WorldWideScience

Sample records for rift lavas vary

  1. Perched Lava Pond Complex on South Rift of Axial Volcano Revealed in AUV Mapping

    Science.gov (United States)

    Paduan, J. B.; Clague, D. A.; Caress, D. W.; Thomas, H. J.

    2013-12-01

    An extraordinary lava pond complex is located on Axial Volcano's distal south rift. It was discovered in EM300 multibeam bathymetry collected in 1998, and explored and sampled with ROVs Tiburon in 2005 and Doc Ricketts in 2013. It was surveyed with the MBARI Mapping AUV D. Allan B. in 2011, in a complicated mission first flying above the levees at constant depth, then skimming ~5 m over the levees at a different constant depth to survey the floors, then twice switching to constant altitude mode to map outside the ponds. The AUV navigation was adjusted using the MB-System tool mbnavadjust so that bathymetric features match in overlapping and crossing swaths. The ~1-m resolution AUV bathymetry reveals extremely rough terrain, where low-resolution EM300 data had averaged acoustic returns and obscured details of walls, floors, a breach and surrounding flows, and gives context to the ROV observations and samples. The 6 x 1.5 km pond complex has 4 large and several smaller drained ponds with rims 67 to 106 m above the floors. The combined volume before draining was 0.56 km3. The ponds overflowed to build lobate-flow levees with elongate pillows draping outer flanks, then drained, leaving lava veneer on vertical inner walls. Levee rim depths vary by only 10 m and are deeper around the southern ponds. Deep collapse-pits in the levees suggest porosity of pond walls. The eastern levee of the northeastern pond breached, draining the interconnected ponds, and fed thick, rapidly-emplaced, sheet-flows along the complex's east side. These flows travelled at least 5.5 km down-rift and have 19-33 m deep drained ponds. They extended up-rift as well, forming a 10 x 2.5 km ponded flow with level 'bathtub rings' as high as 35 m above the floor marking that flow's high-stand. Despite the breach, at least 0.066 km3 of the molten interior of the large ponds also drained back down the eruptive fissures, as the pond floors are deeper than the sill and sea floor outside the complex. Tumulus

  2. Geochemical studies of abyssal lavas recovered by DSRV Alvin from Eastern Galapagos Rift, Inca Transform, and Ecuador Rift: 2. Phase chemistry and crystallization history

    Science.gov (United States)

    Perfit, Michael R.; Fornari, Daniel J.

    1983-12-01

    A diverse suite of lavas recovered by DSRV Alvin from the eastern Galapagos rift and Inca transform includes mid-ocean ridge tholeiitic basalts (MORB), iron- and titanium-enriched basalts (FeTi basalts), and abyssal andesites. Rock types transitional in character (ferrobasalts and basaltic andesites) were also recovered. The most mafic glassy basalts contain plagioclase, augite, and olivine as near-liquidus phases, whereas in more fractionated basalts, pigeonite replaces olivine and iron-titanium oxides crystallize. Plagioclase crystallizes after pyroxenes and iron-titanium oxides in andesites, possibly due to increased water contents or cooling rates. Apatite phenocrysts are present in some andesitic glasses. Ovoid sulfide globules are also common in many lavas. Compositional variations of phenocrysts in glassy lavas reflect changes in magma chemistry, temperature of crystallization, and cooling rate. The overall chemical variations parallel the chemical evolution of the lava suite and are similar to those in other fractionated tholeiitic complexes. Elemental partitioning between plagioclase-, pyroxene-, and olivine-glass pairs suggests that equilibration occurred at low pressure in a rather restricted temperature range. Various geothermometers indicate that the most primitive MORB began to crystallize between 1150° and 1200°C with fo2 PH 2 o could have been as high as 1 kbar during andesite crystallization. Compositions of the lavas from the Galapagos rift follow the experimentally determined (1 atm-QFM) liquid line of descent. Least squares calculations for the major elements indicate that the entire suite of lavas can be produced by fractional crystallization of successive residual liquids from a MORB parent magma. FeTi basalts represent 30-65 cumulative weight percent crystallization of plagioclase, augite, and olivine. An additional 30-50% fractionation of pyroxenes, plagioclase, titanomagnetite, and possible apatite is required to generate andesite from Fe

  3. Radiocarbon dates for lava flows from northeast rift zone of Mauna Loa Volcano, Hilo 7 1/2 minute quadrangle, Island of Hawaii

    Science.gov (United States)

    Buchanan-Banks, J. M.; Lockwood, J.P.; Rubin, M.

    1989-01-01

    Twenty-eight 14C analyses are reported for carbonized roots and other plant material collected from beneath 15 prehistoric lava flows erupted from the northeast rift zone (NERZ) of Mauna Loa Volcano (ML). The new 14C dates establish ages for 13 previously undated lava flows, and correct or add to information previously reported. Limiting ages on other flows that lie either above or below the dated flows are also established. These dates help to unravel the eruptive history of ML's NERZ. -from Authors

  4. Voluminous lava flow from Axial Seamount's south rift constrains extension rate on northern Vance Segment

    Science.gov (United States)

    Le Saout, M.; Clague, D. A.; Paduan, J. B.

    2017-12-01

    Axial Seamount is characterized by a robust magma supply resulting from the interaction between the Cobb hotspot and the Juan de Fuca Ridge. During the last two decades, magmatic activity was focused within the summit caldera and upper and middle portions of the two rift zones, with eruptions in 1998, 2011, and 2015. However, the distal ends of both rift zones have experienced numerous eruptions in the past. The most voluminous flows are located near the extreme ends, greater than 40 kilometers from the caldera. Where Axial's South Rift Zone overlaps with the Vance Segment of the Juan de Fuca Ridge, the 2015 MBARI expedition mapped 16 km2 of the seafloor with our AUV, and collected 33 rocks and 33 sediment cores during two ROV dives. The data were used to confirm the boundaries of an extensive flow tentatively identified using modern ship based bathymetry. This flow is 18 km wide and 6 km long for a total surface area of 63 km2. The flow is modified by superficial ( 5 m deep) and deep (25 to 45 m deep) subsidence pits, with the deepest pits giving an indication of the minimum thickness of the flow. The maximum thickness of 100 m is measured at the margins of the flow. We thus estimate a volume between 2.5 and 6 km3, making this flow the most voluminous known on the global mid ocean ridge system. The minimum volume is equivalent to the present volume of the summit caldera. Radiocarbon ages of foraminifera from the basal sections of sediment cores suggest that this flow is 1000 years old. This flow travelled east and partially filled the axial valley of the adjacent Vance Segment. Since emplacement, this part of the flow has experienced deformation by fissures and faults aligned with the trend of the Vance Segment. The horizontal extension across these features allows us to estimate a local deformation rate of 3 cm/yr of tectonic extension on the northern end of Vance Segment during the last 1000 years.

  5. Tracking lava flow emplacement on the east rift zone of Kilauea, Hawai’i with synthetic aperture radar (SAR) coherence

    Science.gov (United States)

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-01-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu‘u ‘Ō‘ō-Kupaianaha eruption at Kīlauea, Hawai‘i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  6. Leaching of lava and tephra from the Oldoinyo Lengai volcano (Tanzania): Remobilization of fluorine and other potentially toxic elements into surface waters of the Gregory Rift

    Science.gov (United States)

    Bosshard-Stadlin, Sonja A.; Mattsson, Hannes B.; Stewart, Carol; Reusser, Eric

    2017-02-01

    Volcanic ash leachate studies have been conducted on various volcanoes on Earth, but few have been done on African volcanoes until now. Tephra emissions may affect the environment and the health of people living in this area, and therefore we conducted a first tephra (ash and lapilli sized) leachate study on the Oldoinyo Lengai volcano, situated in northern Tanzania. The recent explosive eruption in 2007-2008 provided us with fresh samples from the first three weeks of the eruption which were used for this study. In addition, we also used a natrocarbonatitic sample from the activity prior to the explosive eruption, as the major activity at Oldoinyo Lengai is natrocarbonatitic. To compare the leaching process affecting the natrocarbonatitic lavas and the tephras from Oldoinyo Lengai, the 2006 natrocarbonatitic lava flow was resampled 5 years after the emplacement and compared to the initial, unaltered composition. Special interest was given to the element fluorine (F), since it is potentially toxic to both humans and animals. A daily intake of fluoride (F-) in drinking water of > 1.5 mg/l can lead to dental fluorosis, and higher concentrations lead to skeletal fluorosis. For this reason, a guideline value for fluoride in drinking water was set by the WHO (2011) to 1.5 mg/l. However, surface waters and groundwaters in the Gregory Rift have elevated fluoride levels of up to 9.12 mg/l, and as a consequence, an interim guideline value for Tanzania has been set at 8 mg/l. The total concentration of fluorine in the samples from the natrocarbonatitic lava flow is high (3.2 wt%), whereas we observed a significant decrease of the fluorine concentration (between 1.7 and 0.5 wt%) in the samples collected three days and three weeks after the onset of the explosive 2007-08 eruption. However, the total amount of water-extractable fluoride is lower in the natrocarbonatitic lavas (319 mg/l) than in the nephelinitic tephra (573-895 mg/l). This is due to the solubility of the

  7. Tracking lava flow emplacement on the east rift zone of Kīlauea, Hawai‘i, with synthetic aperture radar coherence

    Science.gov (United States)

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David A.; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-05-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu`u `Ō`ō-Kupaianaha eruption at Kīlauea, Hawai`i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  8. Surface deformation in volcanic rift zones

    Science.gov (United States)

    Pollard, D.D.; Delaney, P.T.; Duffield, W.A.; Endo, E.T.; Okamura, A.T.

    1983-01-01

    The principal conduits for magma transport within rift zones of basaltic volcanoes are steeply dipping dikes, some of which feed fissure eruptions. Elastic displacements accompanying a single dike emplacement elevate the flanks of the rift relative to a central depression. Concomitant normal faulting may transform the depression into a graben thus accentuating the topographic features of the rift. If eruption occurs the characteristic ridge-trough-ridge displacement profile changes to a single ridge, centered at the fissure, and the erupted lava alters the local topography. A well-developed rift zone owes its structure and topography to the integrated effects of many magmatic rifting events. To investigate this process we compute the elastic displacements and stresses in a homogeneous, two-dimensional half-space driven by a pressurized crack that may breach the surface. A derivative graphical method permits one to estimate the three geometric parameters of the dike (height, inclination, and depth-to-center) and the mechanical parameter (driving pressure/rock stiffness) from a smoothly varying displacement profile. Direct comparison of measured and theoretical profiles may be used to estimate these parameters even if inelastic deformation, notably normal faulting, creates discontinuities in the profile. Geological structures (open cracks, normal faults, buckles, and thrust faults) form because of stresses induced by dike emplacement and fissure eruption. Theoretical stress states associated with dilation of a pressurized crack are used to interpret the distribution and orientation of these structures and their role in rift formation. ?? 1983.

  9. Magma mixing in the 1100 AD Montaña Reventada composite lava flow, Tenerife, Canary Islands: interaction between rift zone and central volcano plumbing systems

    Science.gov (United States)

    Wiesmaier, S.; Deegan, F. M.; Troll, V. R.; Carracedo, J. C.; Chadwick, J. P.; Chew, D. M.

    2011-09-01

    Zoned eruption deposits commonly show a lower felsic and an upper mafic member, thought to reflect eruption from large, stratified magma chambers. In contrast, the Montaña Reventada composite flow (Tenerife) consists of a lower basanite and a much thicker upper phonolite. A sharp interface separates basanite and phonolite, and chilled margins at this contact indicate the basanite was still hot upon emplacement of the phonolite, i.e. the two magmas erupted in quick succession. Four types of mafic to intermediate inclusions are found in the phonolite. Inclusion textures comprise foamy quenched ones, others with chilled margins and yet others that are physically mingled, reflecting progressive mixing with a decreasing temperature contrast between the end-members. Analysis of basanite, phonolite and inclusions for majors, traces and Sr, Nd and Pb isotopes show the inclusions to be derived from binary mixing of basanite and phonolite end-members in ratios of 2:1 to 4:1. Although, basanite and phonolite magmas were in direct contact, contrasting 206Pb/204Pb ratios show that they are genetically distinct (19.7193(21)-19.7418(31) vs. 19.7671(18)-19.7807(23), respectively). We argue that the Montaña Reventada basanite and phonolite first met just prior to eruption and had limited interaction time only. Montaña Reventada erupted from the transition zone between two plumbing systems, the phonolitic Teide-Pico Viejo complex and the basanitic Northwest rift zone. A rift zone basanite dyke most likely intersected the previously emplaced phonolite magma chamber. This led to eruption of geochemically and texturally unaffected basanite, with the inclusion-rich phonolite subsequently following into the established conduit.

  10. Syn-rift unconformities punctuating the lower-middle Cambrian transition in the Atlas Rift, Morocco

    OpenAIRE

    Álvaro, J. Javier; Ezzouhairi, Hassan; Clausen, Sébastien; Ribeiro, Maria Luísa; Solá, Ana Rita

    2015-01-01

    The Cambrian Tamdroust and Bab n’Ali Volcanic Complexes represent two magmatic episodes developed in the latest Ediacaran–Cambrian Atlas Rift of Morocco. Their rifting pulses were accompanied by accumulation of volcanosedimentary edifices (dominated by effusive lava flows in the former and explosive acidic aprons in the latter) associated with active tilting and uplift. Sealing of their peneplaned horst-and-graben palaeotopographies led to the onset of distinct onlapping geometrie...

  11. Volcanism in the Sumisu Rift. Pt. 2

    International Nuclear Information System (INIS)

    Hochstaedter, A.G.; Gill, J.B.; Morris, J.D.

    1990-01-01

    A bimodal suite of volcanic rocks collected from the Sumisu Rift by ALVIN provide present day example of the first magmatic products of arc rifting during the initiation of back-arc spreading. The trace element and isotopic composition of these rocks, which are contemporaneous with island arc tholeiite lavas of the Izu-Ogasawara arc 20 km to the east, differ from those of arc rocks and N-MORB in their relative incorporation of both subduction-related and non-subduction-related components. Subduction-related components, i.e., those that distinguish volcanic arc basalts from N-MORB, are less pronounced in rift lavas than in arc lavas. Alkali and alkaline earth to high field strength element and REE ratios as well as 87 Sr/ 86 Sr are intermediate between those of N-MORB and Izu arc lavas and indicate that Sumisu Rift basalts are similar to BABB erupted in other, more mature back-arc basins. These results show that back-arc basins may begin their magmatic evolution with BABB rather than more arc-like lavas. Evidence of non-subduction related components remains after the effects of subduction related components are removed or accounted for. Compared to the arc, higher HFSE and REE concentrations, contrasting REE patterns, and ≤ε Nd in the rift reflect derivation of rift lavas from more enriched components. Although SR basalt resembles E-MORB in many trace element ratios, it is referred to as BABB because low concentrations of Nb are similar to those in volcanic arcs and H 2 O/REE and H 2 O/K 2 O exceed those of E-MORB. Differences in HREE pattern and ε Nd require that the E-MORB characteristics result from source heterogeneities and not lower degrees of melting. Enriched mantle beneath the rift may reflect enriched blobs entrained in a more depleted matrix, or injection of new, more enriched mantle. High 208 Pb/ 204 Pb and moderate 207 Pb/ 204 Pb ratios with respect to Pacific MORB also reflect ancient mantle enrichment. (orig.)

  12. Diverse Eruptions at Approximately 2,200 Years B.P. on the Great Rift, Idaho: Inferences for Magma Dynamics Along Volcanic Rift Zones

    Science.gov (United States)

    Hughes, S. S.; Nawotniak, S. E. Kobs; Borg, C.; Mallonee, H. C.; Purcell, S.; Neish, C.; Garry, W. B.; Haberle, C. W.; Lim, D. S. S.; Heldmann, J. L.

    2016-01-01

    Compositionally and morphologically diverse lava flows erupted on the Great Rift of Idaho approximately 2.2 ka (kilo-annum, 1000 years ago) during a volcanic "flare-up" of activity following an approximately 2 ky (kiloyear, 1000 years) hiatus in eruptions. Volcanism at Craters of the Moon (COTM), Wapi and Kings Bowl lava fields around this time included primitive and evolved compositions, separated over 75 kilometers along the approximately 85 kilometers-long rift, with striking variability in lava flow emplacement mechanisms and surface morphologies. Although the temporal associations may be coincidental, the system provides a planetary analog to better understand magma dynamics along rift systems, including that associated with lunar floor-fractured craters. This study aims to help bridge the knowledge gap between ancient rift volcanism evident on the Moon and other terrestrial planets, and active rift volcanism, e.g., at Hawai'i and Iceland.

  13. Ridge-like lava tube systems in southeast Tharsis, Mars

    Science.gov (United States)

    Zhao, Jiannan; Huang, Jun; Kraft, Michael D.; Xiao, Long; Jiang, Yun

    2017-10-01

    Lava tubes are widely distributed in volcanic fields on a planetary surface and they are important means of lava transportation. We have identified 38 sinuous ridges with a lava-tube origin in southeast Tharsis. The lengths vary between 14 and 740 km, and most of them occur in areas with slopes rate, low lava viscosity, and sustained magma supply during a long period. Besides, lava flow inflation is also important in the formation of the ridge-like lava tubes and some associated features. These lava tubes provide efficient lateral pathways for magma transportation over the relatively low topographic slopes in southeast Tharsis, and they are important for the formation of long lava flows in this region. The findings of this study provide an alternative formation mechanism for sinuous ridges on the martian surface.

  14. Lunar Lava Tube Sensing

    Science.gov (United States)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  15. Introducing Kansas Lava

    Science.gov (United States)

    Gill, Andy; Bull, Tristan; Kimmell, Garrin; Perrins, Erik; Komp, Ed; Werling, Brett

    Kansas Lava is a domain specific language for hardware description. Though there have been a number of previous implementations of Lava, we have found the design space rich, with unexplored choices. We use a direct (Chalmers style) specification of circuits, and make significant use of Haskell overloading of standard classes, leading to concise circuit descriptions. Kansas Lava supports both simulation (inside GHCi), and execution via VHDL, by having a dual shallow and deep embedding inside our Signal type. We also have a lightweight sized-type mechanism, allowing for MATLAB style matrix based specifications to be directly expressed in Kansas Lava.

  16. Syn-rift unconformities punctuating the lower-middle Cambrian transition in the Atlas Rift, Morocco

    Science.gov (United States)

    Álvaro, J. Javier; Ezzouhairi, Hassan; Clausen, Sébastien; Ribeiro, M. Luisa; Solá, Rita

    2015-04-01

    The Cambrian Tamdroust and Bab n'Ali Volcanic Complexes represent two magmatic episodes developed in the latest Ediacaran-Cambrian Atlas Rift of Morocco. Their rifting pulses were accompanied by accumulation of volcanosedimentary edifices (dominated by effusive lava flows in the former and explosive acidic aprons in the latter) associated with active tilting and uplift. Sealing of their peneplaned horst-and-graben palaeotopographies led to the onset of distinct onlapping geometries and angular discordances capping eroded basements ranging from the Ediacaran Ouarzazate Supergroup to the Cambrian Asrir Formation. Previous interpretations of these discordances as pull-apart or compressive events are revised here and reinterpreted in an extensional (rifting) context associated with active volcanism. The record of erosive unconformities, stratigraphic gaps, condensed beds and onlapping patterns across the traditional "lower-middle Cambrian" (or Cambrian Series 2-3) transition of the Atlas Rift must be taken into consideration for global chronostratigraphic correlation based on their trilobite content.

  17. Young rift kinematics in the Tadjoura rift, western Gulf of Aden, Republic of Djibouti

    Science.gov (United States)

    Daoud, Mohamed A.; Le Gall, Bernard; Maury, René C.; Rolet, JoëL.; Huchon, Philippe; Guillou, Hervé

    2011-02-01

    The Tadjoura rift forms the westernmost edge of the westerly propagating Sheba ridge, between Arabia and Somalia, as it enters into the Afar depression. From structural and remote sensing data sets, the Tadjoura rift is interpreted as an asymmetrical south facing half-graben, about 40 km wide, dominated by a large boundary fault zone to the north. It is partially filled up by the 1-3 Myr old Gulf Basalts which onlapped the older Somali Basalts along its shallower southern flexural margin. The major and trace element analysis of 78 young onshore lavas allows us to distinguish and map four distinct basaltic types, namely the Gulf, Somali, Goumarre, and Hayyabley Basalts. These results, together with radiometric age data, lead us to propose a revised volcano-stratigraphic sketch of the two exposed Tadjoura rift margins and to discriminate and date several distinct fault networks of this oblique rift. Morphological and statistical analyses of onshore extensional fault populations show marked changes in structural styles along-strike, in a direction parallel to the rift axis. These major fault disturbances are assigned to the arrest of axial fault tip propagation against preexisting discontinuities in the NS-oriented Arta transverse zone. According to our model, the sinistral jump of rifting into the Asal-Ghoubbet rift segment results from structural inheritance, in contrast with the en échelon or transform mechanism of propagation that prevailed along the entire length of the Gulf of Aden extensional system.

  18. Petrogenesis of basalt-trachyte lavas from Olmoti Crater, Tanzania

    Science.gov (United States)

    Mollel, Godwin F.; Swisher, Carl C., III; McHenry, Lindsay J.; Feigenson, Mark D.; Carr, Michael J.

    2009-08-01

    Olmoti Crater is part of the Plio-Pleistocene Ngorongoro Volcanic Highland (NVH) in northern Tanzania to the south of Gregory Rift. The Gregory Rift is part of the eastern branch of the East African Rift System (EARS) that stretches some 4000 km from the Read Sea and Gulf of Aden in the north to the Zambezi River in Mozambique. Here, we (1) characterize the chemistry and mineral compositions of lavas from Olmoti Crater, (2) determine the age and duration of Olmoti volcanic activity through 40Ar/ 39Ar dating of Olmoti Crater wall lavas and (3) determine the genesis of Olmoti lavas and the relationship to other NVH and EARS volcanics and (4) their correlation with volcanics in the Olduvai and Laetoli stratigraphic sequences. Olmoti lavas collected from the lower part of the exposed crater wall section (OLS) range from basalt to trachyandesite whereas the upper part of the section (OUS) is trachytic. Petrography and major and trace element data reflect a very low degree partial melt origin for the Olmoti lavas, presumably of peridotite, followed by extensive fractionation. The 87Sr/ 86Sr data overlap whereas Nd and Pb isotope data are distinct between OLS and OUS samples. Interpretation of the isotope data suggests mixing of enriched mantle (EM I) with high-μ-like reservoirs, consistent with the model of Bell and Blenkinsop [Bell, K., Blenkinsop, J., 1987. Nd and Sr isotopic compositions of East African carbonatites: implications for mantle heterogeneity. Geology 5, 99-102] for East African carbonatite lavas. The isotope ratios are within the range of values defined by Oceanic Island Basalt (OIB) globally and moderate normalized Tb/Yb ratios (2.3-1.6) in these lavas suggest melting in the lithospheric mantle consistent with other studies in the region. 40Ar/ 39Ar incremental-heating analyses of matrix and anorthoclase separates from Olmoti OLS and OUS lavas indicate that volcanic activity was short in duration, lasting ˜200 kyr from 2.01 ± 0.03 Ma to 1.80 ± 0

  19. Historical volcanism and the state of stress in the East African Rift System

    Directory of Open Access Journals (Sweden)

    Geoffrey Wadge

    2016-09-01

    Full Text Available Crustal extension at the East African Rift System (EARS should, as a tectonic ideal, involve a stress field in which the direction of minimum horizontal stress is perpendicular to the rift. A volcano in such a setting should produce dykes and fissures parallel to the rift. How closely do the volcanoes of the EARS follow this? We answer this question by studying the 21 volcanoes that have erupted historically (since about 1800 and find that 7 match the (approximate geometrical ideal. At the other 14 volcanoes the orientation of the eruptive fissures/dykes and/or the axes of the host rift segments are oblique to the ideal values. To explain the eruptions at these volcanoes we invoke local (non-plate tectonic variations of the stress field caused by: crustal heterogeneities and anisotropies (dominated by NW structures in the Protoerozoic basement, transfer zone tectonics at the ends of offset rift segments, gravitational loading by the volcanic edifice (typically those with 1-2 km relief and magmatic pressure in central reservoirs. We find that the more oblique volcanoes tend to have large edifices, large eruptive volumes and evolved and mixed magmas capable of explosive behaviour. Nine of the volcanoes have calderas of varying ellipticity, 6 of which are large, reservoir-collapse types mainly elongated across rift (e.g. Kone and 3 are smaller, elongated parallel to the rift and contain active lava lakes (e.g. Erta Ale, suggesting different mechanisms of formation and stress fields. Nyamuragira is the only EARS volcano with enough sufficiently well-documented eruptions to infer its long-term dynamic behaviour. Eruptions within 7 km of the volcano are of relatively short duration (<100 days, but eruptions with more distal fissures tend to have greater obliquity and longer durations, indicating a changing stress field away from the volcano. There were major changes in long-term magma extrusion rates in 1977 (and perhaps in 2002 due to major along-rift

  20. Lava lake level as a gauge of magma reservoir pressure and eruptive hazard

    Science.gov (United States)

    Patrick, Matthew R.; Anderson, Kyle R.; Poland, Michael P.; Orr, Tim R.; Swanson, Donald A.

    2015-01-01

    Forecasting volcanic activity relies fundamentally on tracking magma pressure through the use of proxies, such as ground surface deformation and earthquake rates. Lava lakes at open-vent basaltic volcanoes provide a window into the uppermost magma system for gauging reservoir pressure changes more directly. At Kīlauea Volcano (Hawaiʻi, USA) the surface height of the summit lava lake in Halemaʻumaʻu Crater fluctuates with surface deformation over short (hours to days) and long (weeks to months) time scales. This correlation implies that the lake behaves as a simple piezometer of the subsurface magma reservoir. Changes in lava level and summit deformation scale with (and shortly precede) changes in eruption rate from Kīlauea's East Rift Zone, indicating that summit lava level can be used for short-term forecasting of rift zone activity and associated hazards at Kīlauea.

  1. Hawaii Volcanism: Lava Forms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Over the last several million years the Hawaiian Islands have been built of successive lava flows. They are the most recent additions in a long line of volcanoes...

  2. Continental Rifts

    Science.gov (United States)

    Rosendahl, B. R.

    Continental Rifts, edited by A. M. Quennell, is a new member of the Benchmark Papers in Geology Series, edited in toto by R. W. Fairbridge. In this series the individual volume editors peruse the literature on a given topic, select a few dozen papers of ostensibly benchmark quality, and then reorder them in some sensible fashion. Some of the original papers are republished intact, but many are chopped into “McNuggets™” of information. Depending upon the volume editor, the chopping process can range from a butchering job to careful and prudent pruning. The collecting, sifting, and reorganizing tasks are, of course, equally editor-sensitive. The end product of this series is something akin to a set of Reader's Digest of Geology.

  3. Deformation at Lava Lake Volcanoes: Lessons from Karthala

    Science.gov (United States)

    Biggs, J.; Rust, A.; Owens, C.

    2014-12-01

    To remain hot, permanent lava lakes require a continuous connection to a magma reservoir. Depending on the state of the conduit, changes in magma pressure could result in changes in the lake level (hydraulic head) or be accommodated elastically leading to surface deformation. Observing deformation is therefore key to understanding the plumbing system associated with lava lakes. However, the majority of the world's lava lakes lie in difficult socio-economic or remote locations meaning that there are few ground-based observations, and it is often necessary to rely on satellite imagery. Karthala volcano experienced a sequence of eruptions in April 2005, Nov 2005, May 2006 and Jan 2007. The first 3 took place at the Choungou Chahale crater, which typically contains either a water or lava lake; the last formed a new pit crater to the north. Satellite thermal imagery (Hirn et al, 2008) does not show an anomaly during the first eruption, which had a phreatomagmatic component, but large thermal anomalies, associated with an ephemeral lava lake were detected during the Nov 2005 and May 2006 eruptions. The final eruption produced a smaller anomaly attributed to a minor lava flow. Here we present InSAR observations from 2004-2010. We find no significant deformation associated with the first three eruptions, but the January 2007 eruption was associated with ~25 cm of deformation near the volcano's summit, characteristic of a dyke intrusion aligned with the northern rift zone. We also observe an unusual pattern deformation along the coast which may be attributed to rapid settling of soft sediment or recent volcanic deposits triggered by seismic activity. We propose that the first eruption cleared the reservoir-summit connection and interacted with the water in Choungou Chahale. The following eruptions formed a lava lake, but without causing deformation. By the final eruption, the conduit had become blocked and magma intruded along the rift zone causing deformation but no

  4. One billion year-old Mid-continent Rift leaves virtually no clues in the mantle

    Science.gov (United States)

    Bollmann, T. A.; Frederiksen, A. W.; van der Lee, S.; Wolin, E.; Revenaugh, J.; Wiens, D.; Darbyshire, F. A.; Aleqabi, G. I.; Wysession, M. E.; Stein, S.; Jurdy, D. M.

    2017-12-01

    We measured the relative arrival times of more than forty-six thousand teleseismic P waves recorded by seismic stations of Earthscope's Superior Province Rifting Earthscope Experiment (SPREE) and combined them with a similar amount of such measurements from other seismic stations in the larger region. SPREE recorded seismic waves for two and a half years around the prominent, one billion year-old Mid-continent Rift structure. The curvilinear Mid-continent Rift (MR) is distinguished by voluminous one billion year-old lava flows, which produce a prominent gravity high along the MR. As for other seismic waves, these lava flows along with their underplated counterpart, slightly slow down the measured teleseismic P waves, on average, compared to P waves that did not traverse structures beneath the Mid-continent Rift. However, the variance in the P wave arrival times in these two groups is nearly ten times higher than their average difference. In a seismic-tomographic inversion, we mapped all measured arrival times into structures deep beneath the crust, in the Earth's mantle. Beneath the crust we generally find relatively high P velocities, indicating relatively cool and undeformable mantle structures. However, the uppermost mantle beneath the MR shows several patches of slightly decreased P velocities. These patches are coincident with where the gravity anomalies peak, in Iowa and along the northern Minnesota/Wisconsin border. We will report on the likelihood that these anomalies are indeed a remaining mantle-lithospheric signature of the MR or whether these patches indirectly reflect the presence of the lava flows and their underplated counterparts at the crust-mantle interface. Other structures of interest and of varying depth extent in our tomographic image locate at 1) the intersection of the Superior Craton with the Penokean Province and the Marshfield Terrane west of the MR in southern Minnesota, 2) the intersection of the Penokean, Yavapai, and Mazatzal Terranes

  5. Plateaus and sinuous ridges as the fingerprints of lava flow inflation in the Eastern Tharsis Plains of Mars

    Science.gov (United States)

    Bleacher, Jacob E.; Orr, Tim R.; de Wet, Andrew P.; Zimbelman, James R.; Hamilton, Christopher W.; Brent Garry, W.; Crumpler, Larry S.; Williams, David A.

    2017-08-01

    The Tharsis Montes rift aprons are composed of outpourings of lava from chaotic terrains to the northeast and southwest flank of each volcano. Sinuous and branching channel networks that are present on the rift aprons suggest the possibility of fluvial processes in their development, or erosion by rapidly emplaced lavas, but the style of lava flow emplacement throughout rift apron development is not clearly understood. To better characterize the style of lava emplacement and role of fluvial processes in rift apron development, we conducted morphological mapping of the Pavonis Mons southwest rift apron and the eastern Tharsis plains using images from the High Resolution Imaging Science Experiment (HiRISE), Mars Orbiter Camera (MOC), Context Camera (CTX), Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) along with the Mars Orbiter Laser Altimeter (MOLA) Precision Experiment Data Records (PEDRs) and gridded data. Our approach was to: (1) search for depositional fans at the slope break between the rift apron and adjacent low slope plains; (2) determine if there is evidence that previously formed deposits might have been buried by plains units; (3) characterize the Tharsis plains morphologies east of Pavonis Mons; and (4) assess their relationship to the rift apron units. We have not identified topographically significant depositional fans, nor did we observe evidence to suggest that plains units have buried older rift apron units. Flow features associated with the rift apron are observed to continue across the slope break onto the plains. In this area, the plains are composed of a variety of small fissures and low shield vents around which broad channel-fed and tube-fed flows have been identified. We also find broad, flat-topped plateaus and sinuous ridges mixed among the channels, tubes and vents. Flat-topped plateaus and sinuous ridges are morphologies that are analogous to those observed on the coastal plain of Hawai'i, where lava

  6. The geology and geophysics of the Oslo rift

    Science.gov (United States)

    Ruder, M. E.

    1981-01-01

    The regional geology and geophysical characteristics of the Oslo graben are reviewed. The graben is part of a Permian age failed continental rift. Alkali olivine, tholefitic, and monzonitic intrusives as well as basaltic lavas outline the extent of the graben. Geophysical evidence indicates that rifting activity covered a much greater area in Skagerrak Sea as well as the Paleozoic time, possibly including the northern Skagerrak Sea as well as the Oslo graben itself. Much of the surficial geologic characteristics in the southern part of the rift have since been eroded or covered by sedimentation. Geophysical data reveal a gravity maximum along the strike of the Oslo graben, local emplacements of magnetic material throughout the Skagerrak and the graben, and a slight mantle upward beneath the rift zone. Petrologic and geophysical maps which depict regional structure are included in the text. An extensive bibliography of pertinent literature published in English between 1960 and 1980 is also provided.

  7. Nornahraun lava morphology and mode of emplacement

    Science.gov (United States)

    Pedersen, Gro B. M.; Höskuldsson, Armann; Riishuus, Morten S.; Jónsdóttir, Ingibjörg; Gudmundsson, Magnús T.; Sigmundsson, Freysteinn; Óskarsson, Birgir V.; Drouin, Vincent; Gallagher, Catherine; Askew, Rob; Moreland, William M.; Dürig, Tobias; Dumont, Stephanie; Þórdarson, Þór

    2015-04-01

    The ongoing Nornahraun eruption is the largest effusive eruption in Iceland since the Laki eruption in 1783-84, with an estimated lava volume of ~1.15 km3 covering an area of ~83.4 km2 (as of 5 JAN 2015). The eruption provides an unprecedented opportunity to study i) lava morphologies and their emplacement styles, ii) the transition from from open to closed lava pathways and iii) lava pond formation. Tracking of the lava advancement and morphology has been performed by GPS and GoPro cameras installed in 4×4 vehicles as well as video footage. Complimentary observations have been provided from aircraft platforms and by satellite data. Of particular importance for lava morphology observations are 1-12 m/pixel airborne SAR images (x-band). The Nornahraun flow field comprises a continuum of morphologies from pāhoehoe to 'a'ā, which have varied tem-porally and spatially. At the onset of the eruption 31 AUG, lava flows advanced rapidly (400-800 m/hr) from the 1.5 km long fissure as large slabby pāhoehoe [1-3] sheet lobes, 100-500 m wide and 0.3-1 m thick at the flow fronts. By 1 SEPT, the flows began channeling towards the NE constrained by the older Holuhraun I lava field and the to-pography of flood plain itself. A central open channel developed, feeding a 1-2 km wide active 'a'ā frontal lobe that advanced 1-2 km/day. In addition to its own caterpillar motion, the frontal lobe advanced in a series of 30-50 m long breakouts, predominantly slabby and rubbly pāhoehoe [4,5]. These breakouts had initial velocities of 10-30 m/hr and reached their full length within tens of minutes and subsequently inflated over hours. With the continuous advancement of the 'a'ā flow front, the breakouts were incorporated into the 'a'ā flow fronts and seldom preserved. At the margins of the frontal lava lobe, the breakouts were more sporadic, but predominantly rubbly pāhoehoe and slabby pāhoehoe, as at the flow front. The lava flow advanced ENE into Jökulsá á Fjöllum on 7 SEPT

  8. Petrological Constraints on Melt Generation Beneath the Asal Rift (Djibouti)

    Science.gov (United States)

    Pinzuti, P.; Humler, E.; Manighetti, I.; Gaudemer, Y.; Bézos, A.

    2010-12-01

    The temporal evolution of the mantle melting processes in the Asal Rift is evaluated from the chemical composition of 95 lava flows sampled along 10 km of the rift axis and 8 km off-axis (that is for the last 650 ky). The major element composition and the trace element ratios of aphyric basalts across the Asal Rift show a symmetric pattern relative to the rift axis and preserved a clear signal of mantle melting depth variations. FeO, Fe8.0, Sm/YbN and Zr/Y increase, whereas SiO2 and Lu/HfN decrease from the rift axis to the rift shoulders. These variations are qualitatively consistent with a shallower melting beneath the rift axis than off-axis and the data show that the melting regime is inconsistent with a passive upwelling model. In order to quantify the depth range and extent of melting, we invert Na8.0 and Fe8.0 contents of basalts based on a pure active upwelling model. Beneath the rift axis, melting paths are shallow, from 60 to 30 km. These melting paths are consistent with adiabatic melting in normal-temperature asthenosphere, beneath an extensively thinned mantle lithosphere. In contrast, melting on the rift shoulders occurred beneath a thick mantle lithosphere and required mantle solidus temperature 180°C hotter than normal (melting paths from 110 to 75 km). The calculated rate of lithospheric thinning is high (6.0 cm yr-1) and could explain the survival of a metastable garnet within the mantle at depth shallower than 90 km beneath the modern Asal Rift.

  9. ALVIN investigation of an active propagating rift system, Galapagos 95.5° W

    Science.gov (United States)

    Hey, R.N.; Sinton, J.M.; Kleinrock, M.C.; Yonover, R.N.; MacDonald, K.C.; Miller, S.P.; Searle, R.C.; Christie, D.M.; Atwater, T.M.; Sleep, Norman H.; Johnson, H. Paul; Neal, C.A.

    1992-01-01

    ALVIN investigations have defined the fine-scale structural and volcanic patterns produced by active rift and spreading center propagation and failure near 95.5° W on the Galapagos spreading center. Behind the initial lithospheric rifting, which is propagating nearly due west at about 50 km m.y.−1, a triangular block of preexisting lithosphere is being stretched and fractured, with some recent volcanism along curving fissures. A well-organized seafloor spreading center, an extensively faulted and fissured volcanic ridge, develops ~ 10 km (~ 200,000 years) behind the tectonic rift tip. Regional variations in the chemical compositions of the youngest lavas collected during this program contrast with those encompassing the entire 3 m.y. of propagation history for this region. A maximum in degree of magmatic differentiation occurs about 9 km behind the propagating rift tip, in a region of diffuse rifting. The propagating spreading center shows a gentle gradient in magmatic differentiation culminating at the SW-curving spreading center tip. Except for the doomed rift, which is in a constructional phase, tectonic activity also dominates over volcanic activity along the failing spreading system. In contrast to the propagating rift, failing rift lavas show a highly restricted range of compositions consistent with derivation from a declining upwelling zone accompanying rift failure. The lithosphere transferred from the Cocos to the Nazca plate by this propagator is extensively faulted and characterized by ubiquitous talus in one of the most tectonically disrupted areas of seafloor known. The pseudofault scarps, where the preexisting lithosphere was rifted apart, appear to include both normal and propagator lavas and are thus more lithologically complex than previously thought. Biological communities, probably vestimentiferan tubeworms, occur near the top of the outer pseudofault scarp, although no hydrothermal venting was observed.

  10. Inflation rates, rifts, and bands in a pāhoehoe sheet flow

    Science.gov (United States)

    Hoblitt, Richard P.; Orr, Tim R.; Heliker, Christina; Denlinger, Roger P.; Hon, Ken; Cervelli, Peter F.

    2012-01-01

    The margins of sheet flows—pāhoehoe lavas emplaced on surfaces sloping Inflation and rift-band formation is probably cyclic, because the pattern we observed suggests episodic or crude cyclic behavior. Furthermore, some inflation rifts contain numerous bands whose spacing and general appearances are remarkably similar. We propose a conceptual model wherein the inferred cyclicity is due to the competition between the fluid pressure in the flow's liquid core and the tensile strength of the viscoelastic layer where it is weakest—in inflation rifts. The viscoelastic layer consists of lava that has cooled to temperatures between 800 and 1070 °C. This layer is the key parameter in our model because, in its absence, rift banding and stepwise changes in the flow height would not occur.

  11. Along-Axis Structure and Crustal Construction Processes of Spreading Segments in Iceland: Implications for Magmatic Rifts

    Science.gov (United States)

    Siler, D. L.; Karson, J. A.

    2017-10-01

    Magmatic rift systems are composed of discrete spreading segments defined by morphologic, structural, and volcanic features that vary systematically along strike. In Iceland, structural features mapped in the glaciated and exhumed Miocene age upper crust correlate with analogous features in the seismically and volcanically active neovolcanic zone. Integrating information from both the active rift zones and ancient crust provides a three-dimensional perspective of crustal structure and the volcanic and tectonic processes that construct crust along spreading segments. Crustal exposures in the Skagi region of northern Iceland reveal significant along-strike variations in geologic structure. The upper crust at exhumed magmatic centers (segment centers) is characterized by a variety of intrusive rocks, high-temperature hydrothermal alteration, and geologic evidence for kilometer-scale subsidence. In contrast, the upper crust along segment limbs, which extend along strike from magmatic centers, is characterized by thick sections of gently dipping lava flows, cut by varying proportions of subvertical dikes. This structure implies relatively minor upper crustal subsidence and lateral dike intrusion. The differing modes of subsidence beneath segment centers and segment limbs require along-axis mass redistribution in the underlying upper, middle, and lower crust during crustal construction. This along-axis material transport is accomplished through lateral dike intrusion in the upper crust and by along-axis flow of magmatic to high-temperature solid-state gabbroic material in the middle and lower crust. These processes, inferred from outcrop evidence in Skagi, are consistent with processes inferred to be important during active rifting in Iceland and at analogous magmatic oceanic and continental rifts.

  12. Petrological constraints on melt generation beneath the Asal Rift (Djibouti) using quaternary basalts

    Science.gov (United States)

    Pinzuti, Paul; Humler, Eric; Manighetti, Isabelle; Gaudemer, Yves

    2013-08-01

    The temporal evolution of the mantle melting processes in the Asal Rift is evaluated from the chemical composition of 56 new lava flows sampled along 10 km of the rift axis and 9 km off-axis (i.e., erupted within the last 620 kyr). Petrological and primary geochemical results show that most of the samples of the inner floor of the Asal Rift are affected by plagioclase accumulation. Trace element ratios and major element compositions corrected for mineral accumulation and crystallization show a symmetric pattern relative to the rift axis and preserved a clear signal of mantle melting depth variations. While FeO, Fe8.0, Zr/Y, and (Dy/Yb)N decrease from the rift shoulders to the rift axis, SiO2, Na/Ti, Lu/Hf increase and Na2O and Na8.0 are constant across the rift. These variations are qualitatively consistent with shallow melting beneath the rift axis and deeper melting for off-axis lava flows. Na8.0 and Fe8.0 contents show that beneath the rift axis, melting paths are shallow, from 81 ± 4 to 43 ± 5 km. These melting paths are consistent with adiabatic melting in normal-temperature fertile asthenosphere, beneath an extensively thinned mantle lithosphere. On the contrary, melting on the rift shoulders (from 107 ± 7 to 67 ± 8 km) occurred beneath thicker lithosphere, requiring a mantle solidus temperature 100 ± 40°C hotter. In this geodynamic environment, the calculated rate of lithospheric thinning appears to be 4.0 ± 2.0 cm yr-1, a value close to the mean spreading rate (2.9 ± 0.2 cm yr-1) over the last 620 kyr.

  13. Hawaii Lava Flows

    Science.gov (United States)

    2001-01-01

    This sequence of ASTER nighttime thermal images shows the Pu'u O'o lava flows entering the sea at Kamokuna on the southeast side of the Island of Hawaii. Each image covers an area of 9 x 12 km. The acquisition dates are April 4 2000, May 13 2000, May 22 2000 (upper row) and June 30 2000, August 1 2000 and January 1 2001 (lower row). Thermal band 14 has been color coded from black (coldest) through blue, red, yellow and white (hottest). The first 5 images show a time sequence of a single eruptive phase; the last image shows flows from a later eruptive phase. The images are located at 19.3 degrees north latitude, 155 degrees west longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  14. A Sinuous Tumulus over an Active Lava Tube at Klauea Volcano: Evolution, Analogs, and Hazard Forecasts

    Science.gov (United States)

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.

    2015-01-01

    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Klauea Volcanos (Hawaii, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flows emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kilauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kilauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kilauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai?i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  15. Multifractal characterization of Vesuvio lava-flow margins and its implications

    Science.gov (United States)

    Luongo, G.; Mazzarella, A.; Di Donna, G.

    2000-09-01

    The digitized lava-flow margins of well-defined extended eruptions occurring at Vesuvio in 1760, 1794, 1861, 1906, 1929 and 1944 are found to follow fractal behaviours inside a scaling region enclosed between 50 and 400 m. Although the invariance region is well respected, the fractal dimension D varies from one lava flow to another: the more irregular the lava-flow margin, the larger the value of D. The ascertained dependence of D on the duration of premonitory activity, preceding the emission of lavas, might provide some insight into the inner volcanic processes before the eruption and into the dynamical processes operating during flow emplacement.

  16. Kīlauea summit eruption—Lava returns to Halemaʻumaʻu

    Science.gov (United States)

    Babb, Janet L.; Wessells, Stephen M.; Neal, Christina A.

    2017-10-06

    In March 2008, a new volcanic vent opened within Halemaʻumaʻu, a crater at the summit of Kīlauea Volcano in Hawaiʻi Volcanoes National Park on the Island of Hawaiʻi. This new vent is one of two ongoing eruptions on the volcano. The other is on Kīlauea’s East Rift Zone, where vents have been erupting nearly nonstop since 1983. The duration of these simultaneous summit and rift zone eruptions on Kīlauea is unmatched in at least 200 years.Since 2008, Kīlauea’s summit eruption has consisted of continuous degassing, occasional explosive events, and an active, circulating lava lake. Because of ongoing volcanic hazards associated with the summit vent, including the emission of high levels of sulfur dioxide gas and fragments of hot lava and rock explosively hurled onto the crater rim, the area around Halemaʻumaʻu remains closed to the public as of 2017.Through historical photos of past Halemaʻumaʻu eruptions and stunning 4K imagery of the current eruption, this 24-minute program tells the story of Kīlauea Volcano’s summit lava lake—now one of the two largest lava lakes in the world. It begins with a Hawaiian chant that expresses traditional observations of a bubbling lava lake and reflects the connections between science and culture that continue on Kīlauea today.The video briefly recounts the eruptive history of Halemaʻumaʻu and describes the formation and continued growth of the current summit vent and lava lake. It features USGS Hawaiian Volcano Observatory scientists sharing their insights on the summit eruption—how they monitor the lava lake, how and why the lake level rises and falls, why explosive events occur, the connection between Kīlauea’s ongoing summit and East Rift Zone eruptions, and the impacts of the summit eruption on the Island of Hawaiʻi and beyond. The video is also available at the following U.S. Geological Survey Multimedia Gallery link (video hosted on YouTube): Kīlauea summit eruption—Lava returns to Halemaʻumaʻu

  17. Trace element and Sr-Nd-Pb isotope geochemistry of Rungwe Volcanic Province, Tanzania: Implications for a superplume source for East Africa Rift magmatism

    Directory of Open Access Journals (Sweden)

    Paterno R Castillo

    2014-09-01

    Full Text Available The recently discovered high, plume-like 3He/4He ratios at Rungwe Volcanic Province (RVP in southern Tanzania, similar to those at the Main Ethiopian Rift in Ethiopia, strongly suggest that magmatism associated with continental rifting along the entire East African Rift System (EARS has a deep mantle contribution (Hilton et al., 2011. New trace element and Sr-Nd-Pb isotopic data for high 3He/4He lavas and tephras from RVP can be explained by binary mixing relationships involving Early Proterozoic (+/- Archaean lithospheric mantle, present beneath the southern EARS, and a volatile-rich carbonatitic plume with a limited range of compositions and best represented by recent Nyiragongo lavas from the Virunga Volcanic Province also in the Western Rift. Other lavas from the Western Rift and from the southern Kenya Rift can also be explained through mixing between the same endmember components. In contrast, lavas from the northern Kenya and Main Ethiopian rifts can be explained through variable mixing between the same mantle plume material and the Middle to Late Proterozoic lithospheric mantle, present beneath the northern EARS. Thus, we propose that the bulk of EARS magmatism is sourced from mixing among three endmember sources: Early Proterozoic (+/- Archaean lithospheric mantle, Middle to Late Proterozoic lithospheric mantle and a volatile-rich carbonatitic plume with a limited range of compositions. We propose further that the African Superplume, a large, seismically anomalous feature originating in the lower mantle beneath southern Africa, influences magmatism throughout eastern Africa with magmatism at RVP and Main Ethiopian Rift representing two different heads of a single mantle plume source. This is consistent with a single mantle plume origin of the coupled He-Ne isotopic signatures of mantle-derived xenoliths and/or lavas from all segments of the EARS (Halldorsson et al., 2014.

  18. LAVA Pressure Transducer Trade Study

    Science.gov (United States)

    Oltman, Samuel B.

    2016-01-01

    The Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) payload will transport the (LAVA) subsystem to hydrogen-rich locations on the moon supporting NASA's in-situ resource utilization (ISRU) programs. There, the LAVA subsystem will analyze volatiles that evolve from heated regolith samples in order to quantify how much water is present. To do this, the system needs resilient pressure transducers (PTs) to calculate the moles in the gas samples. The PT trade study includes a comparison of newly-procured models to a baseline unit with prior flight history in order to determine the PT model with the best survivability in flight-forward conditions.

  19. The Influence of Slope Breaks on Lava Flow Surface Disruption

    Science.gov (United States)

    Glaze, Lori S.; Baloga, Stephen M.; Fagents, Sarah A.; Wright, Robert

    2014-01-01

    Changes in the underlying slope of a lava flow impart a significant fraction of rotational energy beyond the slope break. The eddies, circulation and vortices caused by this rotational energy can disrupt the flow surface, having a significant impact on heat loss and thus the distance the flow can travel. A basic mechanics model is used to compute the rotational energy caused by a slope change. The gain in rotational energy is deposited into an eddy of radius R whose energy is dissipated as it travels downstream. A model of eddy friction with the ambient lava is used to compute the time-rate of energy dissipation. The key parameter of the dissipation rate is shown to be rho R(sup 2/)mu, where ? is the lava density and mu is the viscosity, which can vary by orders of magnitude for different flows. The potential spatial disruption of the lava flow surface is investigated by introducing steady-state models for the main flow beyond the steepening slope break. One model applies to slow-moving flows with both gravity and pressure as the driving forces. The other model applies to fast-moving, low-viscosity, turbulent flows. These models provide the flow velocity that establishes the downstream transport distance of disrupting eddies before they dissipate. The potential influence of slope breaks is discussed in connection with field studies of lava flows from the 1801 Hualalai and 1823 Keaiwa Kilauea, Hawaii, and 2004 Etna eruptions.

  20. Crustal thickness and Moho sharpness beneath the Midcontinent rift from receiver functions

    Directory of Open Access Journals (Sweden)

    Moikwathai Moidaki

    2013-02-01

    Full Text Available The Mesoproterozoic Midcontinent rift (MCR in the central US is an approximately 2000 km long, 100 km wide structure from Kansas to Michigan. During the 20-40 million years of rifting, a thick (up to 20 km layer of basaltic lava was deposited in the rift valleys. Quantifying the effects of the rifting and associated volcanic eruptions on the structure and composition of the crust and mantle beneath the MCR is important for the understanding of the evolution of continental lithosphere. In this study we measure the crustal thickness (H, and the sharpness of the Moho (R at about 24 portable and permanent stations in Iowa, Kansas, and South Dakota by stacking Pto- S converted waves (PmS and their multiples (PPmS and PSmS. Under the assumption that the crustal mean velocity in the study area is the same as the IASP91 earth model, we find a significantly thickened crust beneath the MCR of about 53 km. The crustal Vp/Vs ratios increases from about 1.80 off rift to as large as 1.95 within the rift, which corresponds to an increase of Poisson’s ratio from 0.28 to 0.32, suggesting a more mafic crust beneath the MCR. The R measurements are spatially variable and are relatively small in the vicinity of the MCR, indicating the disturbance of the original sharp Moho by the rifting and magmatic intrusion and volcanic eruption.

  1. Mid–Late Neoproterozoic rift-related volcanic rocks in China: Geological records of rifting and break-up of Rodinia

    Directory of Open Access Journals (Sweden)

    Linqi Xia

    2012-07-01

    Full Text Available Early Cambrian and Mid–Late Neoproterozoic volcanic rocks in China are widespread on several Precambrian continental blocks, which had aggregated to form part of the Rodinia supercontinent by ca. 900 Ma. On the basis of petrogeochemical data, the basic lavas can be classified into two major magma types: HT (Ti/Y > 500 and LT (Ti/Y  0.85 and HT2 (Nb/La ≤ 0.85, and LT1 (Nb/La > 0.85 and LT2 (Nb/La ≤ 0.85 subtypes, respectively. The geochemical variation of the HT2 and LT2 lavas can be accounted for by lithospheric contamination of asthenosphere- (or plume- derived magmas, whereas the parental magmas of the HT1 and LT1 lavas did not undergo, during their ascent, pronounced lithospheric contamination. These volcanics exhibit at least three characteristics: (1 most have a compositional bimodality; (2 they were formed in an intracontinental rift setting; and (3 they are genetically linked with mantle plumes or a mantle surperplume. This rift-related volcanism at end of the Mid–Neoproterozoic and Early Cambrian coincided temporally with the separation between Australia–East Antarctica, South China and Laurentia and between Australia and Tarim, respectively. The Mid–Late Neoproterozoic volcanism in China is the geologic record of the rifting and break-up of the supercontinent Rodinia.

  2. Lava Flow at Kilauea, Hawaii

    Science.gov (United States)

    2007-01-01

    On July 21, 2007, the world's most active volcano, Kilauea on Hawaii's Big Island, produced a new fissure eruption from the Pu'u O'o vent, which fed an open lava channel and lava flows toward the east. Access to the Kahauale'a Natural Area Reserve was closed due to fire and gas hazards. The two Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) nighttime thermal infrared images were acquired on August 21 and August 30, 2007. The brightest areas are the hottest lava flows from the recent fissure eruption. The large lava field extending down to the ocean is part of the Kupaianaha field. The most recent activity there ceased on June 20, but the lava is still hot and appears bright on the images. Magenta areas are cold lava flows from eruptions that occurred between 1969 and 2006. Clouds are cold (black) and the ocean is a uniform warm temperature, and light gray in color. These images are being used by volcanologists at the U.S. Geological Survey Hawaii Volcano Observatory to help monitor the progress of the lava flows. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties

  3. Analogue experiments as benchmarks for models of lava flow emplacement

    Science.gov (United States)

    Garel, F.; Kaminski, E. C.; Tait, S.; Limare, A.

    2013-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flow advance and its velocity. The spreading of a lava flow, seen as a gravity current, depends on its "effective rheology" and on the effusion rate. Fast-computing models have arisen in the past decade in order to predict in near real time lava flow path and rate of advance. This type of model, crucial to mitigate volcanic hazards and organize potential evacuation, has been mainly compared a posteriori to real cases of emplaced lava flows. The input parameters of such simulations applied to natural eruptions, especially effusion rate and topography, are often not known precisely, and are difficult to evaluate after the eruption. It is therefore not straightforward to identify the causes of discrepancies between model outputs and observed lava emplacement, whereas the comparison of models with controlled laboratory experiments appears easier. The challenge for numerical simulations of lava flow emplacement is to model the simultaneous advance and thermal structure of viscous lava flows. To provide original constraints later to be used in benchmark numerical simulations, we have performed lab-scale experiments investigating the cooling of isoviscous gravity currents. The simplest experimental set-up is as follows: silicone oil, whose viscosity, around 5 Pa.s, varies less than a factor of 2 in the temperature range studied, is injected from a point source onto a horizontal plate and spreads axisymmetrically. The oil is injected hot, and progressively cools down to ambient temperature away from the source. Once the flow is developed, it presents a stationary radial thermal structure whose characteristics depend on the input flow rate. In addition to the experimental observations, we have developed in Garel et al., JGR, 2012 a theoretical model confirming the relationship between supply rate, flow advance and stationary surface thermal structure. We also provide

  4. LavaSIM: the effect of heat transfer in 3D on lava flow characteristics (Invited)

    Science.gov (United States)

    Fujita, E.

    2013-12-01

    Characteristics of lava flow are governed by many parameters like lava viscosity, effusion rate, ground topography, etc. The accuracy and applicability of lava flow simulation code is evaluated whether the numerical simulation can reproduce these features quantitatively, which is important from both strategic and scientific points of views. Many lava flow simulation codes are so far proposed, and they are classified into two categories, i.e., the deterministic and the probabilistic models. LavaSIM is one of the former category models, and has a disadvantage of time consuming. But LavaSIM can solves the equations of continuity, motion, energy by step and has an advantage in the calculation of three-dimensional analysis with solid-liquid two phase flow, including the heat transfer between lava, solidified crust, air, water and ground, and three-dimensional convection in liquid lava. In other word, we can check the detailed structure of lava flow by LavaSIM. Therefore, this code can produce both channeled and fan-dispersive flows. The margin of the flow is solidified by cooling and these solidified crusts control the behavior of successive lava flow. In case of a channel flow, the solidified margin supports the stable central main flow and elongates the lava flow distance. The cross section of lava flow shows that the liquid lava flows between solidified crusts. As for the lava extrusion flow rate, LavaSIM can include the time function as well as the location of the vents. In some cases, some parts of the solidified wall may be broken by the pressure of successive flow and/or re-melting. These mechanisms could characterize complex features of the observed lava flows at many volcanoes in the world. To apply LavaSIM to the benchmark tests organized by V-hub is important to improve the lava flow evaluation technique.

  5. A sinuous tumulus over an active lava tube at Kīlauea Volcano: evolution, analogs, and hazard forecasts

    Science.gov (United States)

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.

    2015-01-01

    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Kīlauea Volcano's (Hawai'i, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flow's emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kīlauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kīlauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kīlauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai'i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  6. A sinuous tumulus over an active lava tube at Kīlauea Volcano: Evolution, analogs, and hazard forecasts

    Science.gov (United States)

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.

    2015-01-01

    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Kīlauea Volcano's (Hawai'i, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flow's emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kīlauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kīlauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kīlauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai'i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  7. Continuous gravity measurements reveal a low-density lava lake at Kīlauea Volcano, Hawai‘i

    Science.gov (United States)

    Carbone, Daniele; Poland, Michael P.; Patrick, Matthew R.; Orr, Tim R.

    2013-01-01

    On 5 March 2011, the lava lake within the summit eruptive vent at Kīlauea Volcano, Hawai‘i, began to drain as magma withdrew to feed a dike intrusion and fissure eruption on the volcanoʼs east rift zone. The draining was monitored by a variety of continuous geological and geophysical measurements, including deformation, thermal and visual imagery, and gravity. Over the first ∼14 hours of the draining, the ground near the eruptive vent subsided by about 0.15 m, gravity dropped by more than 100 μGal, and the lava lake retreated by over 120 m. We used GPS data to correct the gravity signal for the effects of subsurface mass loss and vertical deformation in order to isolate the change in gravity due to draining of the lava lake alone. Using a model of the eruptive vent geometry based on visual observations and the lava level over time determined from thermal camera data, we calculated the best-fit lava density to the observed gravity decrease — to our knowledge, the first geophysical determination of the density of a lava lake anywhere in the world. Our result, 950 +/- 300 kg m-3, suggests a lava density less than that of water and indicates that Kīlaueaʼs lava lake is gas-rich, which can explain why rockfalls that impact the lake trigger small explosions. Knowledge of such a fundamental material property as density is also critical to investigations of lava-lake convection and degassing and can inform calculations of pressure change in the subsurface magma plumbing system.

  8. King's Bowl Pit Crater, Lava Field and Eruptive Fissure, Idaho - A Multipurpose Volcanic Planetary Analog

    Science.gov (United States)

    Hughes, S. S.; Garry, B.; Kobs-Nawotniak, S. E.; Sears, D. W. G.; Borg, C.; Elphic, R. C.; Haberle, C. W.; Kobayashi, L.; Lim, D. S. S.; Sears, H.; Skok, J. R.; Heldmann, J. L.

    2014-12-01

    King's Bowl (KB) and its associated eruptive fissure and lava field on the eastern Snake River Plain, is being investigated by the NASA SSERVI FINESSE (Field Investigations to Enable Solar System Science and Exploration) team as a planetary analog to similar pits on the Moon, Mars and Vesta. The 2,220 ± 100 BP basaltic eruption in Craters of the Moon National Monument and Preserve represents early stages of low shield growth, which was aborted when magma supply was cut off. Compared to mature shields, KB is miniscule, with ~0.02 km3 of lava over ~3 km2, yet the ~6 km long series of fissures, cracks and pits are well-preserved for analog studies of volcanic processes. The termination of eruption was likely related to proximity of the 2,270 ± 50 BP eruption of the much larger Wapi lava field (~5.5 km3 over 325 km2 area) on the same rift. Our investigation extends early work by R. Greeley and colleagues, focusing on imagery, compositional variations, ejecta distribution, dGPS profiles and LiDAR scans of features related to: (1) fissure eruptions - spatter ramparts, cones, feeder dikes, extension cracks; (2) lava lake formation - surface morphology, squeeze-ups, slab pahoehoe lava mounds, lava drain-back, flow lobe overlaps; and (3) phreatic steam blasts - explosion pits, ejecta blankets of ash and blocks. Preliminary results indicate multiple fissure eruptions and growth of a basin-filled lava lake up to ~ 10 m thick with outflow sheet lava flows. Remnant mounds of original lake crust reveal an early high lava lake level, which subsided as much as 5 m as the molten interior drained back into the fissure system. Rapid loss of magma supply led to the collapse of fissure walls allowing groundwater influx that triggered multiple steam blasts along at least 500 m. Early blasts occurred while lake magma pressure was still high enough to produce squeeze-ups when penetrated by ejecta blocks. The King's Bowl pit crater exemplifies processes of a small, but highly energetic

  9. Development of lava tubes in the light of observations at Mauna Ulu, Kilauea Volcano, Hawaii

    Science.gov (United States)

    Peterson, D.W.; Holcomb, R.T.; Tilling, R.I.; Christiansen, R.L.

    1994-01-01

    During the 1969-1974 Mauna Ulu eruption on Kilauea's upper east rift zone, lava tubes were observed to develop by four principal processes: (1) flat, rooted crusts grew across streams within confined channels; (2) overflows and spatter accreted to levees to build arched roofs across streams; (3) plates of solidified crust floating downstream coalesced to form a roof; and (4) pahoehoe lobes progressively extended, fed by networks of distributaries beneath a solidified crust. Still another tube-forming process operated when pahoehoe entered the ocean; large waves would abruptly chill a crust across the entire surface of a molten stream crossing through the surf zone. These littoral lava tubes formed abruptly, in contrast to subaerial tubes, which formed gradually. All tube-forming processes were favored by low to moderate volume-rates of flow for sustained periods of time. Tubes thereby became ubiquitous within the pahoehoe flows and distributed a very large proportionof the lava that was produced during this prolonged eruption. Tubes transport lava efficiently. Once formed, the roofs of tubes insulate the active streams within, allowing the lava to retain its fluidity for a longer time than if exposed directly to ambient air temperature. Thus the flows can travel greater distances and spread over wider areas. Even though supply rates during most of 1970-1974 were moderate, ranging from 1 to 5 m3/s, large tube systems conducted lava as far as the coast, 12-13 km distant, where they fed extensive pahoehoe fields on the coastal flats. Some flows entered the sea to build lava deltas and add new land to the island. The largest and most efficient tubes developed during periods of sustained extrusion, when new lava was being supplied at nearly constant rates. Tubes can play a major role in building volcanic edifices with gentle slopes because they can deliver a substantial fraction of lava erupted at low to moderate rates to sites far down the flank of a volcano. We

  10. Magmatic architecture within a rift segment: Articulate axial magma storage at Erta Ale volcano, Ethiopia

    Science.gov (United States)

    Xu, Wenbin; Rivalta, Eleonora; Li, Xing

    2017-10-01

    Understanding the magmatic systems beneath rift volcanoes provides insights into the deeper processes associated with rift architecture and development. At the slow spreading Erta Ale segment (Afar, Ethiopia) transition from continental rifting to seafloor spreading is ongoing on land. A lava lake has been documented since the twentieth century at the summit of the Erta Ale volcano and acts as an indicator of the pressure of its magma reservoir. However, the structure of the plumbing system of the volcano feeding such persistent active lava lake and the mechanisms controlling the architecture of magma storage remain unclear. Here, we combine high-resolution satellite optical imagery and radar interferometry (InSAR) to infer the shape, location and orientation of the conduits feeding the 2017 Erta Ale eruption. We show that the lava lake was rooted in a vertical dike-shaped reservoir that had been inflating prior to the eruption. The magma was subsequently transferred into a shallower feeder dike. We also find a shallow, horizontal magma lens elongated along axis inflating beneath the volcano during the later period of the eruption. Edifice stress modeling suggests the hydraulically connected system of horizontal and vertical thin magmatic bodies able to open and close are arranged spatially according to stresses induced by loading and unloading due to topographic changes. Our combined approach may provide new constraints on the organization of magma plumbing systems beneath volcanoes in continental and marine settings.

  11. The NE Rift of Tenerife: towards a model on the origin and evolution of ocean island rifts; La dorsal NE de Tenerife: hacia un modelo del origen y evolucion de los rifts de islas oceanicas

    Energy Technology Data Exchange (ETDEWEB)

    Carracedo, J. C.; Guillou, H.; Rodriguez Badiola, E.; Perez-Torrado, F. J.; Rodriguez Gonzalez, A.; Peris, R.; Troll, V.; Wiesmaier, S.; Delcamp, A.; Fernandez-Turiel, J. L.

    2009-07-01

    The NE Rift of Tenerife is an excellent example of a persistent, recurrent rift, providing important evidence of the origin and dynamics of these major volcanic features. The rift developed in three successive, intense and relatively short eruptive stages (a few hundred ka), separated by longer periods of quiescence or reduced activity: A Miocene stage (7266 {+-}156 ka), apparently extending the central Miocene shield of Tenerife towards the Anaga massif; an Upper Pliocene stage (2710{+-} 58 ka) and the latest stage, with the main eruptive phase in the Pleistocene. Detailed geological (GIS) mapping, geomagnetic reversal mapping and stratigraphic correlation, and radioisotopic (K/Ar) dating of volcanic formations allowed the reconstruction of the latest period of rift activity. In the early phases of this stage the majority of the eruptions grouped tightly along the axis of the rift and show reverse polarity (corresponding to the Matuyama chron). Dykes are of normal and reverse polarities. In the final phase of activity, eruptions are more disperse and lavas and dykes are consistently of normal polarity (Brunhes chron). Volcanic units of normal polarity crossed by dykes of normal and reverse polarities yield ages apparently compatible with normal subchrons (M-B Precursor and Jaramillo) in the Upper Matuyama chron. Three lateral collapses successively mass-wasted the rift: The Micheque collapse, completely concealed by subsequent nested volcanism, and the Guimar and La Orotava collapses, that are only partially filled. Time occurrence of collapses in the NE rift apparently coincides with glacial stages, suggesting that giant landslides may be finally triggered by sea level chan-ges during glaciations. Pre-collapse and nested volcanism is predominantly basaltic, except in the Micheque collapse, where magmas evolved towards intermediate and felsic (trachytic) compositions. Rifts in the Canary Islands are long-lasting, recurrent features, probably related to primordial

  12. Thermophysical properties of the Lipari lavas (Southern Tyrrhenian Sea

    Directory of Open Access Journals (Sweden)

    D. Russo

    1997-06-01

    Full Text Available Results of thermophysical investigations into the lavas of the island of Lipari (Southern Tyrrhenian Sea are presented. Samples selected for laboratory measurements belong to four main magmatic cycles, which produced basaltic-andesitic, andesitic and rhyolitic lavas. The wet-bulk density and the thermal conductivity measured on 69 specimens range from 1900 to 2760 kg m-3 and from 1.02 to 2.88 W m-1 K-1, respectively. Porosity is never negligible and its influence on density is maximum in rhyolites of the third cycle. The thermal conductivity is also influenced by the amount of glass. Rhyolitic obsidians show values lower than other rhyolites, although the latter rocks have a larger average porosity. The radioactive heat production determined on 36 specimens varies with the rock type, depending on the amount of U, Th and K. In basic lavas of the first cycle its value is 0.95°± 0.30 mW m-3, while in rhyolites of the fourth cycle it attains 6.68°±0.61 mW m-3. A comparison between results of g-ray spectrometry and X-ray fluorescence points out that the assumption of equilibrium in the decay series of the isotopic elements seems fulfilled. The information obtained is useful not only for the interpretation of geophysical surveys but also for the understanding of the geochemical characteristics of lavas.

  13. The role of inheritance in structuring hyperextended rift systems

    Science.gov (United States)

    Manatschal, Gianreto; Lavier, Luc; Chenin, Pauline

    2015-04-01

    -related mantle processes may control the rheology of the mantle, the magmatic budget, the thermal structure and the localization of final rifting Conversely, the deformation in hyperextended domains is strongly controlled by weak hydrated minerals (e.g. clay, serpentinite) that result form the breakdown of feldspar and olivine due to fluid and reaction assisted deformation and is consequently not inherited but the result of rift induced processes. These key observations show that both inheritance and rift-induced processes play a significant role in the development of magma-poor rift systems and that the role of inheritance may change as the physical conditions vary during the evolving rifting and as rift-induced processes (serpentinization; magma) become more important. Thus, it is not only important to determine the "genetic code" of a rift system, but also to understand how it interacts and evolves during rifting. Understand how far these new ideas and concepts derived from the southern North Atlantic and Alpine Tethys can be translated to other less explored hyperextended rift systems will be one of the challenges of the future research in rifted margins.

  14. Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, Hawaii

    Science.gov (United States)

    Trusdell, Frank A.; Moore, Richard B.

    2006-01-01

    K'lauea is an active shield volcano in the southeastern part of the Island of Hawai'i. The middle east rift zone (MERZ) map includes about 27 square kilometers of the MERZ and shows the distribution of the products of 37 separate eruptions during late Holocene time. Lava flows erupted during 1983-96 have reached the mapped area. The subaerial part of the MERZ is 3-4 km wide and about 18 km long. It is a constructional ridge, 50-150 m above the adjoining terrain, marked by low spatter ramparts and cones as high as 60 m. Lava typically flowed either northeast or southeast, depending on vent location relative to the topographic crest of the rift zone. The MERZ receives more than 100 in. of rainfall annually and is covered by tropical rain forest. Vegetation begins to grow on lava a few months after its eruption. Relative heights of trees can be a guide to relative ages of underlying lava flows, but proximity to faults, presence of easily weathered cinders, and human activity also affect the rate of growth. The rocks have been grouped into five basic age groups. The framework for the ages assigned is provided by eight radiocarbon ages from previous mapping by the authors and a single date from the current mapping effort. The numerical ages are supplemented by observations of stratigraphic relations, degree of weathering, soil development, and vegetative cover.

  15. Broad accommodation of rift-related extension recorded by dyke intrusion in Saudi Arabia

    KAUST Repository

    Pallister, John S.; McCausland, Wendy A.; Jonsson, Sigurjon; Lu, Zhong; Zahran, Hani M.; El-Hadidy, Salah Y.; Aburukbah, Abdallah; Stewart, Ian C F; Lundgren, Paul R.; White, Randal A.; Moufti, Mohammed Rashad H

    2010-01-01

    The extensive harrat lava province of Arabia formed during the past 30 million years in response to Red Sea rifting and mantle upwelling. The area was regarded as seismically quiet, but between April and June 2009 a swarm of more than 30,000 earthquakes struck one of the lava fields in the province, Harrat Lunayyir, northwest Saudi Arabia. Concerned that larger damaging earthquakes might occur, the Saudi Arabian government evacuated 40,000 people from the region. Here we use geologic, geodetic and seismic data to show that the earthquake swarm resulted from magmatic dyke intrusion. We document a surface fault rupture that is 8 km long with 91 cm of offset. Surface deformation is best modelled by the shallow intrusion of a north-west trending dyke that is about 10 km long. Seismic waves generated during the earthquakes exhibit overlapping very low- and high-frequency components. We interpret the low frequencies to represent intrusion of magma and the high frequencies to represent fracturing of the crystalline basement rocks. Rather than extension being accommodated entirely by the central Red Sea rift axis, we suggest that the broad deformation observed in Harrat Lunayyir indicates that rift margins can remain as active sites of extension throughout rifting. Our analyses allowed us to forecast the likelihood of a future eruption or large earthquake in the region and informed the decisions made by the Saudi Arabian government to return the evacuees. © 2010 Macmillan Publishers Limited. All rights reserved.

  16. Broad accommodation of rift-related extension recorded by dyke intrusion in Saudi Arabia

    KAUST Repository

    Pallister, John S.

    2010-09-26

    The extensive harrat lava province of Arabia formed during the past 30 million years in response to Red Sea rifting and mantle upwelling. The area was regarded as seismically quiet, but between April and June 2009 a swarm of more than 30,000 earthquakes struck one of the lava fields in the province, Harrat Lunayyir, northwest Saudi Arabia. Concerned that larger damaging earthquakes might occur, the Saudi Arabian government evacuated 40,000 people from the region. Here we use geologic, geodetic and seismic data to show that the earthquake swarm resulted from magmatic dyke intrusion. We document a surface fault rupture that is 8 km long with 91 cm of offset. Surface deformation is best modelled by the shallow intrusion of a north-west trending dyke that is about 10 km long. Seismic waves generated during the earthquakes exhibit overlapping very low- and high-frequency components. We interpret the low frequencies to represent intrusion of magma and the high frequencies to represent fracturing of the crystalline basement rocks. Rather than extension being accommodated entirely by the central Red Sea rift axis, we suggest that the broad deformation observed in Harrat Lunayyir indicates that rift margins can remain as active sites of extension throughout rifting. Our analyses allowed us to forecast the likelihood of a future eruption or large earthquake in the region and informed the decisions made by the Saudi Arabian government to return the evacuees. © 2010 Macmillan Publishers Limited. All rights reserved.

  17. Broad accommodation of rift-related extension recorded by dyke intrusion in Saudi Arabia

    Science.gov (United States)

    Pallister, J.S.; McCausland, W.A.; Jonsson, Sigurjon; Lu, Z.; Zahran, H.M.; El, Hadidy S.; Aburukbah, A.; Stewart, I.C.F.; Lundgren, P.R.; White, R.A.; Moufti, M.R.H.

    2010-01-01

    The extensive harrat lava province of Arabia formed during the past 30 million years in response to Red Sea rifting and mantle upwelling. The area was regarded as seismically quiet, but between April and June 2009 a swarm of more than 30,000 earthquakes struck one of the lava fields in the province, Harrat Lunayyir, northwest Saudi Arabia. Concerned that larger damaging earthquakes might occur, the Saudi Arabian government evacuated 40,000 people from the region. Here we use geologic, geodetic and seismic data to show that the earthquake swarm resulted from magmatic dyke intrusion. We document a surface fault rupture that is 8 km long with 91 cm of offset. Surface deformation is best modelled by the shallow intrusion of a north-west trending dyke that is about 10 km long. Seismic waves generated during the earthquakes exhibit overlapping very low- and high-frequency components. We interpret the low frequencies to represent intrusion of magma and the high frequencies to represent fracturing of the crystalline basement rocks. Rather than extension being accommodated entirely by the central Red Sea rift axis, we suggest that the broad deformation observed in Harrat Lunayyir indicates that rift margins can remain as active sites of extension throughout rifting. Our analyses allowed us to forecast the likelihood of a future eruption or large earthquake in the region and informed the decisions made by the Saudi Arabian government to return the evacuees.

  18. Rift-drift transition in the Dangerous Grounds, South China Sea

    Science.gov (United States)

    Peng, Xi; Shen, Chuanbo; Mei, Lianfu; Zhao, Zhigang; Xie, Xiaojun

    2018-04-01

    The South China Sea (SCS) has a long record of rifting before and after subsequent seafloor spreading, affecting the wide continent of the Dangerous Grounds, and its scissor-shape opening manner results in the rifting structures that vary along this margin. Some 2000 km of regional multichannel seismic data combined with borehole and dredge data are interpreted to analyze the multistage rifting process, structural architecture and dynamic evolution across the entire Dangerous Grounds. Key sequence boundaries above the Cenozoic basement are identified and classified into the breakup unconformity and the rift end unconformity, which consist of the rift-related unconformities. Reflector T70 in the east of the Dangerous Grounds represents the breakup unconformity, which is likely corresponding to the spreading of the East Subbasin. T60 formed on the top of carbonate platform is time equivalent to the spreading of the Southwest Subbasin, marking the breakup unconformity of the central Dangerous Grounds. The termination of the spreading of the SCS is manifested by the rift end unconformity of T50 in the southwest and the final rift occurring in the northwest of the Dangerous Grounds is postponed to the rift end unconformity of T40. On the basis of the stratigraphic and structural analysis, distinct segments in the structural architecture of the syn-rift units and the ages of rift-drift transition show obvious change from the proximal zone to the distal zone. Three domains, which are the Reed Bank-Palawan Rift domain, the Dangerous Grounds Central Detachment domain and Nam Con Son Exhumation domain, reflect the propagation of the margin rifting developed initially by grabens formed by high angle faults, then large half-grabens controlled by listric faults and detachments and finally rotated fault blocks in the hyper-extended upper crust associated with missing lower crust or exhumed mantle revealing a migration and stepwise rifting process in the south margin of the SCS.

  19. Origin, Composition and Relative Timing of Seaward Dipping Reflectors on the Pelotas Rifted Margin, South Atlantic

    Science.gov (United States)

    Harkin, C. J.; Kusznir, N.; Roberts, A.; Manatschal, G.; McDermott, K.

    2017-12-01

    Deep-seismic reflection data from the Pelotas Basin, offshore Brazil displays a large package of seaward dipping reflectors (SDRs) with an approximate width of 200 km and a varying thickness of 10km to 17km. These have previously been interpreted as volcanic SDRs, a common feature of magma-rich rifted margins. Detailed observations show a change in seismic character within the SDR package possibly indicating a change depositional environments as the package evolved. Using gravity anomaly inversion, we examine the SDRs to investigate whether they are likely to be composed predominantly of massive basaltic flows or sedimentary-volcaniclastic material through the use of gravity inversion. By matching the Moho in depth and two-way travel time from gravity and seismic data, we test the likely proportion of sediments to basalt (the basalt fraction). The results are used to determine the lateral variation in basalt fraction within the SDRs. In addition, we use 2D flexural-backstripping and reverse thermal-subsidence modelling for palaeobathymetric analysis, investigating whether each sub-package was deposited in a sub-aerial or marine environment. Our analysis suggests that the overall SDR basalt fraction and bulk density decrease oceanwards, possibly due to increasing sediment content or perhaps resulting from a change in basalt flows to hyaloclastites as water depth increases. Additionally, we find that the SDRs can be split into two major sub-packages. The inner SDR package consists of lava flows from syn-tectonic eruptions in a sub-aerial environment, associated with the onshore Paraná Large Igneous Province, flowing eastwards into an extensional basin. The outer SDR package has reflectors that appear to progressively offlap oceanwards in a similar fashion to those described previously, inferring extrusion within a marine environment sourced from an eastwards migrating ocean ridge. We are able to determine that two separate and independently-sourced SDR packages

  20. The genesis of a lava cave in the Deccan Volcanic Province (Maharashtra, India

    Directory of Open Access Journals (Sweden)

    Nikhil R. Pawar

    2016-01-01

    Full Text Available Lava tubes and channels forming lava distributaries have been recognized from different parts of western Deccan Volcanic Province (DVP. Openings of smaller dimension have been documented from the pāhoehoe flows around Pune, in the western DVP. A small lava cave is exposed in Ghoradeshwar hill, near Pune. Detailed field studies of the physical characteristics, structure and morphology of the flows hosting the lava tube has been carried out. This is the first detailed documentation of a lava cave from the DVP. The lava cave occurs in a compound pāhoehoe flow of Karla Formation, characterized by the presence of lobes, toes and small scale features like squeeze-ups. Field observations and measurements reveal that the dimensions of the cave are small, with low roof and a maximum width of 108 cm. The cave morphology along the 20 m passage varies from circular to semi-circular, with a twilight zone to the north. The gentle micro-topography at Ghoradeshwar controlled the advancement of pāhoehoe lobes and toes within the sheet lobe. The pre-flow gradients towards the north led to the progression of flow from the east, where the cave opening is presently seen. Dimensions and related morphology of the lava cave suggest that it can be best described as a small sub-crustal cave formed by draining of an inflated of pāhoehoe lava lobe. At Ghoradeshwar, besides the natural lava cave, Buddhist caves carved in pāhoehoe lava flows are also observed, indicating that early man took advantage of the existing openings in pāhoehoe flows and sculpted the caves to suit their requirements.

  1. Rift Valley Fever.

    Science.gov (United States)

    Hartman, Amy

    2017-06-01

    Rift Valley fever (RVF) is a severe veterinary disease of livestock that also causes moderate to severe illness in people. The life cycle of RVF is complex and involves mosquitoes, livestock, people, and the environment. RVF virus is transmitted from either mosquitoes or farm animals to humans, but is generally not transmitted from person to person. People can develop different diseases after infection, including febrile illness, ocular disease, hemorrhagic fever, or encephalitis. There is a significant risk for emergence of RVF into new locations, which would affect human health and livestock industries. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Probabilistically modeling lava flows with MOLASSES

    Science.gov (United States)

    Richardson, J. A.; Connor, L.; Connor, C.; Gallant, E.

    2017-12-01

    Modeling lava flows through Cellular Automata methods enables a computationally inexpensive means to quickly forecast lava flow paths and ultimate areal extents. We have developed a lava flow simulator, MOLASSES, that forecasts lava flow inundation over an elevation model from a point source eruption. This modular code can be implemented in a deterministic fashion with given user inputs that will produce a single lava flow simulation. MOLASSES can also be implemented in a probabilistic fashion where given user inputs define parameter distributions that are randomly sampled to create many lava flow simulations. This probabilistic approach enables uncertainty in input data to be expressed in the model results and MOLASSES outputs a probability map of inundation instead of a determined lava flow extent. Since the code is comparatively fast, we use it probabilistically to investigate where potential vents are located that may impact specific sites and areas, as well as the unconditional probability of lava flow inundation of sites or areas from any vent. We have validated the MOLASSES code to community-defined benchmark tests and to the real world lava flows at Tolbachik (2012-2013) and Pico do Fogo (2014-2015). To determine the efficacy of the MOLASSES simulator at accurately and precisely mimicking the inundation area of real flows, we report goodness of fit using both model sensitivity and the Positive Predictive Value, the latter of which is a Bayesian posterior statistic. Model sensitivity is often used in evaluating lava flow simulators, as it describes how much of the lava flow was successfully modeled by the simulation. We argue that the positive predictive value is equally important in determining how good a simulator is, as it describes the percentage of the simulation space that was actually inundated by lava.

  3. Modeling Submarine Lava Flow with ASPECT

    Science.gov (United States)

    Storvick, E. R.; Lu, H.; Choi, E.

    2017-12-01

    Submarine lava flow is not easily observed and experimented on due to limited accessibility and challenges posed by the fast solidification of lava and the associated drastic changes in rheology. However, recent advances in numerical modeling techniques might address some of these challenges and provide unprecedented insight into the mechanics of submarine lava flow and conditions determining its wide-ranging morphologies. In this study, we explore the applicability ASPECT, Advanced Solver for Problems in Earth's ConvecTion, to submarine lava flow. ASPECT is a parallel finite element code that solves problems of thermal convection in the Earth's mantle. We will assess ASPECT's capability to model submarine lava flow by observing models of lava flow morphology simulated with GALE, a long-term tectonics finite element analysis code, with models created using comparable settings and parameters in ASPECT. From these observations we will contrast the differing models in order to identify the benefits of each code. While doing so, we anticipate we will learn about the conditions required for end-members of lava flow morphology, for example, pillows and sheet flows. With ASPECT specifically we focus on 1) whether the lava rheology can be implemented; 2) how effective the AMR is in resolving morphologies of the solidified crust; 3) whether and under what conditions the end-members of the lava flow morphologies, pillows and sheets, can be reproduced.

  4. Lava tubes - Potential shelters for habitats

    Science.gov (United States)

    Horz, F.

    Natural caverns occur on the moon in the form of 'lava tubes', which are the drained conduits of underground lava rivers. The inside dimensions of these tubes measure tens to hundreds of meters, and their roofs are expected to be thicker than 10 meters. Consequently, lava tube interiors offer an environment that is naturally protected from the hazards of radiation and meteorite impact. Further, constant, relatively benign temperatures of -20 C prevail. These are extremely favorable environmental conditions for human activities and industrial operations. Significant operational, technological, and economical benefits might result if a lunar base were constructed inside a lava tube.

  5. What factors control superficial lava dome explosivity?

    Science.gov (United States)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J

    2015-09-30

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management.

  6. Mid-Continent Rift: Rift, LIP, or Both?

    Science.gov (United States)

    Stein, C. A.; Stein, S. A.; Kley, J.; Hindle, D.; Keller, G. R., Jr.

    2014-12-01

    North America's Midcontinent Rift (MCR) is traditionally considered to have formed by midplate extension and volcanism ~1.1 Ga that ended due to compression from the Grenville orogeny, the ~1.3 - ~0.98 Ga assembly of Amazonia (Precambrian northeast South America), Laurentia (Precambrian North America), and other continents into the supercontinent of Rodinia. We find that a more plausible scenario is that it formed as part of the rifting of Amazonia from Laurentia and became inactive once seafloor spreading was established. The MCR has aspects both of a continental rift - a segmented linear depression filled with sedimentary and igneous rocks - and a large igneous province (LIP). Comparison of areas and volumes for a range of continental LIPS shows that the MCR volcanic rocks are significantly thicker than the others. The MCR flood basalts have steeper dips and thicker overlying sediments than other continental flood basalts, and were deposited in a subsiding basin after most extension ended, indicating that they are better viewed as post-rift than syn-rift rocks. Hence we view the MCR as a LIP deposited in crust weakened by rifting, and thus first a rift and then a LIP.

  7. Microstructural and seismic properties of the upper mantle underneath a rifted continental terrane (Baja California): An example of sub-crustal mechanical asthenosphere?

    NARCIS (Netherlands)

    Palasse, L.N.; Vissers, R.L.M.; Paulssen, H.; Basu, A.R.; Drury, M.R.

    2012-01-01

    The Gulf of California rift is a young and active plate boundary that links the San Andreas strike-slip fault system in California to the oceanic spreading system of the East Pacific Rise. The xenolith bearing lavas of the San Quintin volcanic area provide lower crust and upper mantle samples from

  8. Chronology and volcanology of the 1949 multi-vent rift-zone eruption on La Palma (Canary Islands)

    Science.gov (United States)

    Klügel, A.; Schmincke, H.-U.; White, J. D. L.; Hoernle, K. A.

    1999-12-01

    The compositionally zoned San Juan eruption on La Palma emanated from three eruptive centers located along a north-south-trending rift zone in the south of the island. Seismic precursors began weakly in 1936 and became strong in March 1949, with their foci progressing from the north of the rift zone towards its south. This suggests that magma ascended beneath the old Taburiente shield volcano and moved southward along the rift. The eruption began on June 24, 1949, with phreatomagmatic activity at Duraznero crater on the ridgetop (ca. 1880 m above sea level), where five vents erupted tephritic lava along a 400-m-long fissure. On June 8, the Duraznero vents shut down abruptly, and the activity shifted to an off-rift fissure at Llano del Banco, located at ca. 550 m lower elevation and 3 km to the northwest. This eruptive center issued initially tephritic aa and later basanitic pahoehoe lava at high rates, producing a lava flow that entered the sea. Two days after basanite began to erupt at Llano del Banco, Hoyo Negro crater (ca. 1880 m asl), located 700 m north of Duraznero along the rift, opened on July 12 and produced ash and bombs of basanitic to phonotephritic composition in violent phreatomagmatic explosions ( White and Schmincke, 1999). Llano del Banco and Hoyo Negro were simultaneously active for 11 days and showed a co-variance of their eruption rates indicating a shallow hydraulic connection. On July 30, after 3 days of quiescence at all vents, Duraznero and Hoyo Negro became active again during a final eruptive phase. Duraznero issued basanitic lava at high rates for 12 h and produced a lava flow that descended towards the east coast. The lava contains ca. 1 vol.% crustal and mantle xenoliths consisting of 40% tholeiitic gabbros from the oceanic crust, 35% alkaline gabbros, and 20% ultramafic cumulates. The occurrence of xenoliths almost exclusively in the final lava is consistent with their origin by wall-rock collapse at depth near the end of the eruption

  9. Late Ordovician (post-Sardic) rifting branches in the North Gondwanan Montagne Noire and Mouthoumet massifs of southern France

    DEFF Research Database (Denmark)

    Javier Álvaro, J.; Colmenar Lallena, Jorge; Monceret, Eric

    2016-01-01

    , and the subsequent Middle-Ordovician stratigraphic gap is related to the Sardic phase. Upper Ordovician sedimentation started in the rifting branches of Cabrières and Mouthoumet with deposition of basaltic lava flows and lahar deposits (Roque de Bandies and Villerouge formations) of continental tholeiite signature...... (CT), indicative of continental fracturing.The infill of both rifting branches followed with the onset of (1) Katian (Ka1-Ka2) conglomerates and sandstones (Glauzy and Gascagne formations), which have yielded a new brachiopod assemblage representative of the Svobodaina havliceki Community; (2) Katian...

  10. Is the Proterozoic Ladoga Rift (SE Baltic Shield) a rift?

    DEFF Research Database (Denmark)

    Artemieva, Irina; Shulgin, Alexey

    2015-01-01

    , and geophysical characteristics typical of continental rifts in general and demonstrate that, except for magmatic and, perhaps, some gravity signature, the Lake Ladoga region lacks any other rift features. We also compare the geophysical data from the Lake Ladoga region with similar in age Midcontinent and Valday...... interpreted as an intracratonic Ladoga rift (graben). We question the validity of this geodynamic interpretation by analyzing regional geophysical data (crustal structure, heat flow, Bouguer gravity anomalies, magnetic anomalies, and mantle Vs velocities). We provide a complete list of tectonic, magmatic...... rifts, and provide alternative explanations for Mesoproterozoic geodynamic evolution of the southern Baltic Shield. We propose that Mesoproterozoic mafic intrusions in southern Fennoscandia may be associated with a complex deformation pattern during reconfiguration of (a part of) Nuna (Columbia...

  11. The Ngorongoro Volcanic Highland and its relationships to volcanic deposits at Olduvai Gorge and East African Rift volcanism.

    Science.gov (United States)

    Mollel, Godwin F; Swisher, Carl C

    2012-08-01

    The Ngorongoro Volcanic Highland (NVH), situated adjacent and to the east of Olduvai Gorge in northern Tanzania, is the source of the immense quantities of lava, ignimbrite, air fall ash, and volcaniclastic debris that occur interbedded in the Plio-Pleistocene sedimentary deposits in the Laetoli and Olduvai areas. These volcanics have proven crucial to unraveling stratigraphic correlations, the age of these successions, the archaeological and paleontological remains, as well as the source materials from which the bulk of the stone tools were manufactured. The NVH towers some 2,000 m above the Olduvai and Laetoli landscapes, affecting local climate, run-off, and providing varying elevation - climate controlled ecosystem, habitats, and riparian corridors extending into the Olduvai and Laetoli lowlands. The NVH also plays a crucial role in addressing the genesis and history of East African Rift (EAR) magmatism in northern Tanzania. In this contribution, we provide age and petrochemical compositions of the major NVH centers: Lemagurut, basalt to benmorite, 2.4-2.2 Ma; Satiman, tephrite to phonolite, 4.6-3.5 Ma; Oldeani, basalt to trachyandesite, 1.6-1.5 Ma; Ngorongoro, basalt to rhyolite, 2.3-2.0 Ma; Olmoti, basalt to trachyte, 2.0-1.8 Ma; Embagai, nephelinite to phonolite, 1.2-0.6 Ma; and Engelosin, phonolite, 3-2.7 Ma. We then discuss how these correlate in time and composition with volcanics preserved at Olduvai Gorge. Finally, we place this into context with our current understanding as to the eruptive history of the NVH and relationship to East African Rift volcanism. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Emplacement dynamics and lava field evolution of the flood basalt eruption at Holuhraun, Iceland: Observations from field and remote sensing data

    Science.gov (United States)

    Pedersen, Gro; Höskuldsson, Armann; Riishuus, Morten S.; Jónsdóttir, Ingibjörg; Thórdarson, Thorvaldur; Dürig, Tobias; Gudmundsson, Magnus T.; Durmont, Stephanie

    2016-04-01

    The Holuhraun eruption (Aug 2014- Feb 2015) is the largest effusive eruption in Iceland since the Laki eruption in 1783-84, with an estimated lava volume of ~1.6 km3 covering an area of ~83 km2. The eruption provides an unprecedented opportunity to study i) lava morphologies and their emplacement styles, ii) Morphological transitions iii) the transition from open to closed lava pathways and iv) the implication of lava pond formation. This study is based on three different categories of data; field data, airborne data and satellite data. The field data include tracking of the lava advancement by Global Positioning System (GPS) measurements and georeferenced GoPro cameras allowing classification of the lava margin morphology. Furthermore, video footage on-site documented lava emplacement. Complimentary observations have been provided from aircraft platforms and by satellite data. Of particular importance for lava morphology observations are 1-12 m/pixel airborne Synthetic Aperture Radar (SAR) images (x-band), as well as SAR data from TerraSAR-X and COSMO-SkyMed satellites. The Holuhraun lava field comprises a continuum of morphologies from pāhoehoe to 'a'ā, which have varied temporally and spatially. Shelly pāhoehoe lava was the first morphology to be observed (08-29). Spatially, this lava type was not widely distributed, but was emplaced throughout the eruption close to the vent area and the lava channels. Slabby pāhoehoe lava was initially observed the 08-31 and was observed throughout most of the eruption during the high-lava-flux phase of new lava lobe emplacement. 'A'ā lavas were the dominating morphology the first three months of the eruption and was first observed 09-01 like Rubbly pāhoehoe lava. Finally, Spiny pāhoehoe lava was first observed the 09-05 as a few marginal outbreaks along the fairly inactive parts of the 'a'ā lava lobe. However, throughout the eruption this morphology became more important and from mid-November/beginning of December the

  13. Cambrian–early Ordovician volcanism across the South Armorican and Occitan domains of the Variscan Belt in France: Continental break-up and rifting of the northern Gondwana margin

    Directory of Open Access Journals (Sweden)

    André Pouclet

    2017-01-01

    Full Text Available The Cambrian–lower Ordovician volcanic units of the South Armorican and Occitan domains are analysed in a tectonostratigraphic survey of the French Variscan Belt. The South Armorican lavas consist of continental tholeiites in middle Cambrian–Furongian sequences related to continental break-up. A significant volcanic activity occurred in the Tremadocian, dominated by crustal melted rhyolitic lavas and initial rifting tholeiites. The Occitan lavas are distributed into five volcanic phases: (1 basal Cambrian rhyolites, (2 upper lower Cambrian Mg-rich tholeiites close to N-MORBs but crustal contaminated, (3 upper lower–middle Cambrian continental tholeiites, (4 Tremadocian rhyolites, and (5 upper lower Ordovician initial rift tholeiites. A rifting event linked to asthenosphere upwelling took place in the late early Cambrian but did not evolve. It renewed in the Tremadocian with abundant crustal melting due to underplating of mixed asthenospheric and lithospheric magmas. This main tectono-magmatic continental rift is termed the “Tremadocian Tectonic Belt” underlined by a chain of rhyolitic volcanoes from Occitan and South Armorican domains to Central Iberia. It evolved with the setting of syn-rift coarse siliciclastic deposits overlain by post-rift deep water shales in a suite of sedimentary basins that forecasted the South Armorican–Medio-European Ocean as a part of the Palaeotethys Ocean.

  14. An Isotopic Perspective into the Magmatic Evolution and Architecture of the Rift Zones of Kīlauea Volcano

    Science.gov (United States)

    Pietruszka, A. J.; Marske, J. P.; Garcia, M. O.; Heaton, D. E.; Rhodes, M. M.

    2016-12-01

    We present Pb, Sr, and Nd isotope ratios for Kīlauea's historical rift zone lavas (n=50) to examine the magmatic evolution and architecture of the volcano's East Rift Zone (ERZ) and Southwest Rift Zone (SWRZ). Our results show that Kīlauea's historical eruptive period was preceded by the delivery of a major batch of magma from the summit reservoir to the ERZ. The timing of this intrusion, most likely in the late 17th century, was probably related to the 300-yr period of explosive eruptions that followed the formation of the modern caldera (Swanson et al., 2012; JVGR). This rift-stored magma was a component in lavas from lower ERZ (LERZ) eruptions in 1790(?), 1840, 1955, and 1960. The only other components in these LERZ lavas are related to summit lavas erupted (1) after the 1924 collapse of Halemáumáu and (2) during episodes of high fountaining at Kīlauea Iki in 1959. Thus, the intrusion of magma from the summit reservoir into the LERZ is a rare occurrence that is tied to major volcanological events. Intrusions from the summit reservoir in the 1960s likely flushed most older, stored magma from the upper ERZ (UERZ) and middle ERZ (MERZ), leaving large pockets of 1960s-era magma to serve as a dominant component in many subsequent rift lavas. An increase in the duration of pre-eruptive magma storage from the UERZ ( 0-7 yr) to the MERZ ( 0-19 yr) to the LERZ (up to 335 yr) is likely controlled by a decrease in the rate of magma supply to the more distal portions of the ERZ. Lavas from several UERZ eruptions in the 1960s and 1970s have a component of mantle-derived magma that bypassed the summit reservoir. There is no evidence for a summit bypass into the MERZ, LERZ, or the volcanically active portion of the SWRZ. These results support a recent model for Kīlauea's plumbing system (Poland et al., 2014; USGS Prof. Pap. 1801): the ERZ is connected to the deeper "South Caldera" magma body and the volcanic SWRZ is connected to the shallower Halemáumáu magma body.

  15. Orogenic structural inheritance and rifted passive margin formation

    Science.gov (United States)

    Salazar Mora, Claudio A.; Huismans, Ritske S.

    2016-04-01

    Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution

  16. Geomagnetic polarity zones for icelandic lavas

    Science.gov (United States)

    Dagley, P.; Wilson, R.L.; Ade-Hall, J. M.; Walker, G.P.L.; Haggerty, S.E.; Sigurgeirsson, T.; Watkins, N.D.; Smith, P.J.; Edwards, J.; Grasty, R.L.

    1967-01-01

    Analysis of cores collected from a sequence of lavas in Eastern Iceland has made possible an accurate calculation of the average rate of reversal of the Earth's magnetic field. ?? 1967 Nature Publishing Group.

  17. Taylor instability in rhyolite lava flows

    Science.gov (United States)

    Baum, B. A.; Krantz, W. B.; Fink, J. H.; Dickinson, R. E.

    1989-01-01

    A refined Taylor instability model is developed to describe the surface morphology of rhyolite lava flows. The effect of the downslope flow of the lava on the structures resulting from the Taylor instability mechanism is considered. Squire's (1933) transformation is developed for this flow in order to extend the results to three-dimensional modes. This permits assessing why ridges thought to arise from the Taylor instability mechanism are preferentially oriented transverse to the direction of lava flow. Measured diapir and ridge spacings for the Little and Big Glass Mountain rhyolite flows in northern California are used in conjunction with the model in order to explore the implications of the Taylor instability for flow emplacement. The model suggests additional lava flow features that can be measured in order to test whether the Taylor instability mechanism has influenced the flows surface morphology.

  18. Dielectric properties of lava flows west of Ascraeus Mons, Mars

    Science.gov (United States)

    Carter, L.M.; Campbell, B.A.; Holt, J.W.; Phillips, R.J.; Putzig, N.E.; Mattei, S.; Seu, R.; Okubo, C.H.; Egan, A.F.

    2009-01-01

    The SHARAD instrument on the Mars Reconnaissance Orbiter detects subsurface interfaces beneath lava flow fields northwest of Ascraeus Mons. The interfaces occur in two locations; a northern flow that originates south of Alba Patera, and a southern flow that originates at the rift zone between Ascraeus and Pavonis Montes. The northern flow has permittivity values, estimated from the time delay of echoes from the basal interface, between 6.2 and 17.3, with an average of 12.2. The southern flow has permittivity values of 7.0 to 14.0, with an average of 9.8. The average permittivity values for the northern and southern flows imply densities of 3.7 and 3.4 g cm-3, respectively. Loss tangent values for both flows range from 0.01 to 0.03. The measured bulk permittivity and loss tangent values are consistent with those of terrestrial and lunar basalts, and represent the first measurement of these properties for dense rock on Mars. Copyright 2009 by the American Geophysical Union.

  19. Internal fabric development in complex lava domes

    Czech Academy of Sciences Publication Activity Database

    Závada, Prokop; Kratinová, Zuzana; Kusbach, V.; Schulmann, K.

    2009-01-01

    Roč. 466, č. 1-2 (2009), s. 101-113 ISSN 0040-1951 R&D Projects: GA AV ČR KJB301110703; GA AV ČR KJB300120702 Grant - others:GA ČR(CZ) GA205/03/0204 Institutional research plan: CEZ:AV0Z30120515 Keywords : analogue modeling * lava extrusion * exogenous growth * crystal-rich lava * AMS Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.935, year: 2009

  20. Communicating Science to Officials and People at Risk During a Slow-Motion Lava Flow Crisis

    Science.gov (United States)

    Neal, C. A.; Babb, J.; Brantley, S.; Kauahikaua, J. P.

    2015-12-01

    From June 2014 through March 2015, Kīlauea Volcano's Púu ´Ō´ō vent on the East Rift Zone produced a tube-fed pāhoehoe lava flow -the "June 27th flow" - that extended 20 km downslope. Within 2 months of onset, flow trajectory towards populated areas in the Puna District caused much concern. The USGS Hawaiian Volcano Observatory (HVO) issued a news release of increased hazard on August 22 and began participating in public meetings organized by Hawai`i County Mayor and Civil Defense two days later. On September 4, HVO upgraded the volcano alert level to WARNING based on an increased potential for lava to reach homes and infrastructure. Ultimately, direct impacts were modest: lava destroyed one unoccupied home and one utility pole, crossed a rural roadway, and partially inundated a waste transfer station, a cemetery, and agricultural land. Anticipation that lava could reach Pāhoa Village and cross the only major access highway, however, caused significant disruption. HVO scientists employed numerous methods to communicate science and hazard information to officials and the at-risk public: daily (or more frequent) written updates of the lava activity, flow front locations and advance rates; frequent updates of web-hosted maps and images; use of the 'lines of steepest descent' method to indicate likely lava flow paths; consistent participation in well-attended community meetings; bi-weekly briefings to County, State, and Federal officials; correspondence with the public via email and recorded phone messages; participation in press conferences and congressional briefings; and weekly newspaper articles (Volcano Watch). Communication lessons both learned and reinforced include: (1) direct, frequent interaction between scientists and officials and at-risk public builds critical trust and understanding; (2) images, maps, and presentations must be tailored to audience needs; (3) many people are unfamiliar with maps (oblique aerial photographs were more effective); (4

  1. Continental rift formation and transition to ocean sea floor spreading : A case study of the Afar triple junction

    NARCIS (Netherlands)

    Lavecchia, A.L.

    2017-01-01

    Lithosphere extension, thinning and breakup are fundamental processes in geodynamics. During rift development, both the lithosphere and the mantle are involved in a coupled system, in which the main mechanisms and the forces associated with them often vary during the rift evolution. Furthermore, the

  2. The East African rift system

    Science.gov (United States)

    Chorowicz, Jean

    2005-10-01

    This overview paper considers the East African rift system (EARS) as an intra-continental ridge system, comprising an axial rift. It describes the structural organization in three branches, the overall morphology, lithospheric cross-sections, the morphotectonics, the main tectonic features—with emphasis on the tension fractures—and volcanism in its relationships with the tectonics. The most characteristic features in the EARS are narrow elongate zones of thinned continental lithosphere related to asthenospheric intrusions in the upper mantle. This hidden part of the rift structure is expressed on the surface by thermal uplift of the rift shoulders. The graben valleys and basins are organized over a major failure in the lithospheric mantle, and in the crust comprise a major border fault, linked in depth to a low angle detachment fault, inducing asymmetric roll-over pattern, eventually accompanied by smaller normal faulting and tilted blocks. Considering the kinematics, divergent movements caused the continent to split along lines of preexisting lithospheric weaknesses marked by ancient tectonic patterns that focus the extensional strain. The hypothesis favored here is SE-ward relative divergent drifting of a not yet well individualized Somalian plate, a model in agreement with the existence of NW-striking transform and transfer zones. The East African rift system comprises a unique succession of graben basins linked and segmented by intracontinental transform, transfer and accommodation zones. In an attempt to make a point on the rift system evolution through time and space, it is clear that the role of plume impacts is determinant. The main phenomenon is formation of domes related to plume effect, weakening the lithosphere and, long after, failure inducing focused upper mantle thinning, asthenospheric intrusion and related thermal uplift of shoulders. The plume that had formed first at around 30 Ma was not in the Afar but likely in Lake Tana region (Ethiopia

  3. Tectonic inheritance in the development of the Kivu - north Tanganyika rift segment of the East African Rift System: role of pre-existing structures of Precambrian to early Palaeozoic origin.

    Science.gov (United States)

    Delvaux, Damien; Fiama Bondo, Silvanos; Ganza Bamulezi, Gloire

    2017-04-01

    The present architecture of the junction between the Kivu rift basin and the north Tanganyika rift basin is that of a typical accommodation zone trough the Ruzizi depression. However, this structure appeared only late in the development of the Western branch of the East African Rift System and is the result of a strong control by pre-existing structures of Precambrian to early Palaeozoic origin. In the frame of a seismic hazard assessment of the Kivu rift region, we (Delvaux et al., 2016) constructed homogeneous geological, structural and neotectonic maps cross the five countries of this region, mapped the pre-rift, early rift and Late Quaternary faults and compiled the existing knowledge on thermal springs (assumed to be diagnostic of current tectonic activity along faults). We also produced also a new catalogue of historical and instrumental seismicity and defined the seismotectonic characteristics (stress field, depth of faulting) using published focal mechanism data. Rifting in this region started at about 11 Ma by initial doming and extensive fissural basaltic volcanism along normal faults sub-parallel to the axis of the future rift valley, as a consequence of the divergence between the Nubia and the Victoria plate. In a later stage, starting around 8-7 Ma, extension localized along a series of major border faults individualizing the subsiding tectonic basins from the uplifting rift shoulders, while lava evolved towards alkali basaltic composition until 2.6 Ma. During this stage, initial Kivu rift valley was extending linearly in a SSW direction, much further than its the actual termination at Bukavu, into the Mwenga-Kamituga graben, up to Namoya. The SW extremity of this graben was linked via a long oblique transfer zone to the central part of Lake Tanganyika, itself reactivating an older ductile-brittle shear zone. In the late Quaternary-early Holocene, volcanism migrated towards the center of the basin, with the development of the Virunga volcanic massif

  4. New foci of cutaneous leishmaniasis in central Kenya and the Rift Valley.

    Science.gov (United States)

    Sang, D K; Okelo, G B; Ndegwa, C W; Ashford, R W

    1993-01-01

    Active case detection and investigations of sandfly resting places in suspected transmission sites of cutaneous leishmaniasis in central Kenya and the Rift Valley resulted in the identification of several foci of the disease in Samburu, Isiolo, Laikipia, Nakuru and Nyandarua districts. The foci occurred in areas ranging from semi-arid lowlands at 400 m altitude to highland plateaux at 2500 m, including the floor of the Rift Valley, and were mostly inhabited by recently settled communities, nomads and migrant charcoal burners. Four species of Phlebotomus, 3 of the subgenus Larroussius (P. pedifer, P. aculeatus and P. guggisbergi) and one Paraphlebotomus (P. saevus) were collected from caves, rock crevices and tree hollows found in river valleys and in lava flows.

  5. Mauna Loa lava accumulation rates at the Hilo drill site: Formation of lava deltas during a period of declining overall volcanic growth

    Science.gov (United States)

    Lipman, P.W.; Moore, J.G.

    1996-01-01

    Accumulation rates for lava flows erupted from Mauna Loa, as sampled in the uppermost 280 m of the Hilo drill hole, vary widely for short time intervals (several thousand years), but overall are broadly similar to those documented elsewhere on this volcano since 100 ka. Thickness variations and accumulation rates for Mauna Loa lavas at the Hilo drill site have been strongly affected by local paleotopography, including funneling and ponding between Mauna Kea and Kilauea. In addition, gentle submerged slopes of Mauna Kea in Hilo Bay have permitted large shoreline displacements by Mauna Loa flows. Ages of eruptive intervals have been determined from published isotopic data and from eustatic sea level curves modified to include the isostatic subsidence of the island of Hawaii at 2.2-2.6 mm/yr. Prior to 10 ka, rates of Mauna Loa lava accumulation at the drill site varied from 0.6 to 4.3 mm/yr for dateable intervals, with an overall rate of 1.8 mm/yr. Major eruptive pulses at about 1.3 and 10 ka, each probably representing a single long-lived eruption based on lack of weathering between flow units, increase the overall accumulation rate to 2.4 mm/yr. The higher rate since 10 ka reflects construction of thick near-shoreline lava deltas as postglacial sea levels rose rapidly. Large lava deltas form only along coastal segments where initially subaerial slopes have been submerged by the combined effects of eustatic sea level rise, isostatic subsidence, or spreading of volcano flanks. Overall accumulation of 239 m of lava at the drill site since 100-120 ka closely balances submergence of the Hilo area, suggesting that processes of coastal lava deposition have been modulated by rise in sea level. The Hilo accumulation rate is slightly higher than average rates of 1-2 mm/yr determined elsewhere along the Mauna Loa coast, based on rates of shoreline coverage and dated sea cliff and fault scarp exposures. Low rates of coastal lava accumulation since 100 ka, near or below the rate

  6. Submarine Rejuvenated-Stage Lavas Offshore Molokai, Oahu, Kauai, and Niihau, Hawaii

    Science.gov (United States)

    Clague, D. A.; Cousens, B. L.; Davis, A. S.; Dixon, J. E.; Hon, K.; Moore, J. G.; Reynolds, J. R.

    2003-12-01

    Rejuvenated-stage lavas from the Hawaiian Islands form many distinctive landmarks, such as Diamond Head. They have been relatively well studied due to their primitive, strongly alkaline compositions (alkalic basalt, basanite, nephelinite, melilitite, phonolite). More recently, compositionally similar lavas have been mapped and sampled on the deep seafloor around the islands. Rejuvenated-stage cones also occur on the submarine flanks of the islands. A Pisces V submersible dive collected samples from the only submarine cone on the north slope of East Molokai. The alkalic basalt to basanite composition lava is similar to the subaerial Kalaupapa basalt (Clague and Moore, 2003). MBARI Tiburon ROV dives recovered nephelinite from a lone steep cone on the northeast slope of Oahu, alkalic basalt from two shallow steep cones just west of the Koko Rift, and alkalic basalt from the submarine flank of Diamond Head on Oahu's south flank. These lavas are generally similar to subaerial Honolulu Volcanics, although the isotopic data extend to higher Sr isotopic values. Other MBARI Tiburon ROV dives recovered alkalic basalt and basanite from 8 separate steep cones on the south flank of Kauai. Once again, these lavas are chemically similar to those from the subaerial Koloa Volcanics. Samples from one of these cones contained common xenoliths of upper mantle lherzolite and harzburgite. Seven MBARI Tiburon ROV dives on the northwest flank of Niihau sampled 6 flat-topped cones and 5 pointed cones. The lavas from the flat-topped cones are alkalic basalt similar to rejuvenated Kiekie Basalt on Niihau Island whereas the lavas from the pointed cones are basanite, hawaiite, and tephrophonolite that are chemically distinct from the Kiekie Basalt, but similar to rejuvenated-stage lavas on Kauai and Oahu. Volcaniclastic deposits were observed and sampled at many of the sites offshore Niihau, Kauai, and Oahu, as well as the North Arch. Breadcrust and spindle bombs and spatter were found

  7. Mapping gullies, dunes, lava fields, and landslides via surface roughness

    Science.gov (United States)

    Korzeniowska, Karolina; Pfeifer, Norbert; Landtwing, Stephan

    2018-01-01

    Gully erosion is a widespread and significant process involved in soil and land degradation. Mapping gullies helps to quantify past, and anticipate future, soil losses. Digital terrain models offer promising data for automatically detecting and mapping gullies especially in vegetated areas, although methods vary widely measures of local terrain roughness are the most varied and debated among these methods. Rarely do studies test the performance of roughness metrics for mapping gullies, limiting their applicability to small training areas. To this end, we systematically explored how local terrain roughness derived from high-resolution Light Detection And Ranging (LiDAR) data can aid in the unsupervised detection of gullies over a large area. We also tested expanding this method for other landforms diagnostic of similarly abrupt land-surface changes, including lava fields, dunes, and landslides, as well as investigating the influence of different roughness thresholds, resolutions of kernels, and input data resolution, and comparing our method with previously published roughness algorithms. Our results show that total curvature is a suitable metric for recognising analysed gullies and lava fields from LiDAR data, with comparable success to that of more sophisticated roughness metrics. Tested dunes or landslides remain difficult to distinguish from the surrounding landscape, partly because they are not easily defined in terms of their topographic signature.

  8. Limited role for thermal erosion by turbulent lava in proximal Athabasca Valles, Mars

    Science.gov (United States)

    Cataldo, Vincenzo; Williams, David A.; Dundas, Colin M.; Kestay, Laszlo P.

    2015-01-01

    The Athabasca Valles flood lava is among the most recent (Mars and was probably emplaced turbulently. The Williams et al. (2005) model of thermal erosion by lava has been applied to what we term “proximal Athabasca,” the 75 km long upstream portion of Athabasca Valles. For emplacement volumes of 5000 and 7500 km3and average flow thicknesses of 20 and 30 m, the duration of the eruption varies between ~11 and ~37 days. The erosion of the lava flow substrate is investigated for three eruption temperatures (1270°C, 1260°C, and 1250°C), and volatile contents equivalent to 0–65 vol % bubbles. The largest erosion depths of ~3.8–7.5 m are at the lava source, for 20 m thick and bubble-free flows that erupted at their liquidus temperature (1270°C). A substrate containing 25 vol % ice leads to maximum erosion. A lava temperature 20°C below liquidus reduces erosion depths by a factor of ~2.2. If flow viscosity increases with increasing bubble content in the lava, the presence of 30–50 vol % bubbles leads to erosion depths lower than those relative to bubble-free lava by a factor of ~2.4. The presence of 25 vol % ice in the substrate increases erosion depths by a factor of 1.3. Nevertheless, modeled erosion depths, consistent with the emplacement volume and flow duration constraints, are far less than the depth of the channel (~35–100 m). We conclude that thermal erosion does not appear to have had a major role in excavating Athabasca Valles.

  9. Benchmarking computational fluid dynamics models of lava flow simulation for hazard assessment, forecasting, and risk management

    Science.gov (United States)

    Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi; Richardson, Jacob A.; Cashman, Katharine V.

    2017-01-01

    Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, designing flow mitigation measures, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics (CFD) models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, COMSOL, and MOLASSES. We model viscous, cooling, and solidifying flows over horizontal planes, sloping surfaces, and into topographic obstacles. We compare model results to physical observations made during well-controlled analogue and molten basalt experiments, and to analytical theory when available. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and OpenFOAM and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We assess the goodness-of-fit of the simulation results and the computational cost. Our results guide the selection of numerical simulation codes for different applications, including inferring emplacement conditions of past lava flows, modeling the temporal evolution of ongoing flows during eruption, and probabilistic assessment of lava flow hazard prior to eruption. Finally, we outline potential experiments and desired key observational data from future flows that would extend existing benchmarking data sets.

  10. The Payun-Matru lava field: a source of analogues for Martian long lava flows

    Science.gov (United States)

    Giacomini, L.; Pasquarè, G.; Massironi, M.; Frigeri, A.; Bistacchi, A.; Frederico, C.

    2007-08-01

    The Payun Matru Volcanic complex is a Quaternary fissural structure belonging to the back-arc extensional area of the Andes in the Mendoza Province (Argentina). The eastern portion of the volcanic structure is covered by a basaltic field of pahoehoe lava flows advanced over more than 180 km from the fissural feeding vents that are aligned with a E-W fault system (Carbonilla fault). Thanks to their widespread extension, these flows represent some of the largest lava flows in the world and the Pampas Onduladas flow can be considered the longest sub-aerial individual lava flow on the Earth surface [1,2]. These gigantic flows propagated over the nearly flat surface of the Pampean foreland, moving on a 0.3 degree slope. The very low viscosity of the olivine basalt lavas, coupled with the inflation process and an extensive system of lava tubes are the most probable explanation for their considerable length. The inflation process likely develop under a steady flow rate sustained for a long time [3]. A thin viscoelastic crust, built up at an early stage, is later inflated by the underlying fluid core, which remains hot and fluid thanks to the thermal-shield effect of the crust. The crust is progressively thickened by accretion from below and spreading is due to the continuous creation of new inflated lobes, which develop at the front of the flow. Certain morphological features are considered to be "fingerprints" of inflation [4, 5, 6]; these include tumuli, lava rises, lava lobes and ridges. All these morphologies are present in the more widespread Payun Matru lava flows that, where they form extensive sheetflows, can reach a maximum thickness of more than 20 meters. After the emplacement of the major flows, a second eruptive cycle involved the Payun Matru volcanic structure. During this stage thick and channelized flows of andesitic and dacitic lavas, accompanied the formation of two trachitic and trachiandesitic strato-volcanoes (Payun Matru and Payun Liso) culminated

  11. Tectonic-magmatic interplay during the early stages of oceanic rifting: temporal constraints from cosmogenic 3He dating in the Dabbahu rift segment, Afar

    Science.gov (United States)

    Williams, A.; Pik, R.; Burnard, P.; Medynski, S.; Yirgu, G.

    2009-12-01

    The Afar Rift in Ethiopia is one of the only subaerial locations in the world where the transition from continental break-up to oceanic-spreading can be observed. Extension and volcanism in the Afar is concentrated in tectono-magmatic segments (TMS), similar in size and morphology to those that characterize mid-ocean ridge systems. However, unlike their submarine equivalents, the Afar TMS contain large silicic central volcanoes, implying that magma differentiation plays an important role in the early evolution of the oceanic rifts. The Dabbahu TMS at the south of the western Afar rift system has recently been the site of significant activity. A massive seismic event in late 2005, triggered by dyke injection, heralded the onset of new rifting period. Volcanism associated with the periods of magma-driven extension has been both silicic (explosive) and basaltic (fissural). The most recent activity in the Afar thus testifies to the close interplay of tectonics and magmatism in rifting environments. In an effort to decipher the long-term structural and volcanic evolution of Dabbahu TMS, we combine cosmogenic 3He dating with geological interpretation of ASTER images and major and trace element analyses of the main volcanic units present. The cosmogenic dating method has advantages over other geochronological tools in that we can target both volcanic and tectonic surfaces of a few Kyr to several Myr age. At Baddi Volcano, an off-axis stratovolcano located west of the Dabbahu rift-axis, basaltic lava flows overlie an acidic base, previously dated at 290 ka using the K-Ar technique (Lahitte et al., 2003). Following preliminary sampling in 2007, we determined cosmogenic 3He ages of 57 ka and 45 ka for two basaltic flows on the flanks of Baddi. We now investigate whether this presumed replenishment of the Baddi magma chamber represents a replenishment of the entire sub-rift plumbing system, and how this in turn relates to the onset and maintenance of surface deformation

  12. Contribution of slab melting to magmatism at the active rifts zone in the middle of the Izu-Bonin arc

    Science.gov (United States)

    Hirai, Y.; Okamura, S.; Sakamoto, I.; Shinjo, R.; Wada, K.; Yoshida, T.

    2016-12-01

    The active rifts zone lies just behind the Quaternary volcanic front in the middle of the Izu-Bonin arc. Volcanism at the active rifts zone has been active since ca. 2 Ma, and late Quaternary basaltic lavas (< 0.1 Ma) and hydrothermal activity occur along the central axis of the rifts (Taylor, 1992; Ishizuka et al., 2003). In this paper we present new Sr, Nd, and Hf isotope and trace element data for the basalts erupted in the active rifts zone, including the Aogashima, Myojin and Sumisu rifts. Two geochemical groups can be identified within the active rift basalts: High-Zr basalts (HZB) and Low-Zr basalts (LZB). In the case of the Sumisu rift, the HZB exhibits higher in K2O, Na2O, Y, Zr and Ni, and also has higher Ce/Yb and Zr/Y, lower Ba/Th than the LZB. Depletion of Zr-Hf in the N-MORB spidergram characterizes the LZB from the Aogashima, Myojin and Sumisu rifts. The 176Hf/177Hf ratios are slightly lower in the HZB than in the LZB, decoupling of 176Hf/177Hf ratios and 143Nd/144Nd ratios. Estimated primary magma compositions suggest that primary magma segregation for the HZB occurred at depths less than 70 km ( 2 GPa), whereas the LZB more than 70 km (2 3 GPa). ODP Leg126 site 788, 790, and 791 reached the basaltic basement of the Sumisu rift (Gill et al., 1992). The geochemical data and stratigraphic relations of the basement indicate that the HZB is younger than the LZB. Geochemical modelling demonstrates that slab-derived melt mixed with mantle wedge produces the observed isotopic and trace elemental characteristics. The LZB volcanism at the early stage of the back-arc rifting is best explained by a partial melting of subducted slab saturated with trace quantities of zircon under low-temperature conditions in the mantle wedge. On the other hand, the HZB requires a partial melt of subducted slab accompanied by full dissolution of zircon under high-temperature conditions in the mantle wedge, which could have been caused by hot asthenospheric injection during the

  13. Diverting lava flows in the lab

    Science.gov (United States)

    Dietterich, Hannah; Cashman, Katharine V.; Rust, Alison C.; Lev, Einat

    2015-01-01

    Recent volcanic eruptions in Hawai'i, Iceland and Cape Verde highlight the challenges of mitigating hazards when lava flows threaten infrastructure. Diversion barriers are the most common form of intervention, but historical attempts to divert lava flows have met with mixed success and there has been little systematic analysis of optimal barrier design. We examine the interaction of viscous flows of syrup and molten basalt with barriers in the laboratory. We find that flows thicken immediately upslope of an obstacle, forming a localized bow wave that can overtop barriers. Larger bow waves are generated by faster flows and by obstacles oriented at a high angle to the flow direction. The geometry of barriers also influences flow behaviour. Barriers designed to split or dam flows will slow flow advance, but cause the flow to widen, whereas oblique barriers can effectively divert flows, but may also accelerate flow advance. We argue that to be successful, mitigation of lava-flow hazards must incorporate the dynamics of lava flow–obstacle interactions into barrier design. The same generalizations apply to the effect of natural topographic features on flow geometry and advance rates.

  14. Possible lava tube system in a hummocky lava flow at Daund ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The presence of a branching and meandering lava tube system in the Daund flow, which represents the ..... is entirely related to the process of differential ero- sion and exhumation. Thus ... illuminating and thought provoking. References.

  15. NVP melt/magma viscosity: insight on Mercury lava flows

    Science.gov (United States)

    Rossi, Stefano; Morgavi, Daniele; Namur, Olivier; Vetere, Francesco; Perugini, Diego; Mancinelli, Paolo; Pauselli, Cristina

    2016-04-01

    ). The change of melt viscosity induced by crystallization of a NVP composition was measured in the temperature ranges from 1463 to 1229 °C. Results showed an increase in effective viscosity from 4.3 Pa s to 1090 Pa s as the crystal content increased from 0 vol% to ca. 25 vol.%. The crystallization processes in the nominally dry NVP began at 1308 °C. Interestingly, melts viscosity changes from 4 to 16 Pa s as temperature varies from 1463 to 1327 °C. The extreme Mercurian lava fluidity experimentally measured has revealed the potentiality of NVP lavas to cover huge areas as shown by satellite data. Keywords: Viscosity, Concentric cylinders, NVP, Mercury.

  16. Transient cracks and triple junctions induced by Cocos-Nazca propagating rift

    Science.gov (United States)

    Schouten, H.; Smith, D. K.; Zhu, W.; Montesi, L. G.; Mitchell, G. A.; Cann, J. R.

    2009-12-01

    The Galapagos triple junction is a ridge-ridge-ridge triple junction where the Cocos, Nazca, and Pacific plates meet around the Galapagos microplate (GMP). On the Cocos plate, north of the large gore that marks the propagating Cocos-Nazca (C-N) Rift, a 250-km-long and 50-km-wide band of NW-SE-trending cracks crosscuts the N-S-trending abyssal hills of the East Pacific Rise (EPR). These appear as a succession of minor rifts, accommodating some NE-SW extension of EPR-generated seafloor. The rifts successively intersected the EPR in triple junctions at distances of 50-100 km north of the tip of the C-N Rift. We proposed a simple crack interaction model to explain the location of the transient rifts and their junction with the EPR. The model predicts that crack locations are controlled by the stress perturbation along the EPR, induced by the dominant C-N Rift, and scaled by the distance of its tip to the EPR (Schouten et al., 2008). The model also predicts that tensile stresses are symmetric about the C-N Rift and thus, similar cracks should have occurred south of the C-N Rift prior to formation of the GMP about 1 Ma. There were no data at the time to test this prediction. In early 2009 (AT 15-41), we mapped an area on the Nazca plate south of the C-N rift out to 4 Ma. The new bathymetric data confirm the existence of a distinctive pattern of cracks south of the southern C-N gore that mirrors the pattern on the Cocos plate until about 1 Ma, and lends support to the crack interaction model. The envelope of the symmetric cracking pattern indicates that the distance between the C-N Rift tip and the EPR varied between 40 and 65 km during this time (1-4 Ma). The breakdown of the symmetry at 1 Ma accurately dates the onset of a southern plate boundary of the GMP, now Dietz Deep Rift. At present, the southern rift boundary of the GMP joins the EPR with a steep-sided, 80 km long ridge. This ridge releases the stress perturbation otherwise induced along the EPR by elastic

  17. Local stresses, dyke arrest and surface deformation in volcanic edificesand rift zones

    Directory of Open Access Journals (Sweden)

    L. S. Brenner

    2004-06-01

    Full Text Available Field studies indicate that nearly all eruptions in volcanic edifices and rift zones are supplied with magma through fractures (dykes that are opened by magmatic overpressure. While (inferred dyke injections are frequent during unrest periods, volcanic eruptions are, in comparison, infrequent, suggesting that most dykes become arrested at certain depths in the crust, in agreement with field studies. The frequency of dyke arrest can be partly explained by the numerical models presented here which indicate that volcanic edifices and rift zones consisting of rocks of contrasting mechanical properties, such as soft pyroclastic layers and stiff lava flows, commonly develop local stress fields that encourage dyke arrest. During unrest, surface deformation studies are routinely used to infer the geometries of arrested dykes, and some models (using homogeneous, isotropic half-spaces infer large grabens to be induced by such dykes. Our results, however, show that the dyke-tip tensile stresses are normally much greater than the induced surface stresses, making it difficult to explain how a dyke can induce surface stresses in excess of the tensile (or shear strength while the same strength is not exceeded at the (arrested dyke tip. Also, arrested dyke tips in eroded or active rift zones are normally not associated with dyke-induced grabens or normal faults, and some dykes arrested within a few metres of the surface do not generate faults or grabens. The numerical models show that abrupt changes in Young's moduli(stiffnesses, layers with relatively high dyke-normal compressive stresses (stress barriers, and weak horizontal contacts may make the dyke-induced surface tensile stresses too small for significant fault or graben formation to occur in rift zones or volcanic edifices. Also, these small surface stresses may have no simple relation to the dyke geometry or the depth to its tip. Thus, for a layered crust with weak contacts, straightforward

  18. Thermal Remote Sensing of Lava Lakes on Io and Earth (Invited)

    Science.gov (United States)

    Davies, A. G.; Keszthelyi, L. P.; McEwen, A. S.

    2013-12-01

    Volcanology has been transformed by remote sensing. For decades, Earth's volcanoes have been studied in the infrared by a wide variety of instruments on spacecraft at widely varying spectral, spatial and temporal resolutions, for which techniques have been developed to interpret and understand ongoing volcanic eruptions. The study of volcanism on Io, the only Solar System body besides Earth known to have ongoing, high temperature, silicate-based effusive and explosive volcanic eruptions, requires new remote sensing techniques. The extraordinary volcanism allows us to examine Io's interior and composition from the material erupted onto the surface. For Io, the biggest question in the wake of NASA's Galileo mission concerns the eruption temperature of Io's dominant silicate lavas [1,2]. Constraining eruption temperature constrains magma composition, in turn a reflection of the composition, physical state and tidal heating within Io. However, the extraction of lava eruption temperature from remote sensing data is difficult. Detector saturation is likely except when the hot material fills a tiny fraction of a resolution element, unless instruments are designed for this objective. High temperature lava surfaces cool rapidly, so remote observations can miss the peak temperature. Observations at different wavelengths must be acquired nearly simultaneously to derive accurate temperatures of very hot and dynamic sources [3]. Uncertainties regarding hot lava emissivity [4] also reduce the confidence in derived temperatures. From studying thermal emission data from different styles of volcanic activity on Earth by remote sensing in conjunction with contemporaneous observations on the ground, it is found that only certain styles of volcanic activity are suitable for deriving liquid lava temperatures [3]. Active lava lakes are particularly useful, especially during a phase of lava fountaining. Examination and analysis of FLIR data obtained at the Erta'Ale (Ethiopia) basaltic

  19. Shatter Complex Formation in the Twin Craters Lava Flow, Zuni-Bandera Field, New Mexico

    Science.gov (United States)

    von Meerscheidt, H. C.; Bleacher, J. E.; Brand, B. D.; deWet, A.; Samuels, R.; Hamilton, C.; Garry, W. B.; Bandfield, J. L.

    2013-12-01

    Lava channels, tubes and sheets are transport structures that deliver flowing lava to a flow front. The type of structure can vary within a flow field and evolve throughout an eruption. The 18.0 × 1.0 ka Twin Craters lava flow in the Zuni-Bandera lava field provides a unique opportunity to study morphological changes of a lava flow partly attributable to interaction with a topographic obstacle. Facies mapping and airborne image analysis were performed on an area of the Twin Craters flow that includes a network of channels, lava tubes, shatter features, and disrupted pahoehoe flows surrounding a 45 m tall limestone bluff. The bluff is 1000 m long (oriented perpendicular to flow.) The general flow characteristics upstream from the bluff include smooth, lobate pahoehoe flows and a >2.5 km long lava tube (see Samuels et al., this meeting.) Emplacement characteristics change abruptly where the flow encountered the bluff, to include many localized areas of disrupted pahoehoe and several pahoehoe-floored depressions. Each depression is fully or partly surrounded by a raised rim of blocky material up to 4 m higher than the surrounding terrain. The rim is composed of 0.05 - 4 m diameter blocks, some of which form a breccia that is welded by lava, and some of which exhibit original flow textures. The rim-depression features are interpreted as shatter rings based on morphological similarity to those described by Orr (2011.Bul Volcanol.73.335-346) in Hawai';i. Orr suggests that shatter rings develop when fluctuations in the lava supply rate over-pressurize the tube, causing the tube roof to repeatedly uplift and subside. A rim of shattered blocks and breccias remains surrounding the sunken tube roof after the final lava withdraws from the system. One of these depressions in the Twin Craters flow is 240 m wide and includes six mounds of shattered material equal in height to the surrounding undisturbed terrain. Several mounds have depressed centers floored with rubbly pahoehoe

  20. The isotopic composition of postshield lavas from Mauna Kea volcano, Hawaii

    International Nuclear Information System (INIS)

    Kennedy, A.K.; Fray, F.A.; Kwon, S.T.; West, H.B.

    1991-01-01

    The postshield eruptive stage of Mauna Kea volcano, Hawaii, can be divided into an early basaltic substage, the Hamakua Volcanics, containing picrites, ankaramites, alkalic and tholeiitic basalt, and a hawaiite substage, the Laupahoehoe Volcanics, containing only hawaiites and rare mugearites. Cumulate gabbroic xenoliths in Laupahoehoe Volcanics have isotopic ratios similar to the Hamakua Volcanics, and these gabbros provide constaints on the crustal evolution of Mauna Kea lavas. Because of the small variation in 87 Sr/ 86 Sr (0.70335-0.70362), 143 Nd/ 144 Nd (0.51297-0.51308) and 206 Pb/ 204 Pb (18.306-18.440), lavas from both substages must contain relatively fixed proportions of depleted, enriched and primitive mantle components. In addition, there is Sr, Nd and Pb isotopic overlap between tholeiitic and alkalic Hamakua basalts. However, the steep 207 Pb/ 204 Pb vs. 206 Pb/ 204 Pb arrays of postshield lavas from Mauna Kea, West Maui and Haleakala volcanoes and the existence of rare samples with high 207 Pb/ 204 Pb, up to 15.548, requires an unusual component in some Hawaiian lavas. This component is unlikely to be derived from sediments or MORB lithosphere, and it may be a minor plume component. Lavas erupted during the postshield stage of Mauna Kea volcano do not define a systematic temporal trend of varying 87 Sr/ 86 Sr and 143 Nd/ 144 Nd. This result contrasts with the temporal trend defined by lavas from Haleakala Volcano and provides evidence for important differences between the origin and evolution of different Hawaiian volcanoes. However, the Laupahoehoe Volcanics trend to lower 206 Pb/ 204 Pb ratios than the Hamakua Volcanics. (orig./WL)

  1. Morpho-structural evolution of a volcanic island developed inside an active oceanic rift: S. Miguel Island (Terceira Rift, Azores)

    Science.gov (United States)

    Sibrant, A. L. R.; Hildenbrand, A.; Marques, F. O.; Weiss, B.; Boulesteix, T.; Hübscher, C.; Lüdmann, T.; Costa, A. C. G.; Catalão, J. C.

    2015-08-01

    The evolution of volcanic islands is generally marked by fast construction phases alternating with destruction by a variety of mass-wasting processes. More specifically, volcanic islands located in areas of intense regional deformation can be particularly prone to gravitational destabilisation. The island of S. Miguel (Azores) has developed during the last 1 Myr inside the active Terceira Rift, a major tectonic structure materializing the present boundary between the Eurasian and Nubian lithospheric plates. In this work, we depict the evolution of the island, based on high-resolution DEM data, stratigraphic and structural analyses, high-precision K-Ar dating on separated mineral phases, and offshore data (bathymetry and seismic profiles). The new results indicate that: (1) the oldest volcanic complex (Nordeste), composing the easternmost part of the island, was dominantly active between ca. 850 and 750 ka, and was subsequently affected by a major south-directed flank collapse. (2) Between at least 500 ka and 250 ka, the landslide depression was massively filled by a thick lava succession erupted from volcanic cones and domes distributed along the main E-W collapse scar. (3) Since 250 kyr, the western part of this succession (Furnas area) was affected by multiple vertical collapses; associated plinian eruptions produced large pyroclastic deposits, here dated at ca. 60 ka and less than 25 ka. (4) During the same period, the eastern part of the landslide scar was enlarged by retrogressive erosion, producing the large Povoação valley, which was gradually filled by sediments and young volcanic products. (5) The Fogo volcano, in the middle of S. Miguel, is here dated between ca. 270 and 17 ka, and was affected by, at least, one southwards flank collapse. (6) The Sete Cidades volcano, in the western end of the island, is here dated between ca. 91 and 13 ka, and experienced mutliple caldera collapses; a landslide to the North is also suspected from the presence of a

  2. Lateral variations in foreland flexure of a rifted continental margin: The Aquitaine Basin (SW France)

    Science.gov (United States)

    Angrand, P.; Ford, M.; Watts, A. B.

    2017-12-01

    We study the effects of the inherited Aptian to Cenomanian rift on crustal rheology and evolution of the Late Cretaceous to Neogene flexural Aquitaine foreland basin, northern Pyrenees. We use surface and subsurface geological data to define the crustal geometry and the post-rift thermal subsidence, and Bouguer gravity anomalies and flexural modeling to study the lateral variation of the elastic thickness, flexure of the European plate and controlling loads. The Aquitaine foreland can be divided along-strike into three sectors. The eastern foreland is un-rifted and is associated with a simple flexural subsidence. The central sector is affected by crustal stretching and the observed foreland base is modeled by combining topographic and buried loads, with post-rift thermal subsidence. In the western sector the foreland basin geometry is mainly controlled by post-rift thermal subsidence. These three sectors are separated by major lineaments, which affect both crustal and foreland geometry. These lineaments seem to be part of a larger structural pattern that includes the Toulouse and Pamplona Faults. The European foreland shows lateral variations in flexural behavior: the relative role of surface and sub-surface (i.e., buried) loading varies along-strike and the elastic thickness values decrease from the north-east to the south-west where the plate is the most stretched. We suggest that foreland basins are influenced by the thermal state of the underlying lithosphere if it was initiated soon after rifting and that thermal cooling can contribute significantly to subsidence.

  3. Intraflow width variations in Martian and terrestrial lava flows

    Science.gov (United States)

    Peitersen, Matthew N.; Crown, David A.

    1997-03-01

    Flow morphology is used to interpret emplacement processes for lava flows on Earth and Mars. Accurate measurements of flow geometry are essential, particularly for planetary flows where neither compositional sampling nor direct observations of active flows may be possible. Width behavior may indicate a flow's response to topography, its emplacement regime, and its physical properties. Variations in width with downflow distance from the vent may therefore provide critical clues to flow emplacement processes. Flow width is also one of the few characteristics that can be readily measured from planetary mission data with accuracy. Recent analyses of individual flows at two terrestrial and four Martian sites show that widths within an individual flow vary by up to an order of magnitude. Width is generally thought to be correlated to topography; however, recent studies show that this relationship is neither straightforward nor easily quantifiable.

  4. LAVA: Large scale Automated Vulnerability Addition

    Science.gov (United States)

    2016-05-23

    LAVA: Large-scale Automated Vulnerability Addition Brendan Dolan -Gavitt∗, Patrick Hulin†, Tim Leek†, Fredrich Ulrich†, Ryan Whelan† (Authors listed...released, and thus rapidly become stale. We can expect tools to have been trained to detect bugs that have been released. Given the commercial price tag...low TCN) and dead (low liveness) program data is a powerful one for vulnera- bility injection. The DUAs it identifies are internal program quantities

  5. Modeling steam pressure under martian lava flows

    Science.gov (United States)

    Dundas, Colin M.; Keszthelyi, Laszlo P.

    2013-01-01

    Rootless cones on Mars are a valuable indicator of past interactions between lava and water. However, the details of the lava–water interactions are not fully understood, limiting the ability to use these features to infer new information about past water on Mars. We have developed a model for the pressurization of a dry layer of porous regolith by melting and boiling ground ice in the shallow subsurface. This model builds on previous models of lava cooling and melting of subsurface ice. We find that for reasonable regolith properties and ice depths of decimeters, explosive pressures can be reached. However, the energy stored within such lags is insufficient to excavate thick flows unless they draw steam from a broader region than the local eruption site. These results indicate that lag pressurization can drive rootless cone formation under favorable circumstances, but in other instances molten fuel–coolant interactions are probably required. We use the model results to consider a range of scenarios for rootless cone formation in Athabasca Valles. Pressure buildup by melting and boiling ice under a desiccated lag is possible in some locations, consistent with the expected distribution of ice implanted from atmospheric water vapor. However, it is uncertain whether such ice has existed in the vicinity of Athabasca Valles in recent history. Plausible alternative sources include surface snow or an aqueous flood shortly before the emplacement of the lava flow.

  6. Channelized lava flows at the East Pacific Rise crest 9°-10°N: the importance of off-axis lava transport in developing the architecture of young oceanic crust

    Science.gov (United States)

    Soule, S.A.; Fornari, D.J.; Perfit, M.R.; Tivey, M.A.; Ridley, W.I.; Schouten, Hans

    2005-01-01

     Submarine lava flows are the building blocks of young oceanic crust. Lava erupted at the ridge axis is transported across the ridge crest in a manner dictated by the rheology of the lava, the characteristics of the eruption, and the topography it encounters. The resulting lava flows can vary dramatically in form and consequently in their impact on the physical characteristics of the seafloor and the architecture of the upper 50–500 m of the oceanic crust. We have mapped and measured numerous submarine channelized lava flows at the East Pacific Rise (EPR) crest 9°–10°N that reflect the high-effusion-rate and high-flow-velocity end-member of lava eruption and transport at mid-ocean ridges. Channel systems composed of identifiable segments 50–1000 m in length extend up to 3 km from the axial summit trough (AST) and have widths of 10–50 m and depths of 2–3 m. Samples collected within the channels are N-MORB with Mg# indicating eruption from the AST. We produce detailed maps of lava surface morphology across the channel surface from mosaics of digital images that show lineated or flat sheets at the channel center bounded by brecciated lava at the channel margins. Modeled velocity profiles across the channel surface allow us to determine flux through the channels from 0.4 to 4.7 × 103m3/s, and modeled shear rates help explain the surface morphology variation. We suggest that channelized lava flows are a primary mechanism by which lava accumulates in the off-axis region (1–3 km) and produces the layer 2A thickening that is observed at fast and superfast spreading ridges. In addition, the rapid, high-volume-flux eruptions necessary to produce channelized flows may act as an indicator of the local magma budget along the EPR. We find that high concentrations of channelized lava flows correlate with local, across-axis ridge morphology indicative of an elevated magma budget. Additionally, in locations where channelized flows are located dominantly to the east

  7. Vertical Structural Variation and Their Development of the Sanukayama Rhyolite Lava in Kozushima Island, Japan

    Science.gov (United States)

    Furukawa, K.; Uno, K.; Kanamaru, T.; Nakai, K.

    2017-12-01

    contrast. We showed the complicated structure of the Sanukayama rhyolite lava, especially for varied crystal occurrences. The variation is considered to be caused by specific phenomena of high-viscous magma such as sluggish atomic mobility and lava fracturing.

  8. Twenty-five years of geodetic measurements along the Tadjoura-Asal rift system, Djibouti, East Africa

    Science.gov (United States)

    Vigny, Christophe; de Chabalier, Jean-Bernard; Ruegg, Jean-Claude; Huchon, Philippe; Feigl, Kurt L.; Cattin, Rodolphe; Asfaw, Laike; Kanbari, Khaled

    2007-06-01

    rift system show uplift at rates varying from 0 to 10 mm/yr with respect to a far-field reference outside the rift.

  9. Geological evolution of the Boset-Bericha Volcanic Complex, Main Ethiopian Rift: 40Ar/39Ar evidence for episodic Pleistocene to Holocene volcanism

    Science.gov (United States)

    Siegburg, Melanie; Gernon, Thomas M.; Bull, Jonathan M.; Keir, Derek; Barfod, Dan N.; Taylor, Rex N.; Abebe, Bekele; Ayele, Atalay

    2018-02-01

    The Boset-Bericha Volcanic Complex (BBVC) is one of the largest stratovolcanoes of the northern Main Ethiopian Rift (MER). However, very little is known about its eruptive history, despite the fact that approximately 4 million people live within 100 km of the complex. Here, we combine field observations, morphometric analysis using high-resolution LiDAR data, geochemistry and 40Ar/39Ar geochronology to report the first detailed account of the geological evolution of the BBVC, with a focus on extensive young lava flows covering the two edifices, Gudda and Bericha. These lavas exhibit a bimodal composition ranging dominantly from basaltic rift floor lavas and scoria cones, to pantelleritic trachytes and rhyolite flows at Gudda, and comenditic rhyolites at Bericha. Further, several intermediate compositions are associated with fissure vents along the Boset-Kone segment that also appear to link the silicic centres. We divide the BBVC broadly into four main eruptive stages, comprising: (1) early rift floor emplacement, (2) formation of Gudda Volcano within two main cycles, separated by caldera formation, (3) formation of the Bericha Volcano, and (4) sporadic fissure eruptions. Our new 40Ar/39Ar geochronology, targeting a representative array of these flows, provides evidence for episodic activity at the BBVC from 120 ka to the present-day. We find that low-volume mafic episodes are more frequent ( 10 ka cyclicity) than felsic episodes ( 100 ka cyclicity), but the latter are more voluminous. Over the last 30 ka, mafic to intermediate fissure activity might have reinvigorated felsic activity (over the last 16 ka), manifested as peralkaline lava flows and pyroclastic deposits at Gudda and Bericha. Felsic episodes have on average a higher eruption rate (2-5/1000 years) and productivity at Gudda compared to Bericha (1-2/1000 years). The young age of lavas and current fumarolic activity along the fault system, suggest that the BBVC is still potentially active. Coincident

  10. Computational modeling of lava domes using particle dynamics to investigate the effect of conduit flow mechanics on flow patterns

    Science.gov (United States)

    Husain, Taha Murtuza

    Large (1--4 x 106 m3) to major (> 4 x 106 m3) dome collapses for andesitic lava domes such as Soufriere Hills Volcano, Montserrat are observed for elevated magma discharge rates (6--13 m3/s). The gas rich magma pulses lead to pressure build up in the lava dome that result in structural failure of the over steepened canyon-like walls which may lead to rockfall or pyroclastic flow. This indicates that dome collapse intimately related to magma extrusion rate. Variation in magma extrusion rate for open-system magma chambers is observed to follow alternating periods of high and low activity. Periodic behavior of magma exhibits a rich diversity in the nature of its eruptive history due to variation in magma chamber size, total crystal content, linear crystal growth rate and magma replenishment rate. Distinguished patterns of growth were observed at different magma flow rates ranging from endogenous to exogenous dome growth for magma with varying strengths. Determining the key parameters that control the transition in flow pattern of the magma during its lava dome building eruption is the main focus. This dissertation examines the mechanical effects on the morphology of the evolving lava dome on the extrusion of magma from a central vent using a 2D particle dynamics model. The particle dynamics model is coupled with a conduit flow model that incorporates the kinetics of crystallization and rheological stiffening to investigate important mechanisms during lava dome building eruptions. Chapter I of this dissertation explores lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional

  11. Strike-slip tectonics during rift linkage

    Science.gov (United States)

    Pagli, C.; Yun, S. H.; Ebinger, C.; Keir, D.; Wang, H.

    2017-12-01

    The kinematics of triple junction linkage and the initiation of transforms in magmatic rifts remain debated. Strain patterns from the Afar triple junction provide tests of current models of how rifts grow to link in area of incipient oceanic spreading. Here we present a combined analysis of seismicity, InSAR and GPS derived strain rate maps to reveal that the plate boundary deformation in Afar is accommodated primarily by extensional tectonics in the Red Sea and Gulf of Aden rifts, and does not require large rotations about vertical axes (bookshelf faulting). Additionally, models of stress changes and seismicity induced by recent dykes in one sector of the Afar triple junction provide poor fit to the observed strike-slip earthquakes. Instead we explain these patterns as rift-perpendicular shearing at the tips of spreading rifts where extensional strains terminate against less stretched lithosphere. Our results demonstrate that rift-perpendicular strike-slip faulting between rift segments achieves plate boundary linkage during incipient seafloor spreading.

  12. Hawaiian lavas: a window into mantle dynamics

    Science.gov (United States)

    Jones, Tim; Davies, Rhodri; Campbell, Ian

    2017-04-01

    The emergence of double track volcanism at Hawaii has traditionally posed two problems: (i) the physical emergence of two parallel chains of volcanoes at around 3 Ma, named the Loa and Kea tracks after the largest volcanoes in their sequence, and (ii) the systematic geochemical differences between the erupted lavas along each track. In this study, we dissolve this distinction by providing a geodynamical explanation for the physical emergence of double track volcanism at 3 Ma and use numerical models of the Hawaiian plume to illustrate how this process naturally leads to each volcanic track sampling distinct mantle compositions, which accounts for much of the geochemical characteristics of the Loa and Kea trends.

  13. Remotely Characterizing the Topographic and Thermal Evolution of Kīlauea's Lava Flow Field

    Science.gov (United States)

    Rumpf, M. E.; Vaughan, R. G.; Poland, M. P.

    2017-12-01

    New technologies in satellite data acquisition and the continuous development of analysis software capabilities are greatly improving the ability of scientists to monitor volcanoes in near-real-time. Satellite-based thermal infrared (TIR) data are used to monitor and analyze new and ongoing volcanic activity by identifying and quantifying surface thermal characteristics and lava flow discharge rates. Improved detector sensitivities provide unprecedented spatial detail in visible to shortwave infrared (VSWIR) satellite imagery. The acquisition of stereo and tri-stereo visible imagery, as well as SAR, by an increasing number of satellite systems enables the creation of digital elevation models (DEMs) at higher temporal frequencies and resolutions than in the past. Free, user-friendly software programs, such as NASA's Ames Stereo Pipeline and Google Earth Engine, ease the accessibility and usability of satellite data to users unfamiliar with traditional analysis techniques. An effective and efficient integration of these technologies can be utilized towards volcano monitoring.Here, we use the active lava flows from the East Rift Zone vents of Kīlauea Volcano, Hawai`i as a testing ground for developing new techniques in multi-sensor volcano remote sensing. We use DEMs generated from stereo and tri-stereo images captured by the WorldView3 and Pleiades satellite systems to assess topographic changes over time at the active flow fields. Time-series data of lava flow area, thickness, and discharge rate developed from thermal emission measurements collected by ASTER, Landsat 8, and WorldView3 are compared to satellite-detected topographic changes and to ground observations of flow development to identify behavioral patterns and to monitor flow field evolution. We explore methods of combining these visual and TIR data sets collected by multiple satellite systems with a variety of resolutions and repeat times. Our ultimate goal is to develop integrative tools for near

  14. Selected caves and lava-tube systems in and near Lava Beds National Monument, California

    Science.gov (United States)

    Waters, Aaron Clement; Donnelly-Nolan, Julie M.; Rogers, Bruce W.

    1990-01-01

    Lava Beds National Monument (fig. 1) lies on the north slope of the huge Medicine Lake shield (fig. 2), a complex volcanic edifice of greater volume than the steep-sided Mount Shasta volcanic cone, which towers as a snowclad land mark 40 mi southwest of the monument (fig. 3).

  15. Mosquito host choices on livestock amplifiers of Rift Valley fever virus in Kenya

    Science.gov (United States)

    Animal hosts may vary in their attraction and acceptability as components of the host location process for assessing biting rates of vectors and risk of exposure to pathogens. However, these parameters remain poorly understood for mosquito vectors of the Rift Valley fever (RVF), an arboviral disease...

  16. Eruptive behavior of the Marum/Mbwelesu lava lake, Vanuatu and comparisons with lava lakes on Earth and Io

    Science.gov (United States)

    Radebaugh, Jani; Lopes, Rosaly M.; Howell, Robert R.; Lorenz, Ralph D.; Turtle, Elizabeth P.

    2016-08-01

    Observations from field remote sensing of the morphology, kinematics and temperature of the Marum/Mbwelesu lava lake in the Vanuatu archipelago in 2014 reveal a highly active, vigorously erupting lava lake. Active degassing and fountaining observed at the 50 m lava lake led to large areas of fully exposed lavas and rapid ( 5 m/s) movement of lava from the centers of upwelling outwards to the lake margins. These rapid lava speeds precluded the formation of thick crust; there was never more than 30% non-translucent crust. The lava lake was observed with several portable, handheld, low-cost, near-infrared imagers, all of which measured temperatures near 1000 °C and one as high as 1022 °C, consistent with basaltic temperatures. Fine-scale structure in the lava fountains and cooled crust was visible in the near infrared at 5 cm/pixel from 300 m above the lake surface. The temperature distribution across the lake surface is much broader than at more quiescent lava lakes, peaking 850 °C, and is attributed to the highly exposed nature of the rapidly circulating lake. This lava lake has many characteristics in common with other active lava lakes, such as Erta Ale in Ethiopia, being confined, persistent and high-temperature; however it was much more active than is typical for Erta Ale, which often has > 90% crust. Furthermore, it is a good analogue for the persistent, high-temperature lava lakes contained within volcanic depressions on Jupiter's moon Io, such as Pele, also believed from spacecraft and ground-based observations to exhibit similar behavior of gas emission, rapid overturn and fountaining.

  17. Lava tube shatter rings and their correlation with lava flux increases at Kīlauea Volcano, Hawai‘i

    Science.gov (United States)

    Orr, T.R.

    2011-01-01

    Shatter rings are circular to elliptical volcanic features, typically tens of meters in diameter, which form over active lava tubes. They are typified by an upraised rim of blocky rubble and a central depression. Prior to this study, shatter rings had not been observed forming, and, thus, were interpreted in many ways. This paper describes the process of formation for shatter rings observed at Kīlauea Volcano during November 2005–July 2006. During this period, tilt data, time-lapse images, and field observations showed that episodic tilt changes at the nearby Pu‘u ‘Ō‘ō cone, the shallow magmatic source reservoir, were directly related to fluctuations in the level of lava in the active lava tube, with periods of deflation at Pu‘u ‘Ō‘ō correlating with increases in the level of the lava stream surface. Increases in lava level are interpreted as increases in lava flux, and were coincident with lava breakouts from shatter rings constructed over the lava tube. The repetitive behavior of the lava flux changes, inferred from the nearly continuous tilt oscillations, suggests that shatter rings form from the repeated rise and fall of a portion of a lava tube roof. The locations of shatter rings along the active lava tube suggest that they form where there is an abrupt decrease in flow velocity through the tube, e.g., large increase in tube width, abrupt decrease in tube slope, and (or) sudden change in tube direction. To conserve volume, this necessitates an abrupt increase in lava stream depth and causes over-pressurization of the tube. More than a hundred shatter rings have been identified on volcanoes on Hawai‘i and Maui, and dozens have been reported from basaltic lava fields in Iceland, Australia, Italy, Samoa, and the mainland United States. A quick study of other basaltic lava fields worldwide, using freely available satellite imagery, suggests that they might be even more common than previously thought. If so, this confirms that episodic

  18. What factors control the superficial lava dome explosivity?

    Science.gov (United States)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoit; Morgan, Daniel J.

    2015-04-01

    Dome-forming eruption is a frequent eruptive style; lava domes result from intermittent, slow extrusion of viscous lava. Most dome-forming eruptions produce highly microcrystallized and highly- to almost totally-degassed magmas which have a low explosive potential. During lava dome growth, recurrent collapses of unstable parts are the main destructive process of the lava dome, generating concentrated pyroclastic density currents (C-PDC) channelized in valleys. These C-PDC have a high, but localized, damage potential that largely depends on the collapsed volume. Sometimes, a dilute ash cloud surge develops at the top of the concentrated flow with an increased destructive effect because it may overflow ridges and affect larger areas. In some cases, large lava dome collapses can induce a depressurization of the magma within the conduit, leading to vulcanian explosions. By contrast, violent, laterally directed, explosions may occur at the base of a growing lava dome: this activity generates dilute and turbulent, highly-destructive, pyroclastic density currents (D-PDC), with a high velocity and propagation poorly dependent on the topography. Numerous studies on lava dome behaviors exist, but the triggering of lava dome explosions is poorly understood. Here, seven dome-forming eruptions are investigated: in the Lesser Antilles arc: Montagne Pelée, Martinique (1902-1905, 1929-1932 and 650 y. BP eruptions), Soufrière Hills, Montserrat; in Guatemala, Santiaguito (1929 eruption); in La Chaîne des Puys, France (Puy de Dome and Puy Chopine eruptions). We propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by these key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite

  19. A flexible open-source toolkit for lava flow simulations

    Science.gov (United States)

    Mossoux, Sophie; Feltz, Adelin; Poppe, Sam; Canters, Frank; Kervyn, Matthieu

    2014-05-01

    Lava flow hazard modeling is a useful tool for scientists and stakeholders confronted with imminent or long term hazard from basaltic volcanoes. It can improve their understanding of the spatial distribution of volcanic hazard, influence their land use decisions and improve the city evacuation during a volcanic crisis. Although a range of empirical, stochastic and physically-based lava flow models exists, these models are rarely available or require a large amount of physical constraints. We present a GIS toolkit which models lava flow propagation from one or multiple eruptive vents, defined interactively on a Digital Elevation Model (DEM). It combines existing probabilistic (VORIS) and deterministic (FLOWGO) models in order to improve the simulation of lava flow spatial spread and terminal length. Not only is this toolkit open-source, running in Python, which allows users to adapt the code to their needs, but it also allows users to combine the models included in different ways. The lava flow paths are determined based on the probabilistic steepest slope (VORIS model - Felpeto et al., 2001) which can be constrained in order to favour concentrated or dispersed flow fields. Moreover, the toolkit allows including a corrective factor in order for the lava to overcome small topographical obstacles or pits. The lava flow terminal length can be constrained using a fixed length value, a Gaussian probability density function or can be calculated based on the thermo-rheological properties of the open-channel lava flow (FLOWGO model - Harris and Rowland, 2001). These slope-constrained properties allow estimating the velocity of the flow and its heat losses. The lava flow stops when its velocity is zero or the lava temperature reaches the solidus. Recent lava flows of Karthala volcano (Comoros islands) are here used to demonstrate the quality of lava flow simulations with the toolkit, using a quantitative assessment of the match of the simulation with the real lava flows. The

  20. Primary vesicles, vesicle-rich segregation structures and recognition of primary and secondary porosities in lava flows from the Paraná igneous province, southern Brazil

    Science.gov (United States)

    Barreto, Carla Joana S.; de Lima, Evandro F.; Goldberg, Karin

    2017-04-01

    This study focuses on a volcanic succession of pāhoehoe to rubbly lavas of the Paraná-Etendeka Province exposed in a single road profile in southernmost Brazil. This work provides an integrated approach for examining primary vesicles and vesicle-rich segregation structures at the mesoscopic scale. In addition, this study provides a quantitative analysis of pore types in thin section. We documented distinct distribution patterns of vesicle and vesicle-rich segregation structures according to lava thickness. In compound pāhoehoe lavas, the cooling allows only vesicles (pipe vesicles to be frozen into place. In inflated pāhoehoe lavas, vesicles of different sizes are common, including pipe vesicles, and also segregation structures such as proto-cylinders, cylinders, cylinder sheets, vesicle sheets, and pods. In rubbly lavas, only vesicles of varying sizes occur. Gas release from melt caused the formation of primary porosity, while hydrothermal alteration and tectonic fracturing are the main processes that generated secondary porosity. Although several forms of porosity were created in the basaltic lava flows, the precipitation of secondary minerals within the pores has tended to reduce the original porosities. Late-stage fractures could create efficient channel networks for possible hydrocarbon/groundwater migration and entrapment owing to their ability to connect single pores. Quantitative permeability data should be gathered in future studies to confirm the potential of these lavas for store hydrocarbons or groundwater.

  1. Deepening, and repairing, the metabolic rift.

    Science.gov (United States)

    Schneider, Mindi; McMichael, Philip

    2010-01-01

    This paper critically assesses the metabolic rift as a social, ecological, and historical concept describing the disruption of natural cycles and processes and ruptures in material human-nature relations under capitalism. As a social concept, the metabolic rift presumes that metabolism is understood in relation to the labour process. This conception, however, privileges the organisation of labour to the exclusion of the practice of labour, which we argue challenges its utility for analysing contemporary socio-environmental crises. As an ecological concept, the metabolic rift is based on outmoded understandings of (agro) ecosystems and inadequately describes relations and interactions between labour and ecological processes. Historically, the metabolic rift is integral to debates about the definitions and relations of capitalism, industrialism, and modernity as historical concepts. At the same time, it gives rise to an epistemic rift, insofar as the separation of the natural and social worlds comes to be expressed in social thought and critical theory, which have one-sidedly focused on the social. We argue that a reunification of the social and the ecological, in historical practice and in historical thought, is the key to repairing the metabolic rift, both conceptually and practically. The food sovereignty movement in this respect is exemplary.

  2. Impact of rheological layering on rift asymmetry

    Science.gov (United States)

    Jaquet, Yoann; Schmalholz, Stefan M.; Duretz, Thibault

    2015-04-01

    Although numerous models of rift formation have been proposed, what triggers asymmetry of rifted margins remains unclear. Parametrized material softening is often employed to induce asymmetric fault patterns in numerical models. Here, we use thermo-mechanical finite element models that allow softening via thermal weakening. We investigate the importance of lithosphere rheology and mechanical layering on rift morphology. The numerical code is based on the MILAMIN solver and uses the Triangle mesh generator. Our model configuration consists of a visco-elasto-platic layered lithosphere comprising either (1) only one brittle-ductile transition (in the mantle) or (2) three brittle-ductile transitions (one in the upper crust, one in the lower crust and one in the mantle). We perform then two sets of simulations characterized by low and high extensional strain rates (5*10-15 s-1, 2*10-14 s-1). The results show that the extension of a lithosphere comprising only one brittle-ductile transition produces a symmetric 'neck' type rift. The upper and lower crusts are thinned until the lithospheric mantle is exhumed to the seafloor. A lithosphere containing three brittle-ductile transitions favors strain localization. Shear zones at different horizontal locations and generated in the brittle levels of the lithosphere get connected by the weak ductile layers. The results suggest that rheological layering of the lithosphere can be a reason for the generation of asymmetric rifting and subsequent rift morphology.

  3. Lava inundation zone maps for Mauna Loa, Island of Hawaiʻi, Hawaii

    Science.gov (United States)

    Trusdell, Frank A.; Zoeller, Michael H.

    2017-10-12

    Lava flows from Mauna Loa volcano, on the Island of Hawaiʻi, constitute a significant hazard to people and property. This report addresses those lava flow hazards, mapping 18 potential lava inundation zones on the island.

  4. Characteristics and genesis of porphyroclastic lava rock in Xiangshan

    International Nuclear Information System (INIS)

    Zhou Xiaohua; Wang Zhuning

    2012-01-01

    Due to the transitional characteristics of porphyroclastic lava rock in Xiangshan of Jiangxi province, there are a variety of views on its genesis, petrographic attribution. This is because the marginal facies of the porphyroclastic lava is with ignimbrite and tuff characteristics, its transition phase has the characteristics of lava, and its intermediate phase has the feature of sub-volcanic rocks, further more, different texture of the rocks bears transition relationship. By the study of mineral composition, REE pattern, trace elements, isotopes, we put forward that the porphyroclastic lava is formed by the remelting of basement metamorphic rocks. The rocks was believed to be formed in the environment similar to volcanics and subvolcanics, and quite different to plutonic rocks due to the features of low-structure of potassium feldspar phenocrysts and solution mechanism, because the porphyroclastic lava phenocrysts occurs as fragments and maybe related to cryptoexplosion. Therefore the rocks was believed to belong to the volcano extrusive facies. (authors)

  5. Recent and Hazardous Volcanic Activity Along the NW Rift Zone of Piton De La Fournaise Volcano, La Réunion Island

    Science.gov (United States)

    Walther, G.; Frese, I.; Di Muro, A.; Kueppers, U.; Michon, L.; Metrich, N.

    2014-12-01

    Shield volcanoes are a common feature of basaltic volcanism. Their volcanic activity is often confined to a summit crater area and rift systems, both characterized by constructive (scoria and cinder cones; lava flows) and destructive (pit craters; caldera collapse) phenomena. Piton de la Fournaise (PdF) shield volcano (La Réunion Island, Indian Ocean) is an ideal place to study these differences in eruptive behaviour. Besides the frequent eruptions in the central Enclos Fouqué caldera, hundreds of eruptive vents opened along three main rift zones cutting the edifice during the last 50 kyrs. Two short rift zones are characterized by weak seismicity and lateral magma transport at shallow depth (above sea level). Here we focus on the third and largest rift zone (15km wide, 20 km long), which extends in a north-westerly direction between PdF and nearby Piton des Neiges volcanic complex. It is typified by deep seismicity (up to 30 km), emitting mostly primitive magmas, testifying of high fluid pressures (up to 5 kbar) and large-volume eruptions. We present new field data (including stratigraphic logs, a geological map of the area, C-14 dating and geochemical analyses of the eruption products) on one of the youngest (~6kyrs) and largest lava field (Trous Blancs eruption). It extends for 24km from a height of 1800 m asl, passing Le Tampon and Saint Pierre cities, until reaching the coast. The source area of this huge lava flow has been identified in an alignment of four previously unidentified pit craters. The eruption initiated with intense fountaining activity, producing a m-thick bed of loose black scoria, which becomes densely welded in its upper part; followed by an alternation of volume rich lava effusions and strombolian activity, resulting in the emplacement of meter-thick, massive units of olivine-basalt alternating with coarse scoria beds in the proximal area. Activity ended with the emplacement of a dm-thick bed of glassy, dense scoria and a stratified lithic

  6. Contrasted continental rifting via plume-craton interaction : Applications to Central East African Rift

    NARCIS (Netherlands)

    Koptev, Alexander; Burov, Evgueni; Calais, Eric; Leroy, Sylvie; Gerya, Taras; Guillou-Frottier, Laurent; Cloetingh, Sierd

    The East African Rift system (EARS) provides a unique system with the juxtaposition of two contrasting yet simultaneously formed rift branches, the eastern, magma-rich, and the western, magma-poor, on either sides of the old thick Tanzanian craton embedded in a younger lithosphere. Data on the

  7. Remote sensing evidence of lava-ground ice interactions associated with the Lost Jim Lava Flow, Seward Peninsula, Alaska

    Science.gov (United States)

    Marcucci, Emma C.; Hamilton, Christopher W.; Herrick, Robert R.

    2017-12-01

    Thermokarst terrains develop when ice-bearing permafrost melts and causes the overlying surface to subside or collapse. This process occurs widely throughout Arctic regions due to environmental and climatological factors, but can also be induced by localized melting of ground ice by active lava flows. The Lost Jim Lava Flow (LJLF) on the Seward Peninsula of Alaska provides evidence of former lava-ground ice interactions. Associated geomorphic features, on the scale of meters to tens of meters, were identified using satellite orthoimages and stereo-derived digital terrain models. The flow exhibits positive- and mixed-relief features, including tumuli ( N = 26) and shatter rings ( N = 4), as well as negative-relief features, such as lava tube skylights ( N = 100) and irregularly shaped topographic depressions ( N = 1188) that are interpreted to include lava-rise pits and lava-induced thermokarst terrain. Along the margins of the flow, there are also clusters of small peripheral pits that may be the products of meltwater or steam escape. On Mars, we observed morphologically similar pits near lava flow margins in northeastern Elysium Planitia, which suggests a common formation mechanism. Investigating the LJLF may therefore help to elucidate processes of lava-ground ice interaction on both Earth and Mars.

  8. Moonshot Laboratories' Lava Relief Google Mapping Project

    Science.gov (United States)

    Brennan, B.; Tomita, M.

    2016-12-01

    The Moonshot Laboratories were conceived at the University Laboratory School (ULS) on Oahu, Hawaii as way to develop creative problem solvers able to resourcefully apply 21st century technologies to respond to the problems and needs of their communities. One example of this was involved students from ULS using modern mapping and imaging technologies to assist peers who had been displaced from their own school in Pahoe on the Big Island of Hawaii. During 2015, lava flows from the eruption of Kilauea Volcano were slowly encroaching into the district of Puna in 2015. The lava flow was cutting the main town of Pahoa in half, leaving no safe routes of passage into or out of the town. One elementary school in the path of the flow was closed entirely and a new one was erected north of the flow for students living on that side. Pahoa High School students and teachers living to the north were been forced to leave their school and transfer to Kea'au High School. These students were separated from friends, family and the community they grew up in and were being thrust into a foreign environment that until then had been their local rival. Using Google Mapping technologies, Moonshot Laboratories students created a dynamic map to introduce the incoming Pahoa students to their new school in Kea'au. Elements included a stylized My Maps basemap, YouTube video descriptions of the building, videos recorded by Google Glass showing first person experiences, and immersive images of classrooms were created using 360 cameras. During the first day of orientation at Kea'au for the 200 Pahoa students, each of them were given a tablet to view the map as they toured and got to know their new campus. The methods and technologies, and more importantly innovative thinking, used to create this map have enormous potential for how to educate all students about the world around us, and the issues facing it. http://www.moonshotincubator.com/

  9. Correlation of the Deccan and Rajahmundry Trap lavas: Are these the longest and largest lava flows on Earth?

    Science.gov (United States)

    Self, S.; Jay, A. E.; Widdowson, M.; Keszthelyi, L. P.

    2008-05-01

    We propose that the Rajahmundry Trap lavas, found near the east coast of peninsular India , are remnants of the longest lava flows yet recognized on Earth (˜ 1000 km long). These outlying Deccan-like lavas are shown to belong to the main Deccan Traps. Several previous studies have already suggested this correlation, but have not demonstrated it categorically. The exposed Rajahmundry lavas are interpreted to be the distal parts of two very-large-volume pāhoehoe flow fields, one each from the Ambenali and Mahabaleshwar Formations of the Wai Sub-group in the Deccan Basalt Group. Eruptive conditions required to emplace such long flows are met by plausible values for cooling and eruption rates, and this is shown by applying a model for the formation of inflated pāhoehoe sheet flow lobes. The model predicts flow lobe thicknesses similar to those observed in the Rajahmundry lavas. For the last 400 km of flow, the lava flows were confined to the pre-existing Krishna valley drainage system that existed in the basement beyond the edge of the gradually expanding Deccan lava field, allowing the flows to extend across the subcontinent to the eastern margin where they were emplaced into a littoral and/or shallow marine environment. These lavas and other individual flow fields in the Wai Sub-group may exceed eruptive volumes of 5000 km 3, which would place them amongst the largest magnitude effusive eruptive units yet known. We suggest that the length of flood basalt lava flows on Earth is restricted mainly by the size of land masses and topography. In the case of the Rajahmundry lavas, the flows reached estuaries and the sea, where their advance was perhaps effectively terminated by cooling and/or disruption. However, it is only during large igneous province basaltic volcanism that such huge volumes of lava are erupted in single events, and when the magma supply rate is sufficiently high and maintained to allow the formation of very long lava flows. The Rajahmundry lava

  10. Rayleigh Wave Phase Velocities Beneath the Central and Southern East African Rift System

    Science.gov (United States)

    Adams, A. N.; Miller, J. C.

    2017-12-01

    This study uses the Automated Generalized Seismological Data Function (AGSDF) method to develop a model of Rayleigh wave phase velocities in the central and southern portions of the East African Rift System (EARS). These phase velocity models at periods of 20-100s lend insight into the lithospheric structures associated with surficial rifting and volcanism, as well as basement structures that pre-date and affect the course of rifting. A large dataset of >700 earthquakes is used, comprised of Mw=6.0+ events that occurred between the years 1995 and 2016. These events were recorded by a composite array of 176 stations from twelve non-contemporaneous seismic networks, each with a distinctive array geometry and station spacing. Several first-order features are resolved in this phase velocity model, confirming findings from previous studies. (1) Low velocities are observed in isolated regions along the Western Rift Branch and across the Eastern Rift Branch, corresponding to areas of active volcanism. (2) Two linear low velocity zones are imaged trending southeast and southwest from the Eastern Rift Branch in Tanzania, corresponding with areas of seismic activity and indicating possible incipient rifting. (3) High velocity regions are observed beneath both the Tanzania Craton and the Bangweulu Block. Furthermore, this model indicates several new findings. (1) High velocities beneath the Bangweulu Block extend to longer periods than those found beneath the Tanzania Craton, perhaps indicating that rifting processes have not altered the Bangweulu Block as extensively as the Tanzania Craton. (2) At long periods, the fast velocities beneath the Bangweulu Block extend eastwards beyond the surficial boundaries, to and possibly across the Malawi Rift. This may suggest the presence of older, thick blocks of lithosphere in regions where they are not exposed at the surface. (3) Finally, while the findings of this study correspond well with previous studies in regions of overlapping

  11. Constraining the dynamic response of subcontinental lithospheric mantle to rifting using Re-Os model ages in the Western Ross Sea, Antarctica

    Science.gov (United States)

    Doherty, C.; Class, C.; Goldstein, S. L.; Shirey, S. B.; Martin, A. P.; Cooper, A. F.; Berg, J. H.; Gamble, J. A.

    2012-12-01

    In order to understand the dynamic response of the subcontinental lithospheric mantle (SCLM) to rifting, it is important to be able to distinguish the geochemical signatures of SCLM vs. asthenosphere. Recent work demonstrates that unradiogenic Os isotope ratios can indicate old depletion events in the convecting upper mantle (e.g. Rudnick & Walker, 2009), and allow us to make these distinctions. Thus, if SCLM can be traced across a rifted margin, its fate during rifting can be established. The Western Ross Sea provides favorable conditions to test the dynamic response of SCLM to rifting. Re-Os measurements from 8 locations extending from the rift shoulder to 200 km into the rift basin reveal 187Os/188Os ranging from 0.1056 at Foster Crater on the shoulder, to 0.1265 on Ross Island within the rift. While individual sample model ages vary widely throughout the margin, 'aluminochron' ages (Reisberg & Lorand, 1995) reveal a narrower range of lithospheric stabilization ages. Franklin Island and Sulfur Cones show a range of Re-depletion ages (603-1522 Ma and 436-1497 Ma) but aluminochrons yield Paleoproterozoic stabilization ages of 1680 Ma and 1789 Ma, respectively. These ages coincide with U-Pb zircon ages from Transantarctic Mountain (TAM) crustal rocks, in support of SCLM stabilization at the time of crust formation along the central TAM. The Paleoproterozoic stabilization age recorded at Franklin Island is especially significant, since it lies 200km off of the rift shoulder. The similar ages beneath the rift shoulder and within the rift suggests stretched SCLM reaches into the rift and thus precludes replacement by asthenospheric mantle. The persistence of thinned Paleoproterozoic SCLM into the rifted zone in WARS suggests that it represents a 'type I' margin of Huismans and Beaumont (2011), which is characterized by crustal breakup before loss of lithospheric mantle. The Archean Re-depletion age of 3.2 Ga observed on the rift shoulder suggests that cratonic

  12. Hazard Monitoring of Growing Lava Flow Fields Using Seismic Tremor

    Science.gov (United States)

    Eibl, E. P. S.; Bean, C. J.; Jónsdottir, I.; Hoskuldsson, A.; Thordarson, T.; Coppola, D.; Witt, T.; Walter, T. R.

    2017-12-01

    An effusive eruption in 2014/15 created a 85 km2 large lava flow field in a remote location in the Icelandic highlands. The lava flows did not threaten any settlements or paved roads but they were nevertheless interdisciplinarily monitored in detail. Images from satellites and aircraft, ground based video monitoring, GPS and seismic recordings allowed the monitoring and reconstruction of a detailed time series of the growing lava flow field. While the use of satellite images and probabilistic modelling of lava flows are quite common tools to monitor the current and forecast the future growth direction, here we show that seismic recordings can be of use too. We installed a cluster of seismometers at 15 km from the vents and recorded the ground vibrations associated with the eruption. This seismic tremor was not only generated below the vents, but also at the edges of the growing lava flow field and indicated the parts of the lava flow field that were most actively growing. Whilst the time resolution is in the range of days for satellites, seismic stations easily sample continuously at 100 Hz and could therefore provide a much better resolution and estimate of the lava flow hazard in real-time.

  13. Lava lake activity at the summit of Kīlauea Volcano in 2016

    Science.gov (United States)

    Patrick, Matthew R.; Orr, Tim R.; Swanson, Donald A.; Elias, Tamar; Shiro, Brian

    2018-04-10

    The ongoing summit eruption at Kīlauea Volcano, Hawai‘i, began in March 2008 with the formation of the Overlook crater, within Halema‘uma‘u Crater. As of late 2016, the Overlook crater contained a large, persistently active lava lake (250 × 190 meters). The accessibility of the lake allows frequent direct observations, and a robust geophysical monitoring network closely tracks subtle changes at the summit. These conditions present one of the best opportunities worldwide for understanding persistent lava lake behavior and the geophysical signals associated with open-vent basaltic eruptions. In this report, we provide a descriptive and visual summary of lava lake activity during 2016, a year consisting of continuous lava lake activity. The lake surface was composed of large black crustal plates separated by narrow incandescent spreading zones. The dominant motion of the surface was normally from north to south, but spattering produced transient disruptions to this steady motion. Spattering in the lake was common, consisting of one or more sites on the lake margin. The Overlook crater was continuously modified by the deposition of spatter (often as a thin veneer) on the crater walls, with frequent collapses of this adhered lava into the lake. Larger collapses, involving lithic material from the crater walls, triggered several small explosive events that deposited bombs and lapilli around the Halema‘uma‘u Crater rim, but these did not threaten public areas. The lava lake level varied over several tens of meters, controlled primarily by changes in summit magma reservoir pressure (in part driven by magma supply rates) and secondarily by fluctuations in spattering and gas release from the lake (commonly involving gas pistoning). The lake emitted a persistent gas plume, normally averaging 1,000–8,000 metric tons per day (t/d) of sulfur dioxide (SO2), as well as a constant fallout of small juvenile and lithic particles, including Pele’s hair and tears. The

  14. Pits, rifts and slumps: the summit structure of Piton de la Fournaise

    Science.gov (United States)

    Carter, Adam; van Wyk de Vries, Benjamin; Kelfoun, Karim; Bachèlery, Patrick; Briole, Pierre

    2007-06-01

    A clear model of structures and associated stress fields of a volcano can provide a framework in which to study and monitor activity. We propose a volcano-tectonic model for the dynamics of the summit of Piton de la Fournaise (La Reunion Island, Indian Ocean). The summit contains two main pit crater structures (Dolomieu and Bory), two active rift zones, and a slumping eastern sector, all of which contribute to the actual fracture system. Dolomieu has developed over 100 years by sudden large collapse events and subsequent smaller drops that include terrace formation. Small intra-pit collapse scars and eruptive fissures are located along the southern floor of Dolomieu. The western pit wall of Dolomieu has a superficial inward dipping normal fault boundary connected to a deeper ring fault system. Outside Dolomieu, an oval extension zone containing sub-parallel pit-related fractures extends to a maximum distance of 225 m from the pit. At the summit the main trend for eruptive fissures is N80°, normal to the north south rift zone. The terraced structure of Dolomieu has been reproduced by analogue models with a roof to width ratio of approximately 1, suggesting an original magma chamber depth of about 1 km. Such a chamber may continue to act as a storage location today. The east flank has a convex concave profile and is bounded by strike-slip fractures that define a gravity slump. This zone is bound to the north by strike-slip fractures that may delineate a shear zone. The southern reciprocal shear zone is probably marked by an alignment of large scoria cones and is hidden by recent aa lavas. The slump head intersects Dolomieu pit and may slide on a hydrothermally altered layer known to be located at a depth of around 300 m. Our model has the summit activity controlled by the pit crater collapse structure, not the rifts. The rifts become important on the mid-flanks of the cone, away from pit-related fractures. On the east flank the superficial structures are controlled

  15. Heat transfer measurements of the 1983 kilauea lava flow.

    Science.gov (United States)

    Hardee, H C

    1983-10-07

    Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.

  16. Boron Isotopic Composition of Metasomatized Mantle Xenoliths from the Western Rift, East Africa

    Science.gov (United States)

    Hudgins, T.; Nelson, W. R.

    2017-12-01

    The Western Branch of the East African Rift System is known to have a thick lithosphere and sparse, alkaline volcanism associated with a metasomatized mantle source. Recent work investigating the relationship between Western Branch metasomatized mantle xenoliths and associated lavas has suggested that these metasomes are a significant factor in the evolution of the rift. Hydrous/carbonated fluids or silicate melts are potent metasomatic agents, however gaining insight into the source of a metasomatic agent proves challenging. Here we investigate the potential metasomatic fluid sources using B isotope analysis of mineral separates from Western Branch xenoliths. Preliminary SIMS analyses of phlogopite from Katwe Kikorongo and Bufumbira have and average B isotopic composition of -28.2‰ ± 5.1 and -16.4‰ ± 3.6, respectively. These values are are dissimilar to MORB (-7.5‰ ± 0.7; Marschall and Monteleone, 2015), primitive mantle (-10‰ ± 2; Chaussidon and Marty, 1995), and bulk continental crust (-9.1‰ ± 2.4; Marschall et al., 2017) and display significant heterogeneity across a relatively short ( 150km) portion of the Western Branch. Though displaying large variability, these B isotopic compositions are indicative of a metasomatic agent with a more negative B isotopic composition than MORB, PM, or BCC. These results are consistent with fluids that released from a subducting slab and may be related to 700 Ma Pan-African subduction.

  17. The lakes of the Jordan Rift Valley

    International Nuclear Information System (INIS)

    Gat, J.R.

    2001-01-01

    This paper presents a summary of the proceedings of a workshop on the Lakes of the Jordan Rift Valley that was held in conjunction with the CRP on The Use of Isotope Techniques in Lake Dynamics Investigations. The paper presents a review of the geological, hydrogeological and physical limnological setting of the lakes in the Jordan Rift Valley, Lake Hula, Lake Kinneret and the Dead Sea. This is complemented by a description of the isotope hydrology of the system that includes the use of a wide range of isotopes: oxygen-18, deuterium, tritium, carbon-14, carbon-13, chlorine isotopes, boron-11 and helium-3/4. Environmental isotope aspects of the salt balances of the lakes, their palaeolimnology and biogeochemical tracers are also presented. The scope of application of isotopic tracers is very broad and provides a clear insight into many aspects of the physical, chemical and biological limnology of the Rift Valley Lakes. (author)

  18. Root zone of a continental rift

    DEFF Research Database (Denmark)

    Kirsch, Moritz; Svenningsen, Olaf

    2016-01-01

    melt are considered to account for the compositional range exhibited by the KIC igneous rocks. U/Pb SIMS geochronological data from zircon rims yield an emplacement age of 578 ± 9 Ma. The KIC is thus younger and more depleted than coeval mafic rocks found in the Seve Nappe, and is interpreted...... to represent a high-level magma plumbing system in a late-stage continental rift. The composition and volume of rift-related igneous rocks in the Seve Nappes are inconsistent with a mantle plume origin, but are thought to record progressive lithospheric thinning and increasing involvement of an asthenospheric......Mafic magmatic rocks formed between ca. 615 and 560 Ma along the Neoproterozoic margins of Baltica and Laurentia are classically attributed to continental rifting heralding the opening of the Iapetus Ocean. We report new data for the Kebnekaise Intrusive Complex (KIC) exposed in the Seve Nappes...

  19. 40Ar/39Ar dating and geochemistry of tholeiitic magmatism related to the early opening of the Central Atlantic rift

    International Nuclear Information System (INIS)

    Sebai, A.; Feraud, G.; Bertrand, H.; Hanes, J.

    1991-01-01

    Tholeiitic effusive and intrusive magnetism from Iberia, Morocco, Algeria and Mali, realted to the early opening of the Central Atlantic rift, was dated by the 40 Ar/ 39 Ar step-heating method. Four plateau ags, rangin from 203.7±2.7 to 197.1±1.8 Ma, were obtained on plagioclase from dykes from theTaoudenni area (Mali) and two lava flows from Morocco. The Messejana dyke (Iberia), which previously yielded discrepant conventional K-Ar dates, did not furnish any 40 Ar/ 39 Ar plateau dates. However, there is a clear inverse relationship between apparent age and K/Ca atio for gas fractions from a plagioclase separate (proportional to the alteration degree) which, combined with dates obtained on amphibole, biotite and pyroxene, allows us to determine an age of around 200 Ma for this body. These data, and those obtained on the Foum Zguid (Morocco) and the Ksi Ksou (Algeria) dykes, give evidence of a brief magmatic event (between 206 and 195 Ma ago) which affected a large area ca. 2500 km long. Trace-element modelling shows that most of these formations originated from a homogeneous, enriched, source material. Such a brief magmatic episode related to the opening of a continental rift is in agreement with findings in other magmatic provinces (e.g. the Deccan traps and the Red Sea rift, precisely dated by the 40 Ar/ 39 Ar method as well). (orig.)

  20. Hardened Lava Meets Wind on Mars

    Science.gov (United States)

    2006-01-01

    NASA's Mars Exploration Rover Spirit used its microscopic imager to capture this spectacular, jagged mini-landscape on a rock called 'GongGong.' Measuring only 3 centimeters (1.2 inches) across, this surface records two of the most important and violent forces in the history of Mars -- volcanoes and wind. GongGong formed billions of years ago in a seething, stirring mass of molten rock. It captured bubbles of gases that were trapped at great depth but had separated from the main body of lava as it rose to the surface. Like taffy being stretched and tumbled, the molten rock was deformed as it moved across an ancient Martian landscape. The tiny bubbles of gas were deformed as well, becoming elongated. When the molten lava solidified, the rock looked like a frozen sponge. Far from finished with its life, the rock then withstood billions of years of pelting by small sand grains carried by Martian dust storms that sometimes blanketed the planet. The sand wore away the surface until, little by little, the delicate strands that enclosed the bubbles of gas were breached and the spiny texture we see today emerged. Even now, wind continues to deposit sand and dust in the holes and crevices of the rock. Similar rocks can be found on Earth where the same complex interplay of volcanoes and weathering occur, whether it be the pelting of rocks by sand grains in the Mojave desert or by ice crystals in the frigid Antarctic. GongGong is one of a group of rocks studied by Spirit and informally named by the Athena Science Team to honor the Chinese New Year (the Year of the Dog). In Chinese mythology, GongGong was the god-king of water in the North Land. When he sacrificed his life to knock down Mount BuZhou, he defeated the bad Emperor in Heaven, freed the sun, moon and stars to go from east to west, and caused all the rivers in China to flow from west to east. Spirit's microscopic imager took this image during on the rover's 736th day, or sol, of exploring Mars (Jan. 28, 2006). The

  1. A new perspective on evolution of the Baikal Rift

    Directory of Open Access Journals (Sweden)

    Victor D. Mats

    2011-07-01

    The three-stage model of the rift history does not rule out the previous division into two major stages but rather extends its limits back into time as far as the Maastrichtian. Our model is consistent with geological, stratigraphic, structural, and geophysical data and provides further insights into the understanding of rifting in the Baikal region in particular and continental rifting in general.

  2. A Surface Wave's View of the Mid-Continent Rift

    Science.gov (United States)

    Foster, A. E.; Darbyshire, F. A.; Schaeffer, A. J.

    2017-12-01

    The presence of the Mid-Continent Rift (MCR), a 1.1Ga failed rift in central North America, raises many questions. We address the following: what lasting effects has it had on the continental lithosphere? Though many studies have looked at the area with a variety of data types, the combination of USArray Transportable Array stations to the south, permanent and temporary Canadian stations to the north, and SPREE stations in strategic locations crossing the rift provide a new opportunity for a regional surface-wave study. We select 80 stations with roughly 200 km spacing, resulting in dense path coverage of a broad area centered on the MCR. We use teleseismic data for all earthquakes from January 2005-August 2016 with a magnitude greater than 6.0, amounting to over 1200 events, and we make Rayleigh wave two-station dispersion measurements for all station pairs with suitable event-station geometry. We invert these measurements for anisotropic phase-velocity maps at periods of 20-200 s, yielding information not only on the wave speed but also the current fabric of the lithosphere, a complicated record of strain from formation, through modification from orogeny, attempted rifting, and hotspot interaction, to present day plate motion. We observe a clear signature of the MCR at short (20-25 s) periods, with the slowest phase-velocity anomaly in the region aligning with the strongest gravity anomaly. At increasing periods, and thus greater depths, this slowest anomaly shifts to beneath the center of Lake Superior (30-40 s). Eventually, it appears to merge with a slow anomaly to the north associated with the Nipigon Embayment, and contrasts sharply with an adjacent fast anomaly in the western Superior Province. In our preliminary anisotropy results, we observe weak anisotropy at the latitude of the MCR and to the south, whereas to the north of the MCR we find strong anisotropy. This is similar to the spatial variations in magnitude of delay times from shear-wave splitting

  3. Resolution of lava tubes with ground penetrating radar: preliminary results from the TubeX project

    Science.gov (United States)

    Esmaeili, S.; Kruse, S.; Garry, W. B.; Whelley, P.; Young, K.; Jazayeri, S.; Bell, E.; Paylor, R.

    2017-12-01

    As early as the mid 1970's it was postulated that planetary tubes or caves on other planetary bodies (i.e., the Moon or Mars) could provide safe havens for human crews, protect life and shield equipment from harmful radiation, rapidly fluctuating surface temperatures, and even meteorite impacts. What is not clear, however, are the exploration methods necessary to evaluate a potential tube-rich environment to locate suitable tubes suitable for human habitation. We seek to address this knowledge gap using a suite of instruments to detect and document tubes in a terrestrial analog study at Lava Beds National Monument, California, USA. Here we describe the results of ground penetrating radar (GPR) profiles and light detection and ranging (LiDAR) scans. Surveys were conducted from the surface and within four lava tubes (Hercules Leg, Skull, Valentine and, Indian Well Caves) with varying flow composition, shape, and complexity. Results are shown across segments of these tubes where the tubes are 10 m in height and the ceilings are 1 - 10 m below the surface. The GPR profiles over the tubes are, as expected, complex, due to scattering from fractures in roof material and three-dimensional heterogeneities. Point clouds derived from the LiDAR scans of both the interior and exterior of the lava tubes provide precise positioning of the tube geometry and depth of the ceiling and floor with respect to the surface topography. GPR profiles over LiDAR-mapped tube cross-sections are presented and compared against synthetic models of radar response to the measured geometry. This comparison will help to better understand the origins of characteristic features in the radar profiles. We seek to identify the optimal data processing and migration approaches to aid lava tube exploration of planetary surfaces.

  4. Taking the Temperature of a Lava Planet

    Science.gov (United States)

    Kreidberg, Laura; Lopez, Eric; Cowan, Nick; Lupu, Roxana; Stevenson, Kevin; Louden, Tom; Malavolta, Luca

    2018-05-01

    Ultra-short period rocky planets (USPs) are an exotic class of planet found around less than 1% of stars. With orbital periods shorter than 24 hours, these worlds are blasted with stellar radiation that is expected to obliterate any traces of a primordial atmosphere and melt the dayside surface into a magma ocean. Observations of USPs have yielded several surprising results, including the measurement of an offset hotspot in the thermal phase curve of 55 Cancri e (which may indicate a thick atmosphere has survived), and a high Bond albedo for Kepler-10b, which suggests the presence of unusually reflective lava on its surface. To further explore the properties of USPs and put these results in context, we propose to observe a thermal phase curve of the newly discovered USP K2- 141b. This planet is a rocky world in a 6.7 hour orbit around a bright, nearby star. When combined with optical phase curve measured by K2, our observations will uniquely determine the planet's Bond albedo, precisely measure the offset of the thermal curve, and determine the temperature of the dayside surface. These results will cement Spitzer's role as a pioneer in the study of terrestrial planets beyond the Solar System, and provide a critical foundation for pursuing the optimal follow-up strategy for K2-141b with JWST.

  5. Possible Different Rifting Mechanisms Between South and North Part of the Fenhe-Weihe Rift Zone Revealed by Shear Velocity Structures

    Science.gov (United States)

    Ai, S.; Zheng, Y.

    2017-12-01

    location varies as depth changes. Associated with previous geochemistry studies, we propose an on-going asthenosphere upwelling near Datong volcanic field. Overall, the shear wave velocity structures between north and south part of the FWR is different,and imply the different rifting mechanisms between the two sides of FWR.

  6. Terraced margins of inflated lava flows on Earth and Mars

    Science.gov (United States)

    Zimbelman, J. R.; Garry, W. B.; Bleacher, J. E.; Crumpler, L. S.

    2011-12-01

    When fluid basaltic lava flows are emplaced over a shallow regional slope (typically much less than one degree), the lava flows often display impressive characteristics of inflation. Here we describe a distinctive marginal characteristic that is often developed along the margins of endogenously inflated basaltic lava flows; discreet topographic levels of the emplaced lava that are here termed 'terraced margins'. Terraced margins were first noted at the distal end of the Carrizozo lava flow in central New Mexico, where they are particularly well expressed, but terraces have also been observed along some margins of the McCartys lava flow (NM), the distal end of the 1859 Mauna Loa lava flow (HI), and lava flows at Craters of the Moon (ID). Differential Global Positioning System surveys across several terraced margins reveal consistent topographic characteristics: the upper surface of each terrace level is at roughly one half the height of the sheet lobe from which it emerges; when a terrace becomes the source of an additional outbreak, the upper surface of the second terrace is at roughly one half the height of the source terrace; often a subtle topographic depression is present along the contact between a terrace and its source sheet lobe, suggesting that the terrace outflow starts at a level roughly one-third the height of the source lobe; the upper surfaces of both the source sheet lobe and associated terraces are level to within tens of centimeters across length scales of many tens to hundreds of meters, indicative of inflation of all components. The field observations will be used as the constraints for modeling of the inflation and terracing mechanisms, an effort that has only recently started. The multiple imaging data sets now available for Mars have revealed the presence of terraced margins on some lava flows on Mars. Although detailed topographic data are not currently available for the Martian examples identified so far, the presence of terraced margins for

  7. The Disruption of Tephra Fall Deposits by Basaltic Lava Flows

    Science.gov (United States)

    Brown, R. J.; Thordarson, T.; Self, S.; Blake, S.

    2010-12-01

    Complex physical and stratigraphic relationships between lava and proximal tephra fall deposits around vents of the Roza Member in the Columbia River Basalt Province, (CRBP), USA, illustrate how basaltic lavas can disrupt, dissect (spatially and temporally) and alter tephra fall deposits. Thin pahoehoe lobes and sheet lobes occur intercalated with tephra deposits and provide evidence for synchronous effusive and explosive activity. Tephra that accumulated on the tops of inflating pahoehoe flows became disrupted by tumuli, which dissected the overlying sheet into a series of mounds. During inflation of subjacent tumuli tephra percolated down into the clefts and rubble at the top of the lava, and in some cases came into contact with lava hot enough to thermally alter it. Lava breakouts from the tumuli intruded up through the overlying tephra deposit and fed pahoehoe flows that spread across the surface of the aggrading tephra fall deposit. Non-welded scoria fall deposits were compacted and welded to a depth of ~50 cm underneath thick sheet lobes. These processes, deduced from the field relationships, have resulted in considerable stratigraphic complexity in proximal regions. We also demonstrate that, when the advance of lava and the fallout of tephra are synchronous, the contacts of some tephra sheets can be diachronous across their extent. The net effect is to reduce the usefulness of pyroclastic deposits in reconstructing eruption dynamics.

  8. Edifice growth, deformation and rift zone development in basaltic setting: Insights from Piton de la Fournaise shield volcano (Réunion Island)

    Science.gov (United States)

    Michon, Laurent; Cayol, Valérie; Letourneur, Ludovic; Peltier, Aline; Villeneuve, Nicolas; Staudacher, Thomas

    2009-07-01

    The overall morphology of basaltic volcanoes mainly depends on their eruptive activity (effusive vs. explosive), the geometry of the rift zones and the characteristics of both endogenous and exogenous growth processes. The origin of the steep geometry of the central cone of Piton de la Fournaise volcano, which is unusual for a basaltic effusive volcano, and its deformation are examined with a combination of a detailed morphological analysis, field observations, GPS data from the Piton de la Fournaise Volcano Observatory and numerical models. The new caldera walls formed during the April 2007 summit collapse reveal that the steep cone is composed of a pyroclastic core, inherited from an earlier explosive phase, overlapped by a pile of thin lava flows. This suggests that exogenous processes played a major role in the building of the steep central cone. Magma injections into the cone, which mainly occur along the N25-30 and N120 rift zones, lead to an asymmetric outward inflation concentrated in the cone's eastern half. This endogenous growth progressively tilts the southeast and east flanks of the cone, and induces the development of a dense network of flank fractures. Finally, it is proposed that intrusions along the N120 rift zone are encouraged by stresses induced by magma injections along the N25-30 rift zone.

  9. 3D Numerical Rift Modeling with Application to the East African Rift System

    Science.gov (United States)

    Glerum, A.; Brune, S.; Naliboff, J.

    2017-12-01

    As key components of plate tectonics, continental rifting and the formation of passive margins have been extensively studied with both analogue models and numerical techniques. Only recently however, technical advances have enabled numerical investigations into rift evolution in three dimensions, as is actually required for including those processes that cause rift-parallel variability, such as structural inheritance and oblique extension (Brune 2016). We use the massively parallel finite element code ASPECT (Kronbichler et al. 2012; Heister et al. 2017) to investigate rift evolution. ASPECT's adaptive mesh refinement enables us to focus resolution on the regions of interest (i.e. the rift center), while leaving other areas such as the asthenospheric mantle at coarse resolution, leading to kilometer-scale local mesh resolution in 3D. Furthermore, we implemented plastic and viscous strain weakening of the nonlinear viscoplastic rheology required to develop asymmetric rift geometries (e.g. Huismans and Beaumont 2003). Additionally created plugins to ASPECT allow us to specify initial temperature and composition conditions based on geophysical data (e.g. LITHO1.0, Pasyanos et al. 2014) or to prescribe more general along-strike variation in the initial strain seeding the rift. Employing the above functionality, we construct regional models of the East African Rift System (EARS), the world's largest currently active rift. As the EARS is characterized by both orthogonal and oblique rift sections, multi-phase extension histories as well as magmatic and a-magmatic branches (e.g. Chorowicz 2005; Ebinger and Scholz 2011), it constitutes an extensive natural laboratory for our research into the 3D nature of continental rifting. References:Brune, S. (2016), in Plate boundaries and natural hazards, AGU Geophysical Monograph 219, J. C. Duarte and W. P. Schellart (Eds.). Chorowicz, J. (2005). J. Afr. Earth Sci., 43, 379-410. Ebinger, C. and Scholz, C. A. (2011), in Tectonics of

  10. Lava delta deformation as a proxy for submarine slope instability

    Science.gov (United States)

    Di Traglia, Federico; Nolesini, Teresa; Solari, Lorenzo; Ciampalini, Andrea; Frodella, William; Steri, Damiano; Allotta, Benedetto; Rindi, Andrea; Marini, Lorenzo; Monni, Niccolò; Galardi, Emanuele; Casagli, Nicola

    2018-04-01

    The instability of lava deltas is a recurrent phenomenon affecting volcanic islands, which can potentially cause secondary events such as littoral explosions (due to interactions between hot lava and seawater) and tsunamis. It has been shown that Interferometric Synthetic Aperture Radar (InSAR) is a powerful technique to forecast the collapse of newly emplaced lava deltas. This work goes further, demonstrating that the monitoring of lava deltas is a successful strategy by which to observe the long-term deformation of subaerial-submarine landslide systems on unstable volcanic flanks. In this paper, displacement measurements derived from Synthetic Aperture Radar (SAR) imagery were used to detect lava delta instability at Stromboli volcano (Italy). Recent flank eruptions (2002-2003, 2007 and 2014) affected the Sciara del Fuoco (SdF) depression, created a "stacked" lava delta, which overlies a pre-existing scar produced by a submarine-subaerial tsunamigenic landslide that occurred on 30 December 2002. Space-borne X-band COSMO-SkyMED (CSK) and C-band SENTINEL-1A (SNT) SAR data collected between February 2010 and October 2016 were processed using the SqueeSAR algorithm. The obtained ground displacement maps revealed the differential ground motion of the lava delta in both CSK and SNT datasets, identifying a stable area (characterized by less than 2 mm/y in both datasets) within the northern sector of the SdF and an unstable area (characterized by velocity fields on the order of 30 mm/y and 160 mm/y in the CSK and SNT datasets, respectively) in the central sector of the SdF. The slope stability of the offshore part of the SdF, as reconstructed based on a recently performed multibeam bathymetric survey, was evaluated using a 3D Limit Equilibrium Method (LEM). In all the simulations, Factor of Safety (F) values between 0.9 and 1.1 always characterized the submarine slope between the coastline and -250 m a.s.l. The critical surfaces for all the search volumes corresponded to

  11. Gypsum speleothems in lava tubes from Lanzarote, Canary Islands. Did you say gypsum?

    OpenAIRE

    Huerta, Pedro; Martín-García, Rebeca; Rodríguez-Berriguete, Álvaro; Iglesia, A. la; Martín-Pérez, Andrea; Alonso-Zarza, Ana María

    2015-01-01

    Lanzarote is the easternmost island of the volcanic Canary archipielago considered together with Fuerteventura the low relief islands of the archipielago. These island receive less rain than 300 mm/year. Basaltic lava flows preserves lava tubes formed during cooling and solidification of external parts of lava, while internal parts were still hot and flowing. When lava flow stopped the lava abandoned the tubes, and the tubes preserved empty. These tubes actuate as caves and som...

  12. Rifte Guaritas basin compartmentation in Camaqua

    International Nuclear Information System (INIS)

    Preissler, A; Rolim, S; Philipp, R.

    2010-01-01

    The study contributes to the knowledge of the tectonic evolution of the Guaritas rift basin in Camaqua. Were used aero magnetic geophysical data for modeling the geometry and the depth of the structures and geological units. The research was supported in processing and interpretation of Aster images (EOS-Terra), which were extracted from geophysical models and digital image

  13. Rift Valley Fever, Mayotte, 2007–2008

    Science.gov (United States)

    Giry, Claude; Gabrie, Philippe; Tarantola, Arnaud; Pettinelli, François; Collet, Louis; D’Ortenzio, Eric; Renault, Philippe; Pierre, Vincent

    2009-01-01

    After the 2006–2007 epidemic wave of Rift Valley fever (RVF) in East Africa and its circulation in the Comoros, laboratory case-finding of RVF was conducted in Mayotte from September 2007 through May 2008. Ten recent human RVF cases were detected, which confirms the indigenous transmission of RFV virus in Mayotte. PMID:19331733

  14. Molecular Rift: Virtual Reality for Drug Designers.

    Science.gov (United States)

    Norrby, Magnus; Grebner, Christoph; Eriksson, Joakim; Boström, Jonas

    2015-11-23

    Recent advances in interaction design have created new ways to use computers. One example is the ability to create enhanced 3D environments that simulate physical presence in the real world--a virtual reality. This is relevant to drug discovery since molecular models are frequently used to obtain deeper understandings of, say, ligand-protein complexes. We have developed a tool (Molecular Rift), which creates a virtual reality environment steered with hand movements. Oculus Rift, a head-mounted display, is used to create the virtual settings. The program is controlled by gesture-recognition, using the gaming sensor MS Kinect v2, eliminating the need for standard input devices. The Open Babel toolkit was integrated to provide access to powerful cheminformatics functions. Molecular Rift was developed with a focus on usability, including iterative test-group evaluations. We conclude with reflections on virtual reality's future capabilities in chemistry and education. Molecular Rift is open source and can be downloaded from GitHub.

  15. MRCP and 3D LAVA imaging of extrahepatic cholangiocarcinoma at 3 T MRI

    Energy Technology Data Exchange (ETDEWEB)

    Li, N.; Liu, C.; Bi, W.; Lin, X.; Jiao, H. [Shandong Medical Imaging Research Institute, Shandong University, Jinan (China); Zhao, P., E-mail: Gavinsdu@163.com [Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan (China)

    2012-06-15

    Extrahepatic cholangiocarcinoma (CCA) is a primary bile duct malignant tumour with poor prognosis. Familiarity with their varied imaging characteristics can be helpful in developing a correct diagnosis and in optimal treatment planning, and thus contribute to a better prognosis. The purpose of this article is to illustrate the typical appearances of extrahepatic CCA on magnetic resonance cholangiopancreatography (MRCP) and three-dimensional (3D) LAVA (liver acquisition with volume acceleration) sequences at 3 T magnetic resonance imaging (MRI), and to discuss the superiority of the two techniques in the diagnosis of CCA.

  16. Astrobiology Training in Lava Tubes (ATiLT): Characterizing coralloid speleothems in basaltic lava tubes as a Mars analogue

    Science.gov (United States)

    Ni, J.; Leveille, R. J.; Douglas, P.

    2017-12-01

    Coralloid speleothems or cave corals are small mineralised nodes that can take a variety of forms, and which develop through groundwater seepage and water-rock interaction in caves. They are found commonly on Earth in a plethora of caves, including lava tubes. Since lava tubes have been identified on the surface of Mars from remotely sensed images, there has been interest in studying Earth's lava tube systems as an analogue for understanding Martian lava environments. If cave minerals were found on Mars, they could indicate past or present water-rock interaction in the Martian subsurface. Martian lava tubes could also provide insights into habitable subsurface environments as well as conditions favourable for the synthesis and preservation of biosignatures. One of the aims of the Astrobiology Training in Lava Tubes (ATiLT) project is to analyze biosignatures and paleoenvironmental indicators in secondary cave minerals, which will be looked at in-situ and compared to collected field samples. In this study, secondary mineralization in lava cave systems from Lava Beds National Monument, CA is examined. In the field, coralloid speleothems have been observed growing on all surfaces of the caves, including cave ceilings, floors, walls and overhangs. They are also observed growing adjacent to biofilms, which sometimes fill in the cracks of the coralloid nodes. Preliminary results show the presence of opal, calcite, quartz and other minor minerals in the speleothems. This study seeks to understand the formation mechanism and source of these secondary minerals, as well as determine their possible relation to the biofilms. This will be done through the analysis of the water chemistry, isotope geochemistry and microscale mineralogy.

  17. Rifting Thick Lithosphere - Canning Basin, Western Australia

    Science.gov (United States)

    Czarnota, Karol; White, Nicky

    2016-04-01

    The subsidence histories and architecture of most, but not all, rift basins are elegantly explained by extension of ~120 km thick lithosphere followed by thermal re-thickening of the lithospheric mantle to its pre-rift thickness. Although this well-established model underpins most basin analysis, it is unclear whether the model explains the subsidence of rift basins developed over substantially thick lithosphere (as imaged by seismic tomography beneath substantial portions of the continents). The Canning Basin of Western Australia is an example where a rift basin putatively overlies lithosphere ≥180 km thick, imaged using shear wave tomography. Subsidence modelling in this study shows that the entire subsidence history of the account for the observed subsidence, at standard crustal densities, the lithospheric mantle is required to be depleted in density by 50-70 kg m-3, which is in line with estimates derived from modelling rare-earth element concentrations of the ~20 Ma lamproites and global isostatic considerations. Together, these results suggest that thick lithosphere thinned to > 120 km is thermally stable and is not accompanied by post-rift thermal subsidence driven by thermal re-thickening of the lithospheric mantle. Our results show that variations in lithospheric thickness place a fundamental control on basin architecture. The discrepancy between estimates of lithospheric thickness derived from subsidence data for the western Canning Basin and those derived from shear wave tomography suggests that the latter technique currently is limited in its ability to resolve lithospheric thickness variations at horizontal half-wavelength scales of <300 km.

  18. Ground Tilt Time Delays between Kilauea Volcano's Summit and East Rift Zone Caused by Magma Reservoir Buffering

    Science.gov (United States)

    Haney, M. M.; Patrick, M. R.; Anderson, K. R.

    2016-12-01

    A cyclic pattern of ground deformation, called a deflation-inflation (DI) cycle, is commonly observed at Kilauea Volcano, Hawai`i. These cycles are an important part of Kilauea's eruptive activity because they directly influence the level of the summit lava lake as well as the effusion rate (and resulting lava flow hazard) at the East Rift Zone eruption site at Pu`u `O`o. DI events normally span several days, and are measured both at the summit and at Pu`u `O`o cone (20 km distance). Signals appear first at the summit and are then observed at Pu`u `O`o after an apparent delay of between 0.5 and 10 hours, which has been previously interpreted as reflecting magma transport time. We propose an alternate explanation, in which the apparent delay is an artifact of buffering by the small magma reservoir thought to exist at Pu`u `O`o. Simple Poiseuille flow modeling demonstrates that this apparent delay can be reproduced by the changing balance of inflow (from the summit) and outflow (to surface lava flows) at the Pu`u `O`o magma reservoir. The apparent delay is sensitive to the geometry of the conduit leaving Pu`u `O`o, feeding surface lava flows. We demonstrate how the reservoir buffering is quantitatively equivalent to a causal low-pass filter, which explains both the apparent delay as well as the smoothed, skewed nature of the signal at Pu`u `O`o relative to the summit. By comparing summit and Pu`u `O`o ground tilt signals over an extended time period, it may be possible to constrain the changing geometry of the shallow magmatic system through time.

  19. Surface morphology of active normal faults in hard rock: Implications for the mechanics of the Asal Rift, Djibouti

    Science.gov (United States)

    Pinzuti, Paul; Mignan, Arnaud; King, Geoffrey C. P.

    2010-10-01

    Tectonic-stretching models have been previously proposed to explain the process of continental break-up through the example of the Asal Rift, Djibouti, one of the few places where the early stages of seafloor spreading can be observed. In these models, deformation is distributed starting at the base of a shallow seismogenic zone, in which sub-vertical normal faults are responsible for subsidence whereas cracks accommodate extension. Alternative models suggest that extension results from localised magma intrusion, with normal faults accommodating extension and subsidence only above the maximum reach of the magma column. In these magmatic rifting models, or so-called magmatic intrusion models, normal faults have dips of 45-55° and root into dikes. Vertical profiles of normal fault scarps from levelling campaign in the Asal Rift, where normal faults seem sub-vertical at surface level, have been analysed to discuss the creation and evolution of normal faults in massive fractured rocks (basalt lava flows), using mechanical and kinematics concepts. We show that the studied normal fault planes actually have an average dip ranging between 45° and 65° and are characterised by an irregular stepped form. We suggest that these normal fault scarps correspond to sub-vertical en echelon structures, and that, at greater depth, these scarps combine and give birth to dipping normal faults. The results of our analysis are compatible with the magmatic intrusion models instead of tectonic-stretching models. The geometry of faulting between the Fieale volcano and Lake Asal in the Asal Rift can be simply related to the depth of diking, which in turn can be related to magma supply. This new view supports the magmatic intrusion model of early stages of continental breaking.

  20. Estructura y organización de las coladas submarinas: características de las lavas almohadilladas de edad cretácica que afloran en la Cordillera Vasco- Cantábrica

    Directory of Open Access Journals (Sweden)

    Alonso, A.

    1999-12-01

    Full Text Available In the Basque-Cantabrian Basin, an important submarine volcanic activity of alkaline character was developed during the upper Cretaceous. This vulcanism was related to a rift and/or transform fault in the continental crust associated to the opening of the North Atlantic ocean. Pillow lava flows are noteworthy among the other volcanic materials by their volume and excellent preservation state. The lava flows are formed by the pile up of small flow-and cooling units, i.e. tubes or lava tubes, characterized by: i coarse cylindrical morphology with abundant constrictions, ii diameter less than 1 meter in a transversal section, iii smooth or striated surface, iv concentric and/or radial internal structure, and iv the branches and direction changes during the outflow. Lava flows/tubes shape and surface characteristics depend on the viscosity, effusion rate and the thickness of quenched crust during growth. The Tubes are moted directly on feeder dykes or are connected in tabular flows. The expanding and advancement of the tubes was the result of stretching or breaking of the quenched surface crust and spreading of the molten lava from the interior. Stretching features and cracks appear mainly at the flow front, but lobes of lava developed from the top and the flanks of the tubes are not uncommon. Only scarce pillowed lavas are truly isolated magma sacks separated from their sources. Related to the tabular flows and the biggest pillow lavas, some breccias were occasionally formed by the gravitational collapse of the roof of the draining tunnels.Durante el Cretácico superior se desarrolló en la Cuenca Vasco-Cantábrica una importante actividad volcánica submarina de naturaleza alcalina. Este vulcanismo estuvo relacionado con el funcionamiento de un rift y/o una falla transformante en corteza continental asociado a la apertura del Atlántico Norte. Entre los productos volcánicos destacan, por su notable volumen y excelente grado de preservación, las

  1. The Influence of Topographic Obstacles on Basaltic Lava Flow Morphologies

    Science.gov (United States)

    von Meerscheidt, H. C.; Brand, B. D.; deWet, A. P.; Bleacher, J. E.; Hamilton, C. W.; Samuels, R.

    2014-12-01

    Smooth pāhoehoe and jagged ´áā represent two end-members of a textural spectrum that reflects the emplacement characteristics of basaltic lava flows. However, many additional textures (e.g., rubbly and slabby pāhoehoe) reflect a range of different process due to lava flow dynamics or interaction with topography. Unfortunately the influence of topography on the distribution of textures in basaltic lava flows is not well-understood. The 18 ± 1.0 ka Twin Craters lava flow in the Zuni-Bandera field (New Mexico, USA) provides an excellent site to study the morphological changes of a lava flow that encountered topographic obstacles. The flow field is 0.2-3.8 km wide with a prominent central tube system that intersects and wraps around a 1000 m long ridge, oriented perpendicular to flow. Upstream of the ridge, the flow has low-relief inflation features extending out and around the ridge. This area includes mildly to heavily disrupted pāhoehoe with interdispersed agglutinated masses, irregularly shaped rubble and lava balls. Breakouts of ´áā and collapse features are also common. These observations suggest crustal disruption due to flow-thickening upstream from the ridge and the movement of lava out and around the obstacle. While the ridge influenced the path of the tube, which wraps around the southern end of the ridge, the series of collapse features and breakouts of ´áā along the tube system are more likely a result of changes in flux throughout the tube system because these features are found both upstream and downstream of the obstacle. This work demonstrates that topography can significantly influence the formation history and surface disruption of a flow field, and in some cases the influence of topography can be separated from the influences of changes in flux along a tube system.

  2. Contribution of the FUTUREVOLC project to the study of segmented lateral dyke growth in the 2014 rifting event at Bárðarbunga volcanic system, Iceland

    Science.gov (United States)

    Sigmundsson, Freysteinn; Hooper, Andrew; Hreinsdóttir, Sigrún; Vogfjörd, Kristín S.; Ófeigsson, Benedikt; Rafn Heimisson, Elías; Dumont, Stéphanie; Parks, Michelle; Spaans, Karsten; Guðmundsson, Gunnar B.; Drouin, Vincent; Árnadóttir, Thóra; Jónsdóttir, Kristín; Gudmundsson, Magnús T.; Samsonov, Sergey; Brandsdóttir, Bryndís; White, Robert S.; Ágústsdóttir, Thorbjörg; Björnsson, Helgi; Bean, Christopher J.

    2015-04-01

    The FUTUREVOLC project (a 26-partner project funded by FP7 Environment Programme of the European Commission, addressing topic "Long-term monitoring experiment in geologically active regions of Europe prone to natural hazards: the Supersite concept) set aims to (i) establish an innovative volcano monitoring system and strategy, (ii) develop new methods for near real-time integration of multi-parametric datasets, (iii) apply a seamless transdisciplinary approach to further scientific understanding of magmatic processes, and (iv) to improve delivery, quality and timeliness of transdisciplinary information from monitoring scientists to civil protection. The project duration is 1 October 2012 - 31 March 2016. Unrest and volcanic activity since August 2014 at one of the focus areas of the project in Iceland, at the Bárðarbunga volcanic system, near the middle of the project duration, has offered unique opportunities for this project. On 16 August 2014 an intense seismic swarm started in Bárðarbunga, the beginning of a major volcano-tectonic rifting event forming over 45 km long dyke extending from the caldera to Holuhraun lava field outside the northern margin of Vatnajökull. A large basaltic, effusive fissure eruption began in Holuhraun on 31 August which had by January formed a lava field with a volume in excess of one cubic kilometre. We document how the FUTUREVOLC project has contributed to the study and response to the subsurface dyke formation, through increased seismic and geodetic coverage and joint interpreation of the data. The dyke intrusion in the Bárðarbunga volcanic system, grew laterally for over 45 km at a variable rate, with an influence of topography on the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred over 14 days, was revealed by propagating seismicity, ground

  3. Comparative Riftology: Insights into the Evolution of Passive Continental Margins and Continental Rifts from the Failed Midcontinent Rift (MCR)

    Science.gov (United States)

    Elling, R. P.; Stein, C. A.; Stein, S.; Kley, J.; Keller, G. R.; Wysession, M. E.

    2017-12-01

    Continental rifts evolve to seafloor spreading and are preserved in passive margins, or fail and remain as fossil features in continents. Rifts at different stages give insight into these evolutionary paths. Of particular interest is the evolution of volcanic passive margins, which are characterized by seaward dipping reflectors, volcanic rocks yielding magnetic anomalies landward of the oldest spreading anomalies, and are underlain by high-velocity lower crustal bodies. How and when these features form remains unclear. Insights are given by the Midcontinent Rift (MCR), which began to form during the 1.1 Ga rifting of Amazonia from Laurentia, but failed when seafloor spreading was established elsewhere. MCR volcanics are much thicker than other continental flood basalts, due to deposition in a narrow rift rather than a broad region, giving a rift's geometry but a LIP's magma volume. The MCR provides a snapshot of the deposition of a thick and highly magnetized volcanic section during rifting. Surface exposures and reflection seismic data near Lake Superior show a rift basin filled by inward-dipping flood basalt layers. Had the rift evolved to seafloor spreading, the basin would have split into two sets of volcanics with opposite-facing SDRs, each with a magnetic anomaly. Because the rift formed as a series of alternating half-grabens, structural asymmetries between conjugate margins would have naturally occurred had it gone to completion. Hence the MCR implies that many passive margin features form prior to seafloor spreading. Massive inversion of the MCR long after it failed has provided a much clearer picture of its structure compared to failed rifts with lesser degrees of inversion. Seismic imaging as well as gravity and magnetic modeling provide important insight into the effects of inversion on failed rifts. The MCR provides an end member for the evolution of actively extending rifts, characterized by upwelling mantle and negative gravity anomalies, to failed

  4. Lava-flow hazard on the SE flank of Mt. Etna (Southern Italy)

    Science.gov (United States)

    Crisci, G. M.; Iovine, G.; Di Gregorio, S.; Lupiano, V.

    2008-11-01

    considering its elevation, location with respect to the volcanic edifice, and proximity to its main weakness zones. Similarly, different probabilities can be assigned to the simulated event types (combinations of durations and lava volumes, and to the effusion-rate functions considered). In such a way, an implicit assumption is made that the volcanic style will not dramatically change in the near future. Depending on adopted criteria for probability evaluation, different maps of lava-flow hazard can be compiled, by taking into account both the overlapping of the simulated lava flows and their assumed probabilities, and by finally ranking computed values into few relative classes. The adopted methodology allows to rapidly exploring changes in lava-flow hazard as a function of varying probabilities of occurrence, by simply re-processing the database of the simulations stored in the GIS. For Civil Protection purposes, in case of expected imminent opening of a vent in a given sector of the volcano, re-processing may help in real-time forecasting the presumable affected areas, and thus in better managing the eruptive crisis. Moreover, further simulations can be added to the GIS data base at any time new different event types were recognised to be of interest. In this paper, three examples of maps of lava-flow hazard for the SE flank of Mt. Etna are presented: the first has been realised without assigning any probability to the performed simulations, by simply counting the frequencies of lava flows affecting each site; in the second map, information on past eruptions is taken into account, and probabilities are empirically attributed to each simulation based on location of vents and types of eruption; in the third one, a stronger role is ascribed to the main SSE-trending weakness zone, which crosses the study area between Nicolosi and Trecastagni, associated with the right flank of the above-cited deep-seated deformation. Despite being only preliminary (as based on a sub-set of the

  5. A Mechanism for Stratifying Lava Flows

    Science.gov (United States)

    Rice, A.

    2005-12-01

    Relict lava flows (e.g., komatiites) are often reported to be zoned in the vertical, each zone separated by a sharp contact. Such stratifications in igneous flows, both intrusive and extrusive, can be treated as analogues of suspended loads of sediments in rivers and streams, and hence amenable to quantitative treatment derived for the hydraulic environment as long as dynamic similitude is assured. Situations typically encountered in the hydraulic environment are streams carrying a bed load at the bottom of the stream, the bed load separated by a sharp horizon from a sediment load carried above it. This sediment load may be topped by others of decreasing density as one moves to the surface of the flow, with perhaps the uppermost layer clear of any suspended matter. Rules exist for estimating the thickness D of these loads: one of them is given by D ~ 4.4V3/rgcvs where V is the shear velocity or average velocity of the flow, r = (ρs - ρl)/ρl where ρs is the density of the suspended solid matter, ρl the density of the fluid, g the acceleration of gravity, c the concentration of the particulate content and vs the settling velocity. The settling velocity is secured through Stoke's Law and the velocity of the flow is given by V = R2/3S1/2/n where R is the hydraulic radius, S the gradient along which the fluid flows and n is the Manning Coefficient. In the igneous case, the bed load would be composed of primocrysts, i.e., of the first crystals to come out of solution as the flow cools along its run. This would leave the upper portions of the flow more evolved except perhaps for a quenched crust riding atop the flow. As the viscosity of the flow is dependent not only on temperature but on composition and crystal content, the mean velocity of each layer will be different from the layer above and below it. This requires shear at the interface of adjoining stratifications, which brings into play another mechanism: dispersive pressure (the Bagnold effect). Dispersive

  6. Commercial helium reserves, continental rifting and volcanism

    Science.gov (United States)

    Ballentine, C. J.; Barry, P. H.; Hillegonds, D.; Fontijn, K.; Bluett, J.; Abraham-James, T.; Danabalan, D.; Gluyas, J.; Brennwald, M. S.; Pluess, B.; Seneshens, D.; Sherwood Lollar, B.

    2017-12-01

    Helium has many industrial applications, but notably provides the unique cooling medium for superconducting magnets in medical MRI scanners and high energy beam lines. In 2013 the global supply chainfailed to meet demand causing significant concern - the `Liquid Helium Crisis' [1]. The 2017 closure of Quatar borders, a major helium supplier, is likely to further disrupt helium supply, and accentuates the urgent need to diversify supply. Helium is found in very few natural gas reservoirs that have focused 4He produced by the dispersed decay (a-particle) of U and Th in the crust. We show here, using the example of the Rukwa section of the Tanzanian East African Rift, how continental rifting and local volcanism provides the combination of processes required to generate helium reserves. The ancient continental crust provides the source of 4He. Rifting and associated magmatism provides the tectonic and thermal mechanism to mobilise deep fluid circulation, focusing flow to the near surface along major basement faults. Helium-rich springs in the Tanzanian Great Rift Valley were first identified in the 1950's[2]. The isotopic compositions and major element chemistry of the gases from springs and seeps are consistent with their release from the crystalline basement during rifting [3]. Within the Rukwa Rift Valley, helium seeps occur in the vicinity of trapping structures that have the potential to store significant reserves of helium [3]. Soil gas surveys over 6 prospective trapping structures (1m depth, n=1486) show helium anomalies in 5 out of the 6 at levels similar to those observed over a known helium-rich gas reservoir at 1200m depth (7% He - Harley Dome, Utah). Detailed macroseep gas compositions collected over two days (n=17) at one site allows us to distinguish shallow gas contributions and shows the deep gas to contain between 8-10% helium, significantly increasing resource estimates based on uncorrected values (1.8-4.2%)[2,3]. The remainder of the deep gas is

  7. A bottom-driven mechanism for distributed faulting: Insights from the Gulf of California Rift

    Science.gov (United States)

    Persaud, P.; Tan, E.; Choi, E.; Contreras, J.; Lavier, L. L.

    2017-12-01

    The Gulf of California is a young oblique rift that displays a variation in rifting style along strike. Despite the rapid localization of strain in the Gulf at 6 Ma, the northern rift segment has the characteristics of a wide rift, with broadly distributed extensional strain and small gradients in topography and crustal thinning. Observations of active faulting in the continent-ocean transition of the Northern Gulf show multiple oblique-slip faults distributed in a 200 x 70 km2area developed some time after a westward relocation of the plate boundary at 2 Ma. In contrast, north and south of this broad pull-apart structure, major transform faults accommodate Pacific-North America plate motion. Here we propose that the mechanism for distributed brittle deformation results from the boundary conditions present in the Northern Gulf, where basal shear is distributed between the Cerro Prieto strike-slip fault (southernmost fault of the San Andreas fault system) and the Ballenas Transform fault. We hypothesize that in oblique-extensional settings whether deformation is partitioned in a few dip-slip and strike-slip faults, or in numerous oblique-slip faults may depend on (1) bottom-driven, distributed extension and shear deformation of the lower crust or upper mantle, and (2) the rift obliquity. To test this idea, we explore the effects of bottom-driven shear on the deformation of a brittle elastic-plastic layer with pseudo-three dimensional numerical models that include side forces. Strain localization results when the basal shear is a step-function while oblique-slip on numerous faults dominates when basal shear is distributed. We further investigate how the style of faulting varies with obliquity and demonstrate that the style of faulting observed in the Northern Gulf of California is reproduced in models with an obliquity of 0.7 and distributed basal shear boundary conditions, consistent with the interpreted obliquity and boundary conditions of the study area. Our

  8. Post-Pan-African tectonic evolution of South Malawi in relation to the Karroo and recent East African rift systems

    Science.gov (United States)

    Castaing, C.

    1991-05-01

    Structural studies conducted in the Lengwe and Mwabvi Karroo basins and in the basement in South Malawi, using regional maps and published data extended to cover Southeast Africa, serve to propose a series of geodynamic reconstructions which reveal the persistence of an extensional tectonic regime, the minimum stress σ3 of which has varied through time. The period of Karroo rifting and the tholeiitic and alkaline magmatism which terminated it, were controlled by NW-SE extension, which resulted in the creation of roughly NE-SW troughs articulated by the Tanganyika-Malawi and Zambesi pre-transform systems. These were NW-SE sinistral-slip systems with directions of movement dipping slightly to the Southeast, which enabled the Mwanza fault to play an important role in the evolution of the Karroo basins of the Shire Valley. The Cretaceous was a transition period between the Karroo rifting and the formation of the Recent East African Rift System. Extension was NE-SW, with some evidence for a local compressional episode in the Lengwe basin. Beginning in the Cenozoic, the extension once more became NW-SE and controlled the evolution in transtension of the Recent East African Rift System. This history highlights the major role of transverse faults systems dominated by strike-slip motion in the evolution and perpetuation of the continental rift systems. These faults are of a greater geological persistence than the normal faults bounding the grabens, especially when they are located on major basement anisotropies.

  9. Relative ages of lava flows at Alba Patera, Mars

    International Nuclear Information System (INIS)

    Schneeberger, D.M.; Pieri, D.C.

    1987-01-01

    Many large lava flows on the flanks of Alba Patera are astonishing in their volume and length. As a suite, these flows suggest tremendously voluminous and sustained eruptions, and provide dimensional boundary conditions typically a factor of 100 larger than terrestrial flows. One of the most striking features associated with Alba Patera is the large, radially oriented lava flows that exhibit a variety of flow morphologies. These include sheet flows, tube fed and tube channel flows, and undifferentiated flows. Three groups of flows were studied; flows on the northwest flank, southeast flank, and the intracaldera region. The lava flows discussed probably were erupted as a group during the same major volcanic episode as suggested by the data presented. Absolute ages are poorly constrained for both the individual flows and shield, due in part to disagreement as to which absolute age curve is representative for Mars. A relative age sequence is implied but lacks precision due to the closeness of the size frequency curves

  10. La dorsal NE de Tenerife: hacia un modelo del origen y evolución de los rifts de islas oceánicas

    Directory of Open Access Journals (Sweden)

    Delcamp, A.

    2009-06-01

    Full Text Available The NE Rift of Tenerife is an excellent example of a persistent, recurrent rift, providing important evidence of the origin and dynamics of these major volcanic features. The rift developed in three successive, intense and relatively short eruptive stages (a few hundred ka, separated by longer periods of quiescence or reduced activity: A Miocene stage (7266 ± 156 ka, apparently extending the central Miocene shield of Tenerife towards the Anaga massif; an Upper Pliocene stage (2710 ± 58 ka and the latest stage, with the main eruptive phase in the Pleistocene. Detailed geological (GIS mapping, geomagnetic reversal mapping and stratigraphic correlation, and radioisotopic (K/Ar dating of volcanic formations allowed the reconstruction of the latest period of rift activity. In the early phases of this stage the majority of the eruptions grouped tightly along the axis of the rift and show reverse polarity (corresponding to the Matuyama chron. Dykes are of normal and reverse polarities. In the final phase of activity, eruptions are more disperse and lavas and dykes are consistently of normal polarity (Brunhes chron. Volcanic units of normal polarity crossed by dykes of normal and reverse polarities yield ages apparently compatible with normal subchrons (M-B Precursor and Jaramillo in the Upper Matuyama chron. Three lateral collapses successively mass-wasted the rift: The Micheque collapse, completely concealed by subsequent nested volcanism, and the Güímar and La Orotava collapses, that are only partially filled. Time occurrence of collapses in the NE rift apparently coincides with glacial stages, suggesting that giant landslides may be finally triggered by sea level chan-ges during glaciations. Pre-collapse and nested volcanism is predominantly basaltic, except in the Micheque collapse, where magmas evolved towards intermediate and felsic (trachytic compositions. Rifts in the Canary Islands are long-lasting, recurrent features, probably related to

  11. Morphometric study of pillow-size spectrum among pillow lavas

    Science.gov (United States)

    Walker, George P. L.

    1992-08-01

    Measurements of H and V (dimensions in the horizontal and vertical directions of pillows exposed in vertical cross-section) were made on 19 pillow lavas from the Azores, Cyprus, Iceland, New Zealand, Tasmania, the western USA and Wales. The median values of H and V plot on a straight line that defines a spectrum of pillow sizes, having linear dimensions five times greater at one end than at the other, basaltic toward the small-size end and andesitic toward the large-size end. The pillow median size is interpreted to reflect a control exercised by lava viscosity. Pillows erupted on a steep flow-foot slope in lava deltas can, however, have a significantly smaller size than pillows in tabular pillowed flows (inferred to have been erupted on a small depositonal slope), indicating that the slope angle also exercised a control. Pipe vesicles, generally abundant in the tabular pillowed flows and absent from the flow-foot pillows, have potential as a paleoslope indicator. Pillows toward the small-size end of the spectrum are smooth-surfaced and grew mainly by stretching of their skin, whereas disruption of the skin and spreading were important toward the large-size end. Disruption involved increasing skin thicknesses with increasing pillow size, and pillows toward the large-size end are more analogous with toothpaste lava than with pahoehoe and are inferred from their thick multiple selvages to have taken hours to grow. Pseudo-pillow structure is also locally developed. An example of endogenous pillow-lava growth, that formed intrusive pillows between ‘normal’ pillows, is described from Sicily. Isolated pillow-like bodies in certain andesitic breccias described from Iceland were previously interpreted to be pillows but have anomalously small sizes for their compositions; it is now proposed that they may lack an essential attribute of pillows, namely, the development of bulbous forms by the inflation of a chilled skin, and are hence not true pillows. Para-pillow lava is

  12. Recent flood lavas in the Elysium region of Mars

    International Nuclear Information System (INIS)

    Plescia, J.B.

    1990-01-01

    A volcanic origin is presently suggested for the Cerberus Formation region of smooth plains in the southeastern Elysium region of Mars, on the basis of its surface morphology, lobate edges, vents, and an embayment relation of the unit with adjacent, older units. The low viscosity lavas that filled a topographic depression in southeastern Elysium subsequently flowed into western Amazonic Planitia via channels formed by an earlier fluvial episode. A young, upper Amazonian dating is indicated by crater frequencies and stratigraphic relations, implying that large-scale eruptions of low-viscosity lava were still possible late in Martian history. 34 refs

  13. The Triassic-Liassic volcanic sequence and rift evolution in the Saharan Atlas basins (Algeria). Eastward vanishing of the Central Atlantic magmatic province

    International Nuclear Information System (INIS)

    Meddah, A.; Bertrand, H.; Seddiki, A.; Tabeliouna, M.

    2017-01-01

    We investigate the Triassic-Liassic sequence in ten diapirs from the Saharan Atlas (Algeria). Based on detailed mapping, two episodes are identified. The first one consists of a volcano-sedimentary sequence in which three volcanic units were identified (lower, intermediate and upper units). They are interlayered and sometimes imbricated with siliciclastic to evaporitic levels which record syn-sedimentary tectonics. This sequence was deposited in a lagoonal-continental environment and is assigned to the Triassic magmatic rifting stage. The second episode, lacking lava flows (post magmatic rifting stage), consists of carbonate levels deposited in a lagoonal to marine environment during the Rhaetian-Hettangian. The volcanic units consist of several thin basaltic flows, each 0.5 to 1m thick, with a total thickness of 10–15m. The basalts are low-Ti continental tholeiites, displaying enrichment in large ion lithophile elements and light rare earth elements [(La/Yb)n= 2.5-6] with a negative Nb anomaly. Upwards decrease of light-rare-earth-elements enrichment (e.g. La/Yb) is modelled through increasing melting rate of a spinel-bearing lherzolite source from the lower (6–10wt.%) to the upper (15–20wt.%) unit. The lava flows from the Saharan Atlas share the same geochemical characteristics and evolution as those from the Moroccan Atlas assigned to the Central Atlantic magmatic province. They represent the easternmost witness of this large igneous province so far known.

  14. The Triassic-Liassic volcanic sequence and rift evolution in the Saharan Atlas basins (Algeria). Eastward vanishing of the Central Atlantic magmatic province

    Energy Technology Data Exchange (ETDEWEB)

    Meddah, A.; Bertrand, H.; Seddiki, A.; Tabeliouna, M.

    2017-11-01

    We investigate the Triassic-Liassic sequence in ten diapirs from the Saharan Atlas (Algeria). Based on detailed mapping, two episodes are identified. The first one consists of a volcano-sedimentary sequence in which three volcanic units were identified (lower, intermediate and upper units). They are interlayered and sometimes imbricated with siliciclastic to evaporitic levels which record syn-sedimentary tectonics. This sequence was deposited in a lagoonal-continental environment and is assigned to the Triassic magmatic rifting stage. The second episode, lacking lava flows (post magmatic rifting stage), consists of carbonate levels deposited in a lagoonal to marine environment during the Rhaetian-Hettangian. The volcanic units consist of several thin basaltic flows, each 0.5 to 1m thick, with a total thickness of 10–15m. The basalts are low-Ti continental tholeiites, displaying enrichment in large ion lithophile elements and light rare earth elements [(La/Yb)n= 2.5-6] with a negative Nb anomaly. Upwards decrease of light-rare-earth-elements enrichment (e.g. La/Yb) is modelled through increasing melting rate of a spinel-bearing lherzolite source from the lower (6–10wt.%) to the upper (15–20wt.%) unit. The lava flows from the Saharan Atlas share the same geochemical characteristics and evolution as those from the Moroccan Atlas assigned to the Central Atlantic magmatic province. They represent the easternmost witness of this large igneous province so far known.

  15. Evidence for cross rift structural controls on deformation and seismicity at a continental rift caldera

    Science.gov (United States)

    Lloyd, Ryan; Biggs, Juliet; Wilks, Matthew; Nowacki, Andy; Kendall, J.-Michael; Ayele, Atalay; Lewi, Elias; Eysteinsson, Hjálmar

    2018-04-01

    In continental rifts structural heterogeneities, such as pre-existing faults and foliations, are thought to influence shallow crustal processes, particularly the formation of rift faults, magma reservoirs and surface volcanism. We focus on the Corbetti caldera, in the southern central Main Ethiopian Rift. We measure the surface deformation between 22nd June 2007 and 25th March 2009 using ALOS and ENVISAT SAR interferograms and observe a semi-circular pattern of deformation bounded by a sharp linear feature cross-cutting the caldera, coincident with the caldera long axis. The signal reverses in sign but is not seasonal: from June to December 2007 the region south of this structure moves upwards 3 cm relative to the north, while from December 2007 until November 2008 it subsides by 2 cm. Comparison of data taken from two different satellite look directions show that the displacement is primarily vertical. We discuss potential mechanisms and conclude that this deformation is associated with pressure changes within a shallow (statistically consistent with this fault structure, indicating that the fault has also controlled the migration of magma from a reservoir to the surface over tens of thousands of years. Spatial patterns of seismicity are consistent with a cross-rift structure that extents outside the caldera and to a depth of ∼30 km, and patterns of seismic anisotropy suggests stress partitioning occurs across the structure. We discuss the possible nature of this structure, and conclude that it is most likely associated with the Goba-Bonga lineament, which cross-cuts and pre-dates the current rift. Our observations show that pre-rift structures play an important role in magma transport and shallow hydrothermal processes, and therefore they should not be neglected when discussing these processes.

  16. Oblique rift opening revealed by reoccurring magma injection in central Iceland

    KAUST Repository

    Ruch, Joel; Wang, Teng; Xu, Wenbin; Hensch, Martin; Jonsson, Sigurjon

    2016-01-01

    -field deformation has rarely been captured, hindering progress in understanding rifting mechanisms and evolution. Here we show new evidence of oblique rift opening during a rifting event influenced by pre-existing fractures and two centuries of extension deficit

  17. The MOZART Project - MOZAmbique Rift Tomography

    Science.gov (United States)

    Fonseca, J. F.; Chamussa, J. R.; Domingues, A.; Helffrich, G. R.; Fishwick, S.; Ferreira, A. M.; Custodio, S.; Brisbourne, A. M.; Grobbelaar, M.

    2012-12-01

    Project MOZART (MOZAmbique Rift Tomography) is an ongoing joint effort of Portuguese, Mozambican and British research groups to investigate the geological structure and current tectonic activity of the southernmost tip of the East African Rift System (EARS) through the deployment of a network of 30 broad band seismic stations in Central and Southern Mozambique. In contrast with other stretches of the EARS to the North and with the Kapvaal craton to the West and South, the lithosphere of Mozambique was not previously studied with a dense seismographic deployment on account of past political instability, and many questions remain unanswered with respect to the location and characteristics of the EARS to the south of Tanzania. In recent years, space geodesy revealed the existence of three microplates in and off Mozambique - Victoria, Rovuma, Lwandle - whose borders provide a connection of the EARS to the South West Indian Ridge as required by plate tectonics. However, the picture is still coarse concerning the location of the rift structures. The 2006 M7 Machaze earthquake in Central Mozambique highlighted the current tectonic activity of the region and added a further clue to the location of the continental rift, prompting the MOZART deployment. Besides helping unravel the current tectonics, the project is expected to shed light on the poorly known Mesoproterozoic structure described by Arthur Holmes in 1951 as the Mozambique Belt, and on the mechanisms of transition from stable craton to rifted continental crust, through the development of a tomographic model for the lithosphere. The MOZART network is distributed South of the Zambezi river at average inter-station spaces of the order of 100 km and includes four stations across the border in South Africa. Data exchange was agreed with AfricaArray. The deployment proceeded in two phases in March 2011, and November and December 2011. Decommissioning is foreseen for August 2013. We report preliminary results for this

  18. Long wavelength magnetic anomalies over continental rifts in cratonic region

    Science.gov (United States)

    Friedman, S. A.; Persaud, P.; Ferre, E. C.; Martín-Hernández, F.; Feinberg, J. M.

    2017-12-01

    New collections of unaltered mantle xenoliths shed light on potential upper mantle contributions to long wavelength magnetic anomalies (LWMA) in continental rifts in cratonic / shield areas. The new material originates from the East African Rift (Tanzania), the Rio Grande Rift (U.S.A.), the Rhine Rift (Germany), and the West Antarctic Rift (Antarctica). The xenoliths sample the uppermost ( 0.2 or Fe geotherms (>60ºC/km) that are characteristic of rifted regions preclude any contribution to LWMA at depths >10 km. Hence, only upper basalts and hypovolcanic mafic sills would constitute potential magnetic sources. In contrast, the margins of these rifted regions consist of refractory cratonic domains, often characterized by oxidized sublithospheric mantle that host significant concentrations of primary magnetite. The higher NRMs of these peridotites (up to 15 A/m, Qn > 2.5) combined with much lower geotherms (as low as 15ºC/km) allows for a 5 to 10 km layer of uppermost mantle to potentially contribute to LWMA. Assuming that Qn values in rift margins are also gradient across the rift would primarily reflect thermal equilibration over time.

  19. Seismicity of the Earth 1900-2013 East African Rift

    Science.gov (United States)

    Hayes, Gavin P.; Jones, Eric S.; Stadler, Timothy J.; Barnhart, William D.; McNamara, Daniel E.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio; Hayes, Gavin P.; Jones, Eric S.; Stadler, Timothy J.; Barnhart, William D.; McNamara, Daniel E.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio

    2014-01-01

    The East African Rift system (EARS) is a 3,000-km-long Cenozoic age continental rift extending from the Afar triple junction, between the horn of Africa and the Middle East, to western Mozambique. Sectors of active extension occur from the Indian Ocean, west to Botswana and the Democratic Republic of the Congo (DRC). It is the only rift system in the world that is active on a continent-wide scale, providing geologists with a view of how continental rifts develop over time into oceanic spreading centers like the Mid-Atlantic Ridge.

  20. Contrasted continental rifting via plume-craton interaction: Applications to Central East African Rift

    Directory of Open Access Journals (Sweden)

    Alexander Koptev

    2016-03-01

    Full Text Available The East African Rift system (EARS provides a unique system with the juxtaposition of two contrasting yet simultaneously formed rift branches, the eastern, magma-rich, and the western, magma-poor, on either sides of the old thick Tanzanian craton embedded in a younger lithosphere. Data on the pre-rift, syn-rift and post-rift far-field volcanic and tectonic activity show that the EARS formed in the context of the interaction between a deep mantle plume and a horizontally and vertically heterogeneous lithosphere under far-field tectonic extension. We bring quantitative insights into this evolution by implementing high-resolution 3D thermo-mechanical numerical deformation models of a lithosphere of realistic rheology. The models focus on the central part of the EARS. We explore scenarios of plume-lithosphere interaction with plumes of various size and initial position rising beneath a tectonically pre-stretched lithosphere. We test the impact of the inherited rheological discontinuities (suture zones along the craton borders, of the rheological structure, of lithosphere plate thickness variations, and of physical and mechanical contrasts between the craton and the embedding lithosphere. Our experiments indicate that the ascending plume material is deflected by the cratonic keel and preferentially channeled along one of its sides, leading to the formation of a large rift zone along the eastern side of the craton, with significant magmatic activity and substantial melt amount derived from the mantle plume material. We show that the observed asymmetry of the central EARS, with coeval amagmatic (western and magmatic (eastern branches, can be explained by the splitting of warm material rising from a broad plume head whose initial position is slightly shifted to the eastern side of the craton. In that case, neither a mechanical weakness of the contact between the craton and the embedding lithosphere nor the presence of second plume are required to

  1. Lava and Life: New investigations into the Carson Volcanics, lower Kimberley Basin, north Western Australia

    Science.gov (United States)

    Orth, Karin; Phillips, Chris; Hollis, Julie

    2014-05-01

    The Carson Volcanics are the only volcanic unit in the Paleoproterozoic Kimberley Basin and are part of a poorly studied Large Igneous Province (LIP) that was active at 1790 Ma. New work focussing on this LIP in 2012 and 2013 involved helicopter-supported traverses and sampling of the Carson Volcanics in remote areas near Kalumburu in far north Western Australia's Kimberley region. The succession is widespread and flat lying to gently dipping. It consists of three to six basalt units with intercalated sandstone and siltstone. The basalts are 20-40 m thick, but can be traced up to 60 km along strike. The basalt can be massive or amygdaloidal and commonly display polygonal to subhorizontal and rare vertical columnar jointing. Features of the basalt include ropy lava tops and basal pipe vesicles consistent with pahoehoe lavas. The intercalated cross-bedded quartzofeldspathic sandstone and siltstone vary in thickness up to 40 m and can be traced up to 40 km along strike. Peperite is common and indicates interaction between wet, unconsolidated sediment and hot lava. Stromatolitic chert at the top of the formation represents the oldest life found within the Kimberley region. Mud cracks evident in the sedimentary rocks, and stromatolites suggest an emergent broad tidal flat environment. The volcanics were extruded onto a wide marginal margin setting subject to frequent flooding events. Thickening of the volcanic succession south and the palaeocurrents in the underlying King Leopold Sandstone and the overlying Warton Sandstone suggest that this shelf sloped to the south. The type of basalt and the basalt morphology indicate a low slope gradient of about 1°.

  2. Contrasting styles of post-caldera volcanism along the Main Ethiopian Rift: Implications for contemporary volcanic hazards

    Science.gov (United States)

    Fontijn, Karen; McNamara, Keri; Zafu Tadesse, Amdemichael; Pyle, David M.; Dessalegn, Firawalin; Hutchison, William; Mather, Tamsin A.; Yirgu, Gezahegn

    2018-05-01

    The Main Ethiopian Rift (MER, 7-9°N) is the type example of a magma-assisted continental rift. The rift axis is populated with regularly spaced silicic caldera complexes and central stratovolcanoes, interspersed with large fields of small mafic scoria cones. The recent (latest Pleistocene to Holocene) history of volcanism in the MER is poorly known, and no eruptions have occurred in the living memory of the local population. Assessment of contemporary volcanic hazards and associated risk is primarily based on the study of the most recent eruptive products, typically those emplaced within the last 10-20 ky. We integrate new and published field observations and geochemical data on tephra deposits from the main Late Quaternary volcanic centres in the central MER to assess contemporary volcanic hazards. Most central volcanoes in the MER host large mid-Pleistocene calderas, with typical diameters of 5-15 km, and associated ignimbrites of trachyte and peralkaline rhyolite composition. In contrast, post-caldera activity at most centres comprises eruptions of peralkaline rhyolitic magmas as obsidian flows, domes and pumice cones. The frequency and magnitude of events varies between individual volcanoes. Some volcanoes have predominantly erupted obsidian lava flows in their most recent post-caldera stage (Fentale), whereas other have had up to 3 moderate-scale (VEI 3-4) explosive eruptions per millennium (Aluto). At some volcanoes we find evidence for multiple large explosive eruptions (Corbetti, Bora-Baricha, Boset-Bericha) which have deposited several centimetres to metres of pumice and ash in currently densely populated regions. This new overview has important implications when assessing the present-day volcanic hazard in this rapidly developing region. Supplementary Table 2 Main Ethiopian Rift outcrop localities with brief description of geology. All coordinates in Latitude - Longitude, WGS84 datum. Sample names (as listed in Supplementary Table 3a) follow outcrop name

  3. Rhyolites associated to Ethiopian CFB: Clues for initial rifting at the Afar plume axis

    Science.gov (United States)

    Natali, Claudio; Beccaluva, Luigi; Bianchini, Gianluca; Siena, Franca

    2011-12-01

    A comprehensive tectono-magmatic model based on new geochemical and field data is discussed in order to highlight the significance of the high-TiO 2 bimodal picrite basalt/rhyolite association in the north-eastern sector of the Ethiopian Plateau, which is considered to be the axial zone of the 30 Ma Continental Flood Basalt activity related to the Afar plume (Beccaluva et al., 2009). In this area the volcanic sequence consists of approximately 1700 m of high TiO 2 (4-6.5%) picrite basalts, covered by rhyolitic ignimbrites and lavas, with an average thickness of 300 m, which discontinuously extend over an area of nearly 13,500 km 2 (ca. 3600 km 3). Petrogenetic modelling, using rock and mineral chemical data and phase equilibria calculations by PELE and MELTS, indicates that: 1) picrite basalts could generate rhyolitic, sometimes peralkaline, residual melts with persistently high titanium contents (TiO 2 0.4-1.1%; Fluorine 0.2-0.3%; H 2O 2-3%; density ca. 2.4) corresponding to liquid fractions 9-16%; 2) closed system fractional crystallisation processes developed at 0.1-0.3 GPa pressure and 1390-750 °C temperature ranges, under QFM fO 2 conditions; 3) the highest crystallisation rate - involving 10-13% of Fe-Ti oxide removal - in the temperature range 1070-950 °C, represents a transitory (short-lived) fractionation stage, which results in the absence of erupted silica intermediate products (Daly gap). The eruption of low aspect ratio fluorine-rich rhyolitic ignimbrites and lavas capping the basic volcanics implies a rapid change from open- to closed-system tectono-magmatic conditions, which favoured the trapping of parental picrite basalts and their fractionation in upwardly zoned magma chambers. This evolution resulted from the onset of continental rifting, which was accompanied by normal faulting and block tilting, and the formation of shallow - N-S elongated - fissural chambers parallel to the future Afar Escarpment. The eruption of large volumes of rhyolitic

  4. Reservoir engineering assessment of Dubti geothermal field, Northern Tendaho Rift, Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Battistelli, A.; Ferragina, C. [Aquater S.p.A. (ENI Group), San Lorenzo in Campo (Italy); Yiheyis, A.; Abatneh, W. [Ethiopian Institute of Geological Surveys, Addis Ababa (Ethiopia); Calore, C. [International Institute for Geothermal Research, Pisa (Italy)

    2002-06-01

    Following on from surface exploration surveys performed during the 1970s and early 1980s, exploration drilling was carried out in the Tendaho Rift, in Central Afar (Ethiopia), from October 1993 to June 1995. Three deep and one shallow well were drilled in the central part of the Northern Tendaho Rift to verify the existence of a geothermal reservoir and its possible utilisation for electric power generation. The project was jointly financed by the Ethiopian Ministry of Mines and Energy and the Italian Ministry for Foreign Affairs. Project activities were performed by the Ethiopian Institute of Geological Surveys and Aquater SpA. The main reservoir engineering data discussed in this paper were collected during drilling and testing of the above four wells, three of which are located inside the Dubti Cotton Plantation, in which a promising hydrothermal area was identified by surface exploration surveys. Drilling confirmed the existence of a liquid-dominated shallow reservoir inside the Dubti Plantation, characterised by a boiling -point-for-depth temperature distribution down to about 500 m depth. The main permeable zones in the Sedimentary Sequence, which is made up of lacustrine deposits, are located in correspondence to basalt lava flow interlayerings, or at the contact between volcanic and sedimentary rocks. At depth, the basaltic lava flows that characterise the Afar Stratoid Series seem to have low permeability, with the exception of fractured zones associated with sub-vertical faults. Two different upflows of geothermal fluids have been inferred: one flow connected to the Dubti fault feeds the shallow reservoir crossed by wells TD-2 and TD-4, where a maximum temperature of 245{sup o}C was recorded; the second flow seems to be connected with a fault located east of well TD-1, where the maximum recorded temperature was 270{sup o}C. A schematic conceptual model of the Dubti hydrothermal area, as derived from reservoir engineering studies integrated with geological

  5. Time-averaged discharge rate of subaerial lava at Kīlauea Volcano, Hawai‘i, measured from TanDEM-X interferometry: Implications for magma supply and storage during 2011-2013

    Science.gov (United States)

    Poland, Michael P.

    2014-01-01

    Differencing digital elevation models (DEMs) derived from TerraSAR add-on for Digital Elevation Measurements (TanDEM-X) synthetic aperture radar imagery provides a measurement of elevation change over time. On the East Rift Zone (EZR) of Kīlauea Volcano, Hawai‘i, the effusion of lava causes changes in topography. When these elevation changes are summed over the area of an active lava flow, it is possible to quantify the volume of lava emplaced at the surface during the time spanned by the TanDEM-X data—a parameter that can be difficult to measure across the entirety of an ~100 km2 lava flow field using ground-based techniques or optical remote sensing data. Based on the differences between multiple TanDEM-X-derived DEMs collected days to weeks apart, the mean dense-rock equivalent time-averaged discharge rate of lava at Kīlauea between mid-2011 and mid-2013 was approximately 2 m3/s, which is about half the long-term average rate over the course of Kīlauea's 1983–present ERZ eruption. This result implies that there was an increase in the proportion of lava stored versus erupted, a decrease in the rate of magma supply to the volcano, or some combination of both during this time period. In addition to constraining the time-averaged discharge rate of lava and the rates of magma supply and storage, topographic change maps derived from space-based TanDEM-X data provide insights into the four-dimensional evolution of Kīlauea's ERZ lava flow field. TanDEM-X data are a valuable complement to other space-, air-, and ground-based observations of eruptive activity at Kīlauea and offer great promise at locations around the world for aiding with monitoring not just volcanic eruptions but any hazardous activity that results in surface change, including landslides, floods, earthquakes, and other natural and anthropogenic processes.

  6. Tectonic-Volcanic Interplay in the Dabbahu Segment of the Afar Rift from Cosmogenic 3He Constraints

    Science.gov (United States)

    Williams, A.; Pik, R.; Burnard, P.; Lahitte, P.; Yirgu, G.; Adem, M.

    2008-12-01

    The Afar Rift in Ethiopia is one of the only subaerial locations in the world where the transition from continental break-up to oceanic-spreading can be observed. Extension and volcanism in the Afar is concentrated in tectono-magmatic segments (TMS), similar in size and morphology to those that characterise spreading ridges. The Dabbahu TMS is the southernmost of the western Afar and has recently been the site of significant activity. A massive seismic event in late 2005, triggered by the injection of an 8-m wide dyke, heralded the onset of a new rifting period in the Dabbahu TMS. Volcanic activity associated with the periods of magma-driven extension, which have recurred at 4-8 mth intervals, has been both silicic (explosive) and basaltic (fissural). The most recent activity in the Afar thus testifies to the close interplay of tectonics and magmatism in rifting environments. In an effort to decipher the long-term structural and volcanic evolution of Dabbahu TMS we have employed the cosmogenic nuclide dating technique to provide chronological data for the segment. This method has advantages over other geochronological tools in that we can target both volcanic and tectonic surfaces of a few Kyr to several Myr age. Baddi Volcano, located off-axis on the western margin of the TMS, is a bimodal central stratovolcano typical of the Afar TMS. Late-stage basaltic lava flows cap an acidic base, which has been dated at 290 ± 4 ka using the K-Ar technique (Lahitte et al., 2003). Following preliminary sampling in 2007, we have determined a cosmogenic 3He age of 53.4 ± 3.7 ka from multiple samples from one of the basaltic flows on the NW flank of Baddi. These data show a significant time gap (240 Kyr) between the final phase of acidic volcanism and the onset of basaltic activity at the central volcanoes, presumably related to the rate of magma chamber replenishment. To test whether the spectacular shift to basaltic activity at 53 ka represents replenishment of the entire sub-rift

  7. Hydrothermal bitumen generated from sedimentary organic matter of rift lakes - Lake Chapala, Citala Rift, western Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Zarate del Valle, Pedro F. [Departamento de Quimica, Universidad de Guadalajara - CUCEI, Ap. Postal 4-021, Guadalajara, Jalisco CP 44410 (Mexico); Simoneit, Bernd R.T. [Environmental and Petroleum Geochemistry Group, College of Oceanic and Atmospheric Sciences, Oregon State University, Building 104, Corvallis, OR 97331-5503 (United States)]. E-mail: simoneit@coas.oregonstate.edu

    2005-12-15

    Lake Chapala is in the Citala Rift of western Mexico, which in association with the Tepic-Zacoalco and Colima Rifts, form the well-known neotectonic Jalisco continental triple junction. The rifts are characterized by evidence for both paleo- and active hydrothermal activity. At the south shore of the lake, near the Los Gorgos sublacustrine hydrothermal field, there are two tar emanations that appear as small islands composed of solid, viscous and black bitumen. Aliquots of tar were analyzed by GC-MS and the mixtures are comprised of geologically mature biomarkers and an UCM. PAH and n-alkanes are not detectable. The biomarkers consist mainly of hopanes, gammacerane, tricyclic terpanes, carotane and its cracking products, steranes, and drimanes. The biomarker composition and bulk C isotope composition ({delta} {sup 13}C = -21.4%) indicate an organic matter source from bacteria and algae, typical of lacustrine ecosystems. The overall composition of these tars indicates that they are hydrothermal petroleum formed from lacustrine organic matter in the deeper sediments of Lake Chapala exceeding 40 ka ({sup 14}C) in age and then forced to the lakebed by tectonic activity. The absence of alkanes and the presence of an UCM with mature biomarkers are consistent with rapid hydrothermal oil generation and expulsion at temperatures of 200-250 deg. C. The occurrence of hydrothermal petroleum in continental rift systems is now well known and should be considered in future energy resource exploration in such regions.

  8. Tectonic inheritance and continental rift architecture: Numerical and analogue models of the East African Rift System.

    NARCIS (Netherlands)

    Corti, G.; van Wijk, J.W.; Cloetingh, S.A.P.L.; Morley, C.

    2007-01-01

    The western branch of the East African Rift is composed of an arcuate succession of elongate asymmetric basins, which differ in terms of interaction geometry, fault architecture and kinematics, and patterns of uplift/subsidence and erosion/sedimentation. The basins are located within Proterozoic

  9. Phanerozoic Rifting Phases And Mineral Deposits

    Science.gov (United States)

    Hassaan, Mahmoud

    2016-04-01

    In North Africa occur Mediterranean and Red Sea metallogenic provinces. In each province distribute 47 iron- manganese- barite and lead-zinc deposits with tectonic-structural control. The author presents in this paper aspects of position of these deposits in the two provinces with Phanerozoic rifting . The Mediterranean Province belongs to two epochs, Hercynian and Alpine. The Hercynian Epoch manganese deposits in only Moroccoa- Algeria belong to Paleozoic tectonic zones and Proterozoic volcanics. The Alpine Epoch iron-manganese deposits are of post-orogenic exhalative-sedimentary origin. Manganese deposits in southern Morocco occur in Kabil-Rief quartz-chalcedony veins controlled by faults in andesitic sheets and in bedded pelitic tuffs, strata-form lenses and ore veins, in Precambrian schist and in Triassic and Cretaceous dolomites. Disseminated manganese with quartz and barite and effusive hydrothermal veins are hosted in Paleocene volcanics. Manganese deposits in Algeria are limited and unrecorded in Tunisia. Strata-form iron deposits in Atlas Heights are widespread in sub-rift zone among Jurassic sediments inter-bedding volcanic rocks. In Algeria, Group Beni-Saf iron deposits are localized along the Mediterranean coast in terrigenous and carbonate rocks of Jurassic, Cretaceous and Eocene age within faults and bedding planes. In Morocco strata-form hydrothermal lead-zinc deposits occur in contact zone of Tertiary andesite inter-bedding Cambrian shale, Lias dolomites and Eocene andesite. In both Algeria and Tunisia metasomatic Pb-Zn veins occur in Campanian - Maastrichtian carbonates, Triassic breccia, Jurassic limestone, Paleocene sandstones and limestone and Neogene conglomerates and sandstones. The Red Sea metallogenic province belongs to the Late Tertiary-Miocene times. In Wadi Araba hydrothermal iron-manganese deposits occur in Cretaceous sediments within 320°and 310 NW faults related to Tertiary basalt. Um-Bogma iron-manganese deposits are closely

  10. K-Ar age data and geochemistry of the Kiwitahi Volcanics, western Hauraki Rift, North Island, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Black, P M [Department of Geology, Auckland University, Auckland (New Zealand); Briggs, R M [Department of Earth Sciences, Waikato University, Hamilton (New Zealand); Itaya, T [Hiruzen Research Institute, Okayama University of Science, Okayama (Japan); Dewes, E R [Department of Earth Sciences, Waikato University, Hamilton (New Zealand); Dunbar, H M [Department of Earth Sciences, Waikato University, Hamilton (New Zealand); Kawasaki, K [Hiruzen Research Institute, Okayama University of Science, Okayama (Japan); Kuschel, E [Department of Geology, Auckland University, Auckland (New Zealand); Smith, I E.M. [Department of Geology, Auckland University, Auckland (New Zealand)

    1992-07-01

    basaltic andesites which should be assigned to the geochemically and temporally similar Ti Point Volcanics; (3) a group including the andesitic breccias at Ness Valley and the volcanic centres of Miranda (pyroxene basaltic andesite, pyroxene and hornblende andesite, hornblende dacite) and Pukekamaka (hornblende andesites), all within the age range 10.22-12.96 Ma; (4) a separate group at Tahuna (6.36-6.80 Ma) consisting of pyroxene basaltic andesites and pyroxene andesites; and (5) a southern group of Maungatapu, Ruru, Maungakawa, and Te Tapui (5.52-6.23 Ma), forming eroded cones of olivine basaltic andesites, pyroxene basaltic andesites, and pyroxene andesites. The distinct incompatible element ratios and age differences between these groups suggest that these magmas were derived from distinct magma source regions, although all lavas have geochemical characteristics (low Nb, Ti contents, high LIL/LREE and LIL/HFSE ratios) typical of convergent margin magmas. There is no convincing geochemical signature for any rift component. This suggests that the age of initiation of the Hauraki Rift postdates the youngest age of these volcanics at 5.5 Ma. The distinct incompatible element ratios and age differences between these groups suggest that these magmas were derived from distinct magma source regions, although all lavas have geochemical characteristics (low Nb, Ti contents, high LIL/LREE and LIL/HFSE ratios) typical of convergent margin magmas. There is no convincing geochemical signature for any rift component. This suggests that the age of initiation of the Hauraki Rift postdates the youngest age of these volcanics at 5.5 Ma (author). 47 refs., 5 figs., 4 tabs.

  11. K-Ar age data and geochemistry of the Kiwitahi Volcanics, western Hauraki Rift, North Island, New Zealand

    International Nuclear Information System (INIS)

    Black, P.M.; Briggs, R.M.; Itaya, T.; Dewes, E.R.; Dunbar, H.M.; Kawasaki, K.; Kuschel, E.; Smith, I.E.M.

    1992-01-01

    basaltic andesites which should be assigned to the geochemically and temporally similar Ti Point Volcanics; (3) a group including the andesitic breccias at Ness Valley and the volcanic centres of Miranda (pyroxene basaltic andesite, pyroxene and hornblende andesite, hornblende dacite) and Pukekamaka (hornblende andesites), all within the age range 10.22-12.96 Ma; (4) a separate group at Tahuna (6.36-6.80 Ma) consisting of pyroxene basaltic andesites and pyroxene andesites; and (5) a southern group of Maungatapu, Ruru, Maungakawa, and Te Tapui (5.52-6.23 Ma), forming eroded cones of olivine basaltic andesites, pyroxene basaltic andesites, and pyroxene andesites. The distinct incompatible element ratios and age differences between these groups suggest that these magmas were derived from distinct magma source regions, although all lavas have geochemical characteristics (low Nb, Ti contents, high LIL/LREE and LIL/HFSE ratios) typical of convergent margin magmas. There is no convincing geochemical signature for any rift component. This suggests that the age of initiation of the Hauraki Rift postdates the youngest age of these volcanics at 5.5 Ma. The distinct incompatible element ratios and age differences between these groups suggest that these magmas were derived from distinct magma source regions, although all lavas have geochemical characteristics (low Nb, Ti contents, high LIL/LREE and LIL/HFSE ratios) typical of convergent margin magmas. There is no convincing geochemical signature for any rift component. This suggests that the age of initiation of the Hauraki Rift postdates the youngest age of these volcanics at 5.5 Ma (author). 47 refs., 5 figs., 4 tabs

  12. Formation of perched lava ponds on basaltic volcanoes: Interaction between cooling rate and flow geometry allows estimation of lava effusion rates

    Science.gov (United States)

    Wilson, L.; Parfitt, E. A.

    1993-01-01

    Perched lava ponds are infrequent but distinctive topographic features formed during some basaltic eruptions. Two such ponds, each approximately 150 m in diameter, formed during the 1968 eruption at Napau Crater and the 1974 eruption of Mauna Ulu, both on Kilauea Volcano, Hawaii. Each one formed where a channelized, high volume flux lava flow encountered a sharp reduction of slope: the flow spread out radially and stalled, forming a well-defined terminal levee enclosing a nearly circular lava pond. We describe a model of how cooling limits the motion of lava spreading radially into a pond and compare this with the case of a channelized flow. The difference in geometry has a major effect, such that the size of a pond is a good indicator of the volume flux of the lava forming it. Lateral spreading on distal shallow slopes is a major factor limiting the lengths of lava flows.

  13. Constraints on the Lithospheric Strength at Volcanic Rifted Margins from the Geometry of Seaward Dipping Reflectors Using Analytic and Numerical Models

    Science.gov (United States)

    Tian, X.; Buck, W. R.

    2017-12-01

    Seaward dipping reflectors (SDRs) are found at many rifted margins. Drilling indicates SDRs are interbedded layers of basalts and sediments. Multi-channel seismic reflection data show SDRs with various width (2 100 km), thickness (1 15 km) and dip angles (0 30). Recent studies use analytic thin plate models (AtPM) to describe plate deflections under volcanic loads. They reproduce a wide range of SDRs structures without detachment faulting. These models assume that the solidified dikes provide downward loads at the rifting center. Meanwhile, erupted lava flows and sediments fill in the flexural depression and further load the lithosphere. Because the strength of the lithosphere controls the amount and wavelength of bending, the geometries of SDRs provide a window into the strength of the lithosphere during continental rifting. We attempt to provide a quantitative mapping between the SDR geometry and the lithospheric strength and thickness during rifting. To do this, we first derive analytic solutions to two observables that are functions of effective elastic thickness (Te). One observable (Xf) is the horizontal distance for SDRs to evolve from flat layers to the maximum bent layers. Another observable is the ratio between the thickness and the tangent of the maximum slope of SDRs at Xf. We then extend the AtPM to numerical thin plate models (NtPM) with spatially restricted lava flows. AtPM and NtPM show a stable and small relative difference in terms of the two observables with different values of Te. This provides a mapping of Te between NtPM and AtPM models. We also employ a fully two-dimensional thermal-mechanical treatment with elasto-visco-plastic rheology to simulate SDRs formation. These models show that brittle yielding due to bending can reduce the Te of the lithosphere by as much as 50% of the actual brittle lithospheric thickness. Quantification of effects of plastic deformation on bending allow us to use Te to link SDRs geometries to brittle lithospheric

  14. The origin and evolution of silicic magmas during continental rifting: new constraints from trace elements and oxygen isotopes from Ethiopian volcanoes

    Science.gov (United States)

    Hutchison, W.; Boyce, A.; Mather, T. A.; Pyle, D. M.; Yirgu, G.; Gleeson, M. L.

    2017-12-01

    The petrologic diversity of rift magmas is generated by two key processes: interaction with the crust via partial melting or assimilation; and closed-system fractional crystallization of the parental magma. It is not yet known whether these two petrogenetic processes vary spatially between different rift settings, and whether there are any significant secular variations during rift evolution. The Ethiopian Rift is the ideal setting to test these hypotheses because it captures the transition from continental rifting to sea-floor spreading and has witnessed the eruption of large volumes of mafic and silicic volcanic rocks since 30 Ma. We use new oxygen isotope (δ18O) and trace element data to fingerprint fractional crystallisation and partial crustal melting processes in Ethiopia and evaluate spatial variations between three active rift segments. δ18O measurements are used to examine partial crustal melting processes. We find that most δ18O data from basalts to rhyolites fall within the bounds of modelled fractional crystallization trajectories (i.e., 5.5-6.5 ‰). Few samples deviate from this trend, emphasising that fractional crystallization is the dominant petrogenetic processes and that little fusible Precambrian crustal material (δ18O of 7-18 ‰) remain to be assimilated beneath the magmatic segments. Trace element systematics (e.g., Ba, Sr, Rb, Th and Zr) further underscore the dominant role of fractional crystallization but also reveal important variations in the degree of melt evolution between the volcanic systems. We find that the most evolved silicic magmas, i.e., those with greatest peralkalinity (molar Na2O+K2O>Al2O3), are promoted in regions of lowest magma flux off-axis and along rift. Our findings provide new information on the nature of the crust beneath Ethiopia's active magmatic segments and also have relevance for understanding ancient rift zones and the geotectonic settings that promote genesis of economically-valuable mineral deposits.

  15. Esophageal cancer in north rift valley of western Kenya | Wakhisi ...

    African Journals Online (AJOL)

    Esophageal cancer in north rift valley of western Kenya. ... Our finding also contrast with an earlier reported study that indicated that Rift Valley is a low prevalence area for this type of cancer. The mean age ... This may lead to identification of molecular biomarkers to be used in future for the early detection of this neoplasm.

  16. Rift Valley fever potential mosquito vectors and their infection status ...

    African Journals Online (AJOL)

    Background: Rift Valley fever (RVF) is a mosquito-borne viral zoonotic disease. Rift Valley fever virus (RVFV) has been isolated from more than 40 species of mosquitoes from eight genera. This study was conducted to determine the abundance of potential mosquito vectors and their RVFV infection status in Ngorongoro ...

  17. Salt Lakes of the African Rift System: A Valuable Research ...

    African Journals Online (AJOL)

    Salt Lakes of the African Rift System: A Valuable Research Opportunity for Insight into Nature's Concenrtated Multi-Electrolyte Science. JYN Philip, DMS Mosha. Abstract. The Tanzanian rift system salt lakes present significant cultural, ecological, recreational and economical values. Beyond the wealth of minerals, resources ...

  18. 2D resistivity imaging and magnetic survey for characterization of thermal springs: A case study of Gergedi thermal springs in the northwest of Wonji, Main Ethiopian Rift, Ethiopia

    Science.gov (United States)

    Abdulkadir, Yahya Ali; Eritro, Tigistu Haile

    2017-09-01

    Electrical resistivity imaging and magnetic surveys were carried out at Gergedi thermal springs, located in the Main Ethiopian Rift, to characterize the geothermal condition of the area. The area is geologically characterized by alluvial and lacustrine deposits, basaltic lava, ignimbrites, and rhyolites. The prominent structural feature in this part of the Main Ethiopian Rift, the SW -NE trending structures of the Wonji Fault Belt System, crosse over the study area. Three lines of imaging data and numerous magnetic data, encompassing the active thermal springs, were collected. Analysis of the geophysical data shows that the area is covered by low resistivity response regions at shallow depths which resulted from saline moisturized soil subsurface horizon. Relatively medium and high resistivity responses resulting from the weathered basalt, rhyolites, and ignimbrites are also mapped. Qualitative interpretation of the magnetic data shows the presence of structures that could act as pathways for heat and fluids manifesting as springs and also characterize the degree of thermal alteration of the area. Results from the investigations suggest that the Gergedi thermal springs area is controlled by fault systems oriented parallel and sub-parallel to the main tectonic lines of the Main Ethiopian Rift.

  19. Using Lava Tube Skylight Thermal Emission Spectra to Determine Lava Composition on Io: Quantitative Constraints for Observations by Future Missions to the Jovian System.

    Science.gov (United States)

    Davies, A. G.

    2008-12-01

    Deriving the composition of Io's dominant lavas (mafic or ultramafic?) is a major objective of the next missions to the jovian system. The best opportunities for making this determination are from observations of thermal emission from skylights, holes in the roof of a lava tube through which incandescent lava radiates, and Io thermal outbursts, where lava fountaining is taking place [1]. Allowing for lava cooling across the skylight, the expected thermal emission spectra from skylights of different sizes have been calculated for laminar and turbulent tube flow and for mafic and ultramafic composition lavas. The difference between the resulting mafic and ultramafic lava spectra has been quantified, as has the instrument sensitivity needed to acquire the necessary data to determine lava eruption temperature, both from Europa orbit and during an Io flyby. A skylight is an excellent target to observe lava that has cooled very little since eruption (California Institute of Technology, under contract to NASA. AGD is supported by a grant from the NASA OPR Program. References: [1] Davies, A. G., 1996, Icarus, 124, 45-61. [2] Keszthelyi, L., et al., 2006, JGS, 163, 253-264. [3] Davies, A. G., 2007, Volcanism on Io, Cambridge University Press. [4] Keszthelyi, L., et al., 2007, Icarus, 192, 491-502. [5] Davies, A. G., et al., 2006, Icarus, 184, 460-477.

  20. Study of the magmatism related to the rifting of the central and southern Atlantic: 40Ar/39Ar geochronology and geochemistry of Jurassic intrusives of Guinea and French Guyana/Surinam, and Cretaceous intrusives of Brazil

    International Nuclear Information System (INIS)

    Deckart, K.

    1996-01-01

    The initial stage of continental rifting in the Central and South Atlantic has been accompanied by tholeiitic magmatism, which is mainly represented by sills, dykes, layered intrusions and lava flows. During the rifting progression, the syn-rift stage in the South Atlantic has been accompanied by abundant alkaline magmatism. A geochronological and geochemical study has been performed on these formations with the aim to contribute to the understanding of the early continental rifting processes and their evolution. 40 Ar/ 39 Ar analyses have been done on tholeiitic intrusives of Guinea and French Guyana/Surinam, tholeiitic dykes, associated with the Parana volcanism (Brazil), and alkaline dykes in the region of Rio de Janeiro (Brazil). The geochemical and isotopic study has been focused on the tholeiitic intrusions from Guinea and French Guyana/Surinam. These three arms may represent the three branches of a triple junction which was active between 134 to 129 Ma, and which was at the origin of at least the northern Parana traps. Even if the principal magmatic activity can be related to the thermal anomaly due to the Tristan da Cunha hotspot, which favours an active rifting, the tectonic system of the triple junction is not compatible in time and space with this hotspot and therefore with this geodynamic model. It is possible that the Parana traps (133-130 Ma) are only partly contemporaneous and therefore, they might be not related to the same mode of geodynamic initiation. Biotites from the alkaline magmatics of the dyke swarm (NE-SW) near Rio de Janeiro display plateau ages between 82 and 70 Ma; this intense alkaline magmatism was related to vertical movements characterising the syn-rift stage not only in SE-Brazil but also in equatorial Africa. (author)

  1. Lava flooding of ancient planetary crusts: geometry, thickness, and volumes of flooded lunar impact basins

    International Nuclear Information System (INIS)

    Head, J.W.

    1982-01-01

    Estimates of lava volumes on planetary surfaces provide important data on the lava flooding history and thermal evolution of a planet. Lack of information concerning the configuration of the topography prior to volcanic flooding requires the use of a variety of techniques to estimate lava thicknesses and volumes. A technique is described and developed which provides volume estimates by artificially flooding unflooded lunar topography characteristic of certain geological environments, and tracking the area covered, lava thicknesses, and lava volumes. Comparisons of map patterns of incompletely buried topography in these artificially flooded areas are then made to lava-flooded topography on the Moon in order to estimate the actual lava volumes. This technique is applied to two areas related to lunar impact basins; the relatively unflooded Orientale basin, and the Archimedes-Apennine Bench region of the Imbrium basin. (Auth.)

  2. The 2011 El Hierro submarine eruption: estimation of erupted lava flow volume on the basis of helicopter thermal surveys

    Science.gov (United States)

    Hernández, P. A.; Calvari, S.; Calvo, D.; Marquez, A.; Padron, E.; Pérez, N.; Melian, G.; Padilla, G.; Barrancos, J.; Dionis, S.; Rodríguez, F.; Nolasco, D.; Hernández, I.

    2012-04-01

    El Hierro represents the summit of a volcanic shield elevating from the surrounding seafloor at depth of 4000 m to up to 1501 m above sea level. The island is believed to be near the present hotspot location in the Canaries with the oldest subaerial rocks dated at 1.12 Ma. The subaerial parts of the El Hierro rift zones (NE, NW and S Ridges) are characterized by tightly aligned dyke complexes with clusters of cinder cones as their surface expressions. Since 16 July, an anomalous seismicity at El Hierro Island was recorded by IGN seismic network. After the occurrence of more than 10,000 seismic events, volcanic tremor started at 05:15 on 10 October, followed on the afternoon of 12 October by a green discolouration of seawater, strong bubbling and degassing, and abundant bombs on a decimetre scale found floating on the ocean surface offshore, southwest of La Restinga village. The Canary Government raised the alert level from green to yellow on 10 October (3 colour basis: green, yellow, and red). Further episodes have occurred during November, December 2011 and January 2012, with turbulent water, foam rings, and volcanic material again reaching the sea surface. Colour of the discoloured area has changed frequently from light green to dark brown, depending on the eruptive activity. During the whole eruptive period, The Volcanological Institute of Canary Islands and the Helicopter Unit of the Spanish Civil Guard have carried out regularly thermal surveys with a hand held FLIR Thermal Camera P65. The images have been collected taking care of avoiding solar reflection (with cloudy weather) or at times of the day without direct sun light. Air temperature and humidity were measured with a handled thermo-hygrometer every time before the thermal image collection, and measurements were always performed at two fixed heights: 2000 and 1000 feet, and images were collected as perpendicular as possible to the surface. Together with thermal images, digital photos of the surface have

  3. Groundwater fluoride enrichment in an active rift setting: Central Kenya Rift case study

    Energy Technology Data Exchange (ETDEWEB)

    Olaka, Lydia A., E-mail: lydiaolaka@gmail.com [Department of Geology, University of Nairobi, P.O Box 30197, Nairobi (Kenya); Wilke, Franziska D.H. [Geoforschungs Zentrum, Telegrafenberg, 14473 Potsdam (Germany); Olago, Daniel O.; Odada, Eric O. [Department of Geology, University of Nairobi, P.O Box 30197, Nairobi (Kenya); Mulch, Andreas [Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt (Germany); Institut für Geowissenschaften, Goethe Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt (Germany); Musolff, Andreas [UFZ-Helmholtz-Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany)

    2016-03-01

    Groundwater is used extensively in the Central Kenya Rift for domestic and agricultural demands. In these active rift settings groundwater can exhibit high fluoride levels. In order to address water security and reduce human exposure to high fluoride in drinking water, knowledge of the source and geochemical processes of enrichment are required. A study was therefore carried out within the Naivasha catchment (Kenya) to understand the genesis, enrichment and seasonal variations of fluoride in the groundwater. Rocks, rain, surface and groundwater sources were sampled for hydrogeochemical and isotopic investigations, the data was statistically and geospatially analyzed. Water sources have variable fluoride concentrations between 0.02–75 mg/L. 73% exceed the health limit (1.5 mg/L) in both dry and wet seasons. F{sup −} concentrations in rivers are lower (0.2–9.2 mg/L) than groundwater (0.09 to 43.6 mg/L) while saline lake waters have the highest concentrations (0.27–75 mg/L). The higher values are confined to elevations below 2000 masl. Oxygen (δ{sup 18}O) and hydrogen (δD) isotopic values range from − 6.2 to + 5.8‰ and − 31.3 to + 33.3‰, respectively, they are also highly variable in the rift floor where they attain maximum values. Fluoride base levels in the precursor vitreous volcanic rocks are higher (between 3750–6000 ppm) in minerals such as cordierite and muscovite while secondary minerals like illite and kaolinite have lower remnant fluoride (< 1000 ppm). Thus, geochemical F{sup −} enrichment in regional groundwater is mainly due to a) rock alteration, i.e. through long residence times and natural discharge and/or enhanced leakages of deep seated geothermal water reservoirs, b) secondary concentration fortification of natural reservoirs through evaporation, through reduced recharge and/or enhanced abstraction and c) through additional enrichment of fluoride after volcanic emissions. The findings are useful to help improve water management

  4. Pāhoehoe, `a`ā, and block lava: an illustrated history of the nomenclature

    Science.gov (United States)

    Harris, Andrew J. L.; Rowland, Scott K.; Villeneuve, Nicolas; Thordarson, Thor

    2017-01-01

    Lava flows occur worldwide, and throughout history, various cultures (and geologists) have described flows based on their surface textures. As a result, surface morphology-based nomenclature schemes have been proposed in most languages to aid in the classification and distinction of lava surface types. One of the first to be published was likely the nine-class, Italian-language description-based classification proposed by Mario Gemmellaro in 1858. By far, the most commonly used terms to describe lava surfaces today are not descriptive but, instead, are merely words, specifically the Hawaiian words `a`ā (rough brecciated basalt lava) and pāhoehoe (smooth glassy basalt lava), plus block lava (thick brecciated lavas that are typically more silicic than basalt). `A`ā and pāhoehoe were introduced into the Western geological vocabulary by American geologists working in Hawai`i during the 1800s. They and other nineteenth century geologists proposed formal lava-type classification schemes for scientific use, and most of them used the Hawaiian words. In 1933, Ruy Finch added the third lava type, block lava, to the classification scheme, with the tripartite system being formalized in 1953 by Gordon Macdonald. More recently, particularly since the 1980s and based largely on studies of lava flow interiors, a number of sub-types and transitional forms of all three major lava types have been defined. This paper reviews the early history of the development of the pāhoehoe, `a`ā, and block lava-naming system and presents a new descriptive classification so as to break out the three parental lava types into their many morphological sub-types.

  5. Lava Tubes as Martian Analog sites on Hawaii Island

    Science.gov (United States)

    Andersen, Christian; Hamilton, J. C.; Adams, M.

    2013-10-01

    The existence of geologic features similar to skylights seen in Mars Reconnaissance Orbiter HIRISE imagery suggest Martian lava tube networks. Along with pit craters, these features are evidence of a past era of vulcanism. If these were contemporary with the wet Mars eras, then it is suggestive that any Martian life may have retreated into these subsurface oases. Hawaii island has numerous lava tubes of differing ages, humidity, lengths and sizes that make ideal analog test environments for future Mars exploration. PISCES has surveyed multiple candidate sites during the past summer with a team of University of Hawaii at Hilo student interns. It should be noted that Lunar features have also been similarly discovered via Lunar Reconnaissance Orbiter LROC imagery.

  6. Numerical simulation of lava flow using a GPU SPH model

    Directory of Open Access Journals (Sweden)

    Eugenio Rustico

    2011-12-01

    Full Text Available A smoothed particle hydrodynamics (SPH method for lava-flow modeling was implemented on a graphical processing unit (GPU using the compute unified device architecture (CUDA developed by NVIDIA. This resulted in speed-ups of up to two orders of magnitude. The three-dimensional model can simulate lava flow on a real topography with free-surface, non-Newtonian fluids, and with phase change. The entire SPH code has three main components, neighbor list construction, force computation, and integration of the equation of motion, and it is computed on the GPU, fully exploiting the computational power. The simulation speed achieved is one to two orders of magnitude faster than the equivalent central processing unit (CPU code. This GPU implementation of SPH allows high resolution SPH modeling in hours and days, rather than in weeks and months, on inexpensive and readily available hardware.

  7. Lava bubble-wall fragments formed by submarine hydrovolcanic explosions on Lo'ihi Seamount and Kilauea Volcano

    Science.gov (United States)

    Clague, D.A.; Davis, A.S.; Bischoff, J.L.; Dixon, J.E.; Geyer, R.

    2000-01-01

    Glassy bubble-wall fragments, morphologically similar to littoral limu o Pele, have been found in volcanic sands erupted on Lo'ihi Seamount and along the submarine east rift zone of Kilauea Volcano. The limu o Pele fragments are undegassed with respect to H2O and S and formed by mild steam explosions. Angular glass sand fragments apparently form at similar, and greater, depths by cooling-contraction granulation. The limu o Pele fragments from Lo'ihi Seamount are dominantly tholeiitic basalt containing 6.25-7.25% MgO. None of the limu o Pele samples from Lo'ihi Seamount contains less than 5.57% MgO, suggesting that higher viscosity magmas do not form lava bubbles. The dissolved CO2 and H2O contents of 7 of the limu o Pele fragments indicate eruption at 1200??300 m depth (120??30 bar). These pressures exceed that generally thought to limit steam explosions. We conclude that hydrovolcanic eruptions are possible, with appropriate pre-mixing conditions, at pressures as great as 120 bar.

  8. Calculated viscosity-distance dependence for some actively flowing lavas

    International Nuclear Information System (INIS)

    Pieri, D.

    1987-01-01

    The importance of viscosity as a gauge of the various energy and momentum dissipation regimes of lava flows has been realized for a long time. Nevertheless, despite its central role in lava dynamics and kinematics, it remains among the most difficult of flow physical properties to measure in situ during an eruption. Attempts at reconstructing the actual emplacement viscosities of lava flows from their solidified topographic form are difficult. Where data are available on the position of an advancing flow front as a function of time, it is possible to calculate the effective viscosity of the front as a function of distance from the vent, under the assumptions of a steady state regime. As an application and test of an equation given, relevant parameters from five recent flows on Mauna Loa and Kilauea were utilized to infer the dynamic structure of their aggregate flow front viscosity as they advanced, up to cessation. The observed form of the viscosity-distance relation for the five active Hawaiian flows examined appears to be exponential, with a rapid increase just before the flows stopped as one would expect

  9. Wisata Bencana : Sebuah Studi Kasus Lava Tour Gunung Merapi

    Directory of Open Access Journals (Sweden)

    Zein Mufarrih Muktaf

    2017-09-01

    ABSTRACK The emergence of ecotourism trends as part of nature tourism to be an offer for tourists who want to feel the sensation of different tourist. In addition to the emergence of ecotourism, also appeared many other sort of tourism, such as dark tourism and disaster tourism. Dark tourism and disaster tourism is interesting enough to be discussion. The quention of this research is how the phenomenon of disaster tourism on Lava Tour in Mount Merapi? The purpose of this research is to know the practice of disaster tour “Lava Tour” Mount Merapi. The object of research is community-based tourism in Lava Tour area located in Disaster Prone Area (Kawasan Rawan Bencana III. Research method using case study approach. The conclusion of this research is, first, disaster tour is educational tour which destruction, death and back a life as tourist attraction. Secondly, that disaster tour presents a trip or tour because tourists can direct to see the disaster site. Third, the role of communication between the community-based tourism to the tourists are very important, such as telling the chronology of events to the tourists. It is better if the source of information teller is a direct victim or a direct eye witness, because it is more authentic and convincing. Fourth, disaster tourism prefers the interaction between witnesses and tourists. Fifth, disaster tours can be part of disaster literacy, as witnesses or victims explain a lot about disaster. Keywod : disaster tourism; tour; Mount Merapi; Tourism Communication; disaster literacy

  10. Modeling risk assessment for nuclear processing plants with LAVA

    International Nuclear Information System (INIS)

    Smith, S.T.; Tisinger, R.M.

    1988-01-01

    Using the Los Alamos Vulnerability and Risk Assessment (LAVA) methodology, the authors developed a model for assessing risks associated with nuclear processing plants. LAVA is a three-part systematic approach to risk assessment. The first part is the mathematical methodology; the second is the general personal computer-based software engine; and the third is the application itself. The methodology provides a framework for creating applications for the software engine to operate upon; all application-specific information is data. Using LAVA, the authors build knowledge-based expert systems to assess risks in applications systems comprising a subject system and a safeguards system. The subject system model is sets of threats, assets, and undesirable outcomes. The safeguards system model is sets of safeguards functions for protecting the assets from the threats by preventing or ameliorating the undesirable outcomes, sets of safeguards subfunctions whose performance determine whether the function is adequate and complete, and sets of issues, appearing as interactive questionnaires, whose measures (in both monetary and linguistic terms) define both the weaknesses in the safeguards system and the potential costs of an undesirable outcome occurring

  11. Palæomagnetism of Hawaiian lava flows

    Science.gov (United States)

    Doell, Richard R.; Cox, Allan

    1961-01-01

    PALÆOMAGNETIC investigations of volcanic rocks extruded in various parts of the world during the past several million years have generally revealed a younger sequence of lava flows magnetized nearly parallel to the field of a theoretical geocentric axial dipole, underlain by a sequence of older flows with exactly the opposite direction of remanent magnetization. A 180-degree reversal of the geomagnetic field, occurring near the middle of the Pleistocene epoch, has been inferred by many workers from such results1–3. This is a preliminary report of an investigation of 755 oriented samples collected from 152 lava flows on the island of Hawaii, selected to represent as many stratigraphic horizons as possible. (Sampling details are indicated in Table 1.) This work was undertaken because Hawaii's numerous thick sequences of lava flows, previously mapped as Pliocene to Historic by Stearns and Macdonald4, and afterwards assigned ages ranging from later Tertiary to Recent, by Macdonald and Davis5, appeared to offer an ideal opportunity to examine the most recent reversal of Earth's field.

  12. LAVA: a conceptual framework for automated risk assessment

    International Nuclear Information System (INIS)

    Smith, S.T.; Brown, D.C.; Erkkila, T.H.; FitzGerald, P.D.; Lim, J.J.; Massagli, L.; Phillips, J.R.; Tisinger, R.M.

    1986-01-01

    At the Los Alamos National Laboratory we are developing the framework for generating knowledge-based systems that perform automated risk analyses on an organization's assets. An organization's assets can be subdivided into tangible and intangible assets. Tangible assets include facilities, materiel, personnel, and time, while intangible assets include such factors as reputation, employee morale, and technical knowledge. The potential loss exposure of an asset is dependent upon the threats (both static and dynamic), the vulnerabilities in the mechanisms protecting the assets from the threats, and the consequences of the threats successfully exploiting the protective systems vulnerabilities. The methodology is based upon decision analysis, fuzzy set theory, natural-language processing, and event-tree structures. The Los Alamos Vulnerability and Risk Assessment (LAVA) methodology has been applied to computer security. LAVA is modeled using an interactive questionnaire in natural language and is fully automated on a personal computer. The program generates both summary reports for use by both management personnel and detailed reports for use by operations staff. LAVA has been in use by the Nuclear Regulatory Commission and the National Bureau of Standards for nearly two years and is presently under evaluation by other governmental agencies. 7 refs

  13. Study of the thermoluminescent properties of lava from different origins

    International Nuclear Information System (INIS)

    Molina, D.; Correcher, V.; Delgado, A.; Garcia G, J.

    2002-01-01

    In this work has been studied the thermoluminescent signal (Tl) of lava from different geographical area (Costa Rica, the Canary Islands, Hawaii, Iceland and Italy) and originating in distinct eruptions, for its possible use such as in the dating field (geological and archaeological) as in retrospective dosimetry. Due that the light emission is intimately related with the punctual defects existent in the structure of material associated to the presence of different mineral phases, it was realized a study by X-ray diffraction for determining the main components of the lava observing the presence, in distinct proportions of cristobalite, plagioclases (chalcosodic feldspars) and philosilicates (augite, montmorillonite, forsterite and actinolite). All the detected mineral components present Tl emission in the blue region. Each one of the lava were artificially irradiated for proving the dependence of the luminescent signal with the dose in the range 1 to 25 Gy, observing a linear response with the dose in all the cases and not appreciating saturation in the Tl emission. Such the appropriate signal of natural samples (TLN) as the irradiated samples in the laboratory (TLI) show a complex structure associated with a continuous distribution of traps at temperature higher than 100 C which could be explained as consequence of the dynamic formation-annihilation of centers [AlO 4 /alkali] + and [AlO 4 ] 0 . In TLI was observed that a nearer to 85 C appeared a maximum whose structure correspond a discrete distribution of traps, coexisting therefore the two types of traps structure. (Author)

  14. Inferred Early Permian Arc Rifting in Bogda Mountain, Southernmost of the Central Asia Orogenic Belt: Evidence from a Peperite Bearing Volcano-Sedimentary Succession

    Science.gov (United States)

    Memtimin, M.; Guo, Z.

    2017-12-01

    Late Paleozoic tectonic history, especially Carboniferous-Permian periods, of the Central Asia Orogenic Belt (CAOB) is considered to be the turning point for the termination of terrane amalgamation and closure of the Paleoasian Ocean. However, the debate about the paleoenvironment and tectonic setting of the region during the period is still not resolved. In this study, we report a set of volcano-sedimentary sequence in the Bogda Mountain of the southernmost of CAOB, which is associated with contemporaneous subaqueous emplacement of and interaction between mafic lava and carbonate sediments. The succession contains four distinct facies including closely packed pillow basalts, pillow basalts with interstitial materials, hyaloclastites and peperites. We discuss their formation and emplacement mechanism, interaction between hot magma-water/unconsolidated sediments and thermal metamorphism during the interaction. Textural features of the sequence, especially hyaloclastites and peperites, provide clear evidence for in situ autofragmentation of lava flows, synvolcanic sedimentation of carbonates, fuel coolant interaction when hot magma bulldozed into wet unconsolidated sediments, and represent autochthonous origin of the succession. Lateral transition of the lithofacies indicate a progressively deepening subaqueous environment, resembling a stepwise evolution from early stage of volcanic intrusion with lower lava flux in shallower water level to increasingly subsiding basin with more lava flux in greater depth. Previous studies determined that the mafic magma was intruded around the Carboniferous-Permian boundary ( 300Ma), and geochemical studies showed the magma was originated from dry depleted mantle with little crustal contamination. Nevertheless, the succession was thought to be fault related allochthones formation which was transferred in as part of a Carboniferous intraplate arc. Combining our findings with the previous study results, we propose a new model to

  15. Archaeology in the Kilauea East Rift Zone: Part 1, Land-use model and research design, Kapoho, Kamaili and Kilauea Geothermal Subzones, Puna District, Hawaii Island

    Energy Technology Data Exchange (ETDEWEB)

    Burtchard, G.C.; Moblo, P. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

    1994-07-01

    The Puna Geothermal Resource Subzones (GRS) project area encompasses approximately 22,000 acres centered on the Kilauea East Rift Zone in Puna District, Hawaii Island. The area is divided into three subzones proposed for geothermal power development -- Kilauea Middle East Rift, Kamaili and Kapoho GRS. Throughout the time of human occupation, eruptive episodes along the rift have maintained a dynamic landscape. Periodic volcanic events, for example, have changed the coastline configuration, altered patterns of agriculturally suitable sediments, and created an assortment of periodically active, periodically quiescent, volcanic hazards. Because of the active character of the rift zone, then, the area`s occupants have always been obliged to organize their use of the landscape to accommodate a dynamic mosaic of lava flow types and ages. While the specific configuration of settlements and agricultural areas necessarily changed in response to volcanic events, it is possible to anticipate general patterns in the manner in which populations used the landscape through time. This research design offers a model that predicts the spatial results of long-term land-use patterns and relates them to the character of the archaeological record of that use. In essence, the environmental/land-use model developed here predicts that highest population levels, and hence the greatest abundance and complexity of identifiable prehistoric remains, tended to cluster near the coast at places that maximized access to productive fisheries and agricultural soils. With the possible exception of a few inland settlements, the density of archaeological remains expected to decrease with distance from the coastline. The pattern is generally supported in the regions existing ethnohistoric and archaeological record.

  16. Observations of obsidian lava flow emplacement at Puyehue-Cordón Caulle, Chile

    Science.gov (United States)

    Tuffen, H.; Castro, J. M.; Schipper, C. I.; James, M. R.

    2012-04-01

    The dynamics of obsidian lava flow emplacement remain poorly understood as active obsidian lavas are seldom seen. In contrast with well-documented basaltic lavas, we lack observational data on obsidian flow advance and temporal evolution. The ongoing silicic eruption at Puyehue-Cordón Caulle volcanic complex (PCCVC), southern Chile provides an unprecedented opportunity to witness and study obsidian lava on the move. The eruption, which started explosively on June 4th 2011, has since June 20 generated an active obsidian flow field that remains active at the time of writing (January 2012), with an area of ~6 km2, and estimated volume of ~0.18 km3. We report on observations, imaging and sampling of the north-western lava flow field on January 4th and 10th 2012, when vent activity was characterised by near-continuous ash venting and Vulcanian explosions (Schipper et al, this session) and was simultaneously feeding the advancing obsidian flow (Castro et al, this session). On January 4th the north-western lava flow front was characterised by two dominant facies: predominant rubbly lava approximately 30-40 m thick and mantled by unstable talus aprons, and smoother, thinner lobes of more continuous lava ~50 m in length that extended roughly perpendicular to the overall flow direction, forming lobes that protrude from the flow margin, and lacked talus aprons. The latter lava facies closely resembled squeeze-up structures in basaltic lava flows[1] and appeared to originate from and overlie the talus apron of the rubbly lava. Its upper surface consisted of smooth, gently folded lava domains cut by crevasse-like tension gashes. During ~2 hours of observation the squeeze-up lava lobe was the most frequent location of small-volume rockfalls, which occurred at ~1-10 minute intervals from the flow front and indicated a locus of lava advance. On January 10th the squeeze-up lava lobes had evolved significantly, with disruption and breakage of smooth continuous lava surfaces to form

  17. Guidebook to Rio Grande rift in New Mexico

    Science.gov (United States)

    Hawley, J.W.

    1978-01-01

    Discusses the details of geologic features along the rift zone. Included are short papers on topics relative to the overall region. These papers and the road logs are of special interest to any one pursuing further study of the rift. This book is a comprehensive guide to the middle and late Cenozoic geology of the Rio Grande region of Colorado and New Mexico. Though initially used on field trips for the International Symposium on Tectonics and Magmatism of the Rio Grande rift, the guidebook will be useful to anyone interested in the Cenozoic history of the 600-mi-long area extending from central Colorado to El Paso, Texas.

  18. Key variables influencing patterns of lava dome growth and collapse

    Science.gov (United States)

    Husain, T.; Elsworth, D.; Voight, B.; Mattioli, G. S.; Jansma, P. E.

    2013-12-01

    Lava domes are conical structures that grow by the infusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Dome growth can be characterized by repeated cycles of growth punctuated by collapse, as the structure becomes oversized for its composite strength. Within these cycles, deformation ranges from slow long term deformation to sudden deep-seated collapses. Collapses may range from small raveling failures to voluminous and fast-moving pyroclastic flows with rapid and long-downslope-reach from the edifice. Infusion rate and magma rheology together with crystallization temperature and volatile content govern the spatial distribution of strength in the structure. Solidification, driven by degassing-induced crystallization of magma leads to the formation of a continuously evolving frictional talus as a hard outer shell. This shell encapsulates the cohesion-dominated soft ductile core. Here we explore the mechanics of lava dome growth and failure using a two-dimensional particle-dynamics model. This meshless model follows the natural evolution of a brittle carapace formed by loss of volatiles and rheological stiffening and avoids difficulties of hour-glassing and mesh-entangelment typical in meshed models. We test the fidelity of the model against existing experimental and observational models of lava dome growth. The particle-dynamics model follows the natural development of dome growth and collapse which is infeasible using simple analytical models. The model provides insight into the triggers that lead to the transition in collapse mechasnism from shallow flank collapse to deep seated sector collapse. Increase in material stiffness due to decrease in infusion rate results in the transition of growth pattern from endogenous to exogenous. The material stiffness and strength are strongly controlled by the magma infusion rate. Increase in infusion rate decreases the time available for degassing induced crystallization leading to a

  19. Disruption of tephra fall deposits caused by lava flows during basaltic eruptions

    Science.gov (United States)

    Brown, R. J.; Thordarson, T.; Self, S.; Blake, S.

    2015-10-01

    Observations in the USA, Iceland and Tenerife, Canary Islands reveal how processes occurring during basaltic eruptions can result in complex physical and stratigraphic relationships between lava and proximal tephra fall deposits around vents. Observations illustrate how basaltic lavas can disrupt, dissect (spatially and temporally) and alter sheet-form fall deposits. Complexity arises through synchronous and alternating effusive and explosive activity that results in intercalated lavas and tephra deposits. Tephra deposits can become disrupted into mounds and ridges by lateral and vertical displacement caused by movement (including inflation) of underlying pāhoehoe lavas and clastogenic lavas. Mounds of tephra can be rafted away over distances of 100 s to 1,000 s m from proximal pyroclastic constructs on top of lava flows. Draping of irregular topography by fall deposits and subsequent partial burial of topographic depressions by later lavas can result in apparent complexity of tephra layers. These processes, deduced from field relationships, have resulted in considerable stratigraphic complexity in the studied proximal regions where fallout was synchronous or alternated with inflation of subjacent lava sheets. These mechanisms may lead to diachronous contact relationships between fall deposits and lava flows. Such complexities may remain cryptic due to textural and geochemical quasi-homogeneity within sequences of interbedded basaltic fall deposits and lavas. The net effect of these processes may be to reduce the usefulness of data collected from proximal fall deposits for reconstructing basaltic eruption dynamics.

  20. Erosion by flowing lava: Geochemical evidence in the Cave Basalt, Mount St. Helens, Washington

    Science.gov (United States)

    Williams, D.A.; Kadel, S.D.; Greeley, R.; Lesher, C.M.; Clynne, M.A.

    2004-01-01

    We sampled basaltic lava flows and underlying dacitic tuff deposits in or near lava tubes of the Cave Basalt, Mount St. Helens, Washington to determine whether the Cave Basalt lavas contain geochemical evidence of substrate contamination by lava erosion. The samples were analyzed using a combination of wavelength-dispersive X-ray fluorescence spectrometry and inductively-coupled plasma mass spectrometry. The results indicate that the oldest, outer lava tube linings in direct contact with the dacitic substrate are contaminated, whereas the younger, inner lava tube linings are uncontaminated and apparently either more evolved or enriched in residual liquid. The most heavily contaminated lavas occur closer to the vent and in steeper parts of the tube system, and the amount of contamination decreases with increasing distance downstream. These results suggest that erosion by lava and contamination were limited to only the initially emplaced flows and that erosion was localized and enhanced by vigorous laminar flow over steeper slopes. After cooling, the initial Cave Basalt lava flows formed an insulating lining within the tubes that prevented further erosion by later flows. This interpretation is consistent with models of lava erosion that predict higher erosion rates closer to sources and over steeper slopes. A greater abundance of xenoliths and xenocrysts relative to xenomelts in hand samples indicates that mechanical erosion rather than thermal erosion was the dominant erosional process in the Cave Basalt, but further sampling and petrographic analyses must be performed to verify this hypothesis. ?? Springer-Verlag 2003.

  1. Regional magnetic anomaly constraints on continental rifting

    Science.gov (United States)

    Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.

    1985-01-01

    Radially polarized MAGSAT anomalies of North and South America, Europe, Africa, India, Australia and Antarctica demonstrate remarkably detailed correlation of regional magnetic lithospheric sources across rifted margins when plotted on a reconstruction of Pangea. These major magnetic features apparently preserve their integrity until a superimposed metamorphoric event alters the magnitude and pattern of the anomalies. The longevity of continental scale magnetic anomalies contrasts markedly with that of regional gravity anomalies which tend to reflect predominantly isostatic adjustments associated with neo-tectonism. First observed as a result of NASA's magnetic satellite programs, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans. Accordingly, satellite magnetic observations provide a further tool for investigating continental drift to compliment other lines of evidence in paleoclimatology, paleontology, paleomagnetism, and studies of the radiometric ages and geometric fit of the continents.

  2. The rifted margin of Saudi Arabia

    Science.gov (United States)

    McClain, J. S.; Orcutt, J. A.

    The structure of rifted continental margins has always been of great scientific interest, and now, with dwindling economic oil deposits, these complex geological features assume practical importance as well. The ocean-continent transition is, by definition, laterally heterogeneous and likely to be extremely complicated. The southernmost shotpoints (4, 5, and 6) in the U.S. Geological Survey seismic refraction profile in the Kingdom of Saudi Arabia lie within a transition region and thus provide a testing ground for methods that treat wave propagation in laterally heterogeneous media. This portion of the profile runs from the Farasan Islands in the Red Sea across the coast line and the Hijaz-Asir escarpment into the Hijaz-Asir tectonic province. Because the southernmost shotpoint is within the margin of the Saudi sub-continent, the full transition region is not sampled. Furthermore, such an experiment is precluded by the narrowness of the purely oceanic portion of the Red Sea.

  3. Deriving spatial patterns from a novel database of volcanic rock geochemistry in the Virunga Volcanic Province, East African Rift

    Science.gov (United States)

    Poppe, Sam; Barette, Florian; Smets, Benoît; Benbakkar, Mhammed; Kervyn, Matthieu

    2016-04-01

    The Virunga Volcanic Province (VVP) is situated within the western branch of the East-African Rift. The geochemistry and petrology of its' volcanic products has been studied extensively in a fragmented manner. They represent a unique collection of silica-undersaturated, ultra-alkaline and ultra-potassic compositions, displaying marked geochemical variations over the area occupied by the VVP. We present a novel spatially-explicit database of existing whole-rock geochemical analyses of the VVP volcanics, compiled from international publications, (post-)colonial scientific reports and PhD theses. In the database, a total of 703 geochemical analyses of whole-rock samples collected from the 1950s until recently have been characterised with a geographical location, eruption source location, analytical results and uncertainty estimates for each of these categories. Comparative box plots and Kruskal-Wallis H tests on subsets of analyses with contrasting ages or analytical methods suggest that the overall database accuracy is consistent. We demonstrate how statistical techniques such as Principal Component Analysis (PCA) and subsequent cluster analysis allow the identification of clusters of samples with similar major-element compositions. The spatial patterns represented by the contrasting clusters show that both the historically active volcanoes represent compositional clusters which can be identified based on their contrasted silica and alkali contents. Furthermore, two sample clusters are interpreted to represent the most primitive, deep magma source within the VVP, different from the shallow magma reservoirs that feed the eight dominant large volcanoes. The samples from these two clusters systematically originate from locations which 1. are distal compared to the eight large volcanoes and 2. mostly coincide with the surface expressions of rift faults or NE-SW-oriented inherited Precambrian structures which were reactivated during rifting. The lava from the Mugogo

  4. Preferential rifting of continents - A source of displaced terranes

    Science.gov (United States)

    Vink, G. E.; Morgan, W. J.; Zhao, W.-L.

    1984-01-01

    Lithospheric rifting, while prevalent in the continents, rarely occurs in oceanic regions. To explain this preferential rifting of continents, the total strength of different lithospheres is compared by integrating the limits of lithospheric stress with depth. Comparisons of total strength indicate that continental lithosphere is weaker than oceanic lithosphere by about a factor of three. Also, a thickened crust can halve the total strength of normal continental lithosphere. Because the weakest area acts as a stress guide, any rifting close to an ocean-continent boundary would prefer a continental pathway. This results in the formation of small continental fragments or microplates that, once accreted back to a continent during subduction, are seen as displaced terranes. In addition, the large crustal thicknesses associated with suture zones would make such areas likely locations for future rifting episodes. This results in the tendency of new oceans to open along the suture where a former ocean had closed.

  5. Artificial Synthesis of Conserved Segment S Gene Fragment of Rift ...

    African Journals Online (AJOL)

    Fragment of Rift Valley Fever Virus and Preliminary Study of Its Reverse ... blindness, encephalitis, hemorrhagic hepatitis, and, in serious ... over 30 mosquito species [5] of mosquito. As ..... RVFV, as a mosquito-borne virus for a multitude.

  6. Gravity anomalies, crustal structure and rift tectonics at the Konkan ...

    Indian Academy of Sciences (India)

    trolled by the mode of extension and thinning of continental ... facilitates to evaluate the mechanism of rifting, thermal as ..... estimated as the median depth between the back- stripped .... and gravity modeling with an application to the Gulf of.

  7. SALT LAKES OF THE AFRICAN RIFT SYSTEM: A VALUABLE ...

    African Journals Online (AJOL)

    dell

    rift lake locations fitting the description. “endorheic” (closed) ... updating, as well as harness the scholarship ... Ionic concentrations are location and season .... Progress and effects of weathering of Lake Natron Basin rock formations; a hill in.

  8. Comparison of sampling techniques for Rift Valley Fever virus ...

    African Journals Online (AJOL)

    time for trapping potential vectors for Rift Valley Fever virus. ..... Krockel, U., Rose, A., Eiras, A.E. & Geier, M. (2006) New tools for surveillance of adult yellow fever ... baited trapping systems for sampling outdoor mosquito populations in ...

  9. Controls of inherited lithospheric heterogeneity on rift linkage: Numerical and analog models of interaction between the Kenyan and Ethiopian rifts across the Turkana depression

    Science.gov (United States)

    Brune, Sascha; Corti, Giacomo; Ranalli, Giorgio

    2017-09-01

    Inherited rheological structures in the lithosphere are expected to have large impact on the architecture of continental rifts. The Turkana depression in the East African Rift connects the Main Ethiopian Rift to the north with the Kenya rift in the south. This region is characterized by a NW-SE trending band of thinned crust inherited from a Mesozoic rifting event, which is cutting the present-day N-S rift trend at high angle. In striking contrast to the narrow rifts in Ethiopia and Kenya, extension in the Turkana region is accommodated in subparallel deformation domains that are laterally distributed over several hundred kilometers. We present both analog experiments and numerical models that reproduce the along-axis transition from narrow rifting in Ethiopia and Kenya to a distributed deformation within the Turkana depression. Similarly to natural observations, our models show that the Ethiopian and Kenyan rifts bend away from each other within the Turkana region, thus forming a right-lateral step over and avoiding a direct link to form a continuous N-S depression. The models reveal five potential types of rift linkage across the preexisting basin: three types where rifts bend away from the inherited structure connecting via a (1) wide or (2) narrow rift or by (3) forming a rotating microplate, (4) a type where rifts bend towards it, and (5) straight rift linkage. The fact that linkage type 1 is realized in the Turkana region provides new insights on the rheological configuration of the Mesozoic rift system at the onset of the recent rift episode.

  10. The Anatomy of the Blue Dragon: Changes in Lava Flow Morphology and Physical Properties Observed in an Open Channel Lava Flow as a Planetary Analogue

    Science.gov (United States)

    Sehlke, A.; Kobs-Nawotniak, S. E.; Hughes, S. S.; Sears, D. W. G.; Downs, M.; Whittington, A. G.; Lim, D. S. S.; Heldmann, J. L.

    2017-12-01

    Lava terrains on other planets and moons exhibit morphologies similar to those found on Earth, such as smooth pāhoehoe transitioning to rough `a`ā terrains based on the viscosity - strain rate relationship of the lava. Therefore, the morphology of lava flows is governed by eruptive conditions such as effusion rate, underlying slope, and the fundamental thermo-physical properties of the lava, including temperature (T), composition (X), viscosity (η), fraction of crystals (φc) and vesicles (φb), as well as bulk density (ρ). These textural and rheological changes were previously studied for Hawaiian lava, where the lava flow started as channelized pāhoehoe and transitioned into `a`ā, demonstrating a systematic trend in T, X, η, φc, φb, and ρ. NASA's FINESSE focuses on Science and Exploration through analogue research. One of the field sites is Craters of the Moon, Idaho. We present field work done at a 3.0 km long lava flow belonging to the Blue Dragon lavas erupted from a chain of spatter cones, which then coalesced into channelized flows. We acquired UAV imagery along the entire length of the flow, and generated a high resolution DTM of 5 cm/pixel, from which we derived height profiles and surface roughness values. Field work included mapping the change in surface morphology and sample collection every 150 meters. In the laboratory, we measured φc, φb, and ρ for all collected samples. Viscosity measurements were carried out by concentric cylinder viscometry at subliquidus temperatures between 1310ºC to 1160ºC to study the rheology of the lava, enabling us to relate changes in flow behavior to T and φc. Our results are consistent with observations made for Hawaiian lava, including increasing bulk density downflow, and porosity changing from connected to isolated pore space. Crystallinity increases downflow, and the transition from pāhoehoe to `a`ā occurs between 1230ºC to 1150ºC, which is prompted by nucleation and growth of plagioclase

  11. Natural-Scale Lava Flow Experiments on Video: Variations with Temperature, Slope, and Effusion Rate

    Science.gov (United States)

    Karson, J. A.; Wysocki, R.; Edwards, B. R.; Lev, E.

    2013-12-01

    Investigations of active basaltic lava flows and analog materials show that flow dynamics and final flow morphology are strongly determined by the rapidly evolving rheology of the lava crust which constrains the downslope advance of the lava flow. The non-dimensional factor Ψ (ratio of the time scale of crust formation to advective heat loss) provides a useful means of comparing different flows. The key parameters that control Ψ include the melt viscosity, temperature, effusion rate, and slope. Experimental lava flows, up to several meters long created in the Syracuse University Lava Project permit these variables to be investigated independently and in combination in volume-limited flows (Pele), that provide additional information on lava crust development. New, continuous flow (cooling-limited) experiments show downslope variations under constant flow conditions.

  12. A meta-analysis of aneurysm formation in laser assisted vascular anastomosis (LAVA)

    Science.gov (United States)

    Chen, Chen; Peng, Fei; Xu, Dahai; Cheng, Qinghua

    2009-08-01

    Laser assisted vascular anastomosis (LAVA) is looked as a particularly promising non-suture method in future. However, aneurysm formation is one of the main reasons delay the clinical application of LAVA. Some scientists investigated the incidence of aneurysms in animal model. To systematically analyze the literature on reported incidence of aneurysm formation in LAVA therapy, we performed a meta-analysis comparing LAVA with conventional suture anastomosis (CSA) in animal model. Data were systematically retrieved and selected from PUBMED. In total, 23 studies were retrieved. 18 studies were excluded, and 5 studies involving 647 animals were included. Analysis suggested no statistically significant difference between LAVA and CSA (OR 1.24, 95%CI 0.66-2.32, P=0.51). Result of meta analysis shows that the technology of LAVA is very close to clinical application.

  13. Numerical modelling of edge-driven convection during rift-to-drift transition: application to the Red Sea

    Science.gov (United States)

    Fierro, Elisa; Capitanio, Fabio A.; Schettino, Antonio; Morena Salerno, V.

    2017-04-01

    We use numerical modeling to investigate the coupling of mantle instabilities and surface tectonics along lithospheric steps developing during rifting. We address whether edge driven convection (EDC) beneath rifted continental margins and shear flow during rift-drift transition can play a role in the observed post-rift compressive tectonic evolution of the divergent continental margins along the Red Sea. We run a series of 2D simulations to examine the relationship between the maximum compression and key geometrical parameters of the step beneath continental margins, such as the step height due to lithosphere thickness variation and the width of the margins, and test the effect of rheology varying temperature- and stress-dependent viscosity in the lithosphere and asthenosphere. The development of instabilities is initially illustrated as a function of these parameters, to show the controls on the lithosphere strain distribution and magnitude. We then address the transient evolution of the instabilities to characterize their duration. In an additional suite of models, we address the development of EDC during plate motions, thus accounting for the mantle shearing due to spreading. Our results show an increase of strain with the step height as well as with the margin width up to 200 km. After this value the influence of ridge margin can be neglected. Strain rates are, then, quantified for a range of laboratory-constrained constitutive laws for mantle and lithosphere forming minerals. These models propose a viable mechanism to explain the post-rift tectonic inversion observed along the Arabian continental margin and the episodic ultra-fast sea floor spreading in the central Red Sea, where the role of EDC has been invoked.

  14. Microseismicity along major Ross Ice Shelf rift resulting from thermal contraction of the near-surface firn layer

    Science.gov (United States)

    Olinger, S.; Wiens, D.; Aster, R. C.; Bromirski, P. D.; Gerstoft, P.; Nyblade, A.; Stephen, R. A.

    2017-12-01

    Seismicity within ice shelves arises from a variety of sources, including calving, rifting, and movement along internal discontinuities. In this study, we identify and locate cryoseisms in the Ross Ice Shelf (RIS) to better understand ice shelf internal stress and deformation. We use data from a two-year 34-station deployment of broadband seismographs operational from December 2014 - November 2016. Two lines of seismographs intersect near 79Sº, 180º close to a large rift, and cryoseisms were recorded by up to 10 seismographs within 40 km of the rift tip. We identified 3600 events from 2015 and grouped them by quality based on the number of stations recording and signal-to-noise ratio. The events show a long-period character compared to similar magnitude tectonic earthquakes, with peak amplitudes at 1-4 Hz and P, S, longitudinal, and surface wave arrivals. Cross correlation analysis shows that the events cannot be divided into a small number of repeating event clusters with identical waveforms. 262 A-quality events were located with a least-squares algorithm using P and S arrivals, and the resulting locations show strong spatial correlation with the rift, with events distributed along the rift rather than concentrated at the tip or any other specific feature. The events do not show teleseismic triggering, and did not occur with increased frequency following the Illapel earthquake (8.3 Mw) or subsequent tsunami. Instead, we note a concentration of activity during the winter months, with several days exhibiting particularly high seismicity rates. We compare the full catalog of events with temperature data from the Antarctic Weather Stations (Lazzara et al, 2012) and find that the largest swarms occur during the most rapid periods of seasonal temperature decline. Internal stress in ice floes and shelves is known to vary with air temperature; as temperature drops, the upper layer of ice thermally contracts, causing near-surface extensional stress to accumulate. We

  15. Geology of the Tyrrhenus Mons Lava Flow Field, Mars

    Science.gov (United States)

    Crown, David A.; Mest, Scott C.

    2014-11-01

    The ancient, eroded Martian volcano Tyrrhenus Mons exhibits a central caldera complex, layered flank deposits dissected by radial valleys, and a 1000+ km-long flow field extending to the southwest toward Hellas Planitia. Past studies suggested an early phase of volcanism dominated by large explosive eruptions followed by subsequent effusive activity at the summit and to the southwest. As part of a new geologic mapping study of northeast Hellas, we are examining the volcanic landforms and geologic evolution of the Tyrrhenus Mons flow field, including the timing and nature of fluvial activity and effects on volcanic units. New digital geologic mapping incorporates THEMIS IR (100 m/pixel) and CTX (5 m/pixel) images as well as constraints from MOLA topography.Mapping results to-date include delineation of the boundaries of the flow field, identification and mapping of volcanic and erosional channels within the flow field, and mapping and analysis of lava flow lobes. THEMIS IR and CTX images allow improved discrimination of the numerous flow lobes that are observed in the flow field, including refinement of the margins of previously known flows and identification of additional and smaller lobes. A prominent sinuous rille extending from Tyrrhenus Mons’ summit caldera is a major feature that supplied lava to the flow field. Smaller volcanic channels are common throughout the flow field; some occur in segments along crests of local topographic highs and may delineate lava tubes. In addition to volcanic channels, the flow field surface is characterized by several types of erosional channels, including wide troughs with scour marks, elongate sinuous channels, and discontinuous chains of elongate pits and troughs. High-resolution images reveal the widespread and significant effects of fluvial activity in the region, and further mapping studies will examine spatial and temporal interactions between volcanism and fluvial processes.

  16. Concentration of strain in a marginal rift zone of the Japan backarc during post-rift compression

    Science.gov (United States)

    Sato, H.; Ishiyama, T.; Kato, N.; Abe, S.; Shiraishi, K.; Inaba, M.; Kurashimo, E.; Iwasaki, T.; Van Horne, A.; No, T.; Sato, T.; Kodaira, S.; Matsubara, M.; Takeda, T.; Abe, S.; Kodaira, C.

    2015-12-01

    Late Cenozoic deformation zones in Japan may be divided into two types: (1) arc-arc collision zones like those of Izu and the Hokkaido axial zone, and (2) reactivated back-arc marginal rift (BMR) systems. A BMR develops during a secondary rifting event that follows the opening of a back-arc basin. It forms close to the volcanic front and distant from the spreading center of the basin. In Japan, a BMR system developed along the Sea of Japan coast following the opening of the Japan Sea. The BMR appears to be the weakest, most deformable part of the arc back-arc system. When active rifting in the marginal basins ended, thermal subsidence, and then mechanical subsidence related to the onset of a compressional stress regime, allowed deposition of up to 5 km of post-rift, deep-marine to fluvial sedimentation. Continued compression produced fault-related folds in the post-rift sediments, in thin-skin style deformation. Shortening reached a maximum in the BMR system compared to other parts of the back-arc, suggesting that it is the weakest part of the entire system. We examined the structure of the BMR system using active source seismic investigation and earthquake tomography. The velocity structure beneath the marginal rift basin shows higher P-wave velocity in the upper mantle/lower crust which suggests significant mafic intrusion and thinning of the upper continental crust. The syn-rift mafic intrusive forms a convex shape, and the boundary between the pre-rift crust and the mafic intrusive dips outward. In the post-rift compressional stress regime, the boundary of the mafic body reactivated as a reverse fault, forming a large-scale wedge thrust and causing further subsidence of the rift basin. The driver of the intense shortening event along the Sea of Japan coast in SW Japan was the arrival of a buoyant young (15 Ma) Shikoku basin at the Nankai Trough. Subduction stalled and the backarc was compressed. As the buoyant basin cooled, subduction resumed, and the rate of

  17. Transitions in Lava Emplacement Recorded in the Deccan Traps Sequence (India)

    Science.gov (United States)

    Vanderkluysen, L.; Self, S.; Jay, A. E.; Sheth, H. C.; Clarke, A. B.

    2015-12-01

    Transitions in the style of lava flow emplacement are recognized in the stratigraphic sequence of several mafic large igneous provinces (LIPs), including the Etendeka (Namibia), the Faeroe Islands (North Atlantic LIP), the Ethiopian Traps, and the Deccan Traps (India). These transitions, from units dominated by meter-sized pāhoehoe toes and lobes to those dominated by inflated sheet lobes tens to hundreds of meters in width and meters to tens of meters in height, seems to be a fundamental feature of LIP emplacement. In the Deccan, this volcanological transition is thought to coincide with deeper changes to the volcano-magmatic system expressed, notably, in the trace element and isotopic signature of erupted flows. We investigated this transition in the Deccan Traps by logging eight sequences along the Western Ghats, an escarpment in western India where the Deccan province is thickest and best exposed. The Deccan province, which once covered ~1 million km2 of west-central India, is subdivided in eleven chemo-stratigraphic formations in the type sections of the Western Ghats. Where the lower Deccan formations are exposed, we found that as much as 65% of the exposed thickness (below the Khandala Formation) is made up of sheet lobes, from 40% in the Bhimashankar Formation to 75% in the Thakurvadi Formation. Near the bottom of the sequence, 25% of the Neral Formation is composed of sheet lobes ≥15 m in thickness. On this basis, the traditional view that inflated sheet lobes are an exclusive feature of the upper part of the stratigraphy must be challenged. Several mechanisms have been proposed to explain the development of compound flows and inflated sheet lobes, involving one or more of the following factors: underlying slope, varying effusion rate, and source geometry. Analogue experiments are currently under way to test the relative influence of each of these factors in the development of different lava flow morphologies in LIPs.

  18. Drained Lava Tubes and Lobes From Eocretaceous Paraná-Etendeka Province, Brazil

    Science.gov (United States)

    Waichel, B. L.; Lima, E. F. D.; Mouro, L. D.; Briske, D. R.; Tratz, E. B.

    2017-12-01

    The identification of lava tubes in continental flood basalt provinces (CFBP) is difficult and reports of preserved drained tubes and lobes are rare. The large extension of CFBP must be related to an efficient transport of lava and tubes are the most efficient mechanism to transport lava in insulated pathways, like observed in modern volcanic fields. Looking for caves in the central portion of Paraná-Etendeka Province, we discovered drained lava tubes (4) and lobes (6) in a volcanic sequence constituted by pahoehoe flows. Lava tubes are: Casa de Pedra, Perau Branco, Dal Pae and Pinhão. The Casa de Pedra tube system is composed of two principal chambers with similar dimensions, reaching up to 10 m long and 4.0 m high connected by a narrow passage. The general form of the chamber is hemispherical, with re-entrances of ellipsoidal shape probably formed by small lava lobes and collapse structures in the roof. The second chamber is connected with three secondary lava tubes. Columns in the cave are formed when the flowing lava separates in two lava channels that join again further down the system, forming and anastomosing tube network. Lateral lava benches and lava drainings at the walls are observed in secondary tubes. The general lava flow is to SW. The Perau Branco system is composed of five tubes with ellipsoidal openings. The main features are the long tubes that emerge from the small flattened chambers. One tube is more than 20 m long, with alternating circular and flattened ellipsoidal sections. The general lava flow is to NE. Pinhão tube is spherical with 3 meters diameter and 15 m long, with lava flow orientation to NW. This tube has a bottleneck shape with linings (up to 3 cm thick), which are observed in the roof and walls. Dal Pae Tube is 10 m long with an ellipsoidal opening, bottleneck shape and orientation to NE. The lava flow directions measured in the tubes is to SW (Casa de Pedra, Pinhão) and NE (Perau Branco, Dal Pae) and this pattern is related to

  19. Geomorphic Response to Spatial and Temporal Tectonic uplift on the Kenya Rift of East African Rift System

    Science.gov (United States)

    Xue, L.; Abdelsalam, M. G.

    2017-12-01

    Tectonic uplifts of the shoulders of the East Africa Rift System (EARS) have significant impact on the geological record by reorganizing drainage systems, increasing sediment supply, and changing climate and biogeography. Recent studies in geochronology, geomorphology and geophysics have provided some understanding of the timing of tectonic uplift and its distribution pattern of the (EARS). We do not know how the vertical motion is localized along the rift axis and the relative roles of upwelling of magma and rift extensional processes play in tectonic uplift history. This work presents detailed morphometric study of the fluvial landscape response to the tectonic uplift and climate shifting of the Kenya Rift shoulders in order to reconstruct their incision history, with special attention to timing, location, and intensity of uplift episodes. This work compiles the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) and Sentinel-2A data, summarized previous 39Ar-40Ar and thermochronology data, and calculates long-term incision rate and geomorphic proxies (normalized steepness and chi-integral) along the Kenya Rift. It also models the age of tectonic/climatic events by using knickpoint celerity model and R/SR integrative approach. It found that the maximum long-term incision rates of 300 mm/kyr to be at the central Kenya Rift, possibly related to the mantle-driven process and rapid tectonic uplift. The geomorphic proxies indicate southward decreasing pattern of the short-term incision rate, possibly related to the migration of the mantle plume.

  20. Study of the thermoluminescent properties of lava from different origins; Estudio de las propiedades termoluminiscentes de lavas de diferentes origenes

    Energy Technology Data Exchange (ETDEWEB)

    Molina, D. [Centro de Proteccion e Higiene de las Radiaciones, A.P. 6195, C.P. 10600, La Habana (Cuba); Correcher, V.; Delgado, A. [CIEMAT. Dosimetria de Radiaciones, Av. Complutense 22, Madrid 28040 (Spain); Garcia G, J. [CSIC. Museo Nacional de Ciencias Naturales, C/Jose Gutierrez Abascal 2. Madrid 28006 (Spain)

    2002-07-01

    In this work has been studied the thermoluminescent signal (Tl) of lava from different geographical area (Costa Rica, the Canary Islands, Hawaii, Iceland and Italy) and originating in distinct eruptions, for its possible use such as in the dating field (geological and archaeological) as in retrospective dosimetry. Due that the light emission is intimately related with the punctual defects existent in the structure of material associated to the presence of different mineral phases, it was realized a study by X-ray diffraction for determining the main components of the lava observing the presence, in distinct proportions of cristobalite, plagioclases (chalcosodic feldspars) and philosilicates (augite, montmorillonite, forsterite and actinolite). All the detected mineral components present Tl emission in the blue region. Each one of the lava were artificially irradiated for proving the dependence of the luminescent signal with the dose in the range 1 to 25 Gy, observing a linear response with the dose in all the cases and not appreciating saturation in the Tl emission. Such the appropriate signal of natural samples (TLN) as the irradiated samples in the laboratory (TLI) show a complex structure associated with a continuous distribution of traps at temperature higher than 100 C which could be explained as consequence of the dynamic formation-annihilation of centers [AlO{sub 4}/alkali]{sup +} and [AlO{sub 4}]{sup 0}. In TLI was observed that a nearer to 85 C appeared a maximum whose structure correspond a discrete distribution of traps, coexisting therefore the two types of traps structure. (Author)

  1. Volcanic eruptions on Io: Heat flow, resurfacing, and lava composition

    Science.gov (United States)

    Blaney, Diana L.; Johnson, Torrence V.; Matson, Dennis L.; Veeder, Glenn J.

    1995-01-01

    We model an infrared outburst on Io as being due to a large, erupting lava flow which increased its area at a rate of 1.5 x 10(exp 5)/sq m and cooled from 1225 to 555 K over the 2.583-hr period of observation. The inferred effusion rate of 3 x 10(exp 5) cu m/sec for this eruption is very high, but is not unprece- dented on the Earth and is similar to the high eruption rates suggested for early lunar volcanism. Eruptions occur approxi- mately 6% of the time on Io. These eruptions provide ample resurfacing to explain Io's lack of impact craters. We suggest that the large total radiometric heat flow, 10(exp 14) W, and the size and temperature distribution of the thermal anomalies (McEwen et al. 1992; Veeder et al. 1994) can be accounted for by a series of silicate lava flows in various stages of cooling. We propose that the whole suite of Io's currently observed thermal anomalies was produced by multiple, high-eruptive-rate silicate flows within the past century.

  2. Remagnetization of lava flows spanning the last geomagnetic reversal

    Science.gov (United States)

    Vella, Jérôme; Carlut, Julie; Valet, Jean-Pierre; Goff, Maxime Le; Soler, Vicente; Lopes, Fernando

    2017-08-01

    Large directional changes of remanent magnetization within lava flows that cooled during geomagnetic reversals have been reported in several studies. A geomagnetic scenario implies extremely rapid geomagnetic changes of several degrees per day, thus difficult to reconcile with the rate of the earth's core liquid motions. So far, no complete rock magnetic model provides a clear explanation. We revisited lava flows sandwiched between an underlying reverse and an overlying normal polarity flow marking the last reversal in three distinct volcanic sequences of the La Palma Island (Canary archipelago, Spain) that are characterized by a gradual evolution of the direction of their remanent magnetization from bottom to top. Cleaning efficiency of thermal demagnetization was not improved by very rapid heating and cooling rates as well as by continuous demagnetization using a Triaxe magnetometer. We did not observe partial self-reversals and minor changes in magnetic grain sizes are not related to the within-flow directional changes. Microscopic observations indicate poor exsolution, which suggests post-cooling thermochemical remagnetization processes. This scenario is strongly reinforced by laboratory experiments that show large resistance to thermal demagnetization when thermoremanence was acquired over a long time period. We speculate that in the present situation exsolution was reactivated during in field reheating and yielded formation of new magnetite, yet magnetic domain state rearrangements could also play a role. Initial reheating when the overlying flow took place, albeit moderate (less than 200-300 °C), was enough to produce overlying components with significantly higher unblocking temperatures.

  3. Disclosing the temperature of columnar jointing in lavas.

    Science.gov (United States)

    Lamur, Anthony; Lavallée, Yan; Iddon, Fiona E; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Wadsworth, Fabian B

    2018-04-12

    Columnar joints form by cracking during cooling-induced contraction of lava, allowing hydrothermal fluid circulation. A lack of direct observations of their formation has led to ambiguity about the temperature window of jointing and its impact on fluid flow. Here we develop a novel thermo-mechanical experiment to disclose the temperature of columnar jointing in lavas. Using basalts from Eyjafjallajökull volcano (Iceland) we show that contraction during cooling induces stress build-up below the solidus temperature (980 °C), resulting in localised macroscopic failure between 890 and 840 °C. This temperature window for incipient columnar jointing is supported by modelling informed by mechanical testing and thermal expansivity measurements. We demonstrate that columnar jointing takes place well within the solid state of volcanic rocks, and is followed by a nonlinear increase in system permeability of <9 orders of magnitude during cooling. Columnar jointing may promote advective cooling in magmatic-hydrothermal environments and fluid loss during geothermal drilling and thermal stimulation.

  4. Owyhee River intracanyon lava flows: does the river give a dam?

    Science.gov (United States)

    Ely, Lisa L.; Brossy, Cooper C.; House, P. Kyle; Safran, Elizabeth B.; O'Connor, Jim E.; Champion, Duane E.; Fenton, Cassandra R.; Bondre, Ninad R.; Orem, Caitlin A.; Grant, Gordon E.; Henry, Christopher D.; Turrin, Brent D.

    2013-01-01

    Rivers carved into uplifted plateaus are commonly disrupted by discrete events from the surrounding landscape, such as lava flows or large mass movements. These disruptions are independent of slope, basin area, or channel discharge, and can dominate aspects of valley morphology and channel behavior for many kilometers. We document and assess the effects of one type of disruptive event, lava dams, on river valley morphology and incision rates at a variety of time scales, using examples from the Owyhee River in southeastern Oregon. Six sets of basaltic lava flows entered and dammed the river canyon during two periods in the late Cenozoic ca. 2 Ma–780 ka and 250–70 ka. The dams are strongly asymmetric, with steep, blunt escarpments facing up valley and long, low slopes down valley. None of the dams shows evidence of catastrophic failure; all blocked the river and diverted water over or around the dam crest. The net effect of the dams was therefore to inhibit rather than promote incision. Once incision resumed, most of the intracanyon flows were incised relatively rapidly and therefore did not exert a lasting impact on the river valley profile over time scales >106 yr. The net long-term incision rate from the time of the oldest documented lava dam, the Bogus Rim lava dam (≤1.7 Ma), to present was 0.18 mm/yr, but incision rates through or around individual lava dams were up to an order of magnitude greater. At least three lava dams (Bogus Rim, Saddle Butte, and West Crater) show evidence that incision initiated only after the impounded lakes filled completely with sediment and there was gravel transport across the dams. The most recent lava dam, formed by the West Crater lava flow around 70 ka, persisted for at least 25 k.y. before incision began, and the dam was largely removed within another 35 k.y. The time scale over which the lava dams inhibit incision is therefore directly affected by both the volume of lava forming the dam and the time required for sediment

  5. Clinopyroxenite dikes crosscutting banded peridotites just above the metamorphic sole in the Oman ophiolite: early cumulates from the primary V3 lava

    Science.gov (United States)

    Ishimaru, Satoko; Arai, Shoji; Tamura, Akihiro

    2013-04-01

    Oman ophiolite is one of the well-known ophiolites for excellent exposures not only of the mantle section but also of the crustal section including effusive rocks and the underlying metamorphic rocks. In the Oman ophiolite, three types of effusive rocks (V1, V2 and V3 from the lower sequences) are recognized: i.e., V1, MORB-like magma, V2, island-arc type lava, and V3, intra-plate lava (Godard et al., 2003 and references there in). V1 and V2 lavas are dominant (> 95 %) as effusive rocks and have been observed in almost all the blocks of northern part of the Oman ophiolite (Godard et al., 2003), but V3 lava has been reported only from Salahi area (Alabaster et al., 1982). It is clear that there was a time gap of lava eruption between V1-2 and V3 based on the presence of pelagic sediments in between (Godard et al., 2003). In addition, V3 lavas are fed by a series of doleritic dikes crosscutting V2 lava (Alley unit) (Alabaster et al., 1982). We found clinopyroxenite (CPXITE) dikes crosscutting deformation structure of basal peridotites just above the metamorphic sole in Wadi Ash Shiyah. The sole metamorphic rock is garnet amphibolite, which overlies the banded and deformed harzburgite and dunite. The CPXITE is composed of coarse clinopyroxene (CPX) with minor amount of chlorite, garnet (hydrous/anhydrous grossular-andradite) with inclusions of titanite, and serpentine formed at a later low-temperature stage. The width of the CPXITE dikes is 2-5 cm (10 cm at maximum) and the dikes contain small blocks of wall harzburgite. Almost all the silicates are serpentinized in the harzburgite blocks except for some CPX. The Mg# (= Mg/(Mg + Fe) atomic ratio) of the CPX is almost constant (= 0.94-0.95) in the serpentinite blocks but varies within the dikes, highest at the contact with the block (0.94) and decreasing with the distance from the contact to 0.81 (0.85 on average). The contents of Al2O3, Cr2O3, and TiO2 in the CPX of the dikes are 0.5-2.0, 0.2-0.6, and 0

  6. The Age of Rift-Related Basalts in East Antarctica

    Science.gov (United States)

    Leitchenkov, G. L.; Belyatsky, B. V.; Kaminsky, V. D.

    2018-01-01

    The Lambert Rift, which is a large intracontinental rift zone in East Antarctica, developed over a long period of geological time, beginning from the Late Paleozoic, and its evolution was accompanied by magmatic activity. The latest manifestation of magmatism is eruption of alkaline olivine-leucite basalts on the western side of the Lambert Rift; Rb-Sr dating referred its time to the Middle Eocene, although its genesis remained vague. In order to solve this problem, we found geochronometer minerals in basaltic samples and 68 apatite grains appeared to be suitable for analysis. Their ages and ages of host basalts, determined by the U-Pb local method on the SIMS SHRIMP-II, were significantly different (323 ± 31 Ma) from those assumed earlier. This age corresponds to the earliest stage of crustal extension in East Antarctica and to most of Gondwana. The new data crucially change the ideas about the evolution of Lambert Rift and demonstrate the ambiguity of K-Ar dates of the alkali effusive formed under long-term rifting.

  7. The evolution of magma during continental rifting: New constraints from the isotopic and trace element signatures of silicic magmas from Ethiopian volcanoes

    Science.gov (United States)

    Hutchison, William; Mather, Tamsin A.; Pyle, David M.; Boyce, Adrian J.; Gleeson, Matthew L. M.; Yirgu, Gezahegn; Blundy, Jon D.; Ferguson, David J.; Vye-Brown, Charlotte; Millar, Ian L.; Sims, Kenneth W. W.; Finch, Adrian A.

    2018-05-01

    Magma plays a vital role in the break-up of continental lithosphere. However, significant uncertainty remains about how magma-crust interactions and melt evolution vary during the development of a rift system. Ethiopia captures the transition from continental rifting to incipient sea-floor spreading and has witnessed the eruption of large volumes of silicic volcanic rocks across the region over ∼45 Ma. The petrogenesis of these silicic rocks sheds light on the role of magmatism in rift development, by providing information on crustal interactions, melt fluxes and magmatic differentiation. We report new trace element and Sr-Nd-O isotopic data for volcanic rocks, glasses and minerals along and across active segments of the Main Ethiopian (MER) and Afar Rifts. Most δ18 O data for mineral and glass separates from these active rift zones fall within the bounds of modelled fractional crystallization trajectories from basaltic parent magmas (i.e., 5.5-6.5‰) with scant evidence for assimilation of Pan-African Precambrian crustal material (δ18 O of 7-18‰). Radiogenic isotopes (εNd = 0.92- 6.52; 87Sr/86Sr = 0.7037-0.7072) and incompatible trace element ratios (Rb/Nb productivity or where crustal structure inhibits magma ascent). This has important implications for understanding the geotectonic settings that promote extreme melt evolution and, potentially, genesis of economically-valuable mineral deposits in ancient rift-settings. The limited isotopic evidence for assimilation of Pan-African crustal material in Ethiopia suggests that the pre-rift crust beneath the magmatic segments has been substantially modified by rift-related magmatism over the past ∼45 Ma; consistent with geophysical observations. We argue that considerable volumes of crystal cumulate are stored beneath silicic volcanic systems (>100 km3), and estimate that crystal cumulates fill at least 16-30% of the volume generated by crustal extension under the axial volcanoes of the MER and Manda Hararo

  8. LiDAR-derived surface roughness signatures of basaltic lava types at the Muliwai a Pele Lava Channel, Mauna Ulu, Hawai`i

    Science.gov (United States)

    Whelley, Patrick L.; Garry, W. Brent; Hamilton, Christopher W.; Bleacher, Jacob E.

    2017-11-01

    We used light detection and ranging (LiDAR) data to calculate roughness patterns (homogeneity, mean-roughness, and entropy) for five lava types at two different resolutions (1.5 and 0.1 m/pixel). We found that end-member types (´áā and pāhoehoe) are separable (with 95% confidence) at both scales, indicating that roughness patterns are well suited for analyzing types of lava. Intermediate lavas were also explored, and we found that slabby-pāhoehoe is separable from the other end-members using 1.5 m/pixel data, but not in the 0.1 m/pixel analysis. This suggests that the conversion from pāhoehoe to slabby-pāhoehoe is a meter-scale process, and the finer roughness characteristics of pāhoehoe, such as ropes and toes, are not significantly affected. Furthermore, we introduce the ratio ENT/HOM (derived from lava roughness) as a proxy for assessing local lava flow rate from topographic data. High entropy and low homogeneity regions correlate with high flow rate while low entropy and high homogeneity regions correlate with low flow rate. We suggest that this relationship is not directional, rather it is apparent through roughness differences of the associated lava type emplaced at the high and low rates, respectively.

  9. Paleomagnetism of Holocene lava flows from the Reykjanes Peninsula and the Tungnaá lava sequence (Iceland): implications for flow correlation and ages

    Science.gov (United States)

    Pinton, Annamaria; Giordano, Guido; Speranza, Fabio; Þórðarson, Þorvaldur

    2018-01-01

    The impact of Holocene eruptive events from hot spots like Iceland may have had significant global implications; thus, dating and knowledge of past eruptions chronology is important. However, at high-latitude volcanic islands, the paucity of soils severely limits 14C dating, while the poor K content of basalts strongly restricts the use of K/Ar and Ar/Ar methods. Even tephrochronology, based on 14C age determinations, refers to layers that rarely lie directly above lava flows to be dated. We report on the paleomagnetic dating of 25 sites from the Reykjanes Peninsula and the Tungnaá lava sequence of Iceland. The gathered paleomagnetic directions were compared with the available reference paleosecular variation curves of the Earth magnetic field to obtain the possible emplacement age intervals. To test the method's validity, we sampled the precisely dated Laki (1783-1784 AD) and Eldgjà (934-938 AD) lavas. The age windows obtained for these events encompass the true flow ages. For sites from the Reykjanes peninsula and the Tugnaá lava sequence, we derived multiple possible eruption events and ages. In the Reykjanes peninsula, we propose an older emplacement age (immediately following the 870 AD Iceland Settlement age) for Ogmundarhraun and Kapelluhraun lava fields. For pre-historical (older than the settlement age) Tugnaá eruptions, the method has a dating precision of 300-400 years which allows an increase of the detail in the chronostratigraphy and distribution of lavas in the Tugnaá sequence.

  10. LiDAR-Derived Surface Roughness Signatures of Basaltic Lava Types at the Muliwai a Pele Lava Channel, Mauna Ulu, Hawai'i

    Science.gov (United States)

    Whelley, Patrick L.; Garry, W. Brent; Hamilton, Christopher W.; Bleacher, Jacob E.

    2017-01-01

    We used light detection and ranging (LiDAR) data to calculate roughness patterns (homogeneity, mean-roughness, and entropy) for five lava types at two different resolutions (1.5 and 0.1 m/pixel). We found that end-member types (a a and pahoehoe) are separable (with 95% confidence) at both scales, indicating that roughness patterns are well suited for analyzing types of lava. Intermediate lavas were also explored, and we found that slabby-pahoehoe is separable from the other end-members using 1.5 m/pixel data, but not in the 0.1 m/pixel analysis. This suggests that the conversion from pahoehoe to slabby-pahoehoe is a meter-scale process, and the finer roughness characteristics of pahoehoe, such as ropes and toes, are not significantly affected. Furthermore, we introduce the ratio ENT/HOM (derived from lava roughness) as a proxy for assessing local lava flow rate from topographic data. High entropy and low homogeneity regions correlate with high flow rate while low entropy and high homogeneity regions correlate with low flow rate.We suggest that this relationship is not directional, rather it is apparent through roughness differences of the associated lava type emplaced at the high and low rates, respectively.

  11. Thermal history of Hawaiian pāhoehoe lava crusts at the glass transition: implications for flow rheology and emplacement

    Science.gov (United States)

    Gottsmann, Joachim; Harris, Andrew J. L.; Dingwell, Donald B.

    2004-12-01

    We have investigated the thermal history of glassy pāhoehoe crusts across their glass transition. Ten different samples obtained between 1993 and 2003 from the active flow field of the Pu'u 'O'o-Kupaianaha eruption on Hawaii (USA) have been analysed using relaxation geospeedometry. This method employs differential scanning calorimetry to quantify the enthalpic relaxation of the glass to monitor the natural time-temperature (t-T) path followed by the melt during cooling across its glass transition. Cooling rates across the glass transition interval (at 1000- 900 K) have been found to vary between 8 and 140 K/min. The associated glass transition temperatures are up to 400 K, lower than previously anticipated by others. Melt viscosities at the glass transition for these crusts range from 10 9.4 to 10 10.7 Pa s. We have compared the t-T paths quantified via relaxation geospeedometry with those obtained from direct measurements on the active flow field. The calorimetrically determined cooling rates are consistent with either simple cooling from eruption temperatures to temperatures below the glass transition or more complex cooling paths, including periods of reheating and short-term annealing within the glass transition interval. By quantifying the relaxation times associated with these contrasting cooling histories, we show that secondary vesiculation of pāhoehoe flow crusts may be favoured by complex, nonlinear t-T paths within the glass transition. These constraints also allow us to evaluate the time scales associated with the crystallisation and inflation of flow lobes at the glass transition for different pāhoehoe lava flow types. Our results provide important quantifications of rheological parameters at the lower temperature range of viscoelastic deformation in basaltic lava flows. As such, the results may be helpful in refining models for the generation of continental flood basalt flows, as well as models of basaltic lava flow propagation for hazard

  12. LAVA: An Open-Source Approach To Designing LAMP (Loop-Mediated Isothermal Amplification DNA Signatures

    Directory of Open Access Journals (Sweden)

    Gardner Shea N

    2011-06-01

    Full Text Available Abstract Background We developed an extendable open-source Loop-mediated isothermal AMPlification (LAMP signature design program called LAVA (LAMP Assay Versatile Analysis. LAVA was created in response to limitations of existing LAMP signature programs. Results LAVA identifies combinations of six primer regions for basic LAMP signatures, or combinations of eight primer regions for LAMP signatures with loop primers, which can be used as LAMP signatures. The identified primers are conserved among target organism sequences. Primer combinations are optimized based on lengths, melting temperatures, and spacing among primer sites. We compare LAMP signature candidates for Staphylococcus aureus created both by LAVA and by PrimerExplorer. We also include signatures from a sample run targeting all strains of Mycobacterium tuberculosis. Conclusions We have designed and demonstrated new software for identifying signature candidates appropriate for LAMP assays. The software is available for download at http://lava-dna.googlecode.com/.

  13. Hawaiian cultural influences on support for lava flow hazard mitigation measures during the January 1960 eruption of Kīlauea volcano, Kapoho, Hawai‘i

    Science.gov (United States)

    Gregg, Chris E.; Houghton, Bruce F.; Paton, Douglas; Swanson, D.A.; Lachman, R.; Bonk, W.J.

    2008-01-01

    In 1960, Kīlauea volcano in Hawaii erupted, destroying most of the village of Kapoho and forcing evacuation of its approximately 300 residents. A large and unprecedented social science survey was undertaken during the eruption to develop an understanding of human behavior, beliefs, and coping strategies among the adult evacuees (n = 160). Identical studies were also performed in three control towns located at varying distances from the eruption site (n = 478). During these studies data were collected that characterized ethnic grouping and attitudes toward Hawaiian cultural issues such as belief in Pele and two lava flow mitigation measures—use of barriers and bombs to influence the flow of lava, but the data were never published. Using these forgotten data, we examined the relationship between Hawaiian cultural issues and attitudes toward the use of barriers and bombs as mitigation strategies to protect Kapoho.

  14. SYN-RIFT SANDSTONЕS: THE FEATURES OF BULK CHEMICAL COMPOSITIONS, AND POSITIONS ON PALEOGEODYNAMIC DISCRIMINANT DIAGRAMS

    Directory of Open Access Journals (Sweden)

    A. V. Maslov

    2018-01-01

    composition of the catchment areas rocks; (2 the position of the syn-rift sandstone compositions, as well as the average values of various indicator ratios and discriminant functions, in the K2O/Na2O–SiO2/Al2O3, F3–F4, SiO2–K2O/Na2O and DF1–DF2 diagrams. The analysis of the results shows that the fields of the syn-rift sandstones are characterized by a wide dispersion of log(SiO2/Al2O3 (0.4…3.5 and log(Na2O/K2O values (~0.2…6.0 and more. A number of the values do not fit into the typical areas on the classification diagram of F.J. Pettijohn et al., which suggests that the syn-rift sandstones vary considerably in composition that is controlled by a significant number of factors. The diagram of J. Maynard et al. is not suitable for assigning certain sandstone associations to the ‘syn-rift sandstones’ category. In the diagrams of M. Bhatia and K. Crook, as well as those of B. Roser and R. Korsch, the fields and mean points of the syn-rift sandstones are mainly located in the area of passive continental margins; thus, these diagrams can not be used to classify the syn-rift sandstone associations. Contrariwise, on the high-silica DF1–DF2 diagram [Verma, Armstrong-Altrin, 2013], ~80 % of the objects from our database are localized in the field of syn-rift compositions and show a good correlation with the ‘percentage of consistency’ evaluated by the authors for the samples from similar settings (79–85 %. Thus, according to the data presented in the article, the DF1–DF2 diagram is the most rational and acceptable discriminant diagram for assigning certain sandstone associations to the ‘syn-rift infilling’ category.

  15. Prospecting for safe (low fluoride groundwater in the Eastern African Rift: the Arumeru District (Northern Tanzania

    Directory of Open Access Journals (Sweden)

    G. Ghiglieri

    2010-06-01

    Full Text Available A multidisciplinary research effort, including geological, hydrogeological, hydro-chemical, geophysical and hydrological investigations, was aimed at locating a source of safe groundwater for a district of northern Tanzania, within the western branch of the East Africa Rift Valley, where water shortage is common and much of the surface water carries unacceptable levels of dissolved fluoride. The 440 km2 study area lies in the northern part of Arumeru district and is dominated by Mt. Meru (4565 m a.s.l.. The local climate is semi-arid, with distinct wet and dry seasons. Four hydrogeological complexes were identified, occurring within different volcanic formations, either alone or superimposed upon one another. The groundwater flow system was interpreted from the spatial distribution of the springs, combined with a lithology- and geometry-based reconstruction of the aquifers. The dominant pattern consists of a multi-directional flow from the higher elevations in the south towards the lower areas in the north, but this is complicated by structures such as grabens, faults, lava domes and tholoids. After the identification of the major fluoride source, an interference pattern between groundwater and high fluoride surface water was drawn. Finally, vertical electrical soundings were performed to define the location of aquifers in regions where release of fluoride was prevented. The methodological approach for the prospecting of safe water in a semi-arid, fluoride polluted region was validated by the drilling of a 60 m deep well capable of supplying at least 3.8 l/s of low fluoride, drinkable water.

  16. LAVA: A conceptual framework for automated risk assessment

    International Nuclear Information System (INIS)

    Smith, S.T.; Brown, D.C.; Erkkila, T.H.; FitzGerald, P.D.; Lim, J.J.; Massagli, L.; Phillips, J.R.; Tisinger, R.M.

    1986-01-01

    At the Los Alamos National Laboratory the authors are developing the framework for generating knowledge-based systems that perform automated risk analyses on an organizations's assets. An organization's assets can be subdivided into tangible and intangible assets. Tangible assets include facilities, material, personnel, and time, while intangible assets include such factors as reputation, employee morale, and technical knowledge. The potential loss exposure of an asset is dependent upon the threats (both static and dynamic), the vulnerabilities in the mechanisms protecting the assets from the threats, and the consequences of the threats successfully exploiting the protective systems vulnerabilities. The methodology is based upon decision analysis, fuzzy set theory, natural language processing, and event tree structures. The Los Alamos Vulnerability and Risk Assessment (LAVA) methodology has been applied to computer security. The program generates both summary reports for use by both management personnel and detailed reports for use by operations staff

  17. Observation of Possible Lava Tube Skylights by SELENE cameras

    Science.gov (United States)

    Haruyama, Junichi; Hiesinger, Harald; van der Bogert, Carolyn

    We have discovered three deep hole-structures on the Moon in the Terrain Camera and Multi-band Imager on the SELENE. These holes are large depth to diameter ratios: Marius Hills Hole (MHH) is 65 m in diameter and 88-90 m in depth, Mare Tranquillitatis Hole (MTH) is 120 x 110 m in diameter and 180 m in depth, and Mare Ingenii Hole (MIH) is 140 x 110 m in diameter and deeper than 90 m. No volcanic material from the holes nor dike-relating pit craters is seen around the holes. They are possible lava tube skylights. These holes and possibly connected tubes have a lot of scientific interests and high potentialities as lunar bases.

  18. Magnetic property zonation in a thick lava flow

    Science.gov (United States)

    Audunsson, Haraldur; Levi, Shaul; Hodges, Floyd

    1992-04-01

    Intraflow structures and magmatic evolution in an extensive and thick (30-60 m) basaltic lava flow are examined on the basis of grain size and composition-dependent magnetic properties of titanomagnetite materials. Microprobe data indicate that the intraflow oxidation state Fe(3+)/Fe(2+) of the initially precipitated primary titanomagnetites increases with falling equilibrium temperature from the flow margins to a maximum near the center, the position of lowest equilibrium temperature. In contrast, Curie temperature measurements indicate that titanomagnetite oxidation increases with height in the flow. Modification of the initially symmetric equilibrium titanomagnetite compositions was caused by subsolidus high-temperature oxidation possibly due to hydrogen loss produced by dissociation of magmatic water, as well as unknown contributions of circulating air and percolating water from above. The titanomagnetites of the basal layer of the flow remain essentially unaltered.

  19. 230Th-238U disequilibria in historical lavas from Iceland

    International Nuclear Information System (INIS)

    Condomines, M.; Morand, P.; Alleegre, C.J.; Sigvaldason, G.

    1981-01-01

    The 230 Th- 238 U disequilibrium studies on historical lavas from Iceland show a relative homogeneity for Th/U ratios and also a variation for ( 230 Th/ 232 Th) activity ratios at the scale of the island. The ( 230 Th/ 238 U) disequilibrium ratio is always greater than 1 which indicates that partial melting produces magmas with Th/U ratios greater than those of the mantle source. Furthermore, there seems to be a correlation between the variations of ( 230 Th/ 232 Th) (and delta 18 O) ratios and the geographical location of the samples along the active zones of Iceland. We develop and discuss several models in order to explain these variations. (orig.)

  20. Dynamics of a fluid flow on Mars: Lava or mud?

    Science.gov (United States)

    Wilson, Lionel; Mouginis-Mark, Peter J.

    2014-05-01

    A distinctive flow deposit southwest of Cerberus Fossae on Mars is analyzed. The flow source is a ∼20 m deep, ∼12 × 1.5 km wide depression within a yardang associated with the Medusae Fossae Formation. The flow traveled for ∼40 km following topographic lows to leave a deposit on average 3-4 km wide. The surface morphology of the deposit suggests that it was produced by the emplacement of a fluid flowing in a laminar fashion and possessing a finite yield strength. We use topographic data from a digital elevation model (DEM) to model the dynamics of the motion and infer that the fluid had a Bingham rheology with a plastic viscosity of ∼1 Pa s and a yield strength of ∼185 Pa. Although the low viscosity is consistent with the properties of komatiite-like lava, the combination of values of viscosity and yield strength, as well as the surface morphology of the flow, suggests that this was a mud flow. Comparison with published experimental data implies a solids content close to 60% by volume and a grain size dominated by silt-size particles. Comparison of the ∼1.5 km3 deposit volume with the ∼0.03 km3 volume of the source depression implies that ∼98% of the flow material was derived from depth in the crust. There are similarities between the deposit studied here, which we infer to be mud, and other flow deposits on Mars currently widely held to be lavas. This suggests that a re-appraisal of many of these deposits is now in order.

  1. 3D numerical simulations of multiphase continental rifting

    Science.gov (United States)

    Naliboff, J.; Glerum, A.; Brune, S.

    2017-12-01

    Observations of rifted margin architecture suggest continental breakup occurs through multiple phases of extension with distinct styles of deformation. The initial rifting stages are often characterized by slow extension rates and distributed normal faulting in the upper crust decoupled from deformation in the lower crust and mantle lithosphere. Further rifting marks a transition to higher extension rates and coupling between the crust and mantle lithosphere, with deformation typically focused along large-scale detachment faults. Significantly, recent detailed reconstructions and high-resolution 2D numerical simulations suggest that rather than remaining focused on a single long-lived detachment fault, deformation in this phase may progress toward lithospheric breakup through a complex process of fault interaction and development. The numerical simulations also suggest that an initial phase of distributed normal faulting can play a key role in the development of these complex fault networks and the resulting finite deformation patterns. Motivated by these findings, we will present 3D numerical simulations of continental rifting that examine the role of temporal increases in extension velocity on rifted margin structure. The numerical simulations are developed with the massively parallel finite-element code ASPECT. While originally designed to model mantle convection using advanced solvers and adaptive mesh refinement techniques, ASPECT has been extended to model visco-plastic deformation that combines a Drucker Prager yield criterion with non-linear dislocation and diffusion creep. To promote deformation localization, the internal friction angle and cohesion weaken as a function of accumulated plastic strain. Rather than prescribing a single zone of weakness to initiate deformation, an initial random perturbation of the plastic strain field combined with rapid strain weakening produces distributed normal faulting at relatively slow rates of extension in both 2D and

  2. Lithospheric discontinuities beneath the U.S. Midcontinent - signatures of Proterozoic terrane accretion and failed rifting

    Science.gov (United States)

    Chen, Chen; Gilbert, Hersh; Fischer, Karen M.; Andronicos, Christopher L.; Pavlis, Gary L.; Hamburger, Michael W.; Marshak, Stephen; Larson, Timothy; Yang, Xiaotao

    2018-01-01

    Seismic discontinuities between the Moho and the inferred lithosphere-asthenosphere boundary (LAB) are known as mid-lithospheric discontinuities (MLDs) and have been ascribed to a variety of phenomena that are critical to understanding lithospheric growth and evolution. In this study, we used S-to-P converted waves recorded by the USArray Transportable Array and the OIINK (Ozarks-Illinois-Indiana-Kentucky) Flexible Array to investigate lithospheric structure beneath the central U.S. This region, a portion of North America's cratonic platform, provides an opportunity to explore how terrane accretion, cratonization, and subsequent rifting may have influenced lithospheric structure. The 3D common conversion point (CCP) volume produced by stacking back-projected Sp receiver functions reveals a general absence of negative converted phases at the depths of the LAB across much of the central U.S. This observation suggests a gradual velocity decrease between the lithosphere and asthenosphere. Within the lithosphere, the CCP stacks display negative arrivals at depths between 65 km and 125 km. We interpret these as MLDs resulting from the top of a layer of crystallized melts (sill-like igneous intrusions) or otherwise chemically modified lithosphere that is enriched in water and/or hydrous minerals. Chemical modification in this manner would cause a weak layer in the lithosphere that marks the MLDs. The depth and amplitude of negative MLD phases vary significantly both within and between the physiographic provinces of the midcontinent. Double, or overlapping, MLDs can be seen along Precambrian terrane boundaries and appear to result from stacked or imbricated lithospheric blocks. A prominent negative Sp phase can be clearly identified at 80 km depth within the Reelfoot Rift. This arrival aligns with the top of a zone of low shear-wave velocities, which suggests that it marks an unusually shallow seismic LAB for the midcontinent. This boundary would correspond to the top of a

  3. Lithosphere Response to Intracratonic Rifting: Examples from Europe and Siberia

    DEFF Research Database (Denmark)

    Artemieva, I. M.; Thybo, H.; Herceg, M.

    2012-01-01

    is based on critically assessed results from various seismic studies, including reflection and refraction profiles and receiver function studies. We also use global shear-wave tomography models, gravity constraints based on GOCE data, and thermal models for the lithosphere to speculate on thermo...... of basaltic magmas and consequently in a change in mantle density and seismic velocities. Although kimberlite magmatism is commonly not considered as a rifting events, its deep causes may be similar to the mantle-driven rifting and, as a consequence, modification of mantle density and velocity structure may...... in it seismic wave velocity and density structure....

  4. A Middle-Upper Miocene fluvial-lacustrine rift sequence in the Song Ba Rift, Vietnam

    DEFF Research Database (Denmark)

    Lars H., Nielsen; Henrik I., Petersen; Nguyen D., Dau

    2007-01-01

    The small Neogene Krong Pa graben is situated within the continental Song Ba Rift, which is bounded by strike-slip faults that were reactivated as extensional faults in Middle Miocene time. The 500 m thick graben-fill shows an overall depositional development reflecting the structural evolution...... subsidence rate and possibly a higher influx of water from the axial river systems the general water level in the graben rose and deep lakes formed. High organic preservation in the lakes prompted the formation of two excellent oil-prone lacustrine source-rock units. In the late phase of the graben...... as carrier beds, whereas the braided fluvial sandstones and conglomerates along the graben margins may form reservoirs. The Krong Pa graben thus contains oil-prone lacustrine source rocks, effective conduits for generated hydrocarbons and reservoir sandstones side-sealed by the graben faults toward...

  5. Changes in Mass Flux of Tephra from the Lava Lake in Overlook Crater, Kīlauea Volcano, Hawai`i

    Science.gov (United States)

    Swanson, D. A.; Orr, T. R.; Patrick, M. R.

    2016-12-01

    The mass flux of tephra (mostly Pele's hair and tears, hollow spherules, and lithic clasts) from the lava lake in Overlook crater varies on short (seconds-minutes), intermediate (hours-days), and long (months) time scales. The tephra is collected almost daily from a network of 10 buckets within 400 m of, and 100-150 m above, the lava lake; bucket locations have not changed during the eruption. A mass accumulation rate (AR) is calculated for the network; since April 2008, the AR averages 0.17 g/m2/h ( 5×10-8 kg/m2/s). The tephra forms during almost constant spattering at the SE sink (the main downwelling site) and ephemeral sites along the crater wall, as well as from sporadic, rockfall-induced violent outgassing that can eject decimeter-size spatter clots onto the crater rim; the average AR excludes these violent events. The rockfalls, and nearly constant raveling from the crater wall, introduce lithic clasts into the tephra. The lithic content of the tephra has decreased with time, reflecting both greater wall stability and higher lake level, and was usually 7 m/s). At intermediate and long time scales, juvenile AR shows no correlation with measured SO2 output and only weak or no correlation with wind speed, but it often tracks the elevation of the lake surface—higher when lava is nearer the buckets. For example, both lava level and juvenile AR were unusually high in January-July 2016. Before 2016, however, 7-9 periods of heightened juvenile production (see figure below), each lasting several months, show no correlation with other monitored parameters—lake level, SO2, wind speed and direction, or downwelling location. Often AR gradually increased to a peak before falling off, sometimes to nearly zero. We speculate that such long-term variations result from changes in magma supply rate, gas concentration, or rise frequency of decoupled gas slugs. These changes may be too small or slow to detect by current geodetic and gas monitoring. They suggest a slowly

  6. Human Dispersals Along the African Rift Valley in the Late Quaternary

    Science.gov (United States)

    Tryon, C. A.; Faith, J. T.; Peppe, D. J.

    2014-12-01

    Climate- and tectonic-driven environmental dynamics of the East African Rift System (EARS) during the Quaternary played an important role in the demographic history of early Homo sapiens, including expansions of modern humans across and out of Africa. Human forager population size, geographic range, and behaviors such as hunting strategies and residential mobility likely varied in response to changes in the local and regional environment. Throughout the Quaternary, floral and faunal change was linked at least in part to variations in moisture availability, temperature, and atmospheric CO2, which in addition to uplift and faulting, contributed to the expansion and contraction of a number of large lakes that served as biogeographic barriers to many taxa. This is particularly clear for the Lake Victoria basin, where biogeographic, geological, and paleontological evidence documents repeated expansion and contraction of the ranges of species in response to lake level and vegetation change. Across much of eastern Africa, the topography of the rift facilitated north-south dispersals, the timing of which may have depended in part on the expansion and contraction of the equatorial forest belt. Dispersal potential likely increased during the more arid periods of the late Quaternary, when the roles of lakes and forests as dispersal barriers was reduced and the extent of low net primary productivity dry grasslands increased, the latter requiring large home ranges for human foragers, conditions suitable for range expansions within H. sapiens.

  7. 3D crustal model of the US and Canada East Coast rifted margin

    Science.gov (United States)

    Dowla, N.; Bird, D. E.; Murphy, M. A.

    2017-12-01

    We integrate seismic reflection and refraction data with gravity and magnetic data to generate a continent-scale 3D crustal model of the US and Canada East Coast, extending north from the Straits of Florida to Newfoundland, and east from the Appalachian Mountains to the Central Atlantic Ocean. The model includes five layers separated by four horizons: sea surface, topography, crystalline basement, and Moho. We tested magnetic depth-to-source techniques to improve the basement morphology, from published sources, beneath the continental Triassic rift basins and outboard to the Jurassic ocean floor. A laterally varying density grid was then produced for the resultant sedimentary rock layer thickness based on an exponential decay function that approximates sedimentary compaction. Using constant density values for the remaining layers, we calculated an isostatically compensated Moho. The following structural inversion results of the Moho, controlled by seismic refraction depths, advances our understanding of rift-to-drift crustal geometries, and provides a regional context for additional studies.

  8. Stress and slip partitioning during oblique rifting: comparison between data from the Main Ethiopian Rift and laboratory experiments

    Science.gov (United States)

    Corti, G.; Philippon, M.; Sani, F.; Keir, D.

    2012-04-01

    Oblique rifting in the central and northern Main Ethiopian Rift (MER) has resulted in a complex structural pattern characterized by two differently oriented fault systems: a set of NE-SW-trending boundary faults and a system of roughly NNE-SSW-oriented fault swarms affecting the rift floor (Wonji faults). Boundary faults formed oblique to the regional extension vector, likely as a result of the oblique reactivation of a pre-existing deep-seated rheological anisotropy, whereas internal Wonji faults developed sub-orthogonal to the stretching direction. Previous works have successfully reconciled this rift architecture and fault distribution with the long-term plate kinematics; however, at a more local scale, fault-slip and earthquake data reveal significant variations in the orientation the minimum principal stress and related fault-slip direction across the rift valley. Whereas fault measurements indicate a roughly N95°E extension on the axial Wonji faults, a N105°E to N110°E directed minimum principal stress is observed along boundary faults. Both fault-slip data and analysis of seismicity indicate a roughly pure dip-slip motion on the boundary faults, despite their orientation (oblique to the regional extension vector) should result in an oblique displacement. To shed light on the process driving the variability of data derived from fault-slip (and seismicity) analysis we present crustal-scale analogue models of oblique rifting, deformed in a large-capacity centrifuge by using materials and boundary conditions described in several previous modeling works. As in these previous works, the experiments show the diachronous activation of two fault systems, boundary and internal, whose pattern strikingly resemble that observed in previous lithospheric-scale modeling, as well as that described in the MER. Internal faults arrange in two different, en-echelon segments connected by a transfer zone where strike-slip displacement dominates. Whereas internal faults develop

  9. Imaging rifting at the lithospheric scale in the northern East African Rift using S-to-P receiver functions

    Science.gov (United States)

    Lavayssiere, A.; Rychert, C.; Harmon, N.; Keir, D.; Hammond, J. O. S.; Kendall, J. M.; Leroy, S. D.; Doubre, C.

    2017-12-01

    The lithosphere is modified during rifting by a combination of mechanical stretching, heating and potentially partial melt. We image the crust and upper mantle discontinuity structure beneath the northern East African Rift System (EARS), a unique tectonically active continental rift exposing along strike the transition from continental rifting in the Main Ethiopian rift (MER) to incipient seafloor spreading in Afar and the Red Sea. S-to-P receiver functions from 182 stations across the northern EARS were generated from 3688 high quality waveforms using a multitaper technique and then migrated to depth using a regional velocity model. Waveform modelling of data stacked in large conversion point bins confirms the depth and strength of imaged discontinuities. We image the Moho at 29.6±4.7 km depth beneath the Ethiopian plateaux with a variability in depth that is possibly due to lower crustal intrusions. The crust is 27.3±3.9 km thick in the MER and thinner in northern Afar, 17.5±0.7 km. The model requires a 3±1.2% reduction in shear velocity with increasing depth at 68.5±1.5 km beneath the Ethiopian plateaux, consistent with the lithosphere-asthenosphere boundary (LAB). We do not resolve a LAB beneath Afar and the MER. This is likely associated with partial melt near the base of the lithosphere, reducing the velocity contrast between the melt-intruded lithosphere and the partially molten asthenosphere. We identify a 4.5±0.7% increase in velocity with depth at 91±3 km beneath the MER. This change in velocity is consistent with the onset of melting found by previous receiver functions and petrology studies. Our results provide independent constraints on the depth of melt production in the asthenosphere and suggest melt percolation through the base of the lithosphere beneath the northernmost East African rift.

  10. Discussion on final rifting evolution and breakup : insights from the Mid Norwegian - North East Greenland rifted system

    Science.gov (United States)

    Peron-Pinvidic, Gwenn; Terje Osmundsen, Per

    2016-04-01

    In terms of rifted margin studies, the characteristics of the distal and outer domains are among the today's most debated questions. The architecture and composition of deep margins are rarely well constrained and hence little understood. Except from in a handful number of cases (eg. Iberia-Newfoundland, Southern Australia, Red Sea), basement samples are not available to decipher between the various interpretations allowed by geophysical models. No consensus has been reached on the basement composition, tectonic structures, sedimentary geometries or magmatic content. The result is that non-unique end-member interpretations and models are still proposed in the literature. So, although these domains mark the connection between continents and oceans, and thus correspond to unique stages in the Earth's lithospheric life cycle, their spatial and temporal evolution are still unresolved. The Norwegian-Greenland Sea rift system represents an exceptional laboratory to work on questions related to rifting, rifted margin formation and sedimentary basin evolution. It has been extensively studied for decades by both the academic and the industry communities. The proven and expected oil and gas potentials led to the methodical acquisition of world-class geophysical datasets, which permit the detailed research and thorough testing of concepts at local and regional scales. This contribution is issued from a three years project funded by ExxonMobil aiming at better understanding the crustal-scale nature and evolution of the Norwegian-Greenland Sea. The idea was to take advantage of the data availability on this specific rift system to investigate further the full crustal conjugate scale history of rifting, confronting the various available datasets. In this contribution, we will review the possible structural and sedimentary geometries of the distal margin, and their connection to the oceanic domain. We will discuss the definition of 'breakup' and introduce a first order conceptual

  11. Lava Eruption and Emplacement: Using Clues from Hawaii and Iceland to Probe the Lunar Past

    Science.gov (United States)

    Needham, Debra Hurwitz; Hamilton, C. W.; Bleacher, J. E.; Whelley, P. L.; Young, K. E.; Scheidt, S. P.; Richardson, J. A.; Sutton, S. S.

    2017-01-01

    Investigating recent eruptions on Earth is crucial to improving understanding of relationships between eruption dynamics and final lava flow morphologies. In this study, we investigated eruptions in Holuhraun, Iceland, and Kilauea, Hawaii to gain insight into the lava dynamics near the source vent, the initiation of lava channels, and the origin of down-channel features. Insights are applied to Rima Bode on the lunar nearside to deduce the sequence of events that formed this lunar sinuous rille system. These insights are crucial to correctly interpreting whether the volcanic features associated with Rima Bode directly relate to eruption conditions at the vent and, thus, can help us understand those eruption dynamics, or, alternatively, whether the features formed as a result of more localized influences on lava flow dynamics. For example, if the lava channel developed early in the eruption and was linked to pulses in vent activity, its morphology can be analyzed to interpret the flux and duration of the eruption. Conversely, if the lava channel initiated late in the eruption as the result of a catastrophic breaching of lava that had previously pooled within the vent [e.g., 1], then the final channel morphology will not indicate eruption dynamics but rather local dynamics associated with that breach event. Distinguishing between these two scenarios is crucial for correctly interpreting the intensity and duration of volcanic history on the Moon.

  12. Geochronology and geochemistry of lavas from the 1996 North Gorda Ridge eruption

    Science.gov (United States)

    Rubin, K. H.; Smith, M. C.; Perfit, M. R.; Christie, D. M.; Sacks, L. F.

    1998-12-01

    Radiometric dating of three North Gorda Ridge lavas by the 210Po- 210Pb method confirms that an eruption occurred during a period of increased seismic activity along the ridge during late February/early March 1996. These lavas were collected following detection of enhanced T-phase seismicity and subsequent ocean bottom photographs documented the existence of a large pillow mound of fresh-appearing lavas. 210Po- 210Pb dating of these lavas indicates that an eruption coinciding with this seismicity did occur (within analytical error) and that followup efforts to sample the recent lava flows were successful. Compositions of the three confirmed young lavas and eleven other samples of this contiguous "new flow" sequence are distinct from older lavas from this area but are variable at a level outside analytical uncertainty. These intraflow variations can not easily be related to a single, common parent magma. Compositional variability within the new flow is compared to that of other recently documented individual flow sequences, and this comparison reveals a strong positive correlation of compositional variance with flow volumes spanning a range of >2 orders of magnitude. The geochemical heterogeneity in the North Gorda new flow probably reflects incomplete mixing of magmas generated from a heterogeneous mantle source or from slightly different melting conditions of a single source. The compositional variability, range in sample ages (up to 6 weeks) and range in active seismicity (4 weeks) imply that this relatively large flow was erupted over an interval of several weeks.

  13. Geochemical discrimination of five pleistocene Lava-Dam outburst-flood deposits, western Grand Canyon, Arizona

    Science.gov (United States)

    Fenton, C.R.; Poreda, R.J.; Nash, B.P.; Webb, R.H.; Cerling, T.E.

    2004-01-01

    Pleistocene basaltic lava dams and outburst-flood deposits in the western Grand Canyon, Arizona, have been correlated by means of cosmogenic 3He (3Hec) ages and concentrations of SiO2, Na2O, K2O, and rare earth elements. These data indicate that basalt clasts and vitroclasts in a given outburst-flood deposit came from a common source, a lava dam. With these data, it is possible to distinguish individual dam-flood events and improve our understanding of the interrelations of volcanism and river processes. At least five lava dams on the Colorado River failed catastrophically between 100 and 525 ka; subsequent outburst floods emplaced basalt-rich deposits preserved on benches as high as 200 m above the current river and up to 53 km downstream of dam sites. Chemical data also distinguishes individual lava flows that were collectively mapped in the past as large long-lasting dam complexes. These chemical data, in combination with age constraints, increase our ability to correlate lava dams and outburst-flood deposits and increase our understanding of the longevity of lava dams. Bases of correlated lava dams and flood deposits approximate the elevation of the ancestral river during each flood event. Water surface profiles are reconstructed and can be used in future hydraulic models to estimate the magnitude of these large-scale floods.

  14. Degassing driving crystallization of plagioclase phenocrysts in lava tube stalactites on Mount Etna (Sicily, Italy)

    Science.gov (United States)

    Lanzafame, Gabriele; Ferlito, Carmelo

    2014-10-01

    Basaltic lava flows can form tubes in response to the cooling of the outer surface. We collected lava stalactites (frozen lava tears) and sampled lava from the ceilings of three lava tubes on Mount Etna. Comparison of the petrographic characters between ceiling lavas and relative stalactites reveals surprising differences in the groundmass textures and crystal compositions. Major and trace element contents in stalactites show only a slight increase in alkali and SiO2 compared to ceiling lava, whereas significant differences exist in composition and textures between plagioclases within the ceiling lava and those within the stalactites, being in the last case definitively more An-rich. We advance the hypothesis that the high temperature reached in the cave caused the exsolution of the volatiles still trapped in the dripping melt. The volatiles, mainly H2O, formed bubbles and escaped from the melt; such a water-loss might have promoted the silicate polymerization in the stalactites resulting in the growth of An-rich plagioclase phenocrysts. Our results have important implications: in fact plagioclase phenocrysts are usually associated with intratelluric growth and are often considered as the main petrologic evidence for the existence of a magma chamber. The textural and chemical features of plagioclases in stalactites prove that phenocryst growth in syn to post-eruptive conditions is plausible and clearly explains the relatively low viscosity of many phenocryst-rich lava flows on Mount Etna, as well as on many other volcanoes around the world. Therefore, we can conclude that plagioclase phenocrysts cannot exclusively be considered as having originated within a magma chamber.

  15. Formation processes of the 1909 Tarumai and the 1944 Usu lava domesin Hokkaido, Japan

    Directory of Open Access Journals (Sweden)

    I. Yokoyama

    2004-06-01

    Full Text Available The formation of the two particular lava domes in Hokkaido, Japan is described and interpreted mainly from geophysical viewpoints. The 1909 eruption of Tarumai volcano was not violent but produced a lava dome over four days. The growth rate of the dome is discussed under the assumption that the lava flow was viscous and plastic fluid during its effusion. By Hagen-Poiseuille?s Law, the length of the conduit of the lava dome is rather ambiguously determined as a function of viscosity of the magma and diameter of the conduit. The 1944 Usu dome extruded as a parasitic cone of Usu volcano, not in the crater, but in a flat cornfield at the foot of the volcano. From the beginning to the end for more than 17 months, seismometric and geodetic observations of the dome activity were carried out by several pioneering geophysicists. Utilizing their data, pseudo growth curves of the dome at each stage can be drawn. The lava ascended rather uniformly, causing uplift of the ground surface until half-solidified lava reached the surface six months after the deformation began. Thereafter, the lava dome added lateral displacements and finally achieved its onion structure. These two lava domes are of contrasting character, one is andesitic and formed quickly while the other is dacitic and formed slowly, but both of them behaved as viscous and plastic flows during effusion. It is concluded that both the lava domes formed by uplift of magma forced to flow through the conduits, analogous to squeezing toothpaste out of a tube.

  16. Correlation of cycles in Lava Lake motion and degassing at Erebus Volcano, Antarctica

    Science.gov (United States)

    Peters, Nial; Oppenheimer, Clive; Killingsworth, Drea Rae; Frechette, Jed; Kyle, Philip

    2014-08-01

    Several studies at Erebus volcano have recorded pulsatory behavior in many of the observable properties of its active lava lake. A strong correlation between the variations in surface speed of the lake and the composition of gas emitted has previously been noted. While previous studies have shown that the SO2 flux and the surface elevation exhibit pulsatory behavior with a similar period to that of the surface speed and gas composition, suggesting they are linked, a lack of overlap between the different measurements has prevented direct comparisons from being made. Using high time-resolution measurements of surface elevation, surface speed, gas composition, and SO2 flux, we demonstrate for the first time an unambiguous link between the cyclic behavior in each of these properties. We also show that the variation in gas composition may be explained by a subtle change in oxygen fugacity. The cycles are found to be in-phase with each other, with a small but consistent lag of 1-3 min between the peaks in surface elevation and surface speed. Explosive events are found to have no observable effect on the pulsatory behavior beyond the ˜5 min period required for lake refill. The close correspondences between the varying lake surface motion, gas flux and composition, and modeled oxygen fugacity suggest strong links between magma degassing, redox change, and the fluid dynamics of the shallow magmatic system.

  17. Epidemiology of gastrointestinal helminthiasis of rift valley goats ...

    African Journals Online (AJOL)

    The prevalence, mean intensity, relative density of helminth species and the effects of environmental factors, sex and maturity of host on seasonal dynamics in relative density of helminthes ova in Rift Valley goats were investigated from July 1997 to June 1998. Ten nematode and three cestode species were identified.

  18. Comparison of sampling techniques for Rift Valley Fever virus ...

    African Journals Online (AJOL)

    We investigated mosquito sampling techniques with two types of traps and attractants at different time for trapping potential vectors for Rift Valley Fever virus. The study was conducted in six villages in Ngorongoro district in Tanzania from September to October 2012. A total of 1814 mosquitoes were collected, of which 738 ...

  19. Re-Emergence of Rift Valley Fever in Madagascar

    Centers for Disease Control (CDC) Podcasts

    This podcast describes the re-emergence of Rift Valley Fever in Madagascar during two rainy seasons in 2008 and 2009. CDC epidemiologist Dr. Pierre Rollin discusses what researchers learned about the outbreak and about infections in the larger population in Madagascar.

  20. No Moho uplift below the Baikal Rift Zone

    DEFF Research Database (Denmark)

    Nielsen, Christoffer; Thybo, Hans

    2009-01-01

    .4-7.6 ± 0.2 km/s), slightly offset to the northeast from the rift axis. We interpret this feature as resulting from mafic intrusions. Their presence may explain the flat Moho by compensation of lower crustal thinning by intrusion of mafic melts. The Pn wave velocities (8.15-8.2 km/s) are normal for the area...

  1. Occurrence of rift valley fever (RVF) in Dodoma region, Tanzania ...

    African Journals Online (AJOL)

    Rift Valley Fever (RVF) is a peracute or acute febrile zoonotic ... results the patients were treated for malaria and/or meningitis based on visual/ clinical signs. ... RVF occurrence to humans by using case study definitions for RVF suspect's, and ...

  2. Explosive Volcanism in Io's Lava Lakes - The Key To Constraining Eruption Temperature?

    Science.gov (United States)

    Davies, A. G.; Keszthelyi, L. P.; McEwen, A. S.

    2010-12-01

    Active lava lakes are open volcanic systems, where lava circulates between a magma chamber and the surface. Rare on Earth, lava lakes may be common on Io, the highly volcanic jovian moon (e.g., [1]). Io’s low atmospheric pressure means that activity within Io’s lava lakes may be explosive, exposing lava at near-liquid temperatures (currently poorly constrained for Io). Lava lakes are therefore important targets for future missions to Io [2, 3]. With this in mind, hand-held infrared imagers were used to collect thermal emission data from the phonolite Erebus (Antarctica) lava lake [4] and the basalt lava lake at Erta’Ale (Ethiopia). Temperature-area distributions and the integrated thermal emission spectra for each lava lake were determined from the data. These calculated spectra have been used to test models developed for analysis of remote sensing data of lava lakes and lava flows on both Earth and Io, where no ground-truth exists. The silicate cooling model [5] assumes, for the lava lake model variant, that the existing surface crust has been created at a fixed rate. Model output consists of a synthesized thermal emission spectrum, estimate of surface age range, and a rate of surface crust area formation. The cooling model provides accurate reproductions of actual thermal spectra and the total emitting area to within a few percent of actual emitting area. Model resurfacing rates broadly agree with observed behaviour at both lakes. Despite different composition lavas, the short-wavelength infrared thermal emission spectra from the two terrestrial lava lakes studied are very similar in shape, and, importantly, bear a striking similarity to spectra of Pele, an Io volcano that has been proposed to be a persistent, active lava lake [6] and which is the source of a 300-km high dust and gas plume. Our study of the cooling of the hottest lava exposed at Erta’Ale yields constraints on the ability of multispectral imagers to determine eruption temperature. We find

  3. Large-scale variation in lithospheric structure along and across the Kenya rift

    Science.gov (United States)

    Prodehl, C.; Mechie, J.; Kaminski, W.; Fuchs, K.; Grosse, C.; Hoffmann, H.; Stangl, R.; Stellrecht, R.; Khan, M.A.; Maguire, Peter K.H.; Kirk, W.; Keller, Gordon R.; Githui, A.; Baker, M.; Mooney, W.; Criley, E.; Luetgert, J.; Jacob, B.; Thybo, H.; Demartin, M.; Scarascia, S.; Hirn, A.; Bowman, J.R.; Nyambok, I.; Gaciri, S.; Patel, J.; Dindi, E.; Griffiths, D.H.; King, R.F.; Mussett, A.E.; Braile, L.W.; Thompson, G.; Olsen, K.; Harder, S.; Vees, R.; Gajewski, D.; Schulte, A.; Obel, J.; Mwango, F.; Mukinya, J.; Riaroh, D.

    1991-01-01

    The Kenya rift is one of the classic examples of a continental rift zone: models for its evolution range from extension of the lithosphere by pure shear1, through extension by simple shear2, to diapiric upwelling of an asthenolith3. Following a pilot study in 19854, the present work involved the shooting of three seismic refraction and wide-angle reflection profiles along the axis, across the margins, and on the northeastern flank of the rift (Fig. 1). These lines were intended to reconcile the different crustal thickness estimates for the northern and southern parts of the rift4-6 and to reveal the structure across the rift, including that beneath the flanks. The data, presented here, reveal significant lateral variations in structure both along and across the rift. The crust thins along the rift axis from 35 km in the south to 20 km in the north; there are abrupt changes in Mono depth and uppermost-mantle seismic velocity across the rift margins, and crustal thickening across the boundary between the Archaean craton and PanAfrican orogenic belt immediately west of the rift. These results suggest that thickened crust may have controlled the rift's location, that there is a decrease in extension from north to south, and that the upper mantle immediately beneath the rift may contain reservoirs of magma generated at greater depth.

  4. The Porcupine Basin: from rifting to continental breakup

    Science.gov (United States)

    Reston, Timothy; Gaw, Viola; Klaeschen, Dirk; McDermott, Ken

    2015-04-01

    Southwest of Ireland, the Porcupine Basin is characterized by axial stretching factors that increase southward to values greater than six and typical of rifted margins. As such, the basin can be regarded as a natural laboratory to investigate the evolution and symmetry of rifting leading towards continental separation and breakup, and in particular the processes of mantle serpentinisation, and the onset of detachment faulting. We have processed through to prestack depth migration a series of E-W profiles crossing the basin at different axial stretching factors and linked by a N-S profile running close to the rift axis. Our results constrain the structure of the basin and have implications for the evolution of rifted margins. In the north at a latitude of 52.25N, no clear detachment is imaged, although faults do appear to cut down into the mantle, so that serpentinisation may have started. Further south (51.75N), a bright reflection (here named P) cuts down to the west from the base of the sedimentary section, is overlain by small fault blocks and appears to represent a detachment fault. P may in part follow the top of partially serpentinized mantle: this interpretation is consistent with gravity modelling, with numerical models of crustal embrittlement and mantle serpentinization during extension and with wide-angle data (see posters of Prada and of Watremez). Furthermore, P closely resembles the S reflection west of Iberia, where such serpentinites are well documented. P develops where the crust was thinned to less than 3 km during rifting, again similar to S. Although overall the basin remains symmetrical, the consistent westward structural dip of the detachment implies that, at high stretching factors, extension became asymmetric. Analysis of the depth sections suggests that the detachment may have been active as a rolling hinge rooting at low-angle beneath the Porcupine Bank, consistent with the presence of a footwall of serpentinites. This requires very weak

  5. Kinematics of the entire East African Rift from GPS velocities

    Science.gov (United States)

    Floyd, M.; King, R. W.

    2017-12-01

    Through a collaborative effort of the GeoPRISMS East Africa Rift GPS Working Group, we have collected and collated all of the publicly available continuous and survey-mode data for the entire rift system between 1994 and 2017 and processed these data as part of a larger velocity solution for Africa, Arabia and western Eurasia. We present here our velocity solution encompassing the major bounding plates and intervening terranes along the East African Rift from the Red Sea to the Malawi Rift and adjacent regions for GPS sites with data spans of at least 2.4 years, and north and east velocity uncertainties less than 1.5 mm/yr. To obtain realistic uncertainties for the velocity estimates, we attempted at each stage of the analysis to account for the character of the noise: During phase processing, we used an elevation-dependent weighting based on the phase residuals for each station; we then examined each position time series, removing outliers and reweighting appropriately to account for the white noise component of the errors; and e accounted for temporal correlations by estimating an equivalent random-walk magnitude for each continuous site and applying the median value (0.5 mm/√yr) to all survey-mode sites. We rigorously estimate relative rotation rates of Nubia, by choosing subset of well-determined sites such that the effective weights of western, northeastern and southern Africa were roughly equivalent, and Somalia, for which the estimate is dominated by three sites (MALI, RCMN, SEY1) whose uncertainties are a factor of 2-3 smaller than those of the other sites. For both plates, the weighted root-mean-square of the velocity residuals is 0.5 mm/yr. Our unified velocity solution provides a geodetic framework and constraints on the continental-scale kinematics of surface motions as well as more local effects both within and outside of the rift structures. Specific focus areas with denser coverage than previous fields include the Danakil block, the Afar Rift, the

  6. The influence of inherited structures on magmatic and amagmatic processes in the East African Rift.

    Science.gov (United States)

    Biggs, J.; Lloyd, R.; Hodge, M.; Robertson, E.; Wilks, M.; Fagereng, A.; Kendall, J. M.; Mdala, H. S.; Lewi, E.; Ayele, A.

    2017-12-01

    The idea that crustal heterogeneities, particularly inherited structures, influence the initiation and evolution of continental rifts is not new, but now modern techniques allow us to explore these controls from a fresh perspective, over a range of lengthscales, timescales and depths. In amagmatic rifts, I will demonstrate that deep fault structure is controlled by the stress orientation during the earliest phase of rifting, while the surface expression exploits near-surface weaknesses. I will show that pre-existing structures control the storage and orientation of deeper magma reservoirs in magmatic rifts, while the tectonic stress regime controls intra-rift faulting and shallow magmatism and stresses related to surface loading and cycles of inflation and deflation dominate at volcanic edifices. Finally, I will show how cross-rift structures influence short-term processes such as deformation and seismicity. I will illustrate the talk throughout using examples from along the East African Rift, including Malawi, Tanzania, Kenya and Ethiopia.

  7. Time-varying BRDFs.

    Science.gov (United States)

    Sun, Bo; Sunkavalli, Kalyan; Ramamoorthi, Ravi; Belhumeur, Peter N; Nayar, Shree K

    2007-01-01

    The properties of virtually all real-world materials change with time, causing their bidirectional reflectance distribution functions (BRDFs) to be time varying. However, none of the existing BRDF models and databases take time variation into consideration; they represent the appearance of a material at a single time instance. In this paper, we address the acquisition, analysis, modeling, and rendering of a wide range of time-varying BRDFs (TVBRDFs). We have developed an acquisition system that is capable of sampling a material's BRDF at multiple time instances, with each time sample acquired within 36 sec. We have used this acquisition system to measure the BRDFs of a wide range of time-varying phenomena, which include the drying of various types of paints (watercolor, spray, and oil), the drying of wet rough surfaces (cement, plaster, and fabrics), the accumulation of dusts (household and joint compound) on surfaces, and the melting of materials (chocolate). Analytic BRDF functions are fit to these measurements and the model parameters' variations with time are analyzed. Each category exhibits interesting and sometimes nonintuitive parameter trends. These parameter trends are then used to develop analytic TVBRDF models. The analytic TVBRDF models enable us to apply effects such as paint drying and dust accumulation to arbitrary surfaces and novel materials.

  8. Active Magmatic Underplating in Western Eger Rift, Central Europe

    Science.gov (United States)

    Hrubcová, Pavla; Geissler, Wolfram H.; Bräuer, Karin; Vavryčuk, Václav; Tomek, Čestmír.; Kämpf, Horst

    2017-12-01

    The Eger Rift is an active element of the European Cenozoic Rift System associated with intense Cenozoic intraplate alkaline volcanism and system of sedimentary basins. The intracontinental Cheb Basin at its western part displays geodynamic activity with fluid emanations, persistent seismicity, Cenozoic volcanism, and neotectonic crustal movements at the intersections of major intraplate faults. In this paper, we study detailed geometry of the crust/mantle boundary and its possible origin in the western Eger Rift. We review existing seismic and seismological studies, provide new interpretation of the reflection profile 9HR, and supplement it by new results from local seismicity. We identify significant lateral variations of the high-velocity lower crust and relate them to the distribution and chemical status of mantle-derived fluids and to xenolith studies from corresponding depths. New interpretation based on combined seismic and isotope study points to a local-scale magmatic emplacement at the base of the continental crust within a new rift environment. This concept of magmatic underplating is supported by detecting two types of the lower crust: a high-velocity lower crust with pronounced reflectivity and a high-velocity reflection-free lower crust. The character of the underplated material enables to differentiate timing and tectonic setting of two episodes with different times of origin of underplating events. The lower crust with high reflectivity evidences magmatic underplating west of the Eger Rift of the Late Variscan age. The reflection-free lower crust together with a strong reflector at its top at depths of 28-30 km forms a magma body indicating magmatic underplating of the late Cenozoic (middle and upper Miocene) to recent. Spatial and temporal relations to recent geodynamic processes suggest active magmatic underplating in the intracontinental setting.

  9. East Antarctic rifting triggers uplift of the Gamburtsev Mountains

    Science.gov (United States)

    Ferraccioli, F.; Finn, Carol A.; Jordan, Tom A.; Bell, Robin E.; Anderson, Lester M.; Damaske, Detlef

    2011-01-01

    The Gamburtsev Subglacial Mountains are the least understood tectonic feature on Earth, because they are completely hidden beneath the East Antarctic Ice Sheet. Their high elevation and youthful Alpine topography, combined with their location on the East Antarctic craton, creates a paradox that has puzzled researchers since the mountains were discovered in 1958. The preservation of Alpine topography in the Gamburtsevs may reflect extremely low long-term erosion rates beneath the ice sheet, but the mountains’ origin remains problematic. Here we present the first comprehensive view of the crustal architecture and uplift mechanisms for the Gamburtsevs, derived from radar, gravity and magnetic data. The geophysical data define a 2,500-km-long rift system in East Antarctica surrounding the Gamburtsevs, and a thick crustal root beneath the range. We propose that the root formed during the Proterozoic assembly of interior East Antarctica (possibly about 1 Gyr ago), was preserved as in some old orogens and was rejuvenated during much later Permian (roughly 250 Myr ago) and Cretaceous (roughly 100 Myr ago) rifting. Much like East Africa, the interior of East Antarctica is a mosaic of Precambrian provinces affected by rifting processes. Our models show that the combination of rift-flank uplift, root buoyancy and the isostatic response to fluvial and glacial erosion explains the high elevation and relief of the Gamburtsevs. The evolution of the Gamburtsevs demonstrates that rifting and preserved orogenic roots can produce broad regions of high topography in continental interiors without significantly modifying the underlying Precambrian lithosphere.

  10. The East Greenland rifted volcanic margin

    Directory of Open Access Journals (Sweden)

    C. Kent Brooks

    2011-12-01

    Full Text Available The Palaeogene North Atlantic Igneous Province is among the largest igneous provinces in the world and this review of the East Greenland sector includes large amounts of information amassed since previous reviews around 1990.The main area of igneous rocks extends from Kangerlussuaq (c. 67°N to Scoresby Sund (c. 70°N, where basalts extend over c. 65 000 km2, with a second area from Hold with Hope (c. 73°N to Shannon (c. 75°N. In addition, the Ocean Drilling Project penetrated basalt at five sites off South-East Greenland. Up to 7 km thickness of basaltic lavas have been stratigraphically and chemically described and their ages determined. A wide spectrum of intrusions are clustered around Kangerlussuaq, Kialeeq (c. 66°N and Mesters Vig (c. 72°N. Layered gabbros are numerous (e.g. the Skaergaard and Kap Edvard Holm intrusions, as are under- and oversaturated syenites, besides small amounts of nephelinite-derived products, such as the Gardiner complex (c. 69°N with carbonatites and silicate rocks rich in melilite, perovskite etc. Felsic extrusive rocks are sparse. A single, sanidine-bearing tuff found over an extensive area of the North Atlantic is thought to be sourced from the Gardiner complex.The province is famous for its coast-parallel dyke swarm, analogous to the sheeted dyke swarm of ophiolites, its associated coastal flexure, and many other dyke swarms, commonly related to central intrusive complexes as in Iceland. The dyke swarms provide time markers, tracers of magmatic evolution and evidence of extensional events. A set of dykes with harzburgite nodules gives unique insight into the Archaean subcontinental lithosphere.Radiometric dating indicates extrusion of huge volumes of basalt over a short time interval, but the overall life of the province was prolonged, beginning with basaltic magmas at c. 60 Ma and continuing to the quartz porphyry stock at Malmbjerg (c. 72°N at c. 26 Ma. Indeed, activity was renewed in the Miocene with

  11. Effect of the radiation in the thermoluminescent properties of lava

    CERN Document Server

    Correcher, V; García, J

    2003-01-01

    Blue thermoluminescence (Tl) emission from different lavas of many places (Costa Rica, Canary Islands, Hawaii Islands, Iceland and Italy) corresponding to different eruptions has been studied to know its potential use in the field of dating and retrospective dosimetry. Due to the light emission is linked to the point defects of the crystalline lattice structure, X-ray diffraction analyses were performed to determine the components of this poly mineral material that mostly are cristobalite, plagioclase and phyllosilicates. Exposures to different doses (in a range of 1-25 Gy) were given to each sample to determine the evolution of the Tl signal with the irradiation under laboratory conditions. In all cases, a linear response could be observed and no saturation has been detected in this range of doses. Both natural (NTL) and induced (ITL) Tl signal exhibit a complex glow curve structure associated to a continuous trap distribution over 100 C that could be attributed to the formation-annihilation [Al0 sub 4 /alka...

  12. Nature and Significance of the High-Sr Aleutian Lavas

    Science.gov (United States)

    Yogodzinski, G. M.; Arndt, S.; Turka, J. R.; Kelemen, P. B.; Vervoort, J. D.; Portnyagin, M.; Hoernle, K.

    2011-12-01

    Results of the Western Aleutian Volcano Expedition and German-Russian KALMAR cruises include the discovery of seafloor volcanism at the Ingenstrem Depression and at unnamed seamounts 300 km west of Buldir, the westernmost emergent volcano in the Aleutian arc. These discoveries indicate that the surface expression of active Aleutian volcanism goes below sea level just west of Buldir, but is otherwise continuous along the full length of the arc. Many lavas dredged from western Aleutian seamounts are basalts, geochemically similar to basalts from elsewhere in Aleutians and other arcs (La/Yb 4-8, Sr/Y700 ppm Sr), which are mostly plagioclase-hornblende andesites and dacites with low Y and middle-heavy rare-earth elements, fractionated trace element patterns (Sr/Y=50-200, La/Yb=9-25) and MORB-like isotopes (87Sr/86Sr 0.65) with 1250-1700 ppm Sr, 4-7 ppm Y, low abundances of all rare-earth elements (LaMexico. [1] Zimmer et al., 2010, J. Petrology, v. 51, p. 2411

  13. Evidence for Amazonian highly viscous lavas in the southern highlands on Mars

    Czech Academy of Sciences Publication Activity Database

    Brož, Petr; Hauber, E.; Platz, T.; Balme, M.

    2015-01-01

    Roč. 415, 1 April (2015), s. 200-212 ISSN 0012-821X Institutional support: RVO:67985530 Keywords : Mars surface * volcanology * lava dome Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 4.326, year: 2015

  14. Extensive young silicic volcanism produces large deep submarine lava flows in the NE Lau Basin

    Science.gov (United States)

    Embley, Robert W.; Rubin, Kenneth H.

    2018-04-01

    New field observations reveal that extensive (up to 402 km2) aphyric, glassy dacite lavas were erupted at multiple sites in the recent past in the NE Lau basin, located about 200 km southwest of Samoa. This discovery of volumetrically significant and widespread submarine dacite lava flows extends the domain for siliceous effusive volcanism into the deep seafloor. Although several lava flow fields were discovered on the flank of a large silicic seamount, Niuatahi, two of the largest lava fields and several smaller ones ("northern lava flow fields") were found well north of the seamount. The most distal portion of the northernmost of these fields is 60 km north of the center of Niuatahi caldera. We estimate that lava flow lengths from probable eruptive vents to the distal ends of flows range from a few km to more than 10 km. Camera tows on the shallower, near-vent areas show complex lava morphology that includes anastomosing tube-like pillow flows and ropey surfaces, endogenous domes and/or ridges, some with "crease-like" extrusion ridges, and inflated lobes with extrusion structures. A 2 × 1.5 km, 30-m deep depression could be an eruption center for one of the lava flow fields. The Lau lava flow fields appear to have erupted at presumptive high effusion rates and possibly reduced viscosity induced by presumptive high magmatic water content and/or a high eruption temperature, consistent with both erupted composition ( 66% SiO2) and glassy low crystallinity groundmass textures. The large areal extent (236 km2) and relatively small range of compositional variation ( σ = 0.60 for wt% Si02%) within the northern lava flow fields imply the existence of large, eruptible batches of differentiated melt in the upper mantle or lower crust of the NE Lau basin. At this site, the volcanism could be controlled by deep crustal fractures caused by the long-term extension in this rear-arc region. Submarine dacite flows exhibiting similar morphology have been described in ancient

  15. The Chaitén rhyolite lava dome: Eruption sequence, lava dome volumes, rapid effusion rates and source of the rhyolite magma

    Science.gov (United States)

    Pallister, John S.; Diefenbach, Angela K.; Burton, William C.; Munoz, Jorge; Griswold, Julia P.; Lara, Luis E.; Lowenstern, Jacob B.; Valenzuela, Carolina E.

    2013-01-01

    We use geologic field mapping and sampling, photogrammetric analysis of oblique aerial photographs, and digital elevation models to document the 2008-2009 eruptive sequence at Chaitén Volcano and to estimate volumes and effusion rates for the lava dome. We also present geochemical and petrologic data that contribute to understanding the source of the rhyolite and its unusually rapid effusion rates. The eruption consisted of five major phases: 1. An explosive phase (1-11 May 2008); 2. A transitional phase (11-31 May 2008) in which low-altitude tephra columns and simultaneous lava extrusion took place; 3. An exogenous lava flow phase (June-September 2008); 4. A spine extrusion and endogenous growth phase (October 2008-February 2009); and 5. A mainly endogenous growth phase that began after the collapse of a prominent Peléean spine on 19 February 2009 and continued until the end of the eruption (late 2009 or possibly earliest 2010). The 2008-2009 rhyolite lava dome has a total volume of approximately 0.8 km3. The effusion rate averaged 66 m3s-1 during the first two weeks and averaged 45 m3s-1 for the first four months of the eruption, during which 0.5 km3 of rhyolite lava was erupted. These are among the highest rates measured world-wide for historical eruptions of silicic lava. Chaitén’s 2008-2009 lava is phenocryst-poor obsidian and microcrystalline rhyolite with 75.3±0.3% SiO2. The lava was erupted at relatively high temperature and is remarkably similar in composition and petrography to Chaitén’s pre-historic rhyolite. The rhyolite’s normative composition plots close to that of low pressure (100-200 MPa) minimum melts in the granite system, consistent with estimates of approximately 5 to 10 km source depths based on phase equilibria and geodetic studies. Calcic plagioclase, magnesian orthopyroxene and aluminous amphibole among the sparse phenocrysts suggest derivation of the rhyolite by melt extraction from a more mafic magmatic mush. High temperature

  16. On the possibility of recovering palaeo-diurnal magnetic variations in transitional lava flows. 2. An experimental case study

    Science.gov (United States)

    Vérard, Christian; Leonhardt, Roman; Winklhofer, Michael; Fabian, Karl

    2008-08-01

    Geomagnetic field variations of external origin may be enhanced during periods of transitional field behaviour, particularly when the dipole moment is low, in which case they are likely to leave a paleomagnetic signature in rapidly cooled lava flows. To test this proposition, we have resampled en bloc and studied in fine detail a thin transitional Aa flow from a mid-Miocene lava sequence on Gran Canaria which was paleomagnetically investigated previously (Leonhardt, R., Soffel, H.-C., 2002. A reversal of the Earth's magnetic field recorded in mid-Miocene lava flows of Gran Canaria, Paleointensities. Journal of Geophysical Research 107, 2299. doi:10.1029/2001JB000949). The flow is characterised by high-unblocking temperatures, an equatorial VGP position and a very low absolute palaeointensity of ˜2 μT. Two slabs were cut out of the flow and sampled at 1 cm intervals, along four vertical profiles running parallel to each other. Thermal demagnetisation was performed on two profiles using heating steps as small as 15 °C at elevated temperatures. The high-temperature part of the unblocking spectrum was found to be remarkably constant across the flow, as was the Curie temperature of 540 °C, and the negligible anisotropy of magnetic susceptibility. The exsolution lamallae observed under the microscope point to deuteric (high temperature) oxidation having occurred prior to the acquisition of the primary thermoremanent magnetisation. While the absolute palaeointensity values vary only little with vertical position, the magnetisation directions recovered by thermal demagnetisation vary considerably (on average, by some 20° at 500 °C). These large variations can be attributed to an overprint by secondary minerals, formed by fluid diffusion around vesicles and low-temperature oxidation. Since the secondary magnetisation recorded transitional directions as well, the overprint must have occurred soon after emplacement. The directional variations typically decrease in

  17. Measuring effusion rates of obsidian lava flows by means of satellite thermal data

    Science.gov (United States)

    Coppola, D.; Laiolo, M.; Franchi, A.; Massimetti, F.; Cigolini, C.; Lara, L. E.

    2017-11-01

    Space-based thermal data are increasingly used for monitoring effusive eruptions, especially for calculating lava discharge rates and forecasting hazards related to basaltic lava flows. The application of this methodology to silicic, more viscous lava bodies (such as obsidian lava flows) is much less frequent, with only few examples documented in the last decades. The 2011-2012 eruption of Cordón Caulle volcano (Chile) produced a voluminous obsidian lava flow ( 0.6 km3) and offers an exceptional opportunity to analyze the relationship between heat and volumetric flux for such type of viscous lava bodies. Based on a retrospective analysis of MODIS infrared data (MIROVA system), we found that the energy radiated by the active lava flow is robustly correlated with the erupted lava volume, measured independently. We found that after a transient time of about 15 days, the coefficient of proportionality between radiant and volumetric flux becomes almost steady, and stabilizes around a value of 5 × 106 J m- 3. This coefficient (i.e. radiant density) is much lower than those found for basalts ( 1 × 108 J m- 3) and likely reflects the appropriate spreading and cooling properties of the highly-insulated, viscous flows. The effusion rates trend inferred from MODIS data correlates well with the tremor amplitude and with the plume elevation recorded throughout the eruption, thus suggesting a link between the effusive and the coeval explosive activity. Modelling of the eruptive trend indicates that the Cordón Caulle eruption occurred in two stages, either incompletely draining a single magma reservoir or more probably tapping multiple interconnected magmatic compartments.

  18. Analysis of Active Lava Flows on Kilauea Volcano, Hawaii, Using SIR-C Radar Correlation Measurements

    Science.gov (United States)

    Zebker, H. A.; Rosen, P.; Hensley, S.; Mouginis-Mark, P. J.

    1995-01-01

    Precise eruption rates of active pahoehoe lava flows on Kilauea volcano, Hawaii, have been determined using spaceborne radar data acquired by the Space Shuttle Imaging Radar-C (SIR-C). Measurement of the rate of lava flow advance, and the determination of the volume of new material erupted in a given period of time, are among the most important observations that can be made when studying a volcano.

  19. Geochemistry of tholeiitic and alkalic lavas from the Koolau Range, Oahu, Hawaii

    International Nuclear Information System (INIS)

    Roden, M.F.; Frey, F.A.

    1984-01-01

    Lavas of the post-erosional, alkalic Honolulu Volcanics have significantly lower 87 Sr/ 86 Sr and higher 143 Nd/ 144 Nd than the older and underlying Koolau tholeiites which form the Koolau shield of eastern Oahu, Hawaii. Despite significant compositional variation within lavas forming the Honolulu Volcanics, these lavas are isotopically (Sr, Nd, Pb) very similar which contrasts with the isotopic heterogeneity of the Koolau tholeiites. Among Hawaiian tholeiitic suites, the Koolau lavas are geochemically distinct because of their lower iron contents and Sr and Nd isotopic ratios which range to bulk earth values. These geochemical data preclude simple models such as derivation of the Honolulu Volcanics and Koolau tholeiites from a common source by different degrees of melting or by mixing of two geochemically distinct sources. There may be no genetic relationship between the origin and evolution of these two lava suites; however, the trend shown by Koolau Range lavas of increasing 143 Nd/ 144 Nd and decreasing 87 Sr/ 86 Sr with decreasing eruption age and increasing alkalinity also occurs at Haleakala, East Molokai and Kauai volcaneoes. A complex mixing model proposed for Haleakala lavas can account for the variations in Sr and Nd isotopic ratios and processes occurring during ascent of relatively enriched mantle through relatively depleted MORB-related lithosphere. Although two isotopically distinct components may be sufficient to explain Sr and Nd isotopic variations at individual Hawaiian volcaneoes, more than two isotopically distinct materials are required to explain variations of Sr, Nd and Pb isotopic ratios in all Hawaiian lavas. (orig.)

  20. Evidence for contamination of recent Hawaiian lavas from 230Th-238U data

    International Nuclear Information System (INIS)

    Condomines, M.; Bernat, M.; Allegre, C.J.

    1976-01-01

    230 Th- 238 U radioactive disequilibrium was studied in the historical lava flows of the Mauna Loa and Kilauea, Hawaii. Large variations of the ( 230 Th/ 232 Th) ratio among lavas of the same volcano that were erupted at a few years' interval are interpreted as due to contamination. The contamination probably occurs by assimilation of zeolitic minerals formed by seawater interaction while the magma resides in a superficial chamber. (Auth.)

  1. Emplacement and erosive effects of the south Kasei Valles lava on Mars

    Science.gov (United States)

    Dundas, Colin M.; Keszthelyi, Laszlo P.

    2014-01-01

    Although it has generally been accepted that the Martian outflow channels were carved by floods of water, observations of large channels on Venus and Mercury demonstrate that lava flows can cause substantial erosion. Recent observations of large lava flows within outflow channels on Mars have revived discussion of the hypothesis that the Martian channels are also produced by lava. An excellent example is found in south Kasei Valles (SKV), where the most recent major event was emplacement of a large lava flow. Calculations using high-resolution Digital Terrain Models (DTMs) demonstrate that this flow was locally turbulent, similar to a previously described flood lava flow in Athabasca Valles. The modeled peak local flux of approximately 106 m3 s−1 was approximately an order of magnitude lower than that in Athabasca, which may be due to distance from the vent. Fluxes close to 107 m3 s−1 are estimated in some reaches but these values are probably records of local surges caused by a dam-breach event within the flow. The SKV lava was locally erosive and likely caused significant (kilometer-scale) headwall retreat at several cataracts with tens to hundreds of meters of relief. However, in other places the net effect of the flow was unambiguously aggradational, and these are more representative of most of the flow. The larger outflow channels have lengths of thousands of kilometers and incision of a kilometer or more. Therefore, lava flows comparable to the SKV flow did not carve the major Martian outflow channels, although the SKV flow was among the largest and highest-flux lava flows known in the Solar System.

  2. Shallow and deep controls on lava lake surface motion at Kīlauea Volcano

    Science.gov (United States)

    Patrick, Matthew R.; Orr, Tim R.; Swanson, Don; Lev, Einat

    2016-01-01

    Lava lakes provide a rare window into magmatic behavior, and lake surface motion has been used to infer deeper properties of the magmatic system. At Halema'uma'u Crater, at the summit of Kīlauea Volcano, multidisciplinary observations for the past several years indicate that lava lake surface motion can be broadly divided into two regimes: 1) stable and 2) unstable. Stable behavior is driven by lava upwelling from deeper in the lake (presumably directly from the conduit) and is an intrinsic process that drives lava lake surface motion most of the time. This stable behavior can be interrupted by periods of unstable flow (often reversals) driven by spattering – a shallowly-rooted process often extrinsically triggered by small rockfalls from the crater wall. The bursting bubbles at spatter sources create void spaces and a localized surface depression which draws and consumes surrounding surface crust. Spattering is therefore a location of lava downwelling, not upwelling. Stable (i.e. deep, upwelling-driven) and unstable (i.e. shallow, spattering-driven) behavior often alternate through time, have characteristic surface velocities, flow directions and surface temperature regimes, and also correspond to changes in spattering intensity, outgassing rates, lava level and seismic tremor. These results highlight that several processes, originating at different depths, can control the motion of the lava lake surface, and long-term interdisciplinary monitoring is required to separate these influences. These observations indicate that lake surface motion is not always a reliable proxy for deeper lake or magmatic processes. From these observations, we suggest that shallow outgassing (spattering), not lake convection, drives the variations in lake motion reported at Erta 'Ale lava lake.

  3. The Etendeka lavas SWA/Namibia: geology, chemistry and spatial and temporal relationships

    International Nuclear Information System (INIS)

    Marsh, J.S.; Erlank, A.J.; Duncan, A.R.; Miller, R.McG.; Rex, D.C.

    1981-01-01

    The paper discusses a geologic survey on the Etendeka lavas in South West Africa/Namibia with special attention to the geology, chemistry and spatial and temporal relationships in the area. K/Ar age data indicate that the bulk of the Etendeka lavas are about 120 m.y. old. In the study use was also made of 87 Sr/ 86 Sr, 143 Nd/ 144 Nd, 206 Pb/ 204 Pb, 207 Pb/ 204 Pb and 208 Pb/ 204 Pb isotope ratios

  4. Colorado Basin Structure and Rifting, Argentine passive margin

    Science.gov (United States)

    Autin, Julia; Scheck-Wenderoth, Magdalena; Loegering, Markus; Anka, Zahie; Vallejo, Eduardo; Rodriguez, Jorge; Marchal, Denis; Reichert, Christian; di Primio, Rolando

    2010-05-01

    The Argentine margin presents a strong segmentation with considerable strike-slip movements along the fracture zones. We focus on the volcanic segment (between the Salado and Colorado transfer zones), which is characterized by seaward dipping reflectors (SDR) all along the ocean-continent transition [e.g. Franke et al., 2006; Gladczenko et al., 1997; Hinz et al., 1999]. The segment is structured by E-W trending basins, which differs from the South African margin basins and cannot be explained by classical models of rifting. Thus the study of the relationship between the basins and the Argentine margin itself will allow the understanding of their contemporary development. Moreover the comparison of the conjugate margins suggests a particular evolution of rifting and break-up. We firstly focus on the Colorado Basin, which is thought to be the conjugate of the well studied Orange Basin [Hirsch et al., 2009] at the South African margin [e.g. Franke et al., 2006]. This work presents results of a combined approach using seismic interpretation and structural, isostatic and thermal modelling highlighting the structure of the crust. The seismic interpretation shows two rift-related discordances: one intra syn-rift and the break-up unconformity. The overlying sediments of the sag phase are less deformed (no sedimentary wedges) and accumulated before the generation of oceanic crust. The axis of the Colorado Basin trends E-W in the western part, where the deepest pre-rift series are preserved. In contrast, the basin axis turns to a NW-SE direction in its eastern part, where mainly post-rift sediments accumulated. The most distal part reaches the margin slope and opens into the oceanic basin. The general basin direction is almost orthogonal to the present-day margin trend. The most frequent hypothesis explaining this geometry is that the Colorado Basin is an aborted rift resulting from a previous RRR triple junction [e.g. Franke et al., 2002]. The structural interpretation

  5. Subaqueous rhyolite block lavas in the Miocene Ushikiri Formation, Shimane Peninsula, SW Japan

    Science.gov (United States)

    Kano, Kazuhiko; Takeuchi, Keiji; Yamamoto, Takahiro; Hoshizumi, Hideo

    1991-06-01

    A rhyolite mass of the Miocene Ushikiri Formation in the western part of the Shimane Peninsula, SW Japan, is a small subaqueous edifice about 600 m high and 4 km wide, formed at water depths between 200 and 1000 m. It consists mainly of three relatively flat, lava-flow units 50-300 m in maximum thickness, each of which includes lobes and their polyhedral fragments. The lava lobes are poorly to well vesiculated, glassy to microcrystalline and flow-banded and -folded. Compared with mafic pillows, they are large, having thick, quenched and brecciated, glassy crusts because of their high viscosity, surface tension and thermal conductivity. Their surfaces disintegrate into polyhedral fragments and grade into massive volcanic breccia. The massive volcanic breccia composed of the lobe fragments is poorly sorted and covered with stratified volcanic breccia of the same rock type. The rhyolite lavas commonly bifurcate in a manner similar to mafic pillow lavas. However, they are highly silicic with 1-5 vol.% phenocrysts and have elongated vesicles and flow-folds, implying that they were visco-plastic during flowage. Their surface features are similar to those of subaerial block lava. With respect to rheological and morphological features, they are subaqueous equivalents of block lava.

  6. Monitoring the cooling of the 1959 Kīlauea Iki lava lake using surface magnetic measurements

    Science.gov (United States)

    Gailler, Lydie; Kauahikaua, James P.

    2017-01-01

    Lava lakes can be considered as proxies for small magma chambers, offering a unique opportunity to investigate magma evolution and solidification. Repeated magnetic ground surveys over more than 50 years each show a large vertical magnetic intensity anomaly associated with Kīlauea Iki Crater, partly filled with a lava lake during the 1959 eruption of Kīlauea Volcano (Island of Hawai’i). The magnetic field values recorded across the Kīlauea Iki crater floor and the cooling lava lake below result from three simple effects: the static remnant magnetization of the rocks forming the steep crater walls, the solidifying lava lake crust, and the hot, but shrinking, paramagnetic non-magnetic lens (>540 °C). We calculate 2D magnetic models to reconstruct the temporal evolution of the geometry of this non-magnetic body, its depth below the surface, and its thickness. Our results are in good agreement with the theoretical increase in thickness of the solidifying crust with time. Using the 2D magnetic models and the theoretical curve for crustal growth over a lava lake, we estimate that the former lava lake will be totally cooled below the Curie temperature in about 20 years. This study shows the potential of magnetic methods for detecting and monitoring magmatic intrusions at various scales.

  7. Retrospective validation of a lava-flow hazard map for Mount Etna volcano

    Directory of Open Access Journals (Sweden)

    Ciro Del Negro

    2011-12-01

    Full Text Available This report presents a retrospective methodology to validate a long-term hazard map related to lava-flow invasion at Mount Etna, the most active volcano in Europe. A lava-flow hazard map provides the probability that a specific point will be affected by potential destructive volcanic processes over the time period considered. We constructed this lava-flow hazard map for Mount Etna volcano through the identification of the emission regions with the highest probabilities of eruptive vents and through characterization of the event types for the numerical simulations and the computation of the eruptive probabilities. Numerical simulations of lava-flow paths were carried out using the MAGFLOW cellular automata model. To validate the methodology developed, a hazard map was built by considering only the eruptions that occurred at Mount Etna before 1981. On the basis of the probability of coverage by lava flows, the map was divided into ten classes, and two fitting scores were calculated to measure the overlap between the hazard classes and the actual shapes of the lava flows that occurred after 1981.

  8. Influence of conduit flow mechanics on magma rheology and the growth style of lava domes

    Science.gov (United States)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2018-06-01

    We develop a 2-D particle-mechanics model to explore different lava-dome growth styles. These range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fuelled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. A period of reduced effusive flow rates promote enhanced degassing-induced crystallization. A degassed lava plug extrudes exogenously for magmas with crystal contents (ϕ) of 78 per cent, yield strength >1.62 MPa, and at flow rates of 3 m3 s-1) for magma with lower relative yield strengths (p = 3 MPa) at the conduit exit is forced out by the high discharge rate pulse (2 process, which has been observed at Mount St. Helens and other locations, largely reflects gravitational loading of dome with a viscous core, with retardation by yield strength and talus friction.

  9. Thermomechanical Controls on the Success and Failure of Continental Rift Systems

    Science.gov (United States)

    Brune, S.

    2017-12-01

    Studies of long-term continental rift evolution are often biased towards rifts that succeed in breaking the continent like the North Atlantic, South China Sea, or South Atlantic rifts. However there are many prominent rift systems on Earth where activity stopped before the formation of a new ocean basin such as the North Sea, the West and Central African Rifts, or the West Antarctic Rift System. The factors controlling the success and failure of rifts can be divided in two groups: (1) Intrinsic processes - for instance frictional weakening, lithospheric thinning, shear heating or the strain-dependent growth of rift strength by replacing weak crust with strong mantle. (2) External processes - such as a change of plate divergence rate, the waning of a far-field driving force, or the arrival of a mantle plume. Here I use numerical and analytical modeling to investigate the role of these processes for the success and failure of rift systems. These models show that a change of plate divergence rate under constant force extension is controlled by the non-linearity of lithospheric materials. For successful rifts, a strong increase in divergence velocity can be expected to take place within few million years, a prediction that agrees with independent plate tectonic reconstructions of major Mesozoic and Cenozoic ocean-forming rift systems. Another model prediction is that oblique rifting is mechanically favored over orthogonal rifting, which means that simultaneous deformation within neighboring rift systems of different obliquity and otherwise identical properties will lead to success and failure of the more and less oblique rift, respectively. This can be exemplified by the Cretaceous activity within the Equatorial Atlantic and the West African Rifts that lead to the formation of a highly oblique oceanic spreading center and the failure of the West African Rift System. While in nature the circumstances of rift success or failure may be manifold, simplified numerical and

  10. Dataciones radiometricas (14C y K/Ar del Teide y el Rift noroeste, Tenerife, Islas Canarias

    Directory of Open Access Journals (Sweden)

    Hansen, A.

    2003-08-01

    Full Text Available Teide volcano, the highest volcano on earth (3,718 m a.s.l., > 7 km high after Mauna Loa and Mauna Kea in the Hawaiian Islands, forms a volcanic complex in the centre of the island of Tenerife. Its most recent eruptive activity (last 20 Ka is associated with the very active NW branch of the 120" triple rift system of the island. Most of the eruptions of Tenerife during the past 20 Ka have occurred along these volcanic features, frequently in the production of extensive mafic and felsic lava flows, many of which reached the coast, crossing what is now one of the most densely populated areas of Tenerife and of any oceanic island in the world. However, despite numerous previous studies, very important basic geological information is still lacking, in particular dating of these flows to construct a geochronological framework for the evolution of the Teide-NW rift system, and a scientifically based, much needed volcanic hazard assessment. New carbon- 14 ages, obtained via coupled mass spectrometry (other in progress, provide important time constraints on the evoliition of Teide's volcanic system, the frequency and distribution of its eruptions, and associated volcanic hazards. Most of the eruptions are not related to the Teide stratovolcano, which apparently had only one eruption in the last 20 Ka about 1,240 f 60 years BP (between 1,287 CAL years BP and 1,007 CAL years BP, corresponding to a time interval between the VI1 and X centuries, 663 years AD to 943 years AD, but to the Pico Viejo volcano (17,570 f 150 years BP, flank parasitic vents (Mña. Abejera upper vent, 5,170 f 110 years BP; Mña. Abejera lower vent, 4,790 f 70 years BP; Mña. de La Angostura early, 2,420 f 70 years BP; Mña. La Angostura late, 2,010 f 60 years BP and Roques Blancos, 1,790 f 60 years BP and the NW rift (Mña. Chío, 3,620 f 70 years BP. Although the volcanic activity during the past 20 Ka involved at least 7 voluminous phonolitic flank vents in the northem, more

  11. Estimation of age of Dali-Ganis rifting and associated volcanic activity, Venus

    Science.gov (United States)

    Basilevsky, A. T.

    1993-01-01

    This paper deals with the estimation of age for the Dali and Ganis Chasma rift zones and their associated volcanism based on photogeologic analysis of stratigraphic relations of rift-associated features with impact craters which have associated features indicative of their age. The features are radar-dark and parabolic, and they are believed to be mantles of debris derived from fallout of the craters' ejecta. They are thought to be among the youngest features on the Venusian surface, so their 'parent' craters must also be very young, evidently among the youngest 10 percent of Venus' crater population. Dali Chasma and Ganis Chasma are a part of a system of rift zones contained within eastern Aphrodite and Atla Regio which is a significant component of Venus tectonics. The rifts of this system are fracture belts which dissect typical Venusian plains with rare islands of tessera terrain. The rift zone system consists of several segments following each other (Diane, Dali, Ganis) and forming the major rift zone line, about 10,000 km long, which has junctions with several other rift zones, including Parga Chasma Rift. The junctions are usually locations of rift-associated volcanism in the form of volcanic edifices (Maat and Ozza Montes) or plain-forming flows flooding some areas within the rift zones and the adjacent plains.

  12. Evidence for triple-junction rifting focussed on local magmatic centres along Parga Chasma, Venus

    Science.gov (United States)

    Graff, J. R.; Ernst, R. E.; Samson, C.

    2018-05-01

    Parga Chasma is a discontinuous rift system marking the southern boundary of the Beta-Atla-Themis (BAT) region on Venus. Along a 1500 km section of Parga Chasma, detailed mapping of Magellan Synthetic Aperture Radar images has revealed 5 coronae, 11 local rift zones distinct from a regional extension pattern, and 47 graben-fissure systems with radiating (28), linear (12) and circumferential (7) geometries. The magmatic centres of these graben-fissure systems typically coincide with coronae or large volcanoes, although a few lack any central magmatic or tectonic feature (i.e. are cryptic). Some of the magmatic centres are interpreted as the foci of triple-junction rifting that form the 11 local rift zones. Cross-cutting relationships between graben-fissure systems and local rift faults reveal synchronous formation, implying a genetic association. Additionally, cross-cutting relationships show that local rifting events postdate the regional extension along Parga Chasma, further indicating multiple stages of rifting. Evidence for multiple centres of younger magmatism and local rifting against a background of regional extension provides an explanation for the discontinuous morphology of Parga Chasma. Examination of the Atlantic Rift System (prior to ocean opening) on Earth provides an analogue to the rift morphologies observed on Venus.

  13. Experimental Insights on Natural Lava-Ice/Snow Interactions and Their Implications for Glaciovolcanic and Submarine Eruptions

    Science.gov (United States)

    Edwards, B. R.; Karson, J.; Wysocki, R.; Lev, E.; Bindeman, I. N.; Kueppers, U.

    2012-12-01

    Lava-ice-snow interactions have recently gained global attention through the eruptions of ice-covered volcanoes, particularly from Eyjafjallajokull in south-central Iceland, with dramatic effects on local communities and global air travel. However, as with most submarine eruptions, direct observations of lava-ice/snow interactions are rare. Only a few hundred potentially active volcanoes are presently ice-covered, these volcanoes are generally in remote places, and their associated hazards make close observation and measurements dangerous. Here we report the results of the first large-scale experiments designed to provide new constraints on natural interactions between lava and ice/snow. The experiments comprised controlled effusion of tens of kilograms of melted basalt on top of ice/snow, and provide insights about observations from natural lava-ice-snow interactions including new constraints for: 1) rapid lava advance along the ice-lava interface; 2) rapid downwards melting of lava flows through ice; 3) lava flow exploitation of pre-existing discontinuities to travel laterally beneath and within ice; and 4) formation of abundant limu o Pele and non-explosive vapor transport from the base to the top of the lava flow with minor O isotope exchange. The experiments are consistent with observations from eruptions showing that lava is more efficient at melting ice when emplaced on top of the ice as opposed to beneath the ice, as well as the efficacy of tephra cover for slowing melting. The experimental extrusion rates are as within the range of those for submarine eruptions as well, and reproduce some features seen in submarine eruptions including voluminous production of gas rich cavities within initially anhydrous lavas and limu on lava surfaces. Our initial results raise questions about the possibility of secondary ingestion of water by submarine and glaciovolcanic lava flows, and the origins of apparent primary gas cavities in those flows. Basaltic melt moving down

  14. Dykes and structures of the NE rift of Tenerife, Canary Islands: a record of stabilisation and destabilisation of ocean island rift zones

    Science.gov (United States)

    Delcamp, A.; Troll, V. R.; van Wyk de Vries, B.; Carracedo, J. C.; Petronis, M. S.; Pérez-Torrado, F. J.; Deegan, F. M.

    2012-07-01

    Many oceanic island rift zones are associated with lateral sector collapses, and several models have been proposed to explain this link. The North-East Rift Zone (NERZ) of Tenerife Island, Spain offers an opportunity to explore this relationship, as three successive collapses are located on both sides of the rift. We have carried out a systematic and detailed mapping campaign on the rift zone, including analysis of about 400 dykes. We recorded dyke morphology, thickness, composition, internal textural features and orientation to provide a catalogue of the characteristics of rift zone dykes. Dykes were intruded along the rift, but also radiate from several nodes along the rift and form en échelon sets along the walls of collapse scars. A striking characteristic of the dykes along the collapse scars is that they dip away from rift or embayment axes and are oblique to the collapse walls. This dyke pattern is consistent with the lateral spreading of the sectors long before the collapse events. The slump sides would create the necessary strike-slip movement to promote en échelon dyke patterns. The spreading flank would probably involve a basal decollement. Lateral flank spreading could have been generated by the intense intrusive activity along the rift but sectorial spreading in turn focused intrusive activity and allowed the development of deep intra-volcanic intrusive complexes. With continued magma supply, spreading caused temporary stabilisation of the rift by reducing slopes and relaxing stress. However, as magmatic intrusion persisted, a critical point was reached, beyond which further intrusion led to large-scale flank failure and sector collapse. During the early stages of growth, the rift could have been influenced by regional stress/strain fields and by pre-existing oceanic structures, but its later and mature development probably depended largely on the local volcanic and magmatic stress/strain fields that are effectively controlled by the rift zone growth

  15. Geochemistry of southern Pagan Island lavas, Mariana arc: The role of subduction zone processes

    Science.gov (United States)

    Marske, J.P.; Pietruszka, A.J.; Trusdell, F.A.; Garcia, M.O.

    2011-01-01

    New major and trace element abundances, and Pb, Sr, and Nd isotopic ratios of Quaternary lavas from two adjacent volcanoes (South Pagan and the Central Volcanic Region, or CVR) located on Pagan Island allow us to investigate the mantle source (i.e., slab components) and melting dynamics within the Mariana intra-oceanic arc. Geologic mapping reveals a pre-caldera (780-9.4ka) and post-caldera (<9.4ka) eruptive stage for South Pagan, whereas the eruptive history of the older CVR is poorly constrained. Crystal fractionation and magma mixing were important crustal processes for lavas from both volcanoes. Geochemical and isotopic variations indicate that South Pagan and CVR lavas, and lavas from the northern volcano on the island, Mt. Pagan, originated from compositionally distinct parental magmas due to variations in slab contributions (sediment and aqueous fluid) to the mantle wedge and the extent of mantle partial melting. A mixing model based on Pb and Nd isotopic ratios suggests that the average amount of sediment in the source of CVR (~2.1%) and South Pagan (~1.8%) lavas is slightly higher than Mt. Pagan (~1.4%) lavas. These estimates span the range of sediment-poor Guguan (~1.3%) and sediment-rich Agrigan (~2.0%) lavas for the Mariana arc. Melt modeling demonstrates that the saucer-shaped normalized rare earth element (REE) patterns observed in Pagan lavas can arise from partial melting of a mixed source of depleted mantle and enriched sediment, and do not require amphibole interaction or fractionation to depress the middle REE abundances of the lavas. The modeled degree of mantle partial melting for Agrigan (2-5%), Pagan (3-7%), and Guguan (9-15%) lavas correlates with indicators of fluid addition (e.g., Ba/Th). This relationship suggests that the fluid flux to the mantle wedge is the dominant control on the extent of partial melting beneath Mariana arc volcanoes. A decrease in the amount of fluid addition (lower Ba/Th) and extent of melting (higher Sm/Yb), and

  16. Morphologic and thermophysical characteristics of lava flows southwest of Arsia Mons, Mars

    Science.gov (United States)

    Crown, David A.; Ramsey, Michael S.

    2017-08-01

    The morphologic and thermophysical characteristics of part of the extensive lava flow fields southwest of Arsia Mons (22.5-27.5°S, 120-130°W) have been examined using a combination of orbital VNIR and TIR datasets. THEMIS images provide context for the regional geology and record diurnal temperature variability that is diverse and unusual for flow surfaces in such close proximity. CTX images were used to distinguish dominant flow types and assess local age relationships between individual lava flows. CTX and HiRISE images provide detailed information on flow surface textures and document aeolian effects as they reveal fine-grained deposits in many low-lying areas of the flow surfaces as well as small patches of transverse aeolian ridges. Although this region is generally dust-covered and has a lower overall thermal inertia, the THEMIS data indicate subtle spectral variations within the population of lava flows studied. These variations could be due to compositional differences among the flows or related to mixing of flow and aeolian materials. Specific results regarding flow morphology include: a) Two main lava flow types (bright, rugged and dark, smooth as observed in CTX images) dominate the southwest Arsia Mons/NE Daedalia Planum region; b) the bright, rugged flows have knobby, ridged, and/or platy surface textures, commonly have medial channel/levee systems, and may have broad distal lobes; c) the dark, smooth flows extend from distributary systems that consist of combinations of lava channels, lava tubes, and/or sinuous ridges and plateaus; and d) steep-sided, terraced margins, digitate breakout lobes, and smooth-surfaced plateaus along lava channel/tube systems are interpreted as signatures of flow inflation within the dark, smooth flow type. These flows exhibit smoother upper surfaces, are thinner, and have more numerous, smaller lobes, which, along with their the channel-/tube-fed nature, indicate a lower viscosity lava than for the bright, rugged flows

  17. The 1.1-Ga Midcontinent Rift System, central North America: sedimentology of two deep boreholes, Lake Superior region

    Science.gov (United States)

    Ojakangas, Richard W.; Dickas, Albert B.

    2002-03-01

    The Midcontinent Rift System (MRS) of central North America is a 1.1-Ga, 2500-km long structural feature that has been interpreted as a triple-junction rift developed over a mantle plume. As much as 20 km of subaerial lava flows, mainly flood basalts, are overlain by as much as 10 km of sedimentary rocks that are mostly continental fluvial red beds. This rock sequence, known as the Keweenawan Supergroup, has been penetrated by a few deep boreholes in the search for petroleum. In this paper, two deep boreholes in the Upper Peninsula of Michigan are described in detail for the first time. Both the Amoco Production #1-29R test, herein referred to as the St. Amour well, and the nearby Hickey Creek well drilled by Cleveland Cliffs Mining Services, were 100% cored. The former is 7238 ft (2410 m) deep and the latter is 5345 ft (1780 m) deep. The entirety of the stratigraphic succession of the Hickey Creek core correlates very well with the upper portion of the St. Amour core, as determined by core description and point-counting of 43 thin sections selected out of 100 studied thin sections. Two Lower Paleozoic units and two Keweenawan red bed units—the Jacobsville Sandstone and the underlying Freda Sandstone—are described. The Jacobsville is largely a feldspatholithic sandstone and the Freda is largely a lithofeldspathic sandstone. Below the Freda, the remaining footage of the St. Amour core consists of a thick quartzose sandstone unit that overlies a heterogenous unit of intercalated red bed units of conglomerate, sandstone, siltstone, and shale; black shale; individual basalt flows; and a basal ignimbritic rhyolite. This lower portion of the St. Amour core presents an enigma, as it correlates very poorly with other key boreholes located to the west and southwest. While a black shale sequence is similar to the petroleum-bearing Nonesuch Formation farther west, there is no conglomerate unit to correlate with the Copper Harbor Conglomerate. Other key boreholes are

  18. UAV-based remote sensing surveys of lava flow fields: a case study from Etna's 1974 channel-fed lava flows

    Science.gov (United States)

    Favalli, Massimiliano; Fornaciai, Alessandro; Nannipieri, Luca; Harris, Andrew; Calvari, Sonia; Lormand, Charline

    2018-03-01

    During an eruption, time scales of topographic change are fast and involve vertical and planimetric evolution of millimeters to meters as the event progresses. Repeat production of high spatial resolution terrain models of lava flow fields over time scales of a few hours is thus a high-value capability in tracking the buildup of the deposit. Among the wide range of terrestrial and aerial methods available to collect such topographic data, the use of an unmanned aerial vehicle (UAV) as an acquisition platform, together with structure from motion (SfM) photogrammetry, has become especially useful. This approach allows high-frequency production of centimeter-scale terrain models over kilometer-scale areas, including dangerous and inaccessible zones, with low cost and minimal hazard to personnel. This study presents the application of such an integrated UAV-SfM method to generate a high spatial resolution digital terrain model and orthomosaic of Mount Etna's January-February 1974 lava flow field. The SfM method, applied to images acquired using a UAV platform, enabled the extraction of a very high spatial resolution (20 cm) digital elevation model and the generation of a 3-cm orthomosaic covering an area of 1.35 km2. This spatial resolution enabled us to analyze the morphology of sub-meter-scale features, such as folds, blocks, and cracks, over kilometer-scale areas. The 3-cm orthomosaic allowed us to further push the analysis to centimeter-scale grain size distribution of the lava surface. Using these data, we define three types of crust structure and relate them to positions within a channel-fed ´áā flow system. These crust structures are (i) flow parallel shear lines, (ii) raft zones, and (iii) folded zones. Flow parallel shear lines are found at the channel edges, and are 2-m-wide and 0.25-m-deep zones running along the levee base and in which cracking is intense. They result from intense shearing between the moving channel lava and the static levee lava. In

  19. Re-Emergence of Rift Valley Fever in Madagascar

    Centers for Disease Control (CDC) Podcasts

    2010-05-27

    This podcast describes the re-emergence of Rift Valley Fever in Madagascar during two rainy seasons in 2008 and 2009. CDC epidemiologist Dr. Pierre Rollin discusses what researchers learned about the outbreak and about infections in the larger population in Madagascar.  Created: 5/27/2010 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 5/27/2010.

  20. Eradicating tsetse from the Southern Rift Valley of Ethiopia

    International Nuclear Information System (INIS)

    2003-01-01

    Farming activities in Ethiopia, as in much of sub-Saharan Africa, are restricted by the presence of tsetse flies (Glossina spp.). These carry the livestock and human disease, trypanosomosis, which severely affects agricultural production and human well-being. In collaboration with the Ethiopian authorities, the International Atomic Energy Agency is sponsoring a Sterile Insect Technique (SIT) programme to eradicate tsetse from the Southern Rift Valley of Ethiopia. (IAEA)

  1. Dike intrusions during rifting episodes obey scaling relationships similar to earthquakes

    Science.gov (United States)

    L., Passarelli; E., Rivalta; A., Shuler

    2014-01-01

    As continental rifts evolve towards mid-ocean ridges, strain is accommodated by repeated episodes of faulting and magmatism. Discrete rifting episodes have been observed along two subaerial divergent plate boundaries, the Krafla segment of the Northern Volcanic Rift Zone in Iceland and the Manda-Hararo segment of the Red Sea Rift in Ethiopia. In both cases, the initial and largest dike intrusion was followed by a series of smaller intrusions. By performing a statistical analysis of these rifting episodes, we demonstrate that dike intrusions obey scaling relationships similar to earthquakes. We find that the dimensions of dike intrusions obey a power law analogous to the Gutenberg-Richter relation, and the long-term release of geodetic moment is governed by a relationship consistent with the Omori law. Due to the effects of magma supply, the timing of secondary dike intrusions differs from that of the aftershocks. This work provides evidence of self-similarity in the rifting process. PMID:24469260

  2. Signature recognition for rift structures of different sediment strata in ordos basin

    International Nuclear Information System (INIS)

    Zhao Xigang

    2006-10-01

    The rift structure weak information of high Bouguer gravity anomaly data among different Sediment strata are extracted By the horizontal gradient Maximum modulus, the wavelet variation, stripped gravity anomaly of basement and interfaces above/under researched layer, image processing method. So the linear rift structures of different Sediment strata are recognized on data images, such as Cretaceous, Jurassic, Triassic, Permian and Carboniferous, Ordovician System. Development rifts of different Sediment strata occur in stereo structure with quasi-uniform spacing, the rift density of above Sediment stratum is more than lower in different Sediment strata, but the north rift density of the same Sediment stratum is less than south's. It is useful to study rift structure and co-explore for oil, gas, coal and uranium resources in Ordos Basin. (authors)

  3. Geophysical exploration of the Boku geothermal area, Central Ethiopian Rift

    Energy Technology Data Exchange (ETDEWEB)

    Abiye, Tamiru A. [School of Geosciences, Faculty of Science, University of the Witwatersrand, Private Bag X3, P.O. Box Wits, 2050 Johannesburg (South Africa); Tigistu Haile [Department of Geology and Geophysics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)

    2008-12-15

    The Boku central volcano is located within the axial zone of the Central Ethiopian Rift near the town of Nazareth, Ethiopia. An integrated geophysical survey involving thermal, magnetic, electrical and gravimetric methods has been carried out over the Boku geothermal area in order to understand the circulation of fluids in the subsurface, and to localize the 'hot spot' providing heat to the downward migrating groundwaters before they return to the surface. The aim of the investigations was to reconstruct the geometry of the aquifers and the fluid flow paths in the Boku geothermal system, the country's least studied. Geological studies show that it taps heat from the shallow acidic Quaternary volcanic rocks of the Rift floor. The aquifer system is hosted in Quaternary Rift floor ignimbrites that are intensively fractured and receive regional meteoric water recharge from the adjacent escarpment and locally from precipitation and the Awash River. Geophysical surveys have mapped Quaternary faults that are the major geologic structures that allow the ascent of the hotter fluids towards the surface, as well as the cold-water recharge of the geothermal system. The shallow aquifers are mapped, preferred borehole sites for the extraction of thermal fluids are delineated and the depths to deeper thermal aquifers are estimated. (author)

  4. Sensibility analysis of VORIS lava-flow simulations: application to Nyamulagira volcano, Democratic Republic of Congo

    Science.gov (United States)

    Syavulisembo, A. M.; Havenith, H.-B.; Smets, B.; d'Oreye, N.; Marti, J.

    2015-03-01

    Assessment and management of volcanic risk are important scientific, economic, and political issues, especially in densely populated areas threatened by volcanoes. The Virunga area in the Democratic Republic of Congo, with over 1 million inhabitants, has to cope permanently with the threat posed by the active Nyamulagira and Nyiragongo volcanoes. During the past century, Nyamulagira erupted at intervals of 1-4 years - mostly in the form of lava flows - at least 30 times. Its summit and flank eruptions lasted for periods of a few days up to more than two years, and produced lava flows sometimes reaching distances of over 20 km from the volcano, thereby affecting very large areas and having a serious impact on the region of Virunga. In order to identify a useful tool for lava flow hazard assessment at the Goma Volcano Observatory (GVO), we tested VORIS 2.0.1 (Felpeto et al., 2007), a freely available software (http://www.gvb-csic.es) based on a probabilistic model that considers topography as the main parameter controlling lava flow propagation. We tested different Digital Elevation Models (DEM) - SRTM1, SRTM3, and ASTER GDEM - to analyze the sensibility of the input parameters of VORIS 2.0.1 in simulation of recent historical lava-flow for which the pre-eruption topography is known. The results obtained show that VORIS 2.0.1 is a quick, easy-to-use tool for simulating lava-flow eruptions and replicates to a high degree of accuracy the eruptions tested. In practice, these results will be used by GVO to calibrate VORIS model for lava flow path forecasting during new eruptions, hence contributing to a better volcanic crisis management.

  5. Diagnostic value of the fluoroscopic triggering 3D LAVA technique for primary liver cancer.

    Science.gov (United States)

    Shen, Xiao-Yong; Chai, Chun-Hua; Xiao, Wen-Bo; Wang, Qi-Dong

    2010-04-01

    Primary liver cancer (PLC) is one of the common malignant tumors. Liver acquisition with acceleration volume acquisition (LAVA), which allows simultaneous dynamic enhancement of the hepatic parenchyma and vasculature imaging, is of great help in the diagnosis of PLC. This study aimed to evaluate application of the fluoroscopic triggering 3D LAVA technique in the imaging of PLC and liver vasculature. The clinical data and imaging findings of 38 adults with PLC (22 men and 16 women; average age 52 years), pathologically confirmed by surgical resection or biopsy, were collected and analyzed. All magnetic resonance images were obtained with a 1.5-T system (General Electrics Medical Systems) with an eight-element body array coil and application of the fluoroscopic triggering 3D LAVA technique. Overall image quality was assessed on a 5-point scale by two experienced radiologists. All the nodules and blood vessel were recorded and compared. The diagnostic accuracy and feasibility of LAVA were evaluated. Thirty-eight patients gave high quality images of 72 nodules in the liver for diagnosis. The accuracy of LAVA was 97.2% (70/72), and the coincidence rate between the extent of tumor judged by dynamic enhancement and pathological examination was 87.5% (63/72). Displayed by the maximum intensity projection reconstruction, nearly all cases gave satisfactory images of branches III and IV of the hepatic artery. Furthermore, small early-stage enhancing hepatic lesions and the parallel portal vein were also well displayed. Sequence of LAVA provides good multi-phase dynamic enhancement scanning of hepatic lesions. Combined with conventional scanning technology, LAVA effectively and safely displays focal hepatic lesions and the relationship between tumor and normal tissues, especially blood vessels.

  6. Simulation of core melt spreading with lava: theoretical background and status of validation

    International Nuclear Information System (INIS)

    Allelein, H.-J.; Breest, A.; Spengler, C.

    2000-01-01

    The goal of this paper is to present the GRS R and D achievements and perspectives of its approach to simulate ex-vessel core melt spreading. The basic idea followed by GRS is the analogy of core melt spreading to volcanic lava flows. A fact first proposed by Robson (1967) and now widely accepted is that lava rheologically behaves as a Bingham fluid, which is characterized by yield stress and plastic viscosity. Recent experimental investigations by Epstein (1996) reveal that corium-concrete mixtures may be described as Bingham fluids. The GRS code LAVA is based on a successful lava flow model, but is adapted to prototypic corium and corium-simulation spreading. Furthermore some detailed physical models such as a thermal crust model on the free melt surface and a model for heat conduction into the substratum are added. Heat losses of the bulk, which is represented by one mean temperature, are now determined by radiation and by temperature profiles in the upper crust and in the substratum. In order to reduce the weak mesh dependence of the original algorithm, a random space method of cellular automata is integrated, which removes the mesh bias without increasing calculation time. LAVA is successfully validated against a lot of experiments using different materials spread. The validation process has shown that LAVA is a robust and fast running code to simulate corium-type spreading. LAVA provides all integral information of practical interest (spreading length, height of the melt after stabilization) and seems to be an appropriate tool for handling large core melt masses within a plant application. (orig.)

  7. Syn-Rift Systems of East Godavari Sub Basin: Its Evolution and Hydrocarbon Prospectivity

    Science.gov (United States)

    Dash, J., Jr.; Zaman, B.

    2014-12-01

    Krishna Godavari (K.G.) basin is a passive margin basin developed along the Eastern coast of India. This basin has a polyhistoric evolution with multiple rift systems. Rift basin exploration has provided the oil and gas industry with almost one third of discovered global hydrocarbon resources. Understanding synrift sequences, their evolution, depositional styles and hydrocarbon prospectivity has become important with recent discovery of the wells, G-4-6,YS-AF and KG-8 in the K.G. offshore basin. The East Godavari subbasin is a hydrocarbon producing basin from synrift and pre-rift sediments, and hence this was selected as the study area for this research. The study has been carried out by utilizing data of around 58 wells (w1-w58) drilled in the study area 25 of which are hydrocarbon bearing with organic thickness varying from 200 m to 600 m. Age data generated by palaentology and palynology studies have been utilized for calibration of key well logs to differentiate between formations within prerift and synrift sediments. The electrologs of wells like resistivity, gamma ray, neutron, density and sonic logs have been utilized for correlation of different formations in all the drilled wells. The individual thicknesses of sand, shale and coal in the formations have been calculated and tabulated. For Golapalli formation, the isopach and isolith maps were generated which revealed that there were four depocentres with input from the north direction. Schematic geological cross sections were prepared using the well data and seismic data to understand the facies variation across the basin. The sedimentological and petrophysical analysis reports and electro log suites were referred to decipher the environment of deposition, the reservoir characteristics, and play types. The geochemical reports [w4 (Tmax)= 455-468 °C; w1 (Tmax) = 467-514 °C; w4(VRO)= 0.65-0.85; w1(VRO)= 0.83-1.13] revealed the source facies, its maturation and migration timings i.e. the petroleum systems

  8. varying elastic parameters distributions

    KAUST Repository

    Moussawi, Ali

    2014-12-01

    The experimental identication of mechanical properties is crucial in mechanics for understanding material behavior and for the development of numerical models. Classical identi cation procedures employ standard shaped specimens, assume that the mechanical elds in the object are homogeneous, and recover global properties. Thus, multiple tests are required for full characterization of a heterogeneous object, leading to a time consuming and costly process. The development of non-contact, full- eld measurement techniques from which complex kinematic elds can be recorded has opened the door to a new way of thinking. From the identi cation point of view, suitable methods can be used to process these complex kinematic elds in order to recover multiple spatially varying parameters through one test or a few tests. The requirement is the development of identi cation techniques that can process these complex experimental data. This thesis introduces a novel identi cation technique called the constitutive compatibility method. The key idea is to de ne stresses as compatible with the observed kinematic eld through the chosen class of constitutive equation, making possible the uncoupling of the identi cation of stress from the identi cation of the material parameters. This uncoupling leads to parametrized solutions in cases where 5 the solution is non-unique (due to unknown traction boundary conditions) as demonstrated on 2D numerical examples. First the theory is outlined and the method is demonstrated in 2D applications. Second, the method is implemented within a domain decomposition framework in order to reduce the cost for processing very large problems. Finally, it is extended to 3D numerical examples. Promising results are shown for 2D and 3D problems.

  9. Cosmic ray exposure dating with in situ produced cosmogenic 3He: results from young Hawaiian lava flows

    Science.gov (United States)

    Kurz, M.D.; Colodner, D.; Trull, T.W.; Moore, R.B.; O'Brien, K.

    1990-01-01

    In an effort to determine the in situ production rate of spallation-produced cosmogenic 3He, and evaluate its use as a surface exposure chronometer, we have measured cosmogenic helium contents in a suite of Hawaiian radiocarbon-dated lava flows. The lava flows, ranging in age from 600 to 13,000 years, were collected from Hualalai and Mauna Loa volcanoes on the island of Hawaii. Because cosmic ray surface-exposure dating requires the complete absence of erosion or soil cover, these lava flows were selected specifically for this purpose. The 3He production rate, measured within olivine phenocrysts, was found to vary significantly, ranging from 47 to 150 atoms g-1 yr-1 (normalized to sea level). Although there is considerable scatter in the data, the samples younger than 10,000 years are well-preserved and exposed, and the production rate variations are therefore not related to erosion or soil cover. Data averaged over the past 2000 years indicate a sea-level 3He production rate of 125 ?? 30 atoms g-1 yr-1, which agrees well with previous estimates. The longer record suggests a minimum in sea level normalized 3He production rate between 2000 and 7000 years (55 ?? 15 atoms g-1 yr-1), as compared to samples younger than 2000 years (125 ?? 30 atoms g-1 yr-1), and those between 7000 and 10,000 years (127 ?? 19 atoms g-1 yr-1). The minimum in production rate is similar in age to that which would be produced by variations in geomagnetic field strength, as indicated by archeomagnetic data. However, the production rate variations (a factor of 2.3 ?? 0.8) are poorly determined due to the large uncertainties in the youngest samples and questions of surface preservation for the older samples. Calculations using the atmospheric production model of O'Brien (1979) [35], and the method of Lal and Peters (1967) [11], predict smaller production rate variations for similar variation in dipole moment (a factor of 1.15-1.65). Because the production rate variations, archeomagnetic data

  10. Seismic Investigations of an Accommodation zone in the Northern Rio Grande Rift, New Mexico, USA

    Science.gov (United States)

    Baldridge, W. S.; Valdes, J.; Nedorub, O.; Phrampus, B.; Braile, L. W.; Ferguson, J. F.; Benage, M. C.; Litherland, M.

    2010-12-01

    Seismic reflection and refraction data acquired in the Rio Grande rift near Santa Fe, New Mexico, in 2009 and 2010 by the SAGE (Summer of Applied Geophysical Experience) program imaged the La Bajada fault (LBF) and strata offset across the associated, perpendicular Budagher fault (BF). The LBF is a major basin-bounding normal fault, offset down to the west; the smaller BF is an extensional fault that breaks the hanging wall ramp of the LBF. We chose this area because it is in a structurally complex region of the rift, comprising a small sub-basin and plunging relay ramps, where north-trending, en echelon basin-bounding faults (including the LBF) transfer crustal extension laterally between the larger Española (to north) and Albuquerque rift basins. Our data help determine the precise location and geometry of the poorly exposed LBF, which, near the survey location, offsets the rift margin vertically about 3,000 m. When integrated with industry reflection data and other SAGE seismic, gravity, and magnetotelluric surveys, we are able to map differences in offset and extension laterally (especially southward) along the fault. We interpret only about 200 m of normal offset across the BF. Our continuing work helps define multiple structural elements, partly buried by syn-rift basin-filling sedimentary rocks, of a complex intra-rift accommodation zone. We are also able to discriminate pre-Eocene (Laramide) from post-Miocene (rift) structures. Our data help determine the amount of vertical offset of pre-rift strata across structural elements of the accommodation zone, and depth and geometry of basin fill. A goal is to infer the kinematic development of this margin of the rift, linkages among faults, growth history, and possible pre-rift structural controls. This information will be potentially useful for evaluation of resources, including oil and/or gas in pre-rift strata and ground water in Late Miocene to Holocene rift-filling units.

  11. Constraining Controls on the Emplacement of Long Lava Flows on Earth and Mars Through Modeling in ArcGIS

    Science.gov (United States)

    Golder, K.; Burr, D. M.; Tran, L.

    2017-12-01

    Regional volcanic processes shaped many planetary surfaces in the Solar System, often through the emplacement of long, voluminous lava flows. Terrestrial examples of this type of lava flow have been used as analogues for extensive martian flows, including those within the circum-Cerberus outflow channels. This analogy is based on similarities in morphology, extent, and inferred eruptive style between terrestrial and martian flows, which raises the question of how these lava flows appear comparable in size and morphology on different planets. The parameters that influence the areal extent of silicate lavas during emplacement may be categorized as either inherent or external to the lava. The inherent parameters include the lava yield strength, density, composition, water content, crystallinity, exsolved gas content, pressure, and temperature. Each inherent parameter affects the overall viscosity of the lava, and for this work can be considered a subset of the viscosity parameter. External parameters include the effusion rate, total erupted volume, regional slope, and gravity. To investigate which parameter(s) may control(s) the development of long lava flows on Mars, we are applying a computational numerical-modelling to reproduce the observed lava flow morphologies. Using a matrix of boundary conditions in the model enables us to investigate the possible range of emplacement conditions that can yield the observed morphologies. We have constructed the basic model framework in Model Builder within ArcMap, including all governing equations and parameters that we seek to test, and initial implementation and calibration has been performed. The base model is currently capable of generating a lava flow that propagates along a pathway governed by the local topography. At AGU, the results of model calibration using the Eldgá and Laki lava flows in Iceland will be presented, along with the application of the model to lava flows within the Cerberus plains on Mars. We then

  12. Cognate xenoliths in Mt. Etna lavas: witnesses of the high-velocity body beneath the volcano

    Science.gov (United States)

    Corsaro, Rosa Anna; Rotolo, Silvio Giuseppe; Cocina, Ornella; Tumbarello, Gianvito

    2014-01-01

    Various xenoliths have been found in lavas of the 1763 ("La Montagnola"), 2001, and 2002-03 eruptions at Mt. Etna whose petrographic evidence and mineral chemistry exclude a mantle origin and clearly point to a cognate nature. Consequently, cognate xenoliths might represent a proxy to infer the nature of the high-velocity body (HVB) imaged beneath the volcano by seismic tomography. Petrography allows us to group the cognate xenoliths as follows: i) gabbros with amphibole and amphibole-bearing mela-gabbros, ii) olivine-bearing leuco-gabbros, iii) leuco-gabbros with amphibole, and iv) Plg-rich leuco gabbros. Geobarometry estimates the crystallization pressure of the cognate xenoliths between 1.9 and 4.1 kbar. The bulk density of the cognate xenoliths varies from 2.6 to 3.0 g/cm3. P wave velocities (V P ), calculated in relation to xenolith density, range from 4.9 to 6.1 km/s. The integration of mineralogical, compositional, geobarometric data, and density-dependent V P with recent literature data on 3D V P seismic tomography enabled us to formulate the first hypothesis about the nature of the HVB which, in the depth range of 3-13 km b.s.l., is likely made of intrusive gabbroic rocks. These are believed to have formed at the "solidification front", a marginal zone that encompasses a deep region (>5 km b.s.l.) of Mt. Etna's plumbing system, within which magma crystallization takes place. The intrusive rocks were afterwards fragmented and transported as cognate xenoliths by the volatile-rich and fast-ascending magmas of the 1763 "La Montagnola", 2001 and 2002-03 eruptions.

  13. The role of magmatic loads and rift jumps in generating seaward dipping reflectors on volcanic rifted margins

    Science.gov (United States)

    Buck, W. Roger

    2017-05-01

    The largest volcanic constructs on Earth are the seismically imaged seaward dipping reflector (SDR) units found offshore of many rifted continental margins, including most that border the Atlantic Ocean. Whether their formation requires large magnitude (i.e. 10 s of km) of normal fault slip or results from the deflection of the lithosphere by the weight of volcanic flows is controversial. Though there is evidence for faulting associated with some SDRs, this paper considers the range of structures that can be produced by magmatic and volcanic loading alone. To do this an idealized mechanical model for the construction of rift-related volcanic flow structures is developed. Dikes open as plates move away from the center of a model rift and volcanic flows fill the depression produced by the load caused by dike solidification. The thin elastic plate flexure approximation allows a closed form description of the shape of both the contacts between flows and between the flows and underlying dikes. The model depends on two independent parameters: the flexure parameter, α, and the maximum isostatically supported extrusive layer thickness, w0. For reasonable values of these parameters the model reproduces the observed down-dip thickening of flows and the range of reflector dip angles. A numerical scheme using the analytic results allows simulation of the effect of temporal changes in the locus of magmatic spreading as well as changes in the amount of volcanic infill. Either jumps in the location of the center of diking or periods with no volcanism result in separate units or "packages" of model SDRs, in which the flow-dike contact dips landward, consistent with observations previously attributed only to listric normal fault offset. When jumps in the spreading center are small (i.e. less than α) they result in thicker, narrower volcanic units on one side of a rift compared to those on the other side. This is similar to the asymmetric distributions of volcanic packages seen

  14. Xenoliths from Bunyaruguru volcanic field: Some insights into lithology of East African Rift upper mantle

    Science.gov (United States)

    Muravyeva, N. S.; Senin, V. G.

    2018-01-01

    The mineral composition of mantle xenoliths from kamafugites of the Bunyaruguru volcanic field has been determined. The major and some trace elements (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, Cr, Ni, Ba, Sr, La, Ce, Nd, Nb) has been analyzed in olivine, clinopyroxene, phlogopite, Cr-spinel, titanomagnetite, perovskite and carbonates of xenoliths and their host lavas. Bunyaruguru is one of three (Katwe-Kikorongo, Fort Portal and Bunyaruguru) volcanic fields included in the Toro-Ankole province located on the North end of the West Branch of the East African Rift. The xenoliths from three craters within the Bunyaruguru volcanic field revealed the different character of metasomatic alteration, reflecting the heterogeneity of the mantle on the kilometer scale. The most unusual finding was composite glimmerite-wehrlite xenolith from the crater Kazimiro, which contains the fresh primary high-Mg olivine with inclusions of Cr-spinel that had not been previously identified in this area. The different composition of phenocryst and xenolith minerals indicates that the studied xenoliths are not cumulus of enclosing magma, but the composition of xenoliths characterizes the lithology of the upper mantle of the area. The carbonate melt inclusions in olivine Fo90 demonstrate the existence of primary carbonatitic magmas in Bunyaruguru upper mantle. The results of texture and chemical investigation of the xenolith minerals indicate the time sequence of metasomatic alteration of Bunyaruguru upper mantle: MARID metasomatism at the first stage followed by carbonate metasomatism. The abundances of REE in perovskites from kamafugite are 2-4 times higher than similar values for xenolith. Therefore the kamafugite magma was been generated from a more enriched mantle source than the source of the xenoliths. The evaluation of P-T conditions formation of clinopyroxene xenolith revealed the range of pressure 20-65 kbar and the temperatures range 830-1040 °C. The pressure of clinopyroxene phenocryst

  15. State-of-stress in magmatic rift zones: Predicting the role of surface and subsurface topography

    Science.gov (United States)

    Oliva, S. J. C.; Ebinger, C.; Rivalta, E.; Williams, C. A.

    2017-12-01

    Continental rift zones are segmented along their length by large fault systems that form in response to extensional stresses. Volcanoes and crustal magma chambers cause fundamental changes to the density structure, load the plates, and alter the state-of-stress within the crust, which then dictates fracture orientation. In this study, we develop geodynamic models scaled to a structure, petrologic and thermodynamic studies constrain material densities, and seismicity and structural analyses constrain active and time-averaged kinematics. This area is an ideal test area because a 60º stress rotation is observed in time-averaged fault and magma intrusion, and in local seismicity, and because this was the site of a large volume dike intrusion and seismic sequence in 2007. We use physics-based 2D and 3D models (analytical and finite elements) constrained by data from active rift zones to quantify the effects of loading on state-of-stress. By modeling varying geometric arrangements, and density contrasts of topographic and subsurface loads, and with reasonable regional extensional forces, the resulting state-of-stress reveals the favored orientation for new intrusions. Although our models are generalized, they allow us to evaluate whether a magmatic system (surface and subsurface) can explain the observed stress rotation, and enable new intrusions, new faults, or fault reactivation with orientations oblique to the main border faults. Our results will improve our understanding of the different factors at play in these extensional regimes, as well as contribute to a better assessment of the hazards in the area.

  16. Geochemistry and petrogenesis of lava flows around Linga, Chhindwara area in the Eastern Deccan Volcanic Province (EDVP), India

    Science.gov (United States)

    Ganguly, Sohini; Ray, Jyotisankar; Koeberl, Christian; Saha, Abhishek; Thöni, Martin; Balaram, V.

    2014-09-01

    Based on systematic three-tier arrangement of vesicles, entablature and columnar joints, three distinct quartz normative tholeiitic lava flows (I, II and III) were recognized in the area around Linga, in the Eastern Deccan Volcanic Province (EDVP). Each of the flows exhibits intraflow chemical variations marked by high Mg#-low Ti, and low Mg#-high Ti contents. The MgO (4.27-7.74 wt.%), Mg# (23.45-41.89) and Zr (161.5-246.3 ppm) of Linga flows suggest an evolved chemistry marked by fractional crystallization and crustal contamination processes. Positive Rb and Th anomalies, negative Nb anomalies, relative enrichment of LILE-LREE with respect to Nb, Nb/Th:3.71-6.77 indicate crustal contamination of magma by continental materials through magma-crust interaction during melt migration and contributions from sub-continental lithospheric mantle (SCLM). Negative K, Sr and Ti anomalies corroborate an intracontinental, rift-controlled tectonic setting for the genesis and evolution of Linga basalts. Chondrite-normalized REE patterns reflect low HREE abundances and prominent LREE/HREE, MREE/HREE fractionation thereby pointing towards partial melting of garnet peridotite mantle source. Nb, Zr, Y variations suggest 10-15% partial melting of mantle source for the derivation of parent tholeiitic melt that suffered crystal fractionation of phenocrystal phases and subsequent liquid immiscibility. Critical evaluation of Srinitial and Ndinitial (65 Ma) isotopic compositions (87Sr/86Srinitial between 0.705656 and 0.706980 and 143Nd/144Ndinitial between 0.512523 and 0.512598) suggests that these basalts were derived from an enriched mantle (∼EM I-EM II) source. The εSr (21.84-41.27) and εNd (-0.28 to 1.10) isotopic signatures defined by higher εSr and lower εNd fingerprint a plume-related source. Positive and negative values of εNd indicate an isotopically heterogeneous mantle source marked by mixing of depleted (DM) and enriched mantle (EM I-EM II) components at the source

  17. The regional structure of the Red Sea Rift revised

    Science.gov (United States)

    Augustin, Nico; van der Zwan, Froukje M.; Devey, Colin W.; Brandsdóttir, Bryndís

    2017-04-01

    The Red Sea Rift has, for decades, been considered a text book example of how young ocean basins form and mature. Nevertheless, most studies of submarine processes in the Red Sea were previously based on sparse data (mostly obtained between the late 1960's and 1980's) collected at very low resolution. This low resolution, combined with large gaps between individual datasets, required large interpolations when developing geological models. Thus, these models generally considered the Red Sea Rift a special case of young ocean basement formation, dividing it from North to South into three zones: a continental thinning zone, a "transition zone" and a fully developed spreading zone. All these zones are imagined, in most of the models, to be separated by large transform faults, potentially starting and ending on the African and Arabian continental shields. However, no consensus between models e.g. about the locations (or even the existence) of major faults, the nature of the transition zone or the extent of oceanic crust in the Red Sea Rift has been reached. Recently, high resolution bathymetry revealed detailed seafloor morphology as never seen before from the Red Sea, very comparable to other (ultra)slow spreading mid-ocean ridges such as the Gakkel Ridge, the Mid-Atlantic Ridge and SW-Indian Ridge, changing the overall picture of the Red Sea significantly. New discoveries about the extent, movement and physical properties of submarine salt deposits led to the Red Sea Rift being linked to the young Aptian-age South Atlantic. Extensive crosscutting transform faults are not evident in the modern bathymetry data, neither in teleseismic nor vertical gravity gradient data and comparisons to Gakkel Ridge and the SW-Indian Ridge suggest that the Red Sea is much simpler in terms of structural geology than was previously thought. Complicated tectonic models do not appear necessary and there appears to be large areas of oceanic crust under the Red Sea salt blankets. Based on

  18. From continental to oceanic rifting in the Gulf of California

    Science.gov (United States)

    Ferrari, Luca; Bonini, Marco; Martín, Arturo

    2017-11-01

    The continental margin of northwestern Mexico is the youngest example of the transition from a convergent plate boundary to an oblique divergent margin that formed the Gulf of California rift. Subduction of the Farallon oceanic plate during the Cenozoic progressively brought the East Pacific Rise (EPR) toward the North America trench. In this process increasingly younger and buoyant oceanic lithosphere entered the subduction zone until subduction ended just before most of the EPR could collide with the North America continental lithosphere. The EPR segments bounding the unsubducted parts of the Farallón plate remnants (Guadalupe and Magdalena microplates) also ceased spreading (Lonsdale, 1991) and a belt of the North American plate (California and Baja California Peninsula) became coupled with the Pacific Plate and started moving northwestward forming the modern Gulf of California oblique rift (Nicholson et al., 1994; Bohannon and Parsons, 1995). The timing of the change from plate convergence to oblique divergence off western Mexico has been constrained at the middle Miocene (15-12.5 Ma) by ocean floor morphology and magnetic anomalies as well as plate tectonic reconstructions (Atwater and Severinghaus, 1989; Stock and Hodges, 1989; Lonsdale, 1991), although the onset of transtensional deformation and the amount of right lateral displacement within the Gulf region are still being studied (Oskin et al., 2001; Fletcher et al., 2007; Bennett and Oskin, 2014). Other aspects of the formation of the Gulf of California remain not well understood. At present the Gulf of California straddles the transition from continental transtension in the north to oceanic spreading in the south. Seismic reflection-refraction data indicate asymmetric continent-ocean transition across conjugate margins of rift segments (González-Fernández et al., 2005; Lizarralde et al., 2007; Miller and Lizarralde, 2013; Martín-Barajas et al., 2013). The asymmetry may be related to crustal

  19. Polyphase Rifting and Breakup of the Central Mozambique Margin

    Science.gov (United States)

    Senkans, Andrew; Leroy, Sylvie; d'Acremont, Elia; Castilla, Raymi

    2017-04-01

    The breakup of the Gondwana supercontinent resulted in the formation of the Central Mozambique passive margin as Africa and Antarctica were separated during the mid-Jurassic period. The identification of magnetic anomalies in the Mozambique Basin and Riiser Larsen Sea means that post-oceanisation plate kinematics are well-constrained. Unresolved questions remain, however, regarding the initial fit, continental breakup process, and the first relative movements of Africa and Antarctica. This study uses high quality multi-channel seismic reflection profiles in an effort to identify the major crustal domains in the Angoche and Beira regions of the Central Mozambique margin. This work is part of the integrated pluri-disciplinary PAMELA project*. Our results show that the Central Mozambique passive margin is characterised by intense but localised magmatic activity, evidenced by the existence of seaward dipping reflectors (SDR) in the Angoche region, as well as magmatic sills and volcanoclastic material which mark the Beira High. The Angoche region is defined by a faulted upper-continental crust, with the possible exhumation of lower crustal material forming an extended ocean-continent transition (OCT). The profiles studied across the Beira high reveal an offshore continental fragment, which is overlain by a pre-rift sedimentary unit likely to belong to the Karoo Group. Faulting of the crust and overlying sedimentary unit reveals that the Beira High has recorded several phases of deformation. The combination of our seismic interpretation with existing geophysical and geological results have allowed us to propose a breakup model which supports the idea that the Central Mozambique margin was affected by polyphase rifting. The analysis of both along-dip and along-strike profiles shows that the Beira High initially experienced extension in a direction approximately parallel to the Mozambique coastline onshore of the Beira High. Our results suggest that the Beira High results

  20. Motion in the north Iceland volcanic rift zone accommodated by bookshelf faulting

    Science.gov (United States)

    Green, Robert G.; White, Robert S.; Greenfield, Tim

    2014-01-01

    Along mid-ocean ridges the extending crust is segmented on length scales of 10-1,000km. Where rift segments are offset from one another, motion between segments is accommodated by transform faults that are oriented orthogonally to the main rift axis. Where segments overlap, non-transform offsets with a variety of geometries accommodate shear motions. Here we use micro-seismic data to analyse the geometries of faults at two overlapping rift segments exposed on land in north Iceland. Between the rift segments, we identify a series of faults that are aligned sub-parallel to the orientation of the main rift. These faults slip through left-lateral strike-slip motion. Yet, movement between the overlapping rift segments is through right-lateral motion. Together, these motions induce a clockwise rotation of the faults and intervening crustal blocks in a motion that is consistent with a bookshelf-faulting mechanism, named after its resemblance to a tilting row of books on a shelf. The faults probably reactivated existing crustal weaknesses, such as dyke intrusions, that were originally oriented parallel to the main rift and have since rotated about 15° clockwise. Reactivation of pre-existing, rift-parallel weaknesses contrasts with typical mid-ocean ridge transform faults and is an important illustration of a non-transform offset accommodating shear motion between overlapping rift segments.

  1. Analysis of the pre-rift/rifte transition interval (Serraria and Barra de Itiuba formations) from the Sergipe-Alagoas basin; Analise da secao de transicao pre-rifte/rifte (formacoes Serraria e Barra de Itiuba) da Bacia Sergipe-Alagoas

    Energy Technology Data Exchange (ETDEWEB)

    Barreiro, C.B.; Mizusaki, A.M.P. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil)]. E-mail: camilita@terra.com.br; ana.misuzaki@ufrgs.br; Garcia, A.J.V. [Universidade do Vale do Rio dos Sinos (UNISINOS), Sao Leopoldo, RS (Brazil)]. E-mail: garcia@euler.unisinos.br

    2003-07-01

    The pre-rift/rift transition is represented by the Serraria and Barra de Itiuba formations. This interval was analyzed through qualitative and quantitative descriptions of cores, electric log analysis and studies of outcropping sections. The integration of surface and subsurface data allowed the stratigraphic characterization of sandstone bodies in the pre-rift/rift. These sandstones bodies were deposited by fluvial braided, lacustrine and deltaic systems (delta plain, delta front and pro delta). The sedimentary deposits characterized in the Serraria Formation are of channel, flooding of the fluvial system and eolic. The upper interval of this formation is characterized by to coarse medium-grained sandstones identified as the Caioba Sandstone. The Barra de Itiuba Formation contains lake, pro delta, frontal bar, distributary mouth, crevasse and distributary channel deposits. The sandstone units were specifically characterized in terms of their potential reservoir quality, and they were characterized the reservoirs R1 (good to medium quality) and Caioba (good quality) from the pre-rift phase, and reservoirs R2 (medium quality) and R3 (medium to good quality) from the rift phase. The reservoirs from pre-rift phase phase show the better reservoirs quality potential of the pre-rift/rift transition in the Sergipe-Alagoas Basin. (author)

  2. Tectonics and stratigraphy of the East Brazil Rift system: an overview

    Science.gov (United States)

    Hung Kiang Chang; Kowsmann, Renato Oscar; Figueiredo, Antonio Manuel Ferreira; Bender, AndréAdriano

    1992-10-01

    The East Brazilian Rift system (Ebris) constitutes the northern segment of the South Atlantic rift system which developed during the Mesozoic breakup of South America and Africa. Following crustal separation in the Late Aptian, it evolved into a passive continental margin. Along the continental margin six basins are recognized, while three onshore basins form part of an aborted rift. Three continental syn-rift stratigraphic sequences are recognized, spanning Jurassic to Barremian times. The Jurassic (Syn-rift I) and Neocomian (Syn-rift II) phases were most active in the interior rift basins. During the Barremian (Syn-rift III), rift subsidence rates were twice as large as during the Neocomian (Syn-rift II), both in the interior rift and in the marginal rift segments, indicating that rift axis did not migrate from the interior to the marginal setting. Rift magmatism was centered on the southern EBRIS and peaked between 130 and 120 Ma during syn-rift phase II. Rift phase III was followed by a transitional marine, evaporitic megasequence of Aptian age, which directly overlies the rift unconformity and a marine drift megasequence which spans Albian to Recent times. During the Late Cretaceous, sedimentation rates responded to first-order eustatic sea-level fluctuations. Tertiary accelerated sedimentation rates can be related to local clastic supply which filled in spaces inherited from previous starved conditions. Between 60 and 40 Ma, post-rift magmatism, centered on the Abrolhos and Royal Charlotte banks, is probably related to development of a hot spot associated with the Vitória-Trindade Seamount Chain. Although crossing three distinct Precambrian tectono-thermal provinces, ranging from Archean through Late Proterozoic, rift structures follow a general NE trend, subparallel to the principal basement fabric. A NW-SE oriented stress field appears to be compatible with both Neocomian and Barremian phases of crustal extension. Profiles transverse to the rift axis

  3. Phreatic explosions during basaltic fissure eruptions: Kings Bowl lava field, Snake River Plain, USA

    Science.gov (United States)

    Hughes, Scott S.; Kobs Nawotniak, Shannon E.; Sears, Derek W. G.; Borg, Christian; Garry, William Brent; Christiansen, Eric H.; Haberle, Christopher W.; Lim, Darlene S. S.; Heldmann, Jennifer L.

    2018-02-01

    Physical and compositional measurements are made at the 7 km-long ( 2200 years B.P.) Kings Bowl basaltic fissure system and surrounding lava field in order to further understand the interaction of fissure-fed lavas with phreatic explosive events. These assessments are intended to elucidate the cause and potential for hazards associated with phreatic phases that occur during basaltic fissure eruptions. In the present paper we focus on a general understanding of the geological history of the site. We utilize geospatial analysis of lava surfaces, lithologic and geochemical signatures of lava flows and explosively ejected blocks, and surveys via ground observation and remote sensing. Lithologic and geochemical signatures readily distinguish between Kings Bowl and underlying pre-Kings Bowl lava flows, both of which comprise phreatic ejecta from the Kings Bowl fissure. These basalt types, as well as neighboring lava flows from the contemporaneous Wapi lava field and the older Inferno Chasm vent and outflow channel, fall compositionally within the framework of eastern Snake River Plain olivine tholeiites. Total volume of lava in the Kings Bowl field is estimated to be 0.0125 km3, compared to a previous estimate of 0.005 km3. The main (central) lava lake lost a total of 0.0018 km3 of magma by either drain-back into the fissure system or breakout flows from breached levees. Phreatic explosions along the Kings Bowl fissure system occurred after magma supply was cut off, leading to fissure evacuation, and were triggered by magma withdrawal. The fissure system produced multiple phreatic explosions and the main pit is accompanied by others that occur as subordinate pits and linear blast corridors along the fissure. The drop in magma supply and the concomitant influx of groundwater were necessary processes that led to the formation of Kings Bowl and other pits along the fissure. A conceptual model is presented that has relevance to the broader range of low-volume, monogenetic

  4. In situ NIR reflectance and LIBS measurements in lava tubes in preparation for future Mars missions

    Science.gov (United States)

    Leveille, R.; Sobron, P.

    2017-12-01

    The ATiLT (Astrobiology Training in Lava Tubes) program addresses Mars astrobiology exploration objectives by performing field work and instrumental analyses in lava tubes as high fidelity analog environments to putative lava tubes on Mars. The main field location for ATiLT is the Lava Beds National Monument (LABE) in Northern California. LABE is situated on the lower north flank of the Medicine Lake Volcano of the Cascade arc. This location features hundreds of caves, most of which are relatively shallow, typically well above the water table, reaching 20-45m below land surface at their maximum depth. Some LABE caves feature `cold sinks' where cold air sinks and becomes trapped in deeper cave passages, thus allowing perennial ice to accumulate despite above freezing surface temperatures. Several lava tube caves in LABE also contain seasonal or perennial ice accumulations, which makes them excellent analogs to Mars lava tubes where the presence of ice has been predicted. While lava tubes are very attractive systems to test hypotheses related to habitability and the possibility for life on Mars, at present there are no comprehensive in-situ instrument-driven characterizations of the mineralogy and geochemistry of lava tubes. ATiLT fills this gap by providing detailed, in-situ investigations with scientific instruments relevant to Mars exploration. Our aim is to help constrain future exploration targets on Mars and define future mission operations and requirements. For this purpose, in May 2017 we carried out a field campaign in several lava tubes at LABE. We deployed two miniature spectroscopic sensors suitable for dark, humid, cave conditions: NIR reflectance (1-5 μm) and LIBS (300-900 nm). The advantages of combining NIR reflectance and LIBS are evident: LIBS can reveal the relative concentration of major (and often trace) elements present in a bulk sample, whereas NIR reflectance yields information on the individual mineral species and their chemical and

  5. Rheology of arc dacite lavas: experimental determination at low strain rates

    Science.gov (United States)

    Avard, Geoffroy; Whittington, Alan G.

    2012-07-01

    Andesitic-dacitic volcanoes exhibit a large variety of eruption styles, including explosive eruptions, endogenous and exogenous dome growth, and kilometer-long lava flows. The rheology of these lavas can be investigated through field observations of flow and dome morphology, but this approach integrates the properties of lava over a wide range of temperatures. Another approach is through laboratory experiments; however, previous studies have used higher shear stresses and strain rates than are appropriate to lava flows. We measured the apparent viscosity of several lavas from Santiaguito and Bezymianny volcanoes by uniaxial compression, between 1,109 and 1,315 K, at low shear stress (0.085 to 0.42 MPa), low strain rate (between 1.1 × 10-8 and 1.9 × 10-5 s-1), and up to 43.7 % total deformation. The results show a strong variability of the apparent viscosity between different samples, which can be ascribed to differences in initial porosity and crystallinity. Deformation occurs primarily by compaction, with some cracking and/or vesicle coalescence. Our experiments yield apparent viscosities more than 1 order of magnitude lower than predicted by models based on experiments at higher strain rates. At lava flow conditions, no evidence of a yield strength is observed, and the apparent viscosity is best approached by a strain rate- and temperature-dependent power law equation. The best fit for Santiaguito lava, for temperatures between 1,164 and 1,226 K and strain rates lower than 1.8 × 10-4 s-1, is log {η_{{app}}} = - 0.738 + 9.24 × {10^3}{/}T(K) - 0.654 \\cdot log dot{\\varepsilon } where η app is apparent viscosity and dot{\\varepsilon } is strain rate. This equation also reproduced 45 data for a sample from Bezymianny with a root mean square deviation of 0.19 log unit Pa s. Applying the rheological model to lava flow conditions at Santiaguito yields calculated apparent viscosities that are in reasonable agreement with field observations and suggests that

  6. Lava tubes and aquifer vulnerability in the upper Actopan River basin, Veracruz, México

    Science.gov (United States)

    Espinasa-Pereña, R.; Delgado Granados, H.

    2011-12-01

    Rapid infiltration leads to very dry conditions on the surface of some volcanic terrains, with large allogenic streams sometimes sinking underground upon reaching a lava flow. Aquifers in lava flows tend to be heterogeneous and discontinuous, generally unconfined and fissured, and have high transmissivity. Springs associated with basalts may be very large but are typically restricted to lava-flow margins. Concern has been expressed regarding the potential for lava-tube caves to facilitate groundwater contamination similar to that afflicting some karst aquifers (Kempe et al., 2003; Kiernan et al., 2002; Halliday 2003). The upper Actopan River basin is a series of narrow valleys excavated in Tertiary volcanic brechias. Several extensive Holocene basaltic tube-fed lava flows have partially filled these valleys. The youngest and longest flow originates at El Volcancillo, a 780 ybP monogenetic volcano. It is over 50 km long, and was fed through a major master tube, the remains of which form several lava-tube caves (Gassos and Espinasa-Pereña, 2008). Another tube-fed flow initiates at a vent at the bottom of Barranca Huichila and can be followed for 7 km to where it is covered by the Volcancillo flow. The Huichila River is captured by this system of lava tubes and can be followed through several underground sections. In dry weather the stream disappears at a sump in one of these caves, although during hurricanes it overflows the tube, floods the Tengonapa plain, and finally sinks through a series of skylights into the master tube of the Volcancillo flow. Near villages, the cave entrances are used as trash dumps, which are mobilized during floods. These include household garbage, organic materials associated with agriculture and even medical supplies. This is a relatively recent phenomenon, caused by population growth and the building of houses above the lava flows. The water resurges at El Descabezadero, gushing from fractures in the lava above the underlying brechias

  7. Operational tracking of lava lake surface motion at Kīlauea Volcano, Hawai‘i

    Science.gov (United States)

    Patrick, Matthew R.; Orr, Tim R.

    2018-03-08

    Surface motion is an important component of lava lake behavior, but previous studies of lake motion have been focused on short time intervals. In this study, we implement the first continuous, real-time operational routine for tracking lava lake surface motion, applying the technique to the persistent lava lake in Halema‘uma‘u Crater at the summit of Kīlauea Volcano, Hawai‘i. We measure lake motion by using images from a fixed thermal camera positioned on the crater rim, transmitting images to the Hawaiian Volcano Observatory (HVO) in real time. We use an existing optical flow toolbox in Matlab to calculate motion vectors, and we track the position of lava upwelling in the lake, as well as the intensity of spattering on the lake surface. Over the past 2 years, real-time tracking of lava lake surface motion at Halema‘uma‘u has been an important part of monitoring the lake’s activity, serving as another valuable tool in the volcano monitoring suite at HVO.

  8. Geochemical constraints on the petrogenesis of the pyroclastic rocks in Abakaliki basin (Lower Benue Rift), Southeastern Nigeria

    Science.gov (United States)

    Chukwu, Anthony; Obiora, Smart C.

    2018-05-01

    The pyroclastic rocks in the Cretaceous Abakaliki basin occur mostly as oval-shaped bodies, consisting of lithic/lava and vitric fragments. They are commonly characterized by parallel and cross laminations, as well contain xenoliths of shale, mudstone and siltstones from the older Asu River Group of Albian age. The rocks are basic to ultrabasic in composition, comprising altered alkali basalts, altered tuffs, minor lapillistones and agglomerates. The mineral compositions are characterized mainly by laths of calcic plagioclase, pyroxene (altered), altered olivines and opaques. Calcite, zeolite and quartz represent the secondary mineral constituents. Geochemically, two groups of volcaniclastic rocks, are distinguished: alkaline and tholeiitic rocks, both represented by fresh and altered rock samples. The older alkali basalts occur within the core of the Abakaliki anticlinorium while the younger tholeiites occur towards the periphery. Though most of the rocks are moderate to highly altered [Loss on ignition (LOI, 3.43-22.07 wt. %)], the use of immobile trace element such as Nb, Zr, Y, Hf, Ti, Ta and REEs reflect asthenospheric mantle source compositions. The rocks are enriched in incompatible elements and REEs (∑REE = 87.98-281.0 ppm for alkaline and 69.45-287.99 ppm for tholeiites). The ratios of La/Ybn are higher in the alkaline rocks ranging from 7.69 to 31.55 compared to the tholeiitic rocks which range from 4.4 to 16.89 and indicating the presence of garnet-bearing lherzolite in the source mantle. The spidergrams and REEs patterns along with Zr/Nb, Ba/Nb, Rb/Nb ratios suggest that the rocks were generated by a mantle plume from partial melting of mixed enriched mantle sources (HIMU, EMI and EMII) similar to the rocks of the south Atlantic Ocean such as St. Helena (alkaline rocks) and Ascension rocks (tholeiitic rocks). The rocks were formed in a within-plate setting of the intra-continental rift type similar to other igneous rocks in the Benue Rift and are not

  9. How sedimentation affects rift segment interaction during oblique extension: a 4D analogue modelling study

    Science.gov (United States)

    Zwaan, Frank; Schreurs, Guido; Adam, Jürgen

    2017-04-01

    During the early stages of rifting, rift segments may form along non-continuous and/or offset pre-existing weaknesses. It is important to understand how these initial rift segments interact and connect to form a continuous rift system. Previous modelling of rift interaction structures has shown the dominant influence of oblique extension, promoting rift segment linkage (e.g. Zwaan et al., 2016) and eventual continent break-up (Brune et al., 2012). However, these studies did not incorporate sedimentation, which can have important implications for rift evolution (e.g. Bialas and Buck, 2009). Here we present a series of analogue model experiments investigating the influence of sedimentation on rift interaction structures under oblique extension conditions. Our set-up involves a base of compressed foam and plexiglass that forces distributed extension in the overlying analogue materials when the model sidewalls move apart. A sand layer simulates the brittle upper crust and a viscous sand/silicone mixture the ductile lower crust. One of the underlying base plates can move laterally allowing oblique extension. Right-stepping offset and disconnected lines of silicone (seeds) on top of the basal viscous serve as inherited structures since the strong sand cover is locally thinner. We apply syn-rift sediments by filling in the developing rift and transfer zone basins with sand at fixed time steps. Models are run either with sedimentation or without to allow comparison. The first results suggest that the gross structures are similar with or without sedimentation. As seen by Zwaan et al. (2016), dextral oblique extension promotes rift linkage because rift propagation aligns itself perpendicular to the extension direction. This causes the rift segments to grow towards each other and to establish a continuous rift structure. However, the structures within the rift segments show quite different behaviour when sedimentation is applied. The extra sediment loading in the rift basin

  10. Fault kinematics and tectonic stress in the seismically active Manyara Dodoma Rift segment in Central Tanzania Implications for the East African Rift

    Science.gov (United States)

    Macheyeki, Athanas S.; Delvaux, Damien; De Batist, Marc; Mruma, Abdulkarim

    2008-07-01

    The Eastern Branch of the East African Rift System is well known in Ethiopia (Main Ethiopian Rift) and Kenya (Kenya or Gregory Rift) and is usually considered to fade away southwards in the North Tanzanian Divergence, where it splits into the Eyasi, Manyara and Pangani segments. Further towards the south, rift structures are more weakly expressed and this area has not attracted much attention since the mapping and exploratory works of the 1950s. In November 4, 2002, an earthquake of magnitude Mb = 5.5 struck Dodoma, the capital city of Tanzania. Analysis of modern digital relief, seismological and geological data reveals that ongoing tectonic deformation is presently affecting a broad N-S trending belt, extending southward from the North Tanzanian Divergence to the region of Dodoma, forming the proposed "Manyara-Dodoma Rift segment". North of Arusha-Ngorongoro line, the rift is confined to a narrow belt (Natron graben in Tanzania) and south of it, it broadens into a wide deformation zone which includes both the Eyasi and Manyara grabens. The two-stage rifting model proposed for Kenya and North Tanzania also applies to the Manyara-Dodoma Rift segment. In a first stage, large, well-expressed topographic and volcanogenic structures were initiated in the Natron, Eyasi and Manyara grabens during the Late Miocene to Pliocene. From the Middle Pleistocene onwards, deformations related to the second rifting stage propagated southwards to the Dodoma region. These young structures have still limited morphological expressions compared to the structures formed during the first stage. However, they appear to be tectonically active as shown by the high concentration of moderate earthquakes into earthquake swarms, the distribution of He-bearing thermal springs, the morphological freshness of the fault scarps, and the presence of open surface fractures. Fault kinematic and paleostress analysis of geological fault data in basement rocks along the active fault lines show that recent

  11. Structure and Geochemistry of the Continental-Oceanic Crust Boundary of the Red Sea and the Rifted Margin of Western Arabia

    Science.gov (United States)

    Dilek, Y.; Furnes, H.; Schoenberg, R.

    2009-12-01

    The continental-oceanic crust boundary and an incipient oceanic crust of the Red Sea opening are exposed within the Arabian plate along a narrow zone of the Tihama Asir coastal plain in SW Saudi Arabia. Dike swarms, layered gabbros, granophyres and basalts of the 22 Ma Tihama Asir (TA) continental margin ophiolite represent products of magmatic differentiation formed during the initial stages of rifting between the African and Arabian plates. Nearly 4-km-wide zone of NW-trending sheeted dikes are the first products of mafic magmatism associated with incipient oceanic crust formation following the initial continental breakup. Gabbro intrusions are composed of cpx-ol-gabbro, cpx-gabbro, and norite/troctolite, and are crosscut by fine-grained basaltic dikes. Granophyre bodies intrude the sheeted dike swarms and are locally intrusive into the gabbros. Regional Bouger gravity anomalies suggest that the Miocene mafic crust represented by the TA complex extends westward beneath the coastal plain sedimentary rocks and the main trough of the Red Sea. The TA complex marks an incipient Red Sea oceanic crust that was accreted to the NE side of the newly formed continental rift in the earliest stages of seafloor spreading. Its basaltic to trachyandesitic lavas and dikes straddle the subalkaline-mildly alkaline boundary. Incompatible trace element relationships (e.g. Zr-Ti, Zr-P) indicate two distinct populations. The REE concentrations show an overall enrichment compared to N-MORB; light REEs are enriched over the heavy ones ((La/Yb)n > 1), pointing to an E-MORB influence. Nd-isotope data show ɛNd values ranging from +4 to +8, supporting an E-MORB melt source. The relatively large variations in ɛNd values also suggest various degrees of involvement of continental crust during ascent and emplacement, or by mixing of another mantle source.

  12. Volcanic styles at Alba Patera, Mars: implications of lava flow morphology to the volcanic history

    International Nuclear Information System (INIS)

    Schneeberger, D.M.; Pieri, D.C.

    1988-01-01

    Alba Patera presents styles of volcanism that are unique to Mars. Its very low profile, large areal extent, unusually long and voluminous lava flows, and circumferential graben make it among Mars' most interesting volcanic features. Clues to Alba's volcanic history are preserved in its morphology and stratigraphy. Understanding the relationship of lava flow morphology to emplacement processes should enable estimates of viscosity, effusion rate, and gross composition to be made. Lava flows, with dimensions considered enormous by terrestrial standards, account for a major portion of the exposed surface of Alba Patera. These flows exhibit a range of morphologies. While most previous works have focused on the planimetric characteristics, attention was drawn to the important morphological attributes, paying particular attention to what the features suggest about the emplacement process

  13. Infrasound reveals transition to oscillatory discharge regime during lava fountaining: Implication for early warning

    Science.gov (United States)

    Ulivieri, Giacomo; Ripepe, Maurizio; Marchetti, Emanuele

    2013-06-01

    present the analysis of ~4 million infrasonic signals which include 39 episodes of lava fountains recorded at 5.5 km from the active vents. We show that each eruptive episode is characterized by a distinctive trend in the amplitude, waveform, and frequency content of the acoustic signals, reflecting different explosive levels. Lava fountain starts with an ~93 min long violent phase of acoustic transients at ~1.25 Hz repeating every 2-5 s. Infrasound suddenly evolves into a persistent low-frequency quasi-monochromatic pressure oscillation at ~0.4 Hz. We interpret this shift as induced by the transition from the slug (discrete Strombolian) to churn flow (sustained lava fountain) regime that is reflecting an increase in the gas discharge rate. We calculate that infrasonic transition can occur at a gas superficial velocity of ≤76 m/s and it can be used to define infrasonic-based thresholds for an efficient early warning system.

  14. Susceptibility of lava domes to erosion and collapse by toppling on cooling joints

    Science.gov (United States)

    Smith, John V.

    2018-01-01

    The shape of lava domes typically leads to the formation of radial patterns of cooling joints. These cooling joints define the orientation of the columnar blocks which plunge toward the center of the dome. In the lower parts of the dome the columns plunge into the dome at low angles and are relatively stable. Higher in the dome the columns plunge into the dome at steep angles. These steeply plunging columns are susceptible to toppling and, if the lower part of a dome is partially removed by erosion or collapse, the unstable part of the dome becomes exposed leading to toppling failure. Examples of this process are provided from coastal erosion of lava domes at Katsura Island, Shimane Peninsula, western Japan. An analogue model is presented to demonstrate the mechanism. It is proposed that the mechanism can contribute to collapse of lava domes during or after emplacement.

  15. Neoproterozoic stratigraphic framework of the Tarim Craton in NW China: Implications for rift evolution

    Science.gov (United States)

    Wu, Lin; Guan, Shuwei; Zhang, Shuichang; Yang, Haijun; Jin, Jiuqiang; Zhang, Xiaodan; Zhang, Chunyu

    2018-06-01

    The Tarim Craton is overlain by thick Neoproterozoic sedimentary successions in rift tectonic setting. This study examines the latest outcrop, seismic, and drilling core data with the objective of investigating the regional stratigraphy to deeply recognize the evolution of rifting in the craton. Cryogenian to Lower Ediacaran successions are mainly composed of clastic rocks with thicknesses of 2000-3000 m, and the Upper Ediacaran successions are composed of carbonate rocks with thicknesses of 500-800 m. The rift basins and stratigraphic zones are divided into northern and southern parts by a central paleo-uplift. The northern rift basin extends through the northern Tarim Craton in an E-W direction with two depocenters (Aksu and Kuruktag). The southern rift basin is oriented NE-SW. There are three or four phases of tillites in the northern zone, while there are two in the southern zone. Given the north-south difference of the stratigraphic framework, the northern rift basin initiated at ca. 740 Ma and the southern rift basin initiated at ca. 780 Ma. During the Cryogenian and Ediacaran, the northern and southern rift basins were separated by the central paleo-uplift, finally connecting with each other in the early Cambrian. Tectonic deformation in the Late Ediacaran led to the formation of a parallel unconformity in the rift basins and an angular unconformity in the central paleo-uplift. The Neoproterozoic rift basins continued to affect the distribution of Lower Cambrian hydrocarbon source rocks. The north-south distribution and evolution of the rift basins in the Tarim Craton have implications for reconstructions of the Rodinia supercontinent.

  16. Geochemistry of axial seamount lavas: Magmatic relationship between the Cobb Hotspot and the Juan de Fuca Ridge

    Science.gov (United States)

    Rhodes, J. M.; Morgan, C.; Liias, R. A.

    1990-08-01

    Axial Seamount, located along the central portion of the Juan de Fuca Ridge axis and at the eastern end of the Cobb-Eickelberg Seamount Chain, is the current center of the Cobb Hotspot. The Axial Seamount lavas are transitional between N-type and E-type mid-ocean ridge basalt (MORB), characteristics that they share with lavas along the rest of the Juan de Fuca Ridge. There are, however, subtle, but distinct, differences between the seamount lavas and those of the adjoining ridge segments. These include higher Na2O, CaO, and Sr at a given MgO content and lower silica saturation in the seamount lavas as compared with the ridge lavas. Lava chemistry and bathymetry indicate that Axial Seamount is a discrete volcanic unit, with a more productive shallow magmatic plumbing system separate from the adjacent ridge segments. These high magma supply rates have sustained a continuously replenished, steady state magma reservoir that has erupted remarkably homogeneous lavas over a long time period. Despite this classic association of spreading center and hotspot volcanic activity, there is no evidence in the lavas for geochemical or isotopic enrichment typical of hotspot or mantle plume activity. The differences in composition between the Axial Seamount lavas and the Juan de Fuca Ridge lavas are attributed to melting processes rather than to any fundamental differences in their mantle source compositions. The higher magma production rates, higher Sr, and lower silica saturation in the seamount lavas relative to the ridge lavas are thought to be a consequence of melt initiation at greater depths. The melting column producing the seamount lavas is thought to be initiated in the stability field of spinel peridotite, whereas the ridge lavas are produced from a melting column initiated at shallower levels, possibly within or close to the stability field of plagioclase peridotite. Implicit in this interpretation is the conclusion that the Juan de Fuca Ridge lavas, and by analogy most

  17. Basaltic lava flows covering active aeolian dunes in the Paraná Basin in southern Brazil: Features and emplacement aspects

    Science.gov (United States)

    Waichel, Breno L.; Scherer, Claiton M. S.; Frank, Heinrich T.

    2008-03-01

    Burial of active aeolian dunes by lava flows can preserve the morphology of the dunes and generate diverse features related to interaction between unconsolidated sediments and lavas. In the study area, located in southern Brazil, burial of aeolian deposits by Cretaceous basaltic lava flows completely preserved dunes, and generate sand-deformation features, sand diapirs and peperite-like breccia. The preserved dunes are crescentic and linear at the main contact with basalts, and smaller crescentic where interlayered with lavas. The various feature types formed on sediment surfaces by the advance of the flows reflect the emplacement style of the lavas which are compound pahoehoe type. Four feature types can be recognized: (a) type 1 features are related to the advance of sheet flows in dune-interdune areas with slopes > 5°, (b) type 2 is formed where the lava flows advance in lobes and climb the stoss slope of crescentic dunes (slopes 8-12°), (c) type 3 is generated by toes that descend the face of linear dunes (slopes 17-23°) and (d) type 4 occurs when lava lobes descend the stoss slope of crescentic dunes (slopes 10-15°). The direction of the flows, the disposition and morphology of the dunes and the ground slope are the main factors controlling formation of the features. The injection of unconsolidated sand in lava lobes forms diapirs and peperite-like breccias. Sand diapirs occur at the basal portion of lobes where the lava was more solidified. Peperite-like breccias occur in the inner portion where lava was more plastic, favoring the mingling of the components. The generation of both features is related to a mechanical process: the weight of the lava causes the injection of sand into the lava and the warming of the air in the pores of the sand facilitates this process. The lava-sediment interaction features presented here are consistent with previous reports of basalt lavas with unconsolidated arid sediments, and additional new sand-deformation features

  18. A two-step crushed lava rock filter unit for grey water treatment at household level in an urban slum.

    Science.gov (United States)

    Katukiza, A Y; Ronteltap, M; Niwagaba, C B; Kansiime, F; Lens, P N L

    2014-01-15

    Decentralised grey water treatment in urban slums using low-cost and robust technologies offers opportunities to minimise public health risks and to reduce environmental pollution caused by the highly polluted grey water i.e. with a COD and N concentration of 3000-6000 mg L(-1) and 30-40 mg L(-1), respectively. However, there has been very limited action research to reduce the pollution load from uncontrolled grey water discharge by households in urban slums. This study was therefore carried out to investigate the potential of a two-step filtration process to reduce the grey water pollution load in an urban slum using a crushed lava rock filter, to determine the main filter design and operation parameters and the effect of intermittent flow on the grey water effluent quality. A two-step crushed lava rock filter unit was designed and implemented for use by a household in the Bwaise III slum in Kampala city (Uganda). It was monitored at a varying hydraulic loading rate (HLR) of 0.5-1.1 m d(-1) as well as at a constant HLR of 0.39 m d(-1). The removal efficiencies of COD, TP and TKN were, respectively, 85.9%, 58% and 65.5% under a varying HLR and 90.5%, 59.5% and 69%, when operating at a constant HLR regime. In addition, the log removal of Escherichia coli, Salmonella spp. and total coliforms was, respectively, 3.8, 3.2 and 3.9 under the varying HLR and 3.9, 3.5 and 3.9 at a constant HLR. The results show that the use of a two-step filtration process as well as a lower constant HLR increased the pollutant removal efficiencies. Further research is needed to investigate the feasibility of adding a tertiary treatment step to increase the nutrients and microorganisms removal from grey water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Eruption and emplacement dynamics of a thick trachytic lava flow of the Sancy volcano (France)

    Science.gov (United States)

    Latutrie, Benjamin; Harris, Andrew; Médard, Etienne; Gurioli, Lucia

    2017-01-01

    A 70-m-thick, 2200-m-long (51 × 106 m3) trachytic lava flow unit underlies the Puy de Cliergue (Mt. Dore, France). Excellent exposure along a 400-m-long and 60- to 85-m-high section allows the flow interior to be accessed on two sides of a glacial valley that cuts through the unit. We completed an integrated morphological, structural, textural, and chemical analysis of the unit to gain insights into eruption and flow processes during emplacement of this thick silicic lava flow, so as to elucidate the chamber and flow dynamic processed that operate during the emplacement of such systems. The unit is characterized by an inverse chemical stratification, where there is primitive lava beneath the evolved lava. The interior is plug dominated with a thin basal shear zone overlying a thick basal breccia, with ramping affecting the entire flow thickness. To understand these characteristics, we propose an eruption model that first involves processes operating in the magma chamber whereby a primitive melt is injected into an evolved magma to create a mixed zone at the chamber base. The eruption triggered by this event first emplaced a trachytic dome, into which banded lava from the chamber base was injected. Subsequent endogenous dome growth led to flow down the shallow slope to the east on which the highly viscous (1012 Pa s) coulée was emplaced. The flow likely moved extremely slowly, being emplaced over a period of 4-10 years in a glacial manner, where a thick (>60-m) plug slid over a thin (5-m-thick) basal shear zone. Excellent exposure means that the Puy de Cliergue complex can be viewed as a case type location for understanding and defining the eruption and emplacement of thick, high-viscosity, silicic lava flow systems.

  20. Timing of volcanism and initiation of rifting in the Omo-Turkana depression, southwest Ethiopia: Evidence from paleomagnetism

    Science.gov (United States)

    Erbello, Asfaw; Kidane, Tesfaye

    2018-03-01

    Lava flows of the Gombe Group basalt cover the base of the Omo-Turkana rift in southwestern Ethiopia and northern Kenya. Paleomagnetic study results on these basalts are integrated with previous geochronologic data to better constrain the timing of volcanism and rifting in the area. A total of 80 drilled core samples were collected from nine sites. Experimental methods of Alternating Field (AF) demagnetization, Thermal (TH) demagnetization and Isothermal Remanent Magnetization (IRM) experiments are performed to unravel components of magnetizations. Two components of Natural Remnant Magnetization (NRM) directions are identified; the first one considered as Viscous Remanent Magnetization (VRM) is removed by 5-25 mT AF or a temperature of 120 °C-250 °C, the second component isolated after these steps defined a straight-line segment directed towards the origin and is interpreted as the Characteristic Remanent Magnetization (ChRM). In the IRM Acquisition experiment all analyzed samples showed a sharp rise in acquisition and reached to their saturation magnetization by an applied field of 300 mT. This together with the AF demagnetization and TH demagnetization behaviors suggest pseudo single domain titanomagnetite as a dominant magnetic carrier of the remanence. From a total of nine sites, six sites are reversed polarity, two sites are normal polarity and pass the reversal test of McFadden and McElhinny (1990) while one site is of erratic behavior probably due to lightning strike. The mean direction for the reversed polarity is DS = 186.1°, IS = -1.9° (N = 2, KS = 38.8, α95 = 10.9°) and that for the normal polarity is DS = 348.4°, IS = 4.6° (N = 6, K = 378.9, α95 = 12.9°). The overall mean direction DS = 1.7°, IS = 2.6° (N = 8, KS = 34.2, α95 = 9.6°), is statistically identical to the expected mean direction Ds = 2.1°, Is = 7.8° (N = 26, α95 = 2.3) obtained from the African Apparent Polar Waner Path (APWP) curve of African plate for a mean age of 4.25 Ma

  1. Textural and rheological evolution of basalt flowing down a lava channel

    Science.gov (United States)

    Robert, Bénédicte; Harris, Andrew; Gurioli, Lucia; Médard, Etienne; Sehlke, Alexander; Whittington, Alan

    2014-06-01

    The Muliwai a Pele lava channel was emplaced during the final stage of Mauna Ulu's 1969-1974 eruption (Kilauea, Hawaii). The event was fountain-fed and lasted for around 50 h, during which time a channelized flow system developed, in which a 6-km channel fed a zone of dispersed flow that extended a further 2.6 km. The channel was surrounded by initial rubble levees of 'a'a, capped by overflow units of limited extent. We sampled the uppermost overflow unit every 250 m down the entire channel length, collecting, and analyzing 27 air-quenched samples. Bulk chemistry, density and textural analyses were carried out on the sample interior, and glass chemistry and microlite crystallization analyses were completed on the quenched crust. Thermal and rheological parameters (cooling, crystallization rate, viscosity, and yield strength) were also calculated. Results show that all parameters experience a change around 4.5 km from the vent. At this point, there is a lava surface transition from pahoehoe to 'a'a. Lava density, microlite content, viscosity, and yield strength all increase down channel, but vesicle content and lava temperature decrease. Cooling rates were 6.7 °C/km, with crystallization rates increasing from 0.03 Фc/km proximally, to 0.14 Фc/km distally. Modeling of the channel was carried out using the FLOWGO thermo-rheological model and allowed fits for temperature, microlite content, and channel width when run using a three-phase viscosity model based on a temperature-dependent viscosity relation derived for this lava. The down flow velocity profile suggests an initial velocity of 27 m/s, declining to 1 m/s at the end of the channel. Down-channel, lava underwent cooling that induced crystallization, causing both the lava viscosity and yield strength to increase. Moreover, lava underwent degassing and a subsequent vesicularity decrease. This aided in increasing viscosity, with the subsequent increase in shearing promoting a transition to 'a'a.

  2. L-Band Polarimetric SAR Signatures of Lava Flows in the Northern Volcanic Zone, Iceland

    DEFF Research Database (Denmark)

    Dierking, Wolfgang; Haack, Henning

    1998-01-01

    Studies of radar scattering signatures typical for lava surfaces are needed in order to interprete SAR images of volcanic terrain on the Earth and on other planets, and to establish a physical basis for the choice of optimal radar configurations for geological mapping. The authors focus on a study...... of different morphologic types within a flow. The largest contrasts are observed at cross-polarization. The phase difference between the VV- and HH-channels may provide information about a vegetation cover on the lava. The radar signal scattered from the flows is dominated by surface scattering contributions...

  3. Lava channel formation during the 2001 eruption on Mount Etna: evidence for mechanical erosion.

    Science.gov (United States)

    Ferlito, Carmelo; Siewert, Jens

    2006-01-20

    We report the direct observation of a peculiar lava channel that was formed near the base of a parasitic cone during the 2001 eruption on Mount Etna. Erosive processes by flowing lava are commonly attributed to thermal erosion. However, field evidence strongly suggests that models of thermal erosion cannot explain the formation of this channel. Here, we put forward the idea that the essential erosion mechanism was abrasive wear. By applying a simple model from tribology we demonstrate that the available data agree favorably with our hypothesis. Consequently, we propose that erosional processes resembling the wear phenomena in glacial erosion are possible in a volcanic environment.

  4. Studies of Young Hawai'ian Lava Tubes: Implications for Planetary Habitability and Human Exploration

    Science.gov (United States)

    McAdam, Amy; Bleacher, Jacob; Young, Kelsey; Johnson, Sarah Stewart; Needham, Debra; Schmerr, Nicholas; Shiro, Brian; Garry, Brent; Whelley, Patrick; Knudson, Christine; hide

    2017-01-01

    Habitability: Subsurface environments may preserve records of habitability or biosignatures, with more stable environmental conditions compared to surface (e.g., smaller variations in temperature and humidity) and reduced exposure to radiation; Lava tubes are expected on Mars, and candidates are observed from orbit; Few detailed studies of microbial populations in terrestrial lava caves; Also contain a variety of secondary minerals; Microbial activity may play a role in mineral formation or be preserved in these minerals; Minerals can provide insight into fluids (e.g., pH, temperature).

  5. Dynamics of lava flow - Thickness growth characteristics of steady two-dimensional flow

    Science.gov (United States)

    Park, S.; Iversen, J. D.

    1984-01-01

    The thickness growth characteristics of flowing lava are investigated using a heat balance model and a two-dimensional model for flow of a Bingham plastic fluid down an inclined plane. It is found that yield strength plays a crucial role in the thickening of a lava flow of given flow rate. To illustrate this point, downstream thickness profiles and yield strength distributions were calculated for flows with mass flow rates of 10,000 and 100,000 kg/m-sec. Higher flow rates led to slow cooling rates which resulted in slow rate of increase of yield strength and thus greater flow lengths.

  6. Evolution of - and Core-Dominated Lava Flows Using Scaling Analysis

    Science.gov (United States)

    Castruccio, A.; Rust, A.; Sparks, R. S.

    2010-12-01

    We investigated the front evolution of simple lava flows on a slope using scaling arguments. For the retarding force acting against gravity, we analyzed three different cases: a flow controlled by a Newtonian viscosity, a flow controlled by the yield strength of a diffusively growing crust and a flow controlled by its core yield strength. These models were tested using previously published data of front evolution and volume discharge of 10 lava flow eruptions from 6 different volcanoes. Our analysis suggests that for basaltic eruptions with high effusion rate and low crystal content, (Hawaiian eruptions), the best fit of the data is with a Newtonian viscosity. For basaltic eruptions with lower effusion rates (Etna eruptions) or long duration andesitic eruptions (Lonquimay eruption, Chile) the flow is controlled by the yield strength of a growing crust. Finally, for very high crystalline lavas (Colima, Santiaguito) the flow is controlled by its core yield strength. The order of magnitude of the viscosities from our analysis is in the same range as previous studies using field measurements on the same lavas. The yield strength values for the growing crust and core of the flow are similar and with an order of magnitude of 10^5 Pa. This number is similar to yield strength values found in lava domes by different authors. The consistency of yield strength ~10^5 Pa is because larger stresses cause fracturing of very crystalline magma, which drastically reduces its effective strength. Furthermore, we used a 2-D analysis of a Bingham fluid flow on a slope to conclude that, for lower yield strength values, the flow is controlled mainly by its plastic viscosity and the lava can be effectively modelled as Newtonian. Our analysis provides a simple tool to evaluate the main controlling forces in the evolution of a lava flow, as well as the magnitude of its rheological properties, for eruptions of different compositions and conditions and may be useful to predict the evolution of

  7. Post-rift deformation of the Red Sea Arabian margin

    Science.gov (United States)

    Zanoni, Davide; Schettino, Antonio; Pierantoni, Pietro Paolo; Rasul, Najeeb

    2017-04-01

    Starting from the Oligocene, the Red Sea rift nucleated within the composite Neoproterozoic Arabian-Nubian shield. After about 30 Ma-long history of continental lithosphere thinning and magmatism, the first pulse of oceanic spreading occurred at around 4.6 Ma at the triple junction of Africa, Arabia, and Danakil plate boundaries and propagated southward separating Danakil and Arabia plates. Ocean floor spreading between Arabia and Africa started later, at about 3 Ma and propagated northward (Schettino et al., 2016). Nowadays the northern part of the Red Sea is characterised by isolated oceanic deeps or a thinned continental lithosphere. Here we investigate the deformation of thinned continental margins that develops as a consequence of the continental lithosphere break-up induced by the progressive oceanisation. This deformation consists of a system of transcurrent and reverse faults that accommodate the anelastic relaxation of the extended margins. Inversion and shortening tectonics along the rifted margins as a consequence of the formation of a new segment of ocean ridge was already documented in the Atlantic margin of North America (e.g. Schlische et al. 2003). We present preliminary structural data obtained along the north-central portion of the Arabian rifted margin of the Red Sea. We explored NE-SW trending lineaments within the Arabian margin that are the inland continuation of transform boundaries between segments of the oceanic ridge. We found brittle fault zones whose kinematics is consistent with a post-rift inversion. Along the southernmost transcurrent fault (Ad Damm fault) of the central portion of the Red Sea we found evidence of dextral movement. Along the northernmost transcurrent fault, which intersects the Harrat Lunayyir, structures indicate dextral movement. At the inland termination of this fault the evidence of dextral movement are weaker and NW-SE trending reverse faults outcrop. Between these two faults we found other dextral transcurrent

  8. LES RISQUES LIES AUX MAZUKU DANS LA REGION DE GOMA, REPUBLIQUE DEMOCRATIQUE DU CONGO (RIFT EST-AFRICAIN

    Directory of Open Access Journals (Sweden)

    Marcellin Musosekania KASEREKA

    2017-12-01

    Full Text Available In the area north of Lake Kivu, in the western part of the African Rift, deep fractures allow the uptake of gas, especially carbon dioxide, into areas locally called mazuku; in Kiswahili places where a diabolical gas kills people. Generally, mazuku are depressions and / or fronts of lava flows where CO2 accumulates by gravity, forming areas where the air is very rich in CO2 and therefore toxic, even lethal. CO2 is a gas heavier than air, asphyxiating, irritates the eyes, nose and throat, and is lethal at concentrations greater than 15%. Unfortunately many mazuku are located within the perimeter of the city of Goma and in immediate surroundings. The population of Goma believes that the CO2 concentrations have decreased over time in the mazuku, yet four surveys of measurements carried out in the mazuku of the city of Goma show the opposite and it goes up to 70% in some sites. The mazuku are found in the city of Goma, but they are most abundant in the Kituku, Green Lake and Bulengo regions. It is unfortunately on these sites that new housing constructions are oriented, which exposes them to the risk already present, spaces with high concentrations of CO2 are already covered by buildings. This volcanic gas has caused and continues to cause deaths of humans and animals in the affected areas. We propose that warning signs be placed or even replaced in these high-risk zones and information and awareness campaigns on the risks associated with mazuku are also strongly recommended.

  9. Multiscale roughness characterization from multiresolution remote sensing data acquired over the Asal-Ghoubbet rift, Republic of Djibouti

    Science.gov (United States)

    Labarre, Sébastien; Jacquemoud, Stéphane; Ferrari, Cécile; Delorme, Arthur; Rupnik, Ewelina; Derrien, Allan; Pierrot-Deseilligny, Marc; Grandin, Raphaël; Jalludin, Mohamed

    2017-04-01

    Surface roughness is a key parameter in soil physics which controls many surface processes at a wide range of scales: microscopic and mesoscopic scales from 10 μm to 1 cm (soil particles or regolith), macroscopic scale from 1 cm to 1 m (clods, aggregates of rock or ice, micro-fractures or lava flows), and topographic scale from 1 m to several kilometers (faults, hills, craters or mountains). While it is recognized that surface roughness is strongly scale-dependent, it is often expressed as an integrated parameter (root-mean-square height, correlation length, tortuosity index), which does not address the full range of spatial features present on the surface. In particular, the Hapke roughness parameter is defined as the mean slope angle of the facets composing the surface, integrated over all scales from the microscopic to the macroscopic scales. Yet its physical meaning is still a question at issue, as the scale at which it occurs is undefined in the model. Photogrammetry has been shown to be an inexpensive and powerful method for topography reconstruction from optical data. We took advantage of a series of 21 Pléiades-1B images (video acquisition mode) to build a global digital elevation model (DEM) over the Asal-Ghoubbet rift, Republic of Djibouti. Additionally, we acquired close range data with a quadcopter equipped with a HD camera. Topography at four scales is available: 1 m with the satellite images (694 km), 1 cm with the drone flying at medium altitude ( 100 m), 1 mm with the drone flying at low altitude ( 10 m), and Djibouti terrains, for which we have a broader range of resolutions and larger areas.

  10. Geological Mapping and Investigation into a Proposed Syn-rift Alluvial Fan Deposit in the Kerpini Fault Block, Greece.

    OpenAIRE

    Hadland, Sindre

    2016-01-01

    Master's thesis in Petroleum geosciences engineering The Kerpini Fault Block is located in the southern part of the Gulf of Corinth rift system. The rift system consists of several east-west orientated half-grabens with associated syn-rift sediments. Kerpini Fault Block is one of the southernmost half-grabens within the rift systems, and is composed of several different stratigraphic units. The stratigraphic framework consists of a complex interaction of several stratigraphic units. One of...

  11. 77 FR 68783 - Prospective Grant of Exclusive License: Veterinary Vaccines for Rift Valley Fever Virus

    Science.gov (United States)

    2012-11-16

    ... Grant of Exclusive License: Veterinary Vaccines for Rift Valley Fever Virus AGENCY: Centers for Disease..., filed 12/21/2007, entitled ``Development of Rift Valley Fever Virus Utilizing Reverse Genetics,'' US... (RVF) Viruses and Method of Use,'' PCT Application PCT/US2008/ 087023, filed 12/16/2008, entitled...

  12. Rift Valley fever outbreak, Mauritania, 1998: seroepidemiologic, virologic, entomologic, and zoologic investigations.

    Science.gov (United States)

    Nabeth, P; Kane, Y; Abdalahi, M O; Diallo, M; Ndiaye, K; Ba, K; Schneegans, F; Sall, A A; Mathiot, C

    2001-01-01

    A Rift Valley fever outbreak occurred in Mauritania in 1998. Seroepidemiologic and virologic investigation showed active circulation of the Rift Valley fever virus, with 13 strains isolated, and 16% (range 1.5%-38%) immunoglobulin (Ig) M-positivity in sera from 90 humans and 343 animals (sheep, goats, camels, cattle, and donkeys). One human case was fatal.

  13. Imaging an off-axis volcanic field in the Main Ethiopian Rift using 3-D magnetotellurics

    Science.gov (United States)

    Huebert, J.; Whaler, K. A.; Fisseha, S.; Hogg, C.

    2017-12-01

    In active continental rifts, asthenospheric upwelling and crustal thinning result in the ascent of melt through the crust to the surface. In the Main Ethiopian Rift (MER), most volcanic activity is located in magmatic segments in the rift centre, but there are areas of significant off-axis magmatism as well. The Butajira volcanic field is part of the Silti Debre Zeyt Fault (SDZF) zone in the western Main Ethiopian Rift. It is characterized by densely clustered volcanic vents (mostly scoria cones) and by limited seismic activity, which is mainly located along the big border faults that form the edge of a steep escarpment. Seismic P-Wave tomography reveals a crustal low velocity anomaly in this area. We present newly collected Magnetotelluric (MT) data to image the electrical conductivity structure of the area. We deployed 12 LMT instruments and 27 broadband stations in the western flank of the rift to further investigate the along-rift and depth extent of a highly conductive region under the SDZF which was previously identified by MT data collected on the central volcano Aluto and along a cross-rift transverse. This large conductor was interpreted as potential pathways for magma and fluid in the crust. MT Stations were positioned in five NW-SE running 50 km long profiles, covering overall 100km along the rift and providing good coverage for a 3-D inversion of the data to image this enigmatic area of the MER.

  14. Asthenospheric flow and origin of volcanism in the Baikal rift area

    NARCIS (Netherlands)

    Lebedev, S.; Meier, T.; Hilst, R.D. van der

    2006-01-01

    The origin of low-volume, hotspot-like volcanism often observed in continental rift areas is debated, as is the nature of the flow in the mantle beneath. In this paper we assemble seismic constraints on the mantle flow below the Baikal Rift Zone. We combine new evidence from upper-mantle

  15. Microstructural evolution and seismic anisotropy of upper mantle rocks in rift zones. Geologica Ultraiectina (300)

    NARCIS (Netherlands)

    Palasse, L.N.

    2008-01-01

    This thesis investigates field-scale fragments of subcontinental upper mantle rocks from the ancient Mesozoic North Pyrenean rift and Plio-Pleistocene xenoliths from the active Baja California rift, in order to constrain the deformation history of the uppermost mantle. The main focus of the study is

  16. Seismic imaging of the geodynamic activity at the western Eger rift in central Europe

    Czech Academy of Sciences Publication Activity Database

    Mullick, N.; Buske, S.; Hrubcová, Pavla; Růžek, Bohuslav; Shapiro, S.; Wigger, P.; Fischer, T.

    647-648, 19 April (2015), s. 105-111 ISSN 0040-1951 R&D Projects: GA ČR GA13-08971S Institutional support: RVO:67985530 Keywords : European Cenozoic Rift System * Eger Rift * West Bohemian Massif Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.650, year: 2015

  17. Images of Kilauea East Rift Zone eruption, 1983-1993

    Science.gov (United States)

    Takahashi, Taeko Jane; Abston, C.C.; Heliker, C.C.

    1995-01-01

    This CD-ROM disc contains 475 scanned photographs from the U.S. Geological Survey Hawaii Observatory Library. The collection represents a comprehensive range of the best photographic images of volcanic phenomena for Kilauea's East Rift eruption, which continues as of September 1995. Captions of the images present information on location, geologic feature or process, and date. Short documentations of work by the USGS Hawaiian Volcano Observatory in geology, seismology, ground deformation, geophysics, and geochemistry are also included, along with selected references. The CD-ROM was produced in accordance with the ISO 9660 standard; however, it is intended for use only on DOS-based computer systems.

  18. Geodetic constraints on continental rifting along the Red Sea

    Science.gov (United States)

    Reilinger, R.; McClusky, S.; Arrajehi, A.; Mahmoud, S.; Rayan, A.; Ghebreab, W.; Ogubazghi, G.; Al-Aydrus, A.

    2006-12-01

    We are using the Global Positioning System (GPS) to monitor and quantify patterns and rates of tectonic and magmatic deformation associated with active rifting of the continental lithosphere and the transition to sea floor spreading in the Red Sea. Broad-scale motions of the Nubian and Arabian plates indicate coherent plate motion with internal deformation below the current resolution of our measurements (~ 1-2 mm/yr). The GPS-determined Euler vector for Arabia-Nubia is indistinguishable from the geologic Euler vector determined from marine magnetic anomalies, and Arabia-Eurasia relative motion from GPS is equal within uncertainties to relative motion determined from plate reconstructions, suggesting that Arabia plate motion has remained constant (±10%) during at least the past ~10 Ma. The approximate agreement between broad-scale GPS rates of extension (i.e., determined from relative plate motions) and those determined from magnetic anomalies along the Red Sea rift implies that spreading in the central Red Sea is primarily confined to the central rift (±10-20%). Extension appears to be more broadly distributed in the N Red Sea and Gulf of Suez where comparisons with geologic data also indicate a relatively recent (between 500 and 125 kyr BP) change in the motion of the Sinai block that is distinct from both Nubia and Arabia. In the southern Red Sea, GPS results are beginning to define the motion of the "Danakil micro-plate". We investigate and report on a model involving CCW rotation of the Danakil micro-plate relative to Nubia and magmatic inflation below the Afar Triple Junction that is consistent with available geodetic constraints. Running the model back in time suggests that the Danakil micro-plate has been an integral part of rifting/triple junction processes throughout the history of separation of the Arabian and Nubian plates. On the scale of Nubia-Arabia-Eurasia plate interactions, we show that new area formed at spreading centers roughly equals that

  19. Restriction of Rift Valley Fever Virus Virulence in Mosquito Cells

    Directory of Open Access Journals (Sweden)

    Sonja R. Gerrard

    2010-02-01

    Full Text Available Arboviruses are maintained in a natural cycle that requires blood-sucking arthropod and vertebrate hosts. Arboviruses are believed to persistently infect their arthropod host without overt pathology and cause acute infection with viremia in their vertebrate host. We have focused on elucidating how a specific arbovirus, Rift Valley fever (RVF virus, causes cytopathic effect in cells derived from vertebrates and non-cytopathic infection in cells derived from arthropods. We demonstrate that the vertebrate virulence factor, NSs, is functional in arthropod cells but is expressed at significantly lower levels in infected arthropod versus infected vertebrate cells.

  20. Normal-Faulting in Madagascar: Another Round of Continental Rifting?

    Science.gov (United States)

    Wysession, M. E.; Pratt, M. J.; Tsiriandrimanana, R.; Andriampenomanana Ny Ony, F. S. T.; Nyblade, A.; Durrheim, R. J.; Tilmann, F. J.; Rumpker, G.; Rambolamanana, G.; Aleqabi, G. I.; Shore, P.

    2017-12-01

    Analyses of seismicity and seismic structure within Madagascar suggest the current occurrence of crustal extension, which may be related to continental rifting associated with a diffuse boundary between the Somalia and Lwandle tectonic plates. Madagascar has participated in two major rifting events as part of the break-up of Gondwana: the break-away of Greater India (Madagascar, India, the Seychelles) away from mainland Africa during the Jurassic and the break-away of India from Madagascar during the Cretaceous. Seismic activity and the structures obtained from it, using data from the 2-year (2011-2013) MACOMO project, suggest that this break-up may not be finished, and that continental rifts may be developing again. There are fairly high levels of intraplate seismicity within Madagascar: over 800 events located during the 22 months of the deployment. For comparison, a 2-year deployment of seismometers within the upper Midwest of the U.S. yielded just 12 intraplate earthquakes. While the Madagascar seismicity occurs across the island, it is strongly concentrated in the central region, where Cenozoic volcanism has occurred through the Holocene, and earthquakes align along N-S-trending lineations associated with N-S-trending pull-apart graben structures. The thickness of the crust is still >40 km in this region, but it is underlain by a large low-velocity structure within the lithosphere and asthenosphere that is observed in our studies of surface-wave, body-wave, and Pn-phase tomography. Normal faulting is not observed everywhere on the island, however; seismicity in the north is largely strike-slip, and seismicity in the south appears to be largely reverse faulting. Several studies have suggested that the diffuse boundary between the Somalia and Lwandle plates runs roughly E-W across Madagascar. Extensional faulting seems to predominate only within central Madagascar, likely associated with the current volcanic activity, which also appears to be associated with the

  1. Lithology and temperature: How key mantle variables control rift volcanism

    Science.gov (United States)

    Shorttle, O.; Hoggard, M.; Matthews, S.; Maclennan, J.

    2015-12-01

    Continental rifting is often associated with extensive magmatic activity, emplacing millions of cubic kilometres of basalt and triggering environmental change. The lasting geological record of this volcanic catastrophism are the large igneous provinces found at the margins of many continents and abrupt extinctions in the fossil record, most strikingly that found at the Permo-Triassic boundary. Rather than being considered purely a passive plate tectonic phenomenon, these episodes are frequently explained by the involvement of mantle plumes, upwellings of mantle rock made buoyant by their high temperatures. However, there has been debate over the relative role of the mantle's temperature and composition in generating the large volumes of magma involved in rift and intra-plate volcanism, and even when the mantle is inferred to be hot, this has been variously attributed to mantle plumes or continental insulation effects. To help resolve these uncertainties we have combined geochemical, geophysical and modelling results in a two stage approach: Firstly, we have investigated how mantle composition and temperature contribute to melting beneath Iceland, the present day manifestation of the mantle plume implicated in the 54Ma break up of the North Atlantic. By considering both the igneous crustal production on Iceland and the chemistry of its basalts we have been able to place stringent constraints on the viable temperature and lithology of the Icelandic mantle. Although a >100°C excess temperature is required to generate Iceland's thick igneous crust, geochemistry also indicates that pyroxenite comprises 10% of its source. Therefore, the dynamics of rifting on Iceland are modulated both by thermal and compositional mantle anomalies. Secondly, we have performed a global assessment of the mantle's post break-up thermal history to determine the amplitude and longevity of continental insulation in driving excess volcanism. Using seismically constrained igneous crustal

  2. Concentric cylinder viscometry at subliquidus conditions on Mauna Ulu lavas, Kilauea Volcano, Hawaii

    Science.gov (United States)

    Sehlke, A.; Robert, B.; Harris, A. J.; gurioli, L.; Whittington, A. G.

    2013-12-01

    The morphology of lava flows is controlled by the physical properties of the lava and its effusion rates, as well as environmental influences such as surface medium, slope and ambient temperature and pressure conditions. The important physical properties of lavas include viscosity (η), yield strength (σy), thermal diffusivity (κ) and heat capacity (CP), all of which strongly depend on temperature (T), composition (Χ), crystal fraction (φc) and vesicularity (φb). The crystal fraction (φc) typically increase as temperature decreases, and therefore is temperature dependent itself and influences the residual liquid composition (Χ). The rheological behavior of multi-phase lavas in lava flows is expressed as different flow types, forced from a smooth pahoehoe to a blocky ';a'a within a transition zone. Recent field studies of overflow units at the Muliwai a Pele lava flow erupted from Mauna Ulu in 1974 on Kilauea volcano (Hawaii) reveal a transition zone in a distance approximately 4.5 km from the vent as a result of a cooling gradient of 6 °C/km, crystallization rates of 0.05/km and a density increase from 1010 × 150 kg/m3 near to 1410 × 120 kg/m3 6 km distant from the vent due to degassing. Concentric cylinder viscometry under atmospheric conditions has been conducted in order to investigate the rheological response of crystal-liquid lava suspensions at different equilibrium temperatures for Mauna Ulu lavas. We detect first solid phases around 1230 °C being clinopyroxene, olivine and spinel, followed by plagioclase appearing as microlites as observed in natural rock samples. Measured apparent viscosities (ηapp) with applied strain rates between 50 s-1 and 0.3 s-1 at 1201 °C, 1192 °C and 1181 °C show a strong stress-strain rate dependency, classifying our 2-phase suspensions as Herschel-Bulkey fluids with an extrapolated apparent yield strength (τ0) around 200 to 150 Pa in presence of different crystal fractions, resulting in a 2.5 fold increase of

  3. The Volcanic Myths of the Red Sea - Temporal Relationship Between Magmatism and Rifting

    Science.gov (United States)

    Stockli, D. F.; Bosworth, W.

    2017-12-01

    The Cenozoic Red Sea is one of the premier examples of continental rifting and active break-up. It has been cited as an example for both prototypical volcanic, pure shear rift systems with limited crustal stretching as well as magma-poor simple-shear rifting and highly asymmetric rift margins characterized by low-angle normal faults. In light of voluminous Oligocene continental flood basalts in the Afar/Ethiopian region, the Red Sea has often been viewed as a typical volcanic rift, despite evidence for asymmetric extension and hyperextended crust (Zabargad Island). An in-depth analysis of the timing, spatial distribution, and nature of Red Sea volcanism and its relationship to late Cenozoic extensional faulting should shed light on some of the misconceptions. The Eocene appearance of the East African super-plume was not accompanied by any recognized significant extensional faulting or rift-basin formation. The first phase of volcanism more closely associated with the Red Sea occurred in northern Ethiopia and western Yemen at 31-30 Ma and was synchronous with the onset of continental extension in the Gulf of Aden. Early Oligocene volcanism has also been documented in southern and central Saudi Arabia and southern Sudan. However, this voluminous Oligocene volcanism entirely predates Red Sea extensional faulting and rift formation. Marking the onset of Red Sea rifting, widespread, spatially synchronous intrusion of basaltic dikes occurred at 24-21 Ma along the entire Red Sea-Gulf of Suez rift and continuing into northern Egypt. While the initiation of lithospheric extension in the central and northern and central Red Sea and Gulf of Suez was accompanied by only sparse basaltic volcanism and possible underplating, the main phase of rifting in the Miocene Red Sea/Gulf of Suez completely lacks any significant rift-related volcanism, suggesting plate-boundary forces probably drove overall separation of Arabia from Africa. During progressive rifting, there is also no

  4. Late Jurassic – early Cretaceous inversion of rift structures, and linkage of petroleum system elements across post-rift unconformity, U.S. Chukchi Shelf, arctic Alaska

    Science.gov (United States)

    Houseknecht, David W.; Connors, Christopher D.

    2015-01-01

    Basin evolution of the U.S. Chukchi shelf involved multiple phases, including Late Devonian–Permian rifting, Permian–Early Jurassic sagging, Late Jurassic–Neocomian inversion, and Cretaceous–Cenozoic foreland-basin development. The focus of ongoing exploration is a petroleum system that includes sag-phase source rocks; inversion-phase reservoir rocks; structure spanning the rift, sag, and inversion phases; and hydrocarbon generation during the foreland-basin phase.

  5. Oblique rift opening revealed by reoccurring magma injection in central Iceland

    KAUST Repository

    Ruch, Joel

    2016-08-05

    Extension deficit builds up over centuries at divergent plate boundaries and is recurrently removed during rifting events, accompanied by magma intrusions and transient metre-scale deformation. However, information on transient near-field deformation has rarely been captured, hindering progress in understanding rifting mechanisms and evolution. Here we show new evidence of oblique rift opening during a rifting event influenced by pre-existing fractures and two centuries of extension deficit accumulation. This event originated from the Bárðarbunga caldera and led to the largest basaltic eruption in Iceland in >200 years. The results show that the opening was initially accompanied by left-lateral shear that ceased with increasing opening. Our results imply that pre-existing fractures play a key role in controlling oblique rift opening at divergent plate boundaries.

  6. LATE CREATACEOUS-CENOZOIC SEDIMENTS OF THE BAIKAL RIFT BASIN AND CHANGING NATURAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Viktor D. Mats

    2010-01-01

    Full Text Available The late Cretaceous-Cenozoic sediments of fossil soils and weathering crusts of the Baikal rift have been subject to long-term studies. Based on our research results, it is possible to distinguish the following litho-stratigraphic complexes which are related to particular stages of the rift development: the late Cretaceous–early Oligocene (crypto-rift Arheo-baikalian, the late Oligocene–early Pliocene (ecto-rift early orogenic Pra-baikalian, and the late Pliocene-Quaternary (ecto-rift late orogenic Pra-baikalian – Baikalian complexes. Changes of weathering modes (Cretaceous-quarter, soil formation (Miocene-quarter and differences of precipitation by vertical and lateral stratigraphy are analysed with regard to specific features of climate, tectonics and facial conditions of sedimentation. Tectonic phases are defined in the Cenozoic period of the Pribaikalie.

  7. Syn-sedimentary tectonics and facies analysis in a rift setting: Cretaceous Dalmiapuram Formation, Cauvery Basin, SE India

    Directory of Open Access Journals (Sweden)

    Nivedita Chakraborty

    2018-04-01

    Full Text Available The Cretaceous (Albian–Cenomanian Dalmiapuram Formation is one of the economically significant constituents in the hydrocarbon-producing Cauvery rift basin, SE India that opened up during the Late Jurassic–Early Cretaceous Gondwanaland fragmentation. The fossil-rich Dalmiapuram Formation, exposed at Ariyalur within the Pondicherry sub-basin of Cauvery Basin, rests in most places directly on the Archean basement and locally on the Lower Cretaceous (Barremian–Aptian Basal Siliciclastic Formation. In the Dalmiapuram Formation, a facies association of tectonically-disturbed phase is sandwiched between two drastically quieter phases. The early syn-rift facies association (FA 1, records the first carbonate marine transgression within the basin, comprising a bar–lagoon system with occasionally storms affecting along the shore and a sheet-like non-recurrent biomicritic limestone bed on the shallow shelf that laterally grades into pyrite–glauconite-bearing dark-colored shale in the deeper shelf. Spectacular breccias together with varied kinds of mass-flow products comprise the syn-rift facies association (FA 2. While the breccias occur at the basin margin area, the latter extend in the deeper inland sea. Clast composition of the coarse clastics includes large, even block-sized limestone fragments and small fragments of granite and sandstone from the basement. Marl beds of quieter intervals between tectonic pulses occur in alternation with them. Faulted basal contact of the formation, and small grabens filled by multiple mass-flow packages bear the clear signature of the syntectonic activity localized contortions, slump folds, and pillow beds associated with mega slump/slide planes and joints, which corroborates this contention further. This phase of tectonic intervention is followed by another relatively quieter phase and accommodates the late syn-rift facies association (FA 3. A tidal bar–interbar shelf depositional system allowed a

  8. A combined study of gas geochemistry, petrology, and lava effusion at Bagana, a unique persistently active lava cone in Papua New Guinea

    Science.gov (United States)

    McCormick, B. T.; Salem, L. C.; Edmonds, M.; D'Aleo, R. N. M.; Aiuppa, A.; Arellano, S. R.; Wallius, J.; Galle, B.; Barry, P. H.; Ballentine, C. J.; Mulina, K.; Sindang, M.; Itikarai, I.; Wadge, G.; Lopez, T. M.; Fischer, T. P.

    2016-12-01

    Bagana volcano (Bougainville Island, Papua New Guinea) has exhibited nearly continuous extrusion of andesitic lava for over a century, but has largely been studied by satellite remote sensing. Satellite UV spectroscopy has revealed Bagana to be among the largest volcanic sources of sulfur dioxide worldwide. Satellite radar measurements of lava extrusion rate suggest that the entire edifice could have been built in only a few centuries. Bagana is dominantly constructed from lava flows, but also exhibits violent PDC-forming explosive eruptions, which threaten local populations.We present new multi-parameter data from fieldwork on Bagana in September 2016. UV spectrometers were deployed to ground-truth satellite observations of SO2 emissions, and track sub-daily variations in gas output. In situ measurements and sampling of emissions provide the first gas composition data for this volcano. Aerial imagery filmed by UAV was obtained to generate a high resolution DEM of the edifice for use in calibrating ongoing satellite radar studies of deformation and extrusion rate. Lava and tephra samples were gathered, with the aim of comparing melt composition and volatile content between eruptions of different style. The combination of gas geochemistry, geophysical monitoring from space, and petrology will be used to build a model framework to understand the pulsatory nature of Bagana's lava extrusion, and transitions to explosive activity.A campaign to a continuously active but poorly-studied volcano affords many opportunities for education and outreach. The campaign participants included early career scientists from five countries, who planned and carried out the fieldwork and exchanged expertise in a range of techniques. All work was undertaken in close collaboration with Rabaul Volcano Observatory, and was informed by their strategic monitoring goals, a valuable experience for the field team of synergising research activities with more operational concerns. Footage obtained

  9. Images of the East Africa Rift System from the Joint Inversion of Body Waves, Surface Waves, and Gravity: Investigating the Role of Magma in Early-Stage Continental Rifting

    Science.gov (United States)

    Roecker, S. W.; Ebinger, C. J.; Tiberi, C.; Mulibo, G. D.; Ferdinand-Wambura, R.; Muzuka, A.; Khalfan, M.; Kianji, G.; Gautier, S.; Albaric, J.; Peyrat, S.

    2015-12-01

    With several rift segments at different stages of the rifting cycle, and the last orogenic episode more than 500 Mya, the young (Ngorongoro caldera appears to be physically cut off from the magma beneath the main part of the rift zone by a relatively thin (< 10 km) wide zone of higher shear wave speeds that lies along the western edge of the fault-bounded rift. The narrow ridge of higher velocity lower crustal material may be a consequence of flexural uplift of the rift flank in response to stretching of strong, cratonic lithosphere.

  10. The modest seismicity of the northern Red Sea rift

    Science.gov (United States)

    Mitchell, Neil C.; Stewart, Ian C. F.

    2018-05-01

    Inferring tectonic movements from earthquakes (`seismotectonics') relies on earthquakes faithfully recording tectonic motions. In the northern half of the Red Sea, however, events of magnitude 5.0 and above are almost entirely absent from global catalogues, even though GPS and other plate motion data suggest that the basin is actively rifting at ˜10 mm yr-1. Seismic moments computed here from event magnitudes contributed to the International Seismology Centre (ISC) suggest that the moment release rate is more than an order of magnitude smaller than for the southern Red Sea and for the Southwest Indian Ridge (SWIR), which is spreading at a comparable rate to the central Red Sea and is more remote from recording stations. A smaller moment release rate in the northern Red Sea might be anticipated from its smaller spreading rate, but seismic coupling coefficients, which account for spreading rate variations, are also one order of magnitude smaller than for the other two areas. We explore potential explanations for this apparently reduced seismicity. The northern Red Sea is almost continuously covered with thick evaporites and overlying Plio-Pleistocene sediments. These deposits may have reduced the thickness of the seismogenic layer, for example, by elevating lithosphere temperatures by a thermal blanketing effect or by leading to excess pore fluid pressures that reduce effective stress. The presence of subdued seismicity here implies that tectonic movements can in places be poorly recorded by earthquake data and requires that alternative data be sought when investigating the active tectonics of sedimented rifts in particular.

  11. An Epidemiological Model of Rift Valley Fever with Spatial Dynamics

    Directory of Open Access Journals (Sweden)

    Tianchan Niu

    2012-01-01

    Full Text Available As a category A agent in the Center for Disease Control bioterrorism list, Rift Valley fever (RVF is considered a major threat to the United States (USA. Should the pathogen be intentionally or unintentionally introduced to the continental USA, there is tremendous potential for economic damages due to loss of livestock, trade restrictions, and subsequent food supply chain disruptions. We have incorporated the effects of space into a mathematical model of RVF in order to study the dynamics of the pathogen spread as affected by the movement of humans, livestock, and mosquitoes. The model accounts for the horizontal transmission of Rift Valley fever virus (RVFV between two mosquito and one livestock species, and mother-to-offspring transmission of virus in one of the mosquito species. Space effects are introduced by dividing geographic space into smaller patches and considering the patch-to-patch movement of species. For each patch, a system of ordinary differential equations models fractions of populations susceptible to, incubating, infectious with, or immune to RVFV. The main contribution of this work is a methodology for analyzing the likelihood of pathogen establishment should an introduction occur into an area devoid of RVF. Examples are provided for general and specific cases to illustrate the methodology.

  12. Lava Fountaining Discharge Regime driven by Slug-to-Churn Flow Transition. (Invited)

    Science.gov (United States)

    Ripepe, M.; Pioli, L.; Marchetti, E.; Ulivieri, G.

    2013-12-01

    Lava fountaining episodes at Etna volcano appear characterized by the transition between Strombolian and Hawaiian end-member eruptive styles. There is no evidence for this transition in the seismic (i.e. seismic tremor) signal. However, infrasonic records provide unprecedented evidence on this flow transition. Each eruptive episode is characterized by distinctive common trend in the amplitude, waveform and frequency content of the infrasonic wavefield, which evidences the shift from discrete, and transient, strombolian to sustained, and oscillatory, lava fountain dynamics. Large scale experiments on the dynamics of two-phase flow of basaltic magmas show how the transition between different regimes mainly depends on gas volume flow, which in turn controls pressure distribution within the conduit and also magma vesicularity. In particular, while regular large bubble bursting is associated with slug flow regime, large amplitude and low frequency column oscillations are associated with churn flow. In large pipes, transition from slug to churn flow regime is independent on conduit diameter and it is reached at high superficial gas velocity. Lava fountaining episodes at Etna can be thus interpreted as induced by the transition from the slug (discrete strombolian) to churn flow (sustained lava fountain) regimes that is reflecting an increase in the gas discharge rate. Based on laboratory experiments, we calculate that transition between these two end-member explosive regimes at Etna occurs when gas superficial velocity is 76 m/s for near-the-vent stagnant magma conditions.

  13. Persistent growth of a young andesite lava cone: Bagana volcano, Papua New Guinea

    Science.gov (United States)

    Wadge, G.; McCormick Kilbride, B. T.; Edmonds, M.; Johnson, R. W.

    2018-05-01

    Bagana, an andesite lava cone on Bougainville Island, Papua New Guinea, is thought to be a very young central volcano. We have tested this idea by estimating the volumes of lava extruded over different time intervals (1-, 2-, 3-, 9-, 15-, 70-years) using digital elevation models (DEMs), mainly created from satellite data. Our results show that the long-term extrusion rate at Bagana, measured over years to decades, has remained at about 1.0 m3 s-1. We present models of the total edifice volume, and show that, if our measured extrusion rates are representative, the volcano could have been built in only 300 years. It could also possibly have been built at a slower rate during a longer, earlier period of growth. Six kilometres NNW of Bagana, an andesite-dacite volcano, Billy Mitchell, had a large, caldera-forming plinian eruption 437 years ago. We consider the possibility that, as a result of this eruption, the magma supply was diverted from Billy Mitchell to Bagana. It seems that Bagana is a rare example of a very youthful, polygenetic, andesite volcano. The characteristics of such a volcano, based on the example of Bagana, are: a preponderance of lava products over pyroclastic products, a high rate of lava extrusion maintained for decades, a very high rate of SO2 emission, evidence of magma batch fractionation and location in a trans-tensional setting at the end of an arc segment above a very steeply dipping and rapidly converging subduction zone.

  14. A rock- and paleomagnetic study of a Holocene lava flow in Central Mexico

    NARCIS (Netherlands)

    Vlag, P.; Alva-Valdivia, L.; Boer, C.B. de; Gonzalez, S.; Urrutia-Fucugauchi, J.

    1999-01-01

    Magnetic measurements of the Tres Cruces lava flow (ca. 8500 years BP, Central Mexico) show the presence of two remanence carriers, a Ti-rich titanomagnetite with a Curie temperature between 350 and 400 °C and a Ti-poor magnetite with a Curie temperature close to 580°C. Magnetic changes after

  15. Reconstruction of the dynamics of the 1800-1801 Hualalai eruption: Implications for planetary lava flows

    Science.gov (United States)

    Baloga, Stephen; Spudis, Paul

    1993-01-01

    The 1800-1801 eruption of alkalic basalt from the Hualalai volcano, Hawaii provides a unique opportunity for investigating the dynamics of lava flow emplacement with eruption rates and compositions comparable to those that have been suggested for planetary eruptions. Field observations suggest new considerations must be used to reconstruct the emplacement of these lava flows. These observations are: (1) the flow traversed the 15 km from the vent to the sea so rapidly that no significant crust formed and an observation of the eruption reported that the flow reach the sea from the vent in approximately 1 hour; (2) the drainage of beds of xenolith nodules indicates a highly fluid, low viscosity lava; (3) overspills and other morphologic evidence for a very low viscosity host fluid; (4) no significant longitudinal increase in flow thickness that might be associated with an increase in the rheological properties of the lava; and (5) the relatively large size of channels associated with the flow, up to 80 meters across and several km long. Models for many geologic mass movements and fast moving fluids with various loadings and suspensions are discussed.

  16. Structural and temporal requirements for geomagnetic field reversal deduced from lava flows.

    Science.gov (United States)

    Singer, Brad S; Hoffman, Kenneth A; Coe, Robert S; Brown, Laurie L; Jicha, Brian R; Pringle, Malcolm S; Chauvin, Annick

    2005-03-31

    Reversals of the Earth's magnetic field reflect changes in the geodynamo--flow within the outer core--that generates the field. Constraining core processes or mantle properties that induce or modulate reversals requires knowing the timing and morphology of field changes that precede and accompany these reversals. But the short duration of transitional field states and fragmentary nature of even the best palaeomagnetic records make it difficult to provide a timeline for the reversal process. 40Ar/39Ar dating of lavas on Tahiti, long thought to record the primary part of the most recent 'Matuyama-Brunhes' reversal, gives an age of 795 +/- 7 kyr, indistinguishable from that of lavas in Chile and La Palma that record a transition in the Earth's magnetic field, but older than the accepted age for the reversal. Only the 'transitional' lavas on Maui and one from La Palma (dated at 776 +/- 2 kyr), agree with the astronomical age for the reversal. Here we propose that the older lavas record the onset of a geodynamo process, which only on occasion would result in polarity change. This initial instability, associated with the first of two decreases in field intensity, began approximately 18 kyr before the actual polarity switch. These data support the claim that complete reversals require a significant period for magnetic flux to escape from the solid inner core and sufficiently weaken its stabilizing effect.

  17. Sill and lava geochemistry of the mid-Norway and NE Greenland conjugate margins

    DEFF Research Database (Denmark)

    Neumann, Else-Ragnhild; Svensen, Henrik; Tegner, Christian

    2013-01-01

    This paper presents major, trace-elements, and Sr-Nd isotopes for two prominent sills formed during the opening of the North Atlantic, sampled by the Utgard borehole (6607/5-2) in the VOring Plateau. The Utgard sills are compared to opening-related lavas recovered from ODP Leg 104 Hole 642E farth...

  18. Piiriäärne lava valmistub taas esietenduseks / Margus Haav

    Index Scriptorium Estoniae

    Haav, Margus, 1969-

    2008-01-01

    Lõuna-Eestis Lilli külas algaval Nava lava festivalil tuuakse publiku ette Nava talu peremehe Jaak Kõdari näidend "Jukra", lavastaja Silvia Soro. Üht kandvat rolli mängib näitleja Lembit Eelmäe

  19. Paleomagnetism and geochronology of the Pliocene-Pleistocene lavas in Iceland

    NARCIS (Netherlands)

    McDougall, Ian; Wensink, H.

    Potassium-argon dates are reported on five basalt samples from the Pliocene-Pleistocene sequence of lavas in the Jökuldalur area, northeastern Iceland. These dates confirm the correlations previously made with the geological time scale by means of paleomagnetic stratigraphy. The R1 and N2 polarity

  20. Catchment response to lava damming: integrating field observation, geochronology and landscape evolution modelling

    NARCIS (Netherlands)

    Van Gorp, Wouter; Schoorl, Jeroen M.; Temme, Arnaud J. A. M.; Reimann, Tony; Wijbrans, Jan R.; Maddy, Darrel; Demir, Tuncer; Veldkamp, Tom

    2016-01-01

    Combining field reconstruction and landscape evolution modelling can be useful to investigate the relative role of different drivers on catchment response. The Geren Catchment (~45 km2) in western Turkey is suitable for such a study, as it has been influenced by uplift, climate change and lava

  1. Paleomagnetism of Eocene Talerua Member Lavas on Hareøen Island, West Greenland

    DEFF Research Database (Denmark)

    Abrahamsen, N.; Schmidt, Anne G.; Riisager, P.

    2005-01-01

    The results of a palaeomagnetic sampling carried out along two vertical profiles (altogether 19 lavaflows, 126 samples) covering the entire stratigraphy of the Talerua Member lavas (~39 Myr old) that outcrop on the island Hareøen are presented and represent some of the youngest volcanism in the W...

  2. Nerillidae (Annelida) from the Corona lava tube, Lanzarote, with description of Meganerilla cesari, n. sp

    DEFF Research Database (Denmark)

    Worsaae, Katrine; Martínez, A; Núñez, J

    2009-01-01

    Five species of Nerillidae are previously known from Atlantic cave systems. Another four species of Nerillidae are reported here from the Corona lava tube (Lanzarote, Canary Islands) presenting the first records of Mesonerilla and Meganerilla from anchialine environments. We here describe...

  3. Anchialine fauna of the Corona lava tunnel (Lanzarote,Canary Islands): diversity, endemism and distribution

    DEFF Research Database (Denmark)

    Martínez, Alexandro; Palmero, A M; Brito, M C

    2009-01-01

    A checklist of 77 taxa recorded from the anchialine sections of the Corona lava tube is provided, including information on habitats, faunal distribution within the cave, and main references. Of the nine major groups recorded, Crustacea shows the highest diversity with 31 species and the highest d...

  4. Silica-poor, mafic alkaline lavas from ocean islands and continents

    Indian Academy of Sciences (India)

    Strongly silica-poor (ne-normative), mafic alkaline lavas generally represented by olivine nephelinites, nephelinites, melilitites, and olivine melilitites have erupted at various locations during Earth's history. On the basis of bulk-rock Mg#, high concentrations of Na2O, TiO2, and K2O, and trace element geochemistry, it has ...

  5. An early bird from Gondwana: Paleomagnetism of Lower Permian lavas from northern Qiangtang (Tibet) and the geography of the Paleo-Tethys

    Science.gov (United States)

    Song, Peiping; Ding, Lin; Li, Zhenyu; Lippert, Peter C.; Yue, Yahui

    2017-10-01

    The origin of the northern Qiangtang block and its Late Paleozoic-Early Mesozoic drift history remain controversial, largely because paleomagnetic constraints from pre-Mesozoic units are sparse and of poor quality. In this paper, we provide a robust and well-dated paleomagnetic pole from the Lower Permian Kaixinling Group lavas on the northern Qiangtang block. This pole suggests that the northern Qiangtang block had a paleolatitude of 21.9 ± 4.7 °S at ca. 296.9 ± 1.9 Ma. These are the first volcanic-based paleomagnetic results from pre-Mesozoic rocks of the Qiangtang block that appear to average secular variation accurately enough to yield a well-determined paleolatitude estimate. This new pole corroborates the hypothesis, first noted on the basis of less rigorous paleomagnetic data, the presence of diamictites, detrital zircon provenance records, and faunal assemblages, that the northern Qiangtang block rifted away from Gondwana prior to the Permian. Previous studies have documented that the northern Qiangtang block accreted to the Tarim-North China continent by Norian time. We calculate a total northward drift of ca. 7000 km over ca. 100 myr, which corresponds to an average south-north plate velocities of ∼7.0 cm/yr. Our results do not support the conclusion that northern Qiangtang has a Laurasian affinity, nor that the central Qiangtang metamorphic belt is an in situ Paleo-Tethys suture. Our analysis, however, does not preclude paleogeographies that interpret the central Qiangtang metamorphic belt as an intra-Qiangtang suture that developed at southernly latitudes outboard of the Gondwanan margin. We emphasize that rigorous paleomagnetic data from Carboniferous units of northern Qiangtang and especially upper Paleozoic units from southern Qiangtang can test and further refine these paleogeographic interpretations.

  6. Perception of Lava Flow Hazards and Risk at Mauna Loa and Hualalai Volcanoes, Kona, Hawaii

    Science.gov (United States)

    Gregg, C. E.; Houghton, B. F.; Johnston, D. M.; Paton, D.; Swanson, D. A.

    2001-12-01

    The island of Hawaii is composed of five sub-aerially exposed volcanoes, three of which have been active since 1801 (Kilauea, Mauna Loa, Hualalai). Hawaii has the fastest population growth in the state and the local economy in the Kona districts (i.e., western portion of the island) is driven by tourism. Kona is directly vulnerable to future lava flows from Mauna Loa and Hualalai volcanoes, as well as indirectly from the effects of lava flows elsewhere that may sever the few roads that connect Kona to other vital areas on the island. A number of factors such as steep slopes, high volume eruptions, and high effusion rates, combine to mean that lava flows from Hualalai and Mauna Loa can be fast-moving and hence unusually hazardous. The proximity of lifelines and structures to potential eruptive sources exacerbates societies' risk to future lava flows. Approximately \\$2.3 billion has been invested on the flanks of Mauna Loa since its last eruption in 1984 (Trusdell 1995). An equivalent figure has not yet been determined for Hualalai, but an international airport, several large resort complexes, and Kailua-Kona, the second largest town on the island, are down-slope and within 15km of potential eruptive Hualalai vents. Public and perhaps official understanding of specific lava flow hazards and the perceptions of risk from renewed volcanism at each volcano are proportional to the time lapsed since the most recent eruption that impacted Kona, rather than a quantitative assessment of risk that takes into account recent growth patterns. Lava flows from Mauna Loa and Hualalai last directly impacted upon Kona during the notorious 1950 and circa 1801 eruptions, respectively. Various non-profit organizations; local, state and federal government entities; and academic institutions have disseminated natural hazard information in Kona but despite the intuitive appeal that increased hazard understanding and risk perception results in increased hazard adjustment adoption, this

  7. Lava Simulation and Risk Assessment During The July 2001 Etnean Eruption

    Science.gov (United States)

    Crisci, G. M.; di Gregorio, S.; Rongo, R.; Spataro, W.

    SCIARA, a two-dimensional cellular automata model for the simulation of lava flows, has been in the past validated on real cases of Etnean eruptions. Its lastest release, SCIARA-hex1 was applied on the 1991-93 Etnean eruption in validation phase. The simulation results are satisfying within limits to forecast the lava flow path. The pre- sented version isnSt more sophisticated than the previous version, because it does- nSt manage lava layers at different temperatures in the same cell and their distinct outflows, but its speed permitted to generate a large number of scenarios in quickly evolving emergence situation. Moreover, SCIARA-hex1 was applied recently during the Etnean crisis in the summer of 2001, when a new eruption threatened the town of Nicolosi. The emission, that started on July 18th 2001, represented during the cri- sis the main danger for the towns of Nicolosi and Belpasso; it was, in its maximum extension, only four kilometres away from the Nicolosi. The study was done in collab- oration with the Italian National Institute of Geophysics and Vulcanology of Catania. This Sreal timeT application proved that SCIARA is a reliable and flexible tool for & cedil;forecasting lava flow paths and for assessing hazard in the Etnean area, besides being useful for the creation of real scenarios. In SCIARA, lava flows are viewed as a dy- namic system based on local interactions with discrete time and space, where space is represented by hexagonal cells, which specification (state) describes the character- istics (substates) of the corresponding piece of space. The neighbouring of a cell c, specifying the interacting cells, is given by its adjacent cells. The computation of the new values of the substates in the cells gives the evolution of the phenomenon. The distribution of the lava is crucial in the definition of the model: it is based on a proce- dure of minimisation of the differences. Moreover, with respect to previous SCIARA models, spurious symmetries

  8. Mantle sources and magma evolution of the Rooiberg lavas, Bushveld Large Igneous Province, South Africa

    Science.gov (United States)

    Günther, T.; Haase, K. M.; Klemd, R.; Teschner, C.

    2018-06-01

    We report a new whole-rock dataset of major and trace element abundances and 87Sr/86Sr-143Nd/144Nd isotope ratios for basaltic to rhyolitic lavas from the Rooiberg continental large igneous province (LIP). The formation of the Paleoproterozoic Rooiberg Group is contemporaneous with and spatially related to the layered intrusion of the Bushveld Complex, which stratigraphically separates the volcanic succession. Our new data confirm the presence of low- and high-Ti mafic and intermediate lavas (basaltic—andesitic compositions) with > 4 wt% MgO, as well as evolved rocks (andesitic—rhyolitic compositions), characterized by MgO contents of N, Nb/Y and Ti/Y), indicating a different petrogenesis. MELTS modelling shows that the evolved lavas are formed by fractional crystallization from the mafic low-Ti lavas at low-to-moderate pressures ( 4 kbar). Primitive mantle-normalized trace element patterns of the Rooiberg rocks show an enrichment of large ion lithophile elements (LILE), rare-earth elements (REE) and pronounced negative anomalies of Nb, Ta, P, Ti and a positive Pb anomaly. Unaltered Rooiberg lavas have negative ɛNdi (- 5.2 to - 9.4) and radiogenic ɛSri (6.6 to 105) ratios (at 2061 Ma). These data overlap with isotope and trace element compositions of purported parental melts to the Bushveld Complex, especially for the lower zone. We suggest that the Rooiberg suite originated from a source similar to the composition of the B1-magma suggested as parental to the Bushveld Lower Zone, or that the lavas represent eruptive successions of fractional crystallization products related to the ultramafic cumulates that were forming at depth. The Rooiberg magmas may have formed by 10-20% crustal assimilation by the fractionation of a very primitive mantle-derived melt within the upper crust of the Kaapvaal Craton. Alternatively, the magmas represent mixtures of melts from a primitive, sub-lithospheric mantle plume and an enriched sub-continental lithospheric mantle (SCLM

  9. The role of unsteady effusion rates on inflation in long-lived lava flow fields

    Science.gov (United States)

    Rader, E.; Vanderkluysen, L.; Clarke, A.

    2017-11-01

    The emission of volcanic gases and particles can have global and lasting environmental effects, but their timing, tempo, and duration can be problematic to quantify for ancient eruptions where real-time measurements are absent. Lava flows, for example, may be long-lasting, and their impact is controlled by the rate, tempo, and vigor of effusion. These factors are currently difficult to derive from the geologic record but can have large implications for the atmospheric impact of an eruption. We conducted a set of analogue experiments on lava flow inflation aiming at connecting lava morphologies preserved in the rock record to eruption tempo and dynamics through pulsating effusion rates. Inflation, a process where molten material is injected beneath the crust of an active lava flow and lifts it upwards, is a common phenomenon in basaltic volcanic systems. This mechanism requires three components: a) a coherent, insulating crust; b) a wide-spread molten core; and c) pressure built up beneath the crust from a sustained supply of molten material. Inflation can result in a lava flow growing tens of meters thick, even in flow fields that expand hundreds of square kilometers. It has been documented that rapid effusion rates tend to create channels and tubes, isolating the active part of the flow from the stagnant part, while slow effusion rates may cause crust to form quickly and seize up, forcing lava to overtop the crust. However, the conditions that allow for inflation of large flow fields have not previously been evaluated in terms of effusion rate. By using PEG 600 wax and a programmable pump, we observe how, by pulsating effusion rate, inflation occurs even in very low viscosity basaltic eruptions. We show that observations from inflating Hawaiian lava flows correlate well with experimental data and indicate that instantaneous effusion rates may have been 3 times higher than average effusion rates during the emplacement of the 23 January 1988 flow at Kīlauea (Hawai

  10. Blowing off steam: Tuffisite formation as a regulator for lava dome eruptions

    Directory of Open Access Journals (Sweden)

    Jackie Evan Kendrick

    2016-04-01

    Full Text Available Tuffisites are veins of variably sintered, pyroclastic particles that form in conduits and lava domes as a result of localized fragmentation events during gas-and-ash explosions. Those observed in-situ on the active 2012 lava dome of Volcán de Colima range from voids with intra-clasts showing little movement and interpreted to be failure-nuclei, to sub-parallel lenses of sintered granular aggregate interpreted as fragmentation horizons, through to infilled fractures with evidence of viscous remobilization. All tuffisites show evidence of sintering. Further examination of the complex fracture-and-channel patterns reveals viscous backfill by surrounding magma, suggesting that lava fragmentation was followed by stress relaxation and continued viscous deformation as the tuffisites formed. The natural tuffisites are more permeable than the host andesite, and have a wide range of porosity and permeability compared to a narrower window for the host rock, and gauging from their significant distribution across the dome, we posit that the tuffisite veins may act as important outgassing pathways. To investigate tuffisite formation we crushed and sieved andesite from the lava dome and sintered it at magmatic temperatures for different times. We then assessed the healing and sealing ability by measuring porosity and permeability, showing that sintering reduces both over time. During sintering the porosity-permeability reduction occurs due to the formation of viscous necks between adjacent grains, a process described by the neck-formation model of Frenkel (1945. This process leads the granular starting material to a porosity-permeability regime anticipated for effusive lavas, and which describes the natural host lava as well as the most impervious of natural tuffisites. This suggests that tuffisite formation at Volcán de Colima constructed a permeable network that enabled gas to bleed passively from the magma. We postulate that this progressively reduced

  11. Mantle Flow Across the Baikal Rift Constrained With Integrated Seismic Measurements

    Science.gov (United States)

    Lebedev, S.; Meier, T.; van der Hilst, R. D.

    2005-12-01

    The Baikal Rift is located at the boundary of the stable Siberian Craton and deforming central Mongolia. The origin of the late Cenozoic rifting and volcanism are debated, as is the mantle flow beneath the rift zone. Here we combine new evidence from azimuthally-anisotropic upper-mantle tomography and from a radially-anisotropic inversion of interstation surface-wave dispersion curves with previously published shear-wave-splitting measurements of azimuthal anisotropy across the rift (Gao et al. 1994). While our tomographic model maps isotropic and anisotropic shear-velocity heterogeneity globally, the inversion of interstation phase-velocity measurements produces a single, radially-anisotropic, shear-velocity profile that averages from the rift to 500 km SE of it. The precision and the broad band (8-340 s) of the Rayleigh and Love wave curves ensures high accuracy of the profile. Tomography and shear-wave splitting both give a NW-SE fast direction (perpendicular to the rift) in the vicinity of the rift, changing towards W-E a few hundred kilometers from it. Previously, this has been interpreted as evidence for mantle flow similar to that beneath mid-ocean ridges, with deeper vertical flow directly beneath the rift also proposed. Our radially anisotropic profile, however, shows that while strong anisotropy with SH waves faster than SV waves is present in the thin lithosphere and upper asthenosphere beneath and SE of the rift, no anisotropy is required below 110 km. The tomographic model shows thick cratonic lithosphere north of the rift. These observations suggest that instead of a flow diverging from the rift axis in NW and SE directions, the most likely pattern is the asthenospheric flow in SE direction from beneath the Siberian lithosphere and across the rift. Possible driving forces of the flow are large-scale lithospheric deformation in East Asia and the draining of asthenosphere at W-Pacific subduction zones; a plume beneath the Siberian craton also cannot be

  12. ALVIN-SeaBeam studies of the Sumisu Rift, Izu-Bonin arc

    Science.gov (United States)

    Taylor, B.; Brown, G.; Fryer, P.; Gill, J. B.; Hochstaedter, A. G.; Hotta, H.; Langmuir, C. H.; Leinen, M.; Nishimura, A.; Urabe, T.

    1990-10-01

    Bimodal volcanism, normal faulting, rapid sedimentation, and hydrothermal circulation characterize the rifting of the Izu-Bonin arc at 31°N. Analysis of the zigzag pattern, in plan view, of the normal faults that bound Sumisu Rift indicates that the extension direction (080° ± 10°) is orthogonal to the regional trend of the volcanic front. Normal faults divide the rift into an inner rift on the arc side, which is the locus for maximum subsidence and sedimentation, and an outer rift further west. Transfer zones that link opposing master faults and/or rift flank uplifts further subdivide the rift into three segments along strike. Volcanism is concentrated along the ENE-trending transfer zone which separates the northern and central rift segments. The differential motion across the zone is accommodated by interdigitating north-trending normal faults rather than by ENE-trending oblique-slip faults. Volcanism in the outer rift has built 50-700 m high edifices without summit craters whereas in the inner rift it has formed two multi-vent en echelon ridges (the largest is 600 m high and 16 km long). The volcanism is dominantly basaltic, with compositions reflecting mantle sources little influenced by arc components. An elongate rhyolite dome and low-temperature hydrothermal deposits occur at the en echelon step in the larger ridge, which is located at the intersection of the transfer zone with the inner rift. The chimneys, veins, and crusts are composed of silica, barite and iron oxide, and are of similar composition to the ferruginous chert that mantles the Kuroko deposits. A 1.2-km transect of seven ALVIN heat flow measurements at 30°48.5'N showed that the inner-rift-bounding faults may serve as water recharge zones, but that they are not necessarily areas of focussed hydrothermal outflow, which instead occurs through the thick basin sediments. The rift basin and arc margin sediments are probably dominated by permeable rhyolitic pumice and ash erupted from submarine

  13. Structure of the la VELA Offshore Basin, Western Venezuela: AN Obliquely-Opening Rift Basin Within the South America-Caribbean Strike-Slip Plate Boundary

    Science.gov (United States)

    Blanco, J. M.; Mann, P.

    2015-12-01

    Bathymetric, gravity and magnetic maps show that the east-west trend of the Cretaceous Great Arc of the Caribbean in the Leeward Antilles islands is transected by an en echelon series of obliquely-sheared rift basins that show right-lateral offsets ranging from 20 to 40 km. The basins are 75-100 km in length and 20-30 km in width and are composed of sub-parallel, oblique slip normal faults that define deep, bathymetric channels that bound the larger islands of the Leeward Antilles including Aruba, Curacao and Bonaire. A single basin of similar orientation and structure, the Urumaco basin, is present to the southwest in the Gulf of Venezuela. We mapped structures and sedimentation in the La Vela rift basin using a 3D seismic data volume recorded down to 6 seconds TWT. The basin can be mapped from the Falcon coast where it is correlative with the right-lateral Adicora fault mapped onshore, and its submarine extension. To the southeast of the 3D survey area, previous workers have mapped a 70-km-wide zone of northeast-striking, oblique, right-lateral faults, some with apparent right-lateral offsets of the coastline. On seismic data, the faults vary in dip from 45 to 60 degrees and exhibit maximum vertical offsets of 600 m. The La Vela and other obliquely-opening rifts accommodate right-lateral shear with linkages to intervening, east-west-striking right-lateral faults like the Adicora. The zone of oblique rifts is restricted to the trend of the Great Arc of the Caribbean and may reflect the susceptiblity of this granitic basement to active shearing. The age of onset for the basins known from previous studies on the Leeward Antilles is early Miocene. As most of these faults occur offshore their potential to generate damaging earthquakes in the densely populated Leeward Antilles is not known.

  14. Late Miocene-Pleistocene evolution of a Rio Grande rift subbasin, Sunshine Valley-Costilla Plain, San Luis Basin, New Mexico and Colorado

    Science.gov (United States)

    Ruleman, C.A.; Thompson, R.A.; Shroba, R.R.; Anderson, M.; Drenth, B.J.; Rotzien, J.; Lyon, J.

    2013-01-01

    The Sunshine Valley-Costilla Plain, a structural subbasin of the greater San Luis Basin of the northern Rio Grande rift, is bounded to the north and south by the San Luis Hills and the Red River fault zone, respectively. Surficial mapping, neotectonic investigations, geochronology, and geophysics demonstrate that the structural, volcanic, and geomorphic evolution of the basin involves the intermingling of climatic cycles and spatially and temporally varying tectonic activity of the Rio Grande rift system. Tectonic activity has transferred between range-bounding and intrabasin faults creating relict landforms of higher tectonic-activity rates along the mountain-piedmont junction. Pliocene–Pleistocene average long-term slip rates along the southern Sangre de Cristo fault zone range between 0.1 and 0.2 mm/year with late Pleistocene slip rates approximately half (0.06 mm/year) of the longer Quaternary slip rate. During the late Pleistocene, climatic influences have been dominant over tectonic influences on mountain-front geomorphic processes. Geomorphic evidence suggests that this once-closed subbasin was integrated into the Rio Grande prior to the integration of the once-closed northern San Luis Basin, north of the San Luis Hills, Colorado; however, deep canyon incision, north of the Red River and south of the San Luis Hills, initiated relatively coeval to the integration of the northern San Luis Basin.Long-term projections of slip rates applied to a 1.6 km basin depth defined from geophysical modeling suggests that rifting initiated within this subbasin between 20 and 10 Ma. Geologic mapping and geophysical interpretations reveal a complex network of northwest-, northeast-, and north-south–trending faults. Northwest- and northeast-trending faults show dual polarity and are crosscut by north-south– trending faults. This structural model possibly provides an analog for how some intracontinental rift structures evolve through time.

  15. Geologic field-trip guide to Medicine Lake Volcano, northern California, including Lava Beds National Monument

    Science.gov (United States)

    Donnelly-Nolan, Julie M.; Grove, Timothy L.

    2017-08-17

    Medicine Lake volcano is among the very best places in the United States to see and walk on a variety of well-exposed young lava flows that range in composition from basalt to rhyolite. This field-trip guide to the volcano and to Lava Beds National Monument, which occupies part of the north flank, directs visitors to a wide range of lava flow compositions and volcanic phenomena, many of them well exposed and Holocene in age. The writing of the guide was prompted by a field trip to the California Cascades Arc organized in conjunction with the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) quadrennial meeting in Portland, Oregon, in August of 2017. This report is one of a group of three guides describing the three major volcanic centers of the southern Cascades Volcanic Arc. The guides describing the Mount Shasta and Lassen Volcanic Center parts of the trip share an introduction, written as an overview to the IAVCEI field trip. However, this guide to Medicine Lake volcano has descriptions of many more stops than are included in the 2017 field trip. The 23 stops described here feature a range of compositions and volcanic phenomena. Many other stops are possible and some have been previously described, but these 23 have been selected to highlight the variety of volcanic phenomena at this rear-arc center, the range of compositions, and for the practical reason that they are readily accessible. Open ground cracks, various vent features, tuffs, lava-tube caves, evidence for glaciation, and lava flows that contain inclusions and show visible evidence of compositional zonation are described and visited along the route.

  16. The airborne lava-seawater interaction plume at Kilauea Volcano, Hawai'i

    Science.gov (United States)

    Edmonds, M.; Gerlach, T.M.

    2006-01-01

    Lava flows into the sea at Kīlauea Volcano, Hawaiʻi, and generates an airborne gas and aerosol plume. Water (H2O), hydrogen chloride (HCl), carbon dioxide (CO2), nitrogen dioxide (NO2) and sulphur dioxide (SO2) gases were quantified in the plume in 2004–2005, using Open Path Fourier Transform infra-red Spectroscopy. The molar abundances of these species and thermodynamic modelling are used to discuss their generation. The range in molar HCl / H2O confirms that HCl is generated when seawater is boiled dry and magnesium salts are hydrolysed (as proposed by [T.M. Gerlach, J.L. Krumhansl, R.O. Fournier, J. Kjargaard, Acid rain from the heating and evaporation of seawater by molten lava: a new volcanic hazard, EOS (Trans. Am. Geophys. Un.) 70 (1989) 1421–1422]), in contrast to models of Na-metasomatism. Airborne droplets of boiled seawater brine form nucleii for subsequent H2O and HCl condensation, which acidifies the droplets and liberates CO2 gas from bicarbonate and carbonate. NO2 is derived from the thermal decomposition of nitrates in coastal seawater, which takes place as the lava heats droplets of boiled seawater brine to 350–400 °C. SO2 is derived from the degassing of subaerial lava flows on the coastal plain. The calculated mass flux of HCl from a moderate-sized ocean entry significantly increases the total HCl emission at Kīlauea (including magmatic sources) and is comparable to industrial HCl emitters in the United States. For larger lava ocean entries, the flux of HCl will cause intense local environmental hazards, such as high localised HCl concentrations and acid rain.

  17. Petrogenesis of Rinjani Post-1257-Caldera-Forming-Eruption Lava Flows

    Directory of Open Access Journals (Sweden)

    Heryadi Rachmat

    2016-06-01

    Full Text Available DOI:10.17014/ijog.3.2.107-126After the catastrophic 1257 caldera-forming eruption, a new chapter of Old Rinjani volcanic activity beganwith the appearance of Rombongan and Barujari Volcanoes within the caldera. However, no published petrogeneticstudy focuses mainly on these products. The Rombongan eruption in 1944 and Barujari eruptions in pre-1944, 1966,1994, 2004, and 2009 produced basaltic andesite pyroclastic materials and lava flows. A total of thirty-one sampleswere analyzed, including six samples for each period of eruption except from 2004 (only one sample. The sampleswere used for petrography, whole-rock geochemistry, and trace and rare earth element analyses. The Rombonganand Barujari lavas are composed of calc-alkaline and high K calc-alkaline porphyritic basaltic andesite. The magmashows narrow variation of SiO2 content that implies small changes during its generation. The magma that formedRombongan and Barujari lavas is island-arc alkaline basalt. Generally, data show that the rocks are enriched in LargeIon Lithophile Elements (LILE: K, Rb, Ba, Sr, and Ba and depleted in High Field Strength Elements (HFSE: Y, Ti,and Nb which are typically a suite from a subduction zone. The pattern shows a medium enrichment in Light REEand relatively depleted in Heavy REE. The processes are dominantly controlled by fractional crystallization andmagma mixing. All of the Barujari and Rombongan lavas would have been produced by the same source of magmawith little variation in composition caused by host rock filter process. New flux of magma would likely have occurredfrom pre-1944 until 2009 period that indicates slightly decrease and increase of SiO2 content. The Rombongan andBarujari lava generations show an arc magma differentiation trend.

  18. A novel technology for measuring the eruption temperature of silicate lavas with remote sensing: Application to Io and other planets

    Science.gov (United States)

    Davies, Ashley Gerard; Gunapala, Sarath; Soibel, Alexander; Ting, David; Rafol, Sir; Blackwell, Megan; Hayne, Paul O.; Kelly, Michael

    2017-09-01

    The highly variable and unpredictable magnitude of thermal emission from evolving volcanic eruptions creates saturation problems for remote sensing instruments observing eruptions on Earth and on Io, the highly volcanic moon of Jupiter. For Io, it is desirable to determine the temperature of the erupting lavas as this measurement constrains lava composition. One method of determining lava eruption temperature is by measuring radiant flux at two or more wavelengths and fitting a blackbody thermal emission function. Only certain styles of volcanic activity are suitable, those where detectable thermal emission is from a restricted range of surface temperatures close to the eruption temperature. Volcanic processes where this occurs include large lava fountains; smaller lava fountains common in active lava lakes; and lava tube skylights. Problems that must be overcome to obtain usable data are: (1) the rapid cooling of the lava between data acquisitions at different wavelengths, (2) the unknown magnitude of thermal emission, which has often led to detector saturation, and (3) thermal emission changing on a shorter timescale than the observation integration time. We can overcome these problems by using the HOT-BIRD detector and a novel, advanced digital readout circuit (D-ROIC) to achieve a wide dynamic range sufficient to image lava on Io without saturating. We have created an instrument model that allows various instrument parameters (including mirror diameter, number of signal splits, exposure duration, filter band pass, and optics transmissivity) to be tested to determine the detectability of thermal sources on Io's surface. We find that a short-wavelength infrared instrument on an Io flyby mission can achieve simultaneity of observations by splitting the incoming signal for all relevant eruption processes and still obtain data fast enough to remove uncertainties in accurate determination of the highest lava surface temperatures. Observations at 1 and 1.5 μm are

  19. Evidence from lava flows for complex polarity transitions: The new composite Steens Mountain reversal record

    Science.gov (United States)

    Jarboe, Nicholas A.; Coe, Robert S.; Glen, Jonathan M. G.

    2011-01-01

    Geomagnetic polarity transitions may be significantly more complex than are currently depicted in many sedimentary and lava-flow records. By splicing together paleomagnetic results from earlier studies at Steens Mountain with those from three newly studied sections of Oregon Plateau flood basalts at Catlow Peak and Poker Jim Ridge 70–90 km to the southeast and west, respectively, we provide support for this interpretation with the most detailed account of a magnetic field reversal yet observed in volcanic rocks. Forty-five new distinguishable transitional (T) directions together with 30 earlier ones reveal a much more complex and detailed record of the 16.7 Ma reversed (R)-to-normal (N) polarity transition that marks the end of Chron C5Cr. Compared to the earlier R-T-N-T-N reversal record, the new record can be described as R-T-N-T-N-T-R-T-N. The composite record confirms earlier features, adds new west and up directions and an entire large N-T-R-T segment to the path, and fills in directions on the path between earlier directional jumps. Persistent virtual geomagnetic pole (VGP) clusters and separate VGPs have a preference for previously described longitudinal bands from transition study compilations, which suggests the presence of features at the core–mantle boundary that influence the flow of core fluid and distribution of magnetic flux. Overall the record is consistent with the generalization that VGP paths vary greatly from reversal to reversal and depend on the location of the observer. Rates of secular variation confirm that the flows comprising these sections were erupted rapidly, with maximum rates estimated to be 85–120 m ka−1 at Catlow and 130–195 m ka−1 at Poker Jim South. Paleomagnetic poles from other studies are combined with 32 non-transitional poles found here to give a clockwise rotation of the Oregon Plateau of 11.4°± 5.6° with respect to the younger Columbia River Basalt Group flows to the north and 14.5°± 4.6° with respect

  20. Geology of Kubi Algi and Derati mountains, pantellerite bodies of Miocene age from the northern part of the Kenyan Rift Valley

    Science.gov (United States)

    Watkins, R. T.

    The small isolated peaks of Kubi Algi and Derati on the periphery of the Koobi Fora basin, to the north-east of Lake Turkana in northern Kenya, are remnants of silicic peralkaline volcanic centres. Detailed geological maps of the areas of the two mountains are presented. Both are massive bodies of generally aphyric, microgranular pantellerite sharing similar petrography and chemistry. Kubi Algi shows evidence of having formed as an extrusive dome and is considered the source of local pantellerite lava flows, here designated the Il Burrka Formation. Derati mountain can best be interpreted as a denuded plug of a second extrusive centre. The volcanoes were active in the middle Miocene towards the end of a period of regional magmatism extending from late-Oligocene times. The pantellerites are holocrystalline and thus contrast with the normally glassy over-saturated peralkaline rocks from the East African rifts, including older pyroclastic pantellerites of the northern Lake Turkana region. Despite being very finely crystalline, they show mineralogical features seen elsewhere in more slowly cooled, deep-seated, peralkaline granites. A very broad range of feldspar compositions present in the rocks is explained by the interaction of groundwater with the rapidly cooling magma. Of additional interest is the abundance of aegirine, present as a product of primary magmatic crystallization and, in the Derati rock, as a hydrothermal mineral. It contains significant but highly variable amounts of titanium and zirconium, the latter broadly equivalent to typical maximum concentrations reported from peralkaline intrusive complexes.

  1. Tectono-stratigraphy of the Lower Cretaceous Syn-rift Succession in Bongor Basin, Chad: Insights into Structural Controls on Sedimentary Infill of a Continental Rift

    Science.gov (United States)

    Chen, C.; Ji, Y.; Wei, X.; An, F.; Li, D.; Zhu, R.

    2017-12-01

    In a rift basin, the dispersal and deposition of sediments is significantly influenced by the paleo-topography, which is highly controlled by the evolution and interaction of normal faults in different scales. To figure out the impact of faults evolution and topographic elements towards sedimentary fillings, we investigated the Lower Cretaceous syn-rift package in Bongor Basin, south of Chad Republic. Constrained with 2D and 3D seismic data, core data and logging information, a sequence stratigraphy architecture and a variety of depositional systems are recognized, including fan delta, braided delta, sub-lacustrine fan and lacustrine system. We also studied the spatial distribution and temporal evolution of clastic depositional systems of the syn-rift complex, and valuable insights into structural controls of sequence architectures and depositional systems are provided. During the evolution of rift basin, marginal structures such as relay ramps and strike-slipping boundary transfer fault are major elements that influence the main sediments influx points. Release faults in the hanging-wall could form a differential evolution pattern for accommodation, and effect the deposition systems in the early stage of rift evolution. Oblique crossing-faults, minor faults that develop on the erosional uplift in the interior foot-wall, would cut the uplifts and provide faulted-through paths for the over-filled sediments in the accommodation space, making it possible to develop sedimentary systems towards the center of basin during the early stage of rift evolution, although the origins of such minor faults still need further discussion. The results of this research indicate that different types of fault interactions have a fundamental control on patterns of sediment dispersal during early stage of rift basins.

  2. Exploring virtual reality technology and the Oculus Rift for the examination of digital pathology slides.

    Science.gov (United States)

    Farahani, Navid; Post, Robert; Duboy, Jon; Ahmed, Ishtiaque; Kolowitz, Brian J; Krinchai, Teppituk; Monaco, Sara E; Fine, Jeffrey L; Hartman, Douglas J; Pantanowitz, Liron

    2016-01-01

    Digital slides obtained from whole slide imaging (WSI) platforms are typically viewed in two dimensions using desktop personal computer monitors or more recently on mobile devices. To the best of our knowledge, we are not aware of any studies viewing digital pathology slides in a virtual reality (VR) environment. VR technology enables users to be artificially immersed in and interact with a computer-simulated world. Oculus Rift is among the world's first consumer-targeted VR headsets, intended primarily for enhanced gaming. Our aim was to explore the use of the Oculus Rift for examining digital pathology slides in a VR environment. An Oculus Rift Development Kit 2 (DK2) was connected to a 64-bit computer running Virtual Desktop software. Glass slides from twenty randomly selected lymph node cases (ten with benign and ten malignant diagnoses) were digitized using a WSI scanner. Three pathologists reviewed these digital slides on a 27-inch 5K display and with the Oculus Rift after a 2-week washout period. Recorded endpoints included concordance of final diagnoses and time required to examine slides. The pathologists also rated their ease of navigation, image quality, and diagnostic confidence for both modalities. There was 90% diagnostic concordance when reviewing WSI using a 5K display and Oculus Rift. The time required to examine digital pathology slides on the 5K display averaged 39 s (range 10-120 s), compared to 62 s with the Oculus Rift (range 15-270 s). All pathologists confirmed that digital pathology slides were easily viewable in a VR environment. The ratings for image quality and diagnostic confidence were higher when using the 5K display. Using the Oculus Rift DK2 to view and navigate pathology whole slide images in a virtual environment is feasible for diagnostic purposes. However, image resolution using the Oculus Rift device was limited. Interactive VR technologies such as the Oculus Rift are novel tools that may be of use in digital pathology.

  3. The tectonic evolution of the southeastern Terceira Rift/São Miguel region (Azores)

    Science.gov (United States)

    Weiß, B. J.; Hübscher, C.; Lüdmann, T.

    2015-07-01

    The eastern Azores Archipelago with São Miguel being the dominant subaerial structure is located at the intersection of an oceanic rift (Terceira Rift) with a major transform fault (Gloria Fault) representing the westernmost part of the Nubian-Eurasian plate boundary. The evolution of islands, bathymetric highs and basin margins involves strong volcanism, but the controlling geodynamic and tectonic processes are currently under debate. In order to study this evolution, multibeam bathymetry and marine seismic reflection data were collected to image faults and stratigraphy. The basins of the southeastern Terceira Rift are rift valleys whose southwestern and northeastern margins are defined by few major normal faults and several minor normal faults, respectively. Since São Miguel in between the rift valleys shows an unusual W-E orientation, it is supposed to be located on a leaky transform. South of the island and separated by a N120° trending graben system, the Monacco Bank represents a N160° oriented flat topped volcanic ridge dominated by tilted fault blocks. Up to six seismic units are interpreted for each basin. Although volcanic ridges hamper a direct linking of depositional strata between the rift and adjacent basins, the individual seismic stratigraphic units have distinct characteristics. Using these units to provide a consistent relative chrono-stratigraphic scheme for the entire study area, we suggest that the evolution of the southeastern Terceira Rift occurred in two stages. Considering age constrains from previous studies, we conclude that N140° structures developed orthogonal to the SW-NE direction of plate-tectonic extension before ~ 10 Ma. The N160° trending volcanic ridges and faults developed later as the plate tectonic spreading direction changed to WSW-ENE. Hence, the evolution of the southeastern Terceira Rift domain is predominantly controlled by plate kinematics and lithospheric stress forming a kind of a re-organized rift system.

  4. Esophageal cancer in north rift valley of Western Kenya.

    Science.gov (United States)

    Wakhisi, Johnston; Patel, Kritika; Buziba, Nathan; Rotich, Joseph

    2005-06-01

    Cancer of esophagus is the 9 th It is aggressive with poor prognosis especially in its late stage. Cancer of esophagus is geographically unevenly distributed with high incidence found within sharply demarcated geographic confines. Earlier reports from this country indicated relatively high proportion of cases in residents of Western and Central provinces with low incidence in the residents of the Rift Valley Province. This does not seem to be in agreement with our findings. Several aetiological factors have been associated with this type of cancer although their definitive mechanistic role is not clear. The main aim of this study was to describe the incidence, clinical epidemiology and histology of esophageal cancer in the North Rift region of Western Kenya, which forms the patients catchment area of Moi Teaching and Referral Hospital, Eldoret. This study involved a review of all available pathology reports beginning from January 1994 up to May 2001 from Moi Teaching and Referral Hospital. All reports of esophageal cancer were abstracted and analyzed according to gender, age and ethnical background. All cases were based on histological diagnosis. Statistical analysis was performed using the SPSS software package. Esophageal cancer in this area is the most common cancer in men, yet it is the third common cancer in women. A male to female ratio of 1.5 to 1 was observed. Our finding also contrast with an earlier reported study that indicated that Rift Valley is a low prevalence area for this type of cancer. The mean age of the patients with this cancer was 58.7 years. The ethnic group most afflicted were Nandis and Luhyas. They are the majority tribes in this area. Squamous cell carcinoma accounted for 90% of the cases. Cancer of the esophagus is the most common malignancy in males and the third common malignancy in females in the catchment area of Moi Teaching and Referral Hospital, Eldoret. There is need to carry out further work to establish the aetiologic factors

  5. Spatial, seasonal and climatic predictive models of Rift Valley fever disease across Africa.

    Science.gov (United States)

    Redding, David W; Tiedt, Sonia; Lo Iacono, Gianni; Bett, Bernard; Jones, Kate E

    2017-07-19

    Understanding the emergence and subsequent spread of human infectious diseases is a critical global challenge, especially for high-impact zoonotic and vector-borne diseases. Global climate and land-use change are likely to alter host and vector distributions, but understanding the impact of these changes on the burden of infectious diseases is difficult. Here, we use a Bayesian spatial model to investigate environmental drivers of one of the most important diseases in Africa, Rift Valley fever (RVF). The model uses a hierarchical approach to determine how environmental drivers vary both spatially and seasonally, and incorporates the effects of key climatic oscillations, to produce a continental risk map of RVF in livestock (as a proxy for human RVF risk). We find RVF risk has a distinct seasonal spatial pattern influenced by climatic variation, with the majority of cases occurring in South Africa and Kenya in the first half of an El Niño year. Irrigation, rainfall and human population density were the main drivers of RVF cases, independent of seasonal, climatic or spatial variation. By accounting more subtly for the patterns in RVF data, we better determine the importance of underlying environmental drivers, and also make space- and time-sensitive predictions to better direct future surveillance resources.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.

  6. Identification of a precambrian rift through Missouri by digital image processing of geophysical and geological data

    Science.gov (United States)

    Guinness, E. A.; Arvidson, R. E.; Strebeck, J. W.; Schulz, K. J.; Davies, G. F.; Leff, C. E.

    1982-01-01

    A newly discovered feature in the midcontinent - a gravity low that begins at a break in the midcontinent gravity high in SE Nebraska, extends across Missouri in a NW-SE direction, and intersects the Mississippi Valley graben to form the Pascola arch - is discussed. The anomaly varies from 120 to 160 km in width, extends approximately 700 km, and is best expressed in southern Missouri, where it has a Bouguer amplitude of about -34 mGal. It is noted that the magnitude of the anomaly cannot be explained on the basis of a thickened section of Paleozoic sedimentary rock. The gravity data and the sparse seismic refraction data for the region are found to be consistent with an increased crustal thickness beneath the gravity low. It is thought that the gravity anomaly is probably the present expression of a failed arm of a rifting event, perhaps one associated with the spreading that led to or preceded formation of the granite and rhyolite terrain of southern Missouri.

  7. Rift Valley fever virus epidemic in Kenya, 2006/2007: the entomologic investigations.

    Science.gov (United States)

    Sang, Rosemary; Kioko, Elizabeth; Lutomiah, Joel; Warigia, Marion; Ochieng, Caroline; O'Guinn, Monica; Lee, John S; Koka, Hellen; Godsey, Marvin; Hoel, David; Hanafi, Hanafi; Miller, Barry; Schnabel, David; Breiman, Robert F; Richardson, Jason

    2010-08-01

    In December 2006, Rift Valley fever (RVF) was diagnosed in humans in Garissa Hospital, Kenya and an outbreak reported affecting 11 districts. Entomologic surveillance was performed in four districts to determine the epidemic/epizootic vectors of RVF virus (RVFV). Approximately 297,000 mosquitoes were collected, 164,626 identified to species, 72,058 sorted into 3,003 pools and tested for RVFV by reverse transcription-polymerase chain reaction. Seventy-seven pools representing 10 species tested positive for RVFV, including Aedes mcintoshi/circumluteolus (26 pools), Aedes ochraceus (23 pools), Mansonia uniformis (15 pools); Culex poicilipes, Culex bitaeniorhynchus (3 pools each); Anopheles squamosus, Mansonia africana (2 pools each); Culex quinquefasciatus, Culex univittatus, Aedes pembaensis (1 pool each). Positive Ae. pembaensis, Cx. univittatus, and Cx. bitaeniorhynchus was a first time observation. Species composition, densities, and infection varied among districts supporting hypothesis that different mosquito species serve as epizootic/epidemic vectors of RVFV in diverse ecologies, creating a complex epidemiologic pattern in East Africa.

  8. Functional and Biochemical Characterization of Three Recombinant Human Glucose-6-Phosphate Dehydrogenase Mutants: Zacatecas, Vanua-Lava and Viangchan

    Science.gov (United States)

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; González-Valdez, Abigail; Martínez-Rosas, Víctor; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Castillo-Rodríguez, Rosa Angélica; Cuevas-Cruz, Miguel; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency in humans causes severe disease, varying from mostly asymptomatic individuals to patients showing neonatal jaundice, acute hemolysis episodes or chronic nonspherocytic hemolytic anemia. In order to understand the effect of the mutations in G6PD gene function and its relation with G6PD deficiency severity, we report the construction, cloning and expression as well as the detailed kinetic and stability characterization of three purified clinical variants of G6PD that present in the Mexican population: G6PD Zacatecas (Class I), Vanua-Lava (Class II) and Viangchan (Class II). For all the G6PD mutants, we obtained low purification yield and altered kinetic parameters compared with Wild Type (WT). Our results show that the mutations, regardless of the distance from the active site where they are located, affect the catalytic properties and structural parameters and that these changes could be associated with the clinical presentation of the deficiency. Specifically, the structural characterization of the G6PD Zacatecas mutant suggests that the R257L mutation have a strong effect on the global stability of G6PD favoring an unstable active site. Using computational analysis, we offer a molecular explanation of the effects of these mutations on the active site. PMID:27213370

  9. Combining hydrologic and groundwater modelling to characterize a regional aquifer system within a rift setting (Gidabo River Basin, Main Ethiopian Rift)

    Science.gov (United States)

    Birk, Steffen; Mechal, Abraham; Wagner, Thomas; Dietzel, Martin; Leis, Albrecht; Winkler, Gerfried; Mogessie, Aberra

    2016-04-01

    The development of groundwater resources within the Ethiopian Rift is complicated by the strong physiographic contrasts between the rift floor and the highland and by the manifold hydrogeological setting composed of volcanic rocks of different type and age that are intersected by numerous faults. Hydrogeochemical and isotope data from various regions within the Ethiopian Rift suggest that the aquifers within the semi-arid rift floor receive a significant contribution of groundwater flow from the humid highland. For example, the major ion composition of groundwater samples from Gidabo River Basin (3302 km²) in the southern part of the Main Ethiopian Rift reveals a mixing trend from the highland toward the rift floor; moreover, the stable isotopes of water, deuterium and O-18, of the rift-floor samples indicate a component recharged in the highland. This work aims to assess if the hydrological and hydrogeological data available for Gidabo River Basin is consistent with these findings and to characterize the regional aquifer system within the rift setting. For this purpose, a two-step approach is employed: First, the semi-distributed hydrological model SWAT is used to obtain an estimate of the spatial and temporal distribution of groundwater recharge within the watershed; second, the numerical groundwater flow model MODFLOW is employed to infer aquifer properties and groundwater flow components. The hydrological model was calibrated and validated using discharge data from three stream gauging stations within the watershed (Mechal et al., Journal of Hydrology: Regional Studies, 2015, doi:10.1016/j.ejrh.2015.09.001). The resulting recharge distribution exhibits a strong decrease from the highland, where the mean annual recharge amounts to several hundred millimetres, to the rift floor, where annual recharge largely is around 100 mm and below. Using this recharge distribution as input, a two-dimensional steady-state groundwater flow model was calibrated to hydraulic

  10. Influence of sediment recycling on the trace element composition of primitive arc lavas

    Science.gov (United States)

    Collinet, M.; Jagoutz, O. E.

    2017-12-01

    Primitive calc-alkaline lavas from continental arcs are, on average, enriched in incompatible elements compared to those from intra-oceanic arcs. This relative enrichment is observed in different groups of trace elements: LILE (e.g. K, Rb), LREE to MREE (La-Dy) and HFSE (e.g.Zr, Nb) and is thought to result from (1) a transfer of material from the subducting slab to the mantle wedge at higher temperature than in intra-oceanic margins and/or (2) lower average degrees of melting in the mantle wedge, as a consequence of thicker overlying crusts and higher average pressures of melting. In addition to thicker overlying crusts and generally higher slab temperatures, continental margins are characterized by larger volumes of rock exposed above sea level and enhanced erosion rates compared to intra-oceanic arcs. As several geochemical signatures of arc lavas attest to the importance of sediment recycling in subduction zones, we explore the possibility that the high concentrations of incompatible elements in primitive lavas from continental arcs directly reflect a larger input of sediment to the subduction system. Previous efforts to quantify the sediment flux to oceanic trenches focused on the thickness of pelagic and hemipelagic sediments on top of the plate entering the subduction zone (Plank and Langmuir, 1993, Nature). These estimates primarily relied on the sediment layer drilled outboard from the subduction system and likely underestimate the volume of sediment derived from the arc itself. Accordingly, we find that such estimates of sediment flux do not correlate with the concentration of incompatible elements in primitive arc lavas. To account for regional contributions of coarser detrital sediments, usually delivered to oceanic trenches by turbidity currents, we apply to arc segments a model that quantifies the sediment load of rivers based on the average relief, area, temperature and runoff of their respective drainage areas (Syvitski et al., 2003, Sediment. Geol

  11. Numerical analysis of pressure and porosity evolution in lava domes during periodic degassing conditions

    Science.gov (United States)

    Hyman, D.; Bursik, M. I.; Pitman, E. B.

    2017-12-01

    The collapse or explosive breakup of growing and degassing lava domes presents a significant hazard due to the generation of dense, mobile pyroclastic flows as well as the wide dispersal of dense ballistic blocks. Lava dome stability is in large part governed by the balance of transport and storage of gas within the pore space. Because pore pressurization reduces the effective stress within a dome, the transient distribution of elevated gas pressure is critically important to understanding dome break up. We combine mathematical and numerical analyses to gain a better understanding of the temporal variation in gas flow and storage within the dome system. In doing so, we develop and analyze new governing equations describing nonlinear gas pressure diffusion in a deforming dome with an evolving porosity field. By relating porosity, permeability, and pressure, we show that the flux of gas through a dome is highly sensitive to the porosity distribution and viscosity of the lava, as well as the timescale and magnitude of the gas supply. The numerical results suggest that the diffusion of pressure and porosity variations play an integral role in the cyclic growth and destruction of small domes.The nearly continuous cycles of lava dome growth, pressurization, and failure that have characterized the last two decades of eruptive history at Volcán Popocatépetl, Mexico provide excellent natural data with which to compare new models of transient dome pressurization. At Popocatépetl, periodic pressure increases brought on by changes in gas supply into the base of the dome may play a role in its cyclic growth and destruction behavior. We compare our model of cyclic pressurization with lava dome survival data from Popocatépetl. We show that transient changes in pore pressure explain how small lava domes evolve to a state of criticality before explosion or collapse. Additionally, numerical analyses presented here suggest that short-term oscillations cannot arise within the dome

  12. Rift Valley Fever Outbreaks in Mauritania and Related Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Cyril Caminade

    2014-01-01

    Full Text Available Four large outbreaks of Rift Valley Fever (RVF occurred in Mauritania in 1998, 2003, 2010 and 2012 which caused lots of animal and several human deaths. We investigated rainfall and vegetation conditions that might have impacted on RVF transmission over the affected regions. Our results corroborate that RVF transmission generally occurs during the months of September and October in Mauritania, similarly to Senegal. The four outbreaks were preceded by a rainless period lasting at least a week followed by heavy precipitation that took place during the second half of the rainy season. First human infections were generally reported three to five weeks later. By bridging the gap between meteorological forecasting centers and veterinary services, an early warning system might be developed in Senegal and Mauritania to warn decision makers and health services about the upcoming RVF risk.

  13. Terrestrial Lava Lake Physical Parameter Estimation Using a Silicate Cooling Model - Implications for a Return to the Volcanic Moon, Io

    Science.gov (United States)

    Davies, Ashley

    2010-05-01

    Active lava lakes are open volcanic systems, where lava circulates between a magma chamber and the surface. Rare on Earth, lava lakes may be common on Io, the highly volcanic moon of Jupiter (see [1]). Lava lakes are important targets for future missions to Io [2, 3] as they provide excellent targets at which to measure lava eruption temperature (see [2] for other targets). With this in mind, hand-held infrared imagers were used to collect in-situ thermal emission data from the anorthoclase phonolite lava lake at Erebus volcano (Antarctica) in December 2005 [1, 3] and the basalt lava lake at Erta'Ale volcano (Ethiopia) in September 2009. These data have been analysed to establish surface temperature and area distributions and the integrated thermal emission spectra for each lava lake. These spectra have been used to test models developed for analysis of remote sensing data of lava lakes and lava flows on both Earth and Io, where no ground-truth exists. The silicate cooling model [4] assumes, for the lava lake model variant, that the existing surface crust has been created at a fixed rate. Model output consists of a synthesized thermal emission spectrum, estimate of surface age range, and a rate of surface crust area formation. The cooling model provides accurate reproductions of actual thermal spectra and the total emitting area to within a few percent of actual emitting area. Despite different composition lavas, the integrated thermal emission spectra from the two terrestrial lava lakes studied are very similar in shape, and, importantly, bear a striking similarity to spectra of Pele, a feature on Io that has been proposed to be a persistent, active lava lake [1]. The 2005 Erebus lava lake had an area of ~820 m2 and a measured surface temperature distribution of 1090 K to 575 K with a broad peak from 730 K to 850 K [5]. Total heat loss was estimated to be 23.5 MW [5]. The model fit yielded an area of ~820 m2, temperatures from 1475 K to 699 K, and an average

  14. Generation of continental rifts, basins, and swells by lithosphere instabilities

    Science.gov (United States)

    Fourel, Loïc.; Milelli, Laura; Jaupart, Claude; Limare, Angela

    2013-06-01

    Continents may be affected simultaneously by rifting, uplift, volcanic activity, and basin formation in several different locations, suggesting a common driving mechanism that is intrinsic to continents. We describe a new type of convective instability at the base of the lithosphere that leads to a remarkable spatial pattern at the scale of an entire continent. We carried out fluid mechanics laboratory experiments on buoyant blocks of finite size that became unstable due to cooling from above. Dynamical behavior depends on three dimensionless numbers, a Rayleigh number for the unstable block, a buoyancy number that scales the intrinsic density contrast to the thermal one, and the aspect ratio of the block. Within the block, instability develops in two different ways in an outer annulus and in an interior region. In the outer annulus, upwellings and downwellings take the form of periodically spaced radial spokes. The interior region hosts the more familiar convective pattern of polygonal cells. In geological conditions, such instabilities should manifest themselves as linear rifts striking at a right angle to the continent-ocean boundary and an array of domal uplifts, volcanic swells, and basins in the continental interior. Simple scaling laws for the dimensions and spacings of the convective structures are derived. For the subcontinental lithospheric mantle, these dimensions take values in the 500-1000 km range, close to geological examples. The large intrinsic buoyancy of Archean lithospheric roots prevents this type of instability, which explains why the widespread volcanic activity that currently affects Western Africa is confined to post-Archean domains.

  15. Littoral sedimentation of rift lakes: an illustrated overview from the modern to Pliocene Lake Turkana (East African Rift System, Kenya)

    Science.gov (United States)

    Schuster, Mathieu; Nutz, Alexis

    2015-04-01

    Existing depositional models for rift lakes can be summarized as clastics transported by axial and lateral rivers, then distributed by fan-deltas and/or deltas into a standing water body which is dominated by settling of fine particles, and experiencing occasional coarser underflows. Even if known from paleolakes and modern lakes, reworking of clastics by alongshore drift, waves and storms are rarely considered in depositional models. However, if we consider the lake Turkana Basin (East African Rift System, Kenya) it is obvious that this vision is incomplete. Three representative time slices are considered here: the modern Lake Turkana, the Megalake Turkana which developed thanks to the African Humid Period (Holocene), and the Plio-Pleistocene highstand episodes of paleolake Turkana (Nachukui, Shungura and Koobi Fora Formations, Omo Group). First, remarkable clastic morphosedimentary structures such as beach ridges, spits, washover fans, lagoons, or wave-dominated deltas are very well developed along the shoreline of modern lake Turkana, suggesting strong hydrodynamics responsible for a major reworking of the fluvial-derived clastics all along the littoral zone (longshore and cross-shore transport) of the lake. Similarly, past hydrodynamics are recorded from prominent raised beach ridges and spits, well-preserved all around the lake, above its present water-level (~360 m asl) and up to ~455 m. These large-scale clastic morphosedimentary structures also record the maximum extent of Megalake Turkana during the African Humid Period, as well as its subsequent regression forced by the end of the Holocene climatic optimum. Several hundreds of meters of fluvial-deltaic-lacustrine deposits spanning the Pliocene-Pleistocene are exposed in the Turkana basin thanks to tectonic faulting. These deposits are world famous for their paleontological and archeological content that documents the very early story of Mankind. They also preserve several paleolake highstand episodes with

  16. Rifting and Subsidence in the Gulf of Mexico: Implications for Syn-rift, Sag, and Salt Sections, and Subsequent Paleogeography

    Science.gov (United States)

    Pindell, J. L.; Graham, R.; Horn, B.

    2013-05-01

    Thick (up to 5 km), rapid (depression where basement had already subsided tectonically, and thus could receive up to 5 km of salt, roughly the isostatic maximum on exhumed mantle, hyper-thinned continent, or new ocean crust. ION-GXT and other seismic data along W Florida and NW Yucatán show that (1) mother salt was only 1 km thick in these areas, (2) that these areas were depositionally connected to areas of thicker deposition, and (3) the top of all salt was at global sea level, and hence the sub-salt unconformity along Florida and Yucatán was only 1 km deep by end of salt deposition. These observations fit the air-filled chasm hypothesis; however, two further observations make that mechanism highly improbable: (1) basinward limits of sub-salt unconformities along Florida/Yucatán are deeper than top of adjacent ocean crust emplaced at ~2.7 km subsea (shown by backstripping), and (2) deepest abyssal sediments over ocean crust onlap the top of distal salt, demonstrating that the salt itself was rapidly drowned after deposition. Study of global ION datasets demonstrates the process of "rapid outer marginal collapse" at most margins, which we believe is achieved by low-angle detachment on deep, landward-dipping, Moho-equivalent surfaces such that outer rifted margins are hanging walls of crustal scale half-grabens over mantle. The tectonic accommodation space produced (up to 3 km, < 3 Ma) can be filled by ~5 km of sag/salt sequences with little apparent hanging wall rifting. When salt (or other) deposition lags behind, or ends during, outer marginal collapse, deep-water settings result. We suggest that this newly identified, "outer marginal detachment phase", normally separates the traditional "rift" from "drift" stages during continental margin creation. Importantly, this 2-3 km of subsidence presently is neither treated as tectonic nor as thermal in traditional subsidence analysis; thus, Beta estimates may be excessive at many outer margins. Outer marginal

  17. Fractionation of the platinum-group elments and Re during crystallization of basalt in Kilauea Iki Lava Lake, Hawaii

    Science.gov (United States)

    Pitcher, L.; Helz, R.T.; Walker, R.J.; Piccoli, P.

    2009-01-01

    Kilauea Iki lava lake formed during the 1959 summit eruption of Kilauea Volcano, then crystallized and differentiated over a period of 35??years. It offers an opportunity to evaluate the fractionation behavior of trace elements in a uniquely well-documented basaltic system. A suite of 14 core samples recovered from 1967 to 1981 has been analyzed for 5 platinum-group elements (PGE: Ir, Os, Ru, Pt, Pd), plus Re. These samples have MgO ranging from 2.4 to 26.9??wt.%, with temperatures prior to quench ranging from 1140????C to ambient (110????C). Five eruption samples were also analyzed. Osmium and Ru concentrations vary by nearly four orders of magnitude (0.0006-1.40??ppb for Os and 0.0006-2.01??ppb for Ru) and are positively correlated with MgO content. These elements behaved compatibly during crystallization, mostly likely being concentrated in trace phases (alloy or sulfide) present in olivine phenocrysts or included chromite. Iridium also correlates positively with MgO, although less strongly than Os and Ru. The somewhat poorer correlation for Ir, compared with Os and Ru, may reflect variable loss of Ir as volatile IrF6 in some of the most magnesian samples. Rhenium is negatively correlated with MgO, behaving as an incompatible trace element. Its behavior in the lava lake is complicated by apparent volatile loss of Re, as suggested by a decrease in Re concentration with time of quenching for lake samples vs. eruption samples. Platinum and Pd concentrations are negatively, albeit weakly, correlated with MgO, so these elements were modestly incompatible during crystallization of the major silicate phases. Palladium contents peaked before precipitation of immiscible sulfide liquid, however, and decline sharply in the most differentiated samples. In contrast, Pt appears to have been unaffected by sulfide precipitation. Microprobe data confirm that Pd entered the sulfide liquid before Re, and that Pt is not strongly chalcophile in this system. Occasional high Pt values

  18. Structural Analysis of Silicic Lavas Reveals the Importance of Endogenous Flow During Emplacement

    Science.gov (United States)

    Andrews, G. D.; Martens, A.; Isom, S.; Maxwell, A.; Brown, S. R.

    2017-12-01

    Recent observations of silicic lava flows in Chile strongly suggest sustained, endogeneous flow beneath an insulating carapace, where the flow advances through breakouts at the flow margin. New mapping of vertical exposures around the margin of Obsidian Dome, California, has identified discreet lobe structures in cross-section, suggesting that flow-front breakouts occured there during emplacement. The flow lobes are identified through structural measurements of flow-banding orientation and the stretching directions of vesicles. Newly acquired lidar of the Inyo Domes, including Obsidian Dome, is being analyzed to better understand the patterns of folding on the upper surface of the lavas, and to test for fold vergence patterns that may distinguish between endogenous and exogenous flow.

  19. Partial pressures of oxygen, phosphorus and fluorine in some lunar lavas

    Science.gov (United States)

    Nash, W. P.; Hausel, W. D.

    1973-01-01

    Lunar sample 14310 is a feldspar-rich basalt which shows no evidence of shock deformation or recrystallization. Pyroxenes include Mg-rich orthopyroxene, pigeonite and augite; pyroxferroite occurs in the interstitial residuum. Plagioclase feldspars are zoned from An(96) to An(67), and variations in feldspar compositions do not necessarily indicate loss of Na during eruption of the lava. Opaque phases include ilmenite, ulvospinel, metallic iron, troilite, and schreibersite. Both whitlockite and apatite are present, and the interstitial residua contain baddeleyite, tranquillityite and barium-rich sanidine. Theoretical calculations provide estimates of partial pressures of oxygen, phosphorus, and fluorine in lunar magmas. In general, partial pressures of oxygen are restricted by the limiting assemblages of iron-wuestite and ilmenite-iron-rutile; phosphorus partial pressures are higher in lunar magmas than in terrestrial lavas. The occurrence of whitlockite indicates significantly lower fugacities of fluorine in lunar magmas than in terrestrial magmas.

  20. Maize Response to Fertilizer Dosing at Three Sites in the Central Rift Valley of Ethiopia

    Directory of Open Access Journals (Sweden)

    Getachew Sime

    2014-09-01

    Full Text Available This study examines the agronomic response, efficiency and profitability of fertilizer microdosing in maize. An experiment with the following treatments was conducted: control without fertilizer, microdosing treatments, with the rate of 27 + 27, 53 + 53 and 80 + 80 kg ha−1, and banding of fertilizer with 100 + 100 kg ha−1 of di ammonium phosphate (DAP + urea, applied at planting and jointing, respectively. The treatments were arranged in a randomized complete block design with four replications. The experiment was conducted during the 2011/2012 and 2012/2013 cropping seasons at Ziway, Melkassa and Hawassa in the semiarid central rift valley region of Ethiopia. Compared to the control, the fertilizer treatments had higher yield and fertilizer use efficiency (FUE profitably. The 27 + 27 kg ha−1 fertilizer rate increased the grain yield by 19, 45 and 46% at Hawassa, Ziway and Melkassa, respectively, and it was equivalent to the higher rates. The value cost ratio (VCR was highest with the lowest fertilizer rate, varying between seven and 11 in the treatment with 27 + 27 kg ha−1, but two and three in the banding treatment. Similarly, FUE was highest with the lowest fertilizer rate, varying between 23 and 34 kg kg−1 but 7 and 8 kg kg−1 in the banding treatment. The improved yield, FUE, VCR and gross margin in maize with microdosing at the 27 + 27 kg ha−1 of DAP + urea rate makes it low cost, low risk, high yielding and profitable. Therefore, application of this particular rate in maize may be an option for the marginal farmers in the region with similar socioeconomic and agroecological conditions.

  1. The Ellsworth terrane, coastal Maine: Geochronology, geochemistry, and Nd-Pb isotopic composition - Implications for the rifting of Ganderia

    Science.gov (United States)

    Schulz, K.J.; Stewart, D.B.; Tucker, R.D.; Pollock, J.C.; Ayuso, R.A.

    2008-01-01

    interlayered with basalt in the Ellsworth Schist, is calc-alkaline and characterized by relatively low REE, Zr, and Hf contents, enriched LREE ([La/Yb]N ???3-6), positive Th and negative Th anomalies, ??Nd (500) values near zero (+0.5 to -0.9), and relatively unradiogenic Ph isotope values (206Pb/204Pb = 18.845; 207Pb/ 204Pb = 15.625; 208Pb/204Pb = 38.626). The data suggest that R-1 rhyolite magma was Likely derived by mixing of basalt with melts from a relatively depleted crustal source. Type R-2 rhyolite, which mostly occurs as lava flows and domes in the Castine volcanics, is tholeiitic and characterized by enriched REE with flat patterns ([La/Yb]N = 1-2.5), moderate negative Eu anomalies (Eu/Eu* = 0-34.5), enriched Th, small negative Th anomalies, and ??Nd (500) (+5.8-+7.5) and Ph isotope (206Pb/204Pb = 19.175-19.619; 207Pb/204Pb = 15.605--15.649; 208Pb/204Pb = 38.834-38.851) values that overlap those of the tholeiitic basalts. The data suggest that R-2 rhyolite magma was derived by the partial melting of hydrothermally altered basalt with the addition of a small amount of an enriched component, probably R-1 rhyolite. The geololic, geochemicai, and isotopic characteristics of the bimodal volcanic sequences strongly suggest that the Ellsworth terrane did not evolve as an extensional back-arc basin behind an active arc, but rather it evolved as a proto-oceanic rift petrogenetically similar to Cenozoic rifts like the Gulf of California-Salton mrough and Red Sea-Gulf of Aden rift systems. Such a setting is supported by the presence of serpentinized mantle and zinc-copper-rich massive sulfide deposits in the Ellsworth terrane. We conclude that the Ellsworth terrane developed as a Mid

  2. Geodynamic modelling of the rift-drift transition: Application to the Red Sea

    Science.gov (United States)

    Fierro, E.; Schettino, A.; Capitanio, F. A.; Ranalli, G.

    2017-12-01

    The onset of oceanic accretion after a rifting phase is generally accompanied by an initial fast pulse of spreading in the case of volcanic margins, such that the effective spreading rate exceeds the relative far-field velocity between the two plates for a short time interval. This pulse has been attributed to edge-driven convention (EDC), although our numerical modelling shows that the shear stress at the base of the lithosphere cannot exceed 1 MPa. In general, we have developed a 2D numerical model of the mantle instabilities during the rifting phase, in order to determine the geodynamic conditions at the rift-drift transition. The model was tested using Underworld II software, variable rheological parameters, and temperature and stress-dependent viscosity. Our results show an increase of strain rates at the top of the lithosphere with the lithosphere thickness as well as with the initial width of the margin up to 300 km. Beyond this value, the influence of the initial rift width can be neglected. An interesting outcome of the numerical model is the existence of an axial zone characterized by higher strain rates, which is flanked by two low-strain stripes. As a consequence, the model suggests the e