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by elastodynamic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the "true" parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem. © 2015 Elsevier B.V.

  10. Fast Bayesian Optimal Experimental Design for Seismic Source Inversion

    KAUST Repository

    Long, Quan

    2016-01-06

    We develop a fast method for optimally designing experiments [1] in the context of statistical seismic source inversion [2]. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by the elastic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the true parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem.

  11. Fast Bayesian Optimal Experimental Design for Seismic Source Inversion

    KAUST Repository

    Long, Quan; Motamed, Mohammad; Tempone, Raul

    2016-01-01

    We develop a fast method for optimally designing experiments [1] in the context of statistical seismic source inversion [2]. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by the elastic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the true parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem.

  12. Analysis of elastic-plastic dynamic response of reinforced concrete frame structure

    International Nuclear Information System (INIS)

    Li Zhongcheng

    2009-01-01

    Based on a set of data from seismic response test on an R/C frame, a force-based R/C beam fibre model with non-linear material properties and bond-slip effects are presented firstly in this paper, and then the applications to the tested R/C frame are presented to illustrate the model characteristics and to show the accuracy of seismic analysis including consideration of non-linear factors. It can be concluded that the elastic-plastic analysis is a potential step toward the accurate modelling for the dynamic analyses of R/C structures. Especially for the seismic safety re-evaluation of the existing NPPs, the elastic-plastic methodology with consideration of different non-linearities should be involved. (author)

  13. Review on the seismic safety of JRR-3 according to the revised regulatory code on seismic design for nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tetsuya; Araki, Masaaki; Ohba, Toshinobu; Torii, Yoshiya [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Takeuchi, Masaki [Nuclear Safety Commission (Japan)

    2012-03-15

    JRR-3(Japan Research Reactor No.3) with the thermal power of 20MW is a light water moderated and cooled, swimming pool type research reactor. JRR-3 has been operated without major troubles. This paper presents about review on the seismic safety of JRR-3 according to the revised regulatory code on seismic design for nuclear reactors. In addition, some topics concerning damages in JRR-3 due to the Great East Japan Earthquake are presented. (author)

  14. Numerical Investigation of Progressive Collapse Resistance for Seismically Designed RC Buildings

    OpenAIRE

    Marchiş, Adrian G.; Ioani, Adrian M.

    2014-01-01

    In this paper the progressive collapse behavior of a reinforced concrete framed building located in different seismic areas from Romania is investigated. The six-storey structure is designed for low (ag = 0.08 g), moderate (ag = 0.16 g) and high (ag = 0.24 g) seismic zone. Based on the GSA (2003) criteria, a nonlinear static analysis is conducted first in order to estimate the progressive collapse resistance of the models. It was shown that all the structures will collapse when subjected to i...

  15. Seismic Behavior of Fatigue-Retrofitted Steel Frame Piers

    Directory of Open Access Journals (Sweden)

    Kinoshita K.

    2013-01-01

    Full Text Available Fatigue retrofit works have been conducted on severely fatigue damaged beam-to-column connections of existing steel frame bridge piers in Japan. It is clear that retrofit works provides additional stiffness but the significance on the seismic behavior of steel frame piers is not clear. Since fatigue retrofit works have become prevalent, the effect of fatigue retrofit works on the seismic behavior of steel frame piers need to be understood. The objective of this study is therefore to investigate these effects of the retrofit work, especially installation of bolted splices, which is the most common technique. Elasto-plastic finite element earthquake response analyses were carried out. It is shown that the existence of bolted splices may increase seismic demand on the piers when plastic hinge zone is located on the beam. In addition, longer bolted splices using low yield strength steel are proposed to overcome this problem and are shown to give beneficial effects.

  16. Analysis of stress and strain in a rotating disk mounted on a rigid shaft

    Directory of Open Access Journals (Sweden)

    Alexandrova Nelli N.

    2006-01-01

    Full Text Available The plane state of stress in an elastic-perfectly plastic isotropic rotating annular disk mounted on a rigid shaft is studied. The analysis of stresses, strains and displacements within the disk of constant thickness and density is based on the Mises yield criterion and its associated flow rule. It is observed that the plastic deformation is localized in the vicinity of the inner radius of the disk, and the disk of a sufficiently large outer radius never becomes fully plastic. The semi-analytical method of stress-strain analysis developed is illustrated by some numerical examples. .

  17. Requirements on PWR reactor design with respect to seismic effects

    International Nuclear Information System (INIS)

    Novak, J.; Pecinka, L.

    1981-01-01

    From the seismic point of view the individual parts of a nuclear power plant must be built such as to allow the shutdown of the reactor up to the safe shutdown earthquake level, the removal of after-heat and the prevention of uncontrolled release of radioactivity into the environment. To the level of operating basic earthquake the plant must be designed such as to allow the operation of the reactor for a period of 100 hours from the seismic event without exceeding the permissible annual dose to personnel and population. The possibility of a loss-of-coolant accident owing to a seismic event is reduced mainly by the integrated performance of the primary circuit, the high-strength structure, the insulation of the main components from the shift of the foundations and the use of floating structures. The pressure vessel of the WWER-1000 reactor is therefore pAaced in a shaft on a support ring and is locked by another support ring. (Z.M.)

  18. Seismic analysis of reactor exhaust-air Filter Compartment

    International Nuclear Information System (INIS)

    Gong, C.; Funderburk, E.L.; Jerrel, J.W.; Vashi, K.M.

    1991-01-01

    This paper presents the results of a scoping analysis for assessment of seismic adequacy of a Filter Compartments (FC) that is part of an Airborne Activity Confinement System (AACS) in K, L, and P Reactors at the Savannah River Site (SRS). For an expeditious assessment and to increase the possibility of showing the adequacy of the FC, the finite element model incorporated certain conceptual reinforcing modifications suggested by a previous study. The model also set the vertical displacements at zero at the interface between the FC and the rail dolly, upon which the FC rests by gravity. In addition, the rail-dolly was assumed to be rigid and rigidly attached to the rails. The analysis was performed using the dynamic modal superposition response spectra capability of the ABAQUS computer code. Certain modelling approximations and linearized representation of boundary conditions were employed for utilization of the code and the selected analysis capability. The analysis results showed that the FC stresses and deformations were within the yield limit and that the structural integrity of the FC and the operability of the filters can be preserved as required for the defined seismic event consistent with the linearization assumptions, modelling simplifications, and incorporation of the conceptual reinforcing modifications. However, the rail-dolly rigidity, the FC hold-down to the rails must be ensured for this scoping analysis to be valid. 2 refs

  19. Enhancement of seismic resistance of buildings

    Directory of Open Access Journals (Sweden)

    Claudiu-Sorin Dragomir

    2014-03-01

    Full Text Available The objectives of the paper are both seismic instrumentation for damage assessment and enhancing of seismic resistance of buildings. In according with seismic design codes in force the buildings are designed to resist at seismic actions. Due to the time evolution of these design provisions, there are buildings that were designed decades ago, under the less stringent provisions. The conceptual conformation is nowadays provided in all Codes of seismic design. According to the Code of seismic design P100-1:2006 the asymmetric structures do not have an appropriate seismic configuration; they have disadvantageous distribution of volumes, mass and stiffness. Using results of temporary seismic instrumentation the safety condition of the building may be assessed in different phases of work. Based on this method, the strengthening solutions may be identified and the need of seismic joints may be emphasised. All the aforementioned ideas are illustrated through a case study. Therefore it will be analysed the dynamic parameter evolution of an educational building obtained in different periods. Also, structural intervention scenarios to enhance seismic resistance will be presented.

  20. Seismic design of RC buildings theory and practice

    CERN Document Server

    Manohar, Sharad

    2015-01-01

    This book is intended to serve as a textbook for engineering courses on earthquake resistant design. The book covers important attributes for seismic design such as material properties, damping, ductility, stiffness and strength. The subject coverage commences with simple concepts and proceeds right up to nonlinear analysis and push-over method for checking building adequacy. The book also provides an insight into the design of base isolators highlighting their merits and demerits. Apart from the theoretical approach to design of multi-storey buildings, the book highlights the care required in practical design and construction of various building components. It covers modal analysis in depth including the important missing mass method of analysis and tension shift in shear walls and beams. These have important bearing on reinforcement detailing. Detailed design and construction features are covered for earthquake resistant design of reinforced concrete as well as confined and reinforced masonry structures. Th...

  1. Universal delivery machine - design of the Bruce and Darlington heads

    International Nuclear Information System (INIS)

    Gray, M.G.; Brown, R.

    2003-01-01

    The Universal Delivery Machine (UDM) was designed and supplied to reduce the time required to perform channel inspection services. The Bruce UDM was the first to be completed followed by Pickering and Darlington. The Bruce and Darlington machines are nearly identical. Design concepts applied include a rotating, multiple tool station magazine, a rigid chain driving telescoping rams, a common drive package, and an external support frame to meet seismic qualification requirements. (author)

  2. Seismic behaviour of un-cracked and cracked thin pipes

    International Nuclear Information System (INIS)

    Blay, N.; Brunet, G.; Gantenbein, F.; Aguilar, J.

    1995-01-01

    In order to evaluate the seismic behaviour of un-cracked and cracked thin pipes, subjected to high acceleration levels, seismic tests and calculations have been performed on straight thin pipes made of 316L stainless steel, loaded in pure bending by a permanent static and dynamic loading. The seismic tests were carried out on the AZALEE shaking table of the CEA laboratory TAMARIS. The influence of the elasto-plastic model with isotropic or kinematic hardening are studied. 5 refs., 7 figs., 2 tabs

  3. The 1995 forum on appropriate criteria and methods for seismic design of nuclear piping

    International Nuclear Information System (INIS)

    Slagis, G.C.

    1996-01-01

    A record of the 1995 Forum on Appropriate Criteria and Methods for Seismic Design of Nuclear Piping is provided. The focus of the forum was the earthquake experience data base and whether the data base demonstrates that seismic inertia loads will not cause failure in ductile piping systems. This was a follow-up to the 1994 Forum when the use of earthquake experience data, including the recent Northridge earthquake, to justify a design-by-rule method was explored. Two possible topics for the next forum were identified--inspection after an earthquake and design for safe-shutdown earthquake only

  4. Researching design solutions for frames of buildings in case of increased seismic intensity in specific zones

    OpenAIRE

    Panasyuk Leonid; Kravchenko Galina; Trufanova Elena

    2017-01-01

    Currently, there is a trend to increase the estimated seismic hazard for construction sites. With this, the buildings erected under the previously valid norms have the lesser hazard resistance. The present article inquiries into an issue of how the design solutions affect the safety of the building change under the increased seismic intensity. This article represents the calculation of a building without regard to seismic intensity and the same was made for a rate-7 seismic intensity district...

  5. 3-D pneumatic seismic isolation of nuclear power plants

    International Nuclear Information System (INIS)

    Beliaev, V.S.; Vinogradov, V.V.; Kostarev, V.V.; Kuzmitchev, V.P.; Privalov, S.A.; Siro, V.A.; Krylova, I.N.; Dolgaya, A.A.; Uzdin, A.M.; Vasiliev, A.V.

    2002-01-01

    This paper describes the work carried at the Russian Federation Research Center of Fundamental Engineering (RCFE), in development of innovative pneumatic multicomponent low-frequency seismic isolation bearings for advanced nuclear power plants.This device incorporates both supporting spherical elements, which provide displacements in the horizontal direction, and pneumatic dampers with rubber diaphragms for displacement in the vertical direction. To decrease the relative displacements of the isolated object the system uses viscoelastic dampers. Damping devices had been specially elaborated for the reactor building seismic isolation system as a result of substantial advances in the design and operation of the HD-type hydrodampers, created at the CKTI VIBROSEISM. The procedures developed have been used for comparison of the test and computer data on model isolated steel structure (MISS) and isolated rigid mass (IRM) isolators produced by ENEA and KAERI. Most recent work has concentrated on the development of mathematical models of isolators and isolated nuclear structures. Force-deformation characteristics of the HDRB model had been calculated on the basis of a special method of non-linear elastic theory using the continual transformations method. (author)

  6. Investigation on method of elasto-plastic analysis for piping system (benchmark analysis)

    International Nuclear Information System (INIS)

    Kabaya, Takuro; Kojima, Nobuyuki; Arai, Masashi

    2015-01-01

    This paper provides method of an elasto-plastic analysis for practical seismic design of nuclear piping system. JSME started up the task to establish method of an elasto-plastic analysis for nuclear piping system. The benchmark analyses have been performed in the task to investigate on method of an elasto-plastic analysis. And our company has participated in the benchmark analyses. As a result, we have settled on the method which simulates the result of piping exciting test accurately. Therefore the recommended method of an elasto-plastic analysis is shown as follows; 1) An elasto-plastic analysis is composed of dynamic analysis of piping system modeled by using beam elements and static analysis of deformed elbow modeled by using shell elements. 2) Bi-linear is applied as an elasto-plastic property. Yield point is standardized yield point multiplied by 1.2 times, and second gradient is 1/100 young's modulus. Kinematic hardening is used as a hardening rule. 3) The fatigue life is evaluated on strain ranges obtained by elasto-plastic analysis, by using the rain flow method and the fatigue curve of previous studies. (author)

  7. Seismic response and damping tests of small bore LMFBR piping and supports

    International Nuclear Information System (INIS)

    Barta, D.A.; Anderson, M.J.; Severud, L.K.; Lindquist, M.R.

    1984-01-01

    Seismic testing and analysis of a prototypical Liquid Metal Fast Breeder Reactor (LMFBR) small bore piping system is described. Measured responses to simulated seismic excitations are compared with analytical predictions based on NRC Regulatory Guide 1.61 and measured system damping values. The test specimen was representative of a typical LMFBR insulated small bore piping system, and it was supported from a rigid test frame by prototypic dead weight supports, mechanical snubbers and pipe clamps

  8. Analytical Study on the Beyond Design Seismic Capacity of Reinforced Concrete Shear Walls

    Energy Technology Data Exchange (ETDEWEB)

    Nugroho, Tino Sawaldi Adi [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chi, Ho-Seok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    The OECD-NEA has organized an international benchmarking program to better understand this critical issue. The benchmark program provides test specimen geometry, test setup, material properties, loading conditions, recorded measures, and observations of the test specimens. The main objective of this research is to assess the beyond design seismic capacity of the reinforced concrete shear walls tested at the European Laboratory for Structural Assessment between 1997 and 1998 through participation in the OECD-NEA benchmark program. In this study, assessing the beyond design seismic capacity of reinforced concrete shear walls is performed analytically by comparing numerical results with experimental results. The seismic shear capacity of the reinforced concrete shear wall was predicted reasonably well using ABAQUS program. However, the proper calibration of the concrete material model was necessary for better prediction of the behavior of the reinforced concrete shear walls since the response was influenced significantly by the material constitutive model.

  9. Exploratory Shaft Seismic Design Basis Working Group report

    International Nuclear Information System (INIS)

    Subramanian, C.V.; King, J.L.; Perkins, D.M.; Mudd, R.W.; Richardson, A.M.; Calovini, J.C.; Van Eeckhout, E.; Emerson, D.O.

    1990-08-01

    This report was prepared for the Yucca Mountain Project (YMP), which is managed by the US Department of Energy. The participants in the YMP are investigating the suitability of a site at Yucca Mountain, Nevada, for construction of a repository for high-level radioactive waste. An exploratory shaft facility (ESF) will be constructed to permit site characterization. The major components of the ESF are two shafts that will be used to provide access to the underground test areas for men, utilities, and ventilation. If a repository is constructed at the site, the exploratory shafts will be converted for use as intake ventilation shafts. In the context of both underground nuclear explosions (conducted at the nearby Nevada Test Site) and earthquakes, the report contains discussions of faulting potential at the site, control motions at depth, material properties of the different rock layers relevant to seismic design, the strain tensor for each of the waveforms along the shaft liners, and the method for combining the different strain components along the shaft liners. The report also describes analytic methods, assumptions used to ensure conservatism, and uncertainties in the data. The analyses show that none of the shafts' structures, systems, or components are important to public radiological safety; therefore, the shafts need only be designed to ensure worker safety, and the report recommends seismic design parameters appropriate for this purpose. 31 refs., 5 figs., 6 tabs

  10. Seismic design technology for Breeder Reactor structures. Volume 3: special topics in reactor structures

    International Nuclear Information System (INIS)

    Reddy, D.P.

    1983-04-01

    This volume is divided into six chapters: analysis techniques, equivalent damping values, probabilistic design factors, design verifications, equivalent response cycles for fatigue analysis, and seismic isolation

  11. Consideration on the applicability of the design seismic coefficient of a large cutting slope under the strong earthquake

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Sawada, Yoshihiro; Satou, Kiyotaka

    1989-01-01

    In this study, the characteristic of equivalent seismic coefficient and the applicability of the design seismic coefficient of a large cutting rock slope around Nuclear Power Plant were examined by analytical parameter survey. As the results, the equivalent seismic coefficient by dynamic analysis become great with increase of transverse elastic wave velocity and the case of long period motion. That is, as the wave length of rock mass become longer, the equivalent seismic coefficient become great parabolically. Moreover, there is a inverse proportion relation between the ratio (dynamic safety factor/static safety factor) and wave length. In addition, the graph to forecast the dynamic sliding safety factor under the input seismic motion of the max. Acceleration 500 gal from the result of static simple method was proposed and the applicable range of design seismic coefficient of rock slope was indicated. (author)

  12. Performance-based seismic design of steel frames utilizing colliding bodies algorithm.

    Science.gov (United States)

    Veladi, H

    2014-01-01

    A pushover analysis method based on semirigid connection concept is developed and the colliding bodies optimization algorithm is employed to find optimum seismic design of frame structures. Two numerical examples from the literature are studied. The results of the new algorithm are compared to the conventional design methods to show the power or weakness of the algorithm.

  13. Design of fuelling machine bridge and carriage to meet seismic qualification requirements

    International Nuclear Information System (INIS)

    Ghare, A.B.; Chhatre, A.G.; Vyas, A.K.; Bhambra, H.S.

    1996-01-01

    During each refuelling operation, the boundary of Primary heat transport system is extended up to Fuelling Machines. A breach in the pressure boundary of Fuelling Machine in this condition would cause a loss of coolant accident. Fuelling Machines are also used for transit storage of spent fuel bundles till discharged to fuel transfer system. Therefore, a fuelling machine, including its support structures, is required to be seismically qualified for both on-reactor ( coupled ) mode and off-reactor (uncoupled) mode. The fuelling machine carriage used in the first generation of Indian PHWRs is a mobile equipment on wheels moving over fixed rails. As this configuration was found unsuitable for withstanding strong seismic disturbances, a bridge type design with fixed columns was evolved for the next generation of reactors. Initially, the seismic analysis of the fuelling machine bridge and carriage was done using static structural analysis and values of natural frequencies for various structures were computed. The structures were suitably modified based on the results of this analysis. Subsequently, a detailed dynamic seismic analysis using finite element model has been completed for both coupled and uncoupled conditions. The qualification of the structure has been carried out as per ASME section 111 Division 1, sub section NF. Details of the significant design features, static and dynamic analysis, results and conclusions are given in the presentation. (author). 4 refs., 4 tabs., 7 figs

  14. Design of fuelling machine bridge and carriage to meet seismic qualification requirements

    Energy Technology Data Exchange (ETDEWEB)

    Ghare, A B; Chhatre, A G; Vyas, A K; Bhambra, H S [Nuclear Power Corporation of India Ltd., Mumbai (India)

    1997-12-31

    During each refuelling operation, the boundary of Primary heat transport system is extended up to Fuelling Machines. A breach in the pressure boundary of Fuelling Machine in this condition would cause a loss of coolant accident. Fuelling Machines are also used for transit storage of spent fuel bundles till discharged to fuel transfer system. Therefore, a fuelling machine, including its support structures, is required to be seismically qualified for both on-reactor ( coupled ) mode and off-reactor (uncoupled) mode. The fuelling machine carriage used in the first generation of Indian PHWRs is a mobile equipment on wheels moving over fixed rails. As this configuration was found unsuitable for withstanding strong seismic disturbances, a bridge type design with fixed columns was evolved for the next generation of reactors. Initially, the seismic analysis of the fuelling machine bridge and carriage was done using static structural analysis and values of natural frequencies for various structures were computed. The structures were suitably modified based on the results of this analysis. Subsequently, a detailed dynamic seismic analysis using finite element model has been completed for both coupled and uncoupled conditions. The qualification of the structure has been carried out as per ASME section 111 Division 1, sub section NF. Details of the significant design features, static and dynamic analysis, results and conclusions are given in the presentation. (author). 4 refs., 4 tabs., 7 figs.

  15. Indentation of elastically soft and plastically compressible solids

    DEFF Research Database (Denmark)

    Needleman, A.; Tvergaard, Viggo; Van der Giessen, E.

    2015-01-01

    rapidly for small deviations from plastic incompressibility and then decreases rather slowly for values of the plastic Poisson's ratio less than 0.25. For both soft elasticity and plastic compressibility, the main reason for the lower values of indentation hardness is related to the reduction......The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking...... rigid sharp indenter into a cylinder modeling indentation of a half space. The material is characterized by a finite strain elastic-viscoplastic constitutive relation that allows for plastic as well as elastic compressibility. Both soft elasticity and plastic compressibility significantly reduce...

  16. Seismic loads on tunnels and buried pipelines

    International Nuclear Information System (INIS)

    Ionita, M.V.; Volpe, F.; Castellani, A.

    1983-01-01

    In soil dynamics analysis under earthquake excitation it is an accepted procedure to assume that: a) the free field seismic waves propagate vertically as plane waves; b) the soil local or 'intrinsic' dissipation is represented by a viscous damping, the constant ranging from 0.05 to 0.1 relative to the critical one; c) a horizontal rigid bedrock is present at a depth of the order of some embedment lengths. The paper shows that the above assumptions are not always at the safe side when a long span embedded structures is concerned. In particular, body waves - P or S - propagating both vertically and horizontally may provide larger loads than a vertically propagating wave does. Besides, for the same free field surface motion, higher damping values of soil will result in higher earth pressures. On the other hand, the hypothesis of the presence of a rigid bedrock may overestimate the seismic effects. Therefore a soil dynamic model was developed allowing to remove the assumptions (a), (b) and (c) above. It works in time domain, and plane geometry. A lumped parameter model was also developed to the same purpose. Typical results are shown. (orig./HP)

  17. Design Features of Hardening Turners with Outstripping Plastic Deformation

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2014-01-01

    Full Text Available An efficiency of the cutting method with outstripping plastic deformation (OPD in lathe works is defined in many respects by design features of the add-on devices for mechanical hardening of a cut-off layer material in the course of cutting. Applied on lathes, deforming OPD devices can have differing dimensions, placement on the lathe, drive type (manual, electric, hydraulic, pneumatic, pneumohydraulic, electromagnetic, and autonomy degree towards the metalcutting equipment and industrial equipment.At the same time there are a number of inherent design features of work-hardening devices the modernized lathes with OPD use for machining. Now the OPD standard devices implement two principle construction options: loading device is placed on the machine or on the OPD slide support separate of the tool, or it is structurally aligned with the cutting tool. In the latter case the OPD device for turning is called a tool mandrel, which is mounted in a tool post of the machine or, at large dimensions, such a mandrel is mounted on the machine instead of the tool mandrel.When designing the OPD devices, is important to take into consideration production requirements and recommendations for the technological equipment, developed in the course of creation, working off and introduction of such installations for mechanical hardening of material. In compliance with it, OPD devices, their placement on the machine, and working displacements shouldn't limit technological capabilities of the applied metal-cutting equipment. OPD stresses have to be smoothly regulated, with maximum loads being limited to admissible values for the machine model to be modernized. It is necessary to ensure synchronized longitudinal and cross displacements of the cutting tool and OPD hardener with respect to the axis of billet rotation to enable regulation and readjustment of the hardener and tool placement. It ought to foresee the increased mobile components rigidity and manufacturing

  18. Seismic damping factors of small-bore piping as influenced by insulation and support elements

    International Nuclear Information System (INIS)

    Severud, L.K.; Anderson, M.J.; Barta, D.A.

    1983-01-01

    Seismic damping tests of a prototypical Liquid Metal Fast Breeder Reactor (LMFBR) small-bore piping system is described, and measured transient responses to pulse excitations are reported. The test specimen was representative of a typical LMFBR insulated small-bore piping system, and it was supported from a rigid test fame by prototypic dead-weight supports, mechanical snubbers, and pipe clamps. Various support configurations were tested to assess the reponse sensitivity to insulation and use of mechanical snubbers. Factors much higher than the magnitudes currently allowed in design, by the USNRC Regulatory Guide 1.61, were found. This verified the design values but also pointed out the possibility of undue conservatism and costly overdesign resulting from use of the present design values

  19. Seismic design of a uranium conversion plant building

    International Nuclear Information System (INIS)

    Peixoto, O.J.M.; Botelho, C.L.A.; Braganca, A. Jr.; C. Santos, S.H. de.

    1992-01-01

    The design of facilities with small radioactive inventory has been traditionally performed following the usual criteria for industrial buildings. In the last few years, more stringent criteria have been adopted in new nuclear facilities in order to achieve higher standards for environmental protection. In uranium conversion plants, the UF 6 (uranium hexafluoride) production step is the part of the process with the highest potential for radioactivity release to the environment because of the operations performed in the UF 6 desublimers and cylinder filling areas as well as UF 6 distillation facilities, when they are also required in the process. This paper presents the design guidelines and some details of the seismic resistance design of a UF 6 production building to be constructed in Brazil

  20. Original seismic design data and application of SMA and GIP methodologies. V. 1

    International Nuclear Information System (INIS)

    Masopust, R.

    1995-01-01

    The major focus of the IAEA sponsored Benchmark study for seismic analysis of WWER type NPPs is to develop the procedures which should be recommended to assess and enhance the seismic capacity of existing NPPs. The main issues are; identification of the most critical systems, structures and components necessary for safe shutdown; evaluation of as built conditions by collecting the data as originally used codes and standards, design drawings and construction specifications; realistic assessment of seismic response of plant building structures, distribution systems and passive equipment; functional qualification of active mechanical and electrical components through the use seismic experience or test-based data. The main aim of this report is to present the contribution to the task 'Safe shutdown system identification and classification'; to report on the task 'Standards, Criteria - Comparative study'; to present some special considerations coherent to these tasks

  1. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    Energy Technology Data Exchange (ETDEWEB)

    E.N. Lindner

    2004-12-03

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  2. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    International Nuclear Information System (INIS)

    E.N. Lindner

    2004-01-01

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  3. Performance-based plastic design of earthquake resistant reinforced concrete moment frames

    Science.gov (United States)

    Liao, Wen-Cheng

    Performance-Based Plastic Design (PBPD) method has been recently developed to achieve enhanced performance of earthquake resistant structures. The design concept uses pre-selected target drift and yield mechanism as performance criteria. The design base shear for selected hazard level is determined by equating the work needed to push the structure monotonically up to the target drift to the corresponding energy demand of an equivalent SDOF oscillator. This study presents development of the PBPD approach as applied to reinforced concrete special moment frame (RC SMF) structures. RC structures present special challenge because of their complex and degrading ("pinched") hysteretic behavior. In order to account for the degrading hysteretic behavior the 1-EMA 440 C2 factor approach was used in the process of determining the design base shear. Four baseline RC SMF (4, 8, 12 and 20-story) as used in the FEMA P695 were selected for this study. Those frames were redesigned by the PBPD approach. The baseline frames and the PBPD frames were subjected to extensive inelastic pushover and time-history analyses. The PBPD frames showed much improved response meeting all desired performance objectives, including the intended yield mechanisms and the target drifts. On the contrary, the baseline frames experienced large story drifts due to flexural yielding of the columns. The work-energy equation to determine design base shear can also be used to estimate seismic demands, called the energy spectrum method. In this approach the skeleton force-displacement (capacity) curve of the structure is converted into energy-displacement plot (Ec) which is superimposed over the corresponding energy demand plot ( Ed) for the specified hazard level to determine the expected peak displacement demands. In summary, this study shows that the PBPD approach can be successfully applied to RC moment frame structures as well, and that the responses of the example moment frames were much improved over those

  4. Improved Simplified Methods for Effective Seismic Analysis and Design of Isolated and Damped Bridges in Western and Eastern North America

    Science.gov (United States)

    Koval, Viacheslav

    The seismic design provisions of the CSA-S6 Canadian Highway Bridge Design Code and the AASHTO LRFD Seismic Bridge Design Specifications have been developed primarily based on historical earthquake events that have occurred along the west coast of North America. For the design of seismic isolation systems, these codes include simplified analysis and design methods. The appropriateness and range of application of these methods are investigated through extensive parametric nonlinear time history analyses in this thesis. It was found that there is a need to adjust existing design guidelines to better capture the expected nonlinear response of isolated bridges. For isolated bridges located in eastern North America, new damping coefficients are proposed. The applicability limits of the code-based simplified methods have been redefined to ensure that the modified method will lead to conservative results and that a wider range of seismically isolated bridges can be covered by this method. The possibility of further improving current simplified code methods was also examined. By transforming the quantity of allocated energy into a displacement contribution, an idealized analytical solution is proposed as a new simplified design method. This method realistically reflects the effects of ground-motion and system design parameters, including the effects of a drifted oscillation center. The proposed method is therefore more appropriate than current existing simplified methods and can be applicable to isolation systems exhibiting a wider range of properties. A multi-level-hazard performance matrix has been adopted by different seismic provisions worldwide and will be incorporated into the new edition of the Canadian CSA-S6-14 Bridge Design code. However, the combined effect and optimal use of isolation and supplemental damping devices in bridges have not been fully exploited yet to achieve enhanced performance under different levels of seismic hazard. A novel Dual-Level Seismic

  5. Seismic stops vs. snubbers, a reliable alternative

    International Nuclear Information System (INIS)

    Cloud, R.L.; Anderson, P.H.; Leung, J.S.M.

    1988-01-01

    The Seismic Stops methodology has been developed to provide a reliable alternative for providing seismic support to nuclear power plant piping. The concept is based on using rigid passive supports with large clearances. These gaps permit unrestrained thermal expansion while limiting excessive seismic displacements. This type of restraint has performed successfully in fossil fueled power plants. A simplified production analysis tool has been developed which evaluates the nonlinear piping response including the effect of the gapped supports. The methodology utilizes the response spectrum approach and has been incorporated into a piping analysis computer program RLCA-GAP. Full scale shake table tests of piping specimens were performed to provide test correlation with the developed methodology. Analyses using RLCA-GAP were in good agreement with test results. A sample piping system was evaluated using the Seismic Stops methodology to replace the existing snubbers with passive gapped supports. To provide further correlation data, the sample system was also evaluated using nonlinear time history analysis. The correlation comparisons showed RLCA-GAP to be a viable methodology and a reliable alternative for snubber optimization and elimination. (orig.)

  6. Seismic isolation systems designed with distinct multiple frequencies

    International Nuclear Information System (INIS)

    Wu, Ting-shu; Seidensticker, R.W.

    1991-01-01

    Two systems for seismic base isolation are presented. The main feature of these system is that, instead of only one isolation frequency as in conventional isolation systems, they are designed to have two distinct isolation frequencies. When the responses during an earthquake exceed the design value(s), the system will automatically and passively shift to the secondly isolation frequency. Responses of these two systems to different ground motions including a harmonic motion with frequency same as the primary isolation frequency, show that no excessive amplification will occur. Adoption of these new systems certainly will greatly enhance the safety and reliability of an isolated superstructure against future strong earthquakes. 3 refs

  7. Recombination rate plasticity: revealing mechanisms by design

    Science.gov (United States)

    Sefick, Stephen; Rushton, Chase

    2017-01-01

    For over a century, scientists have known that meiotic recombination rates can vary considerably among individuals, and that environmental conditions can modify recombination rates relative to the background. A variety of external and intrinsic factors such as temperature, age, sex and starvation can elicit ‘plastic’ responses in recombination rate. The influence of recombination rate plasticity on genetic diversity of the next generation has interesting and important implications for how populations evolve. Further, many questions remain regarding the mechanisms and molecular processes that contribute to recombination rate plasticity. Here, we review 100 years of experimental work on recombination rate plasticity conducted in Drosophila melanogaster. We categorize this work into four major classes of experimental designs, which we describe via classic studies in D. melanogaster. Based on these studies, we highlight molecular mechanisms that are supported by experimental results and relate these findings to studies in other systems. We synthesize lessons learned from this model system into experimental guidelines for using recent advances in genotyping technologies, to study recombination rate plasticity in non-model organisms. Specifically, we recommend (1) using fine-scale genome-wide markers, (2) collecting time-course data, (3) including crossover distribution measurements, and (4) using mixed effects models to analyse results. To illustrate this approach, we present an application adhering to these guidelines from empirical work we conducted in Drosophila pseudoobscura. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109222

  8. Study on seismic design margin based upon inelastic shaking test of the piping and support system

    International Nuclear Information System (INIS)

    Ishiguro, Takami; Eto, Kazutoshi; Ikeda, Kazutoyo; Yoshii, Toshiaki; Kondo, Masami; Tai, Koichi

    2009-01-01

    In Japan, according to the revised Regulatory Guide for Aseismic Design of Nuclear Power Reactor Facilities, September 2006, criteria of design basis earthquakes of Nuclear Power Reactor Facilities become more severe. Then, evaluating seismic design margin took on a great importance and it has been profoundly discussed. Since seismic safety is one of the major key issues of nuclear power plant safety, it has been demonstrated that nuclear piping system possesses large safety margins by various durability test reports for piping in ultimate conditions. Though the knowledge of safety margin has been accumulated from these reports, there still remain some technical uncertainties about the phenomenon when both piping and support structures show inelastic behavior in extremely high seismic excitation level. In order to obtain the influences of inelastic behavior of the support structures to the whole piping system response when both piping and support structures show inelastic behavior, we examined seismic proving tests and we conducted simulation analyses for the piping system which focused on the inelastic behavior of the support to the whole piping system response. This paper introduces major results of the seismic shaking tests of the piping and support system and the simulation analyses of these tests. (author)

  9. A performance goal-based seismic design philosophy for waste repository facilities

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1994-02-01

    A performance goal-based seismic design philosophy, compatible with DOE's present natural phenomena hazards mitigation and ''graded approach'' philosophy, has been proposed for high level nuclear waste repository facilities. The rationale, evolution, and the desirable features of this method have been described. Why and how the method should and can be applied to the design of a repository facility are also discussed

  10. Conceptual design for muon detectors using resistive plastic tubes. Final technical report

    International Nuclear Information System (INIS)

    Border, P.; Courant, H.; Heller, K.; Jones, A.; Lin, J.; Maxam, D.; Ruddick, K.

    1998-01-01

    Reliable low cost detectors which can be built in quantity require a simple design consisting of as few separate pieces as possible using inexpensive materials. For example, ordinary insulating plastics with good structural strength, such as polyethylene or polystyrene, have about 1/3 the cost of aluminum per unit weight. Since plastic is also about 1/3 the density of aluminum, the material cost for a drift tube would be reduced by an order of magnitude. This substitution of plastic for aluminum alone would save the muon system for the SDC more than $2M. Additional savings of greater magnitude can be expected since an entire drift tube, including a field shaping electrode structure, can be manufactured as a single piece by the technique of co-extrusion. A symmetric design with all walls far from the wire will also eliminate critical tolerances in the relative position of the electrodes with respect to the wire. Furthermore, module assembly and mounting costs will surely be reduced if the muon detectors were light weight and, as far as possible, had the same shape and size. With the 8 cm diameter plastic tube of the design, the electric drift field is nearly uniform as shown. This field is determined by a simple symmetric electrode structure, so that the necessary drift/position relationship can be achieved without precisely controlling the position of the electrode structure with respect to the wire. If the positioning of the electrode structure relative to the wire is not a critical dimension, the structural support for the tube need not be maintained to a high tolerance reducing the cost of the structure. Using a resistive plastic to shape the potential gives a simple electrode structure that will require a minimum number of electronic connections. The basic element of this design is the cylindrical plastic drift tube constructed from co-extruded plastics of different conductivity

  11. Effect of URM infills on seismic vulnerability of Indian code designed RC frame buildings

    Science.gov (United States)

    Haldar, Putul; Singh, Yogendra; Paul, D. K.

    2012-03-01

    Unreinforced Masonry (URM) is the most common partitioning material in framed buildings in India and many other countries. Although it is well-known that under lateral loading the behavior and modes of failure of the frame buildings change significantly due to infill-frame interaction, the general design practice is to treat infills as nonstructural elements and their stiffness, strength and interaction with the frame is often ignored, primarily because of difficulties in simulation and lack of modeling guidelines in design codes. The Indian Standard, like many other national codes, does not provide explicit insight into the anticipated performance and associated vulnerability of infilled frames. This paper presents an analytical study on the seismic performance and fragility analysis of Indian code-designed RC frame buildings with and without URM infills. Infills are modeled as diagonal struts as per ASCE 41 guidelines and various modes of failure are considered. HAZUS methodology along with nonlinear static analysis is used to compare the seismic vulnerability of bare and infilled frames. The comparative study suggests that URM infills result in a significant increase in the seismic vulnerability of RC frames and their effect needs to be properly incorporated in design codes.

  12. Development of system design and seismic performance evaluation for reactor pool working platform of a research reactor

    International Nuclear Information System (INIS)

    Kwag, Shinyoung; Lee, Jong-Min; Oh, Jinho; Ryu, Jeong-Soo

    2014-01-01

    Highlights: • Design of reactor pool working platform (RPWP) is newly proposed for an open-tank-in-pool type research reactor. • Main concept of RPWP is to minimize the pool top radiation level. • Framework for seismic performance evaluation of nuclear SSCs in a deterministic and a probabilistic manner is proposed. • Structural integrity, serviceability, and seismic margin of the RPWP are evaluated during and after seismic events. -- Abstract: The reactor pool working platform (RPWP) has been newly designed for an open-tank-in-pool type research reactor, and its seismic response, structural integrity, serviceability, and seismic margin have been evaluated during and after seismic events in this paper. The main important concept of the RPWP is to minimize the pool top radiation level by physically covering the reactor pool of the open-tank-in-pool type research reactor and suppressing the rise of flow induced by the primary cooling system. It is also to provide easy handling of the irradiated objects under the pool water by providing guide tubes and refueling cover to make the radioisotopes irradiated and protect the reactor structure assembly. For this concept, the new three dimensional design model of the RPWP is established for manufacturing, installation and operation, and the analytical model is developed to analyze the seismic performance. Since it is submerged under and influenced by water, the hydrodynamic effect is taken into account by using the hydrodynamic added mass method. To investigate the dynamic characteristics of the RPWP, a modal analysis of the developed analytical model is performed. To evaluate the structural integrity and serviceability of the RPWP, the response spectrum analysis and response time history analysis have been performed under the static load and the seismic load of a safe shutdown earthquake (SSE). Their stresses are analyzed for the structural integrity. The possibility of an impact between the RPWP and the most

  13. Towards safe and economic seismic design of cooling towers of extreme height

    International Nuclear Information System (INIS)

    Kraetzig, W.B.; Meskouris, K.

    1979-01-01

    Nuclear power plants are being increasingly equipped with natural draught cooling towers of heights greater than 160 m. In many arid zones, where high natural draught cooling towers with dry cooling systems are being projected, wind loads are relativelly small while site seismicity is relatively high. Thus the ability of the tower to withstand earthquake induced forces governs its design. On the other hand, most reinforced concrete cooling towers of extreme height built so far were designed to withstand high wind loads and moderate earthquake loads. The effects of special structural measures for obtaining an economic design, such as the introduction of ring stiffened shells, have been studied mainly for those towers. In view of the previous aspects it is the purpose of this paper to analyze the effects of various structural measures and other parameters on the seismic response of such high cooling towers. (orig.)

  14. NRC systematic evaluation program: seismic review

    International Nuclear Information System (INIS)

    Levin, H.A.

    1980-01-01

    The NRC Systematic Evaluation Program is currently making an assessment of the seismic design safety of 11 older nuclear power plant facilities. The general review philosophy and review criteria relative to seismic input, structural response, and equipment functionability are presented, including the rationale for the development of these guidelines considering the significant evolution of seismic design criteria since these plants were originally licensed. Technical approaches thought more realistic in light of current knowledge are utilized. Initial findings for plants designed to early seismic design procedures suggest that with minor exceptions, these plants possess adequate seismic design margins when evaluated against the intent of current criteria. However, seismic qualification of electrical equipment has been identified as a subject which requires more in-depth evaluation

  15. Redistribution Principle Approach for Evaluation of Seismic Active Earth Pressure Behind Retaining Wall

    Science.gov (United States)

    Maskar, A. D.; Madhekar, S. N.; Phatak, D. R.

    2017-11-01

    The knowledge of seismic active earth pressure behind the rigid retaining wall is very essential in the design of retaining wall in earthquake prone regions. Commonly used Mononobe-Okabe (MO) method considers pseudo-static approach. Recently there are many pseudo-dynamic methods used to evaluate the seismic earth pressure. However, available pseudo-static and pseudo-dynamic methods do not incorporate the effect of wall movement on the earth pressure distribution. Dubrova (Interaction between soils and structures, Rechnoi Transport, Moscow, 1963) was the first, who considered such effect and till date, it is used for cohesionless soil, without considering the effect of seismicity. In this paper, Dubrova's model based on redistribution principle, considering the seismic effect has been developed. It is further used to compute the distribution of seismic active earth pressure, in a more realistic manner, by considering the effect of wall movement on the earth pressure, as it is displacement based method. The effects of a wide range of parameters like soil friction angle (ϕ), wall friction angle (δ), horizontal and vertical seismic acceleration coefficients (kh and kv); on seismic active earth pressure (Kae) have been studied. Results are presented for comparison of pseudo-static and pseudo-dynamic methods, to highlight the realistic, non-linearity of seismic active earth pressure distribution. The current study results in the variation of Kae with kh in the same manner as that of MO method and Choudhury and Nimbalkar (Geotech Geol Eng 24(5):1103-1113, 2006) study. To increase in ϕ, there is a reduction in static as well as seismic earth pressure. Also, by keeping constant ϕ value, as kh increases from 0 to 0.3, earth pressure increases; whereas as δ increases, active earth pressure decreases. The seismic active earth pressure coefficient (Kae) obtained from the present study is approximately same as that obtained by previous researchers. Though seismic earth

  16. The Influence of Overhead Cranes in the Seismic Performance of Industrial Buildings

    Directory of Open Access Journals (Sweden)

    Andrea Belleri

    2017-11-01

    Full Text Available This paper investigates the influence of overhead cranes with a hanging mass under earthquake type loading, considering the Emilia 2012 seismic sequence. The structural layout of precast concrete industrial buildings typical of the Italian territory is considered. The equations of motion describing the behavior of the hoist load are derived, and a sensitivity analysis is carried out on simplified 3 degrees of freedom systems by solving the governing differential equations. The influence of various parameters on the roof displacement and on the horizontal load transferred by the hanging mass is addressed. The considered parameters are the relative damping of the hanging mass, the length of the hoist ropes, the earthquake record, the hysteretic type of the plastic hinges at the column base, and the behavior factor of the structural system. The results show that for a horizontal component of the considered seismic sequence the structural displacements are amplified in the case of a behavior factor greater than 2.5. A simplified modeling strategy considering small displacements is also investigated. Such model is suitable for response-spectrum analyses. Finally, a three-dimensional case study is analyzed by means of non-linear time history analyses. The results show the influence of the overhead crane on the local performance of some structural and non-structural elements, such as columns and cladding panels, especially when the assumption of rigid roof diaphragm does not apply.

  17. Soft soils reinforced by rigid vertical inclusions

    Directory of Open Access Journals (Sweden)

    Iulia-Victoria NEAGOE

    2013-12-01

    Full Text Available Reinforcement of soft soils by rigid vertical inclusions is an increasingly used technique over the last few years. The system consists of rigid or semi-rigid vertical inclusions and a granular platform for the loads transfer from the structure to the inclusions. This technique aims to reduce the differential settlements both at ground level as below the structure. Reinforcement by rigid inclusions is mainly used for foundation works for large commercial and industrial platforms, storage tanks, wastewater treatment plants, wind farms, bridges, roads, railway embankments. The subject is one of interest as it proves the recently concerns at international level in research and design; however, most studies deal more with the static behavior and less with the dynamic one.

  18. Former Soviet Regulations for seismic design of NPPs and comparison with current international practice

    International Nuclear Information System (INIS)

    Kostarev, V.; Schukin, A.; Berkovski, A.

    1997-01-01

    This paper presents a summary of current earthquake design criteria used in former Soviet Regulations for equipment and piping systems of nuclear power plants in light of those used in United States and Japan. The detailed comparative seismic analysis of PWR (WWER) Primary Coolant Loop System (PCLS) according to Former Soviet (Russian) PNAE Code and ASME BPV Code with some comments regarding to Japan Code JEAG - 4601 was undertaken for better understanding of the differences and coincidences of seismic design criteria and requirements. The selection of these three guides for the study has very simple explanation: according to ASME BVPC, JEAG and PNAE the huge majority of existing NPPs has been designed. (J.P.N.)

  19. Former Soviet Regulations for seismic design of NPPs and comparison with current international practice

    Energy Technology Data Exchange (ETDEWEB)

    Kostarev, V; Schukin, A; Berkovski, A [CKTI-Vibroseism Co. Ltd. (Cape Verde)

    1997-03-01

    This paper presents a summary of current earthquake design criteria used in former Soviet Regulations for equipment and piping systems of nuclear power plants in light of those used in United States and Japan. The detailed comparative seismic analysis of PWR (WWER) Primary Coolant Loop System (PCLS) according to Former Soviet (Russian) PNAE Code and ASME BPV Code with some comments regarding to Japan Code JEAG - 4601 was undertaken for better understanding of the differences and coincidences of seismic design criteria and requirements. The selection of these three guides for the study has very simple explanation: according to ASME BVPC, JEAG and PNAE the huge majority of existing NPPs has been designed. (J.P.N.)

  20. Cost reduction through improved seismic design

    International Nuclear Information System (INIS)

    Severud, L.K.

    1984-01-01

    During the past decade, many significnt seismic technology developments have been accomplished by the United States Department of Energy (USDOE) programs. Both base technology and major projects, such as the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor (CRBR) plant, have contributed to seismic technology development and validation. Improvements have come in the areas of ground motion definitions, soil-structure interaction, and structural analysis methods and criteria for piping, equipment, components, reactor core, and vessels. Examples of some of these lessons learned and technology developments are provided. Then, the highest priority seismic technology needs, achievable through DOE actions and sponsorship are identified and discussed. Satisfaction of these needs are expected to make important contributions toward cost avoidances and reduced capital costs of future liquid metal nuclear plants. 23 references, 12 figures

  1. Evaluating a steel beam’s rigid connection to a concrete filled tubular column when submitted to dynamic load

    Directory of Open Access Journals (Sweden)

    Maritza Uribe Vallejo

    2009-01-01

    Full Text Available Using prequalified connections during the structural design stage becomes increasingly necessary when developing structural en-gineering projects which include steel elements; this is so that the steel elements’ appropriate behavior can be ensured according to the structural system and seismic demand. Unfortunately, the international entities providing this type of information (i.e. FEMA only have a limit series of prequalified connections and such series do not include rigid connections between steel beams and concrete filled tubular (CFT columns having an extended end plate, which has become a very widespread building practice in Colombia. This paper describes the most important aspects of a study at the Universidad Nacional de Colombia concerning the behavior of a steel beam rigidly connected to a CFT-column, using six physical models having different width-thickness ratio (b/t columns. ANSYS v.10 software was used for studying theoretical models (finite elements analysis for comparative analysis of cyclic test theoretical and experimental results for each specimen presented for the qualification phase. The six tested specimens’ hysteretic curves are presented. Several conclusions are drawn concerning finite element validation for this type of connection and the influence of width-thickness ratio (b/t variation and design recommendations for suitable behavior under dynamic loads when this type of connection was used.

  2. A performance goal-based seismic design philosophy for waste repository facilities

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1994-01-01

    A performance goal-based seismic design philosophy, compatible with DOE's present natural phenomena hazards mitigation and open-quotes graded approachclose quotes philosophy, has been proposed for high level nuclear waste repository facilities. The rationale, evolution, and the desirable features of this method have been described. Why and how the method should and can be applied to the design of a repository facility are also discussed

  3. Seismic Performance of Steel Frames with Semirigid Connections

    Directory of Open Access Journals (Sweden)

    Iman Faridmehr

    2017-01-01

    Full Text Available The nonlinear stiffness matrix method was incorporated to investigate the structural performance of steel portal frames with semirigid connections. A portal frame with unstiffened extended end-plate connection was designed to demonstrate the adequacy of the proposed method. Besides, the seismic performance of steel portal frames with semirigid connections was investigated through time history analysis where kinematic hysteresis model was assigned to semirigid connections to account for energy dissipation and unloading stiffness. Based on the results of the study, it was found that generally semirigid connections influenced the force distribution which resulted in the decrease in base shear and lighter frame compared to the rigid one. The results also indicated that there was no direct relationship between maximum displacement at the top and connection stiffness in high-rise frames.

  4. Seismic design and qualification for nuclear power plants

    International Nuclear Information System (INIS)

    1992-01-01

    This safety guide, which supplements the IAEA Code on the Safety of Nuclear Power Plants (NPP); Design (IAEA Safety Series No.50-C-D (Rev.1)), forms part of the Agency's programme, referred to as the NUSS programme, for establishing Codes and Guides relating to land based stationary thermal neutron power plants. The present Guide was originally issued in 1979 as Safety Guide 50-SG-S2 within the series of NUSS guides for the siting of NPP, extending seismic considerations from Safety Guide 50-SG-S1 into the design and verification field. During the revision phase in 1988-1990, this emphasis on design aspects was confirmed and consequently the Guides have been reclassified as a design Guide with the corresponding identification number 50-SG-D15. The general character of the Guide has not been changed an it still relates strongly to 50-SG-S1, which gives guidance on how to determine design basis ground motion for a NPP at a given site

  5. Mid-Lift-to-Drag Ratio Rigid Vehicle Control System Design and Simulation for Human Mars Entry

    Science.gov (United States)

    Johnson, Breanna J.; Cerimele, Christopher J.; Stachowiak, Susan J.; Sostaric, Ronald R.; Matz, Daniel A.; Lu, Ping

    2018-01-01

    The Mid-Lift-to-Drag Ratio Rigid Vehicle (MRV) is a proposed candidate in the NASA Evolvable Mars Campaign's (EMC) Pathfinder Entry, Descent, and Landing (EDL) architecture study. The purpose of the study is to design a mission and vehicle capable of transporting a 20mt payload to the surface of Mars. The MRV is unique in its rigid, asymmetrical lifting-body shape which enables a higher lift-to-drag ratio (L/D) than the typical robotic Mars entry capsule vehicles that carry much less mass. This paper presents the formulation and six-degree-of-freedom (6DOF) performance of the MRV's control system, which uses both aerosurfaces and a propulsive reaction control system (RCS) to affect longitudinal and lateral directional behavior.

  6. Multi Canister Overpack (MCO) Handling Machine Trolley Seismic Uplift Constraint Design Loads

    International Nuclear Information System (INIS)

    SWENSON, C.E.

    2000-01-01

    The MCO Handling Machine (MHM) trolley moves along the top of the MHM bridge girders on east-west oriented rails. To prevent trolley wheel uplift during a seismic event, passive uplift constraints are provided as shown in Figure 1-1. North-south trolley wheel movement is prevented by flanges on the trolley wheels. When the MHM is positioned over a Multi-Canister Overpack (MCO) storage tube, east-west seismic restraints are activated to prevent trolley movement during MCO handling. The active seismic constraints consist of a plunger, which is inserted into slots positioned along the tracks as shown in Figure 1-1. When the MHM trolley is moving between storage tube positions, the active seismic restraints are not engaged. The MHM has been designed and analyzed in accordance with ASME NOG-1-1995. The ALSTHOM seismic analysis (Reference 3) reported seismic uplift restraint loading and EDERER performed corresponding structural calculations. The ALSTHOM and EDERER calculations were performed with the east-west seismic restraints activated and the uplift restraints experiencing only vertical loading. In support of development of the CSB Safety Analysis Report (SAR), an evaluation of the MHM seismic response was requested for the case where the east-west trolley restraints are not engaged. For this case, the associated trolley movements would result in east-west lateral loads on the uplift constraints due to friction, as shown in Figure 1-2. During preliminary evaluations, questions were raised as to whether the EDERER calculations considered the latest ALSTHOM seismic analysis loads (See NCR No. 00-SNFP-0008, Reference 5). Further evaluation led to the conclusion that the EDERER calculations used appropriate vertical loading, but the uplift restraints would need to be re-analyzed and modified to account for lateral loading. The disposition of NCR 00-SNFP-0008 will track the redesign and modification effort. The purpose of this calculation is to establish bounding seismic

  7. Connections rigidity effect on probability of fracture in steel moment frames

    Directory of Open Access Journals (Sweden)

    Gholamreza Abdollahzadeh

    2017-08-01

    Full Text Available Connections in steel moment frames are idealized in full pinned and full rigid conditions. Because with this assumption, in spite of real behavior of connection, real story drifts are less anticipated and maybe frame is designed without performance of bracing. There are several methods for modeling actual behavior of semi rigid connections. In this method a connection with certain rigidity is modeled by a rotational spring with corresponding stiffness. This stiffness is achieved by certain formula. In other words, each percent of rigidity corresponds to one rotational spring stiffness. In this research in order to evaluate the real behavior of connection in analysis and designing process and fracture probability one frame including four stories and one bay with three types of connection has been modeled and designed in ETABS. Each model has an individual rigidity which is equal to 10, 75 and 90 percent. With respect to maximum drift and different PGA in roof, probabilities of low, medium, high and complete fracture were calculated. For this purpose, with applying different PGA to modeled frames, amounts of drift in the roof are achieved. Then these values are compared with given values in American code. Finally, investigation showed that when rigidity in frame connections increases, the probability of frame fracture decreases. In other words, fully rigid assumption of connection in analysis process leads to decreasing in real probability of fracture in frames which is a noticeable risk in building designing processes.

  8. Some considerations for establishing seismic design criteria for nuclear plant piping

    International Nuclear Information System (INIS)

    Chen, W.P.; Chokshi, N.C.

    1997-01-01

    The Energy Technology Engineering Center (ETEC) is providing assistance to the U.S. NRC in developing regulatory positions on the seismic analysis of piping. As part of this effort, ETEC previously performed reviews of the ASME Code, Section III piping seismic design criteria as revised by the 1994 Addenda. These revised criteria were based on evaluations by the ASME Special Task Group on Integrated Piping Criteria (STGIPC) and the Technical Core Group (TCG) of the Advanced Reactor Corporation (ARC) of the earlier joint Electric Power Research Institute (EPRI)/NRC Piping ampersand Fitting Dynamic Reliability (PFDR) program. Previous ETEC evaluations reported at the 23rd WRSM of seismic margins associated with the revised criteria are reviewed. These evaluations had concluded, in part, that although margins for the timed PFDR tests appeared acceptable (>2), margins in detuned tests could be unacceptable (<1). This conclusion was based primarily on margin reduction factors (MRFs) developed by the ASME STGIPC and ARC/TCG from realistic analyses of PFDR test 36. This paper reports more recent results including: (1) an approach developed for establishing appropriate seismic margins based on PRA considerations, (2) independent assessments of frequency effects on margins, (3) the development of margins based on failure mode considerations, and (4) the implications of Code Section III rules for Section XI

  9. Reversible Rigidity Control Using Low Melting Temperature Alloys

    Science.gov (United States)

    Shan, Wanliang; Lu, Tong; Majidi, Carmel

    2013-03-01

    Inspired by nature, materials able to achieve rapid rigidity changes have important applications for human body protection in military and many other areas. This talk presents the fabrication and design of soft-matter technologies that exhibit rapid reversible rigidity control. Fabricated with a masked deposition technique, the soft-matter composite contains liquid-phase and phase-changing metal alloys embedded in a soft and highly stretchable elastomer. The composite material can reversibly change its rigidity by three orders of magnitude and sustain large deformation.

  10. Seismic damping factors of small bore piping as influenced by insulation and support elements

    International Nuclear Information System (INIS)

    Severud, L.K.; Anderson, M.J.; Barta, D.A.

    1985-01-01

    Seismic damping tests of a prototypical Liquid Metal Fast Breeder Reactor (LMFBR) small bore piping system is described, and measured transient responses to pulse excitations are reported. The test specimen was representative of a typical LMFBR insulated small bore piping system, and it was supported from a rigid test frame by prototypic dead weight supports, mechanical snubbers, and pipe clamps. Various support configurations were tested to assess the response sensitivity to insulation and other nonlinear support characteristics. Damping factors increased significantly due to the insulation and use of mechanical snubbers. Factors much higher than the magnitudes currently allowed in design by the USNRC Regulatory Guide 1.61, were found. This verified the design values, and it also pointed out the possibility of undue conservatism and costly overdesign resulting from use of the present design values

  11. Seismic damping factors of small bore piping as influenced by insulation and support elements

    International Nuclear Information System (INIS)

    Severud, L.K.; Barta, D.A.

    1983-01-01

    Seismic damping tests of a prototypical Liquid Metal Fast Breeder Reactor (LMFBR) small bore piping system is described, and measured transient responses to pulse excitations are reported. The test specimen was representative of a typical LMFBR insulated small bore piping system, and it was supported from a rigid test frame by prototypic dead weight supports, mechanical snubbers, and pipe clamps. Various support configurations were tested to assess the response sensitivity to insulation and other nonlinear support characteristics. Damping factors increased significantly due to the insulation and use of mechanical snubbers. Factors much higher than the magnitudes currently allowed in design, by the USNRC Regulatory Guide 1.61, were found. This verified the design values but also pointed out the possibility of undue conservatism and costly overdesign resulting from use of the present design values

  12. Seismic design evaluation guidelines for buried piping for the DOE HLW Facilities

    International Nuclear Information System (INIS)

    Lin, Chi-Wen; Antaki, G.; Bandyopadhyay, K.; Bush, S.H.; Costantino, C.; Kennedy, R.

    1995-01-01

    This paper presents the seismic design and evaluation guidelines for underground piping for the Department of Energy (DOE) High-Level-Waste (HLW) Facilities. The underground piping includes both single and double containment steel pipes and concrete pipes with steel lining, with particular emphasis on the double containment piping. The design and evaluation guidelines presented in this paper follow the generally accepted beam-on-elastic-foundation analysis principle and the inertial response calculation method, respectively, for piping directly in contact with the soil or contained in a jacket. A standard analysis procedure is described along with the discussion of factors deemed to be significant for the design of the underground piping. The following key considerations are addressed: the design feature and safety requirements for the inner (core) pipe and the outer pipe; the effect of soil strain and wave passage; assimilation of the necessary seismic and soil data; inertial response calculation for the inner pipe; determination of support anchor movement loads; combination of design loads; and code comparison. Specifications and justifications of the key parameters used, stress components to be calculated and the allowable stress and strain limits for code evaluation are presented

  13. Interim Report on Metallic Component Margins Under High Seismic Loads. Survey of Existing Practices and Status of Benchmark Work

    International Nuclear Information System (INIS)

    2015-01-01

    seismically designed components to be able to withstand beyond design basis earthquake. If the specific requirements for beyond design basis earthquake exists then design robustness of DBE components are not required. The second phase of MECOS work included a selection process for the experiments to use for the benchmarking calculations of the three candidate tests and test facilities. These three tests are described briefly in this report. The detailed documentation and recent vintage of the experimental programme by Indian BARC Institute was selected from amongst these three candidates as the benchmark for the MECOS calculations. The following preliminary conclusions can be made based on the work to date: a) All the experiments carried out around the world conclude unanimously that there are large margins in the design of piping systems. However, b) The failure mode addressed by the design criteria (plastic instability) is not the one observed in the experimental campaigns (fatigue-ratcheting). Preliminary conclusion of MECOS is that the Fukushima accident has not raised any new issues in seismic regulations and in design of components and structures. (authors)

  14. SEISMIC Analysis of high-rise buildings with composite metal damper

    Directory of Open Access Journals (Sweden)

    Chen Ruixue

    2015-01-01

    Full Text Available This paper mainly studies on the mechanical characteristics and application effect of composite metal damper in the high-rise buildings via the numerical simulation analysis. The research adopts the elastic and elastic-plastic dynamic approach and the displacement time history response and damper energy dissipation capacity and so on of the high-rise building are compared and analyzed before and after installation. The analysis found that the energy dissipation characteristic of metallic dampers is good. High-rise building story drift significantly is reduced and the extent of damage of the walls and coupling beams is decreased, achieved a good energy dissipation effect. Composite metal damper can effectively and economically improve the seismic performance of high-rise buildings, meet the requirement of the 3-level design for seismic resistance. The result has certain reference significance for the application of metallic damper in the high-rise buildings.

  15. Modeling plasticity by non-continuous deformation

    Science.gov (United States)

    Ben-Shmuel, Yaron; Altus, Eli

    2017-10-01

    Plasticity and failure theories are still subjects of intense research. Engineering constitutive models on the macroscale which are based on micro characteristics are very much in need. This study is motivated by the observation that continuum assumptions in plasticity in which neighbour material elements are inseparable at all-time are physically impossible, since local detachments, slips and neighbour switching must operate, i.e. non-continuous deformation. Material microstructure is modelled herein by a set of point elements (particles) interacting with their neighbours. Each particle can detach from and/or attach with its neighbours during deformation. Simulations on two- dimensional configurations subjected to uniaxial compression cycle are conducted. Stochastic heterogeneity is controlled by a single "disorder" parameter. It was found that (a) macro response resembles typical elasto-plastic behaviour; (b) plastic energy is proportional to the number of detachments; (c) residual plastic strain is proportional to the number of attachments, and (d) volume is preserved, which is consistent with macro plastic deformation. Rigid body displacements of local groups of elements are also observed. Higher disorder decreases the macro elastic moduli and increases plastic energy. Evolution of anisotropic effects is obtained with no additional parameters.

  16. Seismic risk map for Southeastern Brazil

    International Nuclear Information System (INIS)

    Mioto, J.A.

    1984-01-01

    During the last few years, some studies regarding seismic risk were prepared for three regions of Brazil. They were carried on account of two basic interests: first, toward the seismic history and recurrence of Brazilian seismic events; second, in a way as to provide seismic parameters for the design and construction of hydro and nuclear power plants. The first seismic risk map prepared for the southeastern region was elaborated in 1979 by 6he Universidade de Brasilia (UnB-Brasilia Seismological Station). In 1981 another seismic risk map was completed on the basis of seismotectonic studies carried out for the design and construction of the Nuclear power plants of Itaorna Beach (Angra dos Reis, Rio de Janeiro) by IPT (Mining and Applied Geology Division). In Brazil, until 1984, seismic studies concerning hydro and nuclear power plants and other civil construction of larger size did not take into account the seismic events from the point of view of probabilities of seismic recurrences. Such analysis in design is more important than the choice of a level of intensity or magnitude, or adoption of a seismicity level ased on deterministic methods. In this way, some considerations were made, concerning the use of seisms in Brazilian designs of hydro and nuclear power plants, as far as seismic analysis is concerned, recently altered over the current seismic risk panorama. (D.J.M.) [pt

  17. Versions and perversions of rigid frames: The bucking importance in the beams design of industrial warehouses

    International Nuclear Information System (INIS)

    Guerra Romero, I.; Fernandez Majo, M. C.; Valdes, A. J.

    2010-01-01

    In this paper many bibliographic references have been analyses which deal on the importance of the buckling in rigid frames, and many versions of it, have been got. About 70 frames have been analysed by the authors and they have found that it is advisable to consider the bucking in the design of frames beams. (Author) 30 refs.

  18. Implementation of seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1993-06-01

    In the fall of 1992, a draft of the Seismic Design and Evaluation Guidelines for the Department of Energy (DOE) High-level Waste Storage Tanks and Appurtenances was issued. The guidelines were prepared by the Tanks Seismic Experts Panel (TSEP) and this task was sponsored by DOE, Environmental Management. The TSEP is comprised of a number of consultants known for their knowledge of seismic ground motion and expertise in the analysis of structures, systems and components subjected to seismic loads. The development of these guidelines was managed by staff from Brookhaven National Laboratory, Engineering Research and Applications Division, Department of Nuclear Energy. This paper describes the process used to incorporate the Seismic Design and Evaluation Guidelines for the DOE High-Level Waste Storage Tanks and Appurtenances into the design criteria for the Multi-Function Waste Tank Project at the Hanford Site. This project will design and construct six new high-level waste tanks in the 200 Areas at the Hanford Site. This paper also discusses the vehicles used to ensure compliance to these guidelines throughout Title 1 and Title 2 design phases of the project as well as the strategy used to ensure consistent and cost-effective application of the guidelines by the structural analysts. The paper includes lessons learned and provides recommendations for other tank design projects which might employ the TSEP guidelines

  19. Implementation of seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1993-01-01

    In the fall of 1992, a draft of the Seismic Design and Evaluation Guidelines for the U.S. Department of Energy (DOE) High-level Waste Storage Tanks and Appurtenances was issued. The guidelines were prepared by the Tanks Seismic Experts Panel (TSEP) and this task was sponsored by DOE, Environmental Management. The TSEP comprises a number of consultants known for their understanding of seismic ground motion and expertise in the analysis of structures, systems and components subjected to seismic loads. The development of these guidelines was managed by staff from Brookhaven National Laboratory, Engineering Research and Applications Division, Department of Nuclear Energy. This paper describes the process used to incorporate the Seismic Design and Evaluation guidelines for the DOE High-Level Waste Storage Tanks and Appurtenances into the design criteria for the Multi-Function Waste Tank Project at the Hanford Site. This project will design and construct six new high-level waste tanks in the 200 Areas at the Hanford Site. This paper also discusses the vehicles used to ensure compliance to these guidelines throughout Title 1 and Title 2 design phases of the project as well as the strategy used to ensure consistent and cost-effective application of the guidelines by the structural analysts. The paper includes lessons learned and provides recommendations for other tank design projects that might employ the TSEP guidelines

  20. Seismic response and resistance capacity of 'as built' WWER 440-230 NPP Kozloduy: Verification of the results by experiments and real earthquake

    International Nuclear Information System (INIS)

    Sachanski, S.

    1993-01-01

    Although Kozloduy NPP units 1 and 2 were not designed for earthquakes they have withstood successfully the Vrancea Earthquake in 1977 with sire peak ground acceleration of 83 sm/s 2 . Both units as well as units 3 and 4 were later recalculated for maximum peak acceleration of 0.1 g. According to values calculated by two-dimensional model, in 1980 reactor buildings had sufficient earthquake resistance capacity for the accepted design seismic excitation. The non symmetric design of WWER-440 structures in plan and elevation, the large eccentricity between the center of rigidities and masses as well as technological connections between the separate substructures and units led to complicated space response and rotational effects which cannot be calculated by two-dimensional models. Three dimensional detailed 'as built' mathematical models were established and verified by series of experiments and real earthquake for: detailed analysis of 'as built' structural response, comparing the results of two and three dimensional models, detailed analyses of seismic safety margins

  1. Seismic safety review mission to assist in the evaluation of the design of seismic upgrading for Kozloduy NPP. Sofia, Bulgaria, 19-23 October 1992

    International Nuclear Information System (INIS)

    Ma, D.; Prato, C.; Godoy, A.

    1992-10-01

    A seismic Safety Review Mission to assist in the evaluation of the design of seismic upgrading for Kozloduy NPP was performed in Sofia from 19-23 October 1992. The objectives of the mission were to assist the Bulgarian authorities in: the evaluation of the floor response spectra of the main buildings of units 1-4 at Kozloduy NPP, calculated for the new defined seismic parameters at site (Review Level Earthquake - RLE); the evaluation of the remedial and strengthening measures proposed for the seismic upgrading of the pump house and diesel generator buildings to the new defined RLE. This mission completed the scope of previous IAEA mission - BUL/9/012-18b - (see Report 3262) performed from 3-7 August 1992, with regard to tasks which were not evaluated at that time because they had not been finished. 2 tabs

  2. Analysis of the Seismic Performance of Site-Bolted Beam to Column Connections in Modularized Prefabricated Steel Structures

    Directory of Open Access Journals (Sweden)

    Xuechun Liu

    2017-01-01

    Full Text Available This paper proposes a site-bolted connection that is suitable for modularized prefabricated steel structures. Excellent ductility is achieved by various structural measures. Six connection specimens with different parameters were subjected to quasi-static loading tests and finite element analysis (FEA to determine the seismic performance of the proposed connection (e.g., hysteretic behavior, skeleton curve, ductility, and failure mode. The results of the tests and FEA showed that the connection underwent sufficient plastic deformation under cyclic loading and that its ultimate rotation angle could reach 0.09 rad. A clear plastic hinge formed on the beam before the connection failed, which suggests a ductile failure mode. The connection exhibited a wide hysteresis loop, which indicated good seismic performance. The results also showed that the connection does not slip under small earthquakes and could dissipate energy through slippage in the connection region under a moderate earthquake and through slippage in the connection region as well as plastic deformation at the beam end under a severe earthquake. The number of bolts was the main parameter that affected the seismic performance of the connection. The test and FEA results demonstrated that all six specimens had excellent seismic and ductile performance and an exceptional plastic rotation capacity.

  3. Seismic Wave Propagation in Icy Ocean Worlds

    Science.gov (United States)

    Stähler, Simon C.; Panning, Mark P.; Vance, Steven D.; Lorenz, Ralph D.; van Driel, Martin; Nissen-Meyer, Tarje; Kedar, Sharon

    2018-01-01

    Seismology was developed on Earth and shaped our model of the Earth's interior over the twentieth century. With the exception of the Philae lander, all in situ extraterrestrial seismological effort to date was limited to other terrestrial planets. All have in common a rigid crust above a solid mantle. The coming years may see the installation of seismometers on Europa, Titan, and Enceladus, so it is necessary to adapt seismological concepts to the setting of worlds with global oceans covered in ice. Here we use waveform analyses to identify and classify wave types, developing a lexicon for icy ocean world seismology intended to be useful to both seismologists and planetary scientists. We use results from spectral-element simulations of broadband seismic wavefields to adapt seismological concepts to icy ocean worlds. We present a concise naming scheme for seismic waves and an overview of the features of the seismic wavefield on Europa, Titan, Ganymede, and Enceladus. In close connection with geophysical interior models, we analyze simulated seismic measurements of Europa and Titan that might be used to constrain geochemical parameters governing the habitability of a sub-ice ocean.

  4. A Generalized Version of a Low Velocity Impact between a Rigid Sphere and a Transversely Isotropic Strain-Hardening Plate Supported by a Rigid Substrate Using the Concept of Noninteger Derivatives

    Directory of Open Access Journals (Sweden)

    Abdon Atangana

    2013-01-01

    Full Text Available A low velocity impact between a rigid sphere and transversely isotropic strain-hardening plate supported by a rigid substrate is generalized to the concept of noninteger derivatives order. A brief history of fractional derivatives order is presented. The fractional derivatives order adopted is in Caputo sense. The new equation is solved via the analytical technique, the Homotopy decomposition method (HDM. The technique is described and the numerical simulations are presented. Since it is very important to accurately predict the contact force and its time history, the three stages of the indentation process, including (1 the elastic indentation, (2 the plastic indentation, and (3 the elastic unloading stages, are investigated.

  5. Aseismic design of Hamaoka Nuclear Power Plant

    International Nuclear Information System (INIS)

    Mizuno, Norihiro

    1975-01-01

    The Hamaoka Nuclear Power Plant of Chubu Electric Power Co. is designed so as to maintain structural safety against an earthquake of 300 gal. For the purpose, a compound-type reactor-housing building is employed, which contains a reactor, operation control and waste disposal facilities. The merits accruing from this scheme are as follows. (1) The shielding walls of the waste disposal facility can be utilized effectively in aseismatic design, leading to the increased rigidity of the building and the uniform distribution of resistance. (2) Due to the large area of the foundation, the load in earthquake can be mitigated, and it resulted in the higher structural stability. Moreover, seismic energy can be dissipated into ground. After the description of the compound building structure, it is explained how the structural resistance and the ground dissipation of seismic energy contribute to potential earthquake resistance. (Mori, K.)

  6. Visual Tracking of Deformation and Classification of Non-Rigid Objects with Robot Hand Probing

    Directory of Open Access Journals (Sweden)

    Fei Hui

    2017-03-01

    Full Text Available Performing tasks with a robot hand often requires a complete knowledge of the manipulated object, including its properties (shape, rigidity, surface texture and its location in the environment, in order to ensure safe and efficient manipulation. While well-established procedures exist for the manipulation of rigid objects, as well as several approaches for the manipulation of linear or planar deformable objects such as ropes or fabric, research addressing the characterization of deformable objects occupying a volume remains relatively limited. The paper proposes an approach for tracking the deformation of non-rigid objects under robot hand manipulation using RGB-D data. The purpose is to automatically classify deformable objects as rigid, elastic, plastic, or elasto-plastic, based on the material they are made of, and to support recognition of the category of such objects through a robotic probing process in order to enhance manipulation capabilities. The proposed approach combines advantageously classical color and depth image processing techniques and proposes a novel combination of the fast level set method with a log-polar mapping of the visual data to robustly detect and track the contour of a deformable object in a RGB-D data stream. Dynamic time warping is employed to characterize the object properties independently from the varying length of the tracked contour as the object deforms. The proposed solution achieves a classification rate over all categories of material of up to 98.3%. When integrated in the control loop of a robot hand, it can contribute to ensure stable grasp, and safe manipulation capability that will preserve the physical integrity of the object.

  7. Design and development of digital seismic amplifier recorder

    Energy Technology Data Exchange (ETDEWEB)

    Samsidar, Siti Alaa; Afuar, Waldy; Handayani, Gunawan, E-mail: gunawanhandayani@gmail.com [Department of Physics, ITB (Indonesia)

    2015-04-16

    A digital seismic recording is a recording technique of seismic data in digital systems. This method is more convenient because it is more accurate than other methods of seismic recorders. To improve the quality of the results of seismic measurements, the signal needs to be amplified to obtain better subsurface images. The purpose of this study is to improve the accuracy of measurement by amplifying the input signal. We use seismic sensors/geophones with a frequency of 4.5 Hz. The signal is amplified by means of 12 units of non-inverting amplifier. The non-inverting amplifier using IC 741 with the resistor values 1KΩ and 1MΩ. The amplification results were 1,000 times. The results of signal amplification converted into digital by using the Analog Digital Converter (ADC). Quantitative analysis in this study was performed using the software Lab VIEW 8.6. The Lab VIEW 8.6 program was used to control the ADC. The results of qualitative analysis showed that the seismic conditioning can produce a large output, so that the data obtained is better than conventional data. This application can be used for geophysical methods that have low input voltage such as microtremor application.

  8. SRS BEDROCK PROBABILISTIC SEISMIC HAZARD ANALYSIS (PSHA) DESIGN BASIS JUSTIFICATION (U)

    Energy Technology Data Exchange (ETDEWEB)

    (NOEMAIL), R

    2005-12-14

    This represents an assessment of the available Savannah River Site (SRS) hard-rock probabilistic seismic hazard assessments (PSHAs), including PSHAs recently completed, for incorporation in the SRS seismic hazard update. The prior assessment of the SRS seismic design basis (WSRC, 1997) incorporated the results from two PSHAs that were published in 1988 and 1993. Because of the vintage of these studies, an assessment is necessary to establish the value of these PSHAs considering more recently collected data affecting seismic hazards and the availability of more recent PSHAs. This task is consistent with the Department of Energy (DOE) order, DOE O 420.1B and DOE guidance document DOE G 420.1-2. Following DOE guidance, the National Map Hazard was reviewed and incorporated in this assessment. In addition to the National Map hazard, alternative ground motion attenuation models (GMAMs) are used with the National Map source model to produce alternate hazard assessments for the SRS. These hazard assessments are the basis for the updated hard-rock hazard recommendation made in this report. The development and comparison of hazard based on the National Map models and PSHAs completed using alternate GMAMs provides increased confidence in this hazard recommendation. The alternate GMAMs are the EPRI (2004), USGS (2002) and a regional specific model (Silva et al., 2004). Weights of 0.6, 0.3 and 0.1 are recommended for EPRI (2004), USGS (2002) and Silva et al. (2004) respectively. This weighting gives cluster weights of .39, .29, .15, .17 for the 1-corner, 2-corner, hybrid, and Greens-function models, respectively. This assessment is judged to be conservative as compared to WSRC (1997) and incorporates the range of prevailing expert opinion pertinent to the development of seismic hazard at the SRS. The corresponding SRS hard-rock uniform hazard spectra are greater than the design spectra developed in WSRC (1997) that were based on the LLNL (1993) and EPRI (1988) PSHAs. The

  9. SEISMIC DESIGN OF TWO STOREY REINFORCED CONCRETE BUILDING IN MALAYSIA WITH LOW CLASS DUCTILITY

    OpenAIRE

    MOHD IRWAN ADIYANTO; TAKSIAH A. MAJID

    2014-01-01

    Since Malaysia is not located in active seismic fault zones, majority of buildings in Malaysia had been designed according to BS8110, which not specify any seismic provision. After experienced several tremors originating from neighbouring countries especially from Sumatra, Indonesia, the Malaysian start to ask questions on integrity of existing structures in Malaysia to withstand the earthquake load. The question also arises regarding the economical effect in term of cost of construction if s...

  10. Seismic ratchet-fatigue failure of piping systems

    International Nuclear Information System (INIS)

    Severud, L.K.; Anderson, M.J.; Lindquist, M.R.; Weiner, E.O.

    1986-01-01

    Failures of piping systems during earthquakes have been rare. Those that have failed were either made of brittle material such as cast iron, were rigid systems between major components where component relative seismic motions tore the pipe out of the component, or were high pressure systems where a ratchet-fatigue fracture followed a local bulging of the pipe diameter. Tests to failure of an unpressurized 3-in. and a pressurized 6-in. diameter carbon steel nuclear pipe systems subjected to high level shaking have been accomplished. Failure analyses of these tests are presented and correlated to the test results. It was found that failure of the unpressurized system could be correlated well with standard ASME type fatigue analysis predictions. Moreover, the pressurized system failure occurred in significantly less load cycles than predicted by standard fatigue analysis. However, a ratchet-fatigue and ductility exhaustion analysis of the pressurized system did correlate very well. These findings indicate modifications to design analysis methods and the present ASME Code piping design rules may be appropriate to cover the ratchet-fatigue failure mode

  11. Determination of Weight Suspension Rigidity in the Transport-Erector Aggregates

    Directory of Open Access Journals (Sweden)

    V. A. Zverev

    2016-01-01

    Full Text Available The aim is to determine weight suspension rigidity in aggregates designed to perform technological transport-erector operations at the miscellaneous launch complexes.We consider the weight suspension comprising the following distinctive structural components: the executive weight-lowering mechanism, polyspast mechanism, rope, traverse, and rods. A created structural dynamic model of suspension allowed us to define weight suspension rigidity. Within the framework of design analysis of a dynamic model we determined the rigidity of its structural units, i.e. traverse, rope, and polyspast.Known analytical relationships were used to calculate the rope rigidity. To determine rigidity of polyspast and traverse have been created special models based on the finite element method. For each model deformation in the specific points under the test load have been defined. Data obtained were used to determine trigidity of traverses and polyspast, and also rigidity of suspension in total. The rigidity models of polispast mechanism and traverse have been developed and calculated using the software complex "Zenit-95".As the research results, the paper presents a dynamic model of the weight suspension of the transport-erector aggregate, the finite element models of the polispast mechanism and traverse, an algorithm for determining the weight suspension rigidity and relevant analytical relationships.Independent calculation of weight suspension rigidity enables us to simplify further dynamic calculation of the aggregate-weight system because it allows attaining a simpler model of the aggregate-weight system that uses the weight suspension model as an element of equivalent rigidity. Despite this simplification the model allows us to determine correctly weight movement parameters and overloads in the aggregate-weight system in the process of technical operations.

  12. Application of generalized function to dynamic analysis of elasto-plastic thick plates

    International Nuclear Information System (INIS)

    Zheng, D.; Weng, Z.

    1987-01-01

    The elasto-plastic dynamic analysis of thick plates is of great significance to the research and the design on an anti-seismic structure and an anti-explosive structure. In this paper, the derivative of δ-function is handled by using the generalized function. The dynamic influence coefficient of thick plates in deduced. A dynamic response of elasto-plastic thick plates its material has hardening behaviour considered, is analysed by using known elastic solutions. The general expressions for the dynamic response of elasto-plastic rectangular thick plates subjected arbitrary loads are given. Detailed computations are performed for the square plates of various height-span ratios. The results are compared with those obtained from the improved theory and the classical theory of plates. The modification of the classical deflection theory for plates is employed. The increment analysis is used for calculations. The yield function is considered as a function of inplane and transverse shear stresses. (orig./GL)

  13. Verifying seismic design of nuclear reactors by testing. Volume 2: appendix, theoretical discussions

    International Nuclear Information System (INIS)

    1979-01-01

    Theoretical discussions on seismic design testing are presented under the following appendix headings: system functions, pulse optimization program, system identification, and motion response calculations from inertance measurements of a nuclear power plant

  14. Base Isolation for Seismic Retrofitting of a Multiple Building Structure: Design, Construction, and Assessment

    Directory of Open Access Journals (Sweden)

    Massimiliano Ferraioli

    2017-01-01

    Full Text Available The paper deals with the seismic retrofit of a multiple building structure belonging to the Hospital Centre of Avellino (Italy. At first, the paper presents the preliminary investigations, the in situ measurements and laboratory tests, and the seismic assessment of the existing fixed-base structures. Having studied different strategies, base isolation proved to be the more appropriate, also for the possibility offered by the geometry of the building to easily create an isolation interface at the ground level. The paper presents the design project, the construction process, and the details of the isolation intervention. Some specific issues of base isolation for seismic retrofitting of multiple building structures were lightened. Finally, the seismic assessment of the base-isolated building was carried out. The seismic response was evaluated through nonlinear time-history analysis, using the well-known Bouc-Wen model as the constitutive law of the isolation bearings. For reliable dynamic analyses, a suite of natural accelerograms compatible with acceleration spectra of Italian Code was first selected and then applied along both horizontal directions. The results were finally used to address some of the critical issues of the seismic response of the base-isolated multiple building structure: accidental torsional effects and potential poundings during strong earthquakes.

  15. Influence of flock coating on bending rigidity of woven fabrics

    Science.gov (United States)

    Ozdemir, O.; Kesimci, M. O.

    2017-10-01

    This work presents the preliminary results of our efforts that focused on the effect of the flock coating on the bending rigidity of woven fabrics. For this objective, a laboratory scale flocking unit is designed and flocked samples of controlled flock density are produced. Bending rigidity of the samples with different flock densities are measured on both flocked and unflocked sides. It is shown that the bending rigidity depends on both flock density and whether the side to be measured is flocked or not. Adhesive layer thickness on the bending rigidity is shown to be dramatic. And at higher basis weights, flock density gets less effective on bending rigidity.

  16. Status for seismic design requirements of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Takahashi, H.

    1977-01-01

    The fundamental purpose for the aseismic design of the nuclear power plants is to protect the inhabitants near the plant from radiation accidents during and after earthquake vibrations. In order to achieve the above purpose, the following considerations have been made. All buidlings, structures, system and components are classified into three Classes A, B and C according to their degree of importance for plant safety, and are designed to meet the requirements specified for each class, respectively. Magnitude and epicenter of the design basis earthquake are determined based upon seismological and geological investigations and observation of ground motion in the site, and the maximum ground acceleration which could be expected can be calculated empirically. With respect to time history waves, more than three are selected referring to dynamic characteristic of base rock in the site, observed ground motion records in the site or other strong motion seismographs.The figures of horizontal seismic coefficients to be used in determining design forces on Class A buildings and structures are 3 Co (where Co. is as defined in the Japan Building Standard Law). On the other hand the horizontal design force should not be less than those determined as the results of the dynamic analyses based on DEGM (Design Earthquake Ground Motion). The figures of horizontal seismic coefficient and forces for Class A system and components are usually determined based on the dynamic analyses for DEGM. The buildings and structures treated as an elastic column system with masses, and the bottom mass is supported by elastic springs representing the soil-foundation interaction characteristics. DEGM is used as the input disturbance in the dynamic response analysis, and the model analysis or time history method is worked out. System and components are modeled as elastic bars with lumped masses of 3 dimensional degree of freedom, and the response analysis is carried out using floor respone spectra

  17. Seismic resistant design of a nuclear category I earth dam

    International Nuclear Information System (INIS)

    Vaidya, N.R.; Ries, E.R.; Kissenpfennig, J.F.

    1975-01-01

    An integral part of many nuclear power plants is the ultimate heat sink (UHS); the purpose of which is to retain and deliver a supply of service water to the plant when water from the primary circulating water system is not available. The earth dam described herein is designed to retain the reservoir for the UHS of a nuclear power plant in Southern Europe. The usual pseudo-static analysis is only as good as the estimate for the seismic coefficient used to compute an equivalent horizontal static force on a potential sliding mass. In view of the earth dam considered herein, a more accurate computation of the seismic coefficients is to be made. A two-dimensional dynamic finite element analysis is made to predict the response of the earth dam to a Safe Shutdown Earthquake excitation which is in the form of a time history of accelerations appropriately deconvoluted from the surficial time history and applied at the base of the model. The material properties such as shear modulus and damping are adjusted to be compatible with the level of strain obtained. Thus, non-linear behavior of soil is considered in the analysis and a more realistic response is predicted. Acceleration and stress are determined throughout the dam and are used to compute a seismic coefficient for a pseudo-static stability analysis and the dynamic strength to stress ratios at several points in the body of the dam. The need to design the dam to resist a progressive erosion accident resulting from postulated concentrated leaks is discussed. This may be accomplished by providing a wide, well graded core protected by wide transition cores also heavily compacted

  18. The Size Spectrum as Tool for Analyzing Marine Plastic Pollution

    KAUST Repository

    Martí , E.; Duarte, Carlos M.; Có zar, A.

    2016-01-01

    to abundance, color (129 tons), polymer type, and category (rigid fragments, films, threads, foam, pellets, and microbeads). Using GPSS database, we show for instance the dependence of plastic composition on the item size, with high diversity of categories

  19. Seismic PSA implementation standards by AESJ and the utilization of the advanced safety examination guideline for seismic design for nuclear power plant

    International Nuclear Information System (INIS)

    Ebisawa, Katsumi; Hibino, Kenta

    2008-01-01

    The Advanced Safety Examination Guideline for Seismic Design for Nuclear Power Plant (the advanced safety examination guideline) was worked out on September 19, 2006. In this paper, a summary of the method of probability theory in the advanced safety examination guideline and the Seismic PSA Implementation Standards is stated. On utilization of the probability theory for the advanced safety examination guideline, the uncertainty resulting from the process of the decision of the basic design earthquake ground motion (Ss) is stated to be considered using the proper method. The references of the extra probability for evaluation of earthquake hazard and combination of the working load and the earthquake load are stated. Definition, evaluation method and effort to lower the 'residual risks', and relation between the residual risks and the extra probability of Ss are described. A summary of the earthquake-resistant design for nuclear power facilities is explained by the old guideline. (S.Y.)

  20. Seismic analysis for the ALMR

    International Nuclear Information System (INIS)

    Tajirian, F.F.

    1992-01-01

    The Advanced Liquid Metal Reactor (ALMR) design uses seismic isolation as a cost effective approach for simplifying seismic design of the reactor module, and for enhancing margins to handle beyond design basis earthquakes (BDBE). A comprehensive seismic analysis plan has been developed to confirm the adequacy of the design and to support regulatory licensing activities. In this plan state-of-the-art computer programs are used to evaluate the system response of the ALMR. Several factors that affect seismic response will be investigated. These include variability in the input earthquake mechanism, soil-structure interaction effects, and nonlinear response of the isolators. This paper reviews the type of analyses that are planned, and discuses the approach that will be used for validating the specific features of computer programs that are required in the analysis of isolated structures. To date, different linear and nonlinear seismic analyses have been completed. The results of recently completed linear analyses have been summarized elsewhere. The findings of three-dimensional seismic nonlinear analyses are presented in this paper. These analyses were performed to evaluate the effect of changes of isolator horizontal stiffness with horizontal displacement on overall response, to develop an approach for representing BDBE events with return periods exceeding 10,000 years, and to assess margins in the design for BDBEs. From the results of these analyses and bearing test data, it can be concluded that a properly designed and constructed seismic isolation system can accommodate displacements several times the design safe shutdown earthquake (SSE) for the ALMR. (author)

  1. On the Need for Reliable Seismic Input Assessment for Optimized Design and Retrofit of Seismically Isolated Civil and Industrial Structures, Equipment, and Cultural Heritage

    Science.gov (United States)

    Martelli, Alessandro

    2011-01-01

    Based on the experience of recent violent earthquakes, the limits of the methods that are currently used for the definition of seismic hazard are becoming more and more evident to several seismic engineers. Considerable improvement is felt necessary not only for the seismic classification of the territory (for which the probabilistic seismic hazard assessment—PSHA—is generally adopted at present), but also for the evaluation of local amplification. With regard to the first item, among others, a better knowledge of fault extension and near-fault effects is judged essential. The aforesaid improvements are particularly important for the design of seismically isolated structures, which relies on displacement. Thus, such a design requires an accurate definition of the maximum value of displacement corresponding to the isolation period, and a reliable evaluation of the earthquake energy content at the low frequencies that are typical of the isolated structures, for the site and ground of interest. These evaluations shall include possible near-fault effects even in the vertical direction; for the construction of high-risk plants and components and retrofit of some cultural heritage, they shall be performed for earthquakes characterized by very long return periods. The design displacement shall not be underestimated, but neither be excessively overestimated, at least when using rubber bearings in the seismic isolation (SI) system. In fact, by decreasing transverse deformation of such SI systems below a certain value, their horizontal stiffness increases. Thus, should a structure (e.g. a civil defence centre, a masterpiece, etc.) protected in the aforesaid way be designed to withstand an unnecessarily too large earthquake, the behaviour of its SI system will be inadequate (i.e. it will be too stiff) during much more frequent events, which may really strike the structure during its life. Furthermore, since SI can be used only when the room available to the structure

  2. Numerical evaluation of seismic response of shallow foundation on ...

    Indian Academy of Sciences (India)

    Young's modulus of concrete ν. Poisson's ratio n. Porosity φ. Friction angle. C. Cohesion ..... which may occur due to plastic flow during seismic loading. Step 3. ... foundations, free-field boundary conditions in the ..... infinite media; J. Geotech.

  3. Features of a time domain simulation tool for rigid riser design

    Energy Technology Data Exchange (ETDEWEB)

    Morooka, Celso K.; Brandt, Dustin M. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo; Matt, Cyntia G.C.; Franciss, Ricardo [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2008-07-01

    This paper present a number of numerical implementations designed for the analysis of rigid riser's static and dynamic behavior that includes the effects of vortex induced vibrations (VIV) and marine hydrodynamic loads in time domain. Features include the ability to consider pipe with a free-span utilizing a soil/riser interaction model. An implementation of a numerical coupling scheme to couple the vertical riser and platform dynamics was developed to allow prediction of the sub sea Blow-Out Preventer (BOP) re-entry into a sub sea petroleum well when drilling different phases of deep and ultra-deep wells. The developments contains support for the consideration of the Self Standing Hybrid Riser (SSHR) configuration which has been shown to be a promising riser configuration in deep and ultra-deep waters. A graphical interface was also created to better grasp the results and aid in the modeling, processing and to help analyze the numerical simulations, contributing to enhance agility and quality of the riser design and analysis processes. (author)

  4. Seismic hazard assessment: Issues and alternatives

    Science.gov (United States)

    Wang, Z.

    2011-01-01

    Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used inter-changeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been pro-claimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications. ?? 2010 Springer Basel AG.

  5. Analysis of EAST tokamak cryostat anti-seismic performance

    International Nuclear Information System (INIS)

    Chen Wei; Kong Xiaoling; Liu Sumei; Ni Xiaojun; Wang Zhongwei

    2014-01-01

    A 3-D finite element model for EAST tokamak cryostat is established by using ANSYS. On the basis of the modal analysis, the seismic response of the EAST tokamak cryostat structure is calculated according to an input of the design seismic response spectrum referring to code for seismic design of nuclear power plants. Calculation results show that EAST cryostat displacement and stress response is small under the action of earthquake. According to the standards, EAST tokamak cryostat structure under the action of design seismic can meet the requirements of anti-seismic design intensity, and ensure the anti-seismic safety of equipment. (authors)

  6. Comparison of linear-elastic-plastic, and fully plastic failure models in the assessment of piping integrity

    International Nuclear Information System (INIS)

    Streit, R.D.

    1981-01-01

    The failure evaluation of Pressurized Water Reactor (PWR) primary coolant loop pipe is often based on a plastic limit load criterion; i.e., failure occurs when the stress on the pipe section exceeds the material flow stress. However, in addition the piping system must be safe against crack propagation at stresses less than those leading to plastic instability. In this paper, elastic, elastic-plastic, and fully-plastic failure models are evaluated, and the requirements for piping integrity based on these models are compared. The model yielding the 'more' critical criteria for the given geometry and loading conditions defines the appropriate failure criterion. The pipe geometry and loading used in this study was choosen based on an evaluation of a guillotine break in a PWR primary coolant loop. It is assumed that the piping may contain cracks. Since a deep circumferential crack, can lead to a guillotine pipe break without prior leaking and thus without warning it is the focus of the failure model comparison study. The hot leg pipe, a 29 in. I.D. by 2.5 in. wall thickness stainless pipe, was modeled in this investigation. Cracks up to 90% through the wall were considered. The loads considered in this evaluation result from the internal pressure, dead weight, and seismic stresses. For the case considered, the internal pressure contributes the most to the failure loading. The maximum moment stress due to the dead weight and seismic moments are simply added to the pressure stress. Thus, with the circumferential crack geometry and uniform pressure stress, the problem is axisymmetric. It is analyzed using NIKE2D--an implicit, finite deformation, finite element code for analyzing two-dimensional elastic-plastic problems. (orig./GL)

  7. A new discrete-element approach for the assessment of the seismic resistance of composite reinforced concrete-masonry buildings

    International Nuclear Information System (INIS)

    Calio, I.; Cannizzaro, F.; Marletta, M.; Panto, B.; D'Amore, E.

    2008-01-01

    In the present study a new discrete-element approach for the evaluation of the seismic resistance of composite reinforced concrete-masonry structures is presented. In the proposed model, unreinforced masonry panels are modelled by means of two-dimensional discrete-elements, conceived by the authors for modelling masonry structures, whereas the reinforced concrete elements are modelled by lumped plasticity elements interacting with the masonry panels through nonlinear interface elements. The proposed procedure was adopted for the assessment of the seismic response of a case study confined-masonry building which was conceived to be a typical representative of a wide class of residential buildings designed to the requirements of the 1909 issue of the Italian seismic code and widely adopted in the aftermath of the 1908 earthquake for the reconstruction of the cities of Messina and Reggio Calabria

  8. Engineering Seismic Base Layer for Defining Design Earthquake Motion

    International Nuclear Information System (INIS)

    Yoshida, Nozomu

    2008-01-01

    Engineer's common sense that incident wave is common in a widespread area at the engineering seismic base layer is shown not to be correct. An exhibiting example is first shown, which indicates that earthquake motion at the ground surface evaluated by the analysis considering the ground from a seismic bedrock to a ground surface simultaneously (continuous analysis) is different from the one by the analysis in which the ground is separated at the engineering seismic base layer and analyzed separately (separate analysis). The reason is investigated by several approaches. Investigation based on eigen value problem indicates that the first predominant period in the continuous analysis cannot be found in the separate analysis, and predominant period at higher order does not match in the upper and lower ground in the separate analysis. The earthquake response analysis indicates that reflected wave at the engineering seismic base layer is not zero, which indicates that conventional engineering seismic base layer does not work as expected by the term ''base''. All these results indicate that wave that goes down to the deep depths after reflecting in the surface layer and again reflects at the seismic bedrock cannot be neglected in evaluating the response at the ground surface. In other words, interaction between the surface layer and/or layers between seismic bedrock and engineering seismic base layer cannot be neglected in evaluating the earthquake motion at the ground surface

  9. Seismic design criteria for nuclear powerplants

    International Nuclear Information System (INIS)

    Jennings, P.C.; Guzman, R.A.

    1975-01-01

    There are three main aspects of the problem of selection of seismic design criteria for major projects such as nuclear power plants. These are the description of the appropriate level of shaking to be considered, usually given in the form of design spectra; the allowable response of the structure, usually specified in terms of allowable stresses and deflections; and the capability of the structure to dissipate energy, commonly given in the form of fractions of critical damping. In this presentation only the first of these features is examined, with particular application to nuclear power plants. Under these restrictions, the most important parts of the problem become the determination of the amplitude of the design spectra corresponding to the safe shutdown earthquake (SSE) and the question of whether the shape of the spectra recommended by Regulatory Guide 1.60 (U. S. Atomic Energy Commission, 1973) is appropriate for the particular application. In the course of working out the details of the approach, it was found useful to reexamine a number of concepts including the use of response spectra or peak values of ground motion parameters, the shape of the design spectra, problems in attenuation and scaling, and the use of motions on the ground surface or bedrock motions. There is nothing fundamentally new in the suggested approach, although some of the features may not have been applied to the problem of selecting design spectra for nuclear power plants in the way suggested. The approach is applied only to nuclear power plants but it is not limited to this application

  10. Analysis of seismic effects on reinforced concrete structures

    International Nuclear Information System (INIS)

    Tai, A.A.

    1981-12-01

    An important bibliographical research was undertaken in order to make the best possible analysis of the dynamic behaviour of materials and of structural components. This research work was completed by the study of the structures tested on a seismic table. The results obtained from this preliminary study, particularly those concerning the modification in the rigidity of reinforced concrete structures under alternate and seismic loading, enabled a calculation method (called ''equivalent static'') to be drawn up for analyzing the behaviour of reinforced concrete structures in earthquakes. This method takes into account the non-linearity of the behaviour of materials, in particular. The earthquake responses that were obtained by this method on gantries tested on a vibrating table, tally very satisfactorily with the test figures [fr

  11. Prediction method of seismic residual deformation of caisson quay wall in liquefied foundation

    Science.gov (United States)

    Wang, Li-Yan; Liu, Han-Long; Jiang, Peng-Ming; Chen, Xiang-Xiang

    2011-03-01

    The multi-spring shear mechanism plastic model in this paper is defined in strain space to simulate pore pressure generation and development in sands under cyclic loading and undrained conditions, and the rotation of principal stresses can also be simulated by the model with cyclic behavior of anisotropic consolidated sands. Seismic residual deformations of typical caisson quay walls under different engineering situations are analyzed in detail by the plastic model, and then an index of liquefaction extent is applied to describe the regularity of seismic residual deformation of caisson quay wall top under different engineering situations. Some correlated prediction formulas are derived from the results of regression analysis between seismic residual deformation of quay wall top and extent of liquefaction in the relative safety backfill sand site. Finally, the rationality and the reliability of the prediction methods are validated by test results of a 120 g-centrifuge shaking table, and the comparisons show that some reliable seismic residual deformation of caisson quay can be predicted by appropriate prediction formulas and appropriate index of liquefaction extent.

  12. Study of seismic design bases for nuclear power plants in the US

    International Nuclear Information System (INIS)

    Kintzer, F.C.; Yanev, P.I.; Gotschall, H.L.

    1983-01-01

    This paper presents the results of an investigation of topics pertinent to establishing design basis seismic events and soil conditions for deployment of the High Temperature Gas-Cooled Reactor - Steam Cycle/Cogeneration (HTGR-SC/C) System. Generalized design ground accelerations and soil shear wave velocities are presented by regions of the continental United States. Design basis accelerations and soil conditions for existing nuclear power plants are summarized. Finally, analytical approaches to assess soil-structure interaction, including the effects of embedment, are reviewed

  13. Non Linear Step By Step Seismic Response and the Push Over Analysis Comparison of a Reinforced Concrete of Ductile Frames 25 Level Building

    International Nuclear Information System (INIS)

    Avila, Jorge A.; Martinez, Eduardo

    2008-01-01

    Based on a ductile frames 25 level building, a non-linear analysis with increased monotonically lateral loads (Push-Over) was made in order to determine its collapse and its principal responses were compared against the time-history seismic responses determined with the SCT-EW-85 record. The seismic-resistance design and faced to gravitational loads was made according to the Complementary Technical Norms of Concrete Structures Design (NTC-Concrete) and the NTC-Seismic of the Mexico City Code (RDF-04), satisfying the limit service states (relative lateral displacement between story height maximum relations, story drifts ≤0.012) and failure (seismic behavior factor, Q = 3). The compressible (soft) seismic zone III b and the office use type (group B) were considered. The non-lineal responses were determined with nominal and over-resistance effects. The comparison were made with base shear force-roof lateral displacement relations, global distribution of plastic hinges, failure mechanics tendency, lateral displacements and story drift and its distribution along the height of the building, local and global ductility demands, etc. For the non-linear static analysis with increased monotonically lateral loads, was important to select the type of lateral forces distribution

  14. F.E. analysis of seismic isolators: comparison with experimental results

    International Nuclear Information System (INIS)

    Fuller, K.N.G.; Gough, J.; Ahmadi, H.R.

    1998-01-01

    Analysis of seismic isolators is performed by the ABAQUS code. The force deformation behaviour of a circular layer of rubber bonded to rigid surface was investigated. This model is chosen because of its simplicity and the relatively short processing time required. A 3-dimensional model was used for finite element calculations. Comparison of calculated values with experimental results is shown

  15. Seismic Studies

    Energy Technology Data Exchange (ETDEWEB)

    R. Quittmeyer

    2006-09-25

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground

  16. Seismic Studies

    International Nuclear Information System (INIS)

    R. Quittmeyer

    2006-01-01

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at

  17. Seismic safety research program plan

    International Nuclear Information System (INIS)

    1987-05-01

    This document presents a plan for seismic research to be performed by the Structural and Seismic Engineering Branch in the Office of Nuclear Regulatory Research. The plan describes the regulatory needs and related research necessary to address the following issues: uncertainties in seismic hazard, earthquakes larger than the design basis, seismic vulnerabilities, shifts in building frequency, piping design, and the adequacy of current criteria and methods. In addition to presenting current and proposed research within the NRC, the plan discusses research sponsored by other domestic and foreign sources

  18. Methods used to seismically upgrade. The safety related components of Belgian plants

    International Nuclear Information System (INIS)

    Lafaille, J.P.

    1993-01-01

    Belgian nuclear power amounts to about 6,000 MW, generated by seven plants that started operation as early as 1967. The latest plant started in 1985. Some of these plants were designed with no seismic requirements whatsoever. Even for those that had seismic requirements at the design stage, seismic demand was raised after design had been frozen (late during construction or at the 10 years revision). As a consequence all the plants had to undergo, to a variable extent, a seismic reevaluation and/or backfitting. Civil structures were concerned as well as electro-mechanical equipment and piping systems. The present paper deals with the mechanical aspect of the problem (equipment and piping). In order to minimize hardware modifications, advanced analytical techniques were used throughout the process, starting with the elaboration of a site specific spectrum, and using a full soil-structure interaction in order to get as 'realistic' as possible floor response spectra. In some instances, non linear elasto-plastic time history analysis was performed on piping-systems in order to qualify them without hardware modifications. In other cases a 'Load Coefficient Method' was used. Sometimes stresses or displacements taken from the original stress reports and scaled by comparison of applicable spectra, allowed to assess the seismic validity of the system under investigation. Seismic acceptability of installed active equipment is more difficult to demonstrate, as this is usually done by testing. This problem is a generic issue in the US, identified under the label USI-A-46 (Unresolved Safety Issue). It is treated by. a group of Utilities (SQUG = Seismic Qualification Utilities Group). The Belgian Utility is member of that group since 1985. The application of this program is starting in the US. SQUG methodology has been applied to three Belgian plants starting in 1988 and is now completed. The required fixes are being implemented. Experience gained in the process has been applied

  19. Distribution of ground rigidity and ground model for seismic response analysis in Hualian project of large scale seismic test

    International Nuclear Information System (INIS)

    Kokusho, T.; Nishi, K.; Okamoto, T.; Tanaka, Y.; Ueshima, T.; Kudo, K.; Kataoka, T.; Ikemi, M.; Kawai, T.; Sawada, Y.; Suzuki, K.; Yajima, K.; Higashi, S.

    1997-01-01

    An international joint research program called HLSST is proceeding. HLSST is large-scale seismic test (LSST) to investigate soil-structure interaction (SSI) during large earthquake in the field in Hualien, a high seismic region in Taiwan. A 1/4-scale model building was constructed on the gravelly soil in this site, and the backfill material of crushed stone was placed around the model plant after excavation for the construction. Also the model building and the foundation ground were extensively instrumental to monitor structure and ground response. To accurately evaluate SSI during earthquakes, geotechnical investigation and forced vibration test were performed during construction process namely before/after base excavation, after structure construction and after backfilling. And the distribution of the mechanical properties of the gravelly soil and the backfill are measured after the completion of the construction by penetration test and PS-logging etc. This paper describes the distribution and the change of the shear wave velocity (V s ) measured by the field test. Discussion is made on the effect of overburden pressure during the construction process on V s in the neighbouring soil and, further on the numerical soil model for SSI analysis. (orig.)

  20. Design and Implementation of the National Seismic Monitoring Network in the Kingdom of Bhutan

    Science.gov (United States)

    Ohmi, S.; Inoue, H.; Chophel, J.; Pelgay, P.; Drukpa, D.

    2017-12-01

    Bhutan-Himalayan district is located along the plate collision zone between Indian and Eurasian plates, which is one of the most seismically active region in the world. Recent earthquakes such as M7.8 Gorkha Nepal earthquake in April 25, 2015 and M6.7 Imphal, India earthquake in January 3, 2016 are examples of felt earthquakes in Bhutan. However, there is no permanent seismic monitoring system ever established in Bhutan, whose territory is in the center of the Bhutan-Himalayan region. We started establishing permanent seismic monitoring network of minimum requirements and intensity meter network over the nation. The former is composed of six (6) observation stations in Bhutan with short period weak motion and strong motion seismometers as well as three (3) broad-band seismometers, and the latter is composed of twenty intensity meters located in every provincial government office. Obtained data are transmitted to the central processing system in the DGM office in Thimphu in real time. In this project, DGM will construct seismic vault with their own budget which is approved as the World Bank project, and Japan team assists the DGM for site survey of observation site, designing the observation vault, and designing the data telemetry system as well as providing instruments for the observation such as seismometers and digitizers. We already started the operation of the six (6) weak motion stations as well as twenty (20) intensity meter stations. Additionally, the RIMES (Regional Integrated Multi-hazard Early Warning System for Africa and Asia) is also providing eight (8) weak motion stations and we are keeping close communication to operate them as one single seismic monitoring network composed of fourteen (14) stations. This network will be definitely utilized for not only for seismic disaster mitigation of the country but also for studying the seismotectonics in the Bhutan-Himalayan region which is not yet precisely revealed due to the lack of observation data in the

  1. Seismic responses of a pool-type fast reactor with different core support designs

    International Nuclear Information System (INIS)

    Wu, Ting-shu; Seidensticker, R.W.

    1989-01-01

    In designing the core support system for a pool-type fast reactor, there are many issues which must be considered in order to achieve an optimum and balanced design. These issues include safety, reliability, as well as costs. Several design options are possible to support the reactor core. Different core support options yield different frequency ranges and responses. Seismic responses of a large pool-type fast reactor incorporated with different core support designs have been investigated. 4 refs., 3 figs

  2. The Design of Wireless Data Acquisition and Remote Transmission Interface in Micro-seismic Signals

    Directory of Open Access Journals (Sweden)

    Huan-Huan BIAN

    2014-02-01

    Full Text Available The micro-seismic signal acquisition and transmission is an important key part in geological prospecting. This paper describes a bran-new solution of micro-seismic signal acquisition and remote transmission using Zigbee technique and wireless data transmission technique. The hardware such as front-end data acquisition interface made up by Zigbee wireless networking technique, remote data transmission solution composed of general packet radio service (or GPRS for short technique and interface between Zigbee and GPRS is designed in detail. Meanwhile the corresponding software of the system is given out. The solution solves the numerous practical problems nagged by complex and terrible environment faced using micro-seismic prospecting. The experimental results demonstrate that the method using Zigbee wireless network communication technique GPRS wireless packet switching technique is efficient, reliable and flexible.

  3. A new event detector designed for the Seismic Research Observatories

    Science.gov (United States)

    Murdock, James N.; Hutt, Charles R.

    1983-01-01

    A new short-period event detector has been implemented on the Seismic Research Observatories. For each signal detected, a printed output gives estimates of the time of onset of the signal, direction of the first break, quality of onset, period and maximum amplitude of the signal, and an estimate of the variability of the background noise. On the SRO system, the new algorithm runs ~2.5x faster than the former (power level) detector. This increase in speed is due to the design of the algorithm: all operations can be performed by simple shifts, additions, and comparisons (floating point operations are not required). Even though a narrow-band recursive filter is not used, the algorithm appears to detect events competitively with those algorithms that employ such filters. Tests at Albuquerque Seismological Laboratory on data supplied by Blandford suggest performance commensurate with the on-line detector of the Seismic Data Analysis Center, Alexandria, Virginia.

  4. An under-designed RC frame: Seismic assessment through displacement based approach and possible refurbishment with FRP strips and RC jacketing

    Science.gov (United States)

    Valente, Marco; Milani, Gabriele

    2017-07-01

    Many existing reinforced concrete buildings in Southern Europe were built (and hence designed) before the introduction of displacement based design in national seismic codes. They are obviously highly vulnerable to seismic actions. In such a situation, simplified methodologies for the seismic assessment and retrofitting of existing structures are required. In this study, a displacement based procedure using non-linear static analyses is applied to a four-story existing RC frame. The aim is to obtain an estimation of its overall structural inadequacy as well as the effectiveness of a specific retrofitting intervention by means of GFRP laminates and RC jacketing. Accurate numerical models are developed within a displacement based approach to reproduce the seismic response of the RC frame in the original configuration and after strengthening.

  5. Seismic responses of an unanchored generic fixture with different simulated boundary conditions

    International Nuclear Information System (INIS)

    Wu, T.S.; Blomquist, C.A.; Herceg, J.E.

    1994-01-01

    In the design of equipment for seismic loadings, it is common to anchor the equipment to prevent tipping or sliding. However, there are situations where the equipment should not be anchored. An unanchored piece of equipment is held to the floor only by the gravitational effect and, in the absence of friction, it could move freely. In the analytical investigation of an unanchored item during a seismic event, there is uncertainty on the proper simulation of the boundary conditions so that the analysis model will have no rigid-body motion. Seismic responses of a simple analytical model that is representative of a group of unanchored equipment have been investigated with different sets of simulated boundary conditions. The results show that, when the main interest of investigation is to assess the potential for tipping during an earthquake, the case with one of the four supporting pads simply supported, its two neighboring pads constrained against twisting motion, and all pads without vertical displacements yields the most conservative prediction. The analysis is applied to the fuel processing cell of the Integral Fast Reactor project. In order not to breach the liner of the existing facility and to keep operational flexibility of the fixtures, all new equipment to be installed within the fuel processing cell are required to be unanchored

  6. Physicochemical and nanotechnological approaches to the design of 'rigid' spatial structures of DNA

    International Nuclear Information System (INIS)

    Yevdokimov, Yu M; Salyanov, V I; Skuridin, S G; Shtykova, E V; Khlebtsov, N G; Kats, E I

    2015-01-01

    This review focuses on physicochemical and nanotechnological approaches to the design of 'rigid' particles based on double-stranded DNA molecules. The physicochemical methods imply cross-linking of adjacent DNA molecules ordered in quasinematic layers of liquid-crystalline dispersion particles by synthetic nanobridges consisting of alternating molecules of an antibiotic (daunomycin) and divalent copper ions, as well as cross-linking of these molecules as a result of their salting-out in quasinematic layers of liquid-crystalline dispersion particles under the action of lanthanide cations. The nanotechnological approach is based on the insertion of gold nanoparticles into the free space between double-stranded DNA molecules that form quasinematic layers of liquid-crystalline dispersion particles. This gives rise to extended clusters of gold nanoparticles and is accompanied by an enhancement of the interaction between the DNA molecules through gold nanoparticles and by a decrease in the solubility of dispersion particles. These approaches produce integrated 'rigid' DNA-containing spatial structures, which are incompatible with the initial aqueous polymeric solutions and have unique properties. The bibliography includes 116 references

  7. Nouvelles bornes et estimations pour les milieux poreux à matrice rigide parfaitement plastique

    Science.gov (United States)

    Bilger, Nicolas; Auslender, François; Bornert, Michel; Masson, Renaud

    We derive new rigorous bounds and self-consistent estimates for the effective yield surface of porous media with a rigid perfectly plastic matrix and a microstructure similar to Hashin's composite spheres assemblage. These results arise from a homogenisation technique that combines a pattern-based modelling for linear composite materials and a variational formulation for nonlinear media. To cite this article: N. Bilger et al., C. R. Mecanique 330 (2002) 127-132.

  8. Earth's structure and evolution inferred from topography, gravity, and seismicity.

    Science.gov (United States)

    Watkinson, A. J.; Menard, J.; Patton, R. L.

    2016-12-01

    Earth's wavelength-dependent response to loading, reflected in observed topography, gravity, and seismicity, can be interpreted in terms of a stack of layers under the assumption of transverse isotropy. The theory of plate tectonics holds that the outermost layers of this stack are mobile, produced at oceanic ridges, and consumed at subduction zones. Their toroidal motions are generally consistent with those of several rigid bodies, except in the world's active mountain belts where strains are partitioned and preserved in tectonite fabrics. Even portions of the oceanic lithosphere exhibit non-rigid behavior. Earth's gravity-topography cross-spectrum exhibits notable variations in signal amplitude and character at spherical harmonic degrees l=13, 116, 416, and 1389. Corresponding Cartesian wavelengths are approximately equal to the respective thicknesses of Earth's mantle, continental mantle lithosphere, oceanic thermal lithosphere, and continental crust, all known from seismology. Regional variations in seismic moment release with depth, derived from the global Centroid Moment Tensor catalog, are also evident in the crust and mantle lithosphere. Combined, these observations provide powerful constraints for the structure and evolution of the crust, mantle lithosphere, and mantle as a whole. All that is required is a dynamically consistent mechanism relating wavelength to layer thickness and shear-strain localization. A statistically-invariant 'diharmonic' relation exhibiting these properties appears as the leading order approximation to toroidal motions on a self-gravitating body of differential grade-2 material. We use this relation, specifically its predictions of weakness and rigidity, and of folding and shear banding response as a function of wavelength-to-thickness ratio, to interpret Earth's gravity, topography, and seismicity in four-dimensions. We find the mantle lithosphere to be about 255-km thick beneath the Himalaya and the Andes, and the long

  9. Optimum Performance-Based Seismic Design Using a Hybrid Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    S. Talatahari

    2014-01-01

    Full Text Available A hybrid optimization method is presented to optimum seismic design of steel frames considering four performance levels. These performance levels are considered to determine the optimum design of structures to reduce the structural cost. A pushover analysis of steel building frameworks subject to equivalent-static earthquake loading is utilized. The algorithm is based on the concepts of the charged system search in which each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Comparison of the results of the hybrid algorithm with those of other metaheuristic algorithms shows the efficiency of the hybrid algorithm.

  10. Seismic analysis, support design and stress calculation of HTR-PM transport and conversion devices

    International Nuclear Information System (INIS)

    Zhang Zheyu; Yuan Chaolong; Zhang Haiquan; Nie Junfeng

    2012-01-01

    Background: The transport and conversion devices are important guarantees for normal operation of HTR-PM fuel handling system in normal and fault conditions. Purpose: A conflict of devices' support design needs to be solved. The flexibility of supports is required because of pipe thermal expansion displacement, while the stiffness is also required because of large devices quality and eccentric distance. Methods: In this paper, the numerical simulation was employed to analyze the seismic characteristics and optimize the support program, Under the chosen support program, the stress calculation of platen support bracket was designed by solidworks software. Results: The supports solved the conflict between the flexibility and stiffness requirements. Conclusions: Therefore, it can ensure the safety of transport and conversion devices and the supports in seismic conditions. (authors)

  11. Rigid multibody system dynamics with uncertain rigid bodies

    Energy Technology Data Exchange (ETDEWEB)

    Batou, A., E-mail: anas.batou@univ-paris-est.fr; Soize, C., E-mail: christian.soize@univ-paris-est.fr [Universite Paris-Est, Laboratoire Modelisation et Simulation Multi Echelle, MSME UMR 8208 CNRS (France)

    2012-03-15

    This paper is devoted to the construction of a probabilistic model of uncertain rigid bodies for multibody system dynamics. We first construct a stochastic model of an uncertain rigid body by replacing the mass, the center of mass, and the tensor of inertia by random variables. The prior probability distributions of the stochastic model are constructed using the maximum entropy principle under the constraints defined by the available information. The generators of independent realizations corresponding to the prior probability distribution of these random quantities are further developed. Then several uncertain rigid bodies can be linked to each other in order to calculate the random response of a multibody dynamical system. An application is proposed to illustrate the theoretical development.

  12. Seismic stops for nuclear power plants

    International Nuclear Information System (INIS)

    Cloud, R.L.; Leung, J.S.M.; Anderson, P.H.

    1989-01-01

    In the regulated world of nuclear power, the need to have analytical proof of performance in hypothetical design-basis events such as earth quakes has placed a premium on design configurations that are mathematically tractable and easily analyzed. This is particularly true for the piping design. Depending on how the piping analyses are organized and on how old the plant is, there may be from 200 to 1000 separate piping runs to be designed, analyzed, and qualified. In this situation, the development of snubbers seemed like the answer to a piping engineer's prayer. At any place where seismic support was required but thermal motion had to be accommodated, a snubber could be specified. But, as experience has now shown, the program was solved only on paper. This article presents an alternative to conventional snubbers. These new devices, termed Seismic Stops are designed to replace snubbers directly and look like snubbers on the outside. But their design is based on a completely different principle. The original concept has adapted from early seismic-resistant pipe support designs used on fossil power plants in California. The fundamental idea is to provide a space envelope in which the pipe can expand freely between the hot and cold positions, but cannot move outside the envelope. Seismic Stops are designed to transmit any possible impact load, as would occur in an earthquake, away from the pipe itself to the Seismic Stop. The Seismic Stop pipe support is shown

  13. Response of HDR-VKL piping system to seismic test excitations: Comparison of analytical predictions and test measurements

    International Nuclear Information System (INIS)

    Srinivasan, M.G.; Kot, C.A.; Hsieh, B.J.

    1989-01-01

    As part of the earthquake investigations at the HDR (Heissdampfreaktor) Test Facility in Kahl/Main, FRG, simulated seismic tests (SHAM) were performed during April--May 1988 on the VKL (Versuchskreislauf) piping system. The purpose of these experiments was to study the behavior of piping subjected to a range of seismic excitation levels including those that exceed design levels manifold and that might induce failure of pipe supports or plasticity in the pipe runs, and to establish seismic margins for piping and pipe supports. Data obtained in the tests are also used to validate analysis methods. Detailed reports on the SHAM experiments are given elsewhere. The objective of this document is to evaluate a subsystem analysis module of the SMACS code. This module is a linear finite-element based program capable of calculating the response of nuclear power plant subsystems subjected to independent multiple-acceleration input excitation. The evaluation is based on a comparison of computational results of simulation of SHAM tests with corresponding test measurements

  14. The 2012 Ferrara seismic sequence: Regional crustal structure, earthquake sources, and seismic hazard

    Science.gov (United States)

    Malagnini, Luca; Herrmann, Robert B.; Munafò, Irene; Buttinelli, Mauro; Anselmi, Mario; Akinci, Aybige; Boschi, E.

    2012-10-01

    Inadequate seismic design codes can be dangerous, particularly when they underestimate the true hazard. In this study we use data from a sequence of moderate-sized earthquakes in northeast Italy to validate and test a regional wave propagation model which, in turn, is used to understand some weaknesses of the current design spectra. Our velocity model, while regionalized and somewhat ad hoc, is consistent with geophysical observations and the local geology. In the 0.02-0.1 Hz band, this model is validated by using it to calculate moment tensor solutions of 20 earthquakes (5.6 ≥ MW ≥ 3.2) in the 2012 Ferrara, Italy, seismic sequence. The seismic spectra observed for the relatively small main shock significantly exceeded the design spectra to be used in the area for critical structures. Observations and synthetics reveal that the ground motions are dominated by long-duration surface waves, which, apparently, the design codes do not adequately anticipate. In light of our results, the present seismic hazard assessment in the entire Pianura Padana, including the city of Milan, needs to be re-evaluated.

  15. Seismic anisotropy in deforming salt bodies

    Science.gov (United States)

    Prasse, P.; Wookey, J. M.; Kendall, J. M.; Dutko, M.

    2017-12-01

    Salt is often involved in forming hydrocarbon traps. Studying salt dynamics and the deformation processes is important for the exploration industry. We have performed numerical texture simulations of single halite crystals deformed by simple shear and axial extension using the visco-plastic self consistent approach (VPSC). A methodology from subduction studies to estimate strain in a geodynamic simulation is applied to a complex high-resolution salt diapir model. The salt diapir deformation is modelled with the ELFEN software by our industrial partner Rockfield, which is based on a finite-element code. High strain areas at the bottom of the head-like strctures of the salt diapir show high amount of seismic anisotropy due to LPO development of halite crystals. The results demonstrate that a significant degree of seismic anisotropy can be generated, validating the view that this should be accounted for in the treatment of seismic data in, for example, salt diapir settings.

  16. Seismic ratchet-fatigue failure of piping systems

    International Nuclear Information System (INIS)

    Severud, L.K.; Anderson, M.J.; Lindquist, M.R.; Weiner, E.O.

    1987-01-01

    Failures of piping systems during earthquakes have been rare. Those that have failed were either made of brittle material such as cast iron, were rigid systems between major components where component relative seismic motions tore the pipe out of the component, or were high pressure systems where a ratchet-fatigue fracture followed a local bulging of the pipe diameter. Tests to failure of an unpressurized 3-inch and a pressurized 6-inch diameter carbon steel nuclear pipe systems subjected to high-level shaking have been accomplished. The high-level shaking loads needed to cause failure were much higher than ASME Code rules would permit with present design limits. Failure analyses of these tests are presented and correlated to the test results. It was found that failure of the unpressurized system could be correlated well with standard ASME type fatigue analysis predictions. Moreover, the pressurized system failure occured in significantly less load cycles than predicted by standard fatigue analysis. However, a ratchet-fatigue and ductility exhaustion analysis of the pressurized system did correlate reasonably well. These findings indicate modifications to design analysis methods and the present ASME Code piping design rules to reduce unneeded conservatisms and to cover the ratchet-fatigue failure mode may be appropriate

  17. Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery.

    Science.gov (United States)

    Rios, Pedro; Stuart, Julie Ann; Grant, Ed

    2003-12-01

    Annual plastic flows through the business and consumer electronics manufacturing supply chain include nearly 3 billion lb of high-value engineering plastics derived from petroleum. The recovery of resource value from this stream presents critical challenges in areas of materials identification and recycling process design that demand new green engineering technologies applied together with life cycle assessment and ecological supply chain analysis to create viable plastics-to-plastics supply cycles. The sustainable recovery of potentially high-value engineering plastics streams requires that recyclers either avoid mixing plastic parts or purify later by separating smaller plastic pieces created in volume reduction (shredding) steps. Identification and separation constitute significant barriers in the plastics-to-plastics recycling value proposition. In the present work, we develop a model that accepts randomly arriving electronic products to study scenarios by which a recycler might identify and separate high-value engineering plastics as well as metals. Using discrete eventsimulation,we compare current mixed plastics recovery with spectrochemical plastic resin identification and subsequent sorting. Our results show that limited disassembly with whole-part identification can produce substantial yields in separated streams of recovered engineering thermoplastics. We find that disassembly with identification does not constitute a bottleneck, but rather, with relatively few workers, can be configured to pull the process and thus decrease maximum staging space requirements.

  18. A Plastic Design Method for RC Moment Frame Buildings against Progressive Collapse

    Directory of Open Access Journals (Sweden)

    Hadi Faghihmaleki

    2017-04-01

    Full Text Available In this study, progressive collapse potential of generic 3-, 8- and 12-storey RC moment frame buildings designed based on IBC-2006 code was investigated by performing non-linear static and dynamic analyses. It was observed that the model structures had high potential for progressive collapse when the second floor column was suddenly removed. Then, the size of beams required to satisfy the failure criteria for progressive collapse was obtained by using the virtual work method; i.e., using the equilibrium of the external work done by gravity load due to loss of a column and the internal work done by plastic rotation of beams. According to the nonlinear dynamic analysis results, the model structures designed only for normal load turned out to have strong potential for progressive collapse whereas the structures designed by plastic design concept for progressive collapse satisfied the failure criterion recommended by the GSA code. 

  19. A numerical basis for strain-gradient plasticity theory: Rate-independent and rate-dependent formulations

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Niordson, Christian Frithiof

    2014-01-01

    of a single plastic zone is analyzed to illustrate the agreement with earlier published results, whereafter examples of (ii) multiple plastic zone interaction, and (iii) elastic–plastic loading/unloading are presented. Here, the simple shear problem of an infinite slab constrained between rigid plates......A numerical model formulation of the higher order flow theory (rate-independent) by Fleck and Willis [2009. A mathematical basis for strain-gradient plasticity theory – part II: tensorial plastic multiplier. Journal of the Mechanics and Physics of Solids 57, 1045-1057.], that allows for elastic–plastic...... loading/unloading and the interaction of multiple plastic zones, is proposed. The predicted model response is compared to the corresponding rate-dependent version of visco-plastic origin, and coinciding results are obtained in the limit of small strain-rate sensitivity. First, (i) the evolution...

  20. Source properties of dynamic rupture pulses with off-fault plasticity

    KAUST Repository

    Gabriel, A.-A.

    2013-08-01

    Large dynamic stresses near earthquake rupture fronts may induce an inelastic response of the surrounding materials, leading to increased energy absorption that may affect dynamic rupture. We systematically investigate the effects of off-fault plastic energy dissipation in 2-D in-plane dynamic rupture simulations under velocity-and-state-dependent friction with severe weakening at high slip velocity. We find that plasticity does not alter the nature of the transitions between different rupture styles (decaying versus growing, pulse-like versus crack-like, and subshear versus supershear ruptures) but increases their required background stress and nucleation size. We systematically quantify the effect of amplitude and orientation of background shear stresses on the asymptotic properties of self-similar pulse-like ruptures: peak slip rate, rupture speed, healing front speed, slip gradient, and the relative contribution of plastic strain to seismic moment. Peak slip velocity and rupture speed remain bounded. From fracture mechanics arguments, we derive a nonlinear relation between their limiting values, appropriate also for crack-like and supershear ruptures. At low background stress, plasticity turns self-similar pulses into steady state pulses, for which plastic strain contributes significantly to the seismic moment. We find that the closeness to failure of the background stress state is an adequate predictor of rupture speed for relatively slow events. Our proposed relations between state of stress and earthquake source properties in the presence of off-fault plasticity may contribute to the improved interpretation of earthquake observations and to pseudodynamic source modeling for ground motion prediction.

  1. Comparison of seismic sources for shallow seismic: sledgehammer and pyrotechnics

    Directory of Open Access Journals (Sweden)

    Brom Aleksander

    2015-10-01

    Full Text Available The pyrotechnic materials are one of the types of the explosives materials which produce thermal, luminous or sound effects, gas, smoke and their combination as a result of a self-sustaining chemical reaction. Therefore, pyrotechnics can be used as a seismic source that is designed to release accumulated energy in a form of seismic wave recorded by tremor sensors (geophones after its passage through the rock mass. The aim of this paper was to determine the utility of pyrotechnics for shallow seismic engineering. The work presented comparing the conventional method of seismic wave excitation for seismic refraction method like plate and hammer and activating of firecrackers on the surface. The energy released by various sources and frequency spectra was compared for the two types of sources. The obtained results did not determine which sources gave the better results but showed very interesting aspects of using pyrotechnics in seismic measurements for example the use of pyrotechnic materials in MASW.

  2. Design aid for shear strengthening of reinforced concrete T-joints using carbon fiber reinforced plastic composites

    Science.gov (United States)

    Gergely, Ioan

    The research presented in the present work focuses on the shear strengthening of beam column joints using carbon fiber composites, a material considered in seismic retrofit in recent years more than any other new material. These composites, or fiber reinforced polymers, offer huge advantages over structural steel reinforced concrete or timber. A few of these advantages are the superior resistance to corrosion, high stiffness to weight and strength to weight ratios, and the ability to control the material's behavior by selecting the orientation of the fibers. The design and field application research on reinforced concrete cap beam-column joints includes analytical investigations using pushover analysis; design of carbon fiber layout, experimental tests and field applications. Several beam column joints have been tested recently with design variables as the type of composite system, fiber orientation and the width of carbon fiber sheets. The surface preparation has been found to be critical for the bond between concrete and composite material, which is the most important factor in joint shear strengthening. The final goal of this thesis is to develop design aids for retrofitting reinforced concrete beam column joints. Two bridge bents were tested on the Interstate-15 corridor. One bent was tested in the as-is condition. Carbon fiber reinforced plastic composite sheets were used to externally reinforce the second bridge bent. By applying the composite, the displacement ductility has been doubled, and the bent overall lateral load capacity has been increased as well. The finite element model (using DRAIN-2DX) was calibrated to model the actual stiffness of the supports. The results were similar to the experimental findings.

  3. Computational Strain Gradient Crystal Plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2011-01-01

    A model for strain gradient crystal visco-plasticity is formulated along the lines proposed by Fleck andWillis (2009) for isotropic plasticity. Size-effects are included in the model due to the addition of gradient terms in both the free energy as well as through a dissipation potential. A finite...... element solution method is presented, which delivers the slip-rate field and the velocity-field based on two minimum principles. Some plane deformation problems relevant for certain specific orientations of a face centered cubic crystal under plane loading conditions are studied, and effective in......-plane parameters are developed based on the crystallographic properties of the material. The problem of cyclic shear of a single crystal between rigid platens is studied as well as void growth of a cylindrical void....

  4. Study on vertical seismic response model of BWR-type reactor building

    International Nuclear Information System (INIS)

    Konno, T.; Motohashi, S.; Izumi, M.; Iizuka, S.

    1993-01-01

    A study on advanced seismic design for LWR has been carried out by the Nuclear Power Engineering Corporation (NUPEC), under the sponsorship of the Ministry of International Trade and Industry (MITI) of Japan. As a part of the study, it has been investigated to construct an accurate analytical model of reactor buildings for a seismic response analysis, which can reasonably represent dynamic characteristics of the building. In Japan, vibration models of reactor buildings for horizontal ground motion have been studied and examined through many simulation analyses for forced vibration tests and earthquake observations of actual buildings. And now it is possible to establish a reliable horizontal vibration model on the basis of multi-lumped mass and spring model. However, vertical vibration models have not been so much studied as horizontal models, due to less observed data for vertical motions. In this paper, the vertical seismic response models of a BWR-type reactor building including soil-structure interaction effect are numerically studied, by comparing the dynamic characteristics of (1) three dimensional finite element model, (2) multi-stick lumped mass model with a flexible base-mat, (3) multi-stick lumped mass model with a rigid base-mat and (4) single-stick lumped mass model. In particular, the BWR-type reactor building has the long span truss roof which is considered to be one of the critical members to vertical excitation. The modelings of the roof trusses are also studied

  5. Seismic Ecology

    Science.gov (United States)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The paper is devoted to researches of influence of seismic actions for industrial and civil buildings and people. The seismic actions bring influence directly on the people (vibration actions, force shocks at earthquakes) or indirectly through various build- ings and the constructions and can be strong (be felt by people) and weak (be fixed by sensing devices). The great number of work is devoted to influence of violent seismic actions (first of all of earthquakes) on people and various constructions. This work is devoted to study weak, but long seismic actions on various buildings and people. There is a need to take into account seismic oscillations, acting on the territory, at construction of various buildings on urbanized territories. Essential influence, except for violent earthquakes, man-caused seismic actions: the explosions, seismic noise, emitted by plant facilities and moving transport, radiation from high-rise buildings and constructions under action of a wind, etc. can exert. Materials on increase of man- caused seismicity in a number of regions in Russia, which earlier were not seismic, are presented in the paper. Along with maps of seismic microzoning maps to be built indicating a variation of amplitude spectra of seismic noise within day, months, years. The presence of an information about amplitudes and frequencies of oscillations from possible earthquakes and man-caused oscillations in concrete regions allows carry- ing out soundly designing and construction of industrial and civil housing projects. The construction of buildings even in not seismically dangerous regions, which have one from resonance frequencies coincident on magnitude to frequency of oscillations, emitted in this place by man-caused objects, can end in failure of these buildings and heaviest consequences for the people. The practical examples of detail of engineering- seismological investigation of large industrial and civil housing projects of Siberia territory (hydro power

  6. Preliminary deformation model for National Seismic Hazard map of Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Meilano, Irwan; Gunawan, Endra; Sarsito, Dina; Prijatna, Kosasih; Abidin, Hasanuddin Z. [Geodesy Research Division, Faculty of Earth Science and Technology, Institute of Technology Bandung (Indonesia); Susilo,; Efendi, Joni [Agency for Geospatial Information (BIG) (Indonesia)

    2015-04-24

    Preliminary deformation model for the Indonesia’s National Seismic Hazard (NSH) map is constructed as the block rotation and strain accumulation function at the elastic half-space. Deformation due to rigid body motion is estimated by rotating six tectonic blocks in Indonesia. The interseismic deformation due to subduction is estimated by assuming coupling on subduction interface while deformation at active fault is calculated by assuming each of the fault‘s segment slips beneath a locking depth or in combination with creeping in a shallower part. This research shows that rigid body motion dominates the deformation pattern with magnitude more than 15 mm/year, except in the narrow area near subduction zones and active faults where significant deformation reach to 25 mm/year.

  7. Three-dimensional seismic survey planning based on the newest data acquisition design technique; Saishin no data shutoku design ni motozuku sanjigen jishin tansa keikaku

    Energy Technology Data Exchange (ETDEWEB)

    Minehara, M; Nakagami, K; Tanaka, H [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1996-10-01

    Theory of parameter setting for data acquisition is arranged, mainly as to the seismic generating and receiving geometry. This paper also introduces an example of survey planning for three-dimensional land seismic exploration in progress. For the design of data acquisition, fundamental parameters are firstly determined on the basis of the characteristics of reflection records at a given district, and then, the layout of survey is determined. In this study, information through modeling based on the existing interpretation of geologic structures is also utilized, to reflect them for survey specifications. Land three-dimensional seismic survey was designed. Ground surface of the surveyed area consists of rice fields and hilly regions. The target was a nose-shaped structure in the depth about 2,500 m underground. A survey area of 4km{times}5km was set. Records in the shallow layers could not obtained when near offset was not ensured. Quality control of this distribution was important for grasping the shallow structure required. In this survey, the seismic generating point could be ensured more certainly than initially expected, which resulted in the sufficient security of near offset. 2 refs., 2 figs.

  8. Comparison of ex-USSR norms and current international practice in design of seismic resistant nuclear power plants

    International Nuclear Information System (INIS)

    Hauptenbuchner, B.; David, M.

    1995-01-01

    Seismic hazard has been estimated according to ex-USSR norms in the original designs of WWER type Nuclear Power Plants (NPP) in former Soviet Union as well as in all former east European countries. For some steps of the design the national standards has been also taken into account. The original ex-USSR norms and instructions has been several times changed and improved during the time. This contribution is dealing with the development of ex-USSR norms and regulations with the aim to recognise some most important differentiations in comparison with corresponding western or international ones from point of view of civil structures. The understanding of relations of these documents is very important for seismic qualification and upgrading of WWER-type, NPPs. The main Soviet/Russian Standards and Regulations related to the seismic design and qualification of NPP structures as SNiP II-A.12-69, VSN 15-78, SNiP II-7-81, PiNAE G-7-002-86, NTD SEV etc. have been taken into consideration and compared with western or international standards as IAEA 50-SG-S1, IAEA 50-SG-D15, KTA 2201.1-6, ASCE 4-86 etc. The numerical examples of structural seismic qualification has been elaborated according to different standards for better understanding and in order to determine the degree of safety referring to corresponding standards. The authors has tried also to take into account the way of application of ex-USSR norms. The comparison of different norms and regulations has been analysed and corresponding conclusions and recommendations have been derived. These conclusions and recommendations can be helpful by the seismic qualification and upgrading of WWER-type NPPs. (author)

  9. An evaluation of canonical forms for non-rigid 3D shape retrieval

    OpenAIRE

    Pickup, David; Liu, Juncheng; Sun, Xianfang; Rosin, Paul L.; Martin, Ralph R.; Cheng, Zhiquan; Lian, Zhouhui; Nie, Sipin; Jin, Longcun; Shamai, Gil; Sahillioğlu, Yusuf; Kavan, Ladislav

    2018-01-01

    Canonical forms attempt to factor out a non-rigid shape’s pose, giving a pose-neutral shape. This opens up the\\ud possibility of using methods originally designed for rigid shape retrieval for the task of non-rigid shape retrieval.\\ud We extend our recent benchmark for testing canonical form algorithms. Our new benchmark is used to evaluate a\\ud greater number of state-of-the-art canonical forms, on five recent non-rigid retrieval datasets, within two different\\ud retrieval frameworks. A tota...

  10. Development of a Plastic Melt Waste Compactor for Space Missions Experiments and Prototype Design

    Science.gov (United States)

    Pace, Gregory; Wignarajah, Kanapathipillai; Pisharody, Suresh; Fisher, John

    2004-01-01

    This paper describes development at NASA Ames Research Center of a heat melt compactor that can be used on both near term and far term missions. Experiments have been performed to characterize the behavior of composite wastes that are representative of the types of wastes produced on current and previous space missions such as International Space Station, Space Shuttle, MIR and Skylab. Experiments were conducted to characterize the volume reduction, bonding, encapsulation and biological stability of the waste composite and also to investigate other key design issues such as plastic extrusion, noxious off-gassing and removal of the of the plastic waste product from the processor. The experiments provided the data needed to design a prototype plastic melt waste processor, a description of which is included in the paper.

  11. Thermo-mechanical response of rigid plastic laminates for greenhouse covering

    Directory of Open Access Journals (Sweden)

    Silvana Fuina

    2016-09-01

    Full Text Available Innovation in the field of protected crops represents an argument of great applied and theoretical research attention due to constantly evolving technologies and automation for higher quality flower and vegetable production and to the corresponding environmental and economic impact. The aim of this paper is to provide an analysis of some thermomechanical properties of rigid polymeric laminates for greenhouses claddings, including innovative tests such as the thermographic ones. Four types of laminates have been analysed: two polycarbonates, a polymethylmethacrylate and a polyethylene terephthalate (PET. The tests gave interesting results on different important properties, such as radiometric properties, limit stresses, strains and ductility. Moreover, a direct comparison of infrared images and force elongation curves gave important information on the relation of the (localised or homogeneous damage evolution, with both an applicative and theoretical implication. Finally, even if to the authors knowledge at present there are no examples of using PET for covering greenhouses, the results of this paper indicates the thermomechanical and radiometric characteristics of this material make it interesting for agricultural applications.

  12. Seismic Isolation Studies and Applications for Nuclear Facilities

    International Nuclear Information System (INIS)

    Choun, Young Sun

    2005-01-01

    Seismic isolation, which is being used worldwide for buildings, is a well-known technology to protect structures from destructive earthquakes. In spite of the many potential advantages of a seismic isolation, however, the applications of a seismic isolation to nuclear facilities have been very limited because of a lack of sufficient knowledge about the isolation practices. The most important advantage of seismic isolation applications in nuclear power plants is that the safety and reliability of the plants can be remarkably improved through the standardization of the structures and equipment regardless of the seismic conditions of the sites. The standardization of structures and equipment will reduce the capital cost and design/construction schedule for future plants. Also, a seismic isolation can facilitate decoupling of the design and development for equipment, piping, and components due to the use of the generic in-structure response spectra associated with the standardized plant. Moreover, a seismic isolation will improve the plant safety margin against the design basis earthquake (DBE) as well as a beyond design basis seismic event due to its superior seismic performance. A number of seismic isolation systems have been developed and tested since 1970s, and some of them have been applied to conventional structures in several countries of high seismicity. In the nuclear field, there have been many studies on the applicability of such seismic isolation systems, but the application of a seismic isolation is very limited. Currently, there are some discussions on the application of seismic isolation systems to nuclear facilities between the nuclear industries and the regulatory agencies in the U.S.. In the future, a seismic isolation for nuclear facilities will be one of the important issues in the nuclear industry. This paper summarizes the past studies and applications of a seismic isolation in the nuclear industry

  13. Wave passage effects on the seismic response of a maglev vehicle moving on multi-span guideway

    Directory of Open Access Journals (Sweden)

    J. D. Yau

    Full Text Available As a seismic wave travels along the separate supports of an extended structure, the structure is subjected to multiple-support excitation due to seismic wave propagation. Considering the seismic wave passage effect, this paper describes seismic analysis of a maglev vehicle moving on a multiply supported gudieway. The guideway system is modeled as a series of simple beams and the vehicle as a four degrees-of-freedom (DOFs rigid bar equipped with multiple onboard PI+LQR hybrid controllers. The controller is used to regulate control voltage for tuning both magnetic forces of uplift levitation and lateral guidance in the maglev system. Numerical studies show that as a maglev vehicle is equipped with more supported magnets then they can provide more control gains for tuning the guidance forces of the moving vehicle, and mitigate seismic-induced lateral vibration of a maglev vehicle running a guideway.

  14. Seismic microzonation of Bangalore, India

    Indian Academy of Sciences (India)

    Evaluation of seismic hazards and microzonation of cities enable us to characterize the potential seismic areas which have similar exposures to haz- ards of earthquakes, and these results can be used for designing new structures or retrofitting the existing ones. Study of seismic hazard and preparation of microzonation ...

  15. Integrated system for seismic evaluations

    International Nuclear Information System (INIS)

    Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1989-01-01

    This paper describes the various features of the Seismic Module of the CARES system (Computer Analysis for Rapid Evaluation of Structures). This system was developed by Brookhaven National Laboratory (BNL) for the US Nuclear Regulatory Commission to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structured in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the Seismic Module in particular. The development of the Seismic Module of the CARES system is based on an approach which incorporates all major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities. It has been designed with user friendly features and it allows for interactive manipulation of various analysis phases during the seismic design process. The capabilities of the seismic module include (a) generation of artificial time histories compatible with given design ground response spectra, (b) development of Power Spectral Density (PSD) functions associated with the seismic input, (c) deconvolution analysis using vertically propagating shear waves through a given soil profile, and (d) development of in-structure response spectra or corresponding PSD's. It should be pointed out that these types of analyses can also be performed individually by using available computer codes such as FLUSH, SAP, etc. The uniqueness of the CARES, however, lies on its ability to perform all required phases of the seismic analysis in an integrated manner. 5 refs., 6 figs

  16. Seismic design margin evaluation of systems and equipment required for safe shutdown of North Anna, Units 1 and 2, following an SSE (safe-shutdown earthquake) event. Technical report

    International Nuclear Information System (INIS)

    Desai, K.D.

    1981-06-01

    The Advisory Committee on Reactor Safeguards recommended that the NRC staff review in detail the capability and available seismic design margin of fluid systems and equipment used in North Anna, Units 1 and 2 to achieve safe shutdown following a site-design safe-shutdown earthquake (SSE). The staff conducted a series of plant visits and meetings with the licensee to view and discuss the seismic design methodology used for systems, equipment and their supports. The report is a description and evaluation of the seismic design criteria, design conservatisms and seismic design margin for North Anna, Units 1 and 2

  17. Study on structural seismic margin and probabilistic seismic risk. Development of a structural capacity-seismic risk diagram

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ohtori, Yasuki; Hirata, Kazuta

    2010-01-01

    Seismic margin is extremely important index and information when we evaluate and account seismic safety of critical structures, systems and components quantitatively. Therefore, it is required that electric power companies evaluate the seismic margin of each plant in back-check of nuclear power plants in Japan. The seismic margin of structures is usually defined as a structural capacity margin corresponding to design earthquake ground motion. However, there is little agreement as to the definition of the seismic margin and we have no knowledge about a relationship between the seismic margin and seismic risk (annual failure probability) which is obtained in PSA (Probabilistic Safety Assessment). The purpose of this report is to discuss a definition of structural seismic margin and to develop a diagram which can identify a relation between seismic margin and seismic risk. The main results of this paper are described as follows: (1) We develop seismic margin which is defined based on the fact that intensity of earthquake ground motion is more appropriate than the conventional definition (i.e., the response-based seismic margin) for the following reasons: -seismic margin based on earthquake ground motion is invariant where different typed structures are considered, -stakeholders can understand the seismic margin based on the earthquake ground motion better than the response-based one. (2) The developed seismic margin-risk diagram facilitates us to judge easily whether we need to perform detailed probabilistic risk analysis or only deterministic analysis, given that the reference risk level although information on the uncertainty parameter beta is not obtained. (3) We have performed numerical simulations based on the developed method for four sites in Japan. The structural capacity-risk diagram differs depending on each location because the diagram is greatly influenced by seismic hazard information for a target site. Furthermore, the required structural capacity

  18. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-17

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary

  19. Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Alessandro [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy) and LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States)]. E-mail: alessandro.bertolini@desy.de; DeSalvo, Riccardo [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Fidecaro, Francesco [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy); Francesconi, Mario [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy); Marka, Szabolcs [Department of Physics, Columbia University, 538 W. 120th St., New York, NY 10027 (United States); Sannibale, Virginio [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Simonetti, Duccio [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy); Takamori, Akiteru [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-0032 (Japan); Tariq, Hareem [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States)

    2006-01-15

    The design and mechanics for a new very-low noise low frequency horizontal accelerometer is presented. The sensor has been designed to be integrated in an advanced seismic isolation system for interferometric gravitational wave detectors. The motion of a small monolithic folded-pendulum (FP) is monitored by a high resolution capacitance displacement sensor; a feedback force actuator keeps the mass at the equilibrium position. The feedback signal is proportional to the ground acceleration in the frequency range 0-150Hz. The very high mechanical quality factor, Q{approx}3000 at a resonant frequency of 0.5Hz, reduces the Brownian motion of the proof mass of the accelerometer below the resolution of the displacement sensor. This scheme enables the accelerometer to detect the inertial displacement of a platform with a root-mean-square noise less than 1nm, integrated over the frequency band from 0.01 to 150Hz. The FP geometry, combined with the monolithic design, allows the accelerometer to be extremely directional. A vertical-horizontal coupling ranging better than 10{sup -3} has been achieved. A detailed account of the design and construction of the accelerometer is reported here. The instrument is fully ultra-high vacuum compatible and has been tested and approved for integration in seismic attenuation system of japanese TAMA 300 gravitational wave detector. The monolithic design also makes the accelerometer suitable for cryogenic operation.

  20. Eccentric bracing of steel frames in seismic design

    International Nuclear Information System (INIS)

    Popov, E.P.; Manheim, D.

    1981-01-01

    The general concepts of designing eccentrically braced steel frames are discussed. A number of possible bracing configurations are pointed out which are suitable for this type of framing. The necessity for considering the collapse mechanism for the selected frame is brought out, and the need for considering the ductility demands for the critical elements is indicated. The need for web stiffness along the critical beam elements (links), and the necessity for lateral bracing at the potential plastic hinges is emphasized. Properly designed eccentrically braced frames provide good drift control for moderate earthquakes, and good ductility for extreme earthquakes. Experience gained in practice attests to the practicality and economy of this kind of framing. The major disadvantage of properly designed eccentrically braced frames lies in the fact that high local distortions may occur during a severe earthquake requiring repair. However, such severe distortions should attenuate rapidly from the damaged areas. (orig./HP)

  1. Plasticity - a limiting case of creep

    International Nuclear Information System (INIS)

    Cords, H.; Kleist, G.; Zimmermann, R.

    1986-11-01

    The present work is an attempt to develop further the so-called unified theory for viscoplastic constitutive equations as used for metals or metal alloys. Typically, in similar approaches creep strains and plastic strains are derived from one common stress-strain relationship for inelastic strain rates employing an internal stress function as a back stress. Some novel concepts concerning the definition of the internal stress, plastic yielding and material hardening have been introduced, formulated mathematically and tested for correspondence with a standard type of materials behaviour. As a result of the investigations a system of simultaneous differential equations is defined which has been used to elaborate a common view on a number of different material effects observed in creep and plasticity i.e. normal and inverted primary creep, recoverable creep, incubation time and anelasticity in stress reduction, negative stress relaxation, plastic yielding, perfect plasticity, negative strain rate sensitivity, serrated flow, strain hardening in monotonic and cyclic loading. The theoretical approach is mainly based on a lateral contraction movement not following rigidly the longitudinal extension of the material specimen by a prescribed constant value of Poisson's ratio as usual, but following the axial extension in a process of drag which allows for retardation and which simultaneously impedes the longitudinal straining. (orig.) [de

  2. Design principles of electrical synaptic plasticity.

    Science.gov (United States)

    O'Brien, John

    2017-09-08

    Essentially all animals with nervous systems utilize electrical synapses as a core element of communication. Electrical synapses, formed by gap junctions between neurons, provide rapid, bidirectional communication that accomplishes tasks distinct from and complementary to chemical synapses. These include coordination of neuron activity, suppression of voltage noise, establishment of electrical pathways that define circuits, and modulation of high order network behavior. In keeping with the omnipresent demand to alter neural network function in order to respond to environmental cues and perform tasks, electrical synapses exhibit extensive plasticity. In some networks, this plasticity can have dramatic effects that completely remodel circuits or remove the influence of certain cell types from networks. Electrical synaptic plasticity occurs on three distinct time scales, ranging from milliseconds to days, with different mechanisms accounting for each. This essay highlights principles that dictate the properties of electrical coupling within networks and the plasticity of the electrical synapses, drawing examples extensively from retinal networks. Copyright © 2017 The Author. Published by Elsevier B.V. All rights reserved.

  3. Analytical Study of Common Rigid Steel Connections under the Effect of Heat

    Directory of Open Access Journals (Sweden)

    Rohola Rahnavard

    2014-01-01

    Full Text Available One of the most important members of steel structure’s connection region is beam-to-column connection. Rigid connection in steel moment frame has special role in the behavior of these structures and the fire resistance of these connections can be important. In this paper the behaviors of three common types of rigid connections in Iran under the effect of heat were studied by the use of numerical finite element methods through ABAQUS software. The models were verified by the use of an experimental model through elastic and plastic amplitudes up to collapse and during numerical results, and the effect of large deformation in the nonlinear region has also been considered. The results show that the connection with the end plate had a better performance against heat than other connections. Also reduced stiffness and lateral buckling in this connection were less than other connections.

  4. Engineering model for low-velocity impacts of multi-material cylinder on a rigid boundary

    Directory of Open Access Journals (Sweden)

    Delvare F.

    2012-08-01

    Full Text Available Modern ballistic problems involve the impact of multi-material projectiles. In order to model the impact phenomenon, different levels of analysis can be developed: empirical, engineering and simulation models. Engineering models are important because they allow the understanding of the physical phenomenon of the impact materials. However, some simplifications can be assumed to reduce the number of variables. For example, some engineering models have been developed to approximate the behavior of single cylinders when impacts a rigid surface. However, the cylinder deformation depends of its instantaneous velocity. At this work, an analytical model is proposed for modeling the behavior of a unique cylinder composed of two different metals cylinders over a rigid surface. Material models are assumed as rigid-perfectly plastic. Differential equation systems are solved using a numerical Runge-Kutta method. Results are compared with computational simulations using AUTODYN 2D hydrocode. It was found a good agreement between engineering model and simulation results. Model is limited by the impact velocity which is transition at the interface point given by the hydro dynamical pressure proposed by Tate.

  5. Seismic evaluation of existing nuclear power plants

    International Nuclear Information System (INIS)

    2003-01-01

    The IAEA nuclear safety standards publications address the site evaluation and the design of new nuclear power plants (NPPs), including seismic hazard assessment and safe seismic design, at the level of the Safety Requirements as well as at the level of dedicated Safety Guides. It rapidly became apparent that the existing nuclear safety standards documents were not adequate for handling specific issues in the seismic evaluation of existing NPPs, and that a dedicated document was necessary. This is the purpose of this Safety Report, which is written in the spirit of the nuclear safety standards and can be regarded as guidance for the interpretation of their intent. Worldwide experience shows that an assessment of the seismic capacity of an existing operating facility can be prompted for the following: (a) Evidence of a greater seismic hazard at the site than expected before, owing to new or additional data and/or to new methods; (b) Regulatory requirements, such as periodic safety reviews, to ensure that the plant has adequate margins for seismic loads; (c) Lack of anti-seismic design or poor anti-seismic design; (d) New technical finding such as vulnerability of some structures (masonry walls) or equipment (relays), other feedback and new experience from real earthquakes. Post-construction evaluation programmes evaluate the current capability of the plant to withstand the seismic concern and identify any necessary upgrades or changes in operating procedures. Seismic qualification is distinguished from seismic evaluation primarily in that seismic qualification is intended to be performed at the design stage of a plant, whereas seismic evaluation is intended to be applied after a plant has been constructed. Although some guidelines do exist for the evaluation of existing NPPs, these are not established at the level of a regulatory guide or its equivalent. Nevertheless, a number of existing NPPs throughout the world have been and are being subjected to review of their

  6. Seismic evaluation and upgrading design of overhead roads between reactor buildings of WWER-1000 MW type NPP

    International Nuclear Information System (INIS)

    Jordanov, M.J.; Stoyanov, G.S.; Geshanov, I.H.; Kirilov, K.P.; Schuetz, W.

    2003-01-01

    This paper presents results obtained during the study of overhead roads between Reactor Building (RB) of WWER-1000 MW NPP and possible measures for their seismic upgrade. The main objective of this project is to evaluate the behavior of overhead roads under site-specific seismic loading and to determine whether this structure satisfies current international safety regulations, followed by development of upgrading concepts. Overhead roads are pre-cast RC structure, which can be divided to separate substructures. They comprise of pedestrian gallery and pipeline box, connecting reactor buildings with auxiliary building. They are mounted at approximately 10 m above ground level. The overhead roads are evaluated for Review Level Earthquake (RLE) as seismic category II structures. As seismic input motion is RLE, free field response spectra anchored to 0.2 g PGA are used with 0.5 scaling factor. Soil-Structure Interaction effects are taken into account through equivalent soil springs with frequency adjusted stiffness. In order to meet the objective of the project a technical design specification is developed for conformance with International, US and Bulgarian standards and codes, taking into account site specific conditions. The general approach is consistent with up-to-date practice for evaluation and upgrade of nuclear power plant facilities. The separate steps comprising the overall fulfillment of project's major objectives may be summarized as follows: study of all available data for initial design and as built conditions, creation of 3-D detailed finite element models for as-built structure, determination of dynamic characteristics, evaluation of adequacy of initial design under new seismic loading (calculation of D/C ratios for structural members and connections, evaluation of embedment lengths for embedded parts and rebars, deformation evaluation, stability checks), development of upgrading concepts for enhancement, verification of capability of upgraded structure

  7. Utilization of fiber reinforced plastics in rotor blades of wind turbines. WF Information

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    In order to produce wind power plants of the future with high power (1-5 MW), the wind turbines are constructed with large rotor diameters (up to 145 m). The rotor blade has to be designed for a service life of at least 25 years. The fiber bonded or hybrid structure (metal + fiber composite material) is certainly attractive, especially in corrosive environment, compared to conventional metal constructions (steel or aluminum in welded, riveted, or bolted form). Light, rigid, and dynamically high-strength rotor blades can be built with fiber reinforced plastics. The present report gives a survey of the material problems arising in such plants.

  8. Life-cycle cost assessment of optimally designed reinforced concrete buildings under seismic actions

    International Nuclear Information System (INIS)

    Mitropoulou, Chara Ch.; Lagaros, Nikos D.; Papadrakakis, Manolis

    2011-01-01

    Life-cycle cost analysis (LCCA) is an assessment tool for studying the performance of systems in many fields of engineering. In earthquake engineering LCCA demands the calculation of the cost components that are related to the performance of the structure in multiple earthquake hazard levels. Incremental static and dynamic analyses are two procedures that can be used for estimating the seismic capacity of a structural system and can therefore be incorporated into the LCCA methodology. In this work the effect of the analysis procedure, the number of seismic records imposed, the performance criterion used and the structural type (regular or irregular) is investigated, on the life-cycle cost analysis of 3D reinforced concrete structures. Furthermore, the influence of uncertainties on the seismic response of structural systems and their impact on LCCA is examined. The uncertainty on the material properties, the cross-section dimensions and the record-incident angle is taking into account with the incorporation of the Latin hypercube sampling method into the incremental dynamic analysis procedure. In addition, the LCCA methodology is used as an assessment tool for the designs obtained by means of prescriptive and performance-based optimum design methodologies. The first one is obtained from a single-objective optimization problem, where the initial construction cost was the objective to be minimized, while the second one as a two-objective optimization problem where the life-cycle cost was the additional objective also to be minimized.

  9. The rigid Andean sliver hypothesis challenged : impact on interseismic coupling on the Chilean subduction zone

    Science.gov (United States)

    Metois, M.

    2017-12-01

    Convergence partitioning between subduction zones and crustal active structures has been widely evidenced. For instance, the convergence between the Indian and Sunda plates is accommodated both by the Sumatra subduction zone and the Great Sumatran strike-slip fault, that defines a narrow sliver. In Cascadia, small-scale rotating rigid blocks bounded by active faults have been proposed (e.g. McCaffrey et al. 2007). Recent advances in geodetic measurements along the South-American margin especially in Ecuador, Peru and Chile and the need for precise determination of the coupling amount on the megathrust interface in particular for seismic hazard assessment, led several authors to propose the existence of large-scale Andean slivers rotating clockwise and counter-clockwise South and North of the Arica bend, respectively (e.g. Chlieh et al. 2011, Nocquet et al. 2014, Métois et al. 2013). In Chile, one single large Andean sliver bounded to the west by the subduction thrust and to the east by the subandean fold-an-thrust belt active front is used to mimic the velocities observed in the middle to far field that are misfitted by elastic coupling models on the megathrust interface alone (Métois et al. 2016). This rigid sliver is supposed to rotate clockwise around a Euler pole located in the South Atlantic ocean, consistently with long-term observed rotations detected by paleomagnetism (e.g. Arriagada et al. 2008). However, recent GPS data acquired in the Taltal area ( 26°S, Klein et al. submitted) show higher than expected middle-field eastward velocities and question the first-order assumption of a rigid Andean sliver. Mis-modeling the fore-arc deformation has a direct impact on the inverted coupling amount and distribution, and could therefore bias significantly the megathrust rupture scenarios. Correctly estimating the current-day deformation of the Andes is therefore required to properly assess for coupling on the plate interface and is challenging since crustal

  10. Development of seismic design method for free standing rack and applicability to Japanese nuclear power plant

    International Nuclear Information System (INIS)

    Takaki, Yu; Taniguchi, Katsuhiko; Kishimoto, Junichi; Iwasaki, Akihisa; Nekomoto, Yoshitsugu; Kuga, Tohru; Kameyama, Masashi

    2017-01-01

    Free standing racks which are not anchored to the pool floor nor walls have never been adopted in Japan. Under an earthquake, behaviors of free standing racks are nonlinear and involve a complex combination of motions (sliding, rocking, and twisting) and impacts between a fuel assembly and the fuel cell walls and between a pit floor and rack pedestals. To predict a seismic response of free standing racks, the seismic analysis requires careful considerations of these complex phenomena (sliding, rocking, and twisting), fluid coupling effects and frictional effects. We carried out seismic experiments on the full-scale rack model in both water and dry conditions and obtained the fundamental data about behavior of free standing racks (sliding, and rocking motions). We have developed the nonlinear dynamic analysis method to predict seismic response of free standing racks utilizing the full-scale test result and verified the analysis evaluation method of free standing rack by comparison between analysis results and experimental data. Furthermore, we applied the seismic design method to the free standing rack in the Japanese nuclear plant (Mihama nuclear power station Unit 3), and verified that the free standing rack was applicable to Japanese nuclear plant. (author)

  11. Subsurface Characterization using Geophysical Seismic Refraction Survey for Slope Stabilization Design with Soil Nailing

    Science.gov (United States)

    Ashraf Mohamad Ismail, Mohd; Ng, Soon Min; Hazreek Zainal Abidin, Mohd; Madun, Aziman

    2018-04-01

    The application of geophysical seismic refraction for slope stabilization design using soil nailing method was demonstrated in this study. The potential weak layer of the study area is first identify prior to determining the appropriate length and location of the soil nail. A total of 7 seismic refraction survey lines were conducted at the study area with standard procedures. The refraction data were then analyzed by using the Pickwin and Plotrefa computer software package to obtain the seismic velocity profiles distribution. These results were correlated with the complementary borehole data to interpret the subsurface profile of the study area. It has been identified that layer 1 to 3 is the potential weak zone susceptible to slope failure. Hence, soil nails should be installed to transfer the tensile load from the less stable layer 3 to the more stable layer 4. The soil-nail interaction will provide a reinforcing action to the soil mass thereby increasing the stability of the slope.

  12. Test-based approach to cable tray support system analysis and design: Behavior and test methods

    Energy Technology Data Exchange (ETDEWEB)

    Reigles, Damon G., E-mail: dreigles@engnovex.com [engNoveX, Inc., 19C Trolley Square, Wilmington, DE 19806 (United States); Brachmann, Ingo; Johnson, William H. [Bechtel Nuclear, Security & Environmental, 12011 Sunset Hills Rd, Suite 110, Reston, VA 20190 (United States); Gürbüz, Orhan [Tobolski Watkins Engineering, Inc., 4125 Sorrento Valley Blvd, Suite B, San Diego, CA 92121 (United States)

    2016-06-15

    Highlights: • Describes dynamic response behavior of unistrut type cable tray supports. • Summarizes observations from past full-scale shake table test programs. • Outlines testing methodologies necessary to identify key system parameters. - Abstract: Nuclear power plant safety-related cable tray support systems subjected to seismic loadings were originally understood and designed to behave as linear elastic systems. This behavioral paradigm persisted until the early 1980s when, due to evolution of regulatory criteria, some as-installed systems needed to be qualified to higher seismic motions than originally designed for. This requirement prompted a more in-depth consideration of the true seismic response behavior of support systems. Several utilities initiated extensive test programs, which demonstrated that trapeze strut-type cable tray support systems exhibited inelastic and nonlinear response behaviors with plastic hinging at the connections together with high damping due to bouncing of cables in the trays. These observations were used to demonstrate and justify the seismic adequacy of the aforementioned as-installed systems. However, no formalized design methodology or criteria were ever established to facilitate use of these test data for future evaluations. This paper assimilates and reviews the various test data and conclusions for the purpose of developing a design methodology for the seismic qualification of safety-related cable tray support systems.

  13. Seismic design of nuclear power plants. Where are we now?

    International Nuclear Information System (INIS)

    Roesset, J.M.

    1995-01-01

    The lack of any significant activity in the design and construction of new nuclear power plants over the last ten years has resulted in a corresponding lull in the basic academic research carried out in this field. While some work is still going on related to the evaluation of existing plants or to litigation over some of them (including some that never became operational) most of it is of a very applied nature and little basic research is being conducted at present. Yet research on earthquake engineering in general, as applied to buildings, bridges, lifelines, dams and other constructed facilities has continued. This paper attempts to look at some of the areas where there were major uncertainties in the seismic design of nuclear power plants (selection of the design earthquake and its characteristics, evaluation of soil effects and soil structure interactions, dynamic analysis and design of the structures), the progress that has been made in these areas, and the remaining issues in need of further research. (author)

  14. Seismic design of nuclear power plants - where are we now?

    International Nuclear Information System (INIS)

    Roesset, J.M.

    1998-01-01

    The lack of any significant activity in the design and construction of new nuclear power plants over the last 10 years has resulted in a corresponding lull in the basic academic research carried out in this field. Whilst some work is still going on related to the evaluation of existing plants or to litigation over some of them (including some that never became operational) most of it is of a very applied nature and little basic research is being conducted at present. However, research on earthquake engineering in general, as applied to buildings, bridges, lifelines, dams and other constructed facilities has continued. This paper attempts to look at some of the areas where there were major uncertainties in the seismic design of nuclear power plants (selection of the design earthquake and its characteristics, evaluation of soil effects and soil structure interactions, dynamic analysis and design of the structures), the progress that has been made in these areas, and the remaining issues in need of further research. (orig.)

  15. Seismic fragility analysis of a nuclear building based on probabilistic seismic hazard assessment and soil-structure interaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R.; Ni, S.; Chen, R.; Han, X.M. [CANDU Energy Inc, Mississauga, Ontario (Canada); Mullin, D. [New Brunswick Power, Point Lepreau, New Brunswick (Canada)

    2016-09-15

    Seismic fragility analyses are conducted as part of seismic probabilistic safety assessment (SPSA) for nuclear facilities. Probabilistic seismic hazard assessment (PSHA) has been undertaken for a nuclear power plant in eastern Canada. Uniform Hazard Spectra (UHS), obtained from the PSHA, is characterized by high frequency content which differs from the original plant design basis earthquake spectral shape. Seismic fragility calculations for the service building of a CANDU 6 nuclear power plant suggests that the high frequency effects of the UHS can be mitigated through site response analysis with site specific geological conditions and state-of-the-art soil-structure interaction analysis. In this paper, it is shown that by performing a detailed seismic analysis using the latest technology, the conservatism embedded in the original seismic design can be quantified and the seismic capacity of the building in terms of High Confidence of Low Probability of Failure (HCLPF) can be improved. (author)

  16. Current USAEC seismic requirements for nuclear power plants

    International Nuclear Information System (INIS)

    Mehta, D.S.

    1975-01-01

    The principal seismic and geologic considerations which guide the USAEC in its evaluation of the suitability of proposed sites for nuclear power plants and plant design bases are set forth as design criteria in the AEC regulatory guides. The basic requirements of seismic design and analysis for seismic Category I structures, components, and systems important to public safety have been established in the USAEC regulatory guides and Code of Federal Regulations. It is pointed out that the current state-of-art techniques, best available technology, and additional studies in the field of earthquake engineering can be utilized to resolve seismic concerns. The seismic design requirements for nuclear plants to withstand postulated earthquakes can be standardized and this will be a significant milestone in the continuation of the Nuclear Standardization Program. (author)

  17. Thermal regime of the lithosphere and prediction of seismic hazard in the Caspian region

    International Nuclear Information System (INIS)

    Levin, L.E.; Solodilov, L.N.; Kondorskaya, N.V.; Gasanov, A.G; Panahi, B.M.

    2002-01-01

    Full text : Prediction of seicmicity is one of elements of ecology hazard warning. In this collective research, it is elaborated in three directions : quantitative estimate of regional faults by level of seismic activity; ascertainment of space position of earthquake risk zones, determination of high seismic potential sites for the period of the next 3-5 years. During elaboration of prediction, it takes into account that peculiar feature all over the is determined by relationship of about 90 percent of earthquake hypocenters and released energy of seismic waves with elactic-brittle ayer of the lithosphere. Concetration of earthquakes epicenters is established predominantly in zones of complex structure of elastic-brittle layer where gradient of it thickness is 20-30 km. Directions of hypocenters migration in the plastic-viscous layer reveal a space position of seismic dangerous zones. All this provides a necessity for generalization of data on location of earthquakes epicenters; determination of their magnitudes, space position of regional faults and heat flow with calculation of thermal regime being made for clarification of the lithosphere and elastic-brittle thickness variations separately. General analysis includes a calculation of released seismic wave energy and determination of peculiar features of its distribution in the entire region and also studies of hypocenters migration in the plastic-viscous layer of the litosphere in time.

  18. SHAKING TABLE TESTS ON SEISMIC DEFORMATION OF PILE SUPPORTED PIER

    Science.gov (United States)

    Fujita, Daiki; Kohama, Eiji; Takenobu, Masahiro; Yoshida, Makoto; Kiku, Hiroyoshi

    The seismic deformation characeteristics of a pile supported pier was examined with the shake table test, especially focusing on the pier after its deformation during earthquakes. The model based on the similitude of the fully-plastic moment in piles was prepared to confirm the deformation and stress characteristic after reaching the fully-plastic moment. Moreover, assuming transportation of emergency supplies and occurrence of after shock in the post-disaster period, the pile supported pier was loaded with weight after reaching fully-plastic moment and excited with the shaking table. As the result, it is identified that the displacement of the pile supported pier is comparatively small if bending strength of piles does not decrease after reaching fully-plastic moment due to nonoccourrence of local backling or strain hardening.

  19. Optimization Criteria In Design Of Seismic Isolated Building

    International Nuclear Information System (INIS)

    Clemente, Paolo; Buffarini, Giacomo

    2008-01-01

    Use of new anti-seismic techniques is certainly suitable for buildings of strategic importance and, in general, in the case of very high risk. For ordinary buildings, instead, the cost of base isolation system should be balanced by an equivalent saving in the structure. The comparison criteria have been first defined, then a large numerical investigation has been carried out to analyze the effectiveness and the economic suitability of seismic isolation in concrete buildings

  20. DRY TRANSFER FACILITY SEISMIC ANALYSIS

    International Nuclear Information System (INIS)

    EARNEST, S.; KO, H.; DOCKERY, W.; PERNISI, R.

    2004-01-01

    The purpose of this calculation is to perform a dynamic and static analysis on the Dry Transfer Facility, and to determine the response spectra seismic forces for the design basis ground motions. The resulting seismic forces and accelerations will be used in a subsequent calculation to complete preliminary design of the concrete shear walls, diaphragms, and basemat

  1. Original earthquake design basis in light of recent seismic hazard studies

    International Nuclear Information System (INIS)

    Petrovski, D.

    1993-01-01

    For the purpose of conceiving the framework within which efforts have been made in the eastern countries to construct earthquake resistant nuclear power plants, a review of the development and application of the seismic zoning map of USSR is given. The normative values of seismic intensity and acceleration are discussed from the aspect of recent probabilistic seismic hazard studies. To that effect, presented briefly in this paper is the methodology of probabilistic seismic hazard analysis. (author)

  2. The effect of seismic motion characteristics on the inelastic response reduction of cylindrical shell structures

    International Nuclear Information System (INIS)

    Hagiwara, Y.; Yamamoto, K.; Akiyama, H.

    1993-01-01

    Reactor vessels of FBR are cylindrical shell structures, whose critical failure mode during earthquakes is plastic buckling in shear or bending mode. In buckling prevention of the vessels, it is of primary importance to realistically evaluate the plastic response reduction effect in the pre-buckling stage. Though the authors have already proposed a empirical formula to estimate the response reduction effect, the formula depends only on the pre-buckling ductility factor in the evaluation for the purpose of easy design practice. In this study, the effect of seismic motion characteristics on the response reduction effect was investigated both experimentally and numerically, and a improved version of the empirical expression of the reduction factor was proposed. In this new method, the response reduction effect is evaluated by an initial acceleration amplification factor in addition to the ductility of structures. (author)

  3. Studies on the Needs of Seismic Base Isolation Concept and its Standardization

    International Nuclear Information System (INIS)

    Lee, Min-Seok; Kim, Jong-Hae

    2015-01-01

    In the late 1970s, seismic resistance design was introduced as a new design concept through the construction of nuclear power plants. Before this, lateral forces other than wind loads, such as seismic forces, were not taken into consideration in the structural design process. However, in response to the building of increasingly large and heavy structures such as nuclear power plants, a consensus began to form in society regarding the importance of seismic resistance design to avoid a largescale calamity. Since then, Korea has reinforced the relevant regulations, and there has been some progress. At the same time, the seismic base isolation concept was introduced to encourage active research activities related to building safety issues. It has lately been applied for the purpose of reducing construction costs. In 1980s, seismic base isolation design was applied for 'Cruas' plant in France and 'Koeberg' plant in South Africa. Those two are the few cases in which the seismic base isolation design was applied; for the rest, seismic resistance design was applied in most nuclear power plants that are in operation and in construction in the world. Rather than welcoming innovative technology on a trial basis, nuclear power plant design makes use only of proven technologies, which explains the application of seismic resistance design. As seismic base isolation design has become more accepted for use in the building of domestic general bridges, which has, thereby, confirmed its safety, it has been accepted for nuclear power plant design and has even been actively applied. So far, most structures of nuclear facility have been constructed with seismic resistance design and engineering methods. However, seismic force prediction is not perfect in reality; nor is it financially beneficial to apply the system for gradually increasing seismic resistance design loads. Therefore, it is necessary to apply a seismic base isolation system as a way to help secure the

  4. Studies on the Needs of Seismic Base Isolation Concept and its Standardization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min-Seok; Kim, Jong-Hae [Korea Electric Association, Seoul (Korea, Republic of)

    2015-05-15

    In the late 1970s, seismic resistance design was introduced as a new design concept through the construction of nuclear power plants. Before this, lateral forces other than wind loads, such as seismic forces, were not taken into consideration in the structural design process. However, in response to the building of increasingly large and heavy structures such as nuclear power plants, a consensus began to form in society regarding the importance of seismic resistance design to avoid a largescale calamity. Since then, Korea has reinforced the relevant regulations, and there has been some progress. At the same time, the seismic base isolation concept was introduced to encourage active research activities related to building safety issues. It has lately been applied for the purpose of reducing construction costs. In 1980s, seismic base isolation design was applied for 'Cruas' plant in France and 'Koeberg' plant in South Africa. Those two are the few cases in which the seismic base isolation design was applied; for the rest, seismic resistance design was applied in most nuclear power plants that are in operation and in construction in the world. Rather than welcoming innovative technology on a trial basis, nuclear power plant design makes use only of proven technologies, which explains the application of seismic resistance design. As seismic base isolation design has become more accepted for use in the building of domestic general bridges, which has, thereby, confirmed its safety, it has been accepted for nuclear power plant design and has even been actively applied. So far, most structures of nuclear facility have been constructed with seismic resistance design and engineering methods. However, seismic force prediction is not perfect in reality; nor is it financially beneficial to apply the system for gradually increasing seismic resistance design loads. Therefore, it is necessary to apply a seismic base isolation system as a way to help secure the

  5. Customizable rigid head fixation for infants: technical note.

    Science.gov (United States)

    Udayakumaran, Suhas; Onyia, Chiazor U

    2016-01-01

    The need and advantages of rigid fixation of the head in cranial surgeries are well documented (Berryhill et al., Otolaryngol Head Neck Surg 121:269-273, 1999). Head fixation for neurosurgical procedures in infants and in early years has been a challenge and is fraught with risk. Despite the fact that pediatric pins are designed, rigid head fixation involving direct application of pins to the head of infants and slightly older children is still generally not safe (Agrawal and Steinbok, Childs Nerv Syst 22:1473-1474, 2006). Yet, there are some surgeries in which some form of rigid fixation is required (Agrawal and Steinbok, Childs Nerv Syst 22:1473-1474, 2006). We describe a simple technique to achieve rigid fixation of the head in infants for neurosurgical procedures. This involves applying a head band made of Plaster of Paris (POP) around the head and then applying the fixation pins of the fixation frame directly on to the POP. We have used this technique of head fixation successfully for infants with no complications.

  6. Estimation of core-damage frequency to evolutionary ALWR [advanced light water reactor] due to seismic initiating events: Task 4.3.3

    International Nuclear Information System (INIS)

    Brooks, R.D.; Harrison, D.G.; Summitt, R.L.

    1990-04-01

    The Electric Power Research Institute (EPRI) is presently developing a requirements document for the design of advanced light water reactors (ALWRs). One of the basic goals of the EPRI ALWR Requirements Document is that the core-damage frequency for an ALWR shall be less than 1.0E-5. To aid in this effort, the Department of Energy's Advanced Reactor Severe Accident Program (ARSAP) initiated a functional probabilistic risk assessment (PRA) to determine how effectively the evolutionary plant requirements contained in the existing EPRI Requirements Document assure that this safety goal will be met. This report develops an approximation of the core-damage frequency due to seismic events for both evolutionary plant designs (pressurized-water reactor (PWR) and boiling-water reactor(BWR)) as modeled in the corresponding functional PRAs. Component fragility values were taken directly form information which has been submitted for inclusion in Appendix A to Volume 1 of the EPRI Requirements Document. The results show a seismic core-damage frequency of 5.2E-6 for PWRS and 5.0E-6 for BWRs. Combined with the internal initiators from the functional PRAs, the overall core-damage frequencies are 6.0E-6 for the pwr and BWR, both of which satisfy the 1.0E-5 EPRI goal. In addition, site-specific considerations, such as more rigid components and less conservative fragility data and seismic hazard curves, may further reduce these frequencies. The effect of seismic events on structures are not addressed in this generic evaluation and should be addressed separately on a design-specific basis. 7 refs., 6 figs., 3 tabs

  7. Strain gradient effects on cyclic plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Legarth, Brian Nyvang

    2010-01-01

    Size effects on the cyclic shear response are studied numerically using a recent higher order strain gradient visco-plasticity theory accounting for both dissipative and energetic gradient hardening. Numerical investigations of the response under cyclic pure shear and shear of a finite slab between...... rigid platens have been carried out, using the finite element method. It is shown for elastic–perfectly plastic solids how dissipative gradient effects lead to increased yield strength, whereas energetic gradient contributions lead to increased hardening as well as a Bauschinger effect. For linearly...... hardening materials it is quantified how dissipative and energetic gradient effects promote hardening above that of conventional predictions. Usually, increased hardening is attributed to energetic gradient effects, but here it is found that also dissipative gradient effects lead to additional hardening...

  8. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plastic...... materials and provides an extensive knowhow on the industrial plastic welding process. The objectives of the report include: - Provide the general knowhow of laser welding for the beginners - Summarize the state-of-the-art information on the laser welding of plastics - Find the technological limits in terms...... of design, materials and process - Find the best technology, process and machines adaptive to Sonion’s components - Provide the skills to Sonion’s Design Engineers for successful design of the of the plastic components suitable for the laser welding The ultimate goal of this report is to serve...

  9. A quantitative evaluation of seismic margin of typical sodium piping

    International Nuclear Information System (INIS)

    Morishita, Masaki

    1999-05-01

    It is widely recognized that the current seismic design methods for piping involve a large amount of safety margin. From this viewpoint, a series of seismic analyses and evaluations with various design codes were made on typical LMFBR main sodium piping systems. Actual capability against seismic loads were also estimated on the piping systems. Margins contained in the current codes were quantified based on these results, and potential benefits and impacts to the piping seismic design were assessed on possible mitigation of the current code allowables. From the study, the following points were clarified; 1) A combination of inelastic time history analysis and true (without margin)strength capability allows several to twenty times as large seismic load compared with the allowable load with the current methods. 2) The new rule of the ASME is relatively compatible with the results of inelastic analysis evaluation. Hence, this new rule might be a goal for the mitigation of seismic design rule. 3) With this mitigation, seismic design accommodation such as equipping with a large number of seismic supports may become unnecessary. (author)

  10. Seismic performance of interior precast concrete beam-column connections with T-section steel inserts under cyclic loading

    Science.gov (United States)

    Ketiyot, Rattapon; Hansapinyo, Chayanon

    2018-04-01

    An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core, under reversed cyclic loading. Six 2/3-scale interior beam-column subassemblies, one monolithic concrete specimen and five precast concrete specimens were tested. One precast specimen was a simple connection for a gravity load resistant design. Other precast specimens were developed with different attributes to improve their seismic performance. The test results showed that the performance of the monolithic specimen M1 represented ductile seismic behavior. Failure of columns and joints could be prevented, and the failure of the frame occurred at the flexural plastic hinge formation at the beam ends, close to the column faces. For the precast specimens, the splitting crack along the longitudinal lapped splice was a major failure. The precast P5 specimen with double steel T-section inserts showed better seismic performance compared to the other precast models. However, the dowel bars connected to the steel inserts were too short to develop a bond. The design of the precast concrete beams with lap splice is needed for longer lap lengths and should be done at the beam mid span or at the low flexural stress region.

  11. Overview of seismic margin insights gained from seismic PRA results

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Sues, R.H.; Campbell, R.D.

    1986-01-01

    This paper presents the findings of a study conducted under NRC and EPRI sponsorship in which published seismic PRAs were reviewed in order to gain insight to the seismic margins inherent in existing nuclear plants. The approach taken was to examine the fragilities of those components which have been found to be dominant contributors to seismic risk at plants in low-to-moderate seismic regions (SSE levels between 0.12g and 0.25g). It is concluded that there is significant margin inherent in the capacity of most critical components above the plant design basis. For ground motions less than about 0.3g, the predominant sources of seismic risk are loss of offsite power coupled with random failure of the emergency diesels, non-recoverable circuit breaker trip due to relay chatter, unanchored equipment, unreinforced non-load bearing block walls, vertical water storage tanks, systems interactions and possibly soil liquefaction. Recommendations as to which components should be reviewed in seismic margin studies for margin earthquakes less than 0.3g, between 0.3g and 0.5g, and greater than 0.5g, developed by the NRC expert panel on the quantification of seismic margins (based on the review of past PRA data, earthquake experience data, and their own personal experience) are presented

  12. Generalized seismic analysis

    Science.gov (United States)

    Butler, Thomas G.

    1993-09-01

    There is a constant need to be able to solve for enforced motion of structures. Spacecraft need to be qualified for acceleration inputs. Truck cargoes need to be safeguarded from road mishaps. Office buildings need to withstand earthquake shocks. Marine machinery needs to be able to withstand hull shocks. All of these kinds of enforced motions are being grouped together under the heading of seismic inputs. Attempts have been made to cope with this problem over the years and they usually have ended up with some limiting or compromise conditions. The crudest approach was to limit the problem to acceleration occurring only at a base of a structure, constrained to be rigid. The analyst would assign arbitrarily outsized masses to base points. He would then calculate the magnitude of force to apply to the base mass (or masses) in order to produce the specified acceleration. He would of necessity have to sacrifice the determination of stresses in the vicinity of the base, because of the artificial nature of the input forces. The author followed the lead of John M. Biggs by using relative coordinates for a rigid base in a 1975 paper, and again in a 1981 paper . This method of relative coordinates was extended and made operational as DMAP ALTER packets to rigid formats 9, 10, 11, and 12 under contract N60921-82-C-0128. This method was presented at the twelfth NASTRAN Colloquium. Another analyst in the field developed a method that computed the forces from enforced motion then applied them as a forcing to the remaining unknowns after the knowns were partitioned off. The method was translated into DMAP ALTER's but was never made operational. All of this activity jelled into the current effort. Much thought was invested in working out ways to unshakle the analysis of enforced motions from the limitations that persisted.

  13. Development of the Plastic Melt Waste Compactor- Design and Fabrication of the Half-Scale Prototype

    Science.gov (United States)

    Pace, Gregory S.; Fisher, John

    2005-01-01

    A half scale version of a device called the Plastic Melt Waste Compactor prototype has been developed at NASA Ames Research Center to deal with plastic based wastes that are expected to be encountered in future human space exploration scenarios such as Lunar or Martian Missions. The Plastic Melt Waste Compactor design was based on the types of wastes produced on the International Space Station, Space Shuttle, MIR and Skylab missions. The half scale prototype unit will lead to the development of a full scale Plastic Melt Waste Compactor prototype that is representative of flight hardware that would be used on near and far term space missions. This report details the progress of the Plastic Melt Waste Compactor Development effort by the Solid Waste Management group at NASA Ames Research Center.

  14. Seismic tomography with P and S data reveals lateral variations in the rigidity of slabs

    NARCIS (Netherlands)

    Widiyantoro, S.; Kennett, B.L.N.; Hilst, R.D. van der

    1999-01-01

    Regional seismic tomography of the northwest Pacific island arcs using P- and S-wave arrival time data with similar path coverage reveals an oceanic lithospheric slab deflected in the mantle transition zone beneath the Izu Bonin region in good agreement with the results of earlier tomographic and

  15. Overview on seismic evaluation and retrofitting within JICA Technical Cooperation Project on reduction of seismic risk in Romania

    International Nuclear Information System (INIS)

    Seki, M.; Vacareanu, R.; Pavel, M.; Lozinca, E.; Cotofana, D.; Chesca, B.; Georgescu, B.; Kaminosono, T.

    2007-01-01

    The objective of this paper is to give an overview on the seismic evaluation and retrofitting procedures of reinforced concrete buildings within JICA technical cooperation project in Romania. The content of the paper covers a) an outline of the seismic evaluation; history and comparison of Romanian seismic design codes with the Japanese seismic evaluation guidelines, b) an outline of the retrofitting techniques which were transferred from Japan to Romania and structural tests for retrofitting techniques employed in Romania and c) retrofitting details that were used by JICA/NCSRR in the retrofitting design of two vulnerable buildings in Bucharest. The above-mentioned retrofitting projects are now under development of detailed design and therefore, in the near future, refining and improvement of solutions will be performed. (authors)

  16. The elasto plastic fracture mechanics in ductile metal sheets

    International Nuclear Information System (INIS)

    Khan, M.A.; Malik, M.N.; Naeem, A.; Haq, A.U.; Atkins, A.G.

    1999-01-01

    The crack initiation of propagation in ductile metal sheets are caused by various micro and macro changes taking place due to material properties, applied loads, shape of the indenter (tool geometry) and the environmental conditions. These microstructural failures are directly related to the atomic bonding, crystal lattices, grain boundary status, material flaws in matrix, inhomogeneities and anisotropy in the metal sheets. The Elasto-Plastic related energy based equations are applied to these Rigid Plastic materials to determine the onset of fracture in metal forming. The combined stress and strain criterion of a critical plastic work per unit volume is no more considered as a universal ductile fracture criterion, rather a critical plastic work per unit volume dependence on all sort of stresses (hydrostatic) are the required features for the sheet metal failure (fracture). In this present study, crack initiation and propagation are related empirically with fracture toughness and the application of the theory in industry to save energy. (author)

  17. Seismic analysis and testing of nuclear power plants

    International Nuclear Information System (INIS)

    1979-01-01

    The following subjects are discussed in this guide: General Recommendations for seismic classification, loading combinations and allowable limits; seismic analysis methods; implications for seismic design; seismic testing and qualification; seismic instrumentation; modelling techniques; material property characterization; seismic response of soil deposits and earth structures; liquefaction and ground failure; slope stability; sloshing effects in water pools; qualification testing by means of the transport vehicle

  18. Seismic fragility of ventilation stack of nuclear power plant

    International Nuclear Information System (INIS)

    Nefedov, S.S.; Yugai, T.Z.; Kalinkin, I.V.; Vizir, P.L.

    2003-01-01

    Fragility study of safety related elements is necessary step in seismic PSA of nuclear power plant (NPP). In present work fragility was analyzed after the example of the ventilation stack of NPP. Ventilation stack, considered in present work, is a separately erected construction with height of 100 m made of cast-in-place reinforced concrete. In accordance with IAEA terminology fragility of element is defined as conditional probability of its failure at given level of seismic loading. Failure of a ventilation stack was considered as development of the plastic hinge in some section of a shaft. Seismic ground acceleration a, which corresponds to failure, could be defined as limit seismic acceleration of ventilation stack [a]. Limit seismic acceleration [a] was considered as random value. Sources of its variation are connected with stochastic nature of factors determining it (properties of construction materials, soils etc.), and also with uncertainties of existing analytical techniques. Random value [a] was assumed to be distributed lognormally. Median m[a] and logarithmically standard deviation β of this distribution were defined by 'scaling method' developed by R.P. Kennedy et al. Using this values fragility curves were plotted for different levels of confidence probability. (author)

  19. Seismic methodology in determining basis earthquake for nuclear installation

    International Nuclear Information System (INIS)

    Ameli Zamani, Sh.

    2008-01-01

    Design basis earthquake ground motions for nuclear installations should be determined to assure the design purpose of reactor safety: that reactors should be built and operated to pose no undue risk to public health and safety from earthquake and other hazards. Regarding the influence of seismic hazard to a site, large numbers of earthquake ground motions can be predicted considering possible variability among the source, path, and site parameters. However, seismic safety design using all predicted ground motions is practically impossible. In the determination of design basis earthquake ground motions it is therefore important to represent the influences of the large numbers of earthquake ground motions derived from the seismic ground motion prediction methods for the surrounding seismic sources. Viewing the relations between current design basis earthquake ground motion determination and modem earthquake ground motion estimation, a development of risk-informed design basis earthquake ground motion methodology is discussed for insight into the on going modernization of the Examination Guide for Seismic Design on NPP

  20. Bang-Bang Practical Stabilization of Rigid Bodies

    Science.gov (United States)

    Serpelloni, Edoardo

    In this thesis, we study the problem of designing a practical stabilizer for a rigid body equipped with a set of actuators generating only constant thrust. Our motivation stems from the fact that modern space missions are required to accurately control the position and orientation of spacecraft actuated by constant-thrust jet-thrusters. To comply with the performance limitations of modern thrusters, we design a feedback controller that does not induce high-frequency switching of the actuators. The proposed controller is hybrid and it asymptotically stabilizes an arbitrarily small compact neighborhood of the target position and orientation of the rigid body. The controller is characterized by a hierarchical structure comprising of two control layers. At the low level of the hierarchy, an attitude controller stabilizes the target orientation of the rigid body. At the high level, after the attitude controller has steered the rigid body sufficiently close to its desired orientation, a position controller stabilizes the desired position. The size of the neighborhood being stabilized by the controller can be adjusted via a proper selection of the controller parameters. This allows us to stabilize the rigid body to virtually any degree of accuracy. It is shown that the controller, even in the presence of measurement noise, does not induce high-frequency switching of the actuators. The key component in the design of the controller is a hybrid stabilizer for the origin of double-integrators affected by bounded external perturbations. Specifically, both the position and the attitude stabilizers consist of multiple copies of such a double-integrator controller. The proposed controller is applied to two realistic spacecraft control problems. First, we apply the position controller to the problem of stabilizing the relative position between two spacecraft flying in formation in the vicinity of the L2 libration point of the Sun-Earth system as a part of a large space telescope

  1. A Comparison Among Plastic Deformation Capacities of RC Members According to International Codes

    International Nuclear Information System (INIS)

    Tripepi, C.; Failla, G.; Santini, A.; Nucera, F.

    2008-01-01

    The aim is to compare plastic deformation capacities of flexure-controlled reinforced concrete members, as predicted by the Italian Seismic Code, Eurocode 8 and FEMA356. For completeness, recent studies in the literature are also referred to. The comparison is pursued in context with a nonlinear static analysis run on 2D frame structures. This allows to assess whether and to which extent plastic deformation capacities may be affected by variations in those quantities, such as shear span and/or axial load, depending on which plastic deformation capacities are generally given

  2. Design and realization of real-time processing system for seismic exploration

    International Nuclear Information System (INIS)

    Zhang Sifeng; Cao Ping; Song Kezhu; Yao Lin

    2010-01-01

    For solving real-time seismic data processing problems, a high-speed, large-capacity and real-time data processing system is designed based on FPGA and ARM. With the advantages of multi-processor, DRPS has the characteristics of high-speed data receiving, large-capacity data storage, protocol analysis, data splicing, data converting from time sequence into channel sequence, no dead time data ping-pong storage, etc. And with the embedded Linux operating system, DRPS has the characteristics of flexibility and reliability. (authors)

  3. Stresses in Circular Plates with Rigid Elements

    Science.gov (United States)

    Velikanov, N. L.; Koryagin, S. I.; Sharkov, O. V.

    2018-05-01

    Calculations of residual stress fields are carried out by numerical and static methods, using the flat cross-section hypothesis. The failure of metal when exposed to residual stresses is, in most cases, brittle. The presence in the engineering structures of rigid elements often leads to the crack initiation and structure failure. This is due to the fact that rigid elements under the influence of external stresses are stress concentrators. In addition, if these elements are fixed by welding, the residual welding stresses can lead to an increase in stress concentration and, ultimately, to failure. The development of design schemes for such structures is a very urgent task for complex technical systems. To determine the stresses in a circular plate with a welded circular rigid insert under the influence of an external load, one can use the solution of the plane stress problem for annular plates in polar coordinates. The polar coordinates of the points are the polar radius and the polar angle, and the stress state is determined by normal radial stresses, tangential and shearing stresses. The use of the above mentioned design schemes, formulas, will allow more accurate determination of residual stresses in annular welded structures. This will help to establish the most likely directions of failure and take measures at the stages of designing, manufacturing and repairing engineering structures to prevent these failures. However, it must be taken into account that the external load, the presence of insulation can lead to a change in the residual stress field.

  4. Seismic safety review mission for the follow-up of the seismic upgrading of Kozloduy NPP (Units 1-4). Sofia, Bulgaria, 16-20 November 1992

    International Nuclear Information System (INIS)

    David, M.; Shibata, H.; Stevenson, J.D.; Godoy, A.; Gurpinar, A.

    1992-11-01

    A Seismic Safety Review Mission for the follow-up of the design and implementation of the seismic upgrading of Kozloduy NPP was performed in Sofia from 16-20 November 1992. This mission continued the second task of the follow-up activities of the design and implementation of the seismic upgrading (Phases 1 and 2), which is being carried out in Units 1 and 2 of the NPP. Thus the objectives of the mission was to assist the Bulgarian authorities in the technical evaluation of the design tasks defined for Phases 1 and 2 item HB of WANO 6 Month Programme, as follows: anchorage upgrades of low seismic capacity components; list of seismic safety related systems and components; detailed walkdown to assess seismic capacity of components and define priorities for the upgrading; determination of seismic structural capacity of pump house, diesel generator building and turbine building and design of required upgrades; liquefaction potential evaluation. Tabs

  5. Rigid-beam model of a high-efficiency magnicon

    International Nuclear Information System (INIS)

    Rees, D.E.; Tallerico, P.J.; Humphries, S.J. Jr.

    1993-01-01

    The magnicon is a new type of high-efficiency deflection-modulated amplifier developed at the Institute of Nuclear Physics in Novosibirsk, Russia. The prototype pulsed magnicon achieved an output power of 2.4 MW and an efficiency of 73% at 915 MHz. This paper presents the results of a rigid-beam model for a 700-MHz, 2.5-MW 82%-efficient magnicon. The rigid-beam model allows for characterization of the beam dynamics by tracking only a single electron. The magnicon design presented consists of a drive cavity; passive cavities; a pi-mode, coupled-deflection cavity; and an output cavity. It represents an optimized design. The model is fully self-consistent, and this paper presents the details of the model and calculated performance of a 2.5-MW magnicon

  6. Systems considerations in seismic margin evaluations

    International Nuclear Information System (INIS)

    Buttermer, D.R.

    1987-01-01

    Increasing knowledge in the geoscience field has led to the understanding that, although highly unlikely, it is possible for a nuclear power plant to be subjected to earthquake ground motion greater than that for which the plant was designed. While it is recognized that there are conservatisms inherent in current design practices, interest has developed in evaluating the seismic risk of operating plants. Several plant-specific seismic probabilistic risk assessments (SPRA) have been completed to address questions related to the seismic risk of a plant. The results from such SPRAs are quite informative, but such studies may entail a considerable amount of expensive analysis of large portions of the plant. As an alternative to an SPRA, it may be more practical to select an earthquake level above the design basis for which plant survivability is to be demonstrated. The principal question to be addressed in a seismic margin evaluation is: At what ground motion levels does one have a high confidence that the probability of seismically induced core damage is sufficiently low? In a seismic margin evaluation, an earthquake level is selected (based on site-specific geoscience considerations) for which a stable, long-term safe shutdown condition is to be demonstrated. This prespecified earthquake level is commonly referred to as the seismic margin earthquake (SME). The Electric Power Research Institute is currently supporting a research project to develop procedures for use by the utilities to allow them to perform nuclear plant seismic margin evaluations. This paper describes the systems-related aspects of these procedures

  7. Screening novel candidates and exploring design strategies for organic dye sensitizers with rigid π-linker: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Kai-Li [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070 Gansu (China); College of Chemistry and Life Science, Gansu Normal University for Nationalities, Hezuo, 747000 Gansu (China); Liu, Le-Yan [College of Chemistry and Life Science, Gansu Normal University for Nationalities, Hezuo, 747000 Gansu (China); Geng, Zhi-Yuan, E-mail: zhiyuangeng@126.com [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070 Gansu (China); Yan, Pen-Ji; Lu, Yan-Hong; Liu, Rui-Rui [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070 Gansu (China)

    2015-07-15

    Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations have been carried out to explore the underlying origin of merits for rigid π-spacer based on reference dyes C255 and C254. The results demonstrate that higher short-circuit current density (J{sub SC}) of C255 is primarily ascribed to the lower EBE, while the biggish short-circuit current density (V{sub OC}) mainly originates from the larger μ{sub normal} compared to C254. Besides, a novel index integral of overlap between hole and electron (S) is firstly introduced to quantitatively estimate the facility of intramolecular charge transfer (ICT) and preliminarily confirmed to be effective for the research target of this work. Furthermore, three series of dyes (C-series, A-series, AC-series) have been designed and characterized to screen promising sensitizer candidates and design strategies, while delightful results have been achieved including 6 promising candidates, design stratagem on efficiently reducing the charge recombination and combinational tactics on screening new dyes with excellent spectral properties or outstanding DSSC performance. - Graphical abstract: Display Omitted - Highlights: • Novel S index was introduced in and confirmed to be effective to estimate ICT. • The merits of rigid π bridge have been theoretically revealed. • Six promising candidates have been screened out. • New strategy on reduce charge recombination was reported. • Novel combinational tactics were acquired and justified to be feasible.

  8. Seismic-resistant design of nuclear power stations in Japan, earthquake country. Lessons learned from Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Irikura, Kojiro

    2008-01-01

    The new assessment (back-check) of earthquake-proof safety was being conducted at Kashiwazaki-Kariwa Nuclear Power Plants, Tokyo Electric Co. in response to a request based on the guideline for reactor evaluation for seismic-resistant design code, revised in 2006, when the 2007 Chuetsu-oki Earthquake occurred and brought about an unexpectedly huge tremor in this area, although the magnitude of the earthquake was only 6.8 but the intensity of earthquake motion exceeded 2.5-fold more than supposed. This paper introduces how and why the guideline for seismic-resistant design of nuclear facilities was revised in 2006, the outline of the Chuetsu-oki Earthquake, and preliminary findings and lessons learned from the Earthquake. The paper specifically discusses on (1) how we may specify in advance geologic active faults as has been overlooked this time, (2) how we can make adequate models for seismic origin from which we can extract its characteristics, and (3) how the estimation of strong ground motion simulation may be possible for ground vibration level of a possibly overlooked fault. (S. Ohno)

  9. Basic Strain Gradient Plasticity Theories with Application to Constrained Film Deformation

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, John W.

    2011-01-01

    films: the compression or extension of a finite layer joining rigid platens. Full elastic-plastic solutions are obtained for the same problem based on a finite element method devised for the new class of flow theories. Potential difficulties and open issues associated with the new class of flow theories......A family of basic rate-independent strain gradient plasticity theories is considered that generalize conventional J(2) deformation and flow theories of plasticity to include a dependence on strain gradients in a simple way. The theory builds on three recent developments: the work of Gudmundson (J....... Mech. Phys. Solids 52 (2004), 1379-1406) and Gurtin and Anand (J. Mech. Phys. Solids 57 (2009), 405-421), proposing constitutive relations for flow theories consistent with requirements of positive plastic dissipation; the work of Fleck and Willis (J. Mech. Phys. Solids 57 (2009), 161-177 and 1045...

  10. Seismic reevaluation of existing nuclear power plants

    International Nuclear Information System (INIS)

    Hennart, J.C.

    1978-01-01

    The codes and regulations governing Nuclear Power Plant seismic analysis are continuously becoming more stringent. In addition, design ground accelerations of existing plants must sometimes be increased as a result of discovery of faulting zones or recording of recent earthquakes near the plant location after plant design. These new factors can result in augmented seismic design criteria. Seismic reanalysius of the existing Nuclear Power Plant structures and equipments is necessary to prevent the consequences of newly postulated accidents that could cause undue risk to the health or safety of the public. This paper reviews the developments of seismic analysis as applied to Nuclear Power Plants and the methods used by Westinghouse to requalify existing plants to the most recent safety requirements. (author)

  11. Adding seismic broadband analysis to characterize Andean backarc seismicity in Argentina

    Science.gov (United States)

    Alvarado, P.; Giuliano, A.; Beck, S.; Zandt, G.

    2007-05-01

    Characterization of the highly seismically active Andean backarc is crucial for assessment of earthquake hazards in western Argentina. Moderate-to-large crustal earthquakes have caused several deaths, damage and drastic economic consequences in Argentinean history. We have studied the Andean backarc crust between 30°S and 36°S using seismic broadband data available from a previous ("the CHARGE") IRIS-PASSCAL experiment. We collected more than 12 terabytes of continuous seismic data from 22 broadband instruments deployed across Chile and Argentina during 1.5 years. Using free software we modeled full regional broadband waveforms and obtained seismic moment tensor inversions of crustal earthquakes testing for the best focal depth for each event. We also mapped differences in the Andean backarc crustal structure and found a clear correlation with different types of crustal seismicity (i.e. focal depths, focal mechanisms, magnitudes and frequencies of occurrence) and previously mapped terrane boundaries. We now plan to use the same methodology to study other regions in Argentina using near-real time broadband data available from the national seismic (INPRES) network and global seismic networks operating in the region. We will re-design the national seismic network to optimize short-period and broadband seismic station coverage for different network purposes. This work is an international effort that involves researchers and students from universities and national government agencies with the goal of providing more information about earthquake hazards in western Argentina.

  12. Original seismic and similar severe external loading design basis for WWER type nuclear power plants in Czech and Slovak Republics and actual issues of their upgrading

    International Nuclear Information System (INIS)

    Masopust, R.

    1993-01-01

    The WWER type NPPs located in Czech and Slovak republics have many seismic vulnerabilities similar to those recognized in many of the US NPPs prior to late seventies. They are mostly caused by underestimation of these problems in the design phases, sometimes due to inadequate performance and poor quality of works and some incompatibilities between the original Russian design and current international design bases and safety requirements. It is believed that the structures and equipment of these NPPs can be seismically upgraded at a moderate cost. It is also believed that the IAEA Benchmark study for seismic analysis and testing of WWER NPPs will develop recommendations to effective seismic upgrading of the existing plants

  13. Seismic design criteria of fire protection systems for DOE facilities

    International Nuclear Information System (INIS)

    Hardy, G.; Cushing, R.; Driesen, G.

    1991-01-01

    Fire protection systems are critical to the safety of personnel and to the protection of inventory during any kind of emergency situation that involves a fire. The importance of these fire protection systems is hightened for DOE facilities which often house nuclear, chemical or scientific processes. Current research into the topic of open-quotes fires following earthquakesclose quotes has demonstrated that the risks of a fire starting as a result of a major earthquake can be significant. Thus, fire protection systems need to be designed to withstand the anticipated seismic event for the site in question

  14. A Survey study on design procedure of Seismic Base Isolation ...

    African Journals Online (AJOL)

    Michael Horsfall

    Base Isolation Systems that is flexible approach to decrease the potential damage. In this ... In addition, we analyze the seismic responses of isolated structures. The seismic ..... Equation 3.7, is examined; it is realized that the inequality ...

  15. A Benchmark Study of a Seismic Analysis Program for a Single Column of a HTGR Core

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ji Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    A seismic analysis program, SAPCOR (Seismic Analysis of Prismatic HTGR Core), was developed in Korea Atomic Energy Research Institute. The program is used for the evaluation of deformed shapes and forces on the graphite blocks which using point-mass rigid bodies with Kelvin-Voigt impact models. In the previous studies, the program was verified using theoretical solutions and benchmark problems. To validate the program for more complicated problems, a free vibration analysis of a single column of a HTGR core was selected and the calculation results of the SAPCOR and a commercial FEM code, Abaqus, were compared in this study.

  16. Comparison of seismic isolation concepts for FBR

    International Nuclear Information System (INIS)

    Shiojiri, H.; Mazda, T.; Kasai, H.; Kanda, J.N.; Kubo, T.; Madokoro, M.; Shimomura, T.; Nojima, O.

    1989-01-01

    This paper seeks to verify the reliability and effectiveness of seismic isolation for FBR. Some results of the preliminary study of the program are described. Seismic isolation concepts and corresponding seismic isolation devices were selected. Three kinds of seismically-isolated FBR plant concepts were developed by applying promising seismic isolation concepts to the non-isolated FBR plant, and by developing plant component layout plans and building structural designs. Each plant was subjected to seismic response analysis and reduction in the amount of material of components and buildings were estimated for each seismic isolation concepts. Research and development items were evaluated

  17. Seismic fragility capacity of equipment

    International Nuclear Information System (INIS)

    Iijima, Toru; Abe, Hiroshi; Suzuki, Kenichi

    2006-01-01

    Seismic probabilistic safety assessment (PSA) is an available method to evaluate residual risks of nuclear plants that are designed on definitive seismic conditions. From our preliminary seismic PSA analysis, horizontal shaft pumps are important components that have significant influences on the core damage frequency (CDF). An actual horizontal shaft pump and some kinds of elements were tested to evaluate realistic fragility capacities. Our test results showed that the realistic fragility capacity of horizontal shaft pump would be at least four times as high as a current value, 1.6 x 9.8 m/s 2 , used for our seismic PSA. We are going to incorporate the fragility capacity data that were obtained from those tests into our seismic PSA analysis, and we expect that the reliability of seismic PSA should increase. (author)

  18. Anatomy of the TAMA SAS seismic attenuation system

    International Nuclear Information System (INIS)

    Marka, Szabolcs; Takamori, Akiteru; Ando, Masaki; Bertolini, Alessandro; Cella, Giancarlo; DeSalvo, Riccardo; Fukushima, Mitsuhiro; Iida, Yukiyoshi; Jacquier, Florian; Kawamura, Seiji; Nishi, Yuhiko; Numata, Kenji; Sannibale, Virginio; Somiya, Kentaro; Takahashi, Ryutaro; Tariq, Hareem; Tsubono, Kimio; Ugas, Jose; Viboud, Nicolas; Wang Chenyang; Yamamoto, Hiroaki; Yoda, Tatsuo

    2002-01-01

    The TAMA SAS seismic attenuation system was developed to provide the extremely high level of seismic isolation required by the next generation of interferometric gravitational wave detectors to achieve the desired sensitivity at low frequencies. Our aim was to provide good performance at frequencies above ∼10 Hz, while utilizing only passive subsystems in the sensitive frequency band of the TAMA interferometric gravitational wave detectors. The only active feedback is relegated below 6 Hz and it is used to damp the rigid body resonances of the attenuation chain. Simulations, based on subsystem performance characterizations, indicate that the system can achieve rms mirror residual motion measured in a few tens of nanometres. We will give a brief overview of the subsystems and point out some of the characterization results, supporting our claims of achieved performance. SAS is a passive, UHV compatible and low cost system. It is likely that extremely sensitive experiments in other fields will also profit from our study

  19. Inertial Effects on Finite Length Pipe Seismic Response

    Directory of Open Access Journals (Sweden)

    Virginia Corrado

    2012-01-01

    Full Text Available A seismic analysis for soil-pipe interaction which accounts for length and constraining conditions at the ends of a continuous pipe is developed. The Winkler model is used to schematize the soil-structure interaction. The approach is focused on axial strains, since bending strains in a buried pipe due to the wave propagation are typically a second-order effect. Unlike many works, the inertial terms are considered in solving equations. Accurate numerical simulations are carried out to show the influence of pipe length and constraint conditions on the pipe seismic strain. The obtained results are compared with results inferred from other models present in the literature. For free-end pipelines, inertial effects have significant influence only for short length. On the contrary, their influence is always important for pinned pipes. Numerical simulations show that a simple rigid model can be used for free-end pipes, whereas pinned pipes need more accurate models.

  20. Synthetic seismic acceleration time-histories and their acceptance criteria

    International Nuclear Information System (INIS)

    Xu Hong

    1996-01-01

    In seismic dynamic response analysis of structures and equipment, time-history analysis is now widely used. The 3-D seismic acceleration time-histories or 3-D seismic displacement time-histories are required in the 3-D seismic dynamic response analysis as the seismic excitation input data. Because of the lack of actual acceleration time-histories for the field where the structures or equipment are installed, the general practice is to use the synthetic seismic acceleration time-histories, which are derived from the design seismic response spectra of the field, as the seismic excitation input data. However, from one specified design response spectrum indefinite solutions of acceleration time-histories can be derived depending on the values of the input parameters. Not all the derived synthetic time-histories can be used as seismic excitation input data. Only those which meet the acceptance criteria can be used. The factors (input parameters), which will affect the time-history solution from a specified seismic response spectrum, and the acceptance criteria are discussed

  1. Design considerations associated with the response of seismic isolators and real scale energy absorbers

    International Nuclear Information System (INIS)

    Benzoni, Gianmario

    2015-01-01

    Few observations obtained from extensive experimental programs for the characterization of anti-seismic devices are proposed hereafter. Specifically, few current code requirements, originally intended for the acquisition of fundamental characteristics of performance, proved difficult to be implemented and of questionable significance for the design phase of a seismic isolation application. In particular, for commonly used devices as elastomeric and friction-based isolators, the experimentally validated variation of performance parameters is often not addressed in existing codes and typically neglected in structural models, based on extreme simplification of the device behaviour. The goal of this paper is to suggest an update to specific codes but particularly to solicit the designer’s awareness against oversimplification in the modelling phase of the device performance [it

  2. Seismic isolation in New Zealand

    International Nuclear Information System (INIS)

    Skinner, R.I.; Robinson, W.H.; McVerry, G.H.

    1989-01-01

    Bridges, buildings, and industrial equipment can be given increased protection from earthquake damage by limiting the earthquake attack through seismic isolation. A broad summary of the seismic responses of base-isolated structures is of considerable assistance for their preliminary design. Seismic isolation as already used in New Zealand consists of a flexible base or support combined with some form of energy-dissipating device, usually involving the hysteretic working of steel or lead. This paper presents examples of the New Zealand experience, where seismic isolation has been used for 42 bridges, 3 buildings, a tall chimney, and high-voltage capacitor banks. Additional seismic response factors, which may be important for nuclear power plants, are also discussed briefly

  3. Conditions of rib design for polycarbonate resin with high glossy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seong Won [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2013-10-15

    Much attention has been being given to the importance of product surfaces in the field of plastic parts, as industrial design has become one of the key elements of product success. These plastic parts incorporate rib-like geometries on the non-appearance surfaces of plastic in order to increase the stiffness of rigidity of the section, but they often cause appearance problems of the product's surface overall by making a sink mark on that surface. The thickness, height and draft-angle of the rib are generally known as major parameters influencing the sink mark on the appearance surface. Therefore, designers of plastic parts must determine the variables of reinforcing ribs. The goal of this study is to find the optimum design variables in the mixing conditions of the thickness, the height and the draft angle of reinforcing ribs so that designers of plastic parts can easily determine the conditions of the reinforcing ribs as the part's section thickness varies within an objective limit in polycarbonate plastic resin and a high glossy surface that are widely applied in the creation of plastic products. We investigated the actual depths of sink marks on the surface of a specimen that was manufactured with an injection mold specifically for this study. Response surface methodology with the Box-Behnken design was used to analyze the regression curve of real depths with combinations of the thickness, height and draft angle of the ribs. The result shows that the most influential factor to increase the shrinkage is the thickness of ribs and that the optimum value of the rib thickness is a range from multiple of 0.25 to 0.34 of the section thickness. Also, the rib height and rib draft angle are not major factors that can change the sink amount.

  4. Conditions of rib design for polycarbonate resin with high glossy surfaces

    International Nuclear Information System (INIS)

    Jeong, Seong Won

    2013-01-01

    Much attention has been being given to the importance of product surfaces in the field of plastic parts, as industrial design has become one of the key elements of product success. These plastic parts incorporate rib-like geometries on the non-appearance surfaces of plastic in order to increase the stiffness of rigidity of the section, but they often cause appearance problems of the product's surface overall by making a sink mark on that surface. The thickness, height and draft-angle of the rib are generally known as major parameters influencing the sink mark on the appearance surface. Therefore, designers of plastic parts must determine the variables of reinforcing ribs. The goal of this study is to find the optimum design variables in the mixing conditions of the thickness, the height and the draft angle of reinforcing ribs so that designers of plastic parts can easily determine the conditions of the reinforcing ribs as the part's section thickness varies within an objective limit in polycarbonate plastic resin and a high glossy surface that are widely applied in the creation of plastic products. We investigated the actual depths of sink marks on the surface of a specimen that was manufactured with an injection mold specifically for this study. Response surface methodology with the Box-Behnken design was used to analyze the regression curve of real depths with combinations of the thickness, height and draft angle of the ribs. The result shows that the most influential factor to increase the shrinkage is the thickness of ribs and that the optimum value of the rib thickness is a range from multiple of 0.25 to 0.34 of the section thickness. Also, the rib height and rib draft angle are not major factors that can change the sink amount.

  5. Seismic safety programme at NPP Paks. Propositions for coordinated international activity in seismic safety of the WWER-440 V-213

    International Nuclear Information System (INIS)

    Katona, T.

    1995-01-01

    This paper presents the Paks NPP seismic safety program, highlighting the specifics of the WWER-440/213 type in operation, and the results of work obtained so far. It covers the following scope: establishment of the seismic safety program (original seismic design, current requirements, principles and structure of the seismic safety program); implementation of the seismic safety program (assessing the seismic hazard of the site, development of the new concept of seismic safety for the NPP, assessing the seismic resistance of the building and the technology); realization of the seismic safety of higher level (technical solutions, drawings, realization); ideas and propositions for coordinated international activity

  6. Evaluation of Seismic Behavior of Steel Braced Frames with Controlled Rocking System and Energy Dissipating Fuses

    Directory of Open Access Journals (Sweden)

    Hassan Amirzehni

    2016-12-01

    Full Text Available The self-centering rocking steel braced frames are new type of seismic lateral-force resisting systems that are developed with aim to limiting structural damages, minimizing residual drifts on systems and creating easy and inexpensive reconstruction capability, after sever earthquakes. In Steel braced frames with controlled rocking system, column bases on seismic resisting frame are not attached to the foundation and the frame allowed to rock freely. The task of restoring the rotated frame to its initial location is on post-tensioned cables, which attaches top of the frame to foundation. The design of post tensioned stands and braced frame members is such that during earthquakes they remain in elastic region. Seismic energy, dissipates by plastic deformations in replaceable elements on each rock of frame. In current research work, the seismic behavior of this type of lateral resisting systems is evaluated. The research conducted on a one bay steel braced frame with controlled rocking system that is analyzed using nonlinear dynamic time history analysis (NLTHA procedure. The frame is subjected to JMA-Kobe and Northridge ground motions records that are scaled to unit, 1.2 and 1.5 times of maximum considered earthquake (MCE ground motion level intensity. Extracted results show that seismic behavior of this type of lateral force resisting systems are so desirable even under MCE ground motion levels. The only anxiety is about occurring fatigue in post-tensioned strands that endangers overall stability of system.

  7. Decision making with epistemic uncertainty under safety constraints: An application to seismic design

    Science.gov (United States)

    Veneziano, D.; Agarwal, A.; Karaca, E.

    2009-01-01

    The problem of accounting for epistemic uncertainty in risk management decisions is conceptually straightforward, but is riddled with practical difficulties. Simple approximations are often used whereby future variations in epistemic uncertainty are ignored or worst-case scenarios are postulated. These strategies tend to produce sub-optimal decisions. We develop a general framework based on Bayesian decision theory and exemplify it for the case of seismic design of buildings. When temporal fluctuations of the epistemic uncertainties and regulatory safety constraints are included, the optimal level of seismic protection exceeds the normative level at the time of construction. Optimal Bayesian decisions do not depend on the aleatory or epistemic nature of the uncertainties, but only on the total (epistemic plus aleatory) uncertainty and how that total uncertainty varies randomly during the lifetime of the project. ?? 2009 Elsevier Ltd. All rights reserved.

  8. InSAR Analysis of Post-Seismic Deformation Following the 2013 Mw 7.7 Balochistan, Pakistan Earthquake

    Science.gov (United States)

    Peterson, K.; Barnhart, W. D.

    2017-12-01

    On September 24th, 2013, a Mw 7.7 earthquake ruptured a 200 km portion of the Hoshab fault, a reverse fault in the Makran accretionary prism of southern Pakistan. This earthquake is notable because it ruptured a reverse fault with a predominantly strike-slip sense of displacement, and it ruptured a mechanically weak accretionary prism. Here, we present initial analysis of ongoing post-seismic deformation imaged with the Sentinel-1 interferometric synthetic aperture radar (InSAR) mission with the goals of a) determining the dominant post-seismic deformation processes active, b) characterizing the rigidity and rheological structure of a flat-slab subduction zone, and c) elucidating whether post-seismic deformation may account for or exacerbate the 4-6 m fault convergence deficit left by the 2013 earthquake. We first present InSAR time series analysis of the post-seismic transient derived from ongoing Sentinel-1 SAR acquisitions, including a comparison of atmosphere-corrected and uncorrected time series. Interferograms spanning December 2014 to the present reveal an ongoing post-seismic deformation transient in the region surrounding the Hoshab fault. Additionally, fault creep signals on and adjacent to the Hoshab fault are present. Second, we present a suite of forward models that explore the potential contributions of viscoelastic relaxation and frictional afterslip to the recorded displacement signal. These models, conducted using the semi-analytical solutions of RELAX and compared to InSAR line-of-sight time series displacements, explore a range of candidate rheological descriptions of the Makran subduction zone that are designed to probe the rheological structure of a region where current knowledge of the subsurface geology is highly limited. Our preliminary results suggest that post-seismic displacements arise from a combination of viscoelastic deformation and frictional afterslip, as opposed to one single mechanism. Additionally, our preliminary results suggest

  9. SISPRO: research and development on the seismic effects attenuation with depth for the seismic design of a long term nuclear waste disposal in the subsurface domain

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, D.; Bossu, R.; Le Piver, F.; Desveaux, F.; Seys, C.; Bouchez, J

    2001-07-01

    In the framework of the 1991/12/30 french law on the management of the nuclear industry waste, the French Atomic Energy Commission (C.E.A.) studies potential benefits against seismic risk of the subsurface domain for the design of an interim storage installation. Indeed, few damage has been observed on subsurface structures during large earthquakes which implied major destructive effects on surface buildings, as during the 1995 Kobe earthquake. However, knowledge on seismic design for subsurface facilities is mainly based on empirical know- how, without satisfactory scientific background which could allow characterization of any given site seismic wave attenuation with depth. The SISPRO program intends to fulfill this lack with two complementary research axis: data acquisition and analysis at several depths and in/on mountain topographies on one hand, accurate numerical modeling on the other hand. The latter will be useful for the establishment of a methodology able to predict seismic waves amplitude, depending on the geotechnical site characteristics and depth. Data analysis which has already been made, such as attenuation laws with several sites data and depth as a parameter, will be depicted. Numerical modeling is based on a 3-D finite differences method able to carry computation of synthetics in any kind of geology. A specific research program is devoted to the case when a topography is present. Numerical results show an attenuation which is smaller than the observed one. This implies that the introduction of a strong gradient in the surface layers properties is probably necessary. Perspectives of the SISPRO program until 2006 will be presented, such as strong motion modeling and how to take into account soil-structure interaction. (author)

  10. SISPRO: research and development on the seismic effects attenuation with depth for the seismic design of a long term nuclear waste disposal in the subsurface domain

    International Nuclear Information System (INIS)

    Rodriguez, D.; Bossu, R.; Le Piver, F.; Desveaux, F.; Seys, C.; Bouchez, J.

    2001-01-01

    In the framework of the 1991/12/30 french law on the management of the nuclear industry waste, the French Atomic Energy Commission (C.E.A.) studies potential benefits against seismic risk of the subsurface domain for the design of an interim storage installation. Indeed, few damage has been observed on subsurface structures during large earthquakes which implied major destructive effects on surface buildings, as during the 1995 Kobe earthquake. However, knowledge on seismic design for subsurface facilities is mainly based on empirical know- how, without satisfactory scientific background which could allow characterization of any given site seismic wave attenuation with depth. The SISPRO program intends to fulfill this lack with two complementary research axis: data acquisition and analysis at several depths and in/on mountain topographies on one hand, accurate numerical modeling on the other hand. The latter will be useful for the establishment of a methodology able to predict seismic waves amplitude, depending on the geotechnical site characteristics and depth. Data analysis which has already been made, such as attenuation laws with several sites data and depth as a parameter, will be depicted. Numerical modeling is based on a 3-D finite differences method able to carry computation of synthetics in any kind of geology. A specific research program is devoted to the case when a topography is present. Numerical results show an attenuation which is smaller than the observed one. This implies that the introduction of a strong gradient in the surface layers properties is probably necessary. Perspectives of the SISPRO program until 2006 will be presented, such as strong motion modeling and how to take into account soil-structure interaction. (author)

  11. The two-body problem of a pseudo-rigid body and a rigid sphere

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall; Vereshchagin, M.; Gózdziewski, K.

    2012-01-01

    n this paper we consider the two-body problem of a spherical pseudo-rigid body and a rigid sphere. Due to the rotational and "re-labelling" symmetries, the system is shown to possess conservation of angular momentum and circulation. We follow a reduction procedure similar to that undertaken...... in the study of the two-body problem of a rigid body and a sphere so that the computed reduced non-canonical Hamiltonian takes a similar form. We then consider relative equilibria and show that the notions of locally central and planar equilibria coincide. Finally, we show that Riemann's theorem on pseudo......-rigid bodies has an extension to this system for planar relative equilibria....

  12. Vertical bending strength and torsional rigidity analysis of formula student car chassis

    Science.gov (United States)

    Hazimi, Hashfi; Ubaidillah, Setiyawan, Adi Eka Putra; Ramdhani, Hanief Cahya; Saputra, Murnanda Zaesy; Imaduddin, Fitrian

    2018-02-01

    Formula Society of Automotive Engineers (FSAE) is a competition for students to construct formula student car. One of an essential part of a formula student car is its chassis. Chassis is an internal vehicle frame which holds all another part of the vehicle and secures the driver. The team have to design their chassis and tests their design to achieve the best chassis that fulfill the regulation. This paper contains chassis design from Bengawan FSAE Team and some FEA tests to find out the Tensile Strength, Torsional Rigidity, and Von Misses Stress of Formula SAE car. Torsional rigidity was found by applying the static torsional test. The results from torsional rigidity test are a maximum deformation of 9.9512 mm with 1.7064 safety factor, and 35.935 MPa maximum Von Misses Stress. Moreover, then the result of the vertical bending strength test is 8.1214 mm max deformation with safety factor 4.2717, and 29.226 MPa maximum Von Misses Stress.

  13. Experimental and Numerical Assessment of a New Alternative of RBS Moment Connection

    International Nuclear Information System (INIS)

    Mirghaderi, Rasoul; Imanpour, Ali; Keshavarzi, Farhad; Torabian, Shahab

    2008-01-01

    Reduced beam section (RBS) connection has been known as a famous connection for steel moment-resisting seismic frames in high-rise buildings, because of their economical advantages and seismic ductility. In the ordinary RBS connection, often portions of the beam flanges are selectively trimmed in the region adjacent to the beam-to-column connection, and beam section is weakened in the plastic hinge region; section weakening concept in the plastic hinge region of beam cause to reduction of beam plastic section modulus in this region, and force plastic hinge to occur within the reduced section.This paper presents a new alternative of RBS connection that has been used aforesaid weakening concept in it, with this difference that corrugated steel plate webs instead of beam flange cutting has been used in limited specific length near the column face. Corrugated steel plates because of their accordion effect don't have bending rigidity, then using of these plates in plastic hinge region reduces the beam plastic section modulus and plastic hinge is formed in corrugated region. For investigating the seismic behavior and performance of new RBS moment connection, experimental specimen of new RBS connection were subjected to cyclic load, and finite element analysis were executed. The result of cyclic test and numerical analysis specified that the corrugated webs improved the plastic stability and provided capability of large plastic rotation at the plastic hinge location without any appreciable buckling and brittle fractures in this region. The test observations also showed that the specimens' plastic rotations exceeded 0.04 rad without any local and global buckling. All of the analytical results for proposed connection are generally in good agreement with the test observations

  14. Endurance time method for Seismic analysis and design of structures

    International Nuclear Information System (INIS)

    Estekanchi, H.E.; Vafai, A.; Sadeghazar, M.

    2004-01-01

    In this paper, a new method for performance based earthquake analysis and design has been introduced. In this method, the structure is subjected to accelerograms that impose increasing dynamic demand on the structure with time. Specified damage indexes are monitored up to the collapse level or other performance limit that defines the endurance limit point for the structure. Also, a method for generating standard intensifying accelerograms has been described. Three accelerograms have been generated using this method. Furthermore, the concept of Endurance Time has been described by applying these accelerograms to single and multi degree of freedom linear systems. The application of this method for analysis of complex nonlinear systems has been explained. Endurance Time method provides a uniform approach to seismic analysis and design of complex structures that can be applied in numerical and experimental investigations

  15. Seismic proof test of shielding block walls

    International Nuclear Information System (INIS)

    Ohte, Yukio; Watanabe, Takahide; Watanabe, Hiroyuki; Maruyama, Kazuhide

    1989-01-01

    Most of the shielding block walls used for building nuclear facilities are built by dry process. When a nuclear facility is designed, seismic waves specific at each site are set as input seismic motions and they are adopted in the design. Therefore, it is necessary to assure safety of the shielding block walls for earthquake by performing anti-seismic experiments under the conditions at each site. In order to establish the normal form that can be applied to various seismic conditions in various areas, Shimizu Corp. made an actual-size test samples for the shielding block wall and confirmed the safety for earthquake and validity of normalization. (author)

  16. Seismic design criteria used for electrical raceway systems in commercial nuclear power plants

    International Nuclear Information System (INIS)

    Summers, P.B.; Manrique, M.A.; Nelson, T.A.

    1991-01-01

    This paper summarizes some of the seismic design approaches, relevant technical issues and criteria used over the years for design of electrical raceway systems at commercial nuclear power plant facilities. The approaches used for design and endorsed by the NRC can be seen to be quite varied. In recent years, considerably more rigor has been required for raceway design, as well as for the level of design basis documentation produced. However, there has also been a willingness by the NRC to accept rational approaches based on testing, analytical results or experience data, provided proper justification is given. Such rational approaches can simplify the significant task of analysis, design and construction of miles of raceways and thousands of raceway supports. Summarizing past practice and identifying relevant technical issues are an important first step in formalizing up-to-date criteria for new raceway designs

  17. Seismic design and analysis methods

    International Nuclear Information System (INIS)

    Varpasuo, P.

    1993-01-01

    Seismic load is in many areas of the world the most important loading situation from the point of view of structural strength. Taking this into account it is understandable, that there has been a strong allocation of resources in the seismic analysis during the past ten years. In this study there are three areas of the center of gravity: (1) Random vibrations; (2) Soil-structure interaction and (3) The methods for determining structural response. The solution of random vibration problems is clarified with the aid of applications in this study and from the point of view of mathematical treatment and mathematical formulations it is deemed sufficient to give the relevant sources. In the soil-structure interaction analysis the focus has been the significance of frequency dependent impedance functions. As a result it was obtained, that the description of the soil with the aid of frequency dependent impedance functions decreases the structural response and it is thus always the preferred method when compared to more conservative analysis types. From the methods to determine the C structural response the following four were tested: (1) The time history method; (2) The complex frequency-response method; (3) Response spectrum method and (4) The equivalent static force method. The time history appeared to be the most accurate method and the complex frequency-response method did have the widest area of application. (orig.). (14 refs., 35 figs.)

  18. Is Fuel Assembly Fine at BDBA Seismic Load?

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Heung Seok; Lee, Kang Hee; Yoon, Kyung Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    After Fukushima accident, IAEA and OECD/NEA speak aloud recommendation on Design Extension Condition (DEC) for some of current BDBA accidents, and thus, some of the current BDBA to be obviously included in design conditions. In this study, 1) we will review on 2011 Fukushima accident from the earthquake point of view, before great tsunami, 2) on the analysis procedure for seismic accidents, of which the main frame was established several decades ago, 3) on possible issue on current design method, and 4) on practical way to solve the design issues and to reflect a beyond design basis seismic accident in DEC. In this study, we have reviewed seismic analysis procedure and tests for FA mechanical integrity. We may give some recommendation to incorporate BDB seismic accident into DEC as follows: 1) FA characteristic test considering realistic boundary conditions 2) Implementation of FSI into analysis models 3) Verification test to confirm design and safety margin.

  19. Adapting standards to the site. Example of Seismic Base Isolation

    International Nuclear Information System (INIS)

    Viallet, Emmanuel

    2014-01-01

    Emmanuel Viallet, Civil Design Manager at EDF engineering center SEPTEN, concluded the morning's lectures with a presentation on how to adapt a standard design to site characteristics. He presented the example of the seismic isolation of the Cruas NPP for which the standard 900 MW design was indeed built on 'anti-seismic pads' to withstand local seismic load

  20. Seismic analysis and design of steel beam - thick slab floor systems

    International Nuclear Information System (INIS)

    Reed, P.W.

    1981-01-01

    This paper presents a method for seismic analysis and design of floor systems composed of thick reinforced concrete slabs supported by steel beams. The response spectrum modal analysis is used to determine the dynamic response of an orthotropic finite element model. An approximate approach to find the fundamental frequency is explained, allowing an actual acceleration to be determined. The fundamental mode is found to be a major portion of the overall response, whereas the secondary modes are shown to result in a very small portion of the overall response. Dynamic multipliers for the fundamental mode and significant secondary modes are given for several typical floor layouts. These would be used to find equivalent static stress resultants which are used to design the floor. (orig.)