WorldWideScience

Sample records for ridge crust resists

  1. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean

    Science.gov (United States)

    Hein, James; Conrad, Tracey A.; Mizell, Kira; Banakar, Virupaxa K.; Frey, Frederick A.; Sager, William W.

    2016-01-01

    A reconnaissance survey of Fe-Mn crusts from the 5000 km long (~31°S to 10°N) Ninetyeast Ridge (NER) in the Indian Ocean shows their widespread occurrence along the ridge as well as with water depth on the ridge flanks. The crusts are hydrogenetic based in growth rates and discrimination plots. Twenty samples from 12 crusts from 9 locations along the ridge were analyzed for chemical and mineralogical compositions, growth rates, and statistical relationships (Q-mode factor analysis, correlation coefficients) were calculated. The crusts collected are relatively thin (maximum 40 mm), and those analyzed varied from 4 mm to 32 mm. However, crusts as thick as 80 mm can be expected to occur based on the age of rocks that comprise the NER and the growth rates calculated here. Growth rates of the crusts increase to the north along the NER and with water depth. The increase to the north resulted from an increased supply of Mn from the oxygen minimum zone (OMZ) to depths below the OMZ combined with an increased supply of Fe at depth from the dissolution of biogenic carbonate and from deep-sourced hydrothermal Fe. These increased supplies of Fe increased growth rates of the deeper-water crusts along the entire NER. Because of the huge terrigenous (rivers, eolian, pyroclastic) and hydrothermal (three spreading centers) inputs to the Indian Ocean, and the history of primary productivity, Fe-Mn crust compositions vary from those analyzed from open-ocean locations in the Pacific.

  2. Seismic Velocity Variation and Evolution of the Upper Oceanic Crust across the Mid-Atlantic Ridge at 1.3°S

    Science.gov (United States)

    Jian, H.; Singh, S. C.

    2017-12-01

    The oceanic crust that covers >70% of the solid earth is formed at mid-ocean ridges, but get modified as it ages. Understanding the evolution of oceanic crust requires investigations of crustal structures that extend from zero-age on the ridge axis to old crust. In this study, we analyze a part of a 2000-km-long seismic transect that crosses the Mid-Atlantic Ridge segment at 1.3°S, south of the Chain transform fault. The seismic data were acquired using a 12-km-long multi-sensor streamer and dense air-gun shots. Using a combination of downward continuation and seismic tomography methods, we have derived a high-resolution upper crustal velocity structure down to 2-2.5 km depth below the seafloor, from the ridge axis to 3.5 Ma on both sides of the ridge axis. The results demonstrate that velocities increase at all depths in the upper crust as the crust ages, suggesting that hydrothermal precipitations seal the upper crustal pore spaces. This effect is most significant in layer 2A, causing a velocity increase of 0.5-1 km/s after 1-1.5 Ma, beyond which the velocity increase is very small. Furthermore, the results exhibit a significant decrease in both the frequency and amplitude of the low-velocity anomalies associated with faults beyond 1-1.5 Ma, when faults become inactive, suggesting a linkage between the sealing of fault space and the extinction of hydrothermal activity. Besides, the off-axis velocities are systematically higher on the eastern side of the ridge axis compared to on the western side, suggesting that a higher hydrothermal activity should exist on the outside-corner ridge flank than on the inside-corner flank. While the tomography results shown here cover 0-3.5 Ma crust, the ongoing research will further extend the study area to older crust and also incorporating pre-stack migration and full waveform inversion methods to improve the seismic structure.

  3. Mid-ocean ridges produced thicker crust in the Jurassic than in Recent times

    Science.gov (United States)

    Van Avendonk, H. J.; Harding, J.; Davis, J. K.; Lawver, L. A.

    2016-12-01

    We present a compilation of published marine seismic refraction data to show that oceanic crust was 1.7 km thicker on average in the mid-Jurassic (170 Ma) than along the present-day mid-ocean ridge system. Plate reconstructions in a fixed hotspot framework show that the thickness of oceanic crust does not correlate with proximity to mantle hotspots, so it is likely that mid-plate volcanism is not the cause of this global trend. We propose that more melt was extracted from the upper mantle beneath mid-ocean ridges in the Jurassic than in recent times. Numerical studies show that temperature increase of 1 degree C in the mantle can lead to approximately 50-70 m thicker crust, so the upper mantle may have cooled 15-20 degrees C/100 Myr since 170 Ma. This average temperature decrease is larger than the secular cooling rate of the Earth's mantle, which is roughly 10 degrees C/100 Myr since the Archean. Apparently, the present-day configuration and dynamics of continental and oceanic plates removes heat more efficiently from the Earth's mantle than in its earlier history. The increase of ocean crustal thickness with plate age is also stronger in the Indian and Atlantic oceans than in the Pacific Ocean basin. This confirms that thermal insulation by the supercontinent Pangaea raised the temperature of the underlying asthenospheric mantle, which in turn led to more magmatic output at the Jurassic mid-ocean ridges of the Indian and Atlantic oceans.

  4. The Taitao Granites: I-type granites formed by subduction of the Chile Ridge and its implication in growth of continental crusts

    Science.gov (United States)

    Anma, Ryo

    2016-04-01

    Late Miocene to Early Pliocene granite plutons are exposed at the tip of the Taitao peninsula, the westernmost promontory of the Chilean coast, together with a contemporaneous ophiolite with a Penrose-type stratigraphy. Namely, the Taitao granites and the Taitao ohiolite, respectively, are located at ~30 km southeast of the Chile triple junction, where a spreading center of the Chile ridge system is subducting underneath the South America plate. This unique tectonic setting provides an excellent opportunity to study the generation processes of granitic magmas at a ridge subduction environment, and the complex magmatic interactions between the subducting ridge, overlying crust and sediments, and mantle. This paper reviews previous studies on the Taitao ophiolite/granite complex and use geochemical data and U-Pb age distributions of zircons separated from igneous and sedimentary rocks from the area to discuss the mechanism that formed juvenile magma of calc-alkaline I-type granites during ridge subduction. Our model implies that the magmas of the Taitao granites formed mainly due to partial melting of hot oceanic crust adjacent to the subducting mid-oceanic ridge that has been under influence of deep crustal contamination and/or metasomatized sub-arc mantle through slab window. The partial melting took place under garnet-free-amphibolite conditions. The juvenile magmas then incorporated a different amount of subducted sediments to form the I-type granites with various compositions. The Taitao granites provide an ideal case study field that shows the processes to develop continental crusts out of oceanic crusts through ridge subduction.

  5. The Atlantis Bank Gabbro Massif, SW Indian Ridge: the Largest Know Exposure of the Lower Crust in the Oceans

    Science.gov (United States)

    Dick, H. J.; Kvassnes, A. J.; Kinoshita, H.; MacLeod, C. J.; Robinson, P. T.

    2017-12-01

    Until the discovery of oceanic core complexes little was known and much inferred about the lower ocean crust at slow-spreading ridges. Their study shows the ocean crust isn't simply a uniform layer-cake of pillow lavas, sheeted dikes and gabbros, but is highly variable in thickness, composition and architecture, and even absent over large regions. The 660 km2 Atlantis Bank Gabbro Massif in the rift-mountains of the SW Indian Ridge flanking the Atlantis II Transform is the magmatic end member for ocean core complexes, and best approximates `average' slow-spread crust. Thus it has been a focus for drilling since its discovery in 1986, leading to the current attempt to drill to Moho there (Project SloMo). There are 3 ODP and IODP drill holes on its crest: 1508-m deep Hole 735B, 158-m deep Hole 1105A, and 809.4-m deep Hole U1473. These provide a 200 Kyr view of lower crustal accretion at a slow-spread ocean ridge. Here we extend this view to 2.7 Myr. Mapping and sampling shows the gabbro massif extends nearly the length of a single 2nd order magmatic ridge segment. With numerous inliers of the dike-gabbro transition at numerous locations, and a crust-mantle boundary, traced for 30-km along the transform wall, it would appear to represent a full section of the lower crust. As Moho is at 5.5 ± 1 km mbsf near Hole 735B, and 4.5 km beneath the transform, it is likely a serpentinization front. The crust-mantle boundary was crossed by dives at 4 locations. In each case gabbros at the base of the crust crystallized from melt that had previously fractionated 50% or more from a likely parent. Thus the gabbro massif must be laterally zoned, and the parental mantle melts had to have been emplaced at the center of the paleo-ridge segment, before intruding laterally to the distal end of the complex. Gabbros on a lithospheric flow line down the center of the massif closely resemble those from the drill holes. This shows that while lateral variations in crustal composition and

  6. Late Noachian/Early Hesperian Ridge Network in Nili Fossae: Evidence for Water-Saturated Near-Surface Crust

    Science.gov (United States)

    Mustard, J. F.; Pascuzzo, A.

    2017-12-01

    The region north of the contact between Syrtis Major and the Isidis Basin is populated by thousands of ridges 100s of meters in length, up to a few 10s of meters high and 15-50 meters wide. The resistant ridges are being exhumed from weak early Noachian smectite-bearing host rocks. Hypotheses for the formation include igneous intrusion or fill, impact-induced breccia dikes and chemical alteration of pre-existing fracture planes or mineralized fracture planes through groundwater circulation (our preferred mode of formation). Mineralogic interpretations of visible-near infrared reflectance spectra from the CRISM instrument on MRO may be critical in interpreting the formation process. While most of the ridges are at the limit of CRISM's spatial resolution of 18 m/pixel, CRISM has a special observing mode which can increase the resolution in the along track observing (ATO) direction by a factor of 2-3 (e.g. 6 m). Using a combination of full resolution and one ATO observation, we have analyzed well-exposed ridges in the Nili Fossae region. Ridges are commonly exposed from beneath a distinctive mafic capping rock rich in olivine and variably altered to magnesite. Many of the ridges exhibit weaker smectite absorptions near 1.9 and 2.3 µm compared to the host rock but no additional spectral features are observed. One cause for weaker absorptions is grain size (i.e. solid rock shows weaker absorptions than its powdered equivalent). Alternatively the presence of a spectrally neutral cementing compound or mineral like quartz could lead to weaker features. Timing of ridge formation is constrained by two key stratigraphic makers. First the ridges were likely formed after the Isidis basin-forming event, 3.9 Ga, because many are observed between the 1st and 2nd rings of the basin structure and would not have survived the impact event otherwise. Second the ridges are exhumed from beneath a distinctive olivine-rich mafic cap unit with its emplacement dated to between the Isidis

  7. Preface for Discussion on Mid-Ocean Ridges: dynamics of processes associated with creation of new ocean crust

    Science.gov (United States)

    Cann, J. R.; Elderfield, H.; Laughton, A.

    Preface for Discussion on Mid-Ocean Ridges: dynamics of processes associated with creation of new ocean crust. A Discussion held at the Royal Society on 6th and 7th March 1996. Organized and edited by J. R. Cann, H. Elderfield and A. Laughton.

  8. Benthic megafaunal community structure of cobalt-rich manganese crusts on Necker Ridge

    Science.gov (United States)

    Morgan, Nicole B.; Cairns, Stephen; Reiswig, Henry; Baco, Amy R.

    2015-10-01

    In the North Pacific Ocean, the seamounts of the Hawaiian Archipelago and the Mid-Pacific Mountains are connected by Necker Ridge, a 600 km-long feature spanning a depth range of 1400-4000 m. The Necker Ridge is a part of a large area of the central and western Pacific under consideration for cobalt-rich manganese crust mining. We describe the fauna and community structure of the previously unsampled Necker Ridge based on explorations with the submersible Pisces IV. On five pinnacles and a portion of the Ridge ranging from 1400 to 2000 m deep, 27 transects were recorded using HD video, and voucher specimens were collected to aid in species identification. The video was analyzed to identify and count the megafauna found on each transect and to characterize the substrate. Diversity increased from south to north along the feature. There was a significant difference in community structure between southern and northern pinnacles, with southern pinnacles dominated by crinoids of the Family Charitometridae and northern pinnacles dominated by octocorals, especially the Families Isididae and Chrysogorgiidae. DistLM demonstrated a correlation between community structure on the pinnacles and at least six environmental variables, including latitude, sediment cover, and oxygen concentration, but not including depth. The discontinuous and patchy nature of these distinct megafaunal communities highlights growing evidence that cobalt-rich seamounts are highly heterogeneous habitats, and that managing seamounts may require more complex regulations than treating them as a single ecological unit. These results suggest that extensive community analysis should occur at a given site to determine management priority areas, prior to consideration of that site for exploitation of natural resources.

  9. A ~400 ka supra-Milankovitch cycle in the Na, Mg, Pb, Ni, and Co records of a ferromanganese crust from the Vityaz fracture zone, central Indian ridge.

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Gupta, S.M.; Miura, H.; Borole, D.V.

    A approx. 400 ka (kilo years) supra-Milankovitch cycle, recorded in the sodium, magnesium, lead, nickel and cobalt contents of a 32mm thick ferromanganese crust from Vityaz fracture zone, central Indian ridge is reported here. To arrive...

  10. Exploring the plutonic crust at a fast-spreading ridge:new drilling at Hess Deep

    Energy Technology Data Exchange (ETDEWEB)

    Gillis, Kathryn M. [Univ. of Victoria, BC (Canada). School of Earth and Ocean Sciences; Snow, Jonathan E. [Univ. of Houston, Houston, TX (United States). Earth & Atmospheric Sciences; Klaus, Adam [Texas A & M Univ., College Station, TX (United States). Integrated Ocean Drilling Program (IODP). United States Implementing Organization.; Guerin, Gilles [Lamont-Doherty Earth Observatory of Columbia Univ., Palisades, NY (United States). Borehole Research Group; Abe, Natsue [Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka (Japan). Inst. for Research on Earth Evolution (IFREE); Akizawa, Norikatsu [Kanazawa Univ. (Japan). Dept. of Earth Sciences; Ceuleneer, Georges [Univ. Paul Sabatier, Toulouse (France). Observatoire Midi-Pyrenees (UMS 831), CNRS; Cheadle, Michael J. [Univ. of Wyoming, Laramie, WY (United States). Dept. of Geology and Geophysics; Adriao, Alden de Brito [Federal Univ. of Rio Grande do Sul, Porto Alegre (Brazil). Geology Inst. (IGEO); Faak, Kathrin [Ruhr Univ., Bochum (Germany). Geological Inst.; Falloon, Trevor J. [Univ. of Tasmania, Hobart, TAS (Australia). Inst. for Marine and Antarctic Studies; Friedman, Sarah A. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology; Godard, Marguerite M. [Univ. Montpellier II (France). Geosciences Montpellier-UMR 5243; Harigane, Yumiko [National Inst. of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Marine Geology Dept.; Horst, Andrew J. [Syracuse Univ., NY (United States). Dept. of Earth Science; Hoshide, Takashi [Tohoku Univ., Sendai (Japan). Graduate School of Science; Ildefonse, Benoit [Univ. Montpellier II (France). Lab. de Tectonophysique; Jean, Marlon M. [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Geology and Environmental Geosciences; John, Barbara E. [Univ. of Wyoming, Laramie, WY (United States). Dept. of Geology and Geophysics; Koepke, Juergen H. [Univ. of Hannover (Germany). Inst. of Mineralogy; Machi, Sumiaki [Kanazawa Univ. (Japan). Dept. of Earth Sciences; Maeda, Jinichiro [Hokkaido Univ., Sapporo (Japan). Dept. of Natural History Sciences; Marks, Naomi E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Chemistry and Material Sciences Dept.; McCaig, Andrew M. [Univ. of Leeds (United Kingdom). School of Earth and Environment; Meyer, Romain [Univ. of Bergen (Norway). Dept. of Earth Science and Centre for Geobiology; Morris, Antony [Univ. of Plymouth (United Kingdom). School of Earth, Ocean & Environmental Sciences; Nozaka, Toshio [Okayama Univ. (Japan). Dept. of Earth Sciences; Python, Marie [Hokkaido Univ., Sapporo (Japan). Dept. of Earth and Planetary Sciences; Saha, Abhishek [Indian Inst. of Science (IISC), Bangalore (India). Centre for Earth Sciences; Wintsch, Robert P. [Indiana Univ., Bloomington, IN (United States). Dept. of Geological Sciences

    2013-02-28

    Integrated Ocean Drilling Program (IODP) Hess Deep Expedition 345 was designed to sample lower crustal primitive gabbroic rocks that formed at the fast-spreading East Pacific Rise (EPR) in order to test models of magmatic accretion and the intensity of hydrothermal cooling at depth. The Hess Deep Rift was selected to exploit tectonic exposures of young EPR plutonic crust, building upon results from ODP Leg 147 as well as more recent submersible, remotely operated vehicle, and near-bottom surveys. The primary goal was to acquire the observations required to test end-member crustal accretion models that were in large part based on relationships from ophiolites, in combination with mid-ocean ridge geophysical studies. This goal was achieved with the recovery of primitive layered olivine gabbros and troctolites with many unexpected mineralogical and textural relationships, such as the abundance of orthopyroxene and the preservation of delicate skeletal olivine textures.

  11. Resistência hidráulica da crosta formada em solos submetidos a chuvas simuladas Crust hydraulic resistance in soils under simulated rain

    Directory of Open Access Journals (Sweden)

    Viviane dos Santos Brandão

    2006-02-01

    Full Text Available Para avaliar a redução da taxa de infiltração em solos sujeitos ao encrostamento decorrente da aplicação de chuvas simuladas, foi realizado um experimento em esquema fatorial 5 x 6, sendo cinco solos (Argissolo Vermelho, Argissolo Vermelho-Amarelo, Latossolo Vermelho-Amarelo, Neossolo Flúvico e Neossolo Quartzarênico e seis energias cinéticas de chuva (0, 525, 1051, 2102, 3153 e 4204 J m-2, com três repetições. A partir dos dados de taxa de infiltração da água no solo e da espessura da crosta, determinadas por micromorfometria, calcularam-se a condutividade e a resistência hidráulica da crosta. Todos os solos apresentaram redução da taxa de infiltração, quando a energia cinética de chuva simulada aplicada aumentou. A resistência hidráulica da crosta aumentou com a energia cinética (especialmente para os solos Argissolos Vermelho-Amarelos e Vermelho até atingir um valor máximo, a partir do qual ocorreu diminuição, atribuída ao desgaste erosivo da crosta provocado pelo aumento do escoamento superficial, associado aos maiores valores de energia cinética da chuva simulada. Por meio de análise de regressão múltipla, foram determinadas a relação da resistência hidráulica da crosta com a energia cinética da chuva e as características químicas e físicas de cada solo. A variável resistência hidráulica da crosta mostrou-se adequada a ser utilizada nos modelos infiltração da água no solo para descrever a influência do encrostamento neste processo.To evaluate the decrease in infiltration rate in crusting soils an experiment was carried out using a rainfall simulator. Treatments were distributed in a factorial schedule 5 x 6, using five soils (Red Ultisol, Red-Yellow Ultisol, Red-Yellow Oxisol, Fluvic Entisol and Arenic Entisol and six rainfall kinetic energies (0, 525, 1051, 2102, 3153, and 4204 J m-2 with three replications. According to the water infiltration rate and crust thickness, as determined by

  12. Effect of thicker oceanic crust in the Archaean on the growth of continental crust through time

    International Nuclear Information System (INIS)

    Wilks, M.E.

    1988-01-01

    Present crustal evolution models fail to account for the generation of the large volume of continental crust in the required time intervals. All Archaean plate tectonic models, whether invoking faster spreading rates, similar to today's spreading rates, or longer ridge lengths, essentially propose that continental crust has grown by island arc accretion due to the subduction of oceanic crust. The petrological differences that characterize the Archaean from later terrains result from the subduction of hotter oceanic crust into a hotter mantle. If the oceanic crust was appreciably thicker in the Archaean, as geothermal models would indicate, this thicker crust is surely going to have an effect on tectonic processes. A more valid approach is to compare the possible styles of convergence of thick oceanic crust with modern convergence zones. The best modern analog occurs where thick continental crust is colliding with thick continental crust. Oceanic crustal collision on the scale of the present-day Himalayan continental collision zone may have been a frequent occurrence in the Archaean, resulting in extensive partial melting of the hydrous underthrust oceanic crust to produce voluminous tonalite melts, leaving a depleted stabilized basic residuum. Present-day island arc accretion may not have been the dominant mechanism for the growth of the early Archaean crust

  13. Temporal Dynamics of Sodic Playa Salt Crust Patterns: Implications for Aeolian Dust Emission Potential

    Science.gov (United States)

    Nield, J. M.; King, J.; Bryant, R. G.; Wiggs, G.; Eckardt, F. D.; Thomas, D. S.; Washington, R.

    2013-12-01

    Salt pans (or playas) are common in arid environments and can be major sources of windblown mineral dust, but there are uncertainties associated with their dust emission potential. These landforms typically form crusts which modify both their erosivity and erodibility by limiting sediment availability, modifying surface and aerodynamic roughness and limiting evaporation rates and sediment production. Here we show the relationship between seasonal surface moisture change and crust pattern development based on both remote-sensing and field surface and atmospheric measurements. We use high resolution (sub-cm) terrestrial laser scanning (TLS; ground-based lidar) surveys over weekly, monthly and annual timescales to accurately characterise crustal ridge thrusting and collapse. This can be as much as 2 mm/day on fresh pan areas that have recently been reset by flooding. Over a two month period, this ridge growth can change aerodynamic roughness length values by 6.5 mm. At the same time, crack densities across the surface increase and this raises the availability of erodible fluffy, low density dust source sediment stored below the crust layer. Ridge spaces are defined in the early stages of crust development, as identified by Fourier Transform analysis, but wider wavelengths become more pronounced over time. We present a conceptual model accounting for the driving forces (subsurface, surface and atmospheric moisture) and feedbacks between these and surface shape that lead to crust pattern trajectories between highly emissive degraded surfaces and less emissive ridged or continuous crusts. These findings improve our understanding of temporal changes in dust availability and supply from playa source regions.

  14. Depths of Magma Chambers in the Icelandic Crust

    Science.gov (United States)

    Kelley, D. F.; Kapostasy, D. D.; Barton, M.

    2004-05-01

    There is considerable interest in the structure and thermal state of the crust in Iceland, which lies across the Mid Atlantic Ridge. However, interpretations of seismic and gravity data yield conflicting views of the nature of the lower crust. Some interpretations prefer a model in which the lower crust (15-25 km) is relatively cool and solid, whereas other interpretations, based largely on gravity data, prefer a model in which the lower crust is relatively warm and possibly partially molten. Knowledge of the depth of magma chambers is critical to constrain the geothermal gradient in Icelandic crust and to resolve discrepancies in interpretation of geophysical data. Analyses of aphyric lavas and of glasses in Icelandic lavas erupted from 11 volcanic centers have been compiled. The compositions are picritic and basaltic with SiO2 - 47 to 50 wt%, MgO - 6 to 15wt%, FeO - 8 to 14wt%, to, Na2O - 1.3 to 3.3 wt%, and K2O - 0.03-46 wt%. The pressures of equilibration of these liquids with ol, high-Ca pyx and plag were estimated qualitatively from projections into the pseudoternary system Ol-Di-Silica using methods described by Walker and coworkers and Grove and coworkers. The results (ca. 0.5 GPa) indicate crystallization in magma chambers located at about 16 km depth. Equilibration pressures were also calculated using the method described by Yang and coworkers and by a modified version of this method. Calculated pressures (0.45±0.15 GPa) indicate magma chambers located at 15±4 km depth. Equilibration pressures for Rekjanes Ridge glasses determined using the same techniques are 0.2±0.1 GPa, corresponding to depths of 7.6±3 km. The results indicate the presence of magma chambers in the deep Icelandic crust and that the latter is relatively warm. Shallower chambers (3-7 km) have been identified from seismic studies suggesting a complex magma plumbing system. The results also confirm that magma chambers beneath Iceland are located at greater depths than those beneath the

  15. Crustal accretion along the global mid-ocean ridge system based on basaltic glass and olivine-hosted melt inclusion compositions

    Science.gov (United States)

    Wanless, V. D.; Behn, M. D.

    2015-12-01

    The depth and distribution of crystallization at mid-ocean ridges controls the overall architecture of the oceanic crust, influences hydrothermal circulation, and determines geothermal gradients in the crust and uppermost mantle. Despite this, there is no overall consensus on how crystallization is distributed within the crust/upper mantle or how this varies with spreading rate. Here, we examine crustal accretion at mid-ocean ridges by combining crystallization pressures calculated from major element barometers on mid-ocean ridge basalt (MORB) glasses with vapor-saturation pressures from melt inclusions to produce a detailed map of crystallization depths and distributions along the global ridge system. We calculate pressures of crystallization from >11,500 MORB glasses from the global ridge system using two established major element barometers (1,2). Additionally, we use vapor-saturation pressures from >400 olivine-hosted melt inclusions from five ridges with variable spreading rates to constrain pressures and distributions of crystallization along the global ridge system. We show that (i) crystallization depths from MORB glasses increase and become less focused with decreasing spreading rate, (ii) maximum glass pressures are greater than the maximum melt inclusion pressure, which indicates that the melt inclusions do not record the deepest crystallization at mid-ocean ridges, and (iii) crystallization occurs in the lower crust/upper mantle at all ridges, indicating accretion is distributed throughout the crust at all spreading rates, including those with a steady-state magma lens. Finally, we suggest that the remarkably similar maximum vapor-saturation pressures (~ 3000 bars) in melt inclusion from all spreading rates reflects the CO2 content of the depleted upper mantle feeding the global mid-ocean ridge system. (1) Michael, P. & W. Cornell (1998), Journal of Geophysical Research, 103(B8), 18325-18356; (2) Herzberg, C. (2004), Journal of Petrology, 45(12), 2389.

  16. Greenland Fracture Zone-East Greenland Ridge(s) revisited: Indications of a C22-change in plate motion?

    DEFF Research Database (Denmark)

    Døssing, Arne; Funck, T.

    2012-01-01

    a reinterpretation of the Greenland Fracture Zone -East Greenland Ridge based on new and existing geophysical data. Evidence is shown for two overstepping ridge segments (Segments A and B) of which Segment A corresponds to the already known East Greenland Ridge while Segment B was not detected previously......Changes in the lithospheric stress field, causing axial rift migration and reorientation of the transform, are generally proposed as an explanation for anomalously old crust and/or major aseismic valleys in oceanic ridge-transform-ridge settings. Similarly, transform migration of the Greenland...... Fracture Zone and separation of the 200-km-long, fracture-zone-parallel continental East Greenland Ridge from the Eurasia plate is thought to be related to a major change in relative plate motions between Greenland and Eurasia during the earliest Oligocene (Chron 13 time). This study presents...

  17. Lithosphere, crust and basement ridges across Ganga and Indus basins and seismicity along the Himalayan front, India and Western Fold Belt, Pakistan

    Science.gov (United States)

    Ravi Kumar, M.; Mishra, D. C.; Singh, B.

    2013-10-01

    Spectral analysis of the digital data of the Bouguer anomaly of North India including Ganga basin suggest a four layer model with approximate depths of 140, 38, 16 and 7 km. They apparently represent lithosphere-asthenosphere boundary (LAB), Moho, lower crust, and maximum depth to the basement in foredeeps, respectively. The Airy's root model of Moho from the topographic data and modeling of Bouguer anomaly constrained from the available seismic information suggest changes in the lithospheric and crustal thicknesses from ˜126-134 and ˜32-35 km under the Central Ganga basin to ˜132 and ˜38 km towards the south and 163 and ˜40 km towards the north, respectively. It has clearly brought out the lithospheric flexure and related crustal bulge under the Ganga basin due to the Himalaya. Airy's root model and modeling along a profile (SE-NW) across the Indus basin and the Western Fold Belt (WFB), (Sibi Syntaxis, Pakistan) also suggest similar crustal bulge related to lithospheric flexure due to the WFB with crustal thickness of 33 km in the central part and 38 and 56 km towards the SE and the NW, respectively. It has also shown the high density lower crust and Bela ophiolite along the Chamman fault. The two flexures interact along the Western Syntaxis and Hazara seismic zone where several large/great earthquakes including 2005 Kashmir earthquake was reported. The residual Bouguer anomaly maps of the Indus and the Ganga basins have delineated several basement ridges whose interaction with the Himalaya and the WFB, respectively have caused seismic activity including some large/great earthquakes. Some significant ridges across the Indus basin are (i) Delhi-Lahore-Sargodha, (ii) Jaisalmer-Sibi Syntaxis which is highly seismogenic. and (iii) Kachchh-Karachi arc-Kirthar thrust leading to Sibi Syntaxis. Most of the basement ridges of the Ganga basin are oriented NE-SW that are as follows (i) Jaisalmer-Ganganagar and Jodhpur-Chandigarh ridges across the Ganga basin intersect

  18. The Impact of Fe-Ti Oxide Concentration on the Structural Rigidity of the Lower Oceanic Crust, Atlantis Bank, Southwest Indian Ridge

    Science.gov (United States)

    Deans, J. R.; Winkler, D. A.

    2017-12-01

    Fe-Ti oxides are important components of oceanic core complexes (OCC) formed at slow-spreading ridges, since Fe-Ti oxide phases form throughout the crustal column and are weaker than silicate phases. This study investigated the predicted relationship between the presence and concentration of Fe-Ti oxides and the presence/intensity of crystal-plastic deformation in samples from Atlantis Bank, Southwest Indian Ridge (SWIR). Atlantis Bank is an OCC that formed through the exhumation of lower oceanic crust along a detachment shear zone/fault. OCCs form along slow-spreading ridges and are characterized by the complex interactions between magmatism and crustal extension, thus, making them more susceptible to crystal-plastic deformation at higher temperatures and for weaker phases like Fe-Ti oxides to preferentially partition strain. Atlantis Bank has been the focus of many scientific expeditions to various sites including; Ocean Drilling Program (ODP) Holes 735B and 1105A, and the International Oceanic Discovery Program (IODP) Hole U1473A. A total of 589 thin sections from all three holes were analyzed using the software package Fiji to calculate the Fe-Ti oxide concentration within the thin sections. The Fe-Ti oxide percentage was correlated with the crystal-plastic fabric (CPF) intensity, from 0-5 (no foliation - ultramylonite), for each thin section using the statistical software R. All three holes show a positive correlation between the abundance of Fe-Ti oxides and the CPF intensity. Specifically, 76.3% of samples with a concentration of 5% or more Fe-Ti oxides have a corresponding CPF intensity value of 2 or more (porphyroclastic foliation - ultramylonitic). The positive correlation may be explained by the Fe-Ti oxides preferentially partitioning strain, especially at temperatures below where dry plagioclase can recrystallize. This allows for a mechanism of continued slip along the shear zone or form new shear zones at amphibolite grade conditions while the lower

  19. Mantle Convection beneath the Aegir Ridge, a Shadow in the Iceland Hotspot

    Science.gov (United States)

    Howell, S. M.; Ito, G.; Breivik, A. J.; Hanan, B. B.; Mjelde, R.; Sayit, K.; Vogt, P. R.

    2012-12-01

    The Iceland Hotspot has produced extensive volcanism spanning much of the ocean basin between Greenland and Norway, forming one of the world's largest igneous provinces. However, an apparent igneous "shadow" in hotspot activity is located at the fossil Aegir Ridge, which formed anomalously thin crust, despite this ridge being near the Iceland hotspot when it was active. The Aegir Ridge accommodated seafloor spreading northeast of present-day Iceland from the time of continental breakup at ~55 Ma until ~25 Ma, at which point spreading shifted west to the Kolbeinsey Ridge. To address the cause of the anomalously thin crust produced by the Aegir Ridge, we use three-dimensional numerical models to simulate the interaction between a mantle plume beneath the Iceland hotspot, rifting continental lithosphere, and the time-evolving North Atlantic ridge system. Two end-member hypotheses were investigated: (1) Material emanating from the Iceland mantle plume was blocked from reaching the Aegir Ridge by the thick lithosphere of the Jan Mayen Microcontinent as the Kolbeinsey Ridge began rifting it from Greenland at ~30 Ma, just east of the plume center; (2) Plume material was not blocked and did reach the Aegir Ridge, but had already experienced partial melting closer to the hotspot. This material was then unable to produce melt volumes at the Aegir Ridge comparable to those of pristine mantle. To test these hypotheses, we vary the volume flux and viscosity of the plume, and identify which conditions do and do not lead to the Aegir Ridge forming anomalously thin crust. Results show that the combination of plume material being drawn into the lithospheric channels beneath the Reykjanes Ridge and Kolbeinsey Ridge after their respective openings, and the impedance of plume flow by the Jan Mayen Microcontinent (hypothesis 1), can deprive the Aegir Ridge of plume influence. This leads to low crustal thicknesses that are comparable to those observed. We have yet to produce a model

  20. Crustal structure of the Murray Ridge, northwest Indian Ocean, from wide-angle seismic data

    Science.gov (United States)

    Minshull, T. A.; Edwards, R. A.; Flueh, E. R.

    2015-07-01

    The Murray Ridge/Dalrymple Trough system forms the boundary between the Indian and Arabian plates in the northern Arabian Sea. Geodetic constraints from the surrounding continents suggest that this plate boundary is undergoing oblique extension at a rate of a few millimetres per year. We present wide-angle seismic data that constrains the composition of the Ridge and of adjacent lithosphere beneath the Indus Fan. We infer that Murray Ridge, like the adjacent Dalrymple Trough, is underlain by continental crust, while a thin crustal section beneath the Indus Fan represents thinned continental crust or exhumed serpentinized mantle that forms part of a magma-poor rifted margin. Changes in crustal structure across the Murray Ridge and Dalrymple Trough can explain short-wavelength gravity anomalies, but a long-wavelength anomaly must be attributed to deeper density contrasts that may result from a large age contrast across the plate boundary. The origin of this fragment of continental crust remains enigmatic, but the presence of basement fabrics to the south that are roughly parallel to Murray Ridge suggests that it separated from the India/Seychelles/Madagascar block by extension during early breakup of Gondwana.

  1. Oceanographer transform fault structure compared to that of surrounding oceanic crust: Results from seismic refraction data analysis

    Science.gov (United States)

    Ambos, E. L.; Hussong, D. M.

    1986-02-01

    A high quality seismic refraction data set was collected near the intersection of the tranform portion of the Oceanographer Fracture Zone (OFZ) with the adjacent northern limb of the Mid-Atlantic Ridge spreading center (MAR). One seismic line was shot down the axis of the transform valley. Another was shot parallel to the spreading center, crossing from normal oceanic crust into the transform valley, and out again. This latter line was recorded by four Ocean Bottom Seismometers (OBSs) spaced along its length, providing complete reversed coverage over the crucial transform valley zone. Findings indicate that whereas the crust of the transform valley is only slightly thinner (4.5 km) compared to normal oceanic crust (5-8 km), the structure is different. Velocities in the range of 6.9 to 7.7. km/sec, which are characteristics of seismic layer 3B, are absent, although a substantial thickness (approximately 3 km) of 6.1-6.8 km/sec material does appear to be present. The upper crust, some 2 km in thickness, is characterized by a high velocity gradient (1.5 sec -1) in which veloxity increases from 2.7 km/sec at the seafloor to 5.8 km/sec at the base of the section. A centrally-located deep of the transform valley has thinner crust (1-2 km), whereas the crust gradually thickens past the transform valley-spreading center intersection. Analysis of the seismic line crossing sub-perpendicular to the transform valley demonstrates abrupt thinning of the upper crustal section, and thickening of the lower crust outside of the trasform valley. In addition, high-velocity material seems to occur under the valley flanks, particularly the southern flanking ridge. This ridge, which is on the side of the transform opposite to the intersection of spreading ridge and transform, may be an expression of uplifted, partially serpentinized upper mantle rocks.

  2. Ferromanganese oxides from Mid-Indian ridge, seamounts and abyssal plains from the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, P.S.; Pattan, J.N.

    .47%) in the seamount crusts. The ferromanganese oxides from the Mid-Indian Ridge, seamount crusts and abyssal nodules appear to be of hydrothermal, hydrogenous and early-diagenetic in origin respectively...

  3. Influence of substrate rocks on Fe-Mn crust composition

    Science.gov (United States)

    Hein, J.R.; Morgan, C.L.

    1999-01-01

    Principal Component and other statistical analyses of chemical and mineralogical data of Fe-Mn oxyhydroxide crusts and their underlying rock substrates in the central Pacific indicate that substrate rocks do not influence crust composition. Two ridges near Johnston Atoll were dredged repetitively and up to seven substrate rock types were recovered from small areas of similar water depths. Crusts were analyzed mineralogically and chemically for 24 elements, and substrates were analyzed mineralogically and chemically for the 10 major oxides. Compositions of crusts on phosphatized substrates are distinctly different from crusts on substrates containing no phosphorite. However, that relationship only indicates that the episodes of phosphatization that mineralized the substrate rocks also mineralized the crusts that grew on them. A two-fold increase in copper contents in crusts that grew on phosphatized clastic substrate rocks, relative to crusts on other substrate rock types, is also associated with phosphatization and must have resulted from chemical reorganization during diagenesis. Phosphatized crusts show increases in Sr, Zn, Ca, Ba, Cu, Ce, V, and Mo contents and decreases in Fe, Si, and As contents relative to non-phosphatized crusts. Our statistical results support previous studies which show that crust compositions reflect predominantly direct precipitation from seawater (hydrogenetic), and to lesser extents reflect detrital input and diagenetic replacement of parts of the older crust generation by carbonate fluorapatite.

  4. Forearc oceanic crust in the Izu-Bonin arc - new insights from active-source seismic survey -

    Science.gov (United States)

    Kodaira, S.; Noguchi, N.; Takahashi, N.; Ishizuka, O.; Kaneda, Y.

    2009-12-01

    Petrological studies have suggested that oceanic crust is formed in forearc areas during the initial stage of subduction. However, there is little geophysical evidence for the formation of oceanic crust in those regions. In order to examine crustal formation process associated with a subduction initiation process, we conducted an active-source seismic survey at a forearc region in the Izu-Bonin intra-oceanic arc. The resultant seismic image shows a remarkably thin crust (less than 10 km) at the northern half of the Bonin ridge (at the north of the Chichi-jima) and abrupt thickening the crust (~ 20 km thick) toward the south (at the Haha-jima). Comparison of velocity-depth profiles of the thin forearc crust of the Bonin ridge with those of typical oceanic crusts showed them to be seismologically identical. The observed structural variation also well corresponds to magmatic activities along the forearc. Boninitic magmatism is evident in the area of thin crust and tholeiitic-calcalkaline andesitic volcanism in the area of thick crust. Based on high precision dating studies of those volcanic rocks, we interpreted that the oceanic-type thin crust associated with boninitic volcanism has been created soon after the initiation of subduction (45-48 Ma) and and that the nonoceanic thick crust was created by tholeiitic-calcalkaline andesitic magmatism after the boninitic magmatism was ceased. The above seismological evidences strongly support the idea of forearc oceanic crust (or phiolite) created by forearc spreading in the initial stage of subduction along the intra-oceanic arc.

  5. The extent of continental crust beneath the Seychelles

    Science.gov (United States)

    Hammond, J. O. S.; Kendall, J.-M.; Collier, J. S.; Rümpker, G.

    2013-11-01

    The granitic islands of the Seychelles Plateau have long been recognised to overlie continental crust, isolated from Madagascar and India during the formation of the Indian Ocean. However, to date the extent of continental crust beneath the Seychelles region remains unknown. This is particularly true beneath the Mascarene Basin between the Seychelles Plateau and Madagascar and beneath the Amirante Arc. Constraining the size and shape of the Seychelles continental fragment is needed for accurate plate reconstructions of the breakup of Gondwana and has implications for the processes of continental breakup in general. Here we present new estimates of crustal thickness and VP/VS from H-κ stacking of receiver functions from a year long deployment of seismic stations across the Seychelles covering the topographic plateau, the Amirante Ridge and the northern Mascarene Basin. These results, combined with gravity modelling of historical ship track data, confirm that continental crust is present beneath the Seychelles Plateau. This is ˜30-33 km thick, but with a relatively high velocity lower crustal layer. This layer thins southwards from ˜10 km to ˜1 km over a distance of ˜50 km, which is consistent with the Seychelles being at the edge of the Deccan plume prior to its separation from India. In contrast, the majority of the Seychelles Islands away from the topographic plateau show no direct evidence for continental crust. The exception to this is the island of Desroche on the northern Amirante Ridge, where thicker low density crust, consistent with a block of continental material is present. We suggest that the northern Amirantes are likely continental in nature and that small fragments of continental material are a common feature of plume affected continental breakup.

  6. Marginal ridge fracture resistance, microleakage and pulpal response to glass ionomer/glass cermet partial tunnel restorations.

    Science.gov (United States)

    Prabhu, N T; Munshi, A K; Shetty, T R

    1997-01-01

    Sixty sound premolars which were to be extracted for orthodontic treatment purposes were restored either with glass ionomer cement or glass cermet cements after partial tunnel preparation, and prior to the extraction after a time interval of 30 and 60 days respectively. The teeth were then subjected to marginal ridge fracture resistance, microleakage study using dye penetration and histological evaluation of the pulpal response to these materials. Both the materials exhibited increase in marginal ridge fracture resistance at 60 days, with minimal degree of microleakage and were biologically compatible with the dental pulp.

  7. Controls on thallium uptake during hydrothermal alteration of the upper ocean crust

    Science.gov (United States)

    Coggon, Rosalind M.; Rehkämper, Mark; Atteck, Charlotte; Teagle, Damon A. H.; Alt, Jeffrey C.; Cooper, Matthew J.

    2014-11-01

    Hydrothermal circulation is a fundamental component of global biogeochemical cycles. However, the magnitude of the high temperature axial hydrothermal fluid flux remains disputed, and the lower temperature ridge flank fluid flux is difficult to quantify. Thallium (Tl) isotopes behave differently in axial compared to ridge flank systems, with Tl near-quantitatively stripped from the intrusive crust by high temperature hydrothermal reactions, but added to the lavas during low temperature reaction with seawater. This contrasting behavior provides a unique approach to determine the fluid fluxes associated with axial and ridge flank environments. Unfortunately, our understanding of the Tl isotopic mass balance is hindered by poor knowledge of the mineralogical, physical and chemical controls on Tl-uptake by the ocean crust. Here we use analyses of basaltic volcanic upper crust from Integrated Ocean Drilling Program Hole U1301B on the Juan de Fuca Ridge flank, combined with published analyses of dredged seafloor basalts and upper crustal basalts from Holes 504B and 896A, to investigate the controls on Tl-uptake by mid-ocean ridge basalts and evaluate when in the evolution of the ridge flank hydrothermal system Tl-uptake occurs. Seafloor basalts indicate an association between basaltic uptake of Tl from cold seawater and uptake of Cs and Rb, which are known to partition into K-rich phases. Although there is no clear relationship between Tl and K contents of seafloor basalts, the data do not rule out the incorporation of at least some Tl into the same minerals as the alkali elements. In contrast, we find no relationship between the Tl content and either the abundance of secondary phyllosilicate minerals, or the K, Cs or Rb contents in upper crustal basalts. We conclude that the uptake of Tl and alkali elements during hydrothermal alteration of the upper crust involves different processes and/or mineral phases compared to those that govern seafloor weathering. Furthermore

  8. Volcanism and hydrothermalism on a hotspot-influenced ridge: Comparing Reykjanes Peninsula and Reykjanes Ridge, Iceland

    Science.gov (United States)

    Pałgan, Dominik; Devey, Colin W.; Yeo, Isobel A.

    2017-12-01

    Current estimates indicate that the number of high-temperature vents (one of the primary pathways for the heat extraction from the Earth's mantle) - at least 1 per 100 km of axial length - scales with spreading rate and should scale with crustal thickness. But up to present, shallow ridge axes underlain by thick crust show anomalously low incidences of high-temperature activity. Here we compare the Reykjanes Ridge, an abnormally shallow ridge with thick crust and only one high-temperature vent known over 900 km axial length, to the adjacent subaerial Reykjanes Peninsula (RP), which is characterized by high-temperature geothermal sites confined to four volcanic systems transected by fissure swarms with young (Holocene) volcanic activity, multiple faults, cracks and fissures, and continuous seismic activity. New high-resolution bathymetry (gridded at 60 m) of the Reykjanes Ridge between 62°30‧N and 63°30‧N shows seven Axial Volcanic Ridges (AVR) that, based on their morphology, geometry and tectonic regime, are analogues for the volcanic systems and fissure swarms on land. We investigate in detail the volcano-tectonic features of all mapped AVRs and show that they do not fit with the previously suggested 4-stage evolution model for AVR construction. Instead, we suggest that AVR morphology reflects the robust or weak melt supply to the system and two (or more) eruption mechanisms may co-exist on one AVR (in contrast to 4-stage evolution model). Our interpretations indicate that, unlike on the Reykjanes Peninsula, faults on and around AVRs do not cluster in orientation domains but all are subparallel to the overall strike of AVRs (orthogonal to spreading direction). High abundance of seamounts shows that the region centered at 62°47‧N and 25°04‧W (between AVR-5 and -6) is volcanically robust while the highest fault density implies that AVR-1 and southern part of AVR-6 rather undergo period of melt starvation. Based on our observations and interpretations we

  9. Long-term evolution of a propagating non-transform offset on the Mid-Atlantic Ridge over the last 26 m.y.

    Science.gov (United States)

    Zheng, T.; Tucholke, B. E.; Lin, J.

    2017-12-01

    By making plate reconstructions from Chron 8n ( 26.54 Ma) to present and analyzing multibeam bathymetry, long-range HMR1 sidescan sonar images, residual mantle Bouguer gravity anomaly (RMBA) and gravity-derived crust thickness, we investigated the structure and evolution of a propagating non-transform discontinuity (NTD) and adjacent ridge segments that now intersect the Mid-Atlantic Ridge (MAR) axis at 25°37'N. The NTD has propagated consistently northward since Chron 8n at a rate of 4.76 km/m.y. Offset across the NTD since Chron 6an (22 Ma) has been right lateral and has ranged from 8-52 km. Key features are: 1) Inside-corner (IC) crust consistently has higher values of RMBA than the adjacent ridge segments, implying thinner crust. 2) IC crust typically exhibits elevated, irregular edifices. Slopes of the NTD walls are steeper at ICs than at outside corners (OCs). Steep (up to 40°), abrupt slopes are particularly pronounced at the IC on the north side of the NTD. 3) OC crust is deeper and normally exhibits long linear ridges that curve toward the MAR axis at the southern edge of the NTD but show little curvature at the northern edge. 4) Width of the NTD between its northern and southern walls (at mid-depth) has ranged from 2 to 22 km, averaging 15 km. 5) The NTD valley was intermittently crossed by individual ridges or blocks every 5-60 km (average 20 km) along the run of the NTD. The ridges curve along the transtensional plate boundary within the NTD but are often discontinuous. HMR1 data show lumpy small-scale topography and occasional volcanic cones on the ridges and blocks. Their intermittency indicates that melt intruded sporadically into the NTD. Propagation of the NTD occurred as the transtensional plate boundary within the NTD jumped northward from a volcanic ridge axis or block, apparently as magmatism waned. The jumps captured crust and transferred it to the east flank only within the NTD, not from the northern IC edifices. We propose two possible

  10. A comparison of chemical compositions of reported altered oceanic crusts and global MORB data set: implication for isotopic heterogeneity of recycled materials

    Science.gov (United States)

    Shimoda, G.; Kogiso, T.

    2017-12-01

    Chemical composition of altered oceanic crust is one of important constraints to delineate chemical heterogeneity of the mantle. Accordingly, many researchers have been studied to determine bulk chemical composition of altered oceanic crust mainly based on chemical compositions of old oceanic crusts at Site 801 and Site 417/418, and young crust at Site 504 (e.g., Staudigel et al., 1996; Bach et al. 2003; Kuo et al., 2016). Their careful estimation provided reliable bulk chemical compositions of these Sites and revealed common geochemical feature of alteration. To assess effect of recycling of altered oceanic crust on chemical evolution of the mantle, it might be meaningful to discuss whether the reported chemical compositions of altered oceanic crusts can represent chemical composition of globally subducted oceanic crusts. Reported chemical compositions of fresh glass or less altered samples from Site 801, 417/418 and 504 were highly depleted compared to that of global MORB reported by Gale et al. (2013), suggesting that there might be sampling bias. Hence, it could be important to consider chemical difference between oceanic crusts of these three Sites and global MORB to discuss effect of recycling of oceanic crust on isotopic heterogeneity of the mantle. It has been suggested that one of controlling factors of chemical variation of oceanic crust is crustal spreading rate because different degree of partial melting affects chemical composition of magmas produced at a mid-ocean ridge. Crustal spreading rate could also affect intensity of alteration. Namely, oceanic crusts produced at slow-spreading ridges may prone to be altered due to existence of larger displacement faults compared to fast spreading ridges which have relatively smooth topography. Thus, it might be significant to evaluate isotopic evolution of oceanic crusts those were produced at different spreading rates. In this presentation, we will provide a possible chemical variation of altered oceanic

  11. Seismofocal zones and mid-ocean ridges - look outside of the plate paradigm

    Science.gov (United States)

    Anokhin, Vladimir; Kholmianskii, Mikhail

    2014-05-01

    Seismofocal zones and mid-ocean ridges - look outside of the plate paradigm Vladimir M. Anokhin, Mikhail A. Kholmianskii Configuration of the seismofocal zones (SFZ), visible in a real position of the focuses of earthquakes, has a significant step component (jagged) expressed by the presence of several sub-horizontal "seismoplanes", which concentrates focuses of earthquakes (depths 10, 35 km and other). Orientation of seismolines inside of SFZ tends to 4 main directions: 0-5 dgr, 120-145 dgr, 40-55 dgr, 85-90 dgr. These facts suggest significantly block, a terraced structure of the body of Benioff zone. The borders of blocks have orientation according directions regmatic net of the Earth. In accordance with this, SFZ can be presented as the most active segments of the border of the crossing: «continent-ocean», having the following properties: - block (terraced) structure; - in some sites - dive under the continental crust (in present time); - prevailing compression (in present time), perhaps, as the period of the oscillatory cycle; Infinite "subduction" in SFZ is unlikely. One of the areas where there is proof of concept of far "spreading" is the southernmost tip of the mid-oceanic Gakkel ridge in the Laptev sea (Arctic ocean). Here active "spreading" ridge normal approaches to the boundary of the continental crust - the shelf of the Laptev sea. On the shelf there are a number of subparallel NW grabens. NE fault zone Charlie, controlling the continental slope is established stepped fault without shift component. This means that the amount of extending of the offshore grabens does not significantly differ from the scale of spreading in the Gakkel ridge. However, the total spreads grabens (50-100 km) 6-10 times less than the width of the oceanic crust (600 km) in the surrounding area. Conclusion: the oceanic crust in the Laptev sea was formed mainly not due to "spreading". It is very likely that here was sinking and the processing of continental crust in the ocean

  12. Permeability changes due to mineral diagenesis in fractured crust: implications for hydrothermal circulation at mid-ocean ridges

    Science.gov (United States)

    Fontaine, Fabrice Jh.; Rabinowicz, Michel; Boulègue, Jacques

    2001-01-01

    The hydrothermal processes at ridge crests have been extensively studied during the last two decades. Nevertheless, the reasons why hydrothermal fields are only occasionally found along some ridge segments remain a matter of debate. In the present study we relate this observation to the mineral precipitation induced by hydrothermal circulation. Our study is based on numerical models of convection inside a porous slot 1.5 km high, 2.25 km long and 120 m wide, where seawater is free to enter and exit at its top while the bottom is held at a constant temperature of 420°C. Since the fluid circulation is slow and the fissures in which seawater circulates are narrow, the reactions between seawater and the crust achieve local equilibrium. The rate of mineral precipitation or dissolution is proportional to the total derivative of the temperature with respect to time. Precipitation of minerals reduces the width of the fissures and thus percolation. Using conventional permeability versus porosity laws, we evaluate the evolution of the permeability field during the hydrothermal circulation. Our computations begin with a uniform permeability and a conductive thermal profile. After imposing a small random perturbation on the initial thermal field, the circulation adopts a finger-like structure, typical of convection in vertical porous slots thermally influenced by surrounding walls. Due to the strong temperature dependence of the fluid viscosity and thermal expansion, the hot rising fingers are strongly buoyant and collide with the top cold stagnant water layer. At the interface of the cold and hot layers, a horizontal boundary layer develops causing massive precipitation. This precipitation front produces a barrier to the hydrothermal flow. Consequently, the flow becomes layered on both sides of the front. The fluid temperature at the top of the layer remains quite low: it never exceeds a temperature of 80°C, well below the exit temperature of hot vent sites observed at

  13. Shear velocities in the oceanic crust at the East Pacific Rise 9° 18' N to 10° 30' N from compliance measurements

    Science.gov (United States)

    Nooner, S. L.; Webb, S. C.; Crawford, W. C.

    2007-12-01

    Compliance was measured at 21 sites along the East Pacific Rise (EPR) from 9° 18' N to 10° 30' N during the MADCAP (Melt And Diking from Compliance And Pressure) experiment on the R/V Atlantis from February 13 to March 19, 2007. Measurements at 10° 30' N across the ridge segment 22 km north of the Clipperton transform fault show a stiff lower crust, which suggests that there is little crustal melt. This is consistent with previous descriptions of this segment as "magmatically starved" based on its morphology. Most of the compliance measurements were made on the EPR segment south of the Clipperton transform fault. At the northern end of this ridge segment, a compliance transect at 10° 2' N spans the ridge axis and continues to a seamount 16 km east. These measurements indicate that shear velocities are low beneath the ridge axis but increase rapidly off axis to the east, suggesting no magmatic connection between the ridge axis and the Watchstander seamount chain. Shear velocities beneath the nearest (and most recently active) seamount are similar to other off axis sites, suggesting that there is little or no crustal melt there. A 26 km long compliance transect across the ridge axis near 9° 20' N suggests that the region of low crustal shear velocities is constrained to within 3-4 km of the ridge axis. The compliance measurements preclude the existence of a melt body 18-20 km east of the ridge axis as had been inferred from an apparent mid-crustal reflector observed in a recent OBS experiment. The compliance over that site show low shear velocities only in the uppermost crust associated with a thick layer 2A. A final compliance transect stretches northward along the ridge axis and across the Clipperton ridge-transform intersection (RTI). Measurements made north of where the ridge crosses the inferred location of the RTI show lower crustal shear velocities than normal for off-axis crust, but this observation is consistent with previous refraction work that

  14. Gakkel Ridge: A window to ancient asthenosphere

    Science.gov (United States)

    Snow, J.; Hellebrand, E.; Dick, H.; Liu, C.; Stracke, A.

    2008-12-01

    We are accustomed to thinking of the ambient mantle as being a well-stirred reservoir, which contains at most regions of stored subducted slabs and "plums" containing lithophile trace element enrichments. What is forgotten in all of this is that the main process of formation of heterogeneities is a negative one - generating 10x more depleted mantle at any given moment than it does oceanic crust. Because the volume of lithosphere subducted over Earth history is so large, it has always been assumed that the process of subduction and convective mixing re-homogenizes the depleted and enriched reservoirs about as fast as it produces them. What if it doesn't? Our primary means of studying mantle heterogeneity however is basalts. Direct study of the mantle entails observations on xenoliths, ophiolites and orogenic lherzolites, and abyssal peridotites. The latter have the inherent problems of being melting residues, associated with fracture zones, are highly serpentinized and rare. The arctic ridge system gives us a unique perspective on the mantle, and samples we have recovered there are relatively free from these problems. Due to the slow spreading rate, which apparently severely limits the melt productivity, the thickest crust in the Arctic ridge system is approximately "normal". The most common crust is about half thickness and there are large expanses with no crust at all, in the sense of Hess, 1962, exposing mantle peridotite in the floor of extensive rift zones. We have shown Os isotopic evidence for the survival of ancient depletion signatures in Gakkel abyssal peridotites that apparently were not destroyed by subduction, convective stirring or resetting during magma genesis (Liu, et al., 2008). Additionally, preliminary Nd isotopic evidence suggests at least a 400Ma intact prehistory for these samples. Apparently, the low melt productivity on Gakkel Ridge has allowed the Gakkel mantle rocks to escape significant resetting due to melt interaction. This implies a

  15. Origin of the Louisville Ridge and its relationship to the Eltanin Fracture Zone System

    Science.gov (United States)

    Watts, A. B.; Weissel, J. K.; Duncan, R. A.; Larson, R. L.

    1988-04-01

    We have combined shipboard and Seasat altimeter derived data in an intergrated geological and geophysical study of the Louisville Ridge; a 3500-km-long seamount chain extending from the Tonga trench to the Eltanin Fracture Zone. A break in the smooth trend of the ridge at latitude 37.5°S has been recognized in both bathymetric and altimetric data. The 40Ar-39Ar dating of rocks dredged either side of the break suggest that it is analogous to the bend in the Hawaiian-Emperor seamount chain. Although the general trend of the ridge can be fit by small circles about Pacific absolute motion poles determined from other seamount chains, the new bathymetric and age data allow us to refine Pacific absolute motion poles. The continuity in smooth trend of the ridge and the Eltanin Fracture Zone suggests some relationship between them. However, a major offset developed on this transform between 60 and 80 Ma, prior to the oldest dated rocks from the ridge. Although magmatism was more or less continuous on the ridge during 28-60 Ma, it probably occurred on crust with little or no offset. Thus magmatism appears to have been little influenced by the developing fracture zone. By 28 Ma, the distance between the magmatic source and the fracture zone had decreased sufficiently for a portion of the ridge to have been emplaced on crust with an offset. After about 12 Ma, however, volcanic activity on the Louisville Ridge apparently waned, despite a possible influence on the magmatism of the fracture zone.

  16. Compressive fracture resistance of the marginal ridge in large Class II tunnels restored with cermet and composite resin.

    Science.gov (United States)

    Ehrnford, L E; Fransson, H

    1994-01-01

    Compressive fracture resistance of the marginal ridge was studied in large tunnel preparations, before and after restoration with cermet (Ketac Silver, ESPE), a universal hybrid composite (Superlux, DMG) and an experimental composite. Each group was represented by six tunnels in extracted upper premolars. The tunnels were prepared by the use of round burs up to size #6. Remaining ridge width was 1.5 mm and ridge height 1.7 mm in the contact area. The ridge was loaded to fracture by a rod placed perpendicular to the ridge. Generally this resulted in a shear fracture of the restoration. There was no significant reinforcement of the ridge by the cermet whereas the composites both reinforced by the same magnitude, averaging 62%. It was concluded that the ridge could be considered a "megafiller" where contact need to be preserved and contour protected against proximal and occlusal wear of the restoration. Clinically there would therefore be good reasons to save even ridge areas with very low inherent strength. Based on the present study composite resin might therefore be the filling material of choice for such tunnel preparations.

  17. Elastic and electrical properties and permeability of serpentinites from Atlantis Massif, Mid-Atlantic Ridge

    Science.gov (United States)

    Falcon-Suarez, Ismael; Bayrakci, Gaye; Minshull, Tim A.; North, Laurence J.; Best, Angus I.; Rouméjon, Stéphane

    2017-11-01

    Serpentinized peridotites co-exist with mafic rocks in a variety of marine environments including subduction zones, continental rifts and mid-ocean ridges. Remote geophysical methods are crucial to distinguish between them and improve the understanding of the tectonic, magmatic and metamorphic history of the oceanic crust. But, serpentinite peridotites exhibit a wide range of physical properties that complicate such a distinction. We analysed the ultrasonic P- and S-wave velocities (Vp, Vs) and their respective attenuation (Qp-1, Qs-1), electrical resistivity and permeability of four serpentinized peridotite samples from the southern wall of the Atlantis Massif, Mid-Atlantic Ridge, collected during International Ocean Discovery Program Expedition 357. The measurements were taken over a range of loading-unloading stress paths (5-45 MPa), using ∼1.7 cm length, 5 cm diameter samples horizontally extracted from the original cores drilled on the seafloor. The measured parameters showed variable degrees of stress dependence, but followed similar trends. Vp, Vs, resistivity and permeability show good inter-correlations, while relationships that included Qp-1 and Qs-1 are less clear. Resistivity showed high contrast between highly serpentinized ultramafic matrix (>50 Ω m) and mechanically/geochemically altered (magmatic/hydrothermal-driven alteration) domains (serpentinization and the alteration state of the rock, contrasted by petrographic analysis. This study shows the potential of combining seismic techniques and controlled source electromagnetic surveys for understanding tectonomagmatic processes and fluid pathways in hydrothermal systems.

  18. Development of the negative gravity anomaly of the 85 E Ridge ...

    Indian Academy of Sciences (India)

    2Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India. 3National ... different crust-sediment structural configurations of the ridge that were existing at three geological ages, ... characteristic negative gravity anomaly and com- ... to determine the crustal structure and isostatic.

  19. Geophysical signatures over and around the northern segment of the 85 degrees E Ridge, Mahanadi offshore, Eastern Continental Margin of India: Tectonic implications

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, M.; Ramana, M.V.; Ramprasad, T.; Anuradha, M.; Lall, M.V.; Kumar, B.J.P.

    composition, intrusive bodies and discrete nature of underlying crust. The ridge is associated with large amplitude negative magnetic and gravity anomalies. The negative gravity response across the ridge is probably due to emplacement of relatively low density...

  20. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Hein, J.R.; Conrad, T.; Mizell, K.; Banakar, V.K.; Frey, F.A.; Sager, W.W.

    adsorbed on the Fe oxyhydroxide. The enrichment of Ni, Zn, and Cu in the phosphatized crust reflects preferential adsorption into the tunnel structure of todorokite. The rare earth element plus yttrium (REY) patterns indicate a lower oxidation potential...

  1. Magnetization of lower oceanic crust and upper mantle

    Science.gov (United States)

    Kikawa, E.

    2004-05-01

    The location of the magnetized rocks of the oceanic crust that are responsible for sea-floor spreading magnetic anomalies has been a long-standing problem in geophysics. The recognition of these anomalies was a key stone in the development of the theory of plate tectonics. Our present concept of oceanic crustal magnetization is much more complex than the original, uniformly magnetized model of Vine-Matthews-Morley Hypothesis. Magnetic inversion studies indicated that the upper oceanic extrusive layer (Layer 2A of 0.5km thick) was the only magnetic layer and that it was not necessary to postulate any contribution from deeper parts of oceanic crust. Direct measurements of the magnetic properties of the rocks recovered from the sea floor, however, have shown that the magnetization of Layer 2A, together with the observations that this layer could record geomagnetic field reversals within a vertical section, is insufficient to give the required size of observed magnetic anomalies and that some contribution from lower intrusive rocks is necessary. Magnetization of oceanic intrusive rocks were observed to be reasonably high enough to contribute to sea-floor spreading magnetic anomalies, but were considered somewhat equivocal until late 1980Os, in part because studies had been conducted on unoriented dredged and ophiolite samples and on intermittent DSDP/ODP cores. Since ODP Leg 118 that cored and recovered continuous 500m of oceanic intrusive layer at Site 735B, Southwest Indian Ridge with an extremely high recovery of 87 percent, there have been several ODP Legs (legs 147, 153, 176, 179 and 209) that were devoted to drilling gabbroic rocks and peridotites. In terms of the magnetization intensities, all of the results obtained from these ODP Legs were supportive of the model that a significant contribution must come from gabbros and peridotites and the source of the lineated magnetic anomalies must reside in most of the oceanic crust as well as crust-mantle boundary

  2. Analysis of crustal thickness and off-axis low-velocity zones at the Endeavour segment of the Juan de Fuca Ridge

    Science.gov (United States)

    Wells, A. E.; Hooft, E. E.; Toomey, D. R.; Wilcock, W. S.; Weekly, R. T.

    2010-12-01

    Construction of the oceanic crust is often thought to occur by delivery of melt from the mantle to the ridge axis that is both segment-centered and rise-centered. However, recent seismic studies at the fast-spreading East Pacific Rise show that mantle melt delivery can be skewed relative to the rise leading to off-axis delivery of melt. Furthermore foci of mantle melt delivery occur on a length-scale shorter than that of a ridge segment and the region of greater melt supply, as measured by crustal thickness, does not correspond to the segment center. We use seismic data from the intermediate-spreading Endeavour segment of the Juan de Fuca Ridge to investigate the spatial and temporal pattern of melt supply in this setting and whether off-axis delivery and transport of melt is a common occurrence. The Juan de Fuca Ridge has a transitional morphology characterized by fault-bounded ridges that parallel the spreading center. Previous models of the Endeavour segment inferred that the off-axis ridges are constructed during periods of enhanced magmatism and that these are separated by the remains of rift valleys generated during periods of reduced magmatism. This model may imply that crustal thickness should vary rapidly, with thicker crust beneath the off-axis ridges and thinner crust in between. Alternatively, on the basis of recent seismic reflection images of crustal magma bodies along the Juan de Fuca ridge this topography is thought to reflect magma-induced deformation resulting from feedbacks between the rheology of the crust above the magma sill and dike intrusion. In this case, short wavelength crustal thickness variations may not be present. The melting anomalies associated with various nearby seamount chains also influence processes along the Juan de Fuca Ridge. The seismic reflection work indicates that there is a ~40-km-wide plateau of greater crustal thickness (~0.5-1.0 km) at the center of the Endeavour segment that began forming about 0.7 Ma. The plateau

  3. Costa Rica Rift Revisited: Constraints on Shallow and Deep Hydrothermal Circulation in Oceanic Crust

    Science.gov (United States)

    Davis, E. E.; Becker, K.; He, J.

    2002-12-01

    New heat-flow observations made along two seismic reflection profiles on 6 Ma crust of the Costa Rica Rift flank show an inverse correlation between heat flow and sediment thickness similar to that observed on other sedimented ridges and young ridge flanks. Extrapolation of the seafloor heat-flow values to the top of the igneous crust - justified by comparing seafloor and borehole determinations where observations are colocated - show the surface of the igneous crust to be of uniform temperature despite large local sediment thickness variations. This is consistent with observations made at DSDP/ODP Holes 504B and 896A where basement temperatures are observed to be nearly identical, also despite contrasting sediment thicknesses. Efficient lateral heat exchange via vigorous crustal hydrothermal circulation is required to create the degree of uniformity inferred and observed. Permeability measurements at the two drill sites show that this vigorous circulation may be restricted to as little as the uppermost tens of m of the crust. Permeability determined deeper in Hole 504B is too low to permit thermally significant flow, although temperature logs suggest that thermally significant flow extends throughout the 2 km section penetrated at Site 504, presumably via pathways not intersected by the borehole. The laterally uniform temperatures in the uppermost igneous crust here and elsewhere are remarkable given the small apparent depth-extent of the circulation that so efficiently distributes heat. While certainly not as vigorous, the circulation at depth suggested by the temperature logs at Site 504 is also noteworthy; unfortunately the observation cannot be generalized because of the lack of other deep crustal holes that could permit direct observations, and the lack of a method for inferring deep hydrothermal structure.

  4. Dacite petrogenesis on mid-ocean ridges: Evidence for oceanic crustal melting and assimilation

    Science.gov (United States)

    Wanless, V.D.; Perfit, M.R.; Ridley, W.I.; Klein, E.

    2010-01-01

    Whereas the majority of eruptions at oceanic spreading centers produce lavas with relatively homogeneous mid-ocean ridge basalt (MORB) compositions, the formation of tholeiitic andesites and dacites at mid-ocean ridges (MORs) is a petrological enigma. Eruptions of MOR high-silica lavas are typically associated with ridge discontinuities and have produced regionally significant volumes of lava. Andesites and dacites have been observed and sampled at several locations along the global MOR system; these include propagating ridge tips at ridge-transform intersections on the Juan de Fuca Ridge and eastern Gal??pagos spreading center, and at the 9??N overlapping spreading center on the East Pacific Rise. Despite the formation of these lavas at various ridges, MOR dacites show remarkably similar major element trends and incompatible trace element enrichments, suggesting that similar processes are controlling their chemistry. Although most geochemical variability in MOR basalts is consistent with low-pressure fractional crystallization of various mantle-derived parental melts, our geochemical data for MOR dacitic glasses suggest that contamination from a seawater-altered component is important in their petrogenesis. MOR dacites are characterized by elevated U, Th, Zr, and Hf, low Nb and Ta concentrations relative to rare earth elements (REE), and Al2O3, K2O, and Cl concentrations that are higher than expected from low-pressure fractional crystallization alone. Petrological modeling of MOR dacites suggests that partial melting and assimilation are both integral to their petrogenesis. Extensive fractional crystallization of a MORB parent combined with partial melting and assimilation of amphibole-bearing altered crust produces a magma with a geochemical signature similar to a MOR dacite. This supports the hypothesis that crustal assimilation is an important process in the formation of highly evolved MOR lavas and may be significant in the generation of evolved MORB in

  5. Partial melting of lower oceanic crust gabbro: Constraints from poikilitic clinopyroxene primocrysts

    Science.gov (United States)

    Leuthold, Julien; Lissenberg, C. Johan; O'Driscoll, Brian; Karakas, Ozge; Falloon, Trevor; Klimentyeva, Dina N.; Ulmer, Peter

    2018-03-01

    Successive magma batches underplate, ascend, stall and erupt along spreading ridges, building the oceanic crust. It is therefore important to understand the processes and conditions under which magma differentiates at mid ocean ridges. Although fractional crystallization is considered to be the dominant mechanism for magma differentiation, open-system igneous complexes also experience Melting-Assimilation-Storage-Hybridization (MASH, Hildreth and Moorbath, 1988) processes. Here, we examine crystal-scale records of partial melting in lower crustal gabbroic cumulates from the slow-spreading Atlantic oceanic ridge (Kane Megamullion; collected with Jason ROV) and the fast-spreading East Pacific Rise (Hess Deep; IODP expedition 345). Clinopyroxene oikocrysts in these gabbros preserve marked intra-crystal geochemical variations that point to crystallization-dissolution episodes of the gabbro eutectic assemblage. Kane Megamullion and Hess Deep clinopyroxene core1 primocrysts and their plagioclase inclusions indicate crystallization from high temperature basalt (>1160 and >1200°C, respectively), close to clinopyroxene saturation temperature (fundamental mechanisms for generating the wide compositional variation observed in mid-ocean ridge basalts. We furthermore propose that such processes operate at both slow- and fast-spreading ocean ridges. Thermal numerical modelling shows that the degree of lower crustal partial melting at slow-spreading ridges can locally increase up to 50%, but the overall crustal melt volume is low (less than ca. 5% of total mantle-derived and crustal melts; ca. 20% in fast-spreading ridges).

  6. Growth of the continental crust: a planetary-mantle perspective

    International Nuclear Information System (INIS)

    Warren, P.H.

    1988-01-01

    The lack of earth rocks older than about 3.8 Ga is frequently interpreted as evidence that the earth formed little or no subduction-resistant continental crust during the first 700 My of its history. Such models obviously imply that the pre-3.8 Ga earth was covered entirely or almost entirely by smoothly subducting oceanic crust. On the other hand, the thermal regime of the early earth probably tended to cause the oceanic crust at this time to be comparatively thin and comparatively mafic. The present earth is covered by about 50 percent oceanic crust, averaging about 7 km in thickness, and 41 percent continental crust, averaging roughly 40 km in thickness. Thus continentless-early-earth models would seem to imply a total mass of crust less than 1/3 that of the present day earth. Possible explanations are examined

  7. Rapid cooling rates at an active mid-ocean ridge from zircon thermochronology

    Science.gov (United States)

    Schmitt, Axel K.; Perfit, Michael R.; Rubin, Kenneth H.; Stockli, Daniel F.; Smith, Matthew C.; Cotsonika, Laurie A.; Zellmer, Georg F.; Ridley, W. Ian

    2011-01-01

    Oceanic spreading ridges are Earth's most productive crust generating environment, but mechanisms and rates of crustal accretion and heat loss are debated. Existing observations on cooling rates are ambiguous regarding the prevalence of conductive vs. convective cooling of lower oceanic crust. Here, we report the discovery and dating of zircon in mid-ocean ridge dacite lavas that constrain magmatic differentiation and cooling rates at an active spreading center. Dacitic lavas erupted on the southern Cleft segment of the Juan de Fuca ridge, an intermediate-rate spreading center, near the intersection with the Blanco transform fault. Their U–Th zircon crystallization ages (29.3-4.6+4.8 ka; 1δ standard error s.e.) overlap with the (U–Th)/He zircon eruption age (32.7 ± 1.6 ka) within uncertainty. Based on similar 238U-230Th disequilibria between southern Cleft dacite glass separates and young mid-ocean ridge basalt (MORB) erupted nearby, differentiation must have occurred rapidly, within ~ 10–20 ka at most. Ti-in-zircon thermometry indicates crystallization at 850–900 °C and pressures > 70–150 MPa are calculated from H2O solubility models. These time-temperature constraints translate into a magma cooling rate of ~ 2 × 10-2 °C/a. This rate is at least one order-of-magnitude faster than those calculated for zircon-bearing plutonic rocks from slow spreading ridges. Such short intervals for differentiation and cooling can only be resolved through uranium-series (238U–230Th) decay in young lavas, and are best explained by dissipating heat convectively at high crustal permeability.

  8. Three-Dimensional Seismic Structure of the Mid-Atlantic Ridge: An Investigation of Tectonic, Magmatic, and Hydrothermal Processes in the Rainbow Area

    Science.gov (United States)

    Dunn, Robert A.; Arai, Ryuta; Eason, Deborah E.; Canales, J. Pablo; Sohn, Robert A.

    2017-12-01

    To test models of tectonic, magmatic, and hydrothermal processes along slow-spreading mid-ocean ridges, we analyzed seismic refraction data from the Mid-Atlantic Ridge INtegrated Experiments at Rainbow (MARINER) seismic and geophysical mapping experiment. Centered at the Rainbow area of the Mid-Atlantic Ridge (36°14'N), this study examines a section of ridge with volcanically active segments and a relatively amagmatic ridge offset that hosts the ultramafic Rainbow massif and its high-temperature hydrothermal vent field. Tomographic images of the crust and upper mantle show segment-scale variations in crustal structure, thickness, and the crust-mantle transition, which forms a vertical gradient rather than a sharp boundary. There is little definitive evidence for large regions of sustained high temperatures and melt in the lower crust or upper mantle along the ridge axes, suggesting that melts rising from the mantle intrude as small intermittent magma bodies at crustal and subcrustal levels. The images reveal large rotated crustal blocks, which extend to mantle depths in some places, corresponding to off-axis normal fault locations. Low velocities cap the Rainbow massif, suggesting an extensive near-surface alteration zone due to low-temperature fluid-rock reactions. Within the interior of the massif, seismic images suggest a mixture of peridotite and gabbroic intrusions, with little serpentinization. Here diffuse microearthquake activity indicates a brittle deformation regime supporting a broad network of cracks. Beneath the Rainbow hydrothermal vent field, fluid circulation is largely driven by the heat of small cooling melt bodies intruded into the base of the massif and channeled by the crack network and shallow faults.

  9. Seismic velocity structure of the crust in NW Namibia: Impact of rifting and mantle plume activity

    Science.gov (United States)

    Bauer, K.; Heit, B.; Muksin, U.; Yuan, X.

    2017-12-01

    The continental crust in northwestern Namibiamainly was formed during to the Neoproterozoic assembly of Gondwana. The collision of old African and South American cratonic coressuch as the Congo, Kalahari and Rio de la Plata cratons led tothe development of the Pan-African Damara orogen. The fold systemconsists of an intracratonic branch in northern central Namibia (named Damara Belt), and two coast-parallel branches, the Kaoko Belt in northern Namibia and the Gariep Belt in the border region between Namibia and theRepublic of South Africa. During the Early Cretaceous opening of the South Atlantic ocean, the crust in NW Namibia was prominently affected by the Tristan da Cunha mantle plume, as evidenced by the emplacement of the Etendeka continental flood basalts.A local earthquake tomography was carried out in NW Namibia to investigateif and to what degree the deeper continental crust was modified by the magmaticactivity during rifting and the impingement of the Tristan da Cunhamantle plume. We analyzed data from 28 onshore stations of the temporaryWALPASS seismic network. Stations were covering the continental marginaround the landfall of the Walvis Ridge, parts of the Kaoko Belt and Damara Belt,and marginally the southwestern edges of the Congo craton.First arrivals of P and S waves were identified and travel times werepicked manually. 1D inversion was carried out with VELEST to derivestarting models and the initial seismicity distribution, and SIMUL2000was used for the subsequent 3D tomographic inversion. The resultingseismicity distribution mainly follows the structures of the Pan-Africanorogenic belts. The majority of events was localized in the upper crust,but additional seismicity was also found in the deeper crust.An anomaly of increased P velocities is revealed in the deep crust under the Etendekaflood basalt province. Increased P velocities can be explained by mafic and ultra-maficmaterial which intruded in the lower crust. The anomaly appears to be rather

  10. Seawater Circulation and Thermal Sink at OCEAN Ridges - FIELD Evidence in Oman Ophiolite

    Science.gov (United States)

    Nicolas, A. A.; Boudier, F. I.; Cathles, L. M.; Buck, W. R.; Celerier, B. P.

    2014-12-01

    Exceptionally, the lowermost gabbros in the Oman ophiolite are black and totally fresh, except for minute traces of impregnation by seawater fluids at very high temperature (~1000°C). These black gabbros sharply contrast with normal, whitish gabbros altered down to Low-T~500-350°C. These hydrous alterations are ascribed to an unconventional model of seawater circulation and cooling of the permanent magma chambers of fast spreading ocean ridges. In this model, gabbros issued from the magma chamber cross a ~100 m thick thermal boundary layer (TBL) before reaching a narrow, Low-T high permeability channel where the heated return seawater is flowing towards black smokers and the local gabbros are altered. Uprising mantle diapirs in Oman diverge at ~5 km on each side of the palaeo-ridge axis and feed an overlying magma chamber that closes at this distance from axis. Preservation of black gabbros along the Moho implies that the loop of seawater alteration locally does not reach Moho beyond this ~5km distance (otherwise black gabbros would be altered in whitish gabbros). This defines an internal "thermal sink" within ~5 km to the ridge axis. There, the sink is efficiently cooled by the active hydrothermal convection that is ridge transverse. This has been documented near the Galapagos ridge by marine geophysical data, within the same distance. Beyond this critical distance, the cooling system becomes dominantly conductive and ridge-parallel. The TBL and attached return flow channels must be rising into the overcooled, accreted crust. Beyond the thermal sink, the 500°C isotherm rebounds into the crust. It is only after ~ 1My of crustal drift that this isotherm penetrates into the uppermost mantle in a sustained fashion, developing serpentinites at the expense of peridotites.

  11. Bioinspired design of a ridging shovel with anti-adhesive and drag reducing

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2015-03-01

    Full Text Available Learning from the microstructure of the convex (concave and ridging (triangle and arc-shaped shapes of fresh lotus leaves and shark skin, bionic ridging shovels was designed with the characteristics of adhesion and resistance reduction. Ten ridging shovel models were established, and the interaction process with the soil by ANSYS is discussed. Stress analysis results showed that the bionic ridging shovel was more obvious in visbreaking and in the resistance reduction effect. An indoor soil bin experiment with the bionic ridging shovel and the prototype ridging shovel was operated as follows: the ridging resistance of the three types of ridging shovel was tested under the condition of two soil moistures (18.61% and 20.9% and three different ridging speeds (0.68, 0.87, and 1.11 m/s. In this article, the structure, the mechanism, and their relationship to the functions are discussed. The results of this study will be useful in practical application in the field of agricultural machinery toward practical use and industrialization.

  12. Microbe-mediated transformations of marine dissolved organic matter during 2,100 years of natural incubation in the cold, oxic crust of the Mid-Atlantic Ridge.

    Science.gov (United States)

    Shah Walter, S. R.; Jaekel, U.; Huber, J. A.; Dittmar, T.; Girguis, P. R.

    2015-12-01

    On the western flank of the Mid-Atlantic Ridge, oxic seawater from the deep ocean is downwelled into the basaltic crust, supplying the crustal aquifer with an initial inoculum of organic matter and electron acceptors. Studies have shown that fluids circulating within the crust are minimally altered from original seawater, making this subsurface environment a unique natural experiment in which the fate of marine organic matter and the limitations of microbial adaptability in the context of reduced carbon supply can be examined. To make the subsurface crustal aquifer accessible, two CORK (Circulation Obviation Retrofit Kit) observatories have been installed at North Pond, a sediment-filled depression beneath the oligotrophic Sargasso Sea. Radiocarbon analysis of dissolved inorganic (DIC) and organic carbon (DOC) in samples recovered from these observatories show uncoupled aging between DOC and DIC with Δ14C values of DOC as low as -933‰ despite isolation from the open ocean for, at most, 2,100 years. This extreme value is part of a general trend of decreasing DOC δ13C and Δ14C values with increasing incubation time within the aquifer. Combined with reduced concentrations of DOC, our results argue for selective microbial oxidation of the youngest, most 13C-enriched components of downwelled DOC, possibly identifying these as characteristics of the more bioavailable fractions of deep-ocean dissolved organic matter. They also suggest that microbial oxidation during low-temperature hydrothermal circulation could be an important sink for aged marine dissolved organic matter.

  13. Agglutinated Foraminifera indicate a deep bottom current over the Hovgaard Ridge, West of Spitsbergen

    Science.gov (United States)

    Kaminski, Michael; Frank, Niessen

    2015-04-01

    The Hovgård Ridge is situated in Fram Strait, west of Spitsbergen. The ridge either represents a submerged fragment of continental crust or an upwarped fragmant of ocean crust within the Fram Strait. Its crest rises to a water depth of approx. 1170 m. During Expedition 87 of the Icebreaker POLARSTERN in August 2014, a sediment-echosounding profile was recorded and a boxcore station was collected from the crest of Hovgård Ridge at 1169 m water depth. The surficial sediment at this station consists of dark yellowish brown pebbly-sandy mud with a minor admixture of biogenic components in the coarse fraction. Patches of large tubular foraminifera and isolated pebbles were clearly visible on the sediment surface. The sediment surface of the boxcore was covered with patches of large (>1 mm diameter) large tubular astrorhizids belonging mostly to the species Astrorhiza crassatina Brady, with smaller numbers of Saccorhiza, Hyperammina, and Psammosiphonella. Non-tubular species consist mainly of opportunistic forms such as Psammosphaera and Reophax. The presence of large suspension-feeding tubular genera as well as opportunistic forms, as well as sediment winnowing, point to the presence of a deep current at this locality that is strong enough to disturb the benthic fauna. This is confirmed by data obtained from sediment echosounding, which exhibit lateral variation of relative sedimentation rates within the Pleistocene sedimentary drape covering the ridge indicative of winnowing in a south-easterly direction.

  14. Geology and Geochemistry of Magmatic Rocks from the Southern Part of the Kyushu-Palau Ridge in the Philippine Sea

    Science.gov (United States)

    Lelikov, E. P.; Sedin, V. T.; Pugachev, A. A.

    2018-03-01

    The paper reports the results of a geochemical study of volcanogenic rocks from the southern part of the Kyushu-Palau Ridge. Volcanic structures, such as plateaulike rises, mountain massifs, and single volcanoes, are the major relief-forming elements of the southern part of the Kyushu-Palau Ridge. They are divided into three types according to the features of the relief and geological structure: shield, cone-shaped, and dome-shaped volcanoes. The ridge was formed on oceanic crust in the Late Mesozoic and underwent several stages of evolution with different significance and application of forces (tension and compression). Change in the geodynamic conditions during the geological evolution of the ridge mostly determined the composition of volcanic rocks of deep-mantle nature. Most of the ridge was formed by the Early Paleogene under geodynamic conditions close to the formation of oceanic islands (shield volcanoes) under tension. The island arc formed on the oceanic basement in the compression mode in the Late Eocene-Early Oligocene. Dome-shaped volcanic edifices composed of alkaline volcanic rocks were formed in the Late Oligocene-Early Miocene under tension. Based on the new geochemical data, detailed characteristics of volcanic rocks making up the shield, cone-shape, and dome-shape stratovolcanoes resulting in the features of these volcanic edifices are given for the first time. Continuous volcanism (with an age from the Cretaceous to the Late Miocene and composition from oceanic tholeiite to calc-alkaline volcanites of the island arc type) resulting in growth of the Earth's crust beneath the Kyushu-Palau Ridge was the major factor in the formation this ridge.

  15. Structural Evolution of Transform Fault Zones in Thick Oceanic Crust of Iceland

    Science.gov (United States)

    Karson, J. A.; Brandsdottir, B.; Horst, A. J.; Farrell, J.

    2017-12-01

    Spreading centers in Iceland are offset from the regional trend of the Mid-Atlantic Ridge by the Tjörnes Fracture Zone (TFZ) in the north and the South Iceland Seismic Zone (SISZ) in the south. Rift propagation away from the center of the Iceland hotspot, has resulted in migration of these transform faults to the N and S, respectively. As they migrate, new transform faults develop in older crust between offset spreading centers. Active transform faults, and abandoned transform structures left in their wakes, show features that reflect different amounts (and durations) of slip that can be viewed as a series of snapshots of different stages of transform fault evolution in thick, oceanic crust. This crust has a highly anisotropic, spreading fabric with pervasive zones of weakness created by spreading-related normal faults, fissures and dike margins oriented parallel to the spreading centers where they formed. These structures have a strong influence on the mechanical properties of the crust. By integrating available data, we suggest a series of stages of transform development: 1) Formation of an oblique rift (or leaky transform) with magmatic centers, linked by bookshelf fault zones (antithetic strike-slip faults at a high angle to the spreading direction) (Grimsey Fault Zone, youngest part of the TFZ); 2) broad zone of conjugate faulting (tens of km) (Hreppar Block N of the SISZ); 3) narrower ( 20 km) zone of bookshelf faulting aligned with the spreading direction (SISZ); 4) mature, narrow ( 1 km) through-going transform fault zone bounded by deformation (bookshelf faulting and block rotations) distributed over 10 km to either side (Húsavík-Flatey Fault Zone in the TFZ). With progressive slip, the transform zone becomes progressively narrower and more closely aligned with the spreading direction. The transform and non-transform (beyond spreading centers) domains may be truncated by renewed propagation and separated by subsequent spreading. This perspective

  16. The OSCAR experiment: using full-waveform inversion in the analysis of young oceanic crust

    Science.gov (United States)

    Silverton, Akela; Morgan, Joanna; Wilson, Dean; Hobbs, Richard

    2017-04-01

    The OSCAR experiment aims to derive an integrated model to better explain the effects of heat loss and alteration by hydrothermal fluids, associated with the cooling of young oceanic crust at an axial ridge. High-resolution seismic imaging of the sediments and basaltic basement can be used to map fluid flow pathways between the oceanic crust and the surrounding ocean. To obtain these high-resolution images, we undertake full-waveform inversion (FWI), an advanced seismic imaging technique capable of resolving velocity heterogeneities at a wide range of length scales, from background trends to fine-scale geological/crustal detail, in a fully data-driven automated manner. This technology is widely used within the petroleum sector due to its potential to obtain high-resolution P-wave velocity models that lead to improvements in migrated seismic images of the subsurface. Here, we use the P-wave velocity model obtained from travel-time tomography as the starting model in the application of acoustic, time-domain FWI to a multichannel streamer field dataset acquired in the east Pacific along a profile between the Costa Rica spreading centre and the Ocean Drilling Program (ODP) borehole 504B, where the crust is approximately six million years old. FWI iteratively improves the velocity model by minimizing the misfit between the predicted data and the field data. It seeks to find a high-fidelity velocity model that is capable of matching individual seismic waveforms of the original raw field dataset, with an initial focus on matching the low-frequency components of the early arriving energy. Quality assurance methods adopted during the inversion ensure convergence in the direction of the global minimum. We demonstrate that FWI is able to recover fine-scale, high-resolution velocity heterogeneities within the young oceanic crust along the profile. The highly resolved FWI velocity model is useful in the identification of the layer 2A/2B interface and low-velocity layers that

  17. U, Th, and Pb isotopes in hot springs on the Juan de Fuca Ridge

    International Nuclear Information System (INIS)

    Chen, J.H.

    1987-01-01

    The concentrations and isotopic compositions of U, Th, and Pb in three hydrothermal fluids from the Juan de Fuca Ridge were determined. The samples consisted of 10.2--57.6% of the pure hydrothermal end-members based on Mg contents. The Pb contents of the samples ranged from 34 to 87 ng/g, U from 1.3 to 3.0 ng/g, and Th from 0.2 to 7.7 pg/g. These samples showed large enrichments of Pb and Th relative to deep-sea water and some depletion of U. They did not show coherent relationships with Mg, however, indicating nonideal mixings between the hot hydrothermal fluids and cold ambient seawater. Particles filtered from these hydrothermal fluids contained significant amounts of Th and Pb which may effectively increase the concentration of these elements in the fluids when acidified. The /sup 234/U//sup 238/U values in all samples show a /sup 234/U enrichment relative to the equilibrium value and have a seawater signature. The Pb isotopic composition of the Juan de Fuca hydrothermal fluids resembles that of 21 0 N East Pacific Rise and has a uniform mid-ocean ridge basalt signature. The hydrothermal systems at oceanic spreading ridges have circulated through a large volume of basalts. Therefore Pb in these fluids may represent the best average value of the local oceanic crust. From the effects of U deposition from seawater to the crust and Pb extraction from rock to the ocean, the U/Pb ratio in the hydrothermally altered oceanic crust may be increased significantly. copyright American Geophysical Union 1987

  18. Ocean Ridges and Oxygen

    Science.gov (United States)

    Langmuir, C. H.

    2014-12-01

    The history of oxygen and the fluxes and feedbacks that lead to its evolution through time remain poorly constrained. It is not clear whether oxygen has had discrete steady state levels at different times in Earth's history, or whether oxygen evolution is more progressive, with trigger points that lead to discrete changes in markers such as mass independent sulfur isotopes. Whatever this history may have been, ocean ridges play an important and poorly recognized part in the overall mass balance of oxidants and reductants that contribute to electron mass balance and the oxygen budget. One example is the current steady state O2 in the atmosphere. The carbon isotope data suggest that the fraction of carbon has increased in the Phanerozoic, and CO2 outgassing followed by organic matter burial should continually supply more O2 to the surface reservoirs. Why is O2 not then increasing? A traditional answer to this question would relate to variations in the fraction of burial of organic matter, but this fraction appears to have been relatively high throughout the Phanerozoic. Furthermore, subduction of carbon in the 1/5 organic/carbonate proportions would contribute further to an increasingly oxidized surface. What is needed is a flux of oxidized material out of the system. One solution would be a modern oxidized flux to the mantle. The current outgassing flux of CO2 is ~3.4*1012 moles per year. If 20% of that becomes stored organic carbon, that is a flux of .68*1012 moles per year of reduced carbon. The current flux of oxidized iron in subducting ocean crust is ~2*1012 moles per year of O2 equivalents, based on the Fe3+/Fe2+ ratios in old ocean crust compared to fresh basalts at the ridge axis. This flux more than accounts for the incremental oxidizing power produced by modern life. It also suggests a possible feedback through oxygenation of the ocean. A reduced deep ocean would inhibit oxidation of ocean crust, in which case there would be no subduction flux of oxidized

  19. Petrology of the axial ridge of the Mariana Trough backarc spreading center

    International Nuclear Information System (INIS)

    Hawkins, J.W.; Lonsdale, P.F.; Macdougall, J.D.; Volpe, A.M.

    1990-01-01

    The axial ridge of the Mariana Trough backarc basin, between 17deg40'N and 18deg30'N rises as much as 1 km above the floor of a 10-15 km wide rift valley. Physiographic segmentation, with minor ridge offsets and overlaps, coincides with a petrologic segmentation seen in trace element and isotope chemistry. Analyses of 239 glass and 40 aphyric basalt samples, collected with ALVIN and by dredging, show that the axial ridge is formed largely of (olivine) hypersthene-normative tholeiitic basalt. About half of these are enriched in both LIL elements and volatiles, but are depleted in HFS elements like other rocks found throughout much of the Mariana Trough. The LIL enrichments distinguish these rocks from N-MORB even though Nd and Sr isotope ratios indicate that much of the crust formed from a source similar to that for N-MORB. In addition to LIL-enriched basalt there is LIL depleted basalts even more closely resembling N-MORB in major and trace elements as well as Sr, Nd and Pb isotopes. Both basalt varieties have higher Al and lower total Fe than MORB at equivalent Mg level. Mg ranges from relatively ''primitive'' (e.g. Mg 65-70) to more highly fractionated (e.g. Mg 45-50). Highest parts of the axial ridge are capped by pinnacles with elongated pillows of basaltic andesite (e.g. 52-56%) SiO 2 . These are due to extreme fractional crystallization of basalts forming the axial ridge. Active hydrothermal vents with chimneys and mats of opaline silica, barite, sphalerite and lesser amounts of pyrite, chalcopyrite and galena formed near these silicic rocks. The vents are surrounded by distinctive vent animals, polychaete worms, crabs and barnacles. Isotope data indicate that the Mariana Trough crust was derived from a heterogeneous source including mantle resembling the MORB-source and an ''arc-source'' component. The latter was depleted in HFS elements in previous melting events and later modified by addition of H 2 O and LIL elements. (orig.)

  20. Seismic Structure of the Shallow Mantle Beneath the Endeavor Segment of the Juan de Fuca Ridge

    Science.gov (United States)

    VanderBeek, B. P.; Toomey, D. R.; Hooft, E. E.; Wilcock, W. S.; Weekly, R. T.; Soule, D. C.

    2013-12-01

    We present tomographic images of the seismic structure of the shallow mantle beneath the intermediate-spreading Endeavor segment of the Juan de Fuca ridge. Our results provide insight into the relationship between magma supply from the mantle and overlying ridge crest processes. We use seismic energy refracted below the Moho (Pn), as recorded by the Endeavor tomography (ETOMO) experiment, to image the anisotropic and isotropic P wave velocity structure. The ETOMO experiment was an active source seismic study conducted in August 2009 as part of the RIDGE2000 science program. The experimental area extends 100 km along- and 60 km across-axis and encompasses active hydrothermal vent fields near the segment center, the eastern end of the Heck seamount chain, and two overlapping spreading centers (OSCs) at either end of the segment. Previous tomographic analyses of seismic arrivals refracted through the crust (Pg), and reflected off the Moho (PmP), constrain a three-dimensional starting model of crustal velocity and thickness. These Pg and PmP arrivals are incorporated in our inversion of Pn travel-time data to further constrain the isotropic and anisotropic mantle velocity structure. Preliminary results reveal three distinct mantle low-velocity zones, inferred as regions of mantle melt delivery to the base of the crust, that are located: (i) off-axis near the segment center, (ii) beneath the Endeavor-West Valley OSC, and (iii) beneath the Cobb OSC near Split Seamount. The mantle anomalies are located at intervals of ~30 to 40 km along-axis and the low velocity anomalies beneath the OSCs are comparable in magnitude to the one located near the segment center. The direction of shallow mantle flow is inferred from azimuthal variations in Pn travel-time residuals relative to a homogeneous isotropic mantle. Continuing analysis will focus on constraining spatial variations in the orientation of azimuthal anisotropy. On the basis of our results, we will discuss the transport of

  1. Tectonics of ridge-transform intersections at the Kane fracture zone

    Science.gov (United States)

    Karson, J. A.; Dick, H. J. B.

    1983-03-01

    The Kane Transform offsets spreading-center segments of the Mid-Atlantic Ridge by about 150 km at 24° N latitude. In terms of its first-order morphological, geological, and geophysical characteristics it appears to be typical of long-offset (>100 km), slow-slipping (2 cm yr-1) ridge-ridge transform faults. High-resolution geological observations were made from deep-towed ANGUS photographs and the manned submersible ALVIN at the ridge-transform intersections and indicate similar relationships in these two regions. These data indicate that over a distance of about 20 km as the spreading axes approach the fracture zone, the two flanks of each ridge axis behave in very different ways. Along the flanks that intersect the active transform zone the rift valley floor deepens and the surface expression of volcanism becomes increasingly narrow and eventually absent at the intersection where only a sediment-covered ‘nodal basin’ exists. The adjacent median valley walls have structural trends that are oblique to both the ridge and the transform and have as much as 4 km of relief. These are tectonically active regions that have only a thin (young volcanics passes laterally into median valley walls with a simple block-faulted character where only volcanic rocks have been found. Along strike toward the fracture zone, the youngest volcanics form linear constructional volcanic ridges that transect the entire width of the fracture zone valley. These volcanics are continuous with the older-looking, slightly faulted volcanic terrain that floors the non-transform fracture zone valleys. These observations document the asymmetric nature of seafloor spreading near ridge-transform intersections. An important implication is that the crust and lithosphere across different portions of the fracture zone will have different geological characteristics. Across the active transform zone two lithosphere plate edges formed at ridge-transform corners are faulted against one another. In the non

  2. Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data

    Science.gov (United States)

    Collett, T.S.; Ladd, J.

    2000-01-01

    Let 164 of the Ocean Drilling Program was designed to investigate the occurrence of gas hydrate in the sedimentary section beneath the Blake Ridge on the southeastern continental margin of North America. Site 994, and 997 were drilled on the Blake Ridge to refine our understanding of the in situ characteristics of natural gas hydrate. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas hydrate-bearing sediments. Downhole logging tool strings deployed on Leg 164 included the Schlumberger quad-combination tool (NGT, LSS/SDT, DIT, CNT-G, HLDT), the Formation MicroScanner (FMS), and the Geochemical Combination Tool (GST). Electrical resistivity (DIT) and acoustic transit-time (LSS/SDT) downhole logs from Sites 994, 995, and 997 indicate the presence of gas hydrate in the depth interval between 185 and 450 mbsf on the Blake Ridge. Electrical resistivity log calculations suggest that the gas hydrate-bearing sedimentary section on the Blake Ridge may contain between 2 and 11 percent bulk volume (vol%) gas hydrate. We have determined that the log-inferred gas hydrates and underlying free-gas accumulations on the Blake Ridge may contain as much as 57 trillion m3 of gas.

  3. Heat Flow and Hydrothermal Circulation of the Lucky Strike Segment, Mid Atlantic Ridge

    Science.gov (United States)

    Bonneville, A.; Escartin, J.; Lucazeau, F.; Cannat, M.; Gouze, P.; von Herzen, R. P.; Adam, C.; Le Bars, M.; Monoury, E.; Vidal, V.

    2003-12-01

    In June 2003, expedition Luckyflux aboard the R/V Poseidon conducted a heat flow survey of a zone centred on the Lucky Strike segment of the Mid Atlantic ridge south of the Azores between ˜35° N and 39° N. Using a 5 m-long lance with 7 outrigger thermal probes, about 150 successful thermal gradient measurements were obtained, 140 of these with in-situ thermal conductivity. Measurements were made at ˜1 mile intervals along several profiles, where adequately sedimented sites were identified using 6-channel and 3.5 kHz seismic data from the previous Sudazores'98 cruise. We conducted heat flow measurements in two areas: a near axis region within the V-shaped ridge of overthickened crust that emanated from the Azores hotspot between ˜14 and 4 Ma, and an off-axis region East of the V-shaped ridge. The off-axis region is characterized by an homogeneous sediment cover, 300-400 m thick, and crustal ages varying between ˜6 and >10 Ma. Long wavelength (tens of km) low heat flow anomalies can be identified but the mean of 160 mWm-2 is comparable to the conductive heat flow expected for a crust of that age. Along two 80-km profiles perpendicular to the ridge, we observed coherent but different patterns. On the first profile, low heat flow values of 20-50 mWm-2 are observed at the base of the V-shaped ridge. These values are 100 mWm-2 below the profile average, showing that hydrothermal circulations can also affect oceanic crust beneath a thick and relatively impermeable sediment cover. On the other profile, heat flow generally decreases from west to east. On both profiles, higher than average values of heat flow are also present, associated on one of them with a nearly outcropping basement elevation. These contrasting overall heat flow patterns in similar geological context indicate that the likely pattern of hydrothermal circulations is mainly 3D, and not driven only by the presence of basement outcrops. In the near-axis region, where the tectonic structure is more

  4. Effects of Cocos Ridge Collision on the Western Caribbean: Is there a Panama Block?

    Science.gov (United States)

    Kobayashi, D.; La Femina, P. C.; Geirsson, H.; Chichaco, E.; Abrego M, A. A.; Fisher, D. M.; Camacho, E. I.

    2011-12-01

    It has been recognized that the subduction and collision of the Cocos Ridge, a 2 km high aseismic ridge standing on >20 km thick oceanic crust of the Cocos plate, drives upper plate deformation in southern Central America. Recent studies of Global Positioning System (GPS) derived horizontal velocities relative to the Caribbean Plate showed a radial pattern centered on the Cocos Ridge axis where Cocos-Caribbean convergence is orthogonal, and margin-parallel velocities to the northwest. Models of the full three-dimensional GPS velocity field and earthquake slip vectors demonstrate low mechanical coupling along the Middle America subduction zone in Nicaragua and El Salvador, and a broad zone of high coupling beneath the Osa Peninsula, where the Cocos Ridge intersects the margin. These results suggest that Cocos Ridge collision may be the main driver for trench-parallel motion of the fore arc to the northwest and for uplift and shortening of the outer fore arc in southern Central America, whereby thickened and hence buoyant Cocos Ridge crust acts as an indenter causing the tectonic escape of the fore arc. These studies, however, were not able to constrain well the pattern of surface deformation east-southeast of the ridge axis due to a lack of GPS stations, and Cocos Ridge collision may be responsible for the kinematics and deformation of the proposed Panama block. Recent reinforcement of the GPS network in southeastern Costa Rica and Panama has increased the spatial and temporal resolution of the network and made it possible to further investigate surface deformation of southern Central America and the Panama block. We present a new regional surface velocity field for Central America from geodetic GPS data collected at 11 recently-installed and 178 existing episodic, semi-continuous, and continuous GPS sites in Nicaragua, Costa Rica, and Panama. We investigate the effects of Cocos Ridge collision on the Panama block through kinematic block modeling. Published

  5. [Effects of soil crusts on surface hydrology in the semiarid Loess hilly area].

    Science.gov (United States)

    Wei, Wei; Wen, Zhi; Chen, Li-Ding; Chen, Jin; Wu, Dong-Ping

    2012-11-01

    Soil crusts are distributed extensively in the Chinese Loess Plateau and play key roles in surface hydrological processes. In this study, a typical loess hilly region in Anjiagou catchment, Dingxi city, Gansu province was selected as the study region, and soil crusts in the catchment were investigated. Then, the hydrological effect of soil crusts was studied by using multi-sampling and hydrological monitoring experiments. Several key results were shown as follows. Firstly, compared with bared soil without crust cover, soil crusts can greatly reduce the bulk density, improve the porosity of soil, and raise the holding capacity of soil moisture which ranges from 1.4 to 1.9 times of that of bared soil. Secondly, the role of soil crust on rainfall interception was very significant. Moss crust was found to be strongest on rainfall interception, followed by synantectic crusts and lichen crusts. Bared soil without covering crusts was poorest in resisting rainfall splash. Thirdly, hydrological simulation experiments indicate that soil crusts play a certain positive role in promoting the water infiltration capacity, and the mean infiltration rate of the crusted soil was 2 times higher than that of the no-crust covered soils. While the accumulated infiltrated water amounts was also far higher than that of the bared soil.

  6. Pito Deep reveals spatial/temporal variability of accretionary processes in the lower oceanic crust at fast-spread MOR

    Science.gov (United States)

    John, B. E.; Cheadle, M. J.; Gee, J. S.; Coogan, L. A.; Gillis, K. M.

    2017-12-01

    During January and February 2017, the 42-day RV Atlantis PMaG cruise mapped and sampled in-situ fast spread lower crust for 35 km along a flow line at Pito Deep Rift (northeastern Easter microplate). There, ridge-perpendicular escarpments bound Pito Deep and expose up to 3 km sections of crust parallel to the paleo-spreading direction, providing a unique opportunity to test models for the architecture of fast spread lower ocean crust (the plutonic section). Shipboard operations included a >57,000 km2 multi-beam survey; ten Sentry dives over 70 km2 (nominal m-scale resolution) to facilitate acquisition of detailed magnetic and bathymetric data, and optimize Jason II dive siting for rock sampling and geologic mapping; nine Jason II dives in 4 areas, recovering >400 samples of gabbroic lower crust, of which 80% are approximately oriented. Combined Sentry mapping and Jason II sampling and imaging of one area, provides the most detailed documentation of in situ gabbroic crust (>3 km2 of seafloor, over 1000+m vertical section) ever completed. Significantly, the area exposes distinct lateral variation in rock type: in the west 100m of Fe-Ti oxide rich gabbroic rocks overly gabbro and olivine gabbro; however, to the east, exposures of primitive, layered troctolitic rocks extend to within 100m below the dike-gabbro transition. Equivalent troctolitic rocks are found 13 km to the southeast parallel to a flow line, implying shallow primitive rocks are a characteristic feature of EPR lower crust at this location. The high-level position of troctolitic rocks is best explained by construction in a shallow, near steady-state melt lens at a ridge segment center, with some form of gabbro glacier flow active during formation of at least the uppermost lower ocean crust (Perk et al., 2007). Lateral variation in rock type (adjacent oxide gabbro, gabbro, olivine-rich gabbro and troctolite) over short distances taken with complexity in magmatic fabric orientation (mineral and grain size

  7. Modes and implications of mantle and lower-crust denudation at slow-spreading mid-ocean ridges

    Science.gov (United States)

    Schroeder, Timothy John

    Slow-spreading mid-ocean ridges (Cann, 1993, Cannat, 1993). Extension at mid-ocean ridges is most commonly manifested by slip on high angle (˜60°) normal faults that dip into, and define the rift valley walls (Smith and Cann, 1993). Less commonly, extension occurs by long periods of slip along low-angle normal faults that penetrate to structurally deep levels of oceanic lithosphere and denude gabbro and/or pendotite to the seafloor in domal massifs termed "oceanic core complexes" (Dick et al., 1981; Dick et al., 1991; Tucholke et al., 1998; Mutter and Karson, 1992; Cann et al., 1997; MacLeod et al., 2002). This dissertation addresses processes and implications of tectonic extension at two oceanic core complexes. Atlantis Massif (30°N, Mid-Atlantic Ridge) is formed dominantly of serpentinized peridotite with lesser gabbro, and Atlantis Bank (57°E, Southwest Indian Ridge) is dominated by gabbro. Localization of brittle strain at Atlantis Massif occurred by reaction-softening processes associated with metasomatic alteration of peridotite and serpentmite to amphibole-, chlorite- and talc-bearing assemblages. Ductile strain at Atlantis Massif and Atlantis Bank is localized into intervals of highly-fractionated, oxide-rich gabbro. Two-oxide geothermometry of gabbro indicates that it was not penetratively deformed below ˜500°C. Denuded peridotite at Atlantis Massif is host to hydrothermal circulation driven in part by exothermic serpentinization reactions. Serpentinization decreases the seismic velocity of peridotite and leads to acquisition of a magnetic signature. Venting of highly-alkaline, methane- and hydrogen-rich serpentinization-derived fluids leads to lithification of seafloor carbonate ooze by precipitation of carbonate cement in a zone of mixing with "normal" seawater. This process may be the primary depositional mechanism of ophicalcite deposits and likely occurs wherever peridotite is exposed near the Earth's surface and is fractured to permit water

  8. Exploring Microbial Processes with Thermal-Hydrological Models of the Eastern Flank of the Juan de Fuca Ridge

    Science.gov (United States)

    Weathers, T. S.; Fisher, A. T.; Winslow, D. M.; Stauffer, P. H.; Gable, C. W.

    2017-12-01

    The flanks of mid-ocean ridges experience coupled flows of fluid, heat, and solutes that are critical for a wide range of global processes, including the cycling of carbon and nutrients, which supports a vast crustal biosphere. Only a few ridge-flank sites have been studied in detail; hydrogeologic conditions and processes in the volcanic crust are best understood on the eastern flank of the Juan de Fuca Ridge. This area has been extensively explored with decades of drilling, submersible, observatory, and survey expeditions and experiments, including the first hole-to-hole tracer injection experiment in the ocean crust. This study describes the development of reactive transport simulations for this ridge-flank setting using three-dimensional coupled (thermal-hydrological) models of crustal-scale circulation, beginning with the exploration of tracer transport. The prevailing flow direction is roughly south to north as a result of outcrop-to-outcrop flow, with a bulk flow rate in the range of meters/year. However, tracer was detected 500 m south ("upstream") from the injection borehole during the first year following injection. This may be explained by local mixing and/or formation fluid discharge from the southern borehole during and after injection. The constraints and parameters required to fit the observed tracer behavior can be used as a basis for modeling reactive transport processes such as nutrient delivery or microbial community evolution as a function of fluid flow. For example, the sulfate concentration in fluid samples from Baby Bare outcrop ( 8 km south of the tracer transport experiment) was 17.8 mmol/kg, whereas at Mama Bare outcrop ( 8 km to north of the tracer transport experiment) the sulfate concentration was 16.3 mmol/mg. By integrating laboratory-derived sulfate reduction rates from microbial samples originating from Juan de Fuca borehole observatories into reactive transport models, we can explore the range of microbial activity that supports

  9. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: Sulfur geochemistry and reaction modeling

    Science.gov (United States)

    Alt, J.C.; Shanks, Wayne C.

    2003-01-01

    The opaque mineralogy and the contents and isotope compositions of sulfur in serpentinized peridotites from the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) area were examined to understand the conditions of serpentinization and evaluate this process as a sink for seawater sulfur. The serpentinites contain a sulfur-rich secondary mineral assemblage and have high sulfur contents (up to 1 wt.%) and elevated ??34Ssulfide (3.7 to 12.7???). Geochemical reaction modeling indicates that seawater-peridotite interaction at 300 to 400??C alone cannot account for both the high sulfur contents and high ??34Ssulfide. These require a multistage reaction with leaching of sulfide from subjacent gabbro during higher temperature (???400??C) reactions with seawater and subsequent deposition of sulfide during serpentinization of peridotite at ???300??C. Serpentinization produces highly reducing conditions and significant amounts of H2 and results in the partial reduction of seawater carbonate to methane. The latter is documented by formation of carbonate veins enriched in 13C (up to 4.5???) at temperatures above 250??C. Although different processes produce variable sulfur isotope effects in other oceanic serpentinites, sulfur is consistently added to abyssal peridotites during serpentinization. Data for serpentinites drilled and dredged from oceanic crust and from ophiolites indicate that oceanic peridotites are a sink for up to 0.4 to 6.0 ?? 1012 g seawater S yr-1. This is comparable to sulfur exchange that occurs in hydrothermal systems in mafic oceanic crust at midocean ridges and on ridge flanks and amounts to 2 to 30% of the riverine sulfate source and sedimentary sulfide sink in the oceans. The high concentrations and modified isotope compositions of sulfur in serpentinites could be important for mantle metasomatism during subduction of crust generated at slow spreading rates. ?? 2003 Elsevier Science Ltd.

  10. Determining the Extent of Hydrothermal Interaction on the Southern Costa Rica Rift Ridge Flank During the Past 8 Ma from Joint Inversion of Geophysical Data

    Science.gov (United States)

    Wilson, D. J.; Moorkamp, M.; Hobbs, R. W.; Peirce, C.; Harris, R. N.; Morgan, J. V.

    2017-12-01

    Advective hydrothermal systems preferentially develop in zones of high porosity and permeability, driven by a local heat source. Associated chemical reactions lead to changes in the bulk physical properties, so variations in velocity and density, and the relationship connecting them, may provide a record of alteration by hydrothermal fluids. Oceanic crust accreted at intermediate rate ridges displays a range of characteristics between those typical for fast and slow spreading rates so changes in crustal porosity and permeability are sensitive to the interplay between tectonic stretching, magmatic supply and plate motions. Hence, changes in spreading style and sediment cover will influence the extent of the hydrothermal interaction that occurs and the mode of heat loss as evidenced by heat flow measurements. Using a variety of geophysical data we determine where hydrothermal circulation has been active in young oceanic crust that was accreted at an intermediate spreading rate. Results from traveltime tomography along a 300 km profile across the southern flank of the Costa Rica Rift reveal several variations in the P-wave velocity structure of the upper crust (layer 2). Following an initial increase in P-wave velocity near the ridge axis there is a section of the model 80 km in length that has lower P-wave velocity (up to 0.5 km s-1) compared to adjacent crust. This section has shallower bathymetry, by up to 500 m, than predicted by the subsidence curve and the top basement surface is rougher with a greater amount of faulting and larger throws. This zone is preceded by crust with significantly faster P-wave velocities (up to 1.0 km s-1) that was sampled by DSDP/ODP 504B. We characterise these changes in the shallow crustal structure by jointly inverting travel-time data and gravity data with deeper control from coincident magnetotelluric data. Using a cross-gradient approach allows us to search for models with a structural match, thus determining the relationship

  11. Europan double ridge morphometry as a test of formation models

    Science.gov (United States)

    Dameron, Ashley C.; Burr, Devon M.

    2018-05-01

    Double ridges on the Jovian satellite Europa consist of two parallel ridges with a central trough. Although these features are nearly ubiquitous on Europa, their formation mechanism(s) is (are) not yet well-understood. Previous hypotheses for their formation can be divided into two groups based on 1) the expected interior slope angles and 2) the magnitude of interior/exterior slope symmetry. The published hypotheses in the first ("fracture") group entail brittle deformation of the crust, either by diapirism, shear heating, or buckling due to compression. Because these mechanisms imply uplift of near-vertical fractures, their predicted interior slopes are steeper than the angle of repose (AOR) with shallower exterior slopes. The second ("flow") group includes cryosedimentary and cryovolcanic processes - explosive or effusive cryovolcanism and tidal squeezing -, which are predicted to form ridge slopes at or below the AOR. Explosive cryovolcanism would form self-symmetric ridges, whereas effusive cryolavas and cryo-sediments deposited during tidal squeezing would likely not exhibit slope symmetry. To distinguish between these two groups of hypothesized formation mechanisms, we derived measurements of interior slope angle and interior/exterior slope symmetry at multiple locations on Europa through analysis of data from the Galileo Solid State Imaging (SSI) camera. Two types of data were used: i) elevation data from five stereo-pair digital elevation models (DEMs) covering four ridges (580 individual measurements), and ii) ridge shadow length measurements taken on individual images over 40 ridges (200 individual measurements). Our results shows that slopes measured on our DEMs, located in the Cilix and Banded Plains regions, typically fall below the AOR, and slope symmetry is dominant. Two different shadow measurement techniques implemented to calculate interior slopes yielded slope angles that also fall below the AOR. The shallow interior slopes derived from both

  12. Slip on Ridge Transform Faults: Insights From Earthquakes and Laboratory Experiments

    Science.gov (United States)

    2005-06-01

    the volume of continental crust [Turcotte, release reported by the CMT catalog for each RTF. The1986; Aviles et al., 1987; King et al., 1988; Hirata...faults, Teconophyslcs, 118, 313-327. 30(12), 1618, doi:10.1029/2002GL016454. King , G. C. P., R. S. Stein, and J. B. Rundle (1988), The growth of Fnrncis...with temperatures of T < 600’C. Mylonites collected from the Shaka fracture zone on the South West Indian Ridge provide additional evidence for

  13. Did the Chicxulub meteorite impact trigger eruptions at mid-ocean ridges globally?

    Science.gov (United States)

    Byrnes, J. S.; Karlstrom, L.

    2017-12-01

    Are there causal links between the eruption of large igneous provinces, meteorite impacts, and mass extinctions? Recent dating suggests that state shifts in Deccan Traps eruptions, including erupted volumes, feeder dike orientations, and magma chemistry, occurred shortly after the Chicxulub impact. A proposed explanation for this observation is an increase in upper mantle permeability following the Chicxulub impact that accelerated the pace of Deccan volcanism [Richards et al., 2015]. If such triggering occurred, at global distances not associated with the impact antipode, it is reasonable to hypothesize that other reservoirs of stored melt may have been perturbed as well. We present evidence that mid-ocean ridge activity increased globally following the impact. Anomalously concentrated free-air gravity and sea-floor topographic roughness suggest volumes of excess oceanic ridge magmatism in the range of 2 x 105 to 106 km3 within 1 Myrs of the Chicxulub impact. This signal is only clearly observed for half-spreading rates above 35 mm/yr, possibly because crust formed at slower spreading rates is too complex to preserve the signal. Because similar anomalies are observed separately in the Indian and Pacific Oceans, and because the timing of the signal does not clearly align with changes in spreading rates, we do not favor plume activity as an explanation. Widespread mobilization of existing mantle melt by post-impact seismic radiation, and subsequent emplacement of melt as crustal intrusions and eruptions, can explain the volume and distribution of anomalous crust without invoking impact-induced melt production. Although the mechanism for increasing permeability is not clear at either Deccan or mid-ocean ridges, these results support the hypothesis that the causes and consequences of the Deccan Traps, Chicxulub impact, and K-Pg mass extinction should not be considered in isolation. We conclude by discussing several enigmatic observations from K-Pg time that heightened

  14. Martian volcanism: festoon-like ridges on terrestrial basalt flows and implications for Mars

    International Nuclear Information System (INIS)

    Theilig, E.; Greeley, R.

    1987-01-01

    The Fink and Fletcher, and Fink model was used to assess and compare flow rheology for two terrestrial basalt flows and one Martian flow with previous studies. Based on the morphologic similarities between the Martian flows and the Icelandic flows and knowledge of the emplacement of the terrestrial flows, the flows west of Arsia Mons are considered to have been emplaced as large sheet flows from basaltic flood style eruptions. Festoon ridges represent folding of the surface crust in the last stages of emplacement when viscosities would be high due to cooling. Alternatively, the lava may have had a high crystallinity or was erupted at low temperatures. In addition, increased compressive stress behind halted flow fronts or in ponded areas may have contributed to ridge formation

  15. Geosynclinal process and establishment of the earth's crust

    Energy Technology Data Exchange (ETDEWEB)

    Peyve, A V; Ivanov, I B; Knipper, A L; Leonov, M G

    1981-01-01

    The results of work on the commission on geology ''Geosynclinal Process and Establishment of the Earth's Crust'' with 170 participating leading specialists from the USSR, Bulgaria, Hungary, GDR, Poland, Vietnam, Mongolia and Romania have been published in the monographs ''Precambrian Foundation of the East European Platform and Phanerozoic of its Western Surrounding Region''; ''Early Stages of Development of Geosynclines and Their Ophiolite Complexes''; ''Flysch Masses of Some Ridges of Central Eastern Europe''; ''Problems of Geology of Chaotic Complexes''; ''Laws Governing the Development and Spatial Position of Molasses and Regions of Their Formation''; ''Magmatism of the Epoch of Molasse Formation and Ore Mineralization Associated With Them''; ''Tectonic Deformation of Alpine-Type Regions''; ''Deformation and Metamorphism of Rocks''; ''Block Structure and Consolidated Regions of the Earth's Crust''; ''Magmatism and Mineralization in Relation to Phanerozoic Tectonic Processes''; ''Problems of Global Correlation of Geological Phenomena.'' In addition ''Atlas of Structures of Plastic Flow of Rocks'' and ''Dictionary of Molasse Terms'' have been prepared for publication. The work of the international commission not only has theoretical but great practical importance. Joint studies have created an efficient collective with unified approach to the problems of geology and mutual understanding on many particular and general problems of geological knowledge.

  16. Structure, tectonic and petrology of mid-oceanic ridges and the Indian scenario

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Ray, Dwijesh

    floor and the lower magma supply, thicker crust a nd deeper extent of hydrothermal cooling lead to episodic volcanism. Under these conditions, tectonic events rather than volcanic activities are more frequent than at faster spreading ridges, because... centres than at faster - spreading centres depending on whether or not a steady - state magma reservoir can be sustained at a given spreading rate 20 . The critical spreading rate, above which a steady - state magma reservoir can form and below which...

  17. Uplift, Emergence, and Subsidence of the Gorda Escarpment Basement Ridge Offshore Cape Mendocino, CA

    Science.gov (United States)

    Hoover, Susan M.; Tréhu, Anne M.

    2017-12-01

    The Gorda Escarpment is a topographic step that characterizes the south side of the Mendocino Transform Fault east of 126oW and forms the northern edge of the Vizcaino Block. Seismic reflection data suggest that the basement beneath the northern edge of the Vizcaino is composed of east-west trending slivers of oceanic crust that form a 15 km wide band of buried ridges we call the Gorda Escarpment Basement Ridge (GEBR) to distinguish it from the northwest-trending basement structure that characterizes most of the Vizcaino Block. The history of uplift and subsidence of the GEBR is reconstructed by combining the seismic reflection profiles with age and lithological constraints from ODP Site 1022, gravity cores, and grab samples from the northern face of the Escarpment recovered using a remotely operated vehicle. Uplift of the GEBR began prior to 6 Ma, and it was above sea level 3.7-2.5 Ma. GEBR uplift and emergence coincided with sediment deposition on the southern flank of the GEBR that we interpret as indicative of strong upwelling and turbulence in the lee of a shallow ridge and island chain. A bright reflection, interpreted to be a sill, is observed south of the shallowest part of the GEBR. We speculate that this sill may reflect a larger, hidden intrusion at depth and that thermal expansion of the crust combined with tectonic forces to drive enhanced uplift of this segment of the plate boundary. The GEBR has been subsiding since 2.7 Ma, and its shallowest point is now 1,400 m below sea level.

  18. Assessing the Nature of Crust in the Central Red Sea Using Potential Fields and Seismic Reflection Data

    Science.gov (United States)

    Shi, W.; Mitchell, N. C.; Kalnins, L. M.; A Y, I.

    2017-12-01

    The Red Sea is considered an important example of a rifted continental shield proceeding to a seafloor spreading stage of development, and the transition of crustal types there from stretched continental to oceanic should mark the onset of significant mantle melting. However, whether the crust in the central Red Sea is continental or oceanic has been controversial. To contribute to this debate, we assessed the geometry of the basement from potential fields and seismic reflection data. Prior interpretations of basement in deep seismic reflection profiles were first verified using Werner deconvolution of marine magnetic data. The seismic depths were then used to reconstruct basement depth corrected for evaporite and other sediment loading. We found that the basement deepening with distance is similar to that of oceanic crust near mantle plumes such as the Reykjanes Ridge. In both cases, the data show a 35-80 km wide axial plateau followed by a steep 0.4-1.7 km deepening over 30-50 km distance. It has also been suggested that the variability of free-air anomalies observed in lines parallel to the axis is due to crossing oceanic short-offset fracture zones. We assessed this idea by inverting the gravity anomalies for basement relief. Using densities appropriate for oceanic crust and a modified slab formula, we found values for root-mean square (RMS) relief that are comparable to those of weakly sedimented regions of the Mid-Atlantic Ridge. Forward calculations using 2D modelling revealed that the errors in RMS basement relief caused by the slab approximation are 30%, leaving true RMS basement relief still within the range of values for oceanic crust. While these observations by themselves do not rule out an extremely extended continental crust interpretation, combined with previous analysis of refraction velocities, which are oceanic-like, they are supportive of an oceanic crustal interpretation. Additionally, the RMS values and the cross-axis basement relief both

  19. Implications of Nb/U, Th/U and Sm/Nd in plume magmas for the relationship between continental and oceanic crust formation and the development of the depleted mantle

    Science.gov (United States)

    Campbell, Ian H.

    2002-05-01

    The Nb/U and Th/U of the primitive mantle are 34 and 4.04 respectively, which compare with 9.7 and 3.96 for the continental crust. Extraction of continental crust from the mantle therefore has a profound influence on its Nb/U but little influence on its Th/U. Conversely, extraction of midocean ridge-type basalts lowers the Th/U of the mantle residue but has little influence on its Nb/U. As a consequence, variations in Th/U and Nb/U with Sm/Nd can be used to evaluate the relative importance of continental and basaltic crust extraction in the formation of the depleted (Sm/Nd enriched) mantle reservoir. This study evaluates Nb/U, Th/U, and Sm/Nd variations in suites of komatiites, picrites, and their associated basalts, of various ages, to determine whether basalt and/or continental crust have been extracted from their source region. Emphasis is placed on komatiites and picrites because they formed at high degrees of partial melting and are expected to have Nb/U, Th/U, and Sm/Nd that are essentially the same as the mantle that melted to produce them. The results show that all of the studied suites, with the exception of the Barberton, have had both continental crust and basaltic crust extracted from their mantle source region. The high Sm/Nd of the Gorgona and Munro komatiites require the elevated ratios seen in these suites to be due primarily to extraction of basaltic crust from their source regions, whereas basaltic and continental crust extraction are of subequal importance in the source regions of the Yilgarn and Belingwe komatiites. The Sm/Nd of modern midocean ridge basalts lies above the crustal extraction curve on a plot of Sm/Nd against Nb/U, which requires the upper mantle to have had both basaltic and continental crust extracted from it. It is suggested that the extraction of the basaltic reservoir from the mantle occurs at midocean ridges and that the basaltic crust, together with its complementary depleted mantle residue, is subducted to the core

  20. Rainfall intensity effects on crusting and mode of seedling ...

    African Journals Online (AJOL)

    Predicted changes in rainfall intensity due to climate change are likely to influence key soil health parameters, especially structural attributes and crop growth. Variations in rainfall intensity will impact crop ... and growth in these soils. Keywords: climate change, crusting, mineralogy, penetration resistance, soil organic matter ...

  1. Metabolic Activity and Biosignatures of Microbes in the Lower Ocean Crust of Atlantis Bank, IODP Expedition 360

    Science.gov (United States)

    Wee, S. Y.; Edgcomb, V. P.; Burgaud, G.; Klein, F.; Schubotz, F.; Yvon-Lewis, S. A.; Sylvan, J. B.

    2017-12-01

    International Ocean Discovery Program (IODP) Expedition 360 represents the first leg of a multi-phase drilling program, SloMo, aimed at investigating the nature of the lower crust and Moho at slow spreading ridges. The goal of Expedition 360 was to recover a representative transect of the lower oceanic crust formed at Atlantis Bank, an oceanic core complex on the SW Indian Ridge. Recovered cores were primarily gabbro and olivine gabbro, which may potentially host serpentinization reactions and associated microbial life. Our goal was to sample this subseafloor environment and determine quantity, diversity and metabolic capabilities of any resident microbial life. Hole U1473A was drilled during Expedition 360 down to 790 m below seafloor and samples for detection of microbial communities and microbial biosignatures were collected throughout. We present here quantification of microbial biomass via fluorescence microscopy, preliminary analysis of nutrient addition experiments, data from sequencing of microbial 16S rRNA genes, analysis of microbial lipids, and data from Raman spectra of subsurface isolates. We initiated and sampled 12 nutrient addition experiments from 71-745 mbsf by adding sampled rocks to artificial seawater with no additions, added ammonium, added ammonium plus phosphate, and added organic acids. In nearly all of the experiment bottles, methane was detected when samples were collected at six months and again after one year of incubation. Phosphate in the incubations was drawn down, indicating active microbial metabolism, and archaeal lipids from in situ samples indicate the presence of methanogens, corroborating the likelihood of methanogens as the source of detected methane in the nutrient addition incubations. Altogether, the interdisciplinary approach used here provides a peek into life in the subseafloor upper ocean crust.

  2. Mantle melting and melt refertilization beneath the Southwest Indian Ridge: Mineral composition of abyssal peridotites

    Science.gov (United States)

    Chen, Ling; Zhu, Jihao; Chu, Fengyou; Dong, Yan-hui; Liu, Jiqiang; Li, Zhenggang; Zhu, Zhimin; Tang, Limei

    2017-04-01

    As one of the slowest spreading ridges of the global ocean ridge system, the Southwest Indian Ridge (SWIR) is characterized by discontinued magmatism. The 53°E segment between the Gallieni fracture zone (FZ) (52°20'E) and the Gazelle FZ (53°30'E) is a typical amagmatic segment (crustal thickness 1cm) Opx, and Mg-rich mineral compositions akin to harzburgite xenoliths that sample old continental lithospheric mantle (Kelemen et al., 1998). Melt refertilization model shows that Group 2 peridotites were affected by an enriched low-degree partial melt from the garnet stability field. These results indicate that depleted mantle which experiences ancient melting event are more sensitive to melt refertilization, thus may reduce the melt flux, leading to extremely thin crust at 53°E segment. This research was granted by the National Basic Research Programme of China (973 programme) (grant No. 2013CB429705) and the Fundamental Research Funds of Second Institute of Oceanography, State Oceanic Administration (JG1603, SZ1507). References: Johnson K T M, Dick H J B, Shimizu N. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites[J]. Journal of Geophysical Research, 1990, 95(B3):2661-2678. Kelemen P B, Hart S R, Bernstein S. Silica enrichment in the continental upper mantle via melt/rock reaction[J]. Earth & Planetary Science Letters, 1998, 164(1-2):387-406. Zhou H, Dick H J. Thin crust as evidence for depleted mantle supporting the Marion Rise.[J]. Nature, 2013, 494(7436):195-200.

  3. Toward an Integrated Model for the Composition, Structure, and Physical Properties of the Crust in Icelandic Rift Zones

    Science.gov (United States)

    Kelley, D. F.; Panero, W. R.; Barton, M.

    2009-05-01

    The rift zones that extend across Iceland roughly southwest to northeast are the only portion of the mid-Atlantic Ridge that is exposed above sea level. This reflects anomalously high melt productivity in the mantle leading to anomalously thick oceanic crust. There are 30 active volcanic centers in the rift zones. Petrologic studies of the 30 volcanic centers in the active rift zones show that, magmas pond at a mid-crustal level as well as at the base of the crust prior to eruption. The depth of magma chambers at the base of the crust provides an estimate of crustal thickness of (20 ± 2.5 km) in these zones. Melts erupting to the surface directly from chambers at the base of the crust provide one constraint on the composition of the crust because any compositional variations within the crust must be the result of differentiation of these melts. However, the glass compositions indicate that relatively evolved magmas erupted from the deep chambers, suggesting that crystallization of compositionally more primitive magmas also occurred at the base of the crust. Knowledge of crustal thickness, the temperature of melts at the base of the crust, and the compositions of these melts allows development of comprehensive models of the composition, structure and properties of crust within the rift zones. We have developed two end member models: one with variation of mineralogy with depth in the crust due to metamorphism, and one with variation of crustal composition with depth due to fractionation processes. We have also considered models that are plausible combinations of these two end member models. We have calculated well constrained geothermal gradients and used these to predict variations in density, seismic velocity, and bulk modulus with depth. These models which include petrologic and geochemical data are consistent with published geophysical data, therefore provide important constraints on interpretation of geophysical data. In particular, results of this work provide

  4. Petrologic Constraints on Iceland's Lower Crust

    Science.gov (United States)

    Kelley, D. F.; Leftwich, T. E.; Barton, M.

    2005-05-01

    Iceland is an area of relatively thick ocean crust that straddles the spreading MAR. Iceland was created by seafloor spreading originating about 55 Ma above abnormally hot mantle. The high temperatures resulted in greater melt volumes that enhanced crustal thickening. Geophysical investigations provide fundamental insight on crustal features, but results are contradictory. Early seismic, magneto-telluric, and resistivity studies predicted thin crust with partial melt regions at depths of 10-15 km beneath the neovolcanic zones. Reinterpretations based on recent seismic studies suggest thicker and cooler crust. These studies have shown magma lenses at shallow depths beneath volcanic centers, but cannot confirm their presence in the lower crust. Knowledge of the depth of magma chambers is critical to constrain the geothermal gradients in Icelandic crust and to resolve discrepancies in interpretation of geophysical data. Analyses of glasses in Icelandic lavas erupted from 11 volcanic centers throughout the rift zones have been compiled. The pressures of equilibration of these liquids with ol, high-Ca pyx, and plag were estimated qualitatively from projections into the pseudoternary system Ol-Di-Qtz. The results (ca. 0.6 GPa) indicate crystallization in magma chambers located at about 20 km depth. Equilibrium pressures also have been calculated quantitatively. These results (0.6±0.2 GPa) indicate magma chambers at 19.8±6.5 km depth beneath the volcanic centers. Magma chamber at these depths are located in the lower crust inferring that it must be relatively warm. Geothermal gradients have been calculated using the depths of the sourcing magma chambers and any shallow seismically detected magma chambers at each location. An average crustal composition has been calculated from the compiled geochemical data and was used to calculate density variations and seismic velocities along the geotherms. The distribution of sample locations in this study provides sufficient data

  5. A deep hydrothermal fault zone in the lower oceanic crust, Samail ophiolite Oman

    Science.gov (United States)

    Zihlmann, B.; Mueller, S.; Koepke, J.; Teagle, D. A. H.

    2017-12-01

    Hydrothermal circulation is a key process for the exchange of chemical elements between the oceans and the solid Earth and for the extraction of heat from newly accreted crust at mid-ocean ridges. However, due to a dearth of samples from intact oceanic crust, or continuous samples from ophiolites, there remain major short comings in our understanding of hydrothermal circulation in the oceanic crust, especially in the deeper parts. In particular, it is unknown whether fluid recharge and discharge occurs pervasively or if it is mainly channeled within discrete zones such as faults. Here, we present a description of a hydrothermal fault zone that crops out in Wadi Gideah in the layered gabbro section of the Samail ophiolite of Oman. Field observations reveal a one meter thick chlorite-epidote normal fault with disseminated pyrite and chalcopyrite and heavily altered gabbro clasts at its core. In both, the hanging and the footwall the gabbro is altered and abundantly veined with amphibole, epidote, prehnite and zeolite. Whole rock mass balance calculations show enrichments in Fe, Mn, Sc, V, Co, Cu, Rb, Zr, Nb, Th and U and depletions of Si, Ca, Na, Cr, Zn, Sr, Ba and Pb concentrations in the fault rock compared to fresh layered gabbros. Gabbro clasts within the fault zone as well as altered rock from the hanging wall show enrichments in Na, Sc, V, Co, Rb, Zr, Nb and depletion of Cr, Ni, Cu, Zn, Sr and Pb. Strontium isotope whole rock data of the fault rock yield 87Sr/86Sr ratios of 0.7046, which is considerably more radiogenic than fresh layered gabbro from this locality (87Sr/86Sr = 0.7030 - 0.7034), and similar to black smoker hydrothermal signatures based on epidote, measured elsewhere in the ophiolite. Altered gabbro clasts within the fault zone show similar values with 87Sr/86Sr ratios of 0.7045 - 0.7050, whereas hanging wall and foot wall display values only slightly more radiogenic than fresh layered gabbro.The secondary mineral assemblages and strontium isotope

  6. Geophysical Surveys of a Known Karst Feature, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Doll, W.E.; Nyquist, J.E.; Carpenter, P.J.; Kaufmann, R.D.; Carr, B.J.

    1998-01-01

    Geophysical data were acquired at a site on the Oak Ridge Reservation, Tennessee to determine the characteristics of a mud-filled void and to evaluate the effectiveness of a suite of geophysical methods at the site. Methods that were used included microgravity, electrical resistivity, and seismic refraction. Both microgravity and resistivity were able to detect the void as well as overlying structural features. The seismic data provide bedrock depth control for the other two methods, and show other effects that are caused by the void

  7. Gondwana subduction-modified mantle domain prevents magmatic seafloor generation in the Central Indian Ridge

    Science.gov (United States)

    Morishita, T.; Nakamura, K.; Senda, R.; Suzuki, K.; Kumagai, H.; Sato, H.; Sato, T.; Shibuya, T.; Minoguchi, K.; Okino, K.

    2013-12-01

    The creation of oceanic crust at mid-ocean ridges is essential to understanding the genesis of oceanic plate and the evolution of the Earth. Detailed bathymetric measurements coupled with dense sample recovery at mid-ocean ridge revealed a wide range of variations in the ridge and seafloor morphologies, which cannot be simply explained by a spreading rate, but also by ridge geometry, mantle compositions and thermal structure (Dick et al., 2003 Nature; Cannat et al. 2006 Geology). It is now widely accepted that very limited magmatic activity with tectonic stretching generates oceanic core complex and/or smooth seafloor surface in the slow to ultraslow-spreading ridges, where serpentinized peridotite and gabbros are expected to be exposed associated with detachment faults (Cann et al., 1997 Nature; Cannat et al., 2006), although magmatism might be an essential role for the formation of oceanic core complexes (Buck et al., 2005 Nature; Tucholke et al 2008 JGR). A rising question is why magmatic activity is sometimes prevented during the oceanic plate formation. Ancient melting domain, that are too refractory to melt even in adiabatically upwelling to the shallow upper mantle, might cause the amagmatic spreading ridges (Harvey et al., 2006 EPSL, Liu et al.,2008 Nature). Its origin and effect on seafloor generations are, however, not well understood yet. We report an oceanic hill as an example of an ancient subduction-modified mantle domain, probably formed at continental margin of the Gondwanaland~Pangea supercontinent, existing beneath the Central Indian Ridge. This domain is the most likely to have prevented magmatic seafloor generation, resulting in creation of very deep oceanic valley and serpentine diaper (now the studied oceanic hill) at the present Central Indian ridge.

  8. Geophysical Investigation of Upper Mantle Anomalies of the Australian-Antarctic Ridge

    Science.gov (United States)

    Park, S. H.; Choi, H.; Kim, S. S.; Lin, J.

    2017-12-01

    Australian-Antarctic Ridge (AAR) is situated between the Pacific-Antarctic Ridge (PAR) and Southeast Indian Ridge (SEIR), extending eastward from the Australian-Antarctic Discordance (AAD). Much of the AAR has been remained uncharted until 2011 because of its remoteness and harsh weather conditions. Since 2011, four multidisciplinary expeditions initiated by the Korea Polar Research Institute (KOPRI) have surveyed the little-explored eastern ends of the AAR and investigated the tectonics, geochemistry, and hydrothermal activity of this intermediate spreading system. Recent isotope studies using the new basalt samples from the AAR have led to the new hypothesis of the Southern Ocean mantle domain (SOM), which may have originated from the super-plume activity associated with the Gondwana break-up. In this study, we characterize the geophysics of the Southern Ocean mantle using the newly acquired shipboard bathymetry and available geophysical datasets. First, we computed residual mantle Bouguer gravity anomalies (RMBA), gravity-derived crustal thickness, and residual topography along the AAR in order to obtain a geological proxy for regional variations in magma supply. The results of these analyses revealed that the southern flank of the AAR is associated with shallower seafloor, more negative RMBA, thicker crust, and/or less dense mantle in comparison to the conjugate northern flank. Furthermore, this north-south asymmetry becomes more prominent toward the central ridge segments of the AAR. Interestingly, the along-axis depths of the entire AAR are significantly shallower than the neighboring ridge systems and the global ridges of intermediate spreading rates. Such shallow depths are also correlated with regional negative geoid anomalies. Furthermore, recent mantle tomography models consistently showed that the upper mantle (< 250 km) below the AAR has low S-wave velocities, suggesting that it may be hotter than the nearby ridges. Such regional-scale anomalies of the

  9. Biological Soil Crust Web Site

    Science.gov (United States)

    www.soilcrust.org Crust 101 Advanced Gallery References CCERS site Links Biological Soil Crusts Textbook Corrections Level of Development Index Biological soil crusts are the community of organisms , mosses, liverworts and lichens. A Field Guide to Biological Soil Crusts of Western U.S. Drylands: Common

  10. Using bathymetry and reflective seismic profiles to tests a suspected link between melt flux and cumulative fault heave at mid-ocean ridges

    Science.gov (United States)

    Haughton, G.; Murton, B. J.; Le Bas, T.; Henstock, T.

    2017-12-01

    The interplay between magma supply and spreading rate is believed to play a major role in determining large scale seafloor morphology. Here we use bathymetry to test this relationship in areas with similar spreading rates and differing magma supplies. By using open source bathymetry data we have developed a repeatable, automated method for categorising seafloor cumulative fault heave and then attempt to identify the controlling variables. We measure the total apparent fault heave along axis and off-axis at 29°N and 60°N on the Mid-Atlantic Ridge then compare this to proxies for deformation and magma supply. Two approaches are adopted for identifying faults: one using bathymetry and the other spreading-parallel seismic reflection data. The first re-examines the orthogonally spreading Broken Spur segment (26°N) spreading at 23 mm yr-1 (full rate). The other examines the Reykjanes Ridge (60°N) spreading obliquely at 21 mm yr-1 (full rate), which may be influenced by the Icelandic hotspot. Each have contrasting residual depth and structure, with the former being typical of slow spreading ridges, with marked axial valleys, whereas the latter is more typical of fast spreading ridge morphology, with smooth axial rise. We find that high total heave (indicating high tectonic spreading) on the Broken Spur segment does not correlate with high mantle Bouguer anomalies (indicating thin crust and low melt flux). From this we hypothesise that total heave on the large scale at the Broken Spur segment is not controlled by crustal thickness or melt supply. At the Raykjanes Ridge, V-shaped ridges have thicker crust (measured seismically) which converge south of Iceland. These are thought to reflect transient (every 4-6 Myrs) pulses of hot mantle radiating away from the Iceland plume. We find ridge-symmetrical variation in fault heave but with a lower frequency (6-8 Myrs) and longer wavelength (3-7 Myrs) than the V-shaped ridges. Our analysis shows that plume pulses do not

  11. Moho depth variations over the Maldive Ridge and adjoining Arabian and Central Indian Basins, Western Indian Ocean, from three dimensional inversion of gravity anomalies

    Science.gov (United States)

    Kunnummal, Priyesh; Anand, S. P.; Haritha, C.; Rama Rao, P.

    2018-05-01

    Analysis of high resolution satellite derived free air gravity data has been undertaken in the Greater Maldive Ridge (GMR) (Maldive Ridge, Deep Sea Channel, northern limit of Chagos Bank) segment of the Chagos Laccadive Ridge and the adjoining Arabian and Central Indian Basins. A Complete Bouguer Anomaly (CBA) map was generated from the Indian Ocean Geoidal Low removed Free Air Gravity (hereinafter referred to as "FAG-IOGL") data by incorporating Bullard A, B and C corrections. Using the Parker method, Moho topography was initially computed by inverting the CBA data. From the CBA the Mantle Residual Gravity Anomalies (MRGA) were computed by incorporating gravity effects of sediments and lithospheric temperature and pressure induced anomalies. Further, the MRGA was inverted to get Moho undulations from which the crustal thickness was also estimated. It was found that incorporating the lithospheric thermal and pressure anomaly correction has provided substantial improvement in the computed Moho depths especially in the oceanic areas. But along the GMR, there was not much variation in the Moho thickness computed with and without the thermal and pressure gravity correction implying that the crustal thickness of the ridge does not depend on the oceanic isochrones used for the thermal corrections. The estimated Moho depths in the study area ranges from 7 km to 28 km and the crustal thickness from 2 km to 27 km. The Moho depths are shallower in regions closer to Central Indian Ridge in the Arabian Basin i.e., the region to the west of the GMR is thinner compared to the region in the east (Central Indian Basin). The thickest crust and the deepest Moho are found below the N-S trending GMR segment of the Chagos-Laccadive Ridge. Along the GMR the crustal thickness decreases from north to south with thickness of 27 km below the Maldives Ridge reducing to ∼9 km at 3°S and further increasing towards Chagos Bank. Even though there are similarities in crustal thickness between

  12. Correlates of biological soil crust abundance across a continuum of spatial scales: Support for a hierarchical conceptual model

    Science.gov (United States)

    Bowker, M.A.; Belnap, J.; Davidson, D.W.; Goldstein, H.

    2006-01-01

    1. Desertification negatively impacts a large proportion of the global human population and > 30% of the terrestrial land surface. Better methods are needed to detect areas that are at risk of desertification and to ameliorate desertified areas. Biological soil crusts are an important soil lichen-moss-microbial community that can be used toward these goals, as (i) bioindicators of desertification damage and (ii) promoters of soil stability and fertility. 2. We identified environmental factors that correlate with soil crust occurrence on the landscape and might be manipulated to assist recovery of soil crusts in degraded areas. We conducted three studies on the Colorado Plateau, USA, to investigate the hypotheses that soil fertility [particularly phosphorus (P), manganese (Mn) and zinc (Zn)] and/or moisture limit soil crust lichens and mosses at four spatial scales. 3. In support of the soil fertility hypothesis, we found that lichen-moss crusts were positively correlated with several nutrients [Mn, Zn, potassium (K) and magnesium (Mg) were most consistent] at three of four spatial scales ranging from 3.5 cm2 in area to c. 800 km2. In contrast, P was negatively correlated with lichen-moss crusts at three scales. 4. Community composition varied with micro-aspect on ridges in the soil crust. Three micro-aspects [north-north-west (NNW), east-north-east (ENE) and TOP] supported greater lichen and moss cover than the warmer, windward and more xeric micro-aspects [west-south-west (WSW) and south-south-east (SSE)]. This pattern was poorly related to soil fertility; rather, it was consistent with the moisture limitation hypothesis. 5. Synthesis and application. Use of crusts as desertification bioindicators requires knowledge of a site's potential for crust cover in the absence of desertification. We present a multi-scale model of crust potential as a function of site properties. Future quantitative studies can use this model to guide sampling efforts. Also, our results

  13. Metabasalts from the Mid-Atlantic Ridge: new insights into hydrothermal systems in slow-spreading crust

    Science.gov (United States)

    Gillis, Kathryn M.; Thompson, Geoffrey

    1993-12-01

    An extensive suite of hydrothermally altered rocks were recovered by Alvin and dredging along the MARK [Mid-Atlantic Ridge, south of the Kane Fracture Zone (23 24°N)] where detachment faulting has provided a window into the crustal component of hydrothermal systems. Rocks of basaltic composition are altered to two assemblages with these characteristics: (i) type I: albitic plagioclase (An02 10)+mixed-layer smectite/chlorite or chlorite±actinolite±quartz±sphene, 20% of the clinopyroxene is altered, and Cu and Zn are leached. The geochemical signature of these alteration types reflects the relative proportion and composition of secondary minerals, and the degree of alteration of primary phases, and does not show simple predictive relationships. Element mobilities indicate that both alteration types formed at low water/rock ratios. The MARK assemblages are typical of the greenschist and transition to the amphibolite facies, and represent two distinct, albeit overlapping, temperature regimes: type I-180 to 300°C and type II-250 to 450°C. By analogy with DSDP/ODP Hole 504B and many ophiolites, the MARK metabasalts were altered within the downwelling limb of a hydrothermal cell and type I and II samples formed in the upper and lower portions of the sheeted like complex, respectively. Episodic magmatic and hydrothermal events at slow-spreading ridges suggest that these observed mineral assemblages represent the cumulative effects of more than one hydrothermal event. Groundmass and vein assemblages in the MARK metabasalts indicate either that alteration conditions did not change during successive hydrothermal events or that these assemblages record only the highest temperature event. Lack of retrograde reactions or overprinting of lower temperature assemblages (e.g., zeolites) suggests that there is a continuum in alteration conditions while crustal segments remain in the ridge axis environment. The type II samples may be representative of the reaction zone where

  14. Large-scale subduction of continental crust implied by India-Asia mass-balance calculation

    Science.gov (United States)

    Ingalls, Miquela; Rowley, David B.; Currie, Brian; Colman, Albert S.

    2016-11-01

    Continental crust is buoyant compared with its oceanic counterpart and resists subduction into the mantle. When two continents collide, the mass balance for the continental crust is therefore assumed to be maintained. Here we use estimates of pre-collisional crustal thickness and convergence history derived from plate kinematic models to calculate the crustal mass balance in the India-Asia collisional system. Using the current best estimates for the timing of the diachronous onset of collision between India and Eurasia, we find that about 50% of the pre-collisional continental crustal mass cannot be accounted for in the crustal reservoir preserved at Earth's surface today--represented by the mass preserved in the thickened crust that makes up the Himalaya, Tibet and much of adjacent Asia, as well as southeast Asian tectonic escape and exported eroded sediments. This implies large-scale subduction of continental crust during the collision, with a mass equivalent to about 15% of the total oceanic crustal subduction flux since 56 million years ago. We suggest that similar contamination of the mantle by direct input of radiogenic continental crustal materials during past continent-continent collisions is reflected in some ocean crust and ocean island basalt geochemistry. The subduction of continental crust may therefore contribute significantly to the evolution of mantle geochemistry.

  15. Uranium-lead isotopic ages of the Samail ophiolite, Oman, with applicatons to Tethyan ocean ridge tectonics

    International Nuclear Information System (INIS)

    Tilton, G.R.; Hopson, C.A.; Wright, J.E.

    1981-01-01

    Plagiogranites are a minor but widespread component of the Samail ophiolite plutonic member. They crystallized from the most fractionated melts generated by magmatic crystallization and differentiation of a steady state magma chamber beneath the Tethyan spreading ocean ridge, and their ages are thought to mark the time of ocean crust formation. Isotopic U--Pb ages of zircons from 13 plagiogranites collected along a 270-km segment of the Samail ophiolite subparallel to the regional trend of the sheeted dike complex (the former spreading ridge axis direction) define a narrow time interval of 93.5--97.9 m.y., with a pronounced clustering about 95 m.y. The zircon ages of the plagiogranites agree remarkably well with the early Cenomanian to early Turonian biostratigraphic ages of sediments that are intercalated within the ophiolite pillow lavas and that lie just above them (Tippit et al., 1981). The agreement of radiometric and biostratigraphic ages provides strong support for the conclusion that the plagiogranite U--Pb ages closely date the time span of ocean crust formation. No step changes in age patterns are observed along the ridge axis (sheeted dike) direction, suggesting that there are no major internal offsets of the ophiolite by transform or other faults along most of the traverse. One possible exception occurs at the southeastern end of the sampled interval (Ibra area), where a 3 m.y. discontinuity might be caused by an unmapped fault. Assuming that the regional trend of the sheeted dikes (N10 0 --25 0 W) marks the direction of the former spreading ridge axis, the present array of sample localities spans a distance of 130 to 195 km normal to that axis (i.e., in the spreading direction). The data as a whole do not define a clear-cut age trend normal to the spreading axis, but by eliminating samples that may be aberrant due to faulting, the data array suggests a pattern of increasing ages from east to west

  16. Molybdenum Cycling During Crust Formation and Destruction

    Science.gov (United States)

    Greaney, A. T.; Rudnick, R. L.

    2016-12-01

    Molybdenum geochemistry has become an important tool for tracking the redox state of the early atmosphere and oceans as well as the emergence and sustainability of Mo-cofactored enzymes. However, in order for Mo to be enriched in the oceans, it must first be weathered out of the crust. Sulfides that weather in the presence of atmospheric O2have historically been deemed the predominant crustal source of Mo. Here, we test this assumption by determining the mineralogical hosts of Mo in Archean, Proterozoic, and Phanerozoic upper crustal rocks, using LA-ICP-MS. We also investigate Mo behavior during igneous differentiation and continental crust formation. We find that molybdenite, MoS2, is a weatherable sulfide source of Mo, but common igneous sulfides are not because their Mo concentrations are too low. However, molybdenite is uncommon in the upper continental crust. By contrast, volcanic glass is much more abundant and is a significant weatherable source of Mo that readily breaks down to release oxidized, soluble Mo whether or not atmospheric O2is present. Other common crustal mineral hosts of Mo are Ti-bearing phases like titanite, ilmenite, magnetite, and rutile that are resistant to weathering. Significant Mo depletion (relative to Ce and Pr) is observed in nearly every granitic rock analyzed in our study, but is not observed in OIB or MORB (Jenner and O'Neill, 2012). There are two possible reasons for this: 1) Mo is removed from cooling plutons during fluid expulsion, or 2) Mo is fractionated during igneous differentiation. The first scenario is a likely explanation given the solubility of oxidized Mo. However, correlations between Mo/Ce and Nb/La in several plutonic suites suggest a fractionating phase like rutile may sequester Mo in the lower crust. Additionally, a correlation between Mo/Ce and inferred tectonic setting (enrichments observed in rift-related plutons) suggest an overall tectonic influence on the availability of Mo in the upper crust.

  17. Effects of sand burial on dew deposition on moss soil crust in a revegetated area of the Tennger Desert, Northern China

    Science.gov (United States)

    Jia, Rong-liang; Li, Xin-rong; Liu, Li-chao; Pan, Yan-xia; Gao, Yan-hong; Wei, Yong-ping

    2014-11-01

    Sand burial and dew deposition are two fundamental phenomena profoundly influencing biological soil crusts in desert areas. However, little information is available regarding the effects of sand burial on dew deposition on biological soil crusts in desert ecosystems. In this study, we evaluated the effects of sand burial at depths of 0 (control), 0.5, 1, 2 and 4 mm on dew formation and evaporation of three dominant moss crusts in a revegetated area of the Tengger Desert (Northern China) in 2010. The results revealed that sand burial significantly decreased the amount of dew deposited on the three moss crust types by acting as a semi-insulator retarding the dew formation and evaporation rates. The changes in surface temperature cannot fully explain the variations of the formation and evaporation rates of dew by moss crusts buried by sand. The extension of dew retention time was reflected by the higher dew ratios (the ratio of dew amount at a certain time to the maximum value in a daily course) in the daytime, and may to some extent have acted as compensatory mechanisms that diminished the negative effects of the reduction of dew amount induced by sand burial of moss crusts. The resistances to reduction of dewfall caused by sand burial among the three moss crusts were also compared and it was found that Bryum argenteum crust showed the highest tolerance, followed by crusts dominated by Didymodon vinealis and Syntrichia caninervis. This sequence corresponds well with the successional order of the three moss crusts in the revegetated area, thereby suggesting that resistance to reduction of dewfall may act as one mechanism by which sand burial drives the succession of moss crusts in desert ecosystems. This side effect of dew reduction induced by sand burial on biological soil crusts should be considered in future ecosystem construction and management of desert area.

  18. DaMaSCUS-CRUST: Dark Matter Simulation Code for Underground Scatterings - Crust Edition

    Science.gov (United States)

    Emken, Timon; Kouvaris, Chris

    2018-03-01

    DaMaSCUS-CRUST determines the critical cross-section for strongly interacting DM for various direct detection experiments systematically and precisely using Monte Carlo simulations of DM trajectories inside the Earth's crust, atmosphere, or any kind of shielding. Above a critical dark matter-nucleus scattering cross section, any terrestrial direct detection experiment loses sensitivity to dark matter, since the Earth crust, atmosphere, and potential shielding layers start to block off the dark matter particles. This critical cross section is commonly determined by describing the average energy loss of the dark matter particles analytically. However, this treatment overestimates the stopping power of the Earth crust; therefore, the obtained bounds should be considered as conservative. DaMaSCUS-CRUST is a modified version of DaMaSCUS (ascl:1706.003) that accounts for shielding effects and returns a precise exclusion band.

  19. Crust-mantle branch of the global carbon cycle and origin of deep-seated hydrocarbons

    Directory of Open Access Journals (Sweden)

    Sorokhtin N. O.

    2018-03-01

    Full Text Available The processes of multi-stage and polycyclic transformation and transfer of carbon in the crust and mantle have been described. The sediments drawn in the plate underthrust zones break down, become transformed and altered by metamorphic events, and part of the newly formed carbon compounds is transferred by the mantle convective currents to rift zones of the mid-oceanic ridges and carried up to the surface as hydrocarbons of various composition and carbon dioxide. This material becomes re-deposited on the sea floor as sediments forming carbonaceous and carbon-bearing units. As a result of multi-stage mechanism of physical and chemical transformations in the crust-mantle areas of the Earth hydrocarbon compounds acquire features of abiogenic origin remaining, in fact, exogenic. The revealed crust-mantle carbon cycle represents part of a global process for the cyclic carbon transfer from the atmosphere to the mantle and back. The scale of its manifestation is likely not so wide, and numerous small (mm and portions of millimeters particles of exogenic substance and dispersed carbon drawn in the plate underthrust zones form a stable geochemical tail of the crustal direction in the mantle propagating in the plane of convective currents motion. The scale of this process may be indirectly suggested by the volumes of hydrocarbon and carbon dioxide de-gassing and hydrogen in the rift systems of the Earth crust. The amount of generated hydrocarbon gases with deep-seated origin cannot form large gas and oil-and-gas fields since their significant part is transferred to the atmosphere. Just some portion of compounds may be deposited in oceanic sediments and generate gas-hydrate pools.

  20. Effects of sand burial and wind disturbances on moss soil crusts in a revegetated area of the Tennger Desert, Northern China

    Science.gov (United States)

    Jia, R. L.; Li, X. R.; Liu, L. C.; Gao, Y. H.

    2012-04-01

    Sand burial and wind are two predominant natural disturbances in the desert ecosystems worldwide. However, the effects of sand burial and wind disturbances on moss soil crusts are still largely unexplored. In this study, two sets of experiments were conducted separately to evaluated the effects of sand burial (sand depth of 0, 1, 2, 3 and 4 mm) and wind blowing (wind speed of 0.2, 3, 6 and 9ms-1) on ecophysiological variables of two moss soil crusts collected from a revegetated area of the Tengger Desert, Northern China. Firstly, the results from the sand burial experiment revealed that respiration rate was significantly decreased and that moss shoot elongation was significantly increased after burial. In addition, Bryum argenteum crust showed the fastest speed of emergence and highest tolerance index, followed by Didymodon vinealis crust. This sequence was consistent with the successional order of the two moss crusts that happened in our study area, indicating that differential sand burial tolerance explains their succession sequence. Secondly, the results from the wind experiment showed that CO2 exchange, PSII photochemical efficiency, photosynthetic pigments, shoot upgrowth, productivity and regeneration potential of the two moss soil crust mentioned above were all substantially depressed. Furthermore, D. vinealis crust exhibited stronger wind resistance than B. argenteum crust from all aspects mentioned above. And this is comparison was identical with their contrasting microhabitats with B. argenteum crust being excluded from higher wind speed microsites in the windward slopes, suggesting that the differential wind resistance of moss soil crusts explains their microdistribution pattern. In conclusion, the ecogeomorphological processes of moss soil crusts in desert ecosystems can be largely determined by natural disturbances caused by sand burial and wind blowing in desert ecosystems.

  1. Seismic stratigraphy and deformational styles of the offshore Cyrenaica (Libya) and bordering Mediterranean Ridge

    Science.gov (United States)

    Yem, Lionel Mbida; Camera, Laurent; Mascle, Jean; Ribodetti, Alessandra

    2011-04-01

    Off northwest Libya the Cyrenaica foreland basin domain and its Pan-African continental crust, which constitute the African promontory, are overthrusted by the Mediterranean Ridge Complex. The thrust belt contact and its seismic stratigraphy have been analysed using pre-stack depth-migrated multichannel seismic (MCS) lines recorded during the MEDISIS survey (2002). The geometry and sedimentary distribution analysis through the wedge-top depocentres allow reconstruction of schematic cross-sections of the tectono-sedimentary wedge that includes two major thrust sequences separated by an apparently poorly deformed transition zone. Based on time-space variation of several piggyback basins, we propose that these thrust sequences relate to distinct phases of shortening. (1) A first event, which probably occurred just prior to the Messinian crisis in latest Miocene (Tortonian times?) and (2) A second event, that has finally led to the present-day overthrusting of the Mediterranean Ridge over the Libyan continental slope.

  2. Structures within the oceanic crust of the central South China Sea basin and their implications for oceanic accretionary processes

    Science.gov (United States)

    Ding, Weiwei; Sun, Zhen; Dadd, Kelsie; Fang, Yinxia; Li, Jiabiao

    2018-04-01

    Internal structures in mature oceanic crust can elucidate understanding of the processes and mechanism of crustal accretion. In this study, we present two multi-channel seismic (MCS) transects across the northern flank of the South China Sea basin to reveal the internal structures related to Cenozoic tectono-magmatic processes during seafloor spreading. Bright reflectors within the oceanic crust, including the Moho, upper crustal reflectors, and lower crustal reflectors, are clearly imaged in these two transects. The Moho reflection displays varied character in continuity, shape and amplitude from the continental slope area to the abyssal basin, and becomes absent in the central part of the basin where abundant seamounts and seamount chains formed after the cessation of seafloor spreading. Dipping reflectors are distinct in most parts of the MCS data but generally confined to the lower crust above the Moho reflection. These lower crustal reflectors merge downward into the Moho without offsetting it, probably arising from shear zones between the crust and mantle characterized by interstitial melt, although we cannot exclude other possibilities such as brittle faulting or magmatic layering in the local area. A notable feature of these lower crustal reflector events is their opposite inclinations. We suggest the two groups of conjugate lower crustal reflector events observed between magnetic anomalies C11 and C8 were associated with two unusual accretionary processes arising from plate reorganizations with southward ridge jumps.

  3. A Lower-Crust or Mantle Source for Mineralizing Fluids Beneath the Olympic Dam IOCG Deposit, Australia: New Evidence From Magnetotelluric Sounding

    Science.gov (United States)

    Heinson, G.

    2005-12-01

    The iron-oxide-copper-gold (IOCG) Olympic Dam (OD) deposit, situated along the margin of the Proterozoic Gawler Craton, South Australia, is the world's largest uranium deposit, and sixth largest copper deposit; it also contains significant reserves of gold, silver and rare-earth elements (REE). Gaining a better understanding of the mechanisms for genesis of the economic mineralisation is fundamental for defining exploration models in similar crustal-settings. To delineate crustal structures that may constrain mineral system fluid pathways, coincident deep crustal seismic and magnetotelluric (MT) transects were obtained along a 220 km section that crosses OD and the major crustal boundaries. We present results from 58 long-period (10-104 s) MT sites, with site spacing of 5 to 10 km. A 2D inversion of all MT data to a depth of 100 km shows four notable features: (a) sedimentary cover sequences with low resistivity (1000 Ω.m) Archaean crustal core, from a more conductive crust to the north (typically <500 Ω.m); (c) to the north of OD, the crust to about 20 km is quite resistive (~1000 Ω.m), but the lower crust is much more conductive (<100 Ω.m); and (d) beneath OD, we image a low-resistivity region (<100 Ω.m) throughout the crust, coincident with a seismically transparent region. We argue that the cause of the low-resistivity and low-reflectivity region beneath OD may be due to the upward movement of crustal-volatiles that have deposited conductive graphite mineralisation along grain boundaries, simultaneously annihilating acoustic impedance boundaries. The source of the volatiles may be from the mantle-degassing or retrograde metamorphism of the lower crust associated with Proterozoic crustal deformation.

  4. Collisional stripping of planetary crusts

    Science.gov (United States)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.

    2018-02-01

    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to

  5. Origins and Driving Mechanisms for Shallow Methane Accumulations on the Svyatogor Ridge, Fram Strait

    Science.gov (United States)

    Waghorn, K. A.; Bunz, S.; Plaza-Faverola, A. A.; Westvig, I. M.; Johnson, J. E.

    2015-12-01

    The Svyatogor Ridge, located west of the Knipovich Spreading Ridge (KR) and south of the Molloy Transform Fault (MTF), is hypothesized to have once been the south tip of Vestnesa Ridge; a large sediment drift that was offset during the last 2 Ma along the MTF. The sedimentary cover across Svyatogor Ridge is limited, compared to Vestnesa Ridge, and basement outcrops are identified ~850 mbsf on the apex of the ridge. Despite the limited sedimentation, and its unique location at the intersection between the KR and MTF, Svyatogor Ridge has evidence of shallow gas accumulations; a strong BSR indicating a gas hydrate and underlying free gas system, and fluid flow pathways to the seafloor culminating in pockmarks. Using a high-resolution P-Cable 3D seismic survey, 2D seismic, and multibeam bathymetry data, we investigate how tectonic and sedimentary regimes have influenced the formation of a well-developed gas hydrate system. Sedimentation related with the Vestnesa drift on Svyatogor Ridge is interpreted to have begun ~2-3 Ma. The young age of the underlying oceanic crust, and subsequent synrift sediments below drift strata, suggests gas production from early Miocene aged hydrocarbon source identified in ODP Site 909 to the west, is unlikely in this region. Additionally, given the ultra-slow, magma limited spreading regime of the KR, we do not expect significant thermogenic methane generation from shallow magmatic sources. Therefore, in addition to some microbial gas production, Johnson et al. (2015) hypothesize a contribution from an abiotic source may explain the well-developed gas hydrate system. Large-scale basement faults identified in the seismic data are interpreted as detachment faults, which have exhumed relatively young ultramafic rocks. These detachment faults act as conduits for fluid flow, allowing circulation of seawater to drive serpentinization and subsequently act as pathways for fluids and abiotic methane to reach the shallow subsurface. This work aims

  6. Corium crust strength measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lomperski, S. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439-4840 (United States)], E-mail: lomperski@anl.gov; Farmer, M.T. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439-4840 (United States)], E-mail: farmer@anl.gov

    2009-11-15

    Corium strength is of interest in the context of a severe reactor accident in which molten core material melts through the reactor vessel and collects on the containment basemat. Some accident management strategies involve pouring water over the melt to solidify it and halt corium/concrete interactions. The effectiveness of this method could be influenced by the strength of the corium crust at the interface between the melt and coolant. A strong, coherent crust anchored to the containment walls could allow the yet-molten corium to fall away from the crust as it erodes the basemat, thereby thermally decoupling the melt from the coolant and sharply reducing the cooling rate. This paper presents a diverse collection of measurements of the mechanical strength of corium. The data is based on load tests of corium samples in three different contexts: (1) small blocks cut from the debris of the large-scale MACE experiments, (2) 30 cm-diameter, 75 kg ingots produced by SSWICS quench tests, and (3) high temperature crusts loaded during large-scale corium/concrete interaction (CCI) tests. In every case the corium consisted of varying proportions of UO{sub 2}, ZrO{sub 2}, and the constituents of concrete to represent a LWR melt at different stages of a molten core/concrete interaction. The collection of data was used to assess the strength and stability of an anchored, plant-scale crust. The results indicate that such a crust is likely to be too weak to support itself above the melt. It is therefore improbable that an anchored crust configuration could persist and the melt become thermally decoupled from the water layer to restrict cooling and prolong an attack of the reactor cavity concrete.

  7. Tunnel restorations using glass ionomer or glass cermet: in vitro marginal ridge fracture and microleakage.

    Science.gov (United States)

    Shetty, R; Munshi, A K

    1996-01-01

    The purpose of this in vitro study was to compare the marginal ridge fracture resistance and microleakage following restorations of partial tunnel preparations using glass ionomer and glass cermet cements. Sixty eight sound premolars were selected for this study and were divided randomly into six groups. A standardized partial tunnel preparation was done on all the teeth except specimens belonging to Group I. The partial tunnel preparations of Groups III & V were restored with glass ionomer and that of Groups IV & VI were restored with glass cermet. The teeth belonging to Groups I, II, III & IV were subjected to marginal ridge fracture resistance testing. The teeth of Groups V & VI were tested for microleakage after immersing them in 5% methylene blue solution for 4 hours. The results indicated that the teeth restored with glass cermet were marginally better than that with glass ionomer in terms of marginal ridge fracture resistance. Both the materials failed to reinforce the marginal ridge to the level of an intact tooth. The microleakage which occurred around both the materials were statistically insignificant, but on comparison glass ionomer showed better results. Hence, glass ionomer is preferred as a restorative material for partial tunnel preparations because of additional inherent advantages like superior esthetics and fluoride leachability.

  8. Effect of Agri-SC as a soil conditioner on runoff, soil loss and crust ...

    African Journals Online (AJOL)

    xp1

    2011-10-10

    Oct 10, 2011 ... 18.50, 37.00, 55.50 and 74.00 l ha-1) on water erosion and crust strengths under laboratory conditions with three .... stability, soil micro morphological properties, response to ... meter resistance, and increased pore space and.

  9. Anisotropy of the upper mantle beneath the equatorial part of the Mid-Atlantic Ridge

    Science.gov (United States)

    Kendall, J. M.; Rychert, C.; Harmon, N.; Tharimena, S.; Agius, M. R.

    2017-12-01

    It has been long-known that the mantle beneath ocean spreading centres is anisotropic, holding the signature of the formation of new oceanic lithosphere and its coupling with the underlying convecting asthenosphere. Numerical studies have suggested that there should be significant differences between the anisotropy at slow versus fast spreading centres, but there is little observational evidence to calibrate these simulations, especially at slow spreading centres. Near the ridge axis, the anisotropic effects of melt versus the lattice preferred orientation of minerals is not well understood. Finally, the mantle flow near ridge-transform interactions is also poorly understood. Here we present observations of SKS splitting in a region of the Mid-Atlantic Ridge near the equator and offset by the Romanche and Chain Fracture Zones. An array of 37 ocean-bottom seismometers were deployed for a year in depths of up to nearly 6000m, with the aim of studying the nature of the lithosphere-asthenosphere boundary as it forms (the PiLAB - Passive Imaging of the lithosphere-asthenosphere boundary - experiment). Stations were deployed on crust that varies from newly formed to 80 My old. We analyse 40 teleseismic events of magnitude greater than 5.8 and with epicentral distances between 88 and 130 degrees. The ocean-bottom is a noisy environment and a range of filters are used to isolate the SKS, SKKS, and related signals. Furthermore, stacking splitting error envelopes is used to improve confidence in the splitting parameters. Many of the splitting measurements show an orientation parallel to the direction of plate spreading, as expected, but variability in the orientation of the anisotropy increases towards the ridge axis. The magnitude of the anisotropy is also quite variable and suggests larger delay times near the ridge axis. Off-axis anisotropy is interpreted in terms of deformation of peridotite due to mantle flow. Near the ridge axis, the effect of ridge-parallel melt

  10. Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea

    Science.gov (United States)

    Zhang, Guo-Liang; Luo, Qing; Zhao, Jian; Jackson, Matthew G.; Guo, Li-Shuang; Zhong, Li-Feng

    2018-05-01

    The Indian-type mantle (i.e., above the north hemisphere reference line on the plot of 208Pb/204Pb vs. 206Pb/204Pb) has been considered as a "Southern Hemisphere" geochemical signature, whose origin remains enigmatic. The South China Sea is an extensional basin formed after rifting of the Euro-Asia continent in the Northern Hemisphere, however, the geochemical nature of the igneous crust remains unexplored. For the first time, IODP Expedition 349 has recovered seafloor basalts covered by the thick sediments in the Southwest sub-basin (Sites U1433 and U1434) and the East sub-basin (Site U1431). The Southwest sub-basin consists of enriched (E)-MORB type basalts, and the East sub-basin consists of both normal (N)-MORB-type and E-MORB-type basalts based on trace element compositions. The basalts of the two sub-basins are Indian-type MORBs based on Sr-Nd-Pb-Hf isotope compositions, and the Southwest sub-basin basalts show isotopic compositions (i.e., 206Pb/204Pb of 17.59-17.89) distinctly different from the East sub-basin (i.e., 206Pb/204Pb of 18.38-18.57), suggesting a sub-basin scale mantle compositional heterogeneity and different histories of mantle compositional evolution. Two different enriched mantle end-members (EM1 and EM2) are responsible for the genesis of the Indian-type mantle in the South China Sea. We have modeled the influences of Hainan mantle plume and lower continental crust based on Sr-Nd-Pb-Hf isotope compositions. The results indicate that the influence of Hainan plume can explain the elevated 206Pb/204Pb of the East sub-basin basalts, and the recycling of lower continental crust can explain the low 206Pb/204Pb of the Southwest sub-basin basalts. Based on the strong geochemical imprints of Hainan plume in the ridge magmatism, we propose that the Hainan plume might have promoted the opening of the South China Sea, during which the Hainan plume contributed enriched component to the sub-ridge mantle and caused thermal erosion and return of lower

  11. Structure of young oceanic crust at 13°N on the East Pacific Rise from expanding spread profiles

    Science.gov (United States)

    Harding, A. J.; Orcutt, J. A.; Kappus, M. E.; Vera, E. E.; Mutter, J. C.; Buhl, P.; Detrick, R. S.; Brocher, T. M.

    1989-09-01

    We present the results of the analysis of expanding spread profiles (ESPs) collected on and near the axis of the East Pacific Rise at 13°N. These profiles were collected at 0, 1.1, 2.1, 3.6, and 9.5 km from the rise axis, and all but the most distant profile show a distinct low-velocity zone (LVZ) located within layer 3 of the oceanic crust. At the ridge crest, the top of the magma chamber is at the base of layer 2, while 3.6 km off axis, the roof of the LVZ is 1.1 km below the top of layer 3. The profile farthest from the ridge could possibly have a residual LVZ confined to the lower 1.5 km of the crust. The total width of the LVZ, as determined from the ESP data, is at least 6 km, and possibly much greater. This wide LVZ apparently contradicts multichannel seismic data which show cross-axis reflections from the magma chamber with a width of <5 km. We suggest that a resolution of this apparent contradiction lies in a model of the rise axis with a small and transient central magma chamber of high partial melt fraction surrounded by a much larger and permanent region of hot rock with only isolated pockets of partial melt. The ESP data are sensitive to this larger region, while the reflection data accurately map the presence or absence of the central magma chamber with its high impedance contrast. We identify the presence of a layer at the top of the oceanic crust with initial P wave velocities between 2.35 and 2.6 km/s, while the S wave velocity is estimated as being ≤0.8 km/s. The layer thickness lies between 100 and 200 m. These velocities are consistent with previous estimates for the Pacific and recent results for the Atlantic. The thickness of this layer is consistent with that of layer 2A determined from geophysical measurements at Deep Sea Drilling Project hole 504B.

  12. Visualization of crust in metallic piping through real-time neutron radiography obtained with low intensity thermal neutron flux

    Energy Technology Data Exchange (ETDEWEB)

    Luiz, Leandro C.; Crispim, Verginia R. [Nuclear Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Ferreira, Francisco J. O. [National Nuclear Energy Commission, CNEN/IEN, Division Reactors, Rio de Janeiro (Brazil)

    2017-06-15

    The presence of crust on the inner walls of metallic ducts impairs transportation because crust completely or partially hinders the passage of fluid to the processing unit and causes damage to equipment connected to the production line. Its localization is crucial. With the development of the electronic imaging system installed at the Argonauta/Nuclear Engineering Institute (IEN)/National Nuclear Energy Commission (CNEN) reactor, it became possible to visualize crust in the interior of metallic piping of small diameter using real-time neutron radiography images obtained with a low neutron flux. The obtained images showed the resistance offered by crust on the passage of water inside the pipe. No discrepancy of the flow profile at the bottom of the pipe, before the crust region, was registered. However, after the passage of liquid through the pipe, images of the disturbances of the flow were clear and discrepancies in the flow profile were steep. This shows that this technique added the assembled apparatus was efficient for the visualization of the crust and of the two-phase flows.

  13. Visualization of crust in metallic piping through real-time neutron radiography obtained with low intensity thermal neutron flux

    International Nuclear Information System (INIS)

    Luiz, Leandro C.; Crispim, Verginia R.; Ferreira, Francisco J. O.

    2017-01-01

    The presence of crust on the inner walls of metallic ducts impairs transportation because crust completely or partially hinders the passage of fluid to the processing unit and causes damage to equipment connected to the production line. Its localization is crucial. With the development of the electronic imaging system installed at the Argonauta/Nuclear Engineering Institute (IEN)/National Nuclear Energy Commission (CNEN) reactor, it became possible to visualize crust in the interior of metallic piping of small diameter using real-time neutron radiography images obtained with a low neutron flux. The obtained images showed the resistance offered by crust on the passage of water inside the pipe. No discrepancy of the flow profile at the bottom of the pipe, before the crust region, was registered. However, after the passage of liquid through the pipe, images of the disturbances of the flow were clear and discrepancies in the flow profile were steep. This shows that this technique added the assembled apparatus was efficient for the visualization of the crust and of the two-phase flows

  14. Porosity, Fracturing and Alteration of Young Oceanic Crust: New Seismic Analyses at Borehole 504B

    Science.gov (United States)

    Gregory, E. P. M.; Hobbs, R. W.; Peirce, C.; Wilson, D. J.

    2017-12-01

    DSDP/ODP borehole 504B, drilled 2111 m into 6.9 Ma oceanic crust, provides in-situ core and logging measurements of the lithology, fracturing and porosity of crust originally formed at the Costa Rica Rift and its subsequent alteration by hydrothermal fluids. A recent active seismic survey over the borehole and surrounding area reveals wider spatial variations in velocity that can be related to this porosity and fracturing. Over 10,000 airgun shots were fired in a 30 x 30 km grid over the borehole region, using both high-frequency and low-frequency airgun arrays. The shots were recorded on a 4.5 km-long streamer and 24 ocean-bottom seismographs, each equipped with a three-component geophone and an hydrophone. A vertical hydrophone array recorded the downgoing source wavelet, and underway gravity, magnetic field and multibeam bathymetry data were also recorded. This combined dataset enables the most comprehensive geophysical analysis of this area of crust to date, while the ground-truthing provided by 504B enables us to address the questions of what do the seismic oceanic crustal layers represent and what controls their characteristics as the crust ages? Wide-angle seismic modelling with a Monte Carlo based uncertainty analysis reveals new 2D and 3D Vp and Vs models of the area, which show relatively homogeneous crust around borehole 504B, and place the seismic layer 2B/2C, and seismic layer 2/3 boundaries coincident with fracturing and alteration fronts rather than the lithological boundaries between lavas and dykes, and dykes and gabbros, respectively. Analysis of Poisson's ratio, seismic anisotropy and particle motions reveal patterns in fracturing and porosity across the survey area, and locate possible fossilised hydrothermal circulation cells. These cells appear to have influenced the porosity of the crust through alteration and mineralisation processes, with faults inherited from initial crustal accretion influencing basement topographic highs and providing

  15. Uppermost oceanic crust structure and properties from multichannel seismic data at the Alaska subduction zone

    Science.gov (United States)

    Becel, A.; Carton, H. D.; Shillington, D. J.

    2017-12-01

    The most heterogeneous, porous and permeable layer within a subducting oceanic crust is the uppermost layer called Layer 2A. This layer, made of extrusive basalts, forms at the ridge axis and persists as a thin ( 600 m) low-velocity cap in old crust. Nearing the trench axis, when oceanic plate bends, normal faults can be formed or reactivated at the outer-rise allowing a more vigorous hydrothermal circulation to resume within this layer. Porosity and heterogeneity within this layer are important to assess because these parameters might have a profound impact on subduction zone processes. However, conventional refraction data quality is rarely good enough to look into detail into the properties of the uppermost oceanic layer. Here we use 2D marine long-offset multi-channel seismic (MCS) reflection data collected offshore of the Alaska Peninsula during the ALEUT Program. The dataset was acquired aboard the R/V Marcus Langseth with a 636-channels, 8-km long streamer. We present initial results from three 140 km long profiles across the 52-56Myr old incoming Pacific oceanic crust formed at fast spreading rate: two perpendicular margin and one parallel margin profiles. Those profiles are located outboard of the Shumagin gaps. Outboard of this subduction zone segment, abundant bending related normal faults are imaged and concentrated within 50-60 km of the trench. Long-offset MCS data exhibit a prominent triplication that includes postcritical reflections and turning waves within the upper crust at offsets larger than 3 km. The triplication suggests the presence of a velocity discontinuity within the upper oceanic crust. We follow a systematic and uniform approach to extract upper crustal post-critical reflections and add them to them to the vertical incidence MCS images. Images reveal small-scale variations in the thickness of the Layer 2A and the strength of its base along the profiles. The second step consists of the downward continuation followed by travel

  16. Formation of ferric iron crusts in Quaternary sediments of Lake Baikal, Russia, and implications for paleoclimate

    Science.gov (United States)

    Deike, R.G.; Granina, L.; Callender, E.; McGee, J.J.

    1997-01-01

    Phosphate-bearing, ferric iron and siliceous crusts ranging in age from Recent to approximately 65,000 yr B.P. are observed in sediments of Lake Baikal. In younger sediments the crusts are at the base of a spectrum of secondary iron and manganese oxides that accumulate near the sediment/water interface in the zone of positive oxidation potential beneath an oxygenated water column. In areas where the average Quaternary sedimentation rates have been slow (e.g. 0.026 mm/yr), the crusts are more common, and span a wider range of ages. No crusts have been found where the Quaternary sedimentation mode has been deltaic and rapid (0.15 mm/yr). Independent core correlation based on magnetic properties of the sediment suggests that crusts can be correlated over most of Academician Ridge, an area that is particularly sensitive to climatic events affecting the concentration of suspended sediment. These crusts may be indicative of periods of low suspended sediment concentration, which occur during sustained transitions from glacial periods of high detrital input, to interglacial periods of high diatom sedimentation. The crusts are dominated by iron-rich and siliceous amorphous mineral phases, with an FeO:SiO2 by weight of 3:1. Regardless of age or location in the lake the Fe phase always includes Ca, P and Mn. Extensive microprobe data for these four elements recast as normalized elemental weight percent reveal linear trends of Ca:P and Fe:P. With increasing P, Ca also increases such that the two elements maintain a linear relationship passing very close to the origin and with a mean molar Ca:P=0.3 (too low for well-characterized apatite). Conversely, with increasing P, Fe decreases (mean molar Fe:P=3.4). There is no correlation between Mn and P. Molar Fe:P ratios for vivianite (an Fe(II) phosphate mineral observed in sediments closely below some crusts) are clustered around a stoichiometric composition. The covariant increase in Ca:P and the corresponding decrease in Fe:P may

  17. Sulfide enrichment at an oceanic crust-mantle transition zone: Kane Megamullion (23°N, MAR)

    Science.gov (United States)

    Ciazela, Jakub; Koepke, Juergen; Dick, Henry J. B.; Botcharnikov, Roman; Muszynski, Andrzej; Lazarov, Marina; Schuth, Stephan; Pieterek, Bartosz; Kuhn, Thomas

    2018-06-01

    The Kane Megamullion oceanic core complex located along the Mid-Atlantic Ridge (23°30‧N, 45°20‧W) exposes lower crust and upper mantle directly on the ocean floor. We studied chalcophile elements and sulfides in the ultramafic and mafic rocks of the crust-mantle transition and the mantle underneath. We determined mineralogical and elemental composition and the Cu isotope composition of the respective sulfides along with the mineralogical and elemental composition of the respective serpentines. The rocks of the crust-mantle transition zone (i.e., plagioclase harzburgite, peridotite-gabbro contacts, and dunite) overlaid by troctolites are by one order of magnitude enriched in several chalcophile elements with respect to the spinel harzburgites of the mantle beneath. Whereas the range of Cu concentrations in spinel harzburgites is 7-69 ppm, the Cu concentrations are highly elevated in plagioclase harzburgites with a range of 90-209 ppm. The zones of the peridotite-gabbro contacts are even more enriched, exhibiting up to 305 ppm Cu and highly elevated concentrations of As, Zn, Ga, Sb and Tl. High Cu concentrations show pronounced correlation with bulk S concentrations at the crust-mantle transition zone implying an enrichment process in this horizon of the oceanic lithosphere. We interpret this enrichment as related to melt-mantle reaction, which is extensive in crust-mantle transition zones. In spite of the ubiquitous serpentinization of primary rocks, we found magmatic chalcopyrites [CuFeS2] as inclusions in plagioclase as well as associated with pentlandite [(Fe,Ni)9S8] and pyrrhotite [Fe1-xS] in polysulfide grains. These chalcopyrites show a primary magmatic δ65Cu signature ranging from -0.04 to +0.29 ‰. Other chalcopyrites have been dissolved during serpentinization. Due to the low temperature (enrichment, increased sulfide modes, and potentially formation of small sulfide deposits could be expected globally along the petrological Moho.

  18. Density Sorting During the Evolution of Continental Crust

    Science.gov (United States)

    Kelemen, P. B.; Behn, M. D.; Hacker, B. R.

    2015-12-01

    We consider two settings - in addition to "delamination" of arc lower crust - in which dense, mafic eclogites founder into the convecting mantle while buoyant, felsic lithologies accumulate at the base of evolving continental crust. Arc processes play a central role in generating continental crust, but it remains uncertain how basaltic arc crust is transformed to andesitic continental crust. Dense, SiO2-poor products of fractionation may founder from the base of arc crust by "delamination", but lower arc crust after delamination has significantly different trace elements compared to lower continental crust (LCC). In an alternative model, buoyant magmatic rocks generated at arcs are first subducted, mainly via subduction erosion. Upon heating, these buoyant lithologies ascend through the mantle wedge or along a subduction channel, and are "relaminated" at
the base of overlying crust (e.g., Hacker et al EPSL 11, AREPS 15). Average buoyant lavas and plutons
for the Aleutians, Izu-Bonin-Marianas, Kohistan and Talkeetna arcs fall within the range of estimated LCC major and trace elements. Relamination is more efficient in generating continental crust than delamination. Himalayan cross-sections show Indian crust thrust beneath Tibetan crust, with no intervening mantle. There is a horizontal Moho at ca 80 km depth, extending from thickened Indian crust, across the region where Tibetan crust overlies Indian crust, into thickened Tibetan crust. About half the subducted Indian crust is present, whereas the other half is missing. Data (Vp/Vs; Miocene lavas formed by interaction of continental crust with mantle; xenolith thermometry) indicate 1000°C or more from ca 50 km depth to the Moho since the Miocene. We build on earlier studies (LePichon et al Tectonics 92, T'phys 97; Schulte-Pelkum et al Nature 05; Monsalve et al JGR 08) to advance the hypothesis that rapid growth of garnet occurs at 70-80 km and 1000°C within subducting Indian crust. Dense eclogites founder

  19. A comparative evaluation of fracture resistance of endodontically treated teeth, with variable marginal ridge thicknesses, restored with composite resin and composite resin reinforced with Ribbond: An in vitro study

    Directory of Open Access Journals (Sweden)

    Vaishali Kalburge

    2013-01-01

    Full Text Available Background: The anatomic shape of maxillary premolars show a tendency towards separation of their cusps during mastication after endodontic treatment. Preservation of the marginal ridge of endodontically treated and restored premolars can act as a strengthening factor and improve the fracture resistance. Objectives: To evaluate the effect of varying thickness of marginal ridge on the fracture resistance of endodontically treated maxillary premolars restored with composite and Ribbond reinforced composites. Materials and Methods: One hundred and twenty, freshly extracted, non carious human mature maxillary premolars were selected for this experimental in vitro study. The teeth were randomly assigned in to twelve groups ( n = 10. Group 1 received no preparation. All the premolars in other groups were root canal treated. In subgroups of 3 and 4, DO cavities were prepared while MOD cavities were prepared for all subgroups of group 2, the dimensions of the proximal boxes were kept uniform. In group 3 and 4 the dimensions of the mesial marginal ridge were measured using a digital Vernier caliper as 2 mm, 1.5 mm, 1 mm and 0.5 mm in the respective subgroups. All samples in groups 2.2 and all the subgroups of 3 were restored with a dentin bonding agent and resin composite. The teeth in group 2.3 and all subgroups of 4 were restored with composite reinforced with Ribbond fibers. The premolars were submitted to axial compression up to failure at 45 degree angle to a palatal cusp in universal testing machine. The mean load necessary to fracture was recorded in Newtons and the data was analysed. Results: There was a highly significant difference between mean values of force required to fracture teeth in group 1 and all subgroups of group 2, 3 and 4 (i.e., P < 0.01 Conclusion: On the basis of static loading, preserving the mesial marginal ridge with thicknesses of mm, 1.5 mm, 1 mm and 0.5 mm, composite restored and Ribbond reinforced composite restored

  20. Microbial decomposition of marine dissolved organic matter in cool oceanic crust

    Science.gov (United States)

    Shah Walter, Sunita R.; Jaekel, Ulrike; Osterholz, Helena; Fisher, Andrew T.; Huber, Julie A.; Pearson, Ann; Dittmar, Thorsten; Girguis, Peter R.

    2018-05-01

    Marine dissolved organic carbon (DOC) is one of the largest active reservoirs of reduced carbon on Earth. In the deep ocean, DOC has been described as biologically recalcitrant and has a radiocarbon age of 4,000 to 6,000 years, which far exceeds the timescale of ocean overturning. However, abiotic removal mechanisms cannot account for the full magnitude of deep-ocean DOC loss. Deep-ocean water circulates at low temperatures through volcanic crust on ridge flanks, but little is known about the associated biogeochemical processes and carbon cycling. Here we present analyses of DOC in fluids from two borehole observatories installed in crustal rocks west of the Mid-Atlantic Ridge, and show that deep-ocean DOC is removed from these cool circulating fluids. The removal mechanism is isotopically selective and causes a shift in specific features of molecular composition, consistent with microbe-mediated oxidation. We suggest organic molecules with an average radiocarbon age of 3,200 years are bioavailable to crustal microbes, and that this removal mechanism may account for at least 5% of the global loss of DOC in the deep ocean. Cool crustal circulation probably contributes to maintaining the deep ocean as a reservoir of `aged' and refractory DOC by discharging the surviving organic carbon constituents that are molecularly degraded and depleted in 14C and 13C into the deep ocean.

  1. The Mafic Lower Crust of Neoproterozoic age beneath Western Arabia: Implications for Understanding African Lower Crust

    Science.gov (United States)

    Stern, R. J.; Mooney, W. D.

    2011-12-01

    We review evidence that the lower crust of Arabia - and by implication, that beneath much of Africa was formed at the same time as the upper crust, rather than being a product of Cenozoic magmatic underplating. Arabia is a recent orphan of Africa, separated by opening of the Red Sea ~20 Ma, so our understanding of its lower crust provides insights into that of Africa. Arabian Shield (exposed in W. Arabia) is mostly Neoproterozoic (880-540 Ma) reflecting a 300-million year process of continental crustal growth due to amalgamated juvenile magmatic arcs welded together by granitoid intrusions that make up as much as 50% of the Shield's surface. Seismic refraction studies of SW Arabia (Mooney et al., 1985) reveal two layers, each ~20 km thick, separated by a well-defined Conrad discontinuity. The upper crust has average Vp ~6.3 km/sec whereas the lower crust has average Vp ~7.0 km/sec, corresponding to a granitic upper crust and gabbroic lower crust. Neogene (<30 ma) lava fields in Arabia (harrats) extend over 2500 km, from Yemen to Syria. Many of these lavas contain xenoliths, providing a remarkable glimpse of the lower-crustal and upper-mantle lithosphere beneath W. Arabia. Lower crustal xenoliths brought up in 8 harrats in Saudi Arabia, Jordan, and Syria are mostly 2-pyroxene granulites of igneous (gabbroic, anorthositic, and dioritic) origin. They contain plagioclase, orthopyroxene, and clinopyroxene, and a few contain garnet and rare amphibole and yield mineral-equilibrium temperatures of 700-900°C. Pyroxene-rich and plagioclase-rich suites have mean Al2O3 contents of 13% and 19%, respectively: otherwise the two groups have similar elemental compositions, with ~50% SiO2 and ~1% TiO2, with low K2O (<0.5%) and Na2O (1-3%). Both groups show tholeiitic affinities, unrelated to their alkali basalt hosts. Mean pyroxene-rich and plagioclase-rich suites show distinct mean MgO contents (11% vs. 7%), Mg# (67 vs. 55), and contents of compatible elements Ni (169 vs. 66 ppm

  2. Interactive effects of moss-dominated crusts and Artemisia ordosica on wind erosion and soil moisture in Mu Us sandland, China.

    Science.gov (United States)

    Yang, Yongsheng; Bu, Chongfeng; Mu, Xingmin; Shao, Hongbo; Zhang, Kankan

    2014-01-01

    To better understand the effects of biological soil crusts (BSCs) on soil moisture and wind erosion and study the necessity and feasibility of disturbance of BSCs in the Mu Us sandland, the effects of four treatments, including moss-dominated crusts alone, Artemisia ordosica alone, bare sand, and Artemisia ordosica combined with moss-dominated crusts, on rainwater infiltration, soil moisture, and annual wind erosion were observed. The major results are as follows. (1) The development of moss-dominated crusts exacerbated soil moisture consumption and had negative effects on soil moisture in the Mu Us sandland. (2) Moss-dominated crusts significantly increased soil resistance to wind erosion, and when combined with Artemisia ordosica, this effect became more significant. The contribution of moss-dominated crusts under Artemisia ordosica was significantly lower than that of moss-dominated crusts alone in sites where vegetative coverage > 50%. (3) Finally, an appropriate disturbance of moss-dominated crusts in the rainy season in sites with high vegetative coverage improved soil water environment and vegetation succession, but disturbance in sites with little or no vegetative cover should be prohibited to avoid the exacerbation of wind erosion.

  3. Hydrothermal plume anomalies over the southwest Indian ridge: magmatic control

    Science.gov (United States)

    Yue, X.; Li, H.; Tao, C.; Ren, J.; Zhou, J.; Chen, J.; Chen, S.; Wang, Y.

    2017-12-01

    Here we firstly reported the extensive survey results of the hydrothermal activity along the ultra-slow spreading southwest Indian ridge (SWIR). The study area is located at segment 27, between the Indomed and Gallieni transform faults, SWIR. The seismic crustal thickness reaches 9.5km in this segment (Li et al., 2015), which is much thicker than normal crustal. The anomaly thickened crust could be affected by the Crozet hotspot or highly focused melt delivery from the mantle. The Duanqiao hydrothermal field was reported at the ridge valley of the segment by Tao et al (2009). The Deep-towed Hydrothermal Detection System (DHDS) was used to collect information related with hydrothermal activity, like temperature, turbidity, oxidation-reduction potential (ORP) and seabed types. There are 15 survey lines at the interval of 2 to 3 km which are occupied about 1300 km2 in segment 27. After processing the raw data, including wiping out random noise points, 5-points moving average processing and subtracting the ambient, we got anomalous Nephelometric Turbidity Units values (ΔNTU). And dE/dt was used to identify the ORP anomalous as the raw data is easily influenced by electrode potentials drifting (Baker et al., 2016). According to the results of water column turbidity and ORP distributions, we confirmed three hydrothermal anomaly fields named A1, A2 and A3. The three fields are all located in the western part of the segment. The A1 field lies on the ridge valley, west side of Duanqiao field. The A2 and A3 field lie on the northern and southern of the ridge valley, respectively. We propose that recent magmatic activity probably focus on the western part of segment 27.And the extensive distribution of hydrothermal plume in the segment is the result of the discrete magma intrusion. References Baker E T, et al. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations. EPSL, 2016, 449:186-196. Li J

  4. Mission Moho: Rationale for drilling deep through the ocean crust into the upper mantle

    Science.gov (United States)

    Ildefonse, B.; Abe, N.; Kelemen, P. B.; Kumagai, H.; Teagle, D. A. H.; Wilson, D. S.; Moho Proponents, Mission

    2009-04-01

    Sampling a complete section of the ocean crust to the Moho was the original inspiration for scientific ocean drilling, and remains the main goal of the 21st Century Mohole Initiative in the IODP Science Plan. Fundamental questions about the composition, structure, and geophysical characteristics of the ocean lithosphere, and about the magnitude of chemical exchanges between the mantle, crust and oceans remain unresolved due to the absence of in-situ samples and measurements. The geological nature of the Mohorovičić discontinuity itself remains poorly constrained. "Mission Moho" is a proposal that was submitted to IODP in April 2007, with the ambition to drill completely through intact oceanic crust formed at a fast spreading rate, across the Moho and into the uppermost mantle. Although, eventually, no long-term mission was approved by IODP, the scientific objectives related to deep drilling in the ocean crust remain essential to our understanding of the Earth. These objectives are to : - Determine the geological meaning of the Moho in different oceanic settings, determine the in situ composition, structure and physical properties of the uppermost mantle, and understand mantle melt migration, - Determine the bulk composition of the oceanic crust to establish the chemical links between erupted lavas and primary mantle melts, understand the extent and intensity of seawater hydrothermal exchange with the lithosphere, and estimate the chemical fluxes returned to the mantle by subduction, - Test competing hypotheses of the ocean crust accretion at fast spreading mid-ocean ridges, and quantify the linkages and feedbacks between magma intrusion, hydrothermal circulation and tectonic activity, - Calibrate regional seismic measurements against recovered cores and borehole measurements, and understand the origin of marine magnetic anomalies, - Establish the limits of life in the ocean lithosphere. The "MoHole" was planned as the final stage of Mission Moho, which requires

  5. Channelized lava flows at the East Pacific Rise crest 9°-10°N: the importance of off-axis lava transport in developing the architecture of young oceanic crust

    Science.gov (United States)

    Soule, S.A.; Fornari, D.J.; Perfit, M.R.; Tivey, M.A.; Ridley, W.I.; Schouten, Hans

    2005-01-01

     Submarine lava flows are the building blocks of young oceanic crust. Lava erupted at the ridge axis is transported across the ridge crest in a manner dictated by the rheology of the lava, the characteristics of the eruption, and the topography it encounters. The resulting lava flows can vary dramatically in form and consequently in their impact on the physical characteristics of the seafloor and the architecture of the upper 50–500 m of the oceanic crust. We have mapped and measured numerous submarine channelized lava flows at the East Pacific Rise (EPR) crest 9°–10°N that reflect the high-effusion-rate and high-flow-velocity end-member of lava eruption and transport at mid-ocean ridges. Channel systems composed of identifiable segments 50–1000 m in length extend up to 3 km from the axial summit trough (AST) and have widths of 10–50 m and depths of 2–3 m. Samples collected within the channels are N-MORB with Mg# indicating eruption from the AST. We produce detailed maps of lava surface morphology across the channel surface from mosaics of digital images that show lineated or flat sheets at the channel center bounded by brecciated lava at the channel margins. Modeled velocity profiles across the channel surface allow us to determine flux through the channels from 0.4 to 4.7 × 103m3/s, and modeled shear rates help explain the surface morphology variation. We suggest that channelized lava flows are a primary mechanism by which lava accumulates in the off-axis region (1–3 km) and produces the layer 2A thickening that is observed at fast and superfast spreading ridges. In addition, the rapid, high-volume-flux eruptions necessary to produce channelized flows may act as an indicator of the local magma budget along the EPR. We find that high concentrations of channelized lava flows correlate with local, across-axis ridge morphology indicative of an elevated magma budget. Additionally, in locations where channelized flows are located dominantly to the east

  6. Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls

    Science.gov (United States)

    Escartin, Javier

    2016-04-01

    Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While

  7. Electric resistivity distribution in the Earth's crust and upper mantle for the southern East European Platform and Crimea from area-wide 2D models

    Science.gov (United States)

    Logvinov, Igor M.; Tarasov, Viktor N.

    2018-03-01

    Previously obtained magnetotelluric 2D models for 30 profiles made it possible to create an overview model of electric resistivity for the territory between 28°E and 36°E and between 44.5°N and 52.5°N. It allows us to distinguish a number of low resistivity objects (LRO) with resistivities lower than 100 Ω m the Earth's crust and mantle. Two regional conductivity anomalies are traced. The Kirovograd conductivity anomaly extends south to the Crimea mountains. A new regional conductivity anomaly (Konkskaya) can be distinguished along the southern slope of the Ukrainian Shield from 29° to 34°E. In addition, many local LROs have been identified. According to the modeling results, the local low resistivity objects on the East European Platform appear along fault zones activated during last 5-7 M years and the model suggests their relation to known zones of graphitization and polymetallic ore deposits. Local LROs in the Dnieper-Donets Basin correlate with the main oil and natural gas fields in this area. The depth of the anomalous objects amounts to 5-22 km. This is consistent with the hypotheses that hydrocarbon deposits are related to generation and transport zones of carbon-bearing fluids.

  8. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-03-01

    This document outlines the activities necessary to conduct a Remedial Investigation (RI) of the Chestnut Ridge Security Pits (CRSP) at the Oak Ridge Y-12 Plant. The CRSP, also designated Chestnut Ridge Operable Unit (OU) 1, is one of four OUs along Chestnut Ridge on the Oak Ridge Reservation (ORR). The purpose of the RI is to collect data to (1) evaluate the nature and extent of known and suspected contaminants, (2) support an Ecological Risk Assessment (ERA) and a Human Health Risk Assessment (HHRA), (3) support the feasibility study in the development and analysis of remedial alternatives, and (4) ultimately, develop a Record of Decision (ROD) for the site. This chapter summarizes the regulatory background of environmental investigation on the ORR and the approach currently being followed and provides an overview of the RI to be conducted at the CRSP. Subsequent chapters provide details on site history, sampling activities, procedures and methods, quality assurance (QA), health and safety, and waste management related to the RI

  9. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This document outlines the activities necessary to conduct a Remedial Investigation (RI) of the Chestnut Ridge Security Pits (CRSP) at the Oak Ridge Y-12 Plant. The CRSP, also designated Chestnut Ridge Operable Unit (OU) 1, is one of four OUs along Chestnut Ridge on the Oak Ridge Reservation (ORR). The purpose of the RI is to collect data to (1) evaluate the nature and extent of known and suspected contaminants, (2) support an Ecological Risk Assessment (ERA) and a Human Health Risk Assessment (HHRA), (3) support the feasibility study in the development and analysis of remedial alternatives, and (4) ultimately, develop a Record of Decision (ROD) for the site. This chapter summarizes the regulatory background of environmental investigation on the ORR and the approach currently being followed and provides an overview of the RI to be conducted at the CRSP. Subsequent chapters provide details on site history, sampling activities, procedures and methods, quality assurance (QA), health and safety, and waste management related to the RI.

  10. An aerial radiological survey of the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Maurer, R.J.

    1993-04-01

    An aerial radiological survey of the Oak Ridge Reservation (ORR) and surrounding area in Oak Ridge, Tennessee, was conducted during the period March 30 to April 14,1992. The purpose of the survey was to measure and document the terrestrial radiological environment of the Oak Ridge Reservation for use in environmental management programs and emergency response planning. The aerial survey was flown at an altitude of 150 feet (46 meters) along a series of parallel lines 250 feet (76 meters) apart and included X-10 (Oak Ridge National Laboratory), K-25 (former Gaseous Diffusion Plant), Y-12 (Weapons Production Plant), the Freels Bend Area and Oak Ridge Institute for Science and Education, the East Fork Poplar Creek (100-year floodplain extending from K-25 to Y-12), Elza Gate (former uranium ore storage site located in the city of Oak Ridge), Parcel A, the Clinch River (river banks extending from Melton Hill Dam to the city of Kingston), and the CSX Railroad Tracks (extending from Y-12 to the city of Oak Ridge). The survey encompassed approximately 55 square miles (1 41 square kilometers) of the Oak Ridge Reservation and surrounding area

  11. Geology along the Blue Ridge Parkway in Virginia

    Science.gov (United States)

    Carter, Mark W.; Southworth, C. Scott; Tollo, Richard P.; Merschat, Arthur J.; Wagner, Sara; Lazor, Ava; Aleinikoff, John N.

    2017-01-01

    Back Formations. These rocks are bound by numerous faults, including the Rock Castle Creek fault that separates Ashe Formation rocks from Alligator Back Formation rocks in the core of the Ararat River synclinorium. The lack of unequivocal paleontologic or geochronologic ages for any of these rock sequences, combined with fundamental and conflicting differences in tectonogenetic models, compound the problem of regional correlation with Blue Ridge cover rocks to the north.The geologic transition from the central to southern Appalachians is also marked by a profound change in landscape and surficial deposits. In central Virginia, the Blue Ridge consists of narrow ridges that are held up by resistant but contrasting basement and cover lithologies. These ridges have shed eroded material from their crests to the base of the mountain fronts in the form of talus slopes, debris flows, and alluvial-colluvial fans for perhaps 10 m.y. South of Roanoke, however, ridges transition into a broad hilly plateau, flanked on the east by the Blue Ridge escarpment and the eastern Continental Divide. Here, deposits of rounded pebbles, cobbles, and boulders preserve remnants of ancestral west-flowing drainage systems.Both bedrock and surficial geologic processes provide an array of economic deposits along the length of the Blue Ridge Parkway corridor in Virginia, including base and precious metals and industrial minerals. However, common stone was the most important commodity for creating the Blue Ridge Parkway, which yielded building stone for overlooks and tunnels, or crushed stone for road base and pavement.

  12. Constraints on the symmetry energy from observational probes of the neutron star crust

    International Nuclear Information System (INIS)

    Newton, William G.; Hooker, Joshua; Gearheart, Michael; Fattoyev, Farrukh J.; Li, Bao-An; Murphy, Kyleah; Wen, De-Hua

    2014-01-01

    A number of observed phenomena associated with individual neutron star systems or neutron star populations find explanations in models in which the neutron star crust plays an important role. We review recent work examining the sensitivity to the slope of the symmetry energy L of such models, and constraints extracted on L from confronting them with observations. We focus on six sets of observations and proposed explanations: (i) The cooling rate of the neutron star in Cassiopeia A, confronting cooling models which include enhanced cooling in the nuclear pasta regions of the inner crust; (ii) the upper limit of the observed periods of young X-ray pulsars, confronting models of magnetic field decay in the crust caused by the high resistivity of the nuclear pasta layer; (iii) glitches from the Vela pulsar, confronting the paradigm that they arise due to a sudden recoupling of the crustal neutron superfluid to the crustal lattice after a period during which they were decoupled due to vortex pinning; (iv) the frequencies of quasi-periodic oscillations in the X-ray tail of light curves from giant flares from soft gamma-ray repeaters, confronting models of torsional crust oscillations; (v) the upper limit on the frequency to which millisecond pulsars can be spun-up due to accretion from a binary companion, confronting models of the r-mode instability arising above a threshold frequency determined in part by the viscous dissipation timescale at the crust-core boundary; and (vi) the observations of precursor electromagnetic flares a few seconds before short gamma-ray bursts, confronting a model of crust shattering caused by resonant excitation of a crustal oscillation mode by the tidal gravitational field of a companion neutron star just before merger. (orig.)

  13. Constraints on the symmetry energy from observational probes of the neutron star crust

    Energy Technology Data Exchange (ETDEWEB)

    Newton, William G.; Hooker, Joshua; Gearheart, Michael; Fattoyev, Farrukh J.; Li, Bao-An [Texas A and M University-Commerce, Department of Physics and Astronomy, Commerce (United States); Murphy, Kyleah [Texas A and M University-Commerce, Department of Physics and Astronomy, Commerce (United States); Umpqua Community College, Roseburg, Oregon (United States); Wen, De-Hua [Texas A and M University-Commerce, Department of Physics and Astronomy, Commerce (United States); South China University of Technology, Department of Physics, Guangzhou (China)

    2014-02-15

    A number of observed phenomena associated with individual neutron star systems or neutron star populations find explanations in models in which the neutron star crust plays an important role. We review recent work examining the sensitivity to the slope of the symmetry energy L of such models, and constraints extracted on L from confronting them with observations. We focus on six sets of observations and proposed explanations: (i) The cooling rate of the neutron star in Cassiopeia A, confronting cooling models which include enhanced cooling in the nuclear pasta regions of the inner crust; (ii) the upper limit of the observed periods of young X-ray pulsars, confronting models of magnetic field decay in the crust caused by the high resistivity of the nuclear pasta layer; (iii) glitches from the Vela pulsar, confronting the paradigm that they arise due to a sudden recoupling of the crustal neutron superfluid to the crustal lattice after a period during which they were decoupled due to vortex pinning; (iv) the frequencies of quasi-periodic oscillations in the X-ray tail of light curves from giant flares from soft gamma-ray repeaters, confronting models of torsional crust oscillations; (v) the upper limit on the frequency to which millisecond pulsars can be spun-up due to accretion from a binary companion, confronting models of the r-mode instability arising above a threshold frequency determined in part by the viscous dissipation timescale at the crust-core boundary; and (vi) the observations of precursor electromagnetic flares a few seconds before short gamma-ray bursts, confronting a model of crust shattering caused by resonant excitation of a crustal oscillation mode by the tidal gravitational field of a companion neutron star just before merger. (orig.)

  14. Deep Crustal Melting and the Survival of Continental Crust

    Science.gov (United States)

    Whitney, D.; Teyssier, C. P.; Rey, P. F.; Korchinski, M.

    2017-12-01

    Plate convergence involving continental lithosphere leads to crustal melting, which ultimately stabilizes the crust because it drives rapid upward flow of hot deep crust, followed by rapid cooling at shallow levels. Collision drives partial melting during crustal thickening (at 40-75 km) and/or continental subduction (at 75-100 km). These depths are not typically exceeded by crustal rocks that are exhumed in each setting because partial melting significantly decreases viscosity, facilitating upward flow of deep crust. Results from numerical models and nature indicate that deep crust moves laterally and then vertically, crystallizing at depths as shallow as 2 km. Deep crust flows en masse, without significant segregation of melt into magmatic bodies, over 10s of kms of vertical transport. This is a major mechanism by which deep crust is exhumed and is therefore a significant process of heat and mass transfer in continental evolution. The result of vertical flow of deep, partially molten crust is a migmatite dome. When lithosphere is under extension or transtension, the deep crust is solicited by faulting of the brittle upper crust, and the flow of deep crust in migmatite domes traverses nearly the entire thickness of orogenic crust in Recognition of the importance of migmatite (gneiss) domes as archives of orogenic deep crust is applicable to determining the chemical and physical properties of continental crust, as well as mechanisms and timescales of crustal differentiation.

  15. Chemical and Mineralogical Characterization of a Hematite-bearing Ridge on Mauna Kea, Hawaii: A Potential Mineralogical Process Analog for the Mount Sharp Hematite Ridge

    Science.gov (United States)

    Graff, T. G.; Morris, R. V.; Ming, D. W.; Hamilton, J. C.; Adams, M.; Fraeman, A. A.; Arvidson, R. E.; Catalano, J. G.; Mertzman, S. A.

    2014-01-01

    The Mars Science Laboratory (MSL) rover Curiosity landed in Gale Crater in August 2012 and is currently roving towards the layered central mound known as Mount Sharp [1]. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) hyperspectral data indicate Mount Sharp contains an 5 km stratigraphic sequence including Fe-Mg smectites, hematite, and hydrated sulfates in the lower layers separated by an unconformity from the overlying anhydrous strata [1,2,3]. Hematite was initially detected in CRISM data to occur in the lower sulfate layers on the north side of the mound [2]. [3] further mapped a distinct hematite detection occurring as part of a 200 m wide ridge that extends 6.5 km NE-SW, approximately parallel with the base of Mount Sharp. It is likely a target for in-situ analyses by Curiosity. We document here the occurrence of a stratum of hematite-bearing breccia that is exposed on the Puu Poliahu cinder cone near the summit of Mauna Kea volcano (Hawaii) (Fig.1). The stratum is more resistant to weathering than surrounding material, giving it the appearance of a ridge. The Mauna Kea hematite ridge is thus arguably a potential terrestrial mineralogical and process analog for the Gale Crater hematite ridge. We are acquiring a variety of chemical and mineralogical data on the Mauna Kea samples, with a focus on the chemical and mineralogical information already available or planned for the Gale hematite ridge.

  16. Deep structure of Porcupine Basin and nature of the Porcupine Median Ridge from seismic refraction tomography

    Science.gov (United States)

    Watremez, L.; Chen, C.; Prada, M.; Minshull, T. A.; O'Reilly, B.; Reston, T. J.; Wagner, G.; Gaw, V.; Klaeschen, D.; Shannon, P.

    2015-12-01

    The Porcupine Basin is a narrow V-shaped failed rifted basin located offshore SW Ireland. It is of Permo-Triassic to Cenozoic age, with the main rifting phase in the Late Jurassic to Early Cretaceous. Porcupine Basin is a key study area to learn about the processes of continental extension and to understand the thermal history of this rifted basin. Previous studies show increasing stretching factors, from less than 1.5 to the North to more than 6 to the South. A ridge feature, the Porcupine Median Ridge, has been identified in the middle of the southernmost part of the basin. During the last three decades, this ridge has been successively interpreted as a volcanic structure, a diapir of partially serpentinized mantle, or a block of continental crust. Its nature still remains debated today. In this study, we use arrival times from refractions and wide-angle reflections in the sedimentary, crustal and mantle layers to image the crustal structure of the thinnest part of the basin, the geometry of the continental thinning from margin to margin, and the Porcupine Median Ridge. The final velocity model is then compared with coincident seismic reflection data. We show that (1) the basin is asymmetric, (2) P-wave velocities in the uppermost mantle are lower than expected for unaltered peridotites, implying upper-mantle serpentinisation, (3) the nature of Porcupine Median Ridge is probably volcanic, and (4) the amount of thinning is greater than shown in previous studies. We discuss the thermal implications of these results for the evolution of this rift system and the processes leading to the formation of failed rifts. This project is funded by the Irish Shelf Petroleum Studies Group (ISPSG) of the Irish Petroleum Infrastructure Programme Group 4.

  17. Spatiotemporal distribution of the seismicity along the Mid-Atlantic Ridge north of the Azores from hydroacoustic data: Insights into seismogenic processes in a ridge-hot spot context

    Science.gov (United States)

    Goslin, J.; Perrot, J.; Royer, J.-Y.; Martin, C.; LourençO, N.; Luis, J.; Dziak, R. P.; Matsumoto, H.; Haxel, J.; Fowler, M. J.; Fox, C. G.; Lau, A. T.-K.; Bazin, S.

    2012-02-01

    The seismicity of the North Atlantic was monitored from May 2002 to September 2003 by the `SIRENA array' of autonomous hydrophones. The hydroacoustic signals provide a unique data set documenting numerous low-magnitude earthquakes along the section of the Mid-Atlantic Ridge (MAR) located in a ridge-hot spot interaction context. During the experiment, 1696 events were detected along the MAR axis between 40°N and 51°N, with a magnitude of completeness level ofmb≈ 2.4. Inside the array, location errors are in the order of 2 km, and errors in the origin time are less than 1 s. From this catalog, 15 clusters were detected. The distribution of source level (SL) versus time within each cluster is used to discriminate clusters occurring in a tectonic context from those attributed to non-tectonic (i.e. volcanic or hydrothermal) processes. The location of tectonic and non-tectonic sequences correlates well with regions with positive and negative Mantle Bouguer Anomalies (MBAs), indicating the presence of thinner/colder and thicker/warmer crust respectively. At the scale of the entire array, both the complete and declustered catalogs derived from the hydroacoustic signals show an increase of the seismicity rate from the Azores up to 43°30'N suggesting a diminishing influence of the Azores hot spot on the ridge-axis temperature, and well correlated with a similar increase in the along-axis MBAs. The comparison of the MAR seismicity with the Residual MBA (RMBA) at different scales leads us to think that the low-magnitude seismicity rates are directly related to along-axis variations in lithosphere rheology and temperatures.

  18. The strontium isotopic composition of seawater, and seawater-oceanic crust interaction

    International Nuclear Information System (INIS)

    Spooner, E.T.C.

    1976-01-01

    The 87 Sr/ 86 Sr ratio of seawater strontium (0.7091) is less than the 87 Sr/ 86 Sr ratio of dissolved strontium delivered to the oceans by continental run-off (approximately 0.716). Isotope exchange with strontium isotopically lighter oceanic crust during hydrothermal convection within spreading oceanic ridges can explain this observation. In quantitative terms, the current 87 Sr/ 86 Sr ratio of seawater (0.7091) may be maintained by balancing the continental run-off flux of strontium (0.59 x 10 12 g/yr) against a hydrothermal recirculation flux of 3.6 x 10 12 g/yr, during which the 87 Sr/ 86 Sr ratio of seawater drops by 0.0011. A concomitant mean increase in the 87 Sr/ 86 Sr ratio of the upper 4.5 km of oceanic crust of 0.0010 (0.7029-0.7039) should be produced. This required 87 Sr enrichment has been observed in hydrothermally metamorphosed ophiolitic rocks from the Troodos Massif, Cyprus. The post-Upper Cretaceous increase in the strontium isotopic composition of seawater (approximately 0.7075-0.7091) covaries smoothly with inferred increase in land area. This suggests that during this period the main factor which has caused variability in the 87 Sr/ 86 Sr ratio of seawater strontium could have been variation in the magnitude of the continental run-off flux caused by variation in land area. Variations in land area may themselves have been partly a consequence of variations in global mean sea-floor spreading rate. (Auth.)

  19. Predicting Sediment Thickness on Vanished Ocean Crust Since 200 Ma

    Science.gov (United States)

    Dutkiewicz, A.; Müller, R. D.; Wang, X.; O'Callaghan, S.; Cannon, J.; Wright, N. M.

    2017-12-01

    Tracing sedimentation through time on existing and vanished seafloor is imperative for constraining long-term eustasy and for calculating volumes of subducted deep-sea sediments that contribute to global geochemical cycles. We present regression algorithms that incorporate the age of the ocean crust and the mean distance to the nearest passive margin to predict sediment thicknesses and long-term decompacted sedimentation rates since 200 Ma. The mean sediment thickness decreases from ˜220 m at 200 Ma to a minimum of ˜140 m at 130 Ma, reflecting the replacement of old Panthalassic ocean floor with young sediment-poor mid-ocean ridges, followed by an increase to ˜365 m at present-day. This increase reflects the accumulation of sediments on ageing abyssal plains proximal to passive margins, coupled with a decrease in the mean distance of any parcel of ocean crust to the nearest passive margin by over 700 km, and a doubling of the total passive margin length at present-day. Mean long-term sedimentation rates increase from ˜0.5 cm/ky at 160 Ma to over 0.8 cm/ky today, caused by enhanced terrigenous sediment influx along lengthened passive margins, superimposed by the onset of ocean-wide carbonate sedimentation. Our predictive algorithms, coupled to a plate tectonic model, provide a framework for constraining the seafloor sediment-driven eustatic sea-level component, which has grown from ˜80 to 210 m since 120 Ma. This implies a long-term sea-level rise component of 130 m, partly counteracting the contemporaneous increase in ocean basin depth due to progressive crustal ageing.

  20. Hess Deep Interactive Lab: Exploring the Structure and Formation of the Oceanic Crust through Hands-On Models and Online Tools

    Science.gov (United States)

    Kurtz, N.; Marks, N.; Cooper, S. K.

    2014-12-01

    Scientific ocean drilling through the International Ocean Discovery Program (IODP) has contributed extensively to our knowledge of Earth systems science. However, many of its methods and discoveries can seem abstract and complicated for students. Collaborations between scientists and educators/artists to create accurate yet engaging demonstrations and activities have been crucial to increasing understanding and stimulating interest in fascinating geological topics. One such collaboration, which came out of Expedition 345 to the Hess Deep Rift, resulted in an interactive lab to explore sampling rocks from the usually inacessible lower oceanic crust, offering an insight into the geological processes that form the structure of the Earth's crust. This Hess Deep Interactive Lab aims to explain several significant discoveries made by oceanic drilling utilizing images of actual thin sections and core samples recovered from IODP expeditions. . Participants can interact with a physical model to learn about the coring and drilling processes, and gain an understanding of seafloor structures. The collaboration of this lab developed as a need to explain fundamental notions of the ocean crust formed at fast-spreading ridges. A complementary interactive online lab can be accessed at www.joidesresolution.org for students to engage further with these concepts. This project explores the relationship between physical and on-line models to further understanding, including what we can learn from the pros and cons of each.

  1. Crystallization Temperatures of Lower Crustal Gabbros from the Oman Ophiolite and the Persistence of the 'Mush Zone' at Intermediate/Fast Spreading Ridges

    Science.gov (United States)

    VanTongeren, J. A.

    2017-12-01

    Oceanic crust is formed when mantle-derived magmas are emplaced at the ridge axis, a zone of intense rifting and extension. Magmas begin to cool and crystallize on-axis, forming what is termed the "Mush Zone", a region of partially molten rocks. Several attempts have been made to understand the nature of the Mush Zone at fast spreading mid-ocean ridges, specifically how much partial melt exists and how far off-axis the Mush Zone extends. Geophysical estimates of P-wave velocity perturbations at the East Pacific Rise show a region of low velocity approximately 1.5-2.5 km off-axis, which can be interpreted to be the result of higher temperature [e.g. Dunn et al., 2000, JGR] or the existence of partial melt. New petrological and geochemical data and methods allow for the calculation of the lateral extent of the Mush Zone in the lower oceanic crust on exposed sections collected from the Oman ophiolite, a paleo-fast/intermediate spreading center. I will present new data quantifying the crystallization temperatures of gabbros from the Wadi Khafifah section of lower oceanic gabbros from the Oman ophiolite. Crystallization temperatures are calculated with the newly developed plagioclase-pyroxene REE thermometer of Sun and Liang [2017, Contrib. Min. Pet.]. There does not appear to be any systematic change in the crystallization temperature of lower crustal gabbros with depth in the crust. In order to quantify the duration of crystallization and the lateral extent of the Mush Zone of the lower crust, crystallization temperatures are paired with estimates of the solidus temperature and cooling rate determined from the same sample, previously constrained by the Ca diffusion in olivine geothermometer/ geospeedometer [e.g. VanTongeren et al., 2008 EPSL]. There is no systematic variation in the closure temperature of Ca in olivine, or the cooling rate to the 800°C isotherm. These results show that gabbros throughout the lower crust of the Oman ophiolite remain in a partially

  2. Thickness of Knox Group overburden on Central Chestnut Ridge, Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Staub, W.P.; Hopkins, R.A.

    1984-05-01

    The thickness of residual soil overlying the Knox Group along Central Chestnut Ridge was estimated by a conventional seismic refraction survey. The purpose of this survey was to identify sites on the Department of Energy's Oak Ridge Reservation where ample overburden exists above the water table for the shallow land burial of low-level radioactive waste. The results of the survey suggest that the upper slopes of the higher ridges in the area have a minimum of 16 to 26 m (52 to 85 ft) of overburden and that the crests of these ridges may have more than 30 m (100 ft). Therefore, it is unlikely that sound bedrock would be encountered during trench excavation [maximum of 10 m (32 ft)] along Central Chestnut Ridge. Also, the relatively low seismic wave velocities measured in the overburden suggest that the water table is generally deep. On the basis of these preliminary results, Central Chestnut Ridge appears to be suitable for further site characterization for the shallow land burial of low-level radioactive waste. 3 references, 5 figures, 1 table

  3. Modelling of hydrothermal fluid circulation in a heterogeneous medium: Application to the Rainbow Vent site (Mid-Atlantic-Ridge, 36°14N)

    Science.gov (United States)

    Perez, F.; Mügler, C.; Jean-Baptiste, P.; Charlou, J. L.

    2012-04-01

    Hydrothermal activity at the axis of mid-ocean ridges is a key driver for energy and matter transfer from the interior of the Earth to the ocean floor. At mid-ocean ridges, seawater penetrates through the permeable young crust, warms at depth and exchanges chemicals with the surrounding rocks. This hot fluid focuses and flows upwards, then is expelled from the crust at hydrothermal vent sites in the form of black or white smokers completed by diffusive emissions. We developed a new numerical tool in the Cast3M software framework to model such hydrothermal circulations. Thermodynamic properties of one-phase pure water were calculated from the IAPWS formulation. This new numerical tool was validated on several test cases of convection in closed-top and open-top boxes. Simulations of hydrothermal circulation in a homogeneous-permeability porous medium also gave results in good agreement with already published simulations. We used this new numerical tool to construct a geometric and physical model configuration of the Rainbow Vent site at 36°14'N on the Mid-Atlantic Ridge. In this presentation, several configurations will be discussed, showing that high temperatures and high mass fluxes measured at the Rainbow site cannot be modelled with hydrothermal circulation in a homogeneous-permeability porous medium. We will show that these high values require the presence of a fault or a preferential pathway right below the venting site. We will propose and discuss a 2-D one-path model that allows us to simulate both high temperatures and high mass fluxes. This modelling of the hydrothermal circulation at the Rainbow site constitutes a first but necessary step to understand the origin of high concentrations of hydrogen issued from this ultramafic-hosted vent field.

  4. Noble gases in basalt glasses from a Mid-Atlantic Ridge topographic high at 14deg N - geodynamic consequences

    International Nuclear Information System (INIS)

    Staudacher, T.; Sarda, P.; Richardson, S.H.; Allegre, C.J.; Sagna, I.; Dmitriev, L.V.

    1989-01-01

    We present a complete noble gas study of mid-oceanic ridge basalt glasses (MORB) from a small ridge segment, centered on an along-strike topographic elevation of the Mid-Atlantic Ridge at about 14deg N. We have found the highest 40 Ar/ 36 Ar ratio ever observed for a MORB glass, i.e. 28,150±330 for sample 2ΠD40, correlated with high 129 Xe/ 130 Xe ratios and the highest noble gas concentrations in a so-called popping-rock, labeled 2ΠD43. The latter sample displays a 4 He/ 40 Ar * ratio of 2.0-2.7, which is close to the production ratio in the mantle due to the radioactive decay of U, Th and K. Hence, this sample probably best represents the elemental noble gas ratios in the mantle, from which we have computed the 4 He concentration in the mantle source of MORB to be 1.5x10 -5 cm 3 STP g -1 . High 4 He/ 3 He ratios in two of the samples from the summit of the topographic high indicate the presence of a U, Th-rich component in the mantle source, possibly old subducted oceanic crust and/or sediments, which could originate in the so-called mesosphere boundary layer. (orig.)

  5. Transdomes sampling of lower and middle crust

    Science.gov (United States)

    Teyssier, C. P.; Whitney, D. L.; Roger, F.; Rey, P. F.

    2015-12-01

    Migmatite transdomes are formed by lateral and upward flow of partially molten crust in transtension zones (pull-apart structures). In order to understand the flow leading to this type of domes, 3D numerical models were set-up to simulate the general case of an extensional domain located between two strike-slip faults (pull-apart or dilational bridge). Results show that upper crust extension induces flow of the deep, low-viscosity crust, with rapid upward movement of transdome material when extension becomes localized. At this point a rolling hinge detachment allows rapid removal of upper crust. The internal structure of transdomes includes a subvertical high strain zone located beneath the zone of localized upper crust extension; this shear zone separates two elongate subdomes of foliation that show refolded/sheath folds. Lineation tends to be oriented dominantly subhorizontal when the amount of strike-slip motion is greater than the amount of upward flow of dome rocks. Models also predict nearly isothermal decompression of transdome material and rapid transfer of ~50 km deep rocks to the near surface. These model results are compared to the structural and metamorphic history of several transdomes, and in particular the Variscan Montagne Noire dome (French Massif Central) that consists of two domes separated by a complex high strain zone. The Montagne Noire dome contains ~315 Ma eclogite bodies (U-Pb zircon age) that record 1.4 GPa peak pressure. The eclogite bodies are wrapped in highly sheared migmatite that yield 314-310 Ma monazite ages interpreted as the metamorphism and deformation age. Based on these relations we conclude that the Montagne Noire transdome developed a channel of partially molten crust that likely entrained eclogite bodies from the deep crust (~50 km) before ascending to the near-surface. One implication of this work is that the flowing crust was deeply seated in the orogen although it remained a poor recorder of peak pressure of metamorphism

  6. On the nature of the calcareous substrate of a ferromanganese crust from the Vityaz Fracture Zone, Central Indian Ridge: Inferences on palaeoceanography

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.; Banerjee, R.; Mergulhao, L.

    A 15-cm-thick carbonate substrate encrusted with ferromanganese oxides from the Vityaz Fracture Zone, Central Indian Ridge was analysed to reconstruct the palaeoceanography of the region. Based on the calcareous nannoplankton assemblage, an early...

  7. Physics of Neutron Star Crusts

    Directory of Open Access Journals (Sweden)

    Chamel Nicolas

    2008-12-01

    Full Text Available The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  8. Biological Soil Crusts: Webs of Life in the Desert

    Science.gov (United States)

    Belnap, Jayne

    2001-01-01

    Although the soil surface may look like dirt to you, it is full of living organisms that are a vital part of desert ecosystems. This veneer of life is called a biological soil crust. These crusts are found throughout the world, from hot deserts to polar regions. Crusts generally cover all soil spaces not occupied by green plants. In many areas, they comprise over 70% of the living ground cover and are key in reducing erosion, increasing water retention, and increasing soil fertility. In most dry regions, these crusts are dominated by cyanobacteria (previously called blue-green algae), which are one of the oldest known life forms. Communities of soil crusts also include lichens, mosses, microfungi, bacteria, and green algae. These living organisms and their by-products create a continuous crust on the soil surface. The general color, surface appearance, and amount of coverage of these crusts vary depending on climate and disturbance patterns. Immature crusts are generally flat and the color of the soil, which makes them difficult to distinguish from bare ground. Mature crusts, in contrast, are usually bumpy and dark-colored due to the presence of lichens, mosses, and high densities of cyanobacteria and other organisms.

  9. The origin and crust/mantle mass balance of Central Andean ignimbrite magmatism constrained by oxygen and strontium isotopes and erupted volumes

    Science.gov (United States)

    Freymuth, Heye; Brandmeier, Melanie; Wörner, Gerhard

    2015-06-01

    Volcanism during the Neogene in the Central Volcanic Zone (CVZ) of the Andes produced (1) stratovolcanoes, (2) rhyodacitic to rhyolitic ignimbrites which reach volumes of generally less than 300 km3 and (3) large-volume monotonous dacitic ignimbrites of up to several thousand cubic kilometres. We present models for the origin of these magma types using O and Sr isotopes to constrain crust/mantle proportions for the large-volume ignimbrites and explore the relationship to the evolution of the Andean crust. Oxygen isotope ratios were measured on phenocrysts in order to avoid the effects of secondary alteration. Our results show a complete overlap in the Sr-O isotope compositions of lavas from stratovolcanoes and low-volume rhyolitic ignimbrites as well as older (>9 Ma) large-volume dacitic ignimbrites. This suggests that the mass balance of crustal and mantle components are largely similar. By contrast, younger (estimated the volume of these ignimbrite deposits throughout the Central Andes during the Neogene and examined the spatiotemporal pattern of so-called ignimbrite flare-ups. We observe a N-S migration of maximum ages of the onset of large-volume "ignimbrite pulses" through time: Major pulses occurred at 19-24 Ma (e.g. Oxaya, Nazca Group), 13-14 Ma (e.g. Huaylillas and Altos de Pica ignimbrites) and 70 km3 Ma-1 km-1 (assuming plutonic/volcanic ratios of 1:5) which are additional to, but within the order of, the arc background magmatic flux. Comparing our results to average shortening rates observed in the Andes, we observe a "lag-time" with large-volume eruptions occurring after accelerated shortening. A similar delay exists between the ignimbrite pulses and the subduction of the Juan Fernandez ridge. This is consistent with the idea that large-volume ignimbrite eruptions occurred in the wake of the N-S passage of the ridge after slab steepening has allowed hot asthenospheric mantle to ascend into and cause the melting of the mantle wedge. In our model, the

  10. Phosphatization Associated Features of Ferromanganese Crusts at Lemkein Seamount, Marshall Islands

    Science.gov (United States)

    Choi, J.; Lee, I.; Park, B. K.; Kim, J.

    2014-12-01

    Old layers of ferromanganese crusts, especially in the Pacific Ocean, have been affected by phosphatization. Ferromanganese crusts on Lemkein seamount in Marshall Islands also are phosphatized (3.3 to 4.2 wt % of P concentration). Furthermore, they have characteristic features that are different from other ferromanganese crusts. These features occur near the phosphorite, which were thought to fill the pore spaces of ferromanganese crusts. Inside the features, ferromanganese crusts are botryoidally precipitated from the round-boundary. The features of the phosphatized lower crusts of Lemkein seamount are observed using microscope and SEM. Elemental compositions of the selected samples were analyzed by SEM-EDS. Based on the observation and analysis of samples, three characteristic structures are identified: (1) phosphate-filled circles, (2) tongue-shaped framboidal crust, and (3) massive framboidal crust. The phosphate-filled circles are mostly composed of phosphorite, and they include trace fossils such as foraminifera. Phosphatized ferromanganese crusts exist at the boundary of this structure. The tongue-shaped crust is connected with the lips downward, and ferromanganese crusts inside the tongue show distinct growth rim. The massive framboidal crust is located below the tongue. Ferromanganese crusts in the massive framboidal crust are enveloped by phosphate, and some of the crusts are phosphatized. Around the structures, Mn oxide phase is concentrated as a shape of corona on BSE image. All of the structures are in the phosphatized crusts that show columnar growth of ferromanganese crusts and have sub-parallel lamination. These observation and chemical analysis of the ferromanganese crusts can provide a clue of diagenetic processes during the formation of ferromanganese crusts.

  11. What governs the enrichment of Pb in the continental crust? An answer from the Mexican Volcanic Belt

    Science.gov (United States)

    Goldstein, S. L.; Lagatta, A.; Langmuir, C. H.; Straub, S. M.; Martin-Del-Pozzo, A.

    2009-12-01

    One of Al Hofmann’s many important contributions to our understanding of geochemical cycling in the Earth is the observation that Pb behaves like the light rare earth elements Ce and Nd during melting to form oceanic basalts, but is enriched in the continental crust compared to the LREE by nearly an order of magnitude (Hofmann et al. 1986). This is unusual behavior, and has been called one of the Pb paradoxes, since in most cases, the ratios of elements are effectively the same in the continental crust and oceanic basalts if they show similar mantle melting behavior. One of several mechanisms suggested to mediate this special enrichment is hydrothermal circulation at ocean ridges, which preferentially transports Pb compared to the REE from the interior of the ocean crust to the surface. We confirm the importance of hydrothermal processes at the East Pacific to mediate Pb enrichment at the Trans-Mexican Volcanic Belt (TMVB, through comparison of Pb isotope and Ce/Pb ratios of TMVB lavas with sediments from DSDP Site 487 near the Middle America trench. The lavas of the Trans-Mexican Volcanic Belt include “high Nb” alkali basalts (HNAB), whose trace element patterns lack subduction signatures. The HNAB basalts and hydrothermally affected sediments from DSDP 487, form end-members that bound calcalkaline lavas from volcanoes Colima, Toluca, Popocatépetl, and Malinche in Ce/Pb versus Pb isotope space. The HNAB represent the high Ce/Pb and high Pb-isotope end-member. The hydrothermal sediments have Pb isotopes like Pacific MORB but Ce/Pb ratios typical of the arcs and the continental crust, and an order of magnitude lower than MORB. No analyzed calcalkaline lavas are have compositions outside of the bounds formed by the HNAB and the hydrothermal sediments. The Ce/Pb and Pb isotope ratios show that the calcalkaline lava compositions are inconsistent with contributions from HNAB and EPR MORB, rather the contributions are from HNAB upper mantle and subducted

  12. Extent and impact of Cretaceous magmatism on the formation and evolution of Jurassic oceanic crust in the western Pacific

    Science.gov (United States)

    Feng, H.; Lizarralde, D.; Tominaga, M.; Hart, L.; Tivey, M.; Swift, S. A.

    2015-12-01

    Multi-channel seismic (MCS) images and wide-angle sonobuoy data acquired during a 2011 cruise on the R/V Thomas G. Thompson (TN272) show widespread emplacement of igneous sills and broadly thickened oceanic Layer 2 through hundreds of kilometers of oceanic crust in one of the oldest ocean basins in the western Pacific, a region known as the Jurassic Quiet Zone (JQZ). Oceanic crust from the JQZ has grown through at least two main magmatic phases: It was formed by mid-ocean ridge processes in the Jurassic (at ~170 Ma), and then it was added to by a substantial Cretaceous magmatic event (at ~75-125 Ma). The scale of Cretaceous magmatism is exemplified by massive seafloor features such as the Ontong Java Plateau, Mid-Pacific Mountains, Marshall-Gilbert Islands, Marcus-Wake Seamount Chain, and numerous guyots, seamounts, and volcaniclastic flows observed throughout the region. We use seismic data to image heavily intruded and modified oceanic crust along an 800-km-long transect through the JQZ in order to examine how processes of secondary crustal growth - including magmatic emplacement, transport, and distribution - are expressed in the structure of modified oceanic crust. We also model gravity anomalies to constrain crustal thickness and depth to the Moho. Our observations suggest that western Pacific crust was modified via the following modes of emplacement: (a) extrusive seafloor flows that may or may not have grown into seamounts, (b) seamounts formed through intrusive diking that pushed older sediments aside during their formation, and (c) igneous sills that intruded sediments at varying depths. Emplacement modes (a) and (b) tend to imply a focused, pipe-like mechanism for melt transport through the lithosphere. Such a mechanism does not explain the observed broadly distributed intrusive emplacement of mode (c) however, which may entail successive sill emplacement between igneous basement and sediments thickening oceanic Layer 2 along ~400 km of our seismic line

  13. Cyanobacteria inhabiting biological soil crusts of a polar desert: Sør Rondane Mountains, Antarctica.

    Science.gov (United States)

    Pushkareva, Ekaterina; Pessi, Igor S; Namsaraev, Zorigto; Mano, Marie-Jose; Elster, Josef; Wilmotte, Annick

    2018-02-07

    Molecular and morphological methods were applied to study cyanobacterial community composition in biological soil crusts (BSCs) from four areas (two nunataks and two ridges) in the Sør Rondane Mountains, Antarctica. The sampling sites serve as control areas for open top chambers (OTCs) that were put in place in 2010 at the time of sample collection and will be compared with BSC samples taken from the OTCs in the future. Cyanobacterial cell biovolume was estimated using epifluorescence microscopy, which revealed the dominance of filamentous cyanobacteria in all studied sites except the Utsteinen ridge, where unicellular cyanobacteria were the most abundant. Cyanobacterial diversity was studied by a combination of molecular fingerprinting methods based on the 16S rRNA gene (denaturing gradient gel electrophoresis (DGGE) and 454 pyrosequencing) using cyanobacteria-specific primers. The number of DGGE sequences obtained per site was variable and, therefore, a high-throughput method was subsequently employed to improve the diversity coverage. Consistent with previous surveys in Antarctica, both methods showed that filamentous cyanobacteria, such as Leptolyngbya sp., Phormidium sp. and Microcoleus sp., were dominant in the studied sites. In addition, the studied localities differed in substrate type, climatic conditions and soil parameters, which probably resulted in differences in cyanobacterial community composition. Furthermore, the BSC growing on gneiss pebbles had lower cyanobacterial abundances than BSCs associated with granitic substrates. Copyright © 2018 Elsevier GmbH. All rights reserved.

  14. Biologically-initiated rock crust on sandstone: Mechanical and hydraulic properties and resistance to erosion

    Czech Academy of Sciences Publication Activity Database

    Slavík, M.; Bruthans, J.; Filippi, Michal; Schweigstillová, Jana; Falteisek, L.; Řihošek, J.

    2017-01-01

    Roč. 278, FEB 1 (2017), s. 298-313 ISSN 0169-555X R&D Projects: GA ČR GA13-28040S; GA ČR(CZ) GA16-19459S Institutional support: RVO:67985831 ; RVO:67985891 Keywords : biofilm * biocrust * biologically-initiated rock crust * sandstone protection * case hardening Subject RIV: DB - Geology ; Mineralogy; DB - Geology ; Mineralogy (USMH-B) OBOR OECD: Geology; Geology (USMH-B) Impact factor: 2.958, year: 2016

  15. Loki's Castle: Discovery and geology of a black smoker vent field at the Arctic Mid-Ocean Ridge

    Science.gov (United States)

    Pedersen, R.; Thorseth, I. H.; Lilley, M. D.; Barriga, F. J.; Früh-Green, G.; Nakamura, K.

    2010-12-01

    Previous attempts to locate hydrothermal vent fields and unravel the nature of venting at the ultraslow spreading and magma starved parts of the Arctic Mid Ocean Ridge (AMOR) have been unsuccessful. A black smoker vent field was eventually discovered at the Mohns-Knipovich bend at 73.5°N in 2008, and the field was revisited in 2009 and 2010. The Loki’s Castle vent field is located on the crest of an axial volcanic ridge that is bordered by a tectonic terrain dominated by core complexes to the NW, and a ridge flank that is buried by sediments from the Bear Island Fan to the SE. Fluid compositions are anomalous to other basalt-hosted fields and indicate interactions with sediments at depths. The vent field is associated with an unusually large hydrothermal deposit, which documents that extensive venting occurs at ultraslow spreading ridges despite the strongly reduced magmatic heat budget. ROV surveys have shown that venting occurs in two areas separated by around 100 m. Micro-bathymetry acquired by a Hugin AUV documents that two 20-30 tall mounds that coalesce at the base have developed around the vent sites. The micro-bathymetry also shows that the venting is located above two normal faults that define the NW margin of a rift that runs along the crest of the volcano. The black smoker fluids reach 317 °C, with an end-member SiO2 content of 16 mmol/kg. End-member chlorinity is around 85% of seawater suggesting that the fluids have phase-separated at depth. The fluid compositions indicate that the rock-water reactions occur around 2 km below the seafloor. The crustal thickness is estimated to be 4 +/- 0.5 km in the area. Whereas the depth of the reaction zone is comparable with faster spreading ridges, the fraction of crust cooled convectively by hydrothermal circulation is two times that of vent fields at ridges with normal crustal thickness.

  16. Energy conservation in the earth's crust and climate change.

    Science.gov (United States)

    Mu, Yao; Mu, Xinzhi

    2013-02-01

    Among various matters which make up the earth's crust, the thermal conductivity of coal, oil, and oil-gas, which are formed over a long period of geological time, is extremely low. This is significant to prevent transferring the internal heat of the earth to the thermal insulation of the surface, cooling the surface of the earth, stimulating biological evolution, and maintaining natural ecological balance as well. Fossil energy is thermal insulating layer in the earth's crust. Just like the function of the thermal isolation of subcutaneous fatty tissue under the dermis of human skin, it keeps the internal heat within the organism so it won't be transferred to the skin's surface and be lost maintaining body temperature at low temperatures. Coal, oil, oil-gas, and fat belong to the same hydrocarbons, and the functions of their thermal insulation are exactly the same. That is to say, coal, oil, and oil-gas are just like the earth's "subcutaneous fatty tissue" and objectively formed the insulation protection on earth's surface. This paper argues that the human large-scale extraction of fossil energy leads to damage of the earth's crust heat-resistant sealing, increasing terrestrial heat flow, or the heat flow as it is called, transferring the internal heat of the earth to Earth's surface excessively, and causing geotemperature and sea temperature to rise, thus giving rise to global warming. The reason for climate warming is not due to the expansion of greenhouse gases but to the wide exploitation of fossil energy, which destroyed the heat insulation of the earth's crust, making more heat from the interior of the earth be released to the atmosphere. Based on the energy conservation principle, the measurement of the increase of the average global temperature that was caused by the increase of terrestrial heat flow since the Industrial Revolution is consistent with practical data. This paper illustrates "pathogenesis" of climate change using medical knowledge. The

  17. Magmatic intrusions in the lunar crust

    Science.gov (United States)

    Michaut, C.; Thorey, C.

    2015-10-01

    The lunar highlands are very old, with ages covering a timespan between 4.5 to 4.2 Gyr, and probably formed by flotation of light plagioclase minerals on top of the lunar magma ocean. The lunar crust provides thus an invaluable evidence of the geological and magmatic processes occurring in the first times of the terrestrial planets history. According to the last estimates from the GRAIL mission, the lunar primary crust is particularly light and relatively thick [1] This low-density crust acted as a barrier for the dense primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basin: at least part of the crust must have been removed for the magma to reach the surface. However, the trajectory of the magma from the mantle to the surface is unknown. Using a model of magma emplacement below an elastic overlying layer with a flexural wavelength Λ, we characterize the surface deformations induced by the presence of shallow magmatic intrusions. We demonstrate that, depending on its size, the intrusion can show two different shapes: a bell shape when its radius is smaller than 4 times Λ or a flat top with small bended edges if its radius is larger than 4 times Λ[2]. These characteristic shapes for the intrusion result in characteristic deformations at the surface that also depend on the topography of the layer overlying the intrusion [3].Using this model we provide evidence of the presence of intrusions within the crust of the Moon as surface deformations in the form of low-slope lunar domes and floor-fractured craters. All these geological features have morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. Further more,at floor-fractured craters, the deformation is contained within the crater interior, suggesting that the overpressure at the origin of magma ascent and intrusion was less than the pressure due to the weight of the crust removed by

  18. Permeability of crust is key to crispness retention

    NARCIS (Netherlands)

    Hirte, A.; Hamer, R.J.; Meinders, M.B.J.; Primo-Martin, C.

    2010-01-01

    Bread loses crispness rapidly after baking because water originating from the wet crumb accumulates in the dry crust. This water accumulation might be increased by the dense and low permeable character of the bread crust. Our objective was to investigate the influence of permeability of the crust on

  19. Ca isotope fractionation and Sr/Ca partitioning associated with anhydrite formation at mid-ocean ridge hydrothermal systems: An experimental approach

    Science.gov (United States)

    Syverson, D. D.; Scheuermann, P.; Pester, N. J.; Higgins, J. A.; Seyfried, W. E., Jr.

    2016-12-01

    The elemental and isotopic mass balance of Ca and Sr between seawater and basalt at mid-ocean ridge (MOR) hydrothermal systems is an integrated reflection of the various physiochemical processes, which induce chemical exchange, in the subseafloor. Specifically, the processes of anhydrite precipitation and recrystallization are recognized to be important controls on governing the Ca and Sr elemental and isotope compositions of high temperature vent fluids, however, few experimental data exist to constrain these geochemical effects. Thus, to better understand the associated Sr/Ca partitioning and Ca isotope fractionation and rate of exchange between anhydrite and dissolved constituents, anhydrite precipitation and recrystallization experiments were performed at 175, 250, and 350°C and 500 bar at chemical conditions indicative of active MOR hydrothermal systems. The experimental data suggest that upon entrainment of seawater into MOR hydrothermal systems, anhydrite will precipitate rapidly and discriminate against the heavy isotopes of Ca (Δ44/40Ca(Anh-Fluid) = -0.68 - -0.25 ‰), whereas Sr/Ca partitioning depends on the saturation state of the evolving hydrothermal fluid with respect to anhydrite at each PTX (KD(Anh-Fluid) = 1.24 - 0.55). Coupling experimental constraints with the temperature gradient inferred for high temperature MOR hydrothermal systems in the oceanic crust, data suggest that the Ca isotope and Sr elemental composition of anhydrite formed near the seafloor will be influenced by disequilibrium effects, while, at higher temperatures further into the oceanic crust, anhydrite will be representative of equilibrium Sr/Ca partitioning and Ca isotope fractionation conditions. These experimental observations are consistent with analyzed Sr/Ca and Ca isotope compositions of anhydrites and vent fluids sampled from modern MOR hydrothermal systems1,2 and can be used to further constrain the geochemical effects of hydrothermal circulation in the oceanic crust

  20. Shear velocity structure of the laterally heterogeneous crust and uppermost mantle beneath the Indian region

    Science.gov (United States)

    Mohan, G.; Rai, S. S.; Panza, G. F.

    1997-08-01

    The shear velocity structure of the Indian lithosphere is mapped by inverting regionalized Rayleigh wave group velocities in time periods of 15-60 s. The regionalized maps are used to subdivide the Indian plate into several geologic units and determine the variation of velocity with depth in each unit. The Hedgehog Monte Carlo technique is used to obtain the shear wave velocity structure for each geologic unit, revealing distinct velocity variations in the lower crust and uppermost mantle. The Indian shield has a high-velocity (4.4-4.6 km/s) upper mantle which, however, is slower than other shields in the world. The central Indian platform comprised of Proterozoic basins and cratons is marked by a distinct low-velocity (4.0-4.2 km/s) upper mantle. Lower crustal velocities in the Indian lithosphere generally range between 3.8 and 4.0 km/s with the oceanic segments and the sedimentary basins marked by marginally higher and lower velocities, respectively. A remarkable contrast is observed in upper mantle velocities between the northern and eastern convergence fronts of the Indian plate. The South Bruma region along the eastern subduction front of the Indian oceanic lithosphere shows significant velocity enhancement in the lower crust and upper mantle. High velocities (≈4.8 km/s) are also observed in the upper mantle beneath the Ninetyeast ridge in the northeastern Indian Ocean.

  1. Investigation of a marine magnetic polarity reversal boundary in cross section at the northern boundary of the Kane Megamullion, Mid-Atlantic Ridge, 23°40'N

    Science.gov (United States)

    Xu, Min; Tivey, M. A.

    2016-05-01

    Near-bottom magnetic field measurements made by the submersible Nautile during the 1992 Kanaut Expedition define the cross-sectional geometry of magnetic polarity reversal boundaries and the vertical variation of crustal magnetization in lower oceanic crust exposed along the Kane Transform Fault (TF) at the northern boundary of the Kane Megamullion (KMM). The KMM exposes lower crust and upper mantle rocks on a low-angle normal fault that was active between 3.3 Ma and 2.1 Ma. The geometry of the polarity boundaries is estimated from an inversion of the submarine magnetic data for crustal magnetization. In general, the polarity boundaries dip away from the ridge axis along the Kane TF scarp, with a west dipping angle of ~45° in the shallow (Williams (2007) that the lower crust cools through the Curie temperature of magnetite to become magnetic, with the polarity boundaries representing both frozen isotherms and isochrons. We also test the effects of the rotation of this isotherm structure and/or footwall rotation and find that the magnetic polarity boundary geometry is not sensitive to these directional changes.

  2. A relatively reduced Hadean continental crust

    Science.gov (United States)

    Yang, Xiaozhi; Gaillard, Fabrice; Scaillet, Bruno

    2014-05-01

    Among the physical and chemical parameters used to characterize the Earth, oxidation state, as reflected by its prevailing oxygen fugacity (fO2), is a particularly important one. It controls many physicochemical properties and geological processes of the Earth's different reservoirs, and affects the partitioning of elements between coexisting phases and the speciation of degassed volatiles in melts. In the past decades, numerous studies have been conducted to document the evolution of mantle and atmospheric oxidation state with time and in particular the possible transition from an early reduced state to the present oxidized conditions. So far, it has been established that the oxidation state of the uppermost mantle is within ±2 log units of the quartz-fayalite-magnetite (QFM) buffer, probably back to ~4.4 billion years ago (Ga) based on trace-elements studies of mantle-derived komatiites, kimberlites, basalts, volcanics and zircons, and that the O2 levels of atmosphere were initially low and rose markedly ~2.3 Ga known as the Great Oxidation Event (GOE), progressively reaching its present oxidation state of ~10 log units above QFM. In contrast, the secular evolution of oxidation state of the continental crust, an important boundary separating the underlying upper mantle from the surrounding atmosphere and buffering the exchanges and interactions between the Earth's interior and exterior, has rarely been addressed, although the presence of evolved crustal materials on the Earth can be traced back to ~4.4 Ga, e.g. by detrital zircons. Zircon is a common accessory mineral in nature, occurring in a wide variety of igneous, sedimentary and metamorphic rocks, and is almost ubiquitous in crustal rocks. The physical and chemical durability of zircons makes them widely used in geochemical studies in terms of trace-elements, isotopes, ages and melt/mineral inclusions; in particular, zircons are persistent under most crustal conditions and can survive many secondary

  3. Moho vs crust-mantle boundary: Evolution of an idea

    Science.gov (United States)

    O'Reilly, Suzanne Y.; Griffin, W. L.

    2013-12-01

    The concept that the Mohorovicic Discontinuity (Moho) does not necessarily coincide with the base of the continental crust as defined by rock-type compositions was introduced in the early 1980s. This had an important impact on understanding the nature of the crust-mantle boundary using information from seismology and from deep-seated samples brought to the surface as xenoliths in magmas, or as tectonic terranes. The use of empirically-constrained P-T estimates to plot the locus of temperature vs depth for xenoliths defined a variety of geotherms depending on tectonic environment. The xenolith geotherms provided a framework for constructing lithological sections through the deep lithosphere, and revealed that the crust-mantle boundary in off-craton regions commonly is transitional over a depth range of about 5-20 km. Early seismic-reflection data showed common layering near the Moho, correlating with the petrological observation of multiple episodes of basaltic intrusion around the crust-mantle boundary. Developments in seismology, petrophysics and experimental petrology have refined interpretation of lithospheric domains. The expansion of in situ geochronology (especially zircon U-Pb ages and Hf-isotopes; Os isotopes of mantle sulfides) has defined tectonic events that affected whole crust-mantle sections, and revealed that the crust-mantle boundary can change in depth through time. However, the nature of the crust-mantle boundary in cratonic regions remains enigmatic, mainly due to lack of key xenoliths or exposed sections. The observation that the Moho may lie significantly deeper than the crust-mantle boundary has important implications for modeling the volume of the crust. Mapping the crust using seismic techniques alone, without consideration of the petrological problems, may lead to an overestimation of crustal thickness by 15-30%. This will propagate to large uncertainties in the calculation of elemental mass balances relevant to crust-formation processes

  4. Focused volcanism and growth of a slow spreading segment (Mid-Atlantic Ridge, 35°N)

    Science.gov (United States)

    Rabain, Aline; Cannat, Mathilde; Escartín, Javier; Pouliquen, Gaud; Deplus, Christine; Rommevaux-Jestin, Céline

    2001-02-01

    Using off axis bathymetry, gravity and magnetic data, we studied the formation of a prominent seamount chain across segment OH1 (Mid-Atlantic Ridge, 35°N), and its relation to the past segmentation of the area. We also studied the size and shape of the seamounts to understand the processes leading to their formation. The chain is elongated in the spreading direction, and extends from the present day segment center to ˜6 Ma on both flanks. It coincides with a pronounced low in the residual mantle Bouguer gravity anomaly, suggesting thicker crust and thus more abundant magmatism than in surrounding areas. Magnetic anomalies are well defined over the seamount chain, consistent with formation on or near the axis. The seamounts within the chain are larger on average than those from other areas of the Mid-Atlantic Ridge, reflecting higher magma volumes and fluxes during eruptions. The distribution of seamounts suggests a focused magmatic source, located beneath the eastern side of the ridge axis, at a constant distance (˜45 km) from the Oceanographer transform fault. A V-shaped trend defines the southern end of OH1 and indicates that the segment propagated rapidly southwards, increasing in length from 50 to 90 km. The onset of propagation at ˜6 Ma coincided with the initiation of the volcanic chain, suggesting that magma supply at that time was focused at the end of the segment rather than at its center, as is typical for Mid-Atlantic Ridge segments. We propose that this unusual configuration is a consequence of the cold edge effect of the Oceanographer fracture zone. We also propose that enhanced and focused magmatism beneath the seamount chain may have caused the rapid southward propagation of OH1 over the past ˜6 Ma.

  5. Formation and Thermal Infrared Spectroscopy of Halite Crusts

    Science.gov (United States)

    Baldridge, A. M.; Christensen, P. R.

    2003-12-01

    Efflorescent salt crusts form as groundwater evaporates from capillary updraw of brine through sediment. Salts precipitate at the surface, coating and cementing the upper few layers of sediment. If enough brine is present to completely saturate and pond on top of the surface, halite will precipitate at the surface of the brine and settle out as layers of crystalline salt on top of the sediment. In playa environments, salts such as sulfates, carbonates and halides, and forms such crusts. In remote sensing studies of such surfaces, it is important to understand how the presence of salt crusts affects the spectral features of the surrounding sediment. This is especially true when the crusts form from a non-absorbing salt such as halite. Halite has been observed to exhibit unusual spectral properties in the thermal infrared. Specifically, granular mixtures of minerals with halite produced spectra in which the spectral features inverted form reflectivity, shifted to shorter wavelengths and the spectral contrast increased near absorption bands. However, in crusted surfaces, in which the halite cements, coats or overlays the mineral grains, the presence of halite has a different affect on the spectra. This work will examine the precipitation of halite and the formation of salt crusts for several sediment and brine mixtures. Laboratory measurements of thermal emission spectra for the crusts will be compared to previous studies for particulate mixtures of halite with minerals and well as to natural surface crusts. Detailed knowledge of such surfaces will allow for their discrimination and identification in terrestrial playa settings as well as in paleo-environments on Mars.

  6. Black manganese-rich crusts on a Gothic cathedral

    Science.gov (United States)

    Macholdt, Dorothea S.; Herrmann, Siegfried; Jochum, Klaus Peter; Kilcoyne, A. L. David; Laubscher, Thomas; Pfisterer, Jonas H. K.; Pöhlker, Christopher; Schwager, Beate; Weber, Bettina; Weigand, Markus; Domke, Katrin F.; Andreae, Meinrat O.

    2017-12-01

    Black manganese-rich crusts are found worldwide on the façades of historical buildings. In this study, they were studied exemplarily on the façade of the Freiburger Münster (Freiburg Minster), Germany, and measured in-situ by portable X-ray fluorescence (XRF). The XRF was calibrated to allow the conversion from apparent mass fractions to Mn surface density (Mn mass per area), to compensate for the fact that portable XRF mass fraction measurements from thin layers violate the assumption of a homogeneous measurement volume. Additionally, 200-nm femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs LA-ICP-MS) measurements, scanning transmission X-ray microscopy-near edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS), Raman spectroscopy, and imaging by light microscopy were conducted to obtain further insight into the crust material, such as potential biogenic contributions, element distributions, trace element compositions, and organic functional groups. While black crusts of various types are present at many places on the minster's facade, crusts rich in Mn (with a Mn surface density >150 μg cm-2) are restricted to a maximum height of about 7 m. The only exceptions are those developed on the Renaissance-Vorhalle (Renaissance Portico) at a height of about 8 m. This part of the façade had been cleaned and treated with a silicon resin as recently as 2003. These crusts thus accumulated over a period of only 12 years. Yet, they are exceptionally Mn-rich with a surface density of 1200 μg cm-2, and therefore require an accumulation rate of about 100 μg cm-2 Mn per year. Trace element analyses support the theory that vehicle emissions are responsible for most of the Mn supply. Lead, barium, and zinc correlate with manganese, indicating that tire material, brake pads, and resuspended road dust are likely to be the element sources. Microscopic investigations show no organisms on or in the Mn-rich crusts. In contrast, Mn-free black

  7. Incipient boninitic arc crust built on denudated mantle: the Khantaishir ophiolite (western Mongolia)

    Science.gov (United States)

    Gianola, Omar; Schmidt, Max W.; Jagoutz, Oliver; Sambuu, Oyungerel

    2017-12-01

    The 570 Ma old Khantaishir ophiolite is built by up to 4 km harzburgitic mantle with abundant pyroxenites and dunites followed by 2 km of hornblende-gabbros and gabbronorites and by a 2.5 km thick volcanic unit composed of a dyke + sill complex capped by pillow lavas and some volcanoclastics. The volcanics are mainly basaltic andesites and andesites (or boninites) with an average of 58.2 ± 1.0 wt% SiO2, X Mg = 0.61 ± 0.03 ( X Mg = molar MgO/(MgO + FeOtot), TiO2 = 0.4 ± 0.1 wt% and CaO = 7.5 ± 0.6 wt% (errors as 2 σ). Normalized trace element patterns show positive anomalies for Pb and Sr, a negative Nb-anomaly, large ion lithophile elements (LILE) concentrations between N- and E-MORB and distinctly depleted HREE. These characteristics indicate that the Khantaishir volcanics were derived from a refractory mantle source modified by a moderate slab-component, similar to boninites erupted along the Izu-Bonin-Mariana subduction system and to the Troodos and Betts Cove ophiolites. Most strikingly and despite almost complete outcrops over 260 km2, there is no remnant of any pre-existing MORB crust, suggesting that the magmatic suite of this ophiolite formed on completely denudated mantle, most likely upon subduction initiation. The architecture of this 4-5 km thick early arc crust resembles oceanic crust formed at mid ocean ridges, but lacks a sheeted dyke complex; volcanic edifices are not observed. Nevertheless, low melting pressures combined with moderate H2O-contents resulted in high-Si primitive melts, in abundant hornblende-gabbros and in a fast enrichment in bulk SiO2. Fractional crystallization modeling starting from the observed primitive melts (56.6 wt% SiO2) suggests that 25 wt% pyroxene + plagioclase fractionation is sufficient to form the average Khantaishir volcanic crust. Most of the fractionation happened in the mantle, the observed pyroxenite lenses and layers in and at the top of the harzburgites account for the required cumulate volumes. Finally

  8. Three-dimensional structure and cyanobacterial activity within a desert biological soil crust.

    Science.gov (United States)

    Raanan, Hagai; Felde, Vincent J M N L; Peth, Stephan; Drahorad, Sylvie; Ionescu, Danny; Eshkol, Gil; Treves, Haim; Felix-Henningsen, Peter; Berkowicz, Simon M; Keren, Nir; Horn, Rainer; Hagemann, Martin; Kaplan, Aaron

    2016-02-01

    Desert biological soil crusts (BSCs) are formed by adhesion of soil particles to polysaccharides excreted by filamentous cyanobacteria, the pioneers and main producers in this habitat. Biological soil crust destruction is a central factor leading to land degradation and desertification. We study the effect of BSC structure on cyanobacterial activity. Micro-scale structural analysis using X-ray microtomography revealed a vesiculated layer 1.5-2.5 mm beneath the surface in close proximity to the cyanobacterial location. Light profiles showed attenuation with depth of 1%-5% of surface light within 1 mm but also revealed the presence of 'light pockets', coinciding with the vesiculated layer, where the irradiance was 10-fold higher than adjacent crust parts at the same depth. Maximal photosynthetic activity, examined by O2 concentration profiles, was observed 1 mm beneath the surface and another peak in association with the 'light pockets'. Thus, photosynthetic activity may not be visible to currently used remote sensing techniques, suggesting that BSCs' contribution to terrestrial productivity is underestimated. Exposure to irradiance higher than 10% full sunlight diminished chlorophyll fluorescence, whereas O2 evolution and CO2 uptake rose, indicating that fluorescence did not reflect cyanobacterial photosynthetic activity. Our data also indicate that although resistant to high illumination, the BSC-inhabiting cyanobacteria function as 'low-light adapted' organisms. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Variational Ridging in Sea Ice Models

    Science.gov (United States)

    Roberts, A.; Hunke, E. C.; Lipscomb, W. H.; Maslowski, W.; Kamal, S.

    2017-12-01

    This work presents the results of a new development to make basin-scale sea ice models aware of the shape, porosity and extent of individual ridges within the pack. We have derived an analytic solution for the Euler-Lagrange equation of individual ridges that accounts for non-conservative forces, and therefore the compressive strength of individual ridges. Because a region of the pack is simply a collection of paths of individual ridges, we are able to solve the Euler-Lagrange equation for a large-scale sea ice field also, and therefore the compressive strength of a region of the pack that explicitly accounts for the macro-porosity of ridged debris. We make a number of assumptions that have simplified the problem, such as treating sea ice as a granular material in ridges, and assuming that bending moments associated with ridging are perturbations around an isostatic state. Regardless of these simplifications, the ridge model is remarkably predictive of macro-porosity and ridge shape, and, because our equations are analytic, they do not require costly computations to solve the Euler-Lagrange equation of ridges on the large scale. The new ridge model is therefore applicable to large-scale sea ice models. We present results from this theoretical development, as well as plans to apply it to the Regional Arctic System Model and a community sea ice code. Most importantly, the new ridging model is particularly useful for pinpointing gaps in our observational record of sea ice ridges, and points to the need for improved measurements of the evolution of porosity of deformed ice in the Arctic and Antarctic. Such knowledge is not only useful for improving models, but also for improving estimates of sea ice volume derived from altimetric measurements of sea ice freeboard.

  10. Characteristics and management options of crusting soils in a ...

    African Journals Online (AJOL)

    ... to control the crusting. The relationship between crust thickness and soil physical and chemical properties and management practices were assessed using stepwise regression analysis. Soil crusting was largely related to soil aggregation, infiltration, fine sand fraction, cotton monocropping and crop residue incorporation.

  11. Sepentinized Peridotite Spinel Composition: Northern Central Indian Ridge at 6°39

    Science.gov (United States)

    Ray, D.; Banerjee, R.; Iyer, S. D.; Balaram, V.; Speakman, J.

    2005-12-01

    Exposures of serpentinized peridotites on the seafloor at slow-spreading ridges have been interpreted either as accretion of ridge segments in a magma-starved condition along the non-transform setting or as preferential outcrops at ridge offsets in transform fault setting. Here we present the mineral chemistry and geochemistry of serpentinites and serpentinized spinel peridotites recovered from an off axis region (corner high) at south of Vityaz transform fault (6°39'S), Northern Central Indian Ridge. Our purpose is to use mineral chemical data of serpentine and spinel to investigate the effect of low temperature alteration processes and degree of partial melting. Serpentine composition shows presence of high Mg-rich lizardite and chrysotile pseudomorphs and these rocks mostly preserve `mesh rim', `window' and `hourglass' textures, representing extensive hydration during low temperature hydrothermal alteration. In thin section, serpentine veins (mainly lensoidal, pinch and swell or anastomosing) are common, sometime crosscutting the `mesh rim' textures to attest to the intensity of serpentinization process. In one sample, a 1.9 cm-thick feldspathic vein crosscut the serpentinite as a porphyroblast and this indicates discontinuity in magmatic crust caused due to less magma input at off-axis region facilitate the intrusion of short-living feeder dykes of highly fractionated late magmatic liquids within the peridotite. In addition, in hand specimen, presence of smaller-scale striations analogous to slickenlines on serpentinite surfaces suggests low-angle faulting, which could have enhanced pervasive serpentinization during their subsequent emplacement. Individual serpentine grain displays very low Ca content (0.01 wt%) suggesting possible absence of any secondary Ca-rich phases also verified by very low Sr content (connotation. Limited data on composition of individual spinel porphyroclast exhibits substantial variation in their Mg# (mole [Mg/ Mg+Fe2]) and Cr# (mole

  12. Ferromanganese crusts as indicators for paleoceanographic events in the NE Atlantic

    Science.gov (United States)

    Koschinsky, A.; Halbach, P.; Hein, J. R.; Mangini, A.

    Hydrogenetic ferromanganese crusts reflect the chemical conditions of the seawater from which they formed. Fine-scale geochemical analysis of crust layers in combination with age determinations can therefore be used to investigate paleoceanographic changes which are recorded in geochemical gradients in the crusts. At Tropic seamount (off northwest Africa), uniform crust growth influenced by terrigenous input from the African continent occurred during approximately the past 12Ma. Phosphatization of these crusts is minor. In contrast, crusts from Lion seamount, located between Madeira and the Portuguese coast, display a much more variable growth history. A pronounced increase in Ni, Cu, and Zn is observed in some intervals of the crusts, which probably reflects increased surface productivity. A thick older phosphatized generation occurs in many samples. Hydrographic profiles indicate that Mediterranean outflow water (MOW) may play an important role in the composition of these crusts. 10Be dating of one sample confirms that the interruption of the MOW during the Messinian salinity crisis (6.2-5Ma ago) resulted in changes in element composition. Sr-isotope dating of the apatite phase of the old crust generation has been carried out to obtain a minimum age for the older generation of Atlantic crusts and to determine whether crust phosphatization in the Atlantic can be related to phosphatization episodes recorded in Pacific crusts. The preliminary data show that the old phosphatized crust generation might be as old as approximately 30-40Ma.

  13. Investigation on influence of crust formation on VULCANO VE-U7 corium spreading with MPS method

    International Nuclear Information System (INIS)

    Yasumura, Yusan; Yamaji, Akifumi; Furuya, Masahiro; Ohishi, Yuji; Duan, Guangtao

    2017-01-01

    Highlights: • The new crust formation model was developed for the MPS spreading analysis code. • The VULCANO VE-U7 corium spreading experiment was analyzed by the developed code. • The termination of the spreading was governed by the crust formation at the leading edge. - Abstract: In a severe accident of a light water reactor, the corium spreading behavior on a containment floor is important as it may threaten the containment vessel integrity. The Moving Particle Semi-implicit (MPS) method is one of the Lagrangian particle methods for simulation of incompressible flow. In this study, the MPS method is further developed to simulate corium spreading involving not only flow, but also heat transfer, phase change and thermo-physical property change of corium. A new crust formation model was developed, in which, immobilization of crust was modeled by stopping the particle movement when its solid fraction is above the threshold and is in contact with the substrate or any other immobilized particles. The VULCANO VE-U7 corium spreading experiment was analyzed by the developed MPS spreading analysis code to investigate influences of different particle sizes, the corium viscosity changes, and the “immobilization solid fraction” of the crust formation model on the spreading and its termination. Viscosity change of the corium was influential to the overall progression of the spreading leading edge, whereas termination of the spreading was primarily determined by the immobilization of the leading edge (i.e., crust formation). The progression of the leading edge and termination of the spreading were well predicted, but the simulation overestimated the substrate temperature. Further investigations may be necessary for the future study to see if thermal resistance at the corium-substrate boundary has significant influence on the overall spreading behavior and its termination.

  14. Independent review of Oak Ridge HCTW test program and development of seismic evaluation criteria

    International Nuclear Information System (INIS)

    1995-05-01

    Many of the existing buildings at the Oak Ridge Y-12 Plant are steel frame construction with unreinforced hollow clay tile infill walls (HCTW). The HCTW infill provides some lateral seismic resistance to the design/evaluation basis earthquake; however acceptance criteria for this construction must be developed. The basis for the development of seismic criteria is the Oak Ridge HCTW testing and analysis program and the target performance goals of DOE 5480.28 and DOE-STD-1020-94. This report documents and independent review of the testing and analysis program and development of recommended acceptance criteria for Oak Ridge HCTW construction. The HCTW test program included ''macro'' wall in-plane and out-of-plane tests, full-scale wall in-plane and out-of-plane tests, in-situ out-of-plane test, shake table tests, and masonry component tests

  15. Magnetic field effects on the crust structure of neutron stars

    Science.gov (United States)

    Franzon, B.; Negreiros, R.; Schramm, S.

    2017-12-01

    We study the effects of high magnetic fields on the structure and on the geometry of the crust in neutron stars. We find that the crust geometry is substantially modified by the magnetic field inside the star. We build stationary and axis-symmetric magnetized stellar models by using well-known equations of state to describe the neutron star crust, namely, the Skyrme model for the inner crust and the Baym-Pethick-Sutherland equation of state for the outer crust. We show that the magnetic field has a dual role, contributing to the crust deformation via the electromagnetic interaction (manifested in this case as the Lorentz force) and by contributing to curvature due to the energy stored in it. We also study a direct consequence of the crust deformation due to the magnetic field: the thermal relaxation time. This quantity, which is of great importance to the thermal evolution of neutron stars, is sensitive to the crust properties, and, as such, we show that it may be strongly affected by the magnetic field.

  16. The potential roles of biological soil crusts in dryland hydrologic cycles

    Science.gov (United States)

    Belnap, J.

    2006-01-01

    Biological soil crusts (BSCs) are the dominant living cover in many drylands of the world. They possess many features that can influence different aspects of local hydrologic cycles, including soil porosity, absorptivity, roughness, aggregate stability, texture, pore formation, and water retention. The influence of biological soil crusts on these factors depends on their internal and external structure, which varies with climate, soil, and disturbance history. This paper presents the different types of biological soil crusts, discusses how crust type likely influences various aspects of the hydrologic cycle, and reviews what is known and not known about the influence of biological crusts on sediment production and water infiltration versus runoff in various drylands around the world. Most studies examining the effect of biological soil crusts on local hydrology are done by comparing undisturbed sites with those recently disturbed by the researchers. Unfortunately, this greatly complicates interpretation of the results. Applied disturbances alter many soil features such as soil texture, roughness, aggregate stability, physical crusting, porosity, and bulk density in ways that would not necessarily be the same if crusts were not naturally present. Combined, these studies show little agreement on how biological crusts affect water infiltration or runoff. However, when studies are separated by biological crust type and utilize naturally occurring differences among these types, results indicate that biological crusts in hyperarid regions reduce infiltration and increase runoff, have mixed effects in and regions, and increase infiltration and reduce runoff in semiarid cool and cold drylands. However, more studies are needed before broad generalizations can be made on how biological crusts affect infiltration and runoff. We especially need studies that control for sub-surface soil features such as bulk density, micro- and macropores, and biological crust structure. Unlike

  17. Crust formation and its effect on the molten pool coolability

    Energy Technology Data Exchange (ETDEWEB)

    Park, R.J.; Lee, S.J.; Sim, S.K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-09-01

    Experimental and analytical studies of the crust formation and its effect on the molten pool coolability have been performed to examine the crust formation process as a function of boundary temperatures as well as to investigate heat transfer characteristics between molten pool and overlying water in order to evaluate coolability of the molten pool. The experimental test results have shown that the surface temperature of the bottom plate is a dominant parameter in the crust formation process of the molten pool. It is also found that the crust thickness of the case with direct coolant injection into the molten pool is greater than that of the case with a heat exchanger. Increasing mass flow rate of direct coolant injection to the molten pool does not affect the temperature of molten pool after the crust has been formed in the molten pool because the crust behaves as a thermal barrier. The Nusselt number between the molten pool and the coolant of the case with no crust formation is greater than that of the case with crust formation. The results of FLOW-3D analyses have shown that the temperature distribution contributes to the crust formation process due to Rayleigh-Benard natural convection flow.

  18. Ridge regression estimator: combining unbiased and ordinary ridge regression methods of estimation

    Directory of Open Access Journals (Sweden)

    Sharad Damodar Gore

    2009-10-01

    Full Text Available Statistical literature has several methods for coping with multicollinearity. This paper introduces a new shrinkage estimator, called modified unbiased ridge (MUR. This estimator is obtained from unbiased ridge regression (URR in the same way that ordinary ridge regression (ORR is obtained from ordinary least squares (OLS. Properties of MUR are derived. Results on its matrix mean squared error (MMSE are obtained. MUR is compared with ORR and URR in terms of MMSE. These results are illustrated with an example based on data generated by Hoerl and Kennard (1975.

  19. Large fault fabric of the Ninetyeast Ridge implies near-spreading ridge formation

    Digital Repository Service at National Institute of Oceanography (India)

    Sager, W.W.; Paul, C.F.; Krishna, K.S.; Pringle, M.S.; Eisin, A.E.; Frey, F.A.; Rao, D.G.; Levchenko, O.V.

    of the high ridge. At 26°S, prominent NE-SW 97 oriented lineations extend southwest from the ridge. Some appear to connect with N-S fracture 98 zone troughs east of NER, implying that the NE-SW features are fracture zone scars formed after 99 the change... to the 105 ridge (Fig. 3). This is especially true for NER south of ~4°S. Where KNOX06RR crossed a 106 gravity lineation, negative gradient features correspond to troughs whereas positive gradient 107 features result from igneous basement highs (Fig. 3...

  20. Pre-collisional geodynamics of the Mediterranean Sea: the Mediterranean Ridge and the Tyrrhenian Sea

    Directory of Open Access Journals (Sweden)

    E. Chaumillon

    1997-06-01

    Full Text Available Today the Mediterranean Sea consists of a series of small-sized and almost geographically disconnected oceanic or continental crust rooted marine basins. It is also an area almost totally surrounded by mountain ranges, which chiefly belong to the alpine realm. This overall geodynamic setting results from a long term convergence between the two major, African and European, plates. Previous collisions have led to the edification of surrounding chains, while subduction and new-collisional processes tend to create new extensional back-arc basins and wide tectonized accretionary prisms. In this paper we briefly outline the most recent and almost land-locked back-arc basin that has developed in the Mediterranean,i.e., the Tyrrhenian Sea, and the Mediterranean Ridge, which may be regarded as a collisional sedimentary wedge predating a future mountain chain.

  1. Magma Supply of Southwest Indian Ocean: Implication from Crustal Thickness Anomalies

    Science.gov (United States)

    Chiheng, L.; Jianghai, L.; Huatian, Z.; Qingkai, F.

    2017-12-01

    The Southwest Indian Ridge (SWIR) is one of the world's slowest spreading ridges with a full spreading rate of 14mm a-1, belonging to ultraslow spreading ridge, which are a novel class of spreading centers symbolized by non-uniform magma supply and crustal accretion. Therefore, the crustal thickness of Southwest Indian Ocean is a way to explore the magmatic and tectonic process of SWIR and the hotspots around it. Our paper uses Residual Mantle Bouguer Anomaly processed with the latest global public data to invert the relative crustal thickness and correct it according to seismic achievements. Gravity-derived crustal thickness model reveals a huge range of crustal thickness in Southwest Indian Ocean from 0.04km to 24km, 7.5km of average crustal thickness, and 3.5km of standard deviation. In addition, statistics data of crustal thickness reveal the frequency has a bimodal mixed skewed distribution, which indicates the crustal accretion by ridge and ridge-plume interaction. Base on the crustal thickness model, we divide three types of crustal thickness in Southwest Indian Ocean. About 20.31% of oceanic crust is 9.8km thick as thick crust. Furthermore, Prominent thin crust anomalies are associated with the trend of most transform faults, but thick crust anomalies presents to northeast of Andrew Bain transform fault. Cold and depleted mantle are also the key factors to form the thin crust. The thick crust anomalies are constrained by hotspots, which provide abundant heat to the mantle beneath mid-ocean ridge or ocean basin. Finally, we roughly delineate the range of ridge-plume interaction and transform fault effect.

  2. Soil stabilization by a prokaryotic desert crust: implications for Precambrian land biota.

    Science.gov (United States)

    Campbell, S E

    1979-09-01

    A cyanophyte dominated mat, desert crust, forms the ground cover in areas measuring hundreds of square meters in Utah and smaller patches in Colorado. The algal mat shows stromatolitic features such as sediment trapping and accretion, a convoluted surface, and polygonal cracking. Sand and clay particles are immobilized by a dense network of filaments of the two dominating cyanophyte species, Microcoleus vaginatus and M. chthonoplastes, which secrete sheaths to which particles adhere. These microorganisms can tolerate long periods of desiccation and are capable of instant reactivation and migration following wetting. Migration occurs in two events: 1. immediately following wetting of dry mat, trichomes are mechanically expelled from the sheath as it swells during rehydration, and 2. subsequently, trichomes begin a self-propelled gliding motility which is accompanied by further production of sheath. The maximum distance traveled on solid agar by trichomes of Microcoleus vaginatus during a 12 hour period of light was 4.8 cm. This corresponds to approximately 500 times the length of the fastest trichome, and provides a measure of the potential for spreading of the mat in nature via the motility of the trichomes. Dehydration resistence of the sheath modifies the extracellular environment of the trichomes and enables their transition to dormancy. Following prolonged wetting and evaporative drying of the mat in the laboratory, a smooth wafer-like crust is formed by the sheaths of Microcleus trichomes that have migrated to the surface. Calcium carbonate precipitates among the algal filaments under experimental conditions, indicating a potential for mat lithification and fossilization in the form of a caliche crust. It is suggested that limestones containing tubular microfossils may, in part, be of such an origin. The formation of mature Precambrian soils may be attributable to soil accretion, stabilization, and biogenic modification by blue-green algal land mats similar to

  3. Environmental baseline survey report for West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge and parcel 21D in the vicinity of the East Technology Park, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    King, David A. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program

    2012-11-29

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of five land parcels located near the U.S. Department of Energy?s (DOE?s) East Tennessee Technology Park (ETTP), including West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge, and Parcel 21d. Preparation of this report included the detailed search of federal government records, title documents, aerial photos that may reflect prior uses, and visual inspections of the property and adjacent properties. Interviews with current employees involved in, or familiar with, operations on the real property were also conducted to identify any areas on the property where hazardous substances and petroleum products, or their derivatives, and acutely hazardous wastes may have been released or disposed. In addition, a search was made of reasonably obtainable federal, state, and local government records of each adjacent facility where there has been a release of any hazardous substance or any petroleum product or their derivatives, including aviation fuel and motor oil, and which is likely to cause or contribute to a release of any hazardous substance or any petroleum product or its derivatives, including aviation fuel or motor oil, on the real property. A radiological survey and soil/sediment sampling was conducted to assess baseline conditions of Parcel 21d that were not addressed by the soils-only no-further-investigation (NFI) reports. Groundwater sampling was also conducted to support a Parcel 21d decision. Based on available data West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, and West Pine Ridge are not impacted by site operations and are not subject to actions per the Federal Facility Agreement (FFA). This determination is supported by visual inspections, records searches and interviews, groundwater conceptual modeling, approved NFI reports, analytical data, and risk analysis results. Parcel 21d data, however, demonstrate impacts from site

  4. Environmental baseline survey report for West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge and parcel 21D in the vicinity of the East Technology Park, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    King, David A.

    2012-01-01

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of five land parcels located near the U.S. Department of Energy's (DOE's) East Tennessee Technology Park (ETTP), including West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge, and Parcel 21d. Preparation of this report included the detailed search of federal government records, title documents, aerial photos that may reflect prior uses, and visual inspections of the property and adjacent properties. Interviews with current employees involved in, or familiar with, operations on the real property were also conducted to identify any areas on the property where hazardous substances and petroleum products, or their derivatives, and acutely hazardous wastes may have been released or disposed. In addition, a search was made of reasonably obtainable federal, state, and local government records of each adjacent facility where there has been a release of any hazardous substance or any petroleum product or their derivatives, including aviation fuel and motor oil, and which is likely to cause or contribute to a release of any hazardous substance or any petroleum product or its derivatives, including aviation fuel or motor oil, on the real property. A radiological survey and soil/sediment sampling was conducted to assess baseline conditions of Parcel 21d that were not addressed by the soils-only no-further-investigation (NFI) reports. Groundwater sampling was also conducted to support a Parcel 21d decision. Based on available data West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, and West Pine Ridge are not impacted by site operations and are not subject to actions per the Federal Facility Agreement (FFA). This determination is supported by visual inspections, records searches and interviews, groundwater conceptual modeling, approved NFI reports, analytical data, and risk analysis results. Parcel 21d data, however, demonstrate impacts from site

  5. Crust formation in drying colloidal suspensions

    KAUST Repository

    Style, R. W.

    2010-06-30

    During the drying of colloidal suspensions, the desiccation process causes the suspension near the air interface to consolidate into a connected porous matrix or crust. Fluid transport in the porous medium is governed by Darcy\\'s law and the equations of poroelasticity, while the equations of colloid physics govern processes in the suspension. We derive new equations describing this process, including unique boundary conditions coupling the two regions, yielding a moving-boundary model of the concentration and stress profiles during drying. A solution is found for the steady-state growth of a nedimensional crust during constant evaporation rate from the surface. The solution is used to demonstrate the importance of the system boundary conditions on stress profiles and diffusivity in a drying crust. © 2011 The Royal Society.

  6. Palaeomagnetism and the continental crust

    Energy Technology Data Exchange (ETDEWEB)

    Piper, J.D.A.

    1987-01-01

    This book is an introduction to palaeomagnetism offering treatment of theory and practice. It analyzes the palaeomagnetic record over the whole of geological time, from the Archaean to the Cenozoic, and goes on to examine the impact of past geometries and movements of the continental crust at each geological stage. Topics covered include theory of rock and mineral magnetism, field and laboratory methods, growth and consolidation of the continental crust in Archaean and Proterozoic times, Palaeozoic palaeomagnetism and the formation of Pangaea, the geomagnetic fields, continental movements, configurations and mantle convection.

  7. GRAVITY ANOMALIES OF THE CRUST AND UPPER MANTLE FOR CENTRAL AND SOUTH ASIA

    Directory of Open Access Journals (Sweden)

    V. N. Senachin

    2016-01-01

    anomaly to –150 mGal, the boundaries of which are outlined by narrow zones of positive anomalies. The southern Caspian Sea is also characterized by a negative anomaly to –150 mGal, while Tien Shan is marked by a narrow band of positive anomalies up to 110 mGal. In most of the study area, the field is close to normal and varies within a few dozens of milligals. Moderately positive gravity (within 40¸80 mGal is typical of the rest of the Alpine-Himalayan folded belt. A slight positive gravity field is revealed in the marginal seas of Southeast Asia, wherein there are two narrow zones of high-amplitude anomalies of different signs (up to 200 mGal, which are generated by isostatically uncompensated systems of island arcs and trenches (Fig. 6.The gravity effect of the Earth's crust estimated for Asia shows the presence of major anomalies varying in the range of 940 mGal (from –380 to +560 mGal. The maximum positive anomaly is located in the vicinity of the African triple junction of the rift zones, wherein the anomaly reaches a positive maximum of about +560 mGal. Positive anomalies are also revealed in the Tarim Basin (+130 mGal, Southeastern China (+100 mGal, the Iranian plateau (+180 mGal, and back-arc subduction zones of the Indian and Pacific plates (+290 mGal. Large negative anomalies correspond to the Caspian and Black Seas (–380 mGal, Himalayas (–280 mGal, and eastern Tibet (–330 mGal. The Eastern Mediterranean is characterized by a negative anomaly (–310 mGal.The eastern Arabian Peninsula and the Mesopotamian lowlands are characterized by negative anomalies up to –220 mGal. The map of calculated crustal gravity anomalies also shows submarine ridges (+280 mGal that trend from south to north and seem to trace ‘hot spots’ that burn through the lithospheric plate (Fig. 7.Gravitational anomalies in the mantle were calculated by subtracting the gravity effect of the crust from the observed gravity field. The anomalies range from –570 to +350 m

  8. East Chestnut Ridge hydrogeologic characterization: A geophysical study of two karst features

    International Nuclear Information System (INIS)

    1991-01-01

    Permitting and site selection activities for the proposed East Chestnut Ridge landfill, located on the Oak Ridge Reservation, have required additional hydrogeologic studies of two karst features. Geophysical testing methods were utilized for investigating these karst features. The objectives of the geophysical testing was to determine the feasibility of geophysical techniques for locating subsurface karst features and to determine if subsurface anomalies exist at the proposed landfill site. Two karst features, one lacking surface expression (sinkhole) but with a known solution cavity at depth (from previous hydrologic studies), and the other with surface expression were tested with surface geophysical methods. Four geophysical profiles, two crossing and centered over each karst feature were collected using both gravimetric and electrical resistivity techniques

  9. Fluids of the lower crust and upper mantle: deep is different

    Science.gov (United States)

    Manning, C. E.

    2017-12-01

    Deep fluids are important for the evolution and properties of the lower crust and upper mantle in tectonically active settings. Uncertainty about their chemistry has led past workers to use upper crustal fluids as analogues. However, recent results show that fluids at >15 km differ fundamentally from shallow fluids and help explain high-pressure metasomatism and resistivity patterns. Deep fluids are comprised of four components: H2O, non-polar gases (chiefly CO2), salts (mostly alkali chlorides), and rock-derived solutes (dominated by aluminosilicates and related components). The first three generally define the solvent properties of the fluid, and models must account for observations that H2O activity may be quite low. The contrasting behavior of H2O-gas and H2O-salt mixtures yields immiscibility in the ternary system, which can lead to separation of two phases with fundamentally different chemical and transport properties. Thermodynamic modeling of equilibrium between rocks and H2O using simple ionic species known from shallow-crustal systems yields solutions possessing total dissolved solids and ionic strength that are too low to be consistent with experiments and resistivity surveys. Addition of CO2 further lowers bulk solubility and conductivity. Therefore, additional species must be present in H2O, and H2O-salt solutions likely explain much of the evidence for fluid action in high-P settings. At low salinity, H2O-rich fluids are powerful solvents for aluminosilicate rock components that are dissolved as previously unrecognized polymerized clusters. Experiments show that, near H2O-saturated melting, Al-Si polymers comprise >80% of solutes. The stability of these species facilitates critical critical mixing in rock-H2O systems. Addition of salt (e.g., NaCl) changes solubility patterns, but aluminosilicate contents remain high. Thermodynamic models indicate that the ionic strength of fluids with Xsalt = 0.05 to 0.4 and equilibrated with model crustal rocks have

  10. Changes in Fe Oxidation Rate in Hydrothermal Plumes as a Potential Driver of Enhanced Hydrothermal Input to Near-Ridge Sediments During Glacial Terminations

    Science.gov (United States)

    Cullen, J. T.; Coogan, L. A.

    2017-12-01

    Recent studies have hypothesized that changes in sea level due to glacial-interglacial cycles lead to changes in the rate of melt addition to the crust at mid-ocean ridges with globally significant consequences. Arguably the most compelling evidence for this comes from increases in the hydrothermal component in near-ridge sediments during glacial-interglacial transitions. Here we explore the hypothesis that changes in ocean bottom water [O2] and pH across glacial-interglacial transitions would lead to changes in the rate of Fe oxidation in hydrothermal plumes. A simple model shows that a several fold increase in the rate of Fe oxidation is expected at glacial-interglacial transitions. Uncertainty in bottom water chemistry and the relationship between oxidation and sedimentation rates prevent direct comparison of the model and data. However, it appears that the null hypothesis of invariant hydrothermal vent fluxes into ocean bottom water that changed in O2 content and pH across these transitions cannot currently be discounted.

  11. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This Remedial Investigation (RI) Work Plan specifically addresses Chestnut Ridge Operable Unit 1, (OU1) which consists of the Chestnut Ridge Security Pits (CRSP). The CRSP are located {approximately}800 ft southeast of the central portion of the Y-12 Plant atop Chestnut Ridge, which is bounded to the northwest by Bear Creek Valley and to the southeast by Bethel Valley. Operated from 1973 to 1988, the CRSP consisted of a series of trenches used for the disposal of classified hazardous and nonhazardous waste materials. Disposal of hazardous waste materials was discontinued in December 1984, while nonhazardous waste disposal ended on November 8, 1988. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern (COC), support an ecological risk assessment (ERA) and a human health risk assessment (HHRA), support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this Work Plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU1. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the overall risk posed to human health and the environment by OU1.

  12. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-09-01

    This Remedial Investigation (RI) Work Plan specifically addresses Chestnut Ridge Operable Unit 1, (OU1) which consists of the Chestnut Ridge Security Pits (CRSP). The CRSP are located ∼800 ft southeast of the central portion of the Y-12 Plant atop Chestnut Ridge, which is bounded to the northwest by Bear Creek Valley and to the southeast by Bethel Valley. Operated from 1973 to 1988, the CRSP consisted of a series of trenches used for the disposal of classified hazardous and nonhazardous waste materials. Disposal of hazardous waste materials was discontinued in December 1984, while nonhazardous waste disposal ended on November 8, 1988. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern (COC), support an ecological risk assessment (ERA) and a human health risk assessment (HHRA), support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this Work Plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU1. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the overall risk posed to human health and the environment by OU1

  13. Ridge Regression Signal Processing

    Science.gov (United States)

    Kuhl, Mark R.

    1990-01-01

    The introduction of the Global Positioning System (GPS) into the National Airspace System (NAS) necessitates the development of Receiver Autonomous Integrity Monitoring (RAIM) techniques. In order to guarantee a certain level of integrity, a thorough understanding of modern estimation techniques applied to navigational problems is required. The extended Kalman filter (EKF) is derived and analyzed under poor geometry conditions. It was found that the performance of the EKF is difficult to predict, since the EKF is designed for a Gaussian environment. A novel approach is implemented which incorporates ridge regression to explain the behavior of an EKF in the presence of dynamics under poor geometry conditions. The basic principles of ridge regression theory are presented, followed by the derivation of a linearized recursive ridge estimator. Computer simulations are performed to confirm the underlying theory and to provide a comparative analysis of the EKF and the recursive ridge estimator.

  14. Kinetics of the crust thickness development of bread during baking.

    Science.gov (United States)

    Soleimani Pour-Damanab, Alireza; Jafary, A; Rafiee, Sh

    2014-11-01

    The development of crust thickness of bread during baking is an important aspect of bread quality and shelf-life. Computer vision system was used for measuring the crust thickness via colorimetric properties of bread surface during baking process. Crust thickness had a negative and positive relationship with Lightness (L (*) ) and total color change (E (*) ) of bread surface, respectively. A linear negative trend was found between crust thickness and moisture ratio of bread samples. A simple mathematical model was proposed to predict the development of crust thickness of bread during baking, where the crust thickness was depended on moisture ratio that was described by the Page moisture losing model. The independent variables of the model were baking conditions, i.e. oven temperature and air velocity, and baking time. Consequently, the proposed model had well prediction ability, as the mean absolute estimation error of the model was 7.93 %.

  15. Preliminary results from the first InRidge cruise to the central Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Murthy, K.S.R.; Iyer, S.D.; Rao, M.M.M.; Banerjee, R.; Subrahmanyam, A.S.; Shirodkar, P.V.; Ghose, I.; Ganesan, P.; Rao, A.K.; Suribabu, A.; Ganesh, C.; Naik, G.P.

    stream_size 1 stream_content_type text/plain stream_name Inter_Ridge_News_7_40.pdf.txt stream_source_info Inter_Ridge_News_7_40.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  16. Structure and Dynamics of the Southeast Indian Ridge, 129°E to 140°E, and Off-axis Volcanism: Preliminary Results of the STORM Cruise

    Science.gov (United States)

    Briais, Anne; Barrère, Fabienne; Boulart, Cédric; Ceuleneer, Georges; Ferreira, Nicolas; Hanan, Barry; Hémond, Christophe; Macleod, Sarah; Maia, Marcia; Maillard, Agnès; Merkuryev, Sergey; Park, Sung-Hyun; Révillon, Sidonie; Ruellan, Etienne; Schohn, Alexandre; Watson, Sally; Yang, Yun-Seok

    2016-04-01

    We present observations of the South-East Indian Ridge (SEIR) collected during the STORM cruise (South Tasmania Ocean Ridge and Mantle) on the N/O L'Atalante early 2015. The SEIR between Australia and Antarctica displays large variations of axial morphology despite an almost constant intermediate spreading rate. The Australia-Antarctic Discordance (AAD) between 120°E and 128°E is a section of the mid-ocean ridge where the magma budget is abnormally low, and which marks the boundary between Indian and Pacific mantle domains with distinct geochemical isotopic compositions. The STORM project focuses on the area east of the discordance from 128 to 140°E, where gravity highs observed on satellite-derived maps of the flanks of the SEIR reveal numerous volcanic seamounts. A major objective of the STORM cruise was to test the hypothesis of a mantle flow from the Pacific to the Indian domains. We collected multibeam bathymetry and magnetic data between 136 and 138°E to map off-axis volcanic ridges up to 10 Ma-old crust. We mapped the SEIR axis between 129 and 140°E, and the northern part of the George V transform fault. We collected rock samples on seamounts and in the transform fault, basaltic glass samples along the ridge axis, and near-bottom samples and in-situ measurements in the water column. Our observations reveal that the off-axis seamounts form near the SEIR axis, are not associated to off-axis deformation of the ocean floor, and are often located near the traces of ridge axis discontinuities. We also observe a general shallowing of the ridge axis from the AAD to the George V TF and the presence of robust axial segments near the transform fault. Our new data allow us to describe the complex evolution of the transform fault system. They also permit to locate new hydrothermal systems along the ridge axis.

  17. Crust-mantle contribution to Andean magmatism

    International Nuclear Information System (INIS)

    Ruiz, J; Hildreth, W; Chesley, J

    2001-01-01

    There has long been great interest in quantifying the contributions of the continental crust to continental arc magmas, such as those of the Andes using osmium isotopes (Alves et al., 1999; Borg et al., 2000; Brandon et al., 1996; McInnes et al., 1999). In general, Andean volcanic rocks of all compositions show relatively low Sr-isotope ratios and positive to mildly negative epsilon Nd values. Nonetheless, in the Southern Volcanic Zone of central Chile, basalt-andesite-dacite volcanoes along the Quaternary volcanic front were shown (by Hildreth and Moorbath, 1988) to have latitudinally systematic chemical variations, as well as a monotonic increase in 87Sr/Sr86 from ca. 0.7035 to 0.7055 and a decrease in epsilon Nd values from ca. +3 to -1. The isotopic variations correlate with basement elevation of the volcanic edifices and with Bouguer gravity anomalies, both of which are thought to reflect along-arc variations in thickness and average age of the underlying crust. Volcanoes with the most evolved isotopic signatures were fed through the thickest crust. Correlation of chemical and isotopic variations with crustal thickness was interpreted to be caused by Melting (of deep-crustal host rocks), Assimilation, Storage, and Homogenization (MASH) of mantle-derived magmas in long-lived lower-crustal reservoirs beneath each center prior to eruption. We have now determined Os-isotope ratios for a sample suite from these volcanoes (33-36 S lat.), representing a range of crustal thickness from ca. 60-35 km. The samples range in MgO from ca. 8-4% and in SiO2 from 51-57%. The most evolved eruptive products occur above the thickest crust and have 87Sr/86Sr ratios of 0.7054 and epsilon Nd values of -1.5. The 187Os/188Os ratios correlate with the other isotopic systems and with crustal thickness. Volcanoes on the thinnest crust have 187Os/188Os ratios of 0.18-0.21. Those on the thickest crust have 187Os/188Os ratios as high as 0.64. All the Os values are much too radiogenic to

  18. Hydrothermal Fe-Si-Mn oxide deposits from the Central and South Valu Fa Ridge, Lau Basin

    International Nuclear Information System (INIS)

    Sun Zhilei; Zhou Huaiyang; Yang Qunhui; Sun Zhixue; Bao Shenxu; Yao Huiqiang

    2011-01-01

    Highlights: → The Fe-Mn crust in the HHF has seawater contribution, whereas the Fe-Si oxide in the MHF is dominated by hydrothermal fluid → The Nd isotope of diffuse flow Fe-Si-Mn deposits indicates the obvious hydrothermal origin. → The Mn/Fe ratio in hydrothermal deposit may be a good indicator of propagating activities of the Valu Fa Ridge. - Abstract: A series of samples from the Hine Hina hydrothermal field (HHF) and the Mariner hydrothermal field (MHF) in the Central and Southern Valu Fa Ridge (VFR), Lau Basin were examined to explain the source origin and formation of the hydrothermal Fe-Si-Mn oxide deposits. The mineralogy was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Moessbauer spectroscopy, and energy-dispersive spectroscopy (EDS). For the Fe-Mn oxide crusts in the HHF, varying amounts of volcanic fragments and some seawater contributions were recognized, along with higher concentrations of Mn, Al, Co, Ni, Zn, Sr, Mo, elevated ΣREE and negative Ce anomalies. In contrast, the Si-rich oxide samples of the MHF were enriched in Cu, Pb and Ba, indicative of proximity to a hydrothermal jet. Moreover, conductive cooling of hydrothermal fluid evoked the Si-rich deposit formation in the MHF. The Sr, Nd and Pb isotope data provided further constraints regarding the source and formation of the Fe-Si-Mn deposits in the VFR by showing that the samples of the HHF are a mixture of three components, namely, hydrothermal fluid, seawater and volcanic materials, whereas the samples of the MHF were dominated by hydrothermal fluids. The seawater had a minor influence on the Nd isotope data, and the Pb isotope data exhibited a close association with the substrate rock and preformed volcaniclastic layers in this area. The occurrence of relatively high Mn/Fe ratios in the hydrothermal deposits of this area may be a good indicator of the propagating activities of the VFR over geological time.

  19. Growth of the continental crust: constraints from radiogenic isotope geochemistry

    International Nuclear Information System (INIS)

    Taylor, P.N.

    1988-01-01

    Most models for evolution of continental crust are expressed in the form of a diagram illustrating the cumulative crustal mass (normalized relative to the present crustal mass) as a function of time. Thus, geochronological data inevitably play a major role in either constructing or testing crustal growth models. For all models, determining the start-time for effective crustal accretion is of vital importance. To this end, the continuing search for, and reliable characterization of, the most ancient crustal rock-units remains a worthy enterprise. Another important role for geochronology and radiogenic isotope geochemistry is to assess the status of major geological events as period either of new crust generation or of reworking of earlier formed continental crust. For age characterization of major geological provinces, using the critieria outined, the mass (or volume) of crust surviving to the present day should be determinable as a function of crust formation age. More recent developments, however, appear to set severe limitations on recycling of crust, at least by the process of sediment subduction. In modeling crustal growth without recycling, valuable constaints on growth rate variations through time can be provided if variations in the average age of the continental crust can be monitored through geological history. The question of the average age of the exposed continental crust was addressed by determining Sm-Nd crustal residence model ages (T-CR) for fine-grained sediment loads of many of the world's major rivers

  20. Global survey of lunar wrinkle ridge formation times

    Science.gov (United States)

    Yue, Z.; Michael, G. G.; Di, K.; Liu, J.

    2017-11-01

    Wrinkle ridges are a common feature of the lunar maria and record subsequent contraction of mare infill. Constraining the timing of wrinkle ridge formation from crater counts is challenging because they have limited areal extent and it is difficult to determine whether superposed craters post-date ridge formation or have alternatively been uplifted by the deformation. Some wrinkle ridges do allow determination to be made. This is possible where a ridge shows a sufficiently steep boundary or scarp that can be identified as deforming an intersecting crater or the crater obliterates the relief of the ridge. Such boundaries constitute only a small fraction of lunar wrinkle ridge structures yet they are sufficiently numerous to enable us to obtain statistically significant crater counts over systems of structurally related wrinkle ridges. We carried out a global mapping of mare wrinkle ridges, identifying appropriate boundaries for crater identification, and mapping superposed craters. Selected groups of ridges were analyzed using the buffered crater counting method. We found that, except for the ridges in mare Tranquilitatis, the ridge groups formed with average ages between 3.5 and 3.1 Ga ago, or 100-650 Ma after the oldest observable erupted basalts where they are located. We interpret these results to suggest that local stresses from loading by basalt fill are the principal agent responsible for the formation of lunar wrinkle ridges, as others have proposed. We find a markedly longer interval before wrinkle ridge formation in Tranquilitatis which likely indicates a different mechanism of stress accumulation at this site.

  1. Magnetic anomalies across the transitional crust of the passive conjugate margins of the North Atlantic: Iberian Abyssal Plain/Northern Newfoundland Basin

    Science.gov (United States)

    Srivastava, S.; Sibuet, J.; Manatschal, G.

    2005-12-01

    and not by oceanic crust formed by seafloor spreading. Ages of mantle exhumation at ODP Sites 1067, 1068 and 1070 are similar to ages determined as if the crust was emplaced by seafloor spreading. We have demonstrated that sources of these magnetic anomalies are not located 6-8 km below the basement as previously suggested but lie within the upper crust, as for conventional seafloor spreading magnetic anomalies. From paleomagnetic measurements performed on serpentinized peridotites from three ODP sites in IAP and proxies in the Alps, we suggest that the crystallization of magnetite grains during the primary mantle serpentinization are related to mantle exhumation processes along downward concave faults, resulting in highly magnetized serpentinized rocks giving rise to magnetic anomalies similar to 'seafloor spreading' anomalies, but with different amplitudes. Finally, we suggest a mechanism of emplacement of the transitional crust for the conjugate IAP/Northern Newfoundland Basin margins similar to the mode of emplacement of amagmatic segments observed at slow or ultraslow seafloor spreading ridges. One of the consequences of this work is that magnetic data might give useful time constraints on the emplacement of transitional crust across non-volcanic passive margins but not information concerning its nature.

  2. Best management practices plan for the Chestnut Ridge-Filled Coal Ash Pond at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-05-01

    The Chestnut Ridge Filled Coal Ash Pond (FCAP) Project has been established to satisfy Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements for the Chestnut Ridge Operable Unit 2. FCAP is on Chestnut Ridge, approximately 0.5 miles south of the Y-12 Plant. A 62-foot high earthen dam across Upper McCoy Branch was constructed in 1955 to create a pond to serve as a settling basin for fly and bottom ashes generated by burning coal at the Y-12 Steam Plant. Ash from the steam was mixed with water to form a slurry and then pumped to the crest of Chestnut Ridge and released through a large pipe to flow across the Sluice Channel area and into the pond. The ash slurry eventually overtopped the dam and flowed along Upper McCoy Branch to Rogers Quarry. The purpose of this document is to provide a site-specific Best Management Practices (BMP) Plan for construction associated with environmental restoration activities at the FCAP Site

  3. Ridge interaction features of the Line Islands

    Science.gov (United States)

    Konter, J. G.; Koppers, A. A. P.; Storm, L. P.

    2016-12-01

    The sections of Pacific absolute plate motion history that precede the Hawaii-Emperor and Louisville chains are based on three chains: the Line Islands-Mid-Pacific Mountains, the Hess Rise-Shatsky Rise, and the Marshall Islands-Wake Islands (Rurutu hotspot). Although it has been clear that the Line Islands do not define a simple age progression (e.g. Schlanger et al., 1984), the apparent similarity to the Emperor Seamount geographic trend has been used to extend the overall Hawaii-Emperor track further into the past. However, we show here that plate tectonic reconstructions suggest that the Mid-Pacific Mountains (MPMs) and Line Islands (LIs) were erupted near a mid-ocean ridge, and thus these structures do not reflect absolute plate motion. Moverover, the morphology and geochemistry of the volcanoes show similarities with Pukapuka Ridge (e.g. Davis et al., 2002) and the Rano Rahi seamounts, presumed to have a shallow origin. Modern 40Ar/39Ar ages show that the LIs erupted at various times along the entire volcanic chain. The oldest structures formed within 10 Ma of plate formation. Given the short distance to the ridge system, large aseismic volcanic ridges, such as Necker Ridge and Horizon Guyot may simply reflect a connection between MPMs and the ridge, similar to the Pukapuka Ridge. The Line Islands to the south (including Karin Ridge) define short subchains of elongated seamounts that are widespread, resembling the Rano Rahi seamount field. During this time, the plate moved nearly parallel to the ridge system. The change from few large ridges to many subchains may reflect a change in absolute plate motion, similar to the Rano Rahi field. Here, significant MPMs volcanism is no longer connected to the ridge along plate motion. Similar to Pukapuka vs. Rano Rahi, the difference in direction between plate motion and the closest ridge determines whether larger ridges or smaller seamount subchains are formed. The difference between the largest structures (MPMs and LIs

  4. Radiogenic isotopes in enriched mid-ocean ridge basalts from Explorer Ridge, northeast Pacific Ocean

    Science.gov (United States)

    Cousens, Brian; Weis, Dominique; Constantin, Marc; Scott, Steve

    2017-09-01

    Extreme gradients in topography related to variations in magma supply are observed on the Southern Explorer Ridge (SER), part of the northern Juan de Fuca ridge system. We report radiogenic isotope (Pb, Sr, Nd, Hf) and geochemical data for twenty-four basalt whole-rock and glass samples collected from the length of the SER and from Explorer Deep, a rift to the north of the SER. Lavas from the SER form a north-south geochemical gradient, dominated by E-MORB at the northern axial high, and range from T-MORB to N-MORB towards the southern deepest part of the ridge. Linear relationships between incompatible element ratios and isotopic ratios in MORB along the ridge are consistent with mixing of magmas beneath the ridge to generate the geographic gradient from E- to N-MORB. The E-MORB have high Sr and Pb, and low Nd and Hf isotopic ratios, typical of enriched mantle that includes a FOZO or HIMU isotopic component. The West Valley and Endeavour segments of the northern Juan de Fuca ridge also include this isotopic component, but the proportion of the FOZO or HIMU component is more extreme in the SER basalts. The FOZO or HIMU component may be garnet-bearing peridotite, or a garnet pyroxenite embedded in peridotite. Recycled garnet pyroxenite better explains the very shallow SER axial high, high Nb/La and La/Sm, and the ;enriched; isotopic compositions.

  5. Snow and Ice Crust Changes over Northern Eurasia since 1966

    Science.gov (United States)

    Bulygina, O.; Groisman, P. Y.; Razuvaev, V.; Radionov, V.

    2009-12-01

    When temperature of snow cover reaches zero Celsius first time since its establishment, snowmelt starts. In many parts of the world this process can be lengthy. The initial amount of heat that “arrives” to the snowpack might be insufficient for complete snowmelt, during the colder nights re-freeze of the melted snow may occur (thus creating the ice crust layers), and a new cold front (or the departure of the warm front that initiated melt) can decrease temperatures below the freezing point again and stop the snowmelt completely. It well can be that first such snowmelt occurs in winter (thaw day) and for several months thereafter snowpack stays on the ground. However, even the first such melt initiates a process of snow metamorphosis on its surface changing snow albedo and generating snow crust as well as on its bottom generating ice crust. Once emerged, the crusts will not disappear until the complete snowmelt. Furthermore, these crusts have numerous pathways of impact on the wild birds and animals in the Arctic environment as well as on domesticated reindeers. In extreme cases, the crusts may kill some wild species and prevent reindeers’ migration and feeding. Ongoing warming in high latitudes created situations when in the western half of Eurasian continent days with thaw became more frequent. Keeping in mind potential detrimental impacts of winter thaws and associated with them snow/ice crust development, it is worthwhile to study directly what are the major features of snow and ice crust over Eurasia and what is their dynamics. For the purpose of this study, we employed the national snow survey data set archived at the Russian Institute for Hydrometeorological Information. The dataset has routine snow surveys run throughout the cold season each decade (during the intense snowmelt, each 5 days) at all meteorological stations of the former USSR, thereafter, in Russia since 1966. Prior to 1966 snow surveys are also available but the methodology of

  6. Cyanobacterial crust induction using two non-previously tested cyanobacterial inoculants: crusting capability and role of EPSs

    Science.gov (United States)

    Mugnai, Gianmarco; Rossi, Federico; De Philippis, Roberto

    2017-04-01

    The use of cyanobacteria as soil improvers and bio-conditioners (a technique often referred to as algalization) has been studied for decades. Several studies proved that cyanobacteria are feasible eco-friendly candidates to trigger soil fertilization and enrichment from agricultural to arid and hyper-arid systems. This approach can be successful to achieve stabilization and rehabilitation of degraded environments. Much of the effectiveness of algalization is due to the productivity and the characteristics of extracellular polysaccharides (EPSs) which, among their features, embed soil particles and promote the development of a first stable organo-mineral layer (cyanobacterial crusts). In natural settings, cyanobacterial crust induction represents a first step of a succession that may lead to the formation of mature biological soil crusts (Lan et al., 2014). The aim of this research was to investigate the crusting capabilities, and the characteristics of excreted EPSs by two newly tested non-heterocystous cyanobacterial inoculants, in microcosm experiments carried out using oligothrophic sand collected from sand dunes in Negev Desert, Israel. The cyanobacteria tested were Schizothrix AMPL1601, originally isolated from biocrusts collected in Hobq Desert, Inner Mongolia (China) and Leptolyngbia ohadii, originally isolated from biocrusts collected in Negev Desert, Israel. Inoculated microcosms were maintained at 30 °C in a growth chamber under continuous illumination and minimal water availability. Under such stressing conditions, and for a three-months incubation time, the growth and the colonization of the strains in the microcosms were monitored. At the same time, EPSs production and their chemical and macromolecular characteristics were determined by applying a methodology optimized for the purpose. Notably, EPSs were analyzed in two operationally-defined fractions, one more dispersed in the crust matrix (loosely bound EPSs, LB-EPSs) and one more condensed and

  7. Effects of crust and cracks on simulated catchment discharge and soil loss

    NARCIS (Netherlands)

    Stolte, J.; Ritsema, C.J.; Roo, de A.P.J.

    1997-01-01

    Sealing, crusting and cracking of crusts of the soil surface has been observed in many parts of the world in areas with sandy, silty and loamy soils. Sealing and crust formation occurs under the influence of rain storm and drying weather. With prolonged drying, surface crusts might crack, leading to

  8. The Electrical Resistivity Structure of the Eastern Anatolian Collision Zone, Northeastern Anatolia

    Science.gov (United States)

    Cengiz, Özlem; Tuǧrul Başokur, Ahmet; Tolak Çiftçi, Elif

    2016-04-01

    The Northeastern Anatolia is located at the intensely deformed Eastern Anatolian Collision Zone (EACZ), and its tectonic framework is characterized by the collision of the Arabian plate with Eurasian. Although extensive attention is given to understand the crustal and upper mantle processes at this convergent boundary, there is still an ongoing debate over the geodynamic processes of the region. In this study, we were specifically interested in the geoelectric properties and thus geodynamics of the crust beneath the EACZ. Magnetotelluric (MT) measurements were made on two profiles across the north of the EACZ in 1998 as part of a national project undertaken by the Turkish Petroleum Corporation (TPAO). MT data in the frequency range of 300-0.001 Hz were collected from 168 stations located along 78 km north to south and 47 km west to east profiles where direct convergence occurs between Arabian and Eurasian plates. Two and three-dimensional inversion algorithms were used to obtain resistivity models of the study area. According to these models, the upper crust consists of low resistivity sedimentary rocks (basement rocks of the Eastern Anatolian Accretionary Complex and Pontides. While the upper and lower crustal resistivity at the northern part of the study area shows a layered structure, significant horizontal and vertical variations for the rest of the EACZ exists on resistivity models. The broad low resistivity zones (structure supports the southward subduction model with the resistive continental block and the deep conductive zones presumably corresponding to the oceanic crust.

  9. A holistic model for the role of the axial melt lens at fast-spreading mid-ocean ridges

    Science.gov (United States)

    MacLeod, C. J.; Loocke, M. P.; Lissenberg, J. C. J.

    2016-12-01

    Axial melt lenses (AML) are melt or crystal mush1 bodies located at the dyke-gabbro transition beneath intermediate- and fast-spreading mid-ocean ridges (MORs)2,3. Although it is generally thought that AMLs play a major role in the storage and differentiation of mid-ocean ridge basalts (MORB)1, the melt compositions within the AML and its role in the accretion of the lower crust are heavily debated4-6. Here we present the first comprehensive study of the AML horizon at a fast-spreading MOR (Hess Deep, equatorial Pacific Ocean). We show that plagioclase and pyroxene within the AML are much too evolved to be in equilibrium with MORB, with mean An (54.85) and Mg# (65.01) consistent with derivation from basaltic andesite to andesite melts (Mg# 43-26). We propose that, in between decadal eruptions, the AML is predominantly crystal mush and is fed by small volumes of evolved interstitial melts. Short-lived, focused injection of primitive melt leads to mixing of primitive melts with the extant highly fractionated melt, and triggers eruptions. This model reconciles the paradoxical compositional mismatch between the volcanic and plutonic records with the geophysical characteristics of the AML, the short residence times of Pacific MORB phenocrysts, and the incompatible trace element over-enrichments in MORB. 1Marjanović, M. et al., 2015. Distribution of melt along the East Pacific Rise from 9°30' to 10°N from an amplitude variation with angle of incidence (AVA) technique. Geophys. J. Int. 203. 2Detrick, R. S. et al., 1987. Multi-channel seismic imaging of a crustal magma chamber along the EPR. Nature 326. 3Sinton, J. M. & Detrick, R. S., 1992. Mid-ocean ridge magma chambers. J. Geophys. Res. 97. 4Coogan, L. A., Thompson, G. & MacLeod, C. J., 2002. A textural and geochemical investigation of high level gabbros from the Oman ophiolite: implications for the role of the axial magma chamber at fast-spreading ridges. Lithos 63. 5Pan, Y. & Batiza, R., 2002. Mid-ocean ridge magma

  10. Depth-varying seismogenesis on an oceanic detachment fault at 13°20‧N on the Mid-Atlantic Ridge

    Science.gov (United States)

    Craig, Timothy J.; Parnell-Turner, Ross

    2017-12-01

    Extension at slow- and intermediate-spreading mid-ocean ridges is commonly accommodated through slip on long-lived faults called oceanic detachments. These curved, convex-upward faults consist of a steeply-dipping section thought to be rooted in the lower crust or upper mantle which rotates to progressively shallower dip-angles at shallower depths. The commonly-observed result is a domed, sub-horizontal oceanic core complex at the seabed. Although it is accepted that detachment faults can accumulate kilometre-scale offsets over millions of years, the mechanism of slip, and their capacity to sustain the shear stresses necessary to produce large earthquakes, remains subject to debate. Here we present a comprehensive seismological study of an active oceanic detachment fault system on the Mid-Atlantic Ridge near 13°20‧N, combining the results from a local ocean-bottom seismograph deployment with waveform inversion of a series of larger teleseismically-observed earthquakes. The unique coincidence of these two datasets provides a comprehensive definition of rupture on the fault, from the uppermost mantle to the seabed. Our results demonstrate that although slip on the deep, steeply-dipping portion of detachment faults is accommodated by failure in numerous microearthquakes, the shallow, gently-dipping section of the fault within the upper few kilometres is relatively strong, and is capable of producing large-magnitude earthquakes. This result brings into question the current paradigm that the shallow sections of oceanic detachment faults are dominated by low-friction mineralogies and therefore slip aseismically, but is consistent with observations from continental detachment faults. Slip on the shallow portion of active detachment faults at relatively low angles may therefore account for many more large-magnitude earthquakes at mid-ocean ridges than previously thought, and suggests that the lithospheric strength at slow-spreading mid-ocean ridges may be concentrated

  11. Chronology of early lunar crust

    International Nuclear Information System (INIS)

    Dasch, E.J.; Nyquist, L.E.; Ryder, G.

    1988-01-01

    The chronology of lunar rocks is summarized. The oldest pristine (i.e., lacking meteoritic contamination of admixed components) lunar rock, recently dated with Sm-Nd by Lugmair, is a ferroan anorthosite, with an age of 4.44 + 0.02 Ga. Ages of Mg-suite rocks (4.1 to 4.5 Ga) have large uncertainties, so that age differences between lunar plutonic rock suites cannot yet be resolved. Most mare basalts crystallized between 3.1 and 3.9 Ga. The vast bulk of the lunar crust, therefore, formed before the oldest preserved terrestrial rocks. If the Moon accreted at 4.56 Ga, then 120 Ma may have elapsed before lunar crust was formed

  12. Early Cretaceous MORB-type basalt and A-type rhyolite in northern Tibet: Evidence for ridge subduction in the Bangong-Nujiang Tethyan Ocean

    Science.gov (United States)

    Fan, Jian-Jun; Li, Cai; Sun, Zhen-Ming; Xu, Wei; Wang, Ming; Xie, Chao-Ming

    2018-04-01

    New zircon U-Pb ages, major- and trace-element data, and Hf isotopic compositions are presented for bimodal volcanic rocks of the Zhaga Formation (ZF) in the western-middle segment of the Bangong-Nujiang suture zone (BNSZ), northern Tibet. The genesis of these rocks is described, and implications for late-stage evolution of the Bangong-Nujiang Tethyan Ocean (BNTO) are considered. Detailed studies show that the ZF bimodal rocks, which occur as layers within a typical bathyal to abyssal flysch deposit, comprise MORB-type basalt that formed at a mid-ocean ridge, and low-K calc-alkaline A-type rhyolite derived from juvenile crust. The combination of MORB-type basalt, calc-alkaline A-type rhyolite, and bathyal to abyssal flysch deposits in the ZF leads us to propose that they formed as a result of ridge subduction. The A-type ZF rhyolites yield LA-ICP-MS zircon U-Pb ages of 118-112 Ma, indicating formation during the Early Cretaceous. Data from the present study, combined with regional geological data, indicate that the BNTO underwent conversion from ocean opening to ocean closure during the Late Jurassic-Early Cretaceous. The eastern segment of the BNTO closed during this period, while the western and western-middle segments were still at least partially open and active during the Early Cretaceous, accompanied by ridge subduction within the Bangong-Nujiang Tethyan Ocean.

  13. Formation and development of salt crusts on soil surfaces

    KAUST Repository

    Dai, Sheng; Shin, Hosung; Santamarina, Carlos

    2015-01-01

    The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

  14. Formation and development of salt crusts on soil surfaces

    KAUST Repository

    Dai, Sheng

    2015-12-14

    The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

  15. A Crystallization-Temperature Profile Through Paleo-Oceanic Crust (Wadi Gideah Transect, Oman Ophiolite): Application of the REE-in-Plagioclase-Clinopyroxene Partitioning Thermometer

    Science.gov (United States)

    Mueller, S.; Hasenclever, J.; Garbe-Schönberg, D.; Koepke, J.; Hoernle, K.

    2017-12-01

    The accretion mechanisms forming oceanic crust at fast spreading ridges are still under controversial discussion. Thermal, petrological, and geochemical observations predict different end-member models, i.e., the gabbro glacier and the sheeted sill model. They all bear implications for heat transport, temperature distribution, mode of crystallization and hydrothermal heat removal over crustal depth. In a typical MOR setting, temperature is the key factor driving partitioning of incompatible elements during crystallization. LA-ICP-MS data for co-genetic plagioclase and clinopyroxene in gabbros along a transect through the plutonic section of paleo-oceanic crust (Wadi Gideah Transect, Oman ophiolite) reveal that REE partitioning coefficients are relatively constant in the layered gabbro section but increase for the overlying foliated gabbros, with an enhanced offset towards HREEs. Along with a systematic enrichment of REE's with crustal height, these trends are consistent with a system dominated by in-situ crystallization for the lower gabbros and a change in crystallization mode for the upper gabbros. Sun and Liang (2017) used experimental REE partitioning data for calibrating a new REE-in-plagioclase-clinopyroxene thermometer that we used here for establishing the first crystallization-temperature depth profile through oceanic crust that facilitates a direct comparison with thermal models of crustal accretion. Our results indicate crystallization temperatures of about 1220±8°C for the layered gabbros and lower temperatures of 1175±8°C for the foliated gabbros and a thermal minimum above the layered-to-foliated gabbro transition. Our findings are consistent with a hybrid accretion model for the oceanic crust. The thermal minimum is assumed to represent a zone where the descending crystal mushes originating from the axial melt lens meet with mushes that have crystallized in situ. These results can be used to verify and test thermal models (e.g., Maclennan et al

  16. Crustal Stretching Style and Lower Crust Flow of the South China Sea Northern Margin

    Science.gov (United States)

    Bai, Y.; Dong, D.; Runlin, D.

    2017-12-01

    There is a controversy about crustal stretching style of the South China Sea (SCS) northern margin mainly due to considerable uncertainty of stretching factor estimation, for example, as much as 40% of upper crust extension (Walsh et al., 1991) would be lost by seismic profiles due to poor resolution. To discover and understand crustal stretching style and lower crustal flow on the whole, we map the Moho and Conrad geometries based on gravity inversion constrained by deep seismic profiles, then according to the assumption of upper and lower crust initial thickness, upper and lower crust stretching factors are estimated. According to the comparison between upper and lower crust stretching factors, the SCS northern margin could be segmented into three parts, (1) sediment basins where upper crust is stretched more than lower crust, (2) COT regions where lower crust is stretched more than upper crust, (3) other regions where the two layers have similar stretching factors. Stretching factor map shows that lower crust flow happened in both of COT and sediment basin regions where upper crust decouples with lower crust due to high temperature. Pressure contrast by sediment loading in basins and erosion in sediment-source regions will lead to lower crust flow away from sediment sink to source. Decoupled and fractured upper crust is stretched further by sediment loading and the following compensation would result in relatively thick lower crust than upper crust. In COT regions with thin sediment coverage, low-viscosity lower crust is easier to thin in extensional environment, also the lower crust tends to flow away induced by magma upwelling. Therefore, continental crust on the margin is not stretching in a constant way but varies with the tectonic setting changes. This work is supported by National Natural Science Foundation of China (Grant No. 41506055, 41476042) and Fundamental Research Funds for the Central Universities China (No.17CX02003A).

  17. Breaking strain of neutron star crust and gravitational waves.

    Science.gov (United States)

    Horowitz, C J; Kadau, Kai

    2009-05-15

    Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of the neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Because of the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gravitational wave radiation could limit the spin periods of some stars and might be detectable in large-scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in magnetar giant flares and microflares.

  18. Magnetization of the oceanic crust: TRM or CRM?

    Science.gov (United States)

    Raymond, C. A.; Labrecque, J. L.

    1987-01-01

    A model was proposed in which chemical remanent magnetization (CRM) acquired within the first 20 Ma of crustal evolution may account for 80% of the bulk natural remanent magnetization (NRM) of older basalts. The CRM of the crust is acquired as the original thermoremanent magnetization (TRM) is lost through low temperature alteration. The CRM intensity and direction are controlled by the post-emplacement polarity history. This model explains several independent observations concerning the magnetization of the oceanic crust. The model accounts for amplitude and skewness discrepancies observed in both the intermediate wavelength satellite field and the short wavelength sea surface magnetic anomaly pattern. It also explains the decay of magnetization away from the spreading axis, and the enhanced magnetization of the Cretaceous Quiet Zones while predicting other systematic variations with age in the bulk magnetization of the oceanic crust. The model also explains discrepancies in the anomaly skewness parameter observed for anomalies of Cretaceous age. Further studies indicate varying rates of TRM decay in very young crust which depicts the advance of low temperature alteration through the magnetized layer.

  19. Effect of bend faulting on the hydration state of oceanic crust: Electromagnetic constraints from the Middle America Trench

    Science.gov (United States)

    Naif, S.; Key, K.; Constable, S.; Evans, R. L.

    2017-12-01

    In Northern Central America, the portion of the incoming Cocos oceanic plate formed at the East Pacific Rise has a seafloor spreading fabric that is oriented nearly parallel to the trench axis, whereby flexural bending at the outer rise reactivates a dense network of dormant abyssal hill faults. If bending-induced normal faults behave as fluid pathways they may promote extensive mantle hydration and significantly raise the flux of fluids into the subduction system. Multi-channel seismic reflection data imaged bend faults that extend several kilometers beneath the Moho offshore Nicaragua, coincident with seismic refraction data showing significant P-wave velocity reductions in both the crust and uppermost mantle. Ignoring the effect of fracture porosity, the observed mantle velocity reduction is equivalent to an upper bound of 15-20% serpentinization (or 2.0-2.5 wt% H2O). Yet the impact of bend faulting on porosity structure and crustal hydration are not well known. Here, we present results on the electrical resistivity structure of the incoming Cocos plate offshore Nicaragua, the first controlled-source electromagnetic (CSEM) experiment at a subduction zone. The CSEM data imaged several sub-vertical conductive channels extending beneath fault scarps to 5.5 km below seafloor, providing independent evidence for fluid infiltration into the oceanic crust via bending faults. We applied Archie's Law to estimate porosity from the resistivity observations: the dike and gabbro layers increase from 2.7% and 0.7% porosity at 100 km to 4.8% and 1.7% within 20 km of the trench, respectively. In contrast the resistivity, and hence porosity, remain relatively unchanged at sub-Moho depths. Therefore, either the faults do not provide an additional flux of free water to the mantle or, in light of the reduced seismic velocities, the volumetric expansion resulting from mantle serpentinization rapidly consumes any fault-generated porosity. Since our crustal porosity estimates seaward

  20. The beach ridges of India: A review

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; Wagle, B.G.

    , and is presented in a consolidated form. Beach ridges of the east and west coast of India are grouped in thirteen-beach ridge complexes based on their association. Review indicates that the beach ridges of India are not older than the Holocene age...

  1. High and highly variable cooling rates during pyroclastic eruptions on Axial Seamount, Juan de Fuca Ridge

    Science.gov (United States)

    Helo, Christoph; Clague, David A.; Dingwell, Donald B.; Stix, John

    2013-03-01

    We present a calorimetric analysis of pyroclastic glasses and glassy sheet lava flow crusts collected on Axial Seamount, Juan de Fuca Ridge, NE Pacific Ocean, at a water depth of about 1400 m. The pyroclastic glasses, subdivided into thin limu o Pele fragments and angular, blocky clasts, were retrieved from various stratigraphic horizons of volcaniclastic deposits on the upper flanks of the volcanic edifice. Each analysed pyroclastic sample consists of a single type of fragment from one individual horizon. The heat capacity (cp) was measured via differential scanning calorimetry (DSC) and analysed using relaxation geospeedometry to obtain the natural cooling rate across the glass transition. The limu o Pele samples (1 mm grain size fraction) and angular fragments (0.5 mm grain size fraction) exhibit cooling rates of 104.3 to 106.0 K s- 1 and 103.9 to 105.1 K s- 1, respectively. A coarser grain size fraction, 2 mm for limu o Pele and 1 mm for the angular clasts yields cooling rates at the order of 103.7 K s- 1. The range of cooling rates determined for the different pyroclastic deposits presumably relates to the size or intensity of the individual eruptions. The outer glassy crusts of the sheet lava flows were naturally quenched at rates between 63 K s- 1 and 103 K s- 1. By comparing our results with published data on the very slow quenching of lava flow crusts, we suggest that (1) fragmentation and cooling appear to be coupled dynamically and (2) ductile deformation upon the onset of cooling is restricted due to the rapid increase in viscosity. Lastly, we suggest that thermally buoyant plumes that may arise from rapid heat transfer efficiently separate clasts based on their capability to rise within the plume and as they subsequently settle from it.

  2. Stress analysis and scaling studies of corium crusts

    International Nuclear Information System (INIS)

    Feng, Z.; Engelstad, R.L.; Lovell, E.G.; Corradini, M.L.

    1992-01-01

    In the event of a severe accident in a LWR, water may be input to cool the molten mixture of fuel and concrete. A number of structural models are developed and used to predict whether a crust will be formed and remain stable between the melt and water. Bending stresses and membrane stresses due to pressure loadings and the temperature differential are considered in the analyses to investigate the stability of the crust as a function of the time, thickness and span. The results from parametric studies show the conditions under which a crust could develop, and how such structural models could be used to determine scaling effects and provide correlations to prototypic accident situations. (orig.)

  3. Strange Stars: Can Their Crust Reach the Neutron Drip Density?

    Institute of Scientific and Technical Information of China (English)

    Hai Fu; Yong-Feng Huang

    2003-01-01

    The electrostatic potential of electrons near the surface of static strange stars at zero temperature is studied within the frame of the MIT bag model. We find that for QCD parameters within rather wide ranges, if the nuclear crust on the strange star is at a density leading to neutron drip, then the electrostatic potential will be insufficient to establish an outwardly directed electric field, which is crucial for the survival of such a crust. If a minimum gap width of 200 fm is brought in as a more stringent constraint, then our calculations will completely rule out the possibility of such crusts. Therefore, our results argue against the existence of neutron-drip crusts in nature.

  4. Hafnium isotope stratigraphy of ferromanganese crusts

    Science.gov (United States)

    Lee; Halliday; Hein; Burton; Christensen; Gunther

    1999-08-13

    A Cenozoic record of hafnium isotopic compositions of central Pacific deep water has been obtained from two ferromanganese crusts. The crusts are separated by more than 3000 kilometers but display similar secular variations. Significant fluctuations in hafnium isotopic composition occurred in the Eocene and Oligocene, possibly related to direct advection from the Indian and Atlantic oceans. Hafnium isotopic compositions have remained approximately uniform for the past 20 million years, probably reflecting increased isolation of the central Pacific. The mechanisms responsible for the increase in (87)Sr/(86)Sr in seawater through the Cenozoic apparently had no effect on central Pacific deep-water hafnium.

  5. Geomagnetic Paleointensity Variations as a Cheap, High-Resolution Geochronometer for Recent Mid-Ocean Ridge Processes

    Science.gov (United States)

    DYMENT, J.; HEMOND, C.

    2001-12-01

    The sequence of geomagnetic field reversals is widely used to date events younger than 160 Ma, with a resolution of a million years. In oceanic domains, Vine and Matthews (1963) magnetic anomalies have been successfully used for more than 35 years. The major limitation of this chronometer is its low temporal resolution, especially for the recent times: the youngest polarity reversal, between Brunhes normal and Matuyama reversed periods, is dated ~800 ka. Studies of pelagic sedimentary cores have shown the existence of consistent variations of the geomagnetic field intensity within this period. If accurately dated, these variations may refine the magnetic geochronometer to a much higher resolution of 10-100 ka. Recent studies have demonstrated that the "tiny wiggles" of lower amplitude and shorter wavelength superimposed to the Vine and Matthews anomalies are of geomagnetic origin and correspond to the paleointensity variations identified on sediment cores. Using a large set of magnetic data acquired in 1996 on the Mid-Atlantic Ridge at 21° N (surface and submersible magnetic anomalies, natural remanent magnetization and absolute paleointensities measured on samples), we have shown that the oceanic crust confidently records the geomagnetic intensity variations. It was unfortunately impossible to date the samples, made of basalt too depleted in K2O and in trace elements required by the various methods of radiochronology. In 2000 we have collected a similar data set at the Central Indian Ridge axis at 19° S (surface, deep-tow, and submersible magnetic anomalies, natural remanent magnetization and absolute paleointensities measured on samples). This area offers the advantages of 1) a faster spreading rate, and therefore a higher temporal resolution of the geomagnetic signal, and 2) the presence of moderately enriched basalt as a consequence of the interaction of the ridge with the nearby Reunion hotspot, making possible radiochronologic dating. Our first evaluation

  6. Remedial Investigation Report on Chestnut Ridge Operable Unit 2 (Filled Coal Ash Pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1. Main Text

    International Nuclear Information System (INIS)

    1994-08-01

    This document is a report on the remedial investigation (RI) of Chestnut Ridge Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant. Chestnut Ridge OU 2 consists of Upper McCoy Branch (UMB), the Filled Coal Ash Pond (FCAP), and the area surrounding the Sluice Channel formerly associated with coal ash disposal in the FCAP. Chestnut Ridge OU 2 is located within the U.S. Department of Energy's (DOE's) Oak Ridge Reservation in Anderson County, Tennessee, approximately 24 miles west of Knoxville. The pond is an 8.5-acre area on the southern slope of Chestnut Ridge, 0.5 mile south of the main Y-12 Plant and geographically separated from the Y-12 Plant by Chestnut Ridge. The elevation of the FCAP is ∼ 950 ft above mean sea level (msl), and it is relatively flat and largely vegetated. Two small ponds are usually present at the northeast and northwest comers of the FCAP. The Sluice Channel Area extends ∼1000 ft from the northern margin of the FCAP to the crest of Chestnut Ridge, which has an elevation of ∼1100 ft above msl. The Sluice Channel Area is largely vegetated also. McCoy Branch runs from the top of Chestnut Ridge across the FCAP into Rogers Quarry and out of the quarry where it runs a short distance into Milton Hill Lake at McCoy Embayment, termed UMB. The portion south of Rogers Quarry, within Chestnut Ridge OU 4, is termed Lower McCoy Branch. The DOE Oak Ridge Y-12 Plant disposed of coal ash from its steam plant operations as a slurry that was discharged into an ash retention impoundment; this impoundment is the FCAP. The FCAP was built in 1955 to serve as a settling basin after coal ash slurried over Chestnut Ridge from the Y-12 Plant. The FCAP was constructed by building an earthen dam across the northern tributary of McCoy Branch. The dam was designed to hold 20 years of Y-12 steam plant ash. By July 1967, ash had filled up the impoundment storage behind the dam to within 4 ft of the top

  7. Remedial Investigation Report on Chestnut Ridge Operable Unit 2 (Filled Coal Ash Pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1. Main Text

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This document is a report on the remedial investigation (RI) of Chestnut Ridge Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant. Chestnut Ridge OU 2 consists of Upper McCoy Branch (UMB), the Filled Coal Ash Pond (FCAP), and the area surrounding the Sluice Channel formerly associated with coal ash disposal in the FCAP. Chestnut Ridge OU 2 is located within the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation in Anderson County, Tennessee, approximately 24 miles west of Knoxville. The pond is an 8.5-acre area on the southern slope of Chestnut Ridge, 0.5 mile south of the main Y-12 Plant and geographically separated from the Y-12 Plant by Chestnut Ridge. The elevation of the FCAP is {approximately} 950 ft above mean sea level (msl), and it is relatively flat and largely vegetated. Two small ponds are usually present at the northeast and northwest comers of the FCAP. The Sluice Channel Area extends {approximately}1000 ft from the northern margin of the FCAP to the crest of Chestnut Ridge, which has an elevation of {approximately}1100 ft above msl. The Sluice Channel Area is largely vegetated also. McCoy Branch runs from the top of Chestnut Ridge across the FCAP into Rogers Quarry and out of the quarry where it runs a short distance into Milton Hill Lake at McCoy Embayment, termed UMB. The portion south of Rogers Quarry, within Chestnut Ridge OU 4, is termed Lower McCoy Branch. The DOE Oak Ridge Y-12 Plant disposed of coal ash from its steam plant operations as a slurry that was discharged into an ash retention impoundment; this impoundment is the FCAP. The FCAP was built in 1955 to serve as a settling basin after coal ash slurried over Chestnut Ridge from the Y-12 Plant. The FCAP was constructed by building an earthen dam across the northern tributary of McCoy Branch. The dam was designed to hold 20 years of Y-12 steam plant ash. By July 1967, ash had filled up the impoundment storage behind the dam to within 4 ft of the top.

  8. Preliminary Analysis of the Knipovich Ridge Segmentation - Influence of Focused Magmatism and Ridge Obliquity on an Ultraslow Spreading System

    Science.gov (United States)

    Okino, K.; Curewitz, D.; Asada, M.; Tamaki, K.

    2002-12-01

    Bathymetry, gravity and deep-tow sonar image data are used to define the segmentation of a 400 km long portion of the ultraslow-spreading Knipovich Ridge in the Norwegian-Greenland Sea, Northeast Atlantic Ocean. Discrete volcanic centers marked by large volcanic constructions and accompanying short wavelength mantle Bouguer anomaly (MBA) lows generally resemble those of the Gakkel Ridge and the easternmost Southwest Indian Ridge (SWIR). These magmatically robust segment centers are regularly spaced about 85-100 km apart along the ridge, and are characterized by accumulated hummocky terrain, high relief, off-axis seamount chains and significant MBA lows. We suggest that these eruptive centers correspond to areas of enhanced magma flux, and that their spacing reflects the geometry of underlying mantle upwelling cells. The large-scale thermal structure of the mantle primarily controls discrete and focused magmatism, and the relatively wide spacing of these segments may reflect cool mantle beneath the ridge. Segment centers along the southern Knipovich Ridge are characterized by lower relief and smaller MBA anomalies than along the northern section of the ridge. This suggests that ridge obliquity is a secondary control on ridge construction on the Knipovich Ridge, as the obliquity changes from 35° to 49° from north to south, respectively, while spreading rate and axial depth remain approximately constant. The increased obliquity may contribute to decreased effective spreading rates, lower upwelling magma velocity and melt formation, and limited horizontal dike propagation near the surface. We also identify small, magmatically weaker segments with low relief, little or no MBA anomaly, and no off axis expression. We suggest that these segments are either fed by lateral melt migration from adjacent magmatically stronger segments or represent smaller, discrete mantle upwelling centers with short-lived melt supply.

  9. Preliminary analysis of the Knipovich Ridge segmentation: influence of focused magmatism and ridge obliquity on an ultraslow spreading system

    Science.gov (United States)

    Okino, Kyoko; Curewitz, Daniel; Asada, Miho; Tamaki, Kensaku; Vogt, Peter; Crane, Kathleen

    2002-09-01

    Bathymetry, gravity and deep-tow sonar image data are used to define the segmentation of a 400 km long portion of the ultraslow-spreading Knipovich Ridge in the Norwegian-Greenland Sea, Northeast Atlantic Ocean. Discrete volcanic centers marked by large volcanic constructions and accompanying short wavelength mantle Bouguer anomaly (MBA) lows generally resemble those of the Gakkel Ridge and the easternmost Southwest Indian Ridge. These magmatically robust segment centers are regularly spaced about 85-100 km apart along the ridge, and are characterized by accumulated hummocky terrain, high relief, off-axis seamount chains and significant MBA lows. We suggest that these eruptive centers correspond to areas of enhanced magma flux, and that their spacing reflects the geometry of underlying mantle upwelling cells. The large-scale thermal structure of the mantle primarily controls discrete and focused magmatism, and the relatively wide spacing of these segments may reflect cool mantle beneath the ridge. Segment centers along the southern Knipovich Ridge are characterized by lower relief and smaller MBA anomalies than along the northern section of the ridge. This suggests that ridge obliquity is a secondary control on ridge construction on the Knipovich Ridge, as the obliquity changes from 35° to 49° from north to south, respectively, while spreading rate and axial depth remain approximately constant. The increased obliquity may contribute to decreased effective spreading rates, lower upwelling magma velocity and melt formation, and limited horizontal dike propagation near the surface. We also identify small, magmatically weaker segments with low relief, little or no MBA anomaly, and no off-axis expression. We suggest that these segments are either fed by lateral melt migration from adjacent magmatically stronger segments or represent smaller, discrete mantle upwelling centers with short-lived melt supply.

  10. Linking biological soil crust diversity to ecological functions

    Science.gov (United States)

    Glaser, Karin; Borchhardt, Nadine; Schulz, Karoline; Mikhailyuk, Tatiana; Baumann, Karen; Leinweber, Peter; Ulf, Karsten

    2016-04-01

    Biological soil crusts (BSCs) are an association of different microorganisms and soil particles in the top millimeters of the soil. They are formed by algae, cyanobacteria, microfungi, bacteria, bryophytes and lichens in various compositions. Our aim was to determine and compare the biodiversity of all occurring organisms in biogeographically different habitats, ranging from polar (both Arctic and Antarctic), subpolar (Scandinavia), temperate (Germany) to dry regions (Chile). The combination of microscopy and molecular techniques (next-generation sequencing) revealed highly diverse crust communities, whose composition clustered by region and correlates with habitat characteristics such as water content. The BSC biodiversity was then linked to the ecological function of the crusts. The functional role of the BSCs in the biogeochemical cycles of carbon, nitrogen and phosphorous is evaluated using an array of state of the art soil chemistry methods including Py-FIMS (pyrolysis field ionization mass spectrometry) and XANES (x-ray absorbance near edge structure). Total P as well as P fractions were quantified in all BSCs, adjacent soil underneath and comparable nearby soil of BSC-free areas revealing a remarkable accumulation of total phosphorous and a distinct pattern of P fractions in the crust. Further, we observed an indication of a different P-speciation composition in the crust compared with BSC-free soil. The data allow answering the question whether BSCs act as sink or source for these compounds, and how biodiversity controls the biogeochemical function of BSCs.

  11. Microenvironments and microscale productivity of cyanobacterial desert crusts

    Science.gov (United States)

    Garcia-Pichel, F.; Belnap, Jayne

    1996-01-01

    We used microsensors to characterize physicochemical microenvironments and photosynthesis occurring immediately after water saturation in two desert soil crusts from southeastern Utah, which were formed by the cyanobacteria Microcoleus vaginatus Gomont, Nostoc spp., and Scytonema sp. The light fields within the crusts presented steep vertical gradients in magnitude and spectral composition. Near-surface light-trapping zones were formed due to the scattering nature of the sand particles, but strong light attenuation resulted in euphotic zones only ca. 1 mm deep, which were progressively enriched in longer wavelengths with depth. Rates of gross photosynthesis (3.4a??9.4 mmol O2A?ma??2A?ha??1) and dark respiration (0.81a??3.1 mmol Oa??2A?ma??2A?ha??1) occurring within 1 to several mm from the surface were high enough to drive the formation of marked oxygen microenvironments that ranged from oxygen supersaturation to anoxia. The photosynthetic activity also resulted in localized pH values in excess of 10, 2a??3 units above the soil pH. Differences in metabolic parameters and community structure between two types of crusts were consistent with a successional pattern, which could be partially explained on the basis of the microenvironments. We discuss the significance of high metabolic rates and the formation of microenvironments for the ecology of desert crusts, as well as the advantages and limitations of microsensor-based methods for crust investigation.

  12. Comprehensive integrated planning: A process for the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-05-01

    The Oak Ridge Comprehensive Integrated Plan is intended to assist the US Department of Energy (DOE) and contractor personnel in implementing a comprehensive integrated planning process consistent with DOE Order 430.1, Life Cycle Asset Management and Oak Ridge Operations Order 430. DOE contractors are charged with developing and producing the Comprehensive Integrated Plan, which serves as a summary document, providing information from other planning efforts regarding vision statements, missions, contextual conditions, resources and facilities, decision processes, and stakeholder involvement. The Comprehensive Integrated Plan is a planning reference that identifies primary issues regarding major changes in land and facility use and serves all programs and functions on-site as well as the Oak Ridge Operations Office and DOE Headquarters. The Oak Ridge Reservation is a valuable national resource and is managed on the basis of the principles of ecosystem management and sustainable development and how mission, economic, ecological, social, and cultural factors are used to guide land- and facility-use decisions. The long-term goals of the comprehensive integrated planning process, in priority order, are to support DOE critical missions and to stimulate the economy while maintaining a quality environment

  13. Comprehensive integrated planning: A process for the Oak Ridge Reservation, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The Oak Ridge Comprehensive Integrated Plan is intended to assist the US Department of Energy (DOE) and contractor personnel in implementing a comprehensive integrated planning process consistent with DOE Order 430.1, Life Cycle Asset Management and Oak Ridge Operations Order 430. DOE contractors are charged with developing and producing the Comprehensive Integrated Plan, which serves as a summary document, providing information from other planning efforts regarding vision statements, missions, contextual conditions, resources and facilities, decision processes, and stakeholder involvement. The Comprehensive Integrated Plan is a planning reference that identifies primary issues regarding major changes in land and facility use and serves all programs and functions on-site as well as the Oak Ridge Operations Office and DOE Headquarters. The Oak Ridge Reservation is a valuable national resource and is managed on the basis of the principles of ecosystem management and sustainable development and how mission, economic, ecological, social, and cultural factors are used to guide land- and facility-use decisions. The long-term goals of the comprehensive integrated planning process, in priority order, are to support DOE critical missions and to stimulate the economy while maintaining a quality environment.

  14. Oxygen Distribution and Potential Ammonia Oxidation in Floating, Liquid Manure Crusts

    DEFF Research Database (Denmark)

    Nielsen, Daniel Aagren; Nielsen, Lars Peter; Schramm, Andreas

    2010-01-01

     availability. In old natural crusts total potential NH3 oxidation rates were similar to reported fluxes of NH3 from slurry without surface crust. These results indicate that old, natural surface crusts may develop into a porous matrix with high O2 availability that harbors an active population of aerobic...

  15. Reformulation of pizza crust in restaurants may increase whole-grain intake among children.

    Science.gov (United States)

    Tritt, Aimee; Reicks, Marla; Marquart, Len

    2015-06-01

    Whole-grain intake among children is well below recommendations. The purpose of the present study was to test the acceptability and liking of pizza made with whole-grain crust compared with refined-grain crust among children in restaurant and school settings. Plate waste data were collected via observation from child restaurant patrons consuming pizza made with either whole-grain or refined-grain crust. Waste was estimated by trained observers over eight months (August 2012-March 2013). Percentage waste was calculated and compared by crust type. A taste test was conducted with school children who tasted pizza made with whole-grain crust alongside pizza made with refined-grain crust and rated their liking of each product. Liking ratings were compared by crust type. Five Green Mill restaurant (a Midwest US chain) locations and one elementary school in the Minneapolis/St. Paul metropolitan area, Minnesota, USA. Child restaurant patrons (n 394) and school children (n 120, grades 3-5). Children consumed as much of the pizza made with whole-grain crust (42·1 %) as the pizza made with refined-grain crust (44·6 %; P=0·55), based on an average serving size of 350-400 g. Liking ratings for both types of pizza were high (>4·5 of 5) and did not differ by crust type (P=0·47). These positive consumption and liking outcomes indicate that whole-grain pizza crust is well accepted among children in a restaurant setting. The impact on whole-grain intake could be substantial if large, national restaurant chains served pizza made with whole-grain crust.

  16. Mobility of partially molten crust, heat and mass transfer, and the stabilization of continents

    Science.gov (United States)

    Teyssier, Christian; Whitney, Donna L.; Rey, Patrice F.

    2017-04-01

    The core of orogens typically consists of migmatite terrains and associated crustal-derived granite bodies (typically leucogranite) that represent former partially molten crust. Metamorphic investigations indicate that migmatites crystallize at low pressure (cordierite stability) but also contain inclusions of refractory material (mafic, aluminous) that preserve evidence of crystallization at high pressure (HP), including HP granulite and eclogite (1.0-1.5 GPa), and in some cases ultrahigh pressure (2.5-3.0 GPa) when the continental crust was subducted (i.e. Norwegian Caledonides). These observations indicate that the partially molten crust originates in the deep crust or at mantle depths, traverses the entire orogenic crust, and crystallizes at shallow depth, in some cases at the near-surface ( 2 km depth) based on low-T thermochronology. Metamorphic assemblages generally show that this nearly isothermal decompression is rapid based on disequilibrium textures (symplectites). Therefore, the mobility of partially molten crust results in one of the most significant heat and mass transfer mechanisms in orogens. Field relations also indicate that emplacement of partially molten crust is the youngest major event in orogeny, and tectonic activity essentially ceases after the partially molten crust is exhumed. This suggests that flow and emplacement of partially molten crust stabilize the orogenic crust and signal the end of orogeny. Numerical modeling (open source software Underworld; Moresi et al., 2007, PEPI 163) provides useful insight into the mechanisms of exhumation of partially molten crust. For example, extension of thickened crust with T-dependent viscosity shows that extension of the shallow crust initially drives the mobility of the lowest viscosity crust (T>700°C), which begins to flow in a channel toward the zone of extension. This convergent flow generates channel collision and the formation of a double-dome of foliation (two subdomes separated by a steep

  17. Uranium abundance of the oceanic crust

    International Nuclear Information System (INIS)

    Fisher, D.E.

    1979-01-01

    Uranium contents of 67 oceanic basalts have been measured by fission track analysis. Average value for ridge and intraplate basalts is approximately 78 ppb, for the Easter Hot Line it is approximately 1600 ppb. Estimates of mantle concentrations derived from the ridge and intraplate samples are insufficient to account for the observed surface heat flow. The whole-Earth concentration of U is > 8 ppb, and < 33 ppb if all heat generated within the Earth reaches the surface. (author)

  18. Oak Ridge Leadership Computing Facility (OLCF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Oak Ridge Leadership Computing Facility (OLCF) was established at Oak Ridge National Laboratory in 2004 with the mission of standing up a supercomputer 100 times...

  19. Methanotrophs, methanogens and microbial community structure in livestock slurry surface crusts

    DEFF Research Database (Denmark)

    Duan, Y.F.; Abu Al-Soud, Waleed; Brejnrod, Asker Daniel

    2014-01-01

    , and Methylosarcina of Type I, and Methylocystis of Type II, dominated the methane-oxidizing bacteria (MOB) community, whereas Methanocorpusculum was the predominant methanogen. Higher numbers of operational taxonomic units (OTUs) representing Type I than Type II MOB were found in all crusts. Potential CH4 oxidation...... rates were determined by incubating crusts with CH4, and CH4 oxidization was observed in cattle, but not in swine slurry crusts. Conclusions: Slurry surface crusts harbour a diverse microbial community. Type I MOB are more diverse and abundant than Type II MOB in this environment. The distinct CH4...

  20. US Department of Energy Oak Ridge Operations Environmental Management Public Involvement Plan for the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    1996-03-01

    This document was prepared in accordance with CERCLA requirements for writing community relations plans. It includes information on how the DOE Oak Ridge Operations Office prepares and executes Environmental Management Community relations activities. It is divided into three sections: the public involvement plan, public involvement in Oak Ridge, and public involvement in 1995. Four appendices are also included: environmental management in Oak Ridge; community and regional overview; key laws, agreements, and policy; and principal contacts

  1. InRidge program: Preliminary results from the first cruise

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Murthy, K.S.R.; Iyer, S.D.; Rao, M.M.M.; Banerjee, R.; Subrahmanyam, A.S.; Shirodkar, P.V.; Ghose, I.

    The first cruise under India's own Ridge research initiative, InRidge collected new data on bathymetry, free-air gravity and magnetic anomalies across the ridge axis between the Vema and Zhivago transform faults in the Central Indian Ridge...

  2. Physical properties and seismic structure of Izu-Bonin-Mariana fore-arc crust: Results from IODP Expedition 352 and comparison with oceanic crust

    Science.gov (United States)

    Christeson, G. L.; Morgan, S.; Kodaira, S.; Yamashita, M.; Almeev, R. R.; Michibayashi, K.; Sakuyama, T.; Ferré, E. C.; Kurz, W.

    2016-12-01

    Most of the well-preserved ophiolite complexes are believed to form in suprasubduction zone (SSZ) settings. We compare physical properties and seismic structure of SSZ crust at the Izu-Bonin-Mariana (IBM) fore arc with oceanic crust drilled at Holes 504B and 1256D to evaluate the similarities of SSZ and oceanic crust. Expedition 352 basement consists of fore-arc basalt (FAB) and boninite lavas and dikes. P-wave sonic log velocities are substantially lower for the IBM fore arc (mean values 3.1-3.4 km/s) compared to Holes 504B and 1256D (mean values 5.0-5.2 km/s) at depths of 0-300 m below the sediment-basement interface. For similar porosities, lower P-wave sonic log velocities are observed at the IBM fore arc than at Holes 504B and 1256D. We use a theoretical asperity compression model to calculate the fractional area of asperity contact Af across cracks. Af values are 0.021-0.025 at the IBM fore arc and 0.074-0.080 at Holes 504B and 1256D for similar depth intervals (0-300 m within basement). The Af values indicate more open (but not necessarily wider) cracks in the IBM fore arc than for the oceanic crust at Holes 504B and 1256D, which is consistent with observations of fracturing and alteration at the Expedition 352 sites. Seismic refraction data constrain a crustal thickness of 10-15 km along the IBM fore arc. Implications and inferences are that crust-composing ophiolites formed at SSZ settings could be thick and modified after accretion, and these processes should be considered when using ophiolites as an analog for oceanic crust.

  3. Quality assurance project plan for the Chestnut Ridge Fly Ash Pond Stabilization Project at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-07-01

    The Chestnut Ridge Fly Ash Pond Stabilization (CRFAPS) Project will stabilize a 19-m-high (62-ft-high) earthen embankment across Upper McCoy Branch situated along the southern slope of Chestnut Ridge. This task will be accomplished by raising the crest of the embankment, reinforcing the face of the embankment, removing trees from the face and top of the embankment, and repairing the emergency spillway. The primary responsibilities of the team members are: Lockheed Martin Energy Systems, Inc., (Energy Systems) will be responsible for project integration, technical support, Title 3 field support, environmental oversight, and quality assurance (QA) oversight of the project; Foster Wheeler Environmental Corporation (FWENC) will be responsible for design and home office Title 3 support; MK-Ferguson of Oak Ridge Company (MK-F) will be responsible for health and safety, construction, and procurement of construction materials. Each of the team members has a QA program approved by the US Department of Energy (DOE) Oak Ridge Operations. This project-specific QA project plan (QAPP), which is applicable to all project activities, identifies and integrates the specific QA requirements from the participant's QA programs that are necessary for this project

  4. The evolution of Mercury's crust: a global perspective from MESSENGER.

    Science.gov (United States)

    Denevi, Brett W; Robinson, Mark S; Solomon, Sean C; Murchie, Scott L; Blewett, David T; Domingue, Deborah L; McCoy, Timothy J; Ernst, Carolyn M; Head, James W; Watters, Thomas R; Chabot, Nancy L

    2009-05-01

    Mapping the distribution and extent of major terrain types on a planet's surface helps to constrain the origin and evolution of its crust. Together, MESSENGER and Mariner 10 observations of Mercury now provide a near-global look at the planet, revealing lateral and vertical heterogeneities in the color and thus composition of Mercury's crust. Smooth plains cover approximately 40% of the surface, and evidence for the volcanic origin of large expanses of plains suggests that a substantial portion of the crust originated volcanically. A low-reflectance, relatively blue component affects at least 15% of the surface and is concentrated in crater and basin ejecta. Its spectral characteristics and likely origin at depth are consistent with its apparent excavation from a lower crust or upper mantle enriched in iron- and titanium-bearing oxides.

  5. Greenhouse gas microbiology in wet and dry straw crust covering pig slurry

    DEFF Research Database (Denmark)

    Hansen, Rikke Ruth; Nielsen, Daniel Aagren; Schramm, Andreas

    2009-01-01

    was observed in all crusted treatments exposed to anoxia, and this was probably a result of denitrification based on NO2- and NO3- that had accumulated in the crust during oxic conditions. To reduce overall greenhouse gas emissions, floating crust should be managed to optimize conditions for methanotrophs....... microbiology had an effect on the emission of the potent greenhouse gases CH4 and nitrous oxide (N2O) when crust moisture was manipulated ("Dry", "Moderate", and "Wet"). The dry crust had the deepest oxygen penetration (45 mm as compared to 20 mm in the Wet treatment) as measured with microsensors, the highest...... oxidizing bacteria were undetectable and methane oxidizing bacteria were only sparsely present in the "Wet" treatment. A change to anoxia did not affect the CH4 emission indicating the virtual absence of aerobic methane oxidation in the investigated 2-months old crusts. However, an increase in N2O emission...

  6. [Development and succession of artificial biological soil crusts and water holding characteristics of topsoil].

    Science.gov (United States)

    Wu, Li; Chen, Xiao-Guo; Zhang, Gao-Ke; Lan, Shu-Bin; Zhang, De-Lu; Hu, Chun-Xiang

    2014-03-01

    In order to understand the improving effects of cyanobacterial inoculation on water retention of topsoil in desert regions, this work focused on the development and succession of biological soil crusts and water holding characteristics of topsoil after cyanobacterial inoculation in Qubqi Desert. The results showed that after the artificial inoculation of desert cyanobacteria, algal crusts were quickly formed, and in some microenvironments direct succession of the algal crusts to moss crusts occurred after 2-3 years. With the development and succession of biological soil crusts, the topsoil biomass, polysaccharides content, crust thickness and porosity increased, while the soil bulk density decreased. At the same time, with crust development and succession, the topsoil texture became finer and the percents of fine soil particles including silt and clay contents increased, while the percents of coarse soil particles (sand content) decreased proportionately. In addition, it was found that with crust development and succession, the water holding capacity and water content of topsoil showed an increasing trend, namely: moss crust > algal crusts > shifting sand. The water content (or water holding capacity) in algal and moss crusts were 1.1-1.3 and 1.8-2.2 times of those in shifting sand, respectively. Correlation analysis showed that the water holding capacity and water content of topsoil were positively correlated with the crust biomass, polysaccharides content, thickness, bulk density, silt and clay content; while negatively correlated with the porosity and sand content. Furthermore, stepwise regression analysis showed that the main factor affecting water content was the clay content, while that affecting water holding capacity was the porosity.

  7. Safety Analysis Report for Packaging (SARP) of the Oak Ridge National Laboratory Foamglas Shipping Container

    International Nuclear Information System (INIS)

    Klima, B.B.; Shappert, L.B.; Seagren, R.D.; Box, W.D.

    1978-05-01

    An analytical evaluation of the Oak Ridge National Laboratory (ORNL) Foamglas Shipping Container was made to demonstrate its compliance with the regulations governing offsite radioactive material shipping packages. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of the evaluation show that the container complies with the applicable regulations

  8. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges

    Science.gov (United States)

    Langmuir, Charles H.; Klein, Emily M.; Plank, Terry

    Mid-ocean ridge basalts (MORB) are a consequence of pressure-release melting beneath ocean ridges, and contain much information concerning melt formation, melt migration and heterogeneity within the upper mantle. MORB major element chemical systematics can be divided into global and local aspects, once they have been corrected for low pressure fractionation and interlaboratory biases. Regional average compositions for ridges unaffected by hot spots ("normal" ridges) can be used to define the global correlations among normalized Na2O, FeO, TiO2 and SiO2 contents, CaO/Al2O3 ratios, axial depth and crustal thickness. Back-arc basins show similar correlations, but are offset to lower FeO and TiO2 contents. Some hot spots, such as the Azores and Galapagos, disrupt the systematics of nearby ridges and have the opposite relationships between FeO, Na2O and depth over distances of 1000 km. Local variations in basalt chemistry from slow- and fast-spreading ridges are distinct from one another. On slow-spreading ridges, correlations among the elements cross the global vector of variability at a high angle. On the fast-spreading East Pacific Rise (EPR), correlations among the elements are distinct from both global and slow-spreading compositional vectors, and involve two components of variation. Spreading rate does not control the global correlations, but influences the standard deviations of axial depth, crustal thickness, and MgO contents of basalts. Global correlations are not found in very incompatible trace elements, even for samples far from hot spots. Moderately compatible trace elements for normal ridges, however, correlate with the major elements. Trace element systematics are significantly different for the EPR and the mid-Atlantic Ridge (MAR). Normal portions of the MAR are very depleted in REE, with little variability; hot spots cause large long wavelength variations in REE abundances. Normal EPR basalts are significantly more enriched than MAR basalts from normal

  9. Internal time marker (Q1) of the Cretaceous super chron in the Bay of Bengal - a new age constraint for the oceanic crust evolved between India and Elan Bank

    Science.gov (United States)

    Krishna, K. S.; Ismaiel, M.; Karlapati, S.; Saha, D.; Mishra, J.

    2014-12-01

    Analysis of marine magnetic data of the Bay of Bengal (BOB) led to suggest two different tectonic models for the evolution of lithosphere between India and East Antarctica. The first model explains the presence of M-series (M11 to M0) magnetic anomalies in BOB with a small room leaving for accommodating the crust evolved during the long Cretaceous Magnetic Quiet Period. Second model explains in other way that most part of the crust in BOB was evolved during the quite period together with the possible presence of oldest magnetic chron M1/ M0 in close vicinity of ECMI. It is with this perspective we have reinvestigated the existing and recently acquired magnetic data together with regional magnetic model of BOB for identification of new tectonic constraints, thereby to better understand the evolution of lithosphere. Analysis of magnetic data revealed the presence of spreading anomalies C33 and C34 in the vicinity of 8°N, and internal time marker (Q1) corresponding to the age 92 Ma at 12°N in a corridor between 85°E and Ninetyeast ridges. The new time marker and its location, indeed, become a point of reference and benchmark in BOB for estimating the age of oceanic crust towards ECMI. The magnetic model further reveals the presence of network of fracture zones (FZs) with different orientations. Between 85°E and Ninetyeast ridges, two near N-S FZs, approximately followed 87°E and 89.5°E are found to extend into BOB up to 12°N, from there the FZs reorient in N60°W direction and reach to the continental margin region. Along ECMI two sets of FZs are identified with a northern set oriented in N60°W and southern one in N40°W direction. This suggests that both north and south segments of the ECMI were evolved in two different tectonic settings. The bend in FZs marks the timing (92 Ma) of occurrence of first major plate reorganisation of the Indian Ocean and becomes a very critical constraint for understanding the plate tectonic process in early opening of the

  10. An aerial radiological survey of the Oak Ridge Reservation and surrounding area, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Maurer, R.J.

    1989-09-01

    An aerial radiological survey of the Oak Ridge Reservation (ORR) and surrounding area in Oak Ridge, Tennessee, was conducted from September 12--29, 1989. The purpose of the survey was to measure and document the site's terrestrial radiological environment for use in effective environmental management and emergency response planning. The aerial survey was flown at an altitude of 91 meters (300 feet) along a series of parallel lines 152 meters (500 feet) apart. The survey encompassed an area of 440 square kilometers (170 square miles) as defined by the Tennessee Valley Authority Map S-16A of the entire Oak Ridge Reservation and adjacent area. The results of the aerial survey are reported as inferred exposure rates at 1 meter above ground level (AGL) in the form of a radiation contour map. Typical background exposure rates were found to vary from 5 to 14 microroentgens per hour (μR/h). The man-made radionuclides, cobalt-60, cesium-137, and protactinium-234m (a radioisotope indicative of depleted uranium), were detected at several facilities on the site. In support of the aerial survey, ground-based exposure rate and soil sample measurements were obtained at several locations within the survey boundary. In addition to the large scale aerial survey, two special flyovers were requested by the Department of Energy. The first request was to conduct a survey of a 1-mile x 2-mile area in south Knoxville, Tennessee. The area had been used previously to store contaminated scrap metals from operations at the Oak Ridge site. The second request was to fly several passes over a 5-mile length of railroad tracks leading from the Oak Ridge Y-12 Plant, north through the city of Oak Ridge. The railroad tracks had been previously used in the transport of cesium-137

  11. Uranium-series disequilibria of inflated sections of the Juan de Fuca Ridge: Implications for mantle melting

    Science.gov (United States)

    Dreyer, B. M.; Gill, J. B.; Ramos, F. C.; Clague, D. A.; Scott, S. R.

    2010-12-01

    U-Th disequilibria are reported for the two inflated portions (defined by bathymetric highs) of the Juan de Fuca Ridge (JdFR): Axial Seamount and the northern Endeavour segment. Both have broad axis-centered bathymetric plateaus, commonly attributed to the influence of the adjacent Heckle and Cobb melt anomalies, respectively. We explore structural and geochemical contrasts between them that imply fundamental differences in magma plumbing and/or transport processes. The depth to the axial magma chamber (AMC) within the JdFR crust is shallowest beneath Axial Seamount and deepest and most variable beneath Endeavour. Lavas from Endeavour include the most enriched and diverse compositions of the JdFR. Endeavour N-MORBs are most similar to Axial basalts in K2O/TiO2, La/Yb, Na8, and Fe8 although most Axial basalts have lower MgO. Major element trends suggest clinopyroxene saturation at higher MgO at Endeavour. Additional basalt types from Endeavour (i.e., those with K2O/TiO2 >0.15), the West Valley segment to the north, and Southwest Seamount to the west share similar enrichments in incompatible trace elements (Th, Nb) and radiogenic-Pb. Similar characteristics are absent from basalts from the adjacent Heck and Heckle seamount chains, which are highly-depleted N-MORBs, precluding the hypothesis that thickened and inflated crust at Endeavour is associated with increased melt supply due to transit over the seamount source. In contrast, Axial basalts are more chemically homogeneous, and share selected geochemical characteristics with the adjacent Cobb seamount chain. New uranium-series data suggest fundamental differences in melting parameters between inflated and non-inflated portions of the JdFR. Average Th/U at Endeavour (3.03 ± 6, n=10) is nearly indistinguishable from Axial (2.83 ± 9, n=17), but both are distinct from elsewhere on the JdFR (~2.1-2.5). That is, basalts erupted from regions of inflated crust have higher Th/U. Despite high overall compositional

  12. Thickness, Composition and Physical Properties of Crust in Iceland's Neovolcanic Zone

    Science.gov (United States)

    Kelley, D. F.; Barton, M.

    2005-12-01

    We report the results of an ongoing effort to use petrologic data to estimate the thickness, composition and physical properties of crust in the neovolcanic zone of Iceland. The objectives are to constrain the depths of magma chambers, calculate geothermal gradients, and resolve discrepancies in the interpretation of geophysical data (primarily gravity and seismic). 1788 whole rock analyses and 170 glass analyses of erupted Icelandic lavas from the neovolcanic zone have been compiled from published papers. Variation diagrams indicate that Icelandic magmas evolved primarily by crystallization of Ol-Cpx-Plag, whereas the most primitive magmas evolved by crystallization of Ol alone. Phase equilibrium constraints were used to quantitatively estimate the pressure of crystallization along the Ol-Cpx-Plag cotectic and hence the depths of the magma chambers. The latter occur at 20±6.2 km, and the average temperature of magma in the chambers is 1207±26°C (also estimated from phase equilibrium constraints). The results suggest magma chambers located at the base of the crust indicating that the latter is ~20 km thick along the neovolcanic zone in agreement with estimates based on geophysical studies. It is argued that the average composition of erupted lavas provides an accurate estimate of crustal composition because magma evolution occurs in sub-crustal chambers. A representative geothermal gradient was calculated using the average crust composition and surface heat flow measurements. The calculated gradient is consistent with the periodic presence of shallow intracrustal magma chambers at ~5 km depth that have been detected seismically, with hydrothermal circulation in the uppermost 3 km of the crust, and with temperatures of ~1200°C at the base of the crust. The geotherm was used to calculate a density-depth profile for average crust. Densities decrease with depth if a low-pressure mineralogy is used for the crust. This density inversion can be avoided by assuming

  13. Microbial dolomite crusts from the carbonate platform off western India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Kessarkar, P.M.; Krumbein, W.E.; Krajewski, K.P.; Schneider, R.J.

    Association of Sedimentologists, Sedimentology, 50, 819-830 Microbial dolomite crusts off western India 821 dolomite crusts [2 x 2·5 em to 3 x 0'5 em) and pebbles occur within these sediments. METHODS Thin sections of the crusts were studied petro graphically....E. (19S7) Holocene dolomitization Df supr

  14. Oak Ridge Reservation environmental report for 1991

    International Nuclear Information System (INIS)

    Mucke, P.C.

    1992-10-01

    The Oak Ridge Reservation Environmental Report for 1991 is the 21st in a series that began in 1971. The report documents the annual results of a comprehensive program to estimate the impact of the US Department of Energy (DOE) Oak Ridge operations upon human health and the environment. The report is organized into ten sections that address various aspects of effluent monitoring, environmental surveillance, dose assessment, waste management, and quality assurance. A compliance summary gives a synopsis of the status of each facility relative to applicable state and federal regulations. Data are included for the following: Oak Ridge Y-12 Plant; Oak Ridge National Laboratory (ORNL); and Oak Ridge K-25 Site. Effluent monitoring and environmental surveillance programs are intended to serve as effective indicators of contaminant releases and ambient contaminant concentrations that have the potential to result in adverse impacts to human health and the environment

  15. Structure and Dynamics of the Southeast Indian Ridge and Off-axis Volcanism, 129°E to 140°E: Preliminary Results of the STORM Cruise

    Science.gov (United States)

    Maia, M.; Briais, A.; Barrere, F.; Boulart, C.; Ceuleneer, G.; Ferreira, N.; Hanan, B. B.; Hemond, C.; MacLeod, S.; Maillard, A. L.; Merkuryev, S. A.; Park, S. H.; Revillon, S.; Ruellan, E.; Schohn, A.; Watson, S. J.; Yang, Y. S.

    2015-12-01

    We present observations of the South-East Indian Ridge (SEIR) collected during the STORM cruise (South Tasmania Ocean Ridge and Mantle) on the N/O L'Atalante early 2015. The SEIR between Australia and Antarctica displays large variations of axial morphology despite an almost constant intermediate spreading rate. The Australia-Antarctic Discordance (AAD) between 120°E and 128°E is a section of the mid-ocean ridge where the magma budget is abnormally low, and which marks the boundary between Indian and Pacific mantle domains with distinct geochemical isotopic compositions. The STORM project focuses on the area east of the discordance from 128 to 140°E, where gravity highs observed on satellite-derived maps of the flanks of the SEIR reveal numerous volcanic seamounts. A major objective of the STORM cruise was to test the hypothesis of a mantle flow from the Pacific to the Indian domains. We collected multibeam bathymetry and magnetic data between 136 and 138°E to map off-axis volcanic ridges up to 10 Ma-old crust. We mapped the SEIR axis between 129 and 140°E, and the northern part of the George V transform fault. We collected rock samples on seamounts and in the transform fault, basaltic glass samples along the ridge axis, and near-bottom samples and in-situ measurements in the water column. Our observations reveal that the off-axis seamounts form near the SEIR axis, and are not associated to off-axis deformation of the ocean floor. They show a general shallowing of the ridge axis from the AAD to the George V TF and the presence of robust axial segments near the transform fault. They allow us to describe the complex evolution of the transform fault system. They also permit to locate new hydrothermal systems along the ridge axis. STORM cruise scientific party: F. Barrere, C. Boulart, G. Ceuleneer, N. Ferreira, B. Hanan, C. Hémond, S. Macleod, M. Maia, A. Maillard, S. Merkuryev, S.H. Park, S. Révillon, E. Ruellan, A. Schohn, S. Watson, and Y.S. Yang.

  16. The role of non-rainfall water on physiological activation in desert biological soil crusts

    Science.gov (United States)

    Zheng, Jiaoli; Peng, Chengrong; Li, Hua; Li, Shuangshuang; Huang, Shun; Hu, Yao; Zhang, Jinli; Li, Dunhai

    2018-01-01

    Non-rainfall water (NRW, e.g. fog and dew), in addition to rainfall and snowfall, are considered important water inputs to drylands. At the same time, biological soil crusts (BSCs) are important components of drylands. However, little information is available regarding the effect of NRW inputs on BSC activation. In this study, the effects of NRW on physiological activation in three BSC successional stages, including the cyanobacteria crust stage (Crust-C), moss colonization stage (Crust-CM), and moss crust stage (Crust-M), were studied in situ. Results suggest NRW inputs hydrated and activated physiological activity (Fv/Fm, carbon exchange, and nitrogen fixation) in BSCs but led to a negative carbon balance and low rates of nitrogen fixation in BSCs. One effective NRW event could hydrate BSCs for 7 h. Following simulated rainfall, the physiological activities recovered within 3 h, and net carbon gain occurred until 3 h after hydration, whereas NRW-induced physiological recovery processes were slower and exhibited lower activities, leading to a negative carbon balance. There were significant positive correlations between NRW amounts and the recovered values of Fv/Fm in all the three BSC stages (p < .001). The thresholds for Fv/Fm activation decreased with BSC succession, and the annual effective NRW events increased with BSC succession, with values of 29.8, 89.2, and 110.7 in Crust-C, Crust-CM and Crust-M, respectively. The results suggest that moss crust and moss-cyanobacteria crust use NRW to prolong metabolic activity and reduce drought stress more efficiently than cyanobacteria crusts. Therefore, these results suggest that BSCs utilize NRW to sustain life while growth and biomass accumulation require precipitation (rainfall) events over a certain threshold.

  17. Design/Installation and Structural Integrity Assessment of the Bethel Valley Low-Level Waste Collection and Transfer System Upgrade for Building 3544 (Process Waste Treatment Plant) at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-12-01

    This document describes and assesses planned modifications to be made to the Building 3544 Process Waste Treatment Plant of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in response to the requirements of the Federal Facility Agreement (FFA) relating to environmental protection requirements for tank systems. The modifications include the provision of a new double contained LLW line replacing an existing buried line that does not provide double containment. This new above ground, double contained pipeline is provided to permit discharge of treated process waste fluid to an outside truck loading station. The new double contained discharge line is provided with leak detection and provisions to remove accumulated liquid. An existing LLW transfer pump, concentrated waste tank, piping and accessories are being utilized, with the addition of a secondary containment system comprised of a dike, a chemically resistant internal coating on the diked area surfaces and operator surveillance on a daily basis for the diked area leak detection. This assessment concludes that the planned modifications comply with applicable requirements of Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation

  18. Microbial Response to UV Exposure and Nitrogen Limitation in Desert Soil Crusts

    Science.gov (United States)

    Fulton, J. M.; Van Mooy, B. A.

    2016-12-01

    Microbiotic soil crusts have diverse biomarker distributions and C and N stable isotopic compositions that covary with soil type. Sparse plant cover and the relative lack of soil disturbance in arid/semi-arid landscapes allows populations of soil cyanobacteria to develop along with fungi and heterotrophic bacteria. Microbial communities in this extreme environment depend in part on the production of scytonemin, a UV protective pigment, by cyanobacteria near the top of the crust. N limitation of microbial growth also affects soil crust population dynamics, increasing the requirement of N2fixation by diazotrophic cyanobacteria. We collected 56 soil crust samples from 27 locations throughout the Great Salt Lake Desert, including four transects spanning high-elevation, erosion-dominated soils to lower elevation soils dominated by silt-accumulation. Erosion-dominated soil surfaces included rounded gravel and cobbles; in the interstices there were poorly-developed microbiotic crusts on sandy loam with low δ15N values near 0‰ that point toward microbial growth dependent on cyanobacterial N2 fixation. Nutrients regenerated by heterotrophic bacteria may have been eroded from the system, providing a positive feedback for N2 fixation. High scytonemin:chlorophyll a ratios suggest that cyanobacteria required enhanced protection from UV damage in these crusts. A similar increase in scytonemin:chlorophyll a ratio during soil crust rehydration experiments also points toward the importance of UV protection. Glycolipid:phospholipid ratios were lowest where N2 fixation was favored, however, suggesting that the cyanobacterial population was relatively small, possibly because of the metabolic cost of N2fixation. Microbiotic crusts on silt loam soils, on the other hand, had higher δ15N values between 3.5 and 7.8‰, consistent with heterotrophic growth and nutrient recycling. Lower scytonemin:chlorophyll a ratios suggest that relatively high photosynthetic activity was supported in

  19. Formation of fast-spreading lower oceanic crust as revealed by a new Mg-REE coupled geospeedometer

    Science.gov (United States)

    Sun, Chenguang; Lissenberg, C. Johan

    2018-04-01

    A new geospeedometer is developed based on the differential closures of Mg and rare earth element (REE) bulk-diffusion between coexisting plagioclase and clinopyroxene. By coupling the two elements with distinct bulk closure temperatures, this speedometer can numerically solve the initial temperatures and cooling rates for individual rock samples. As the existing Mg-exchange thermometer was calibrated for a narrow temperature range and strongly relies on model-dependent silica activities, a new thermometer is developed using literature experimental data. When the bulk closure temperatures of Mg and REE are determined, respectively, using this new Mg-exchange thermometer and the existing REE-exchange thermometer, this speedometer can be implemented for a wide range of compositions, mineral modes, and grain sizes. Applications of this new geospeedometer to oceanic gabbros from the fast-spreading East Pacific Rise at Hess Deep reveal that the lower oceanic crust crystallized at temperatures of 998-1353 °C with cooling rates of 0.003-10.2 °C/yr. Stratigraphic variations of the cooling rates and crystallization temperatures support deep hydrothermal circulations and in situ solidification of various replenished magma bodies. Together with existing petrological, geochemical and geophysical evidence, results from this new speedometry suggest that the lower crust formation at fast-spreading mid-ocean ridges involves emplacement of primary mantle melts in the deep section of the crystal mush zone coupled with efficient heat removal by crustal-scale hydrothermal circulations. The replenished melts become chemically and thermally evolved, accumulate as small magma bodies at various depths, feed the shallow axial magma chamber, and may also escape from the mush zone to generate off-axial magma lenses.

  20. Physical Properties and Seismic Structure of Izu-Bonin-Mariana Fore Arc crust: Results From IODP Expedition 352 and Comparison with Oceanic Crust

    Science.gov (United States)

    Christeson, G. L.; Morgan, S.; Kodaira, S.; Yamashita, M.

    2015-12-01

    Most of the well-preserved ophiolite complexes are believed to form in supra-subduction zone settings. One of the goals of IODP Expedition 352 was to test the supra-subduction zone ophiolite model by drilling forearc crust at the northern Izu-Bonin-Mariana (IBM) system. IBM forearc drilling successfully cored 1.22 km of volcanic lavas and underlying dikes at four sites. A surprising observation is that basement compressional velocities measured from downhole logging average ~3.0 km/s, compared to values of 5 km/s at similar basement depths at oceanic crust sites 504B and 1256D. Typically there is an inverse relationship in extrusive lavas between velocity and porosity, but downhole logging shows similar porosities for the IBM and oceanic crust sites, despite the large difference in measured compressional velocities. These observations can be explained by a difference in crack morphologies between IBM forearc and oceanic crust, with a smaller fractional area of asperity contact across cracks at EXP 352 sites than at sites 504B and 1256D. Seismic profiles at the IBM forearc image many faults, which may be related to the crack population.

  1. [Effects of bio-crust on soil microbial biomass and enzyme activities in copper mine tailings].

    Science.gov (United States)

    Chen, Zheng; Yang, Gui-de; Sun, Qing-ye

    2009-09-01

    Bio-crust is the initial stage of natural primary succession in copper mine tailings. With the Yangshanchong and Tongguanshan copper mine tailings in Tongling City of Anhui Province as test objects, this paper studied the soil microbial biomass C and N and the activities of dehydrogenase, catalase, alkaline phosphatase, and urease under different types of bio-crust. The bio-crusts improved the soil microbial biomass and enzyme activities in the upper layer of the tailings markedly. Algal crust had the best effect in improving soil microbial biomass C and N, followed by moss-algal crust, and moss crust. Soil microflora also varied with the type of bio-crust. No'significant difference was observed in the soil enzyme activities under the three types of bio-crust. Soil alkaline phosphatase activity was significantly positively correlated with soil microbial biomass and dehydrogenase and urease activities, but negatively correlated with soil pH. In addition, moss rhizoid could markedly enhance the soil microbial biomass and enzyme activities in moss crust rhizoid.

  2. Dynamical instability produces transform faults at mid-ocean ridges.

    Science.gov (United States)

    Gerya, Taras

    2010-08-27

    Transform faults at mid-ocean ridges--one of the most striking, yet enigmatic features of terrestrial plate tectonics--are considered to be the inherited product of preexisting fault structures. Ridge offsets along these faults therefore should remain constant with time. Here, numerical models suggest that transform faults are actively developing and result from dynamical instability of constructive plate boundaries, irrespective of previous structure. Boundary instability from asymmetric plate growth can spontaneously start in alternate directions along successive ridge sections; the resultant curved ridges become transform faults within a few million years. Fracture-related rheological weakening stabilizes ridge-parallel detachment faults. Offsets along the transform faults change continuously with time by asymmetric plate growth and discontinuously by ridge jumps.

  3. Seafloor Uplift in Middle Valley, Juan de Fuca Ridge: New High-Resolution Pressure Data

    Science.gov (United States)

    Inderbitzen, K. E.; Becker, K.; Davis, E. E.

    2011-12-01

    Currently, in-situ seafloor and basement pressures are continuously monitored and recorded by an ODP subseafloor hydrogeological observatory (CORK) located in Middle Valley, Juan de Fuca Ridge. Hole 857D was drilled in 1991 in thickly sedimented crust to a depth of 936 mbsf and instrumented with an original CORK that was replaced in 1996. A large hydrothermal field (Dead Dog) lies roughly 1.7 km north of the hole, and two isolated chimneys and several diffuse flow sites are located ~800 meters northeast. The borehole and the vent fields have been visited periodically by submersible/ROV since 1999. Recent results from the CORK at 857D have shown apparent seafloor uplift, supported by depth records from the submersible Alvin. A constant rate of pressure change of ~6 kPa/yr, from its initiation in 2005 to the visit in 2010, has reduced mean seafloor pressure by ~28 kPa, equivalent to nearly 3 meters of head. This uplift rate is several times the typical pre-eruption inflation rates observed at Axial Seamount further south along the Juan de Fuca Ridge. Initially, the apparent uplift at 857D did not seem to have any effect on local high-temperature hydrothermal venting, however recent operations in Middle Valley revealed distinct changes at not only the hydrothermal field to the northeast, but also a shutdown of high-temperature venting to the north of 857D. We will present new data from Middle Valley, including the first year of data collected by a high-resolution pressure data logger deployed at 857D in June, 2010.

  4. Reduction of acrylamide content in bread crust by starch coating.

    Science.gov (United States)

    Liu, Jie; Liu, Xiaojie; Man, Yong; Liu, Yawei

    2018-01-01

    A technique of starch coating to reduce acrylamide content in bread crust was proposed. Bread was prepared in accordance with a conventional procedure and corn or potato starch coating was brushed on the surface of the fermented dough prior to baking. Corn starch coating caused a decrease in acrylamide of 66.7% and 77.1% for the outer and inner crust, respectively. The decrease caused by the potato starch coating was 68.4% and 77.4%, respectively. Starch coating reduced asparagine content significantly (43.4-82.9%; P coating, which effectively shortened the time span (4-8 min) over which acrylamide could form and accumulate. The present study demonstrates that starch coating could be a simple, effective and practical application for reducing acrylamide levels in bread crust without changing the texture and crust color of bread. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. USArray Imaging of Continental Crust in the Conterminous United States

    Science.gov (United States)

    Ma, Xiaofei; Lowry, Anthony R.

    2017-12-01

    The thickness and bulk composition of continental crust provide important constraints on the evolution and dynamics of continents. Crustal mineralogy and thickness both may influence gravity anomalies, topographic elevation, and lithospheric strength, but prior to the inception of EarthScope's USArray, seismic measurements of crustal thickness and properties useful for inferring lithology are sparse. Here we improve upon a previously published methodology for joint inversion of Bouguer gravity anomalies and seismic receiver functions by using parameter space stacking of cross correlations of modeled synthetic and observed receiver functions instead of standard H-κ amplitude stacking. The new method is applied to estimation of thickness and bulk seismic velocity ratio, vP/vS, of continental crust in the conterminous United States using USArray and other broadband network data. Crustal thickness variations are reasonably consistent with those found in other studies and show interesting relationships to the history of North American continental formation. Seismic velocity ratios derived in this study are more robust than in other analyses and hint at large-scale variations in composition of continental crust. To interpret the results, we model the pressure-/temperature-dependent thermodynamics of mineral formation for various crustal chemistries, with and without volatile constituents. Our results suggest that hydration lowers bulk crustal vP/vS and density and releases heat in the shallow crust but absorbs heat in the lowermost crust (where plagioclase breaks down to pyroxene and garnet resulting in higher seismic velocity). Hence, vP/vS variations may provide a useful proxy for hydration state in the crust.

  6. Wrinkle Ridges and Young Fresh Crater

    Science.gov (United States)

    2002-01-01

    (Released 10 May 2002) The Science Wrinkle ridges are a very common landform on Mars, Mercury, Venus, and the Moon. These ridges are linear to arcuate asymmetric topographic highs commonly found on smooth plains. The origin of wrinkle ridges is not certain and two leading hypotheses have been put forth by scientists over the past 40 years. The volcanic model calls for the extrusion of high viscosity lavas along linear conduits. This thick lava accumulated over these conduits and formed the ridges. The other model is tectonic and advocates that the ridges are formed by compressional faulting and folding. Today's THEMIS image is of the ridged plains of Lunae Planum located between Kasei Valles and Valles Marineris in the northern hemisphere of the planet. Wrinkle ridges are found mostly along the eastern side of the image. The broadest wrinkle ridges in this image are up to 2 km wide. A 3 km diameter young fresh crater is located near the bottom of the image. The crater's ejecta blanket is also clearly seen surrounding the sharp well-defined crater rim. These features are indicative of a very young crater that has not been subjected to erosional processes. The Story The great thing about the solar system is that planets are both alike and different. They're all foreign enough to be mysterious and intriguing, and yet familiar enough to be seen as planetary 'cousins.' By comparing them, we can learn a lot about how planets form and then evolve geologically over time. Crinkled over smooth plains, the long, wavy raised landforms seen here are called 'wrinkle ridges,' and they've been found on Mars, Mercury, Venus, and the Moon - that is, on rocky bodies that are a part of our inner solar system. We know from this observation that planets (and large-enough moons) follow similar processes. What we don't know for sure is HOW these processes work. Scientists have been trying to understand how wrinkle ridges form for 40 years, and they still haven't reached a conclusion. That

  7. Oxygen Distribution and Potential Ammonia Oxidation in Floating, Liquid Manure Crusts

    DEFF Research Database (Denmark)

    Nielsen, Daniel Aagren; Nielsen, Lars Peter; Schramm, Andreas

    2010-01-01

    Floating, organic crusts on liquid manure, stored as a result of animal production, reduce emission of ammonia (NH3) and other volatile compounds during storage. The occurrence of NO2- and NO3- in the crusts indicate the presence of actively metabolizing NH3 oxidizing bacteria (AOB) which may...... be partly responsible for this mitigation effect. Six manure tanks with organic covers (straw and natural) were surveyed to investigate the prevalence and potential activity of AOB and its dependence on the O2 availability in the crust matrix as studied by electrochemical profiling. Oxygen penetration...... microorganisms, including AOB. The microbial activity may thus contribute to a considerable reduction of ammonia emissions from slurry tanks with well-developed crusts....

  8. Cobalt- and platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands

    Science.gov (United States)

    Hein, J.R.; Schwab, W.C.; Davis, A.

    1988-01-01

    Ferromanganese crusts cover most hard substrates on seafloor edifices in the central Pacific basin. Crust samples and their associated substrates from seven volcanic edifices of Cretaceous age along the Ratak chain of the Marshall Islands are discussed. The two most abundant substrate lithologies recovered were limestone, dominantly fore-reef slope deposits, and volcanic breccia composed primarily of differentiated alkalic basalt and hawaiite clasts in a phosphatized carbonate matrix. The degree of mass wasting on the slopes of these seamounts is inversely correlated with the thickness of crusts. Crusts are generally thin on limestone substrate. Away from areas of active mass-wasting processes, and large atolls, crusts may be as thick as 10 cm maximum. The dominant crystalline phase in the Marshall Islands crusts is ??-MnO2 (vernadite). High concentrations of cobalt, platinum and rhodium strongly suggest that the Marshall Islands crusts are a viable source for these important metals. Many metals and the rare earth elements vary significantly on a fine scale through most crusts, thus reflecting the abundances of different host mineral phases in the crusts and changes in seawater composition with time. High concentrations of cobalt, nickel, titanium, zinc, lead, cerium and platinum result from a combination of their substitution in the iron and manganese phases and their oxidation potential. ?? 1988.

  9. Oak Ridge Reservation environmental report for 1989

    International Nuclear Information System (INIS)

    Jacobs, V.A.; Wilson, A.R.

    1990-10-01

    This two-volume report, the Oak Ridge Reservation Environmental Report for 1989, is the nineteenth in an annual series that began in 1971. It reports the results of a comprehensive, year-round program to monitor the impact of operations at the three major US Department of Energy (DOE) production and research installations in Oak Ridge on the immediate areas' and surrounding region's groundwater and surface waters, soil, air quality, vegetation and wildlife, and through these multiple and varied pathways, the resident human population. Information is presented for the environmental monitoring Quality Assurance (QA) Program, audits and reviews, waste management activities, land special environmental studies. Data are included for the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory (ORNL), and Oak Ridge Gaseous Diffusion Plant (ORGDP). Volume 1 presents narratives, summaries, and conclusions based on environmental monitoring at the three DOE installations and in the surrounding environs during calendar year (CY) 1989. Volume 1 is intended to be a ''stand-alone'' report about the Oak Ridge Reservation (ORR) for the reader who does not want an in-depth review of 1989 data. Volume 2 presents the detailed data from which these conclusions have been drawn and should be used in conjunction with Volume 1

  10. Oak Ridge Reservation environmental report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, V.A.; Wilson, A.R. (eds.)

    1990-10-01

    This two-volume report, the Oak Ridge Reservation Environmental Report for 1989, is the nineteenth in an annual series that began in 1971. It reports the results of a comprehensive, year-round program to monitor the impact of operations at the three major US Department of Energy (DOE) production and research installations in Oak Ridge on the immediate areas' and surrounding region's groundwater and surface waters, soil, air quality, vegetation and wildlife, and through these multiple and varied pathways, the resident human population. Information is presented for the environmental monitoring Quality Assurance (QA) Program, audits and reviews, waste management activities, land special environmental studies. Data are included for the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory (ORNL), and Oak Ridge Gaseous Diffusion Plant (ORGDP). Volume 1 presents narratives, summaries, and conclusions based on environmental monitoring at the three DOE installations and in the surrounding environs during calendar year (CY) 1989. Volume 1 is intended to be a stand-alone'' report about the Oak Ridge Reservation (ORR) for the reader who does not want an in-depth review of 1989 data. Volume 2 presents the detailed data from which these conclusions have been drawn and should be used in conjunction with Volume 1.

  11. Intrusion of Magmatic Bodies Into the Continental Crust: 3-D Numerical Models

    Science.gov (United States)

    Gorczyk, Weronika; Vogt, Katharina

    2018-03-01

    Magma intrusion is a major material transfer process in the Earth's continental crust. Yet the mechanical behavior of the intruding magma and its host are a matter of debate. In this study we present a series of numerical thermomechanical simulations on magma emplacement in 3-D. Our results demonstrate the response of the continental crust to magma intrusion. We observe change in intrusion geometries between dikes, cone sheets, sills, plutons, ponds, funnels, finger-shaped and stock-like intrusions, and injection time. The rheology and temperature of the host are the main controlling factors in the transition between these different modes of intrusion. Viscous deformation in the warm and deep crust favors host rock displacement and plutons at the crust-mantle boundary forming deep-seated plutons or magma ponds in the lower to middle crust. Brittle deformation in the cool and shallow crust induces cone-shaped fractures in the host rock and enables emplacement of finger- or stock-like intrusions at shallow or intermediate depth. Here the passage of magmatic and hydrothermal fluids from the intrusion through the fracture pattern may result in the formation of ore deposits. A combination of viscous and brittle deformation forms funnel-shaped intrusions in the middle crust. Intrusion of low-density magma may more over result in T-shaped intrusions in cross section with magma sheets at the surface.

  12. Alveolar ridge rehabilitation to increase full denture retention and stability

    Directory of Open Access Journals (Sweden)

    Mefina Kuntjoro

    2010-12-01

    Full Text Available Background: Atrophic mandibular alveolar ridge generally complicates prostetic restoration expecially full denture. Low residual alveolar ridge and basal seat can cause unstable denture, permanent ulcer, pain, neuralgia, and mastication difficulty. Pre-proshetic surgery is needed to improve denture retention and stability. Augmentation is a major surgery to increase vertical height of the atrophic mandible while vestibuloplasty is aimed to increase the denture bearing area. Purpose: The augmentation and vestibuloplasty was aimed to provide stability and retentive denture atrophic mandibular alveolar ridge. Case: A 65 years old woman patient complained about uncomfortable denture. Clinical evaluate showed flat ridge in the anterior mandible, flabby tissue and candidiasis, while residual ridge height was classified into class IV. Case management: Augmentation using autograph was conducted as the mandible vertical height is less than 15 mm. Autograph was used to achieve better bone quantity and quality. Separated alveolar ridge was conducted from left to right canine region and was elevated 0.5 mm from the previous position to get new ridge in the anterior region. The separated alveolar ridge was fixated by using T-plate and ligature wire. Three months after augmentation fixation appliances was removed vestibuloplasty was performed to increase denture bearing area that can make a stable and retentive denture. Conclusion: Augmentation and vestibuloplasty can improve flat ridge to become prominent.Latar belakang: Ridge mandibula yang atrofi pada umumnya mempersulit pembuatan restorasi prostetik terutama gigi tiruan lengkap (GTL. Residual alveolar ridge dan basal seat yang rendah menyebabkan gigi tiruan menjadi tidak stabil, menimbulkan ulser permanen, nyeri, neuralgia, dan kesulitan mengunyah. Tujuan: Augmentasi dan vestibuloplasti pada ridge mandibula yang atrofi dilakukan untuk menciptakan gigi tiruan yang stabil dan retentive. Kasus: Pasien wanita

  13. Safety analysis report for packaging (SARP) of the Oak Ridge National Laboratory. TRU curium shipping container

    International Nuclear Information System (INIS)

    Box, W.D.; Klima, B.B.; Seagren, R.D.; Shappert, L.B.; Aramayo, G.A.

    1980-06-01

    An analytical evaluation of the Oak Ridge National Laboratory Transuranium (TRU) Curium Shipping Container was made to demonstrate its compliance with the regulations governing offsite shipment of packages containing radioactive material. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of the evaluation show that the container complies with the applicable regulations

  14. Exploring the interaction network of the Bacillus subtilis outer coat and crust proteins.

    Science.gov (United States)

    Krajčíková, Daniela; Forgáč, Vladimír; Szabo, Adam; Barák, Imrich

    2017-11-01

    Bacillus subtilis spores, representatives of an exceptionally resistant dormant cell type, are encircled by a thick proteinaceous layer called the spore coat. More than 80 proteins assemble into four distinct coat layers: a basement layer, an inner coat, an outer coat and a crust. As the spore develops inside the mother cell, spore coat proteins synthesized in the cytoplasm are gradually deposited onto the prespore surface. A small set of morphogenetic proteins necessary for spore coat morphogenesis are thought to form a scaffold to which the rest of the coat proteins are attached. Extensive localization and proteomic studies using wild type and mutant spores have revealed the arrangement of individual proteins within the spore coat layers. In this study we examined the interactions between the proteins localized to the outer coat and crust using a bacterial two hybrid system. These two layers are composed of at least 25 components. Self-interactions were observed for most proteins and numerous novel interactions were identified. The most interesting contacts are those made with the morphogenetic proteins CotE, CotY and CotZ; these could serve as a basis for understanding the specific roles of particular proteins in spore coat morphogenesis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Ridge and Furrow Fields

    DEFF Research Database (Denmark)

    Møller, Per Grau

    2016-01-01

    Ridge and furrow is a specific way of ploughing which makes fields of systematic ridges and furrows like a rubbing washboard. They are part of an overall openfield system, but the focus in this paper is on the functionality of the fields. There are many indications that agro-technological reasons...... systems and the establishment of basic structures like villages (with churches) and townships and states (in northern Europe). The fields can be considered as a resilient structure lasting for 800 years, along with the same basic physical structures in society....

  16. Crust-Lithosphere-Asthenosphere Dynamics in Mantle Plume Provinces with Emphasis on the Galapagos =

    Science.gov (United States)

    Orellana, Felipe

    variable age, unusual spatial patterns of geochemical enrichment, spectacular and enigmatic bathymetric features, important lithospheric and elastic thickness discontinuities, pronounced regional faults, the presence of the Nazca-Cocos spreading center nearby, and a Nazca plate - Galapagos hotspot relative velocity that varied through time. These factors have combined to create what is arguably the most complex mantle plume province on Earth, rivaled in this regard perhaps only by the Reunion and the Kerguelen-Ninetyeast hotspot provinces. The present-day Galapagos archipelago sits over a broad massive platform that has been formed primarily by intrusion and secondarily by extrusion, and that exhibits remarkable bathymetric gradients (comparable to those on the Hawaiian hotspot track). In the second chapter of this dissertation we show that some of these bathymetric features may be reasonably explained in the context of thermo-mechanical processes occurring on locally-weak crust/lithosphere, responding to internal gradients in lithostatic stresses, and that these processes of Quaternary history continue to the present day. Studies in evolutionary biology, dating back to Darwin's famous discoveries, have shown that many of the endemic Galapagos species (flora and fauna) must have evolved from species derived largely from South and Central America. Thus there is much scientific incentive to complement current phylogenetic knowledge regarding the origins of these endemic Galapagos species, with state-of-the-art geophysical models for the emergence and subsidence of the islands habitat on which these species must have evolved, most of which is no longer above sea level ! The third chapter of this dissertation represents a preliminary effort in this direction, combining multiple sources of dynamic topography during and following the formation of the Carnegie/Cocos ridges, which were constructed by the Galapagos mantle plume. We show that plate tectonic reconstructions, mantle

  17. Age and isotope evidence for the evolution of continental crust

    International Nuclear Information System (INIS)

    Moorbath, S.

    1978-01-01

    Irreversible chemical differentiation of the mantle's essentially infinite reservoir for at least the past 3800 Ma has produced new continental, sialic crust during several relatively short (ca. 100-300 Ma) episodes which were widely separated in time and may have been of global extent. During each episode (termed 'accretion-differentiation superevent'), juvenile sial underwent profound igneous, metamorphic and geochemical differentiation, resulting in thick (ca. 25-40 km), stable, compositionally gradational, largely indestructible, continental crust exhibiting close grouping of isotopic ages of rock formation, as well as mantle-type initial Sr and Pb isotopic ratios for all major constituents. Isotopic evidence suggests that within most accretion-differentiation superevents - and especially during the earlier ones - continental growth predominated over reworking of older sialic crust. Reworking of older sialic crust can occur in several types of geological environment and appears to have become more prevalent with the passage of geological time. It is usually clearly distinguishable from continental growth, by application of appropriate age and isotope data. (author)

  18. The origin of continental crust: Outlines of a general theory

    Science.gov (United States)

    Lowman, P. D., Jr.

    1985-01-01

    The lower continental crust, formerly very poorly understood, has recently been investigated by various geological and geophysical techniques that are beginning to yield a generally agreed on though still vague model (Lowman, 1984). As typified by at least some exposed high grade terranes, such as the Scottish Scourian complex, the lower crust in areas not affected by Phanerozoic orogeny or crustal extension appears to consist of gently dipping granulite gneisses of intermediate bulk composition, formed from partly or largely supracrustal precursors. This model, to the degree that it is correct, has important implications for early crustal genesis and the origin of continental crust in general. Most important, it implies that except for areas of major overthrusting (which may of course be considerable) normal superposition relations prevail, and that since even the oldest exposed rocks are underlain by tens of kilometers of sial, true primordial crust may still survive in the lower crustal levels (of. Phinney, 1981).

  19. Collective modes and hydrodynamics in the inner crust of neutron stars

    International Nuclear Information System (INIS)

    Martin, Noel

    2016-01-01

    Neutron stars have been extensively studied since Baade and Zwicky have proposed their existence in 1934. Their description is at the interface of numerous domains of physics, e.g., X-ray astrophysics, pulsar signal observation, general relativity and nowadays gravitational waves, solid state physics, and also nuclear physics. In this thesis we will concentrate on the nuclear physics description, especially of the inner crust. These stars are characterized by their large mass from one to two solar masses, in a radius of 10 km. Their inner structure can be divided in three major layers: the outer crust, the inner crust and the core. The outer crust consists of nuclei coexisting with an electron gas to ensure charge neutrality. If one goes deeper into the crust, the ratio of neutrons with respect to the total nucleon number increases. Eventually, the excess of neutrons in the nuclei gets so high that they drip out from the nuclei and create a dilute neutron gas. From now on, we will speak of nuclear clusters instead of nuclei. This phenomenon defines the limit between the outer crust and the inner crust. This complicated structure and composition is at the origin of many characteristic properties of neutron stars. Hence, we will construct our work in three major parts. First, we start to account for the neutron gas surrounding the clusters, which we treat as uniform. Here, the neutron gas is assumed to be superfluid, and one can expect a Goldstone mode. This description will be done in the framework of QRPA. Second, we will focus on the study of properties of the clusters contained in the inner crust. Under these conditions we expect to see crystal of spheres, rods and plates of bound nucleons, that we will describe with the help of the ETF approximation. Third, we will finish by treating the interaction between the clusters and the gas with hydrodynamics. The results will be applied to astrophysics and in particular to glitches. (author)

  20. The Athabasca Granulite Terrane and Evidence for Dynamic Behavior of Lower Continental Crust

    Science.gov (United States)

    Dumond, Gregory; Williams, Michael L.; Regan, Sean P.

    2018-05-01

    Deeply exhumed granulite terranes have long been considered nonrepresentative of lower continental crust largely because their bulk compositions do not match the lower crustal xenolith record. A paradigm shift in our understanding of deep crust has since occurred with new evidence for a more felsic and compositionally heterogeneous lower crust than previously recognized. The >20,000-km2 Athabasca granulite terrane locally provides a >700-Myr-old window into this type of lower crust, prior to being exhumed and uplifted to the surface between 1.9 and 1.7 Ga. We review over 20 years of research on this terrane with an emphasis on what these findings may tell us about the origin and behavior of lower continental crust, in general, in addition to placing constraints on the tectonic evolution of the western Canadian Shield between 2.6 and 1.7 Ga. The results reveal a dynamic lower continental crust that evolved compositionally and rheologically with time.

  1. Soil Characteristics of Crusted outside and Subcanopy Areas of four ...

    African Journals Online (AJOL)

    The results on compaction, salinity, pH, water holding capacity, respiration and organic carbon supported the model. The crust:shrub ratio is crucial for the functioning and sustained productivity of the system. Keywords: Soil characteristics; shrub subcanopy; crust; sink-source, Negev desert [IJARD Vol.3 2002: 162-170] ...

  2. Geochemistry of the mantle beneath the Rodriguez Triple Junction and the South-East Indian Ridge

    International Nuclear Information System (INIS)

    Michard, A.; Montigny, R.; Schlich, R.

    1986-01-01

    Rare earth element abundances and SR, Nd, Pb isotope compositions have been measured on zero-age dredge samples from the Rodriguez Triple Junction (RTJ) and the South-East Indian Ridge (SEIR). Along the SEIR, the geochemical ''halo'' of the St. Paul hot spot has a half-width of about 400 km and the data may be fairly well accounted for by a binary mixing between an Indian MORB-type component ( 87 Sr/ 86 Sr=0.7028, 143 Nd/ 144 Nd=0.51304, 206 Pb/ 204 Pb=17.8) and the plume type St. Paul component (0.7036, 0.5129 and 18.7 respectively). The alignment of the lead isotope data is particularly good with age of 1.95+-0.13 Ga and Th/U source value of 3.94. One sample dredged on the ridge 60 km southeast of St. Paul bears a definite Kertguelen isotopic signature. The RTJ has distinctive geochemical properties which contrast with those of the adjacent ridge segments. Low 206 Pb/ 204 Pb ratios which plots to the left of the geochron, rather high 208 Pb/ 204 Pb and 87 Sr/ 86 Sr ratios (17.4, 37.4, and 0.7031 respectively) a striking isotopic homogeneity, and variable LRE/HREE fractionation with (LA/S)sub(N) 0.3-0.8 make this triple junction an anomalous site. The geochemical properties of the Indian Ocean basalts have been examined using a three-component mantle model involving (a) a normal MORB-type source though to represent the depleted upper mantle matrix, (b) an OIB-type source of uncertain parentage (recycled oceanic crust), and (c) a component with low μ, Low Sm/Nd, high Rb/Sr (time-averaged value) which is tentatively assigned to ancient hydrothermal and abyssal sediments recycled in the mantle. The high 208 Pb/ 204 Pb and 87 Sr/ 86 Sr ratios typical of the Dupal anomaly are likely due to the widespread distribution of this latter component in the basalt source from this area, including that for MORBs. (orig.)

  3. Geochemistry of the mantle beneath the Rodriguez Triple Junction and the South-East Indian Ridge

    Science.gov (United States)

    Michard, A.; Montigny, R.; Schlich, R.

    1986-05-01

    Rare earth element abundances and Sr, Nd. Pb isotope compositions have been measured on zero-age dredge samples from the Rodriguez Triple Junction (RTJ) and the South-East Indian Ridge (SEIR), Along the SEIR. the geochemical "halo" of the St. Paul hot spot has a half-width of about 400 km and the data may be fairly well accounted for by a binary mixing between an Indian MORB-type component ( 87Sr/ 86Sr = 0.7028. 143Nd/ 144Nd = 0.51304. 206Pb/ 204Pb = 17.8) and the plume-type St. Paul component (0.7036, 0.5129, and 18.7 respectively). The alignment of the lead isotope data is particularly good with an apparent age of 1.95 ± 0.13 Ga and Th/U source value of 3.94. One sample dredged on the ridge 60 km southeast of St. Paul bears a definite Kerguelen isotopic signature. The RTJ has distinctive geochemical properties which contrast with those of the adjacent ridge segments. Low 206Pb/ 204Pb ratios which plots to the left of the geochron, rather high 208Pb/ 204Pb and 87Sr/ 87Sr ratios (17.4. 37.4, and 0.7031 respectively), a striking isotopic homogeneity, and variable LREE/HREE fractionation with (La/Sm) N, = 0.3-0.8 make this triple junction an anomalous site. The geochemical properties of the Indian Ocean basats have been examined using a three-component mantle model involving (a) a normal MORB-type source though to represent the depleted upper mantle matrix, (b) an OIB-type source of uncertain parentage (recycled oceanic crust?), and (c) a component with low μ. low Sm/Nd. high Rb/Sr (time-averaged value) which is tentatively assigned to ancient hydrothermal and abyssal sediments recycled in the mantle. The high 208Pb/ 204Pb and 87Sr/ 86Sr ratios typical of the Dupal anomaly are likely due to the widespread distribution of this latter component in the basalt source from this area. including that for MORBs.

  4. Glacial modulation of mid-ocean ridge magmatism and anomalous Pacific Antarctic Ridge volcanism during Termination II

    Science.gov (United States)

    Asimow, P. D.; Lewis, M.; Lund, D. C.; Seeley, E.; McCart, S.; Mudahy, A.

    2017-12-01

    Glacially-driven sea level rise and fall may modulate submarine volcanism by superposing pressure changes on the tectonic decompression that causes melt production in the mantle below mid-ocean ridges. A number of recent studies have considered whether this effect is recorded in the periodicity of ridge flank bathymetry (Tolstoy, 2015; Crowley et al., 2015) but interpretation of the bathymetric data remains controversial (Goff, 2016; Olive et al., 2016). We have pursued an independent approach using hydrothermal metals in well-dated near-ridge sediment cores. Along the full length of the East Pacific Rise, in areas of the ocean with widely variable biologic productivity, there are large and consistent rises in Fe, Mn, and As concentrations during the last two glacial terminations. We interpret these cores as records of excess hydrothermal flux due to delayed delivery to the axis of excess melt generated by the preceding falls in sea level. Here we discuss the potentially related discovery, in a core near the Pacific Antarctic Ridge (PAR), of a 10 cm thick layer of basaltic ash shards up to 250 mm in size, coincident with the penultimate deglaciation (Termination II). Although the site was 8 km off-axis at the time, the glasses have major element, volatile, and trace element composition consistent with more evolved members of the axial MORB suite from the nearby ridge axis. Their morphologies are typical of pyroclastic deposits created by explosive submarine volcanism (Clague et al., 2009). We propose that a period of low magmatic flux following a sea-level rise caused cooling of crustal magmatic systems, more advanced fractionation in the axial magma chamber, and increases in viscosity and volatile concentration. We hypothesize subsequent arrival of high magmatic flux during Termination II then reactivated the system and triggered an unusually vigorous series of explosive eruptions along this segment of the PAR. Ash layers recording large eruptions such as this one

  5. Ridge Orientations of the Ridge-Forming Unit, Sinus Meridiani, Mars-A Fluvial Explanation

    Science.gov (United States)

    Wilkinson, M. Justin; Herridge, A.

    2013-01-01

    Imagery and MOLA data were used in an analysis of the ridge-forming rock unit (RFU) exposed in Sinus Meridiani (SM). This unit shows parallels at different scales with fluvial sedimentary bodies. We propose the terrestrial megafan as the prime analog for the RFU, and likely for other members of the layered units. Megafans are partial cones of fluvial sediment, with radii up to hundreds of km. Although recent reviews of hypotheses for the RFU units exclude fluvial hypotheses [1], inverted ridges in the deserts of Oman have been suggested as putative analogs for some ridges [2], apparently without appreciating The wider context in which these ridges have formed is a series of megafans [3], a relatively unappreciated geomorphic feature. It has been argued that these units conform to the megafan model at the regional, subregional and local scales [4]. At the regional scale suites of terrestrial megafans are known to cover large areas at the foot of uplands on all continents - a close parallel with the setting of the Meridiani sediments at the foot of the southern uplands of Mars, with its incised fluvial systems leading down the regional NW slope [2, 3] towards the sedimentary units. At the subregional scale the layering and internal discontinuities of the Meridiani rocks are consistent, inter alia, with stacked fluvial units [4]. Although poorly recognized as such, the prime geomorphic environment in which stream channel networks cover large areas, without intervening hillslopes, is the megafan [see e.g. 4]. Single megafans can reach 200,000 km2 [5]. Megafans thus supply an analog for areas where channel-like ridges (as a palimpsest of a prior landscape) cover the intercrater plains of Meridiani [6]. At the local, or river-reach scale, the numerous sinuous features of the RFU are suggestive of fluvial channels. Cross-cutting relationships, a common feature of channels on terrestrial megafans, are ubiquitous. Desert megafans show cemented paleo-channels as inverted

  6. Geochemistry of Fast-Spreading Lower Oceanic Crust: Results from Drilling at the Hess Deep Rift (ODP Leg 147 and IODP Expedition 345; East Pacific Rise)

    Science.gov (United States)

    Godard, M.; Falloon, T.; Gillis, K. M.; Akizawa, N.; de Brito Adriao, A.; Koepke, J.; Marks, N.; Meyer, R.; Saha, A.; Garbe-Schoenberg, C. D.

    2014-12-01

    The Hess Deep Rift, where the Cocos Nazca Ridge propagates into the young, fast-spread East Pacific Rise crust, exposes a dismembered, but nearly complete, lower crustal section. The extensive exposures of the plutonic crust were drilled at 3 sites during ODP Leg 147 (Nov. 1992-Jan. 1993) and IODP Expedition 345 (Dec. 2012-Feb. 2013). We report preliminary results of a bulk rock geochemical study (major and trace elements) carried out on 109 samples representative of the different drilled lithologies. The shallowest gabbroic rocks were sampled at ODP Site 894. They comprise gabbronorite, gabbro, olivine gabbro and gabbronorite. They have evolved compositions with Mg# 39-55, Yb 4-8 x chondrite and Eu/Eu* 1-1.6. Olivine gabbro and troctolite were dominant at IODP Site U1415, with minor gabbro, gabbronorite and clinopyroxene oikocryst-bearing troctolite and gabbro. All U1415 gabbroic rocks have primitive compositions except for one gabbronorite rubble that is similar in composition to the shallow gabbros. Olivine gabbro, gabbro and gabbronorite overlap in composition: they have high Mg# (79-87) and Ni (130-570 ppm), low TiO2 (0.1-0.3 wt.%) and Yb (1.3-2.3 x chondrite) and positive Eu anomaly (Eu/Eu*=1.9-2.7). Troctolite has high Mg# (81-89), Ni (260-1500 ppm) and low TiO2 (4). ODP Site 895 recovered sequences of highly depleted harzburgite, dunite and troctolite (Yb down to <0.1xchondrite) that are interpreted as a mantle-crust transition zone. Basalts were recovered at Sites 894 and U1415: they have low Yb (0.5-0.9xN6MORB) and are depleted in the most incompatible elements (Ce/Yb=0.6-0.9xN-MORB). The main geochemical characteristics of Site U1415 and 894 gabbroic rocks are consistent with formation as a cumulate sequence from a common parental MORB melt; troctolites are the most primitive end-member of this sequence. They overlap in composition with the most primitive of slow and fast spread crust gabbroic rocks.

  7. Formation of continental crust by intrusive magmatism

    Science.gov (United States)

    Rozel, A. B.; Golabek, G. J.; Jain, C.; Tackley, P. J.; Gerya, T.

    2017-09-01

    How were the continents formed in the Earth? No global numerical simulation of our planet ever managed to generate continental material self-consistently. In the present study, we show that the latest developments of the convection code StagYY enable to estimate how to produce the early continents, more than 3 billion years ago. In our models, melting of pyrolitic rocks generates a basaltic melt and leaves behind a depleted solid residue (a harzburgite). The melt generated in the mantle is transported to the surface. Only basaltic rocks melting again can generate continental crust. Should the basaltic melt always reach the open air and cool down? Should the melt be intruded warm in the pre-existing crust? The present study shows that both processes have to be considered to produce continents. Indeed, granitoids can only be created in a tight window of pressure-temperature. If all basalt is quickly cooled by surface volcanism, the lithosphere will be too cold. If all basalt is intruded warm below the crust then the lithosphere will be too warm. The key is to have both volcanism and plutonism (intrusive magmatism) to reach the optimal temperature and form massive volumes of continental material.

  8. Increasing cotton stand establishment in soils prone to soil crusting

    Science.gov (United States)

    Many factors can contribute to poor cotton stand establishment, and cotton is notorious for its weak seedling vigor. Soil crusting can be a major factor hindering cotton seedling emergence in many of the cotton production regions of the US and the world. Crusting is mainly an issue in silty soils ...

  9. Presumed Multiple Metasomatism underneath the Colorado Plateau; Decoding from Chemistry and Inclusion/Lamella Mineralogy of Diverse Garnets from the Garnet Ridge, Northern Arizona

    Science.gov (United States)

    Sato, Y.; Ogasawara, Y.

    2015-12-01

    Various garnets containing the information on mantle petrology and related metasomatism occur at the Garnet Ridge, Colorado Plateau. The origins of garnets range from deep mantle to shallow continental crust. These garnets were delivered by kimberlitic diatreme of 30 Ma (Smith et al. 2004). We have classified the garnets into 10 groups (A to J, see figure) by naked eye observation, major chemistry, minor Na-Ti-P, inclusion/lamella mineralogy. Among them, groups A to D are of mantle origin, E to G of subducted oceanic crust origin, and H to J of continental crust origin. We summarized results as in the followings. A: Cr and pyrope-rich garnet has Cr2O3(0.8-6.3 wt.%) and inclusions of Ol, Cpx, Opx, Ti-Chu/Chn and carbonates, indicating carbonated garnet lherzolites as host. Cr contents negatively correlates with Na-Ti-P contents and occurrence of exsolved Rt, Ilm and crichtonite. This indicates Cr-rich end-member is the most "primitive" mantle garnet before metasomatism. B: Pyrope-rich reddish brown garnet of peridotitic origins was subdivided into 4 subgroups (B1 to B4, see figure). Compositional range in Ca-Mg-Fe triangle expands to Fe-rich side from group A. Exsolved Na-bearing amphibole and inclusions of Ap, carbonates and fluid were identified. These indicate metasomatism of group A. C: Garnet megacryst is coarse-grained garnet (2-10 cm across) with crystal faces. This garnet has wide chemical variation plotted in the center area of Ca-Mg-Fe triangle. D: Garnet aggregate has similar chemistry of group C and is composed of several grains. Grain boundaries of garnet were recognized by Rt, Ilm and other minerals and oscillatory zonings of Ca, Mg, Fe and Na-Ti-P. Fluid inclusions of groups C and D suggest these garnets might crystalized from fluid. E: Garnet in eclogite and F: Garnet in metasomatized eclogite are xenolith samples (the Fallaron Plate origin?). Aggregate of Zo+Ab contained in group E indicates decomposed precursor lawsonite inclusion. G: Quartz

  10. Eocene deep crust at Ama Drime, Tibet

    DEFF Research Database (Denmark)

    Kellett, Dawn; Cottle, John; Smit, Matthijs Arjen

    2014-01-01

    Granulitized eclogite-facies rocks exposed in the Ama Drime Massif, south Tibet, were dated by Lu-Hf garnet geochronology. Garnet from the three samples analyzed yielded Lu-Hf ages of 37.5 ± 0.8 Ma, 36.0 ± 1.9 Ma, and 33.9 ± 0.8 Ma. Eclogitic garnet growth is estimated at ca. 38 Ma, the oldest age...... burial and exhumation of a cold subducted slab. The rocks instead resulted from crustal thickening during the early stages of continental collision, and resided in the lower-middle crust for >20 m.y. before they were exhumed and reheated. These new data provide solid evidence for the Indian crust having...

  11. Seismicity And Accretion Process Along The North Mid-Atlantic Ridge From The SIRENA Autonomous Hydrophone Data

    Science.gov (United States)

    Perrot, J.; Goslin, J.; Dziak, R. P.; Haxel, J. H.; Maia, M. A.; Tisseau, C.; Royer, J.

    2009-12-01

    Anomalies (MBAs)(Maia et al., 2007) are observed, indicating the presence of thinner/colder and thicker/warmer crust respectively. Our results thus show that hydrophone data can be fruitfully used to help and characterize active ridge processes at various spatial scales. Maia M., J. Goslin, and P. Gente (2007), Evolution of accretion processes along the Mid-Atlantic Ridge north of the Azores since 5.5 Ma: An insight into the interactions between the ridge and the plume, Geochem. Geophys. Geosyst., 8.

  12. Aerodynamic roughness length related to non-aggregated tillage ridges

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available Wind erosion in agricultural soils is dependent, in part, on the aerodynamic roughness length (z0 produced by tillage ridges. Although previous studies have related z0 to ridge characteristics (ridge height (RH and spacing (RS, these relationships have not been tested for tillage ridges observed in the North African agricultural fields. In these regions, due to climate and soil conditions, small plowing tools are largely used. Most of these tools produce non-aggregated and closely-spaced small ridges. Thus, experiments were conducted in a 7-m long wind tunnel to measure z0 for 11 ridge types covering the range of geometric characteristics frequently observed in south Tunisia. Experimental results suggest that RH2/RS is the first order parameter controlling z0. A strong relationship between z0 and RH2/RS is proposed for a wide range of ridge characteristics.

  13. Preservation and concentration of uranium mineralization in the crust of weathering

    International Nuclear Information System (INIS)

    Ashikhmin, A.A.; Kuznetsov, S.V.; Shmarovich, E.M.

    1983-01-01

    Inprecision of the concept on indispensable evacuation of U from ores during formation of the crust of weathering of lateritic or kaolinitic profile due to the existence of oxidative situation in the crusts is established. At hydrothermal uranium deposit in Eocambrian sandy-shaly and Paleozoic volcanogenous-sedimentary rocks a high degree of mineralization preservation in lower and medium horizons of Mesozoic-Cenozoic hydro-micaceous-kaolinitic crust of weathering, characterized by reductive situation, presence of carbonaceous substance, pyrite and siderite, is established. Mineralization attained there black composition and was additionally enriched with uranium. A supposition is made that the case is specific for the development of lateritic and kaolinitic crust formation according to ore-bearing rocks, rich in reducing agents-carbonaceous substances, sulfides and minerals of protoxidic iron. The data obtained should be taken into account during prediction and prospecting activities

  14. High-Resolution Imaging of Axial Volcano, Juan de Fuca ridge.

    Science.gov (United States)

    Arnulf, A. F.; Harding, A. J.; Kent, G. M.

    2014-12-01

    To date, seismic experiments have been key in our understanding of the internal structure of volcanic systems. However, most experiments, especially subaerial-based, are often restricted to refraction geometries with limited numbers of sources and receivers, and employ smoothing constraints required by tomographic inversions that produce smoothed and blurry images with spatial resolutions well below the length scale of important features that define these magmatic systems. Taking advantage of the high density of sources and receivers from multichannel seismic (MCS) data should, in principle, allow detailed images of velocity and reflectivity to be recovered. Unfortunately, the depth of mid-ocean ridges has the detrimental effect of concealing critical velocity information behind the seafloor reflection, preventing first arrival travel-time tomographic approaches from imaging the shallowest and most heterogeneous part of the crust. To overcome the limitations of the acquisition geometry, here we are using an innovative multistep approach. We combine a synthetic ocean bottom experiment (SOBE), 3-D traveltime tomography, 2D elastic full waveform and a reverse time migration (RTM) formalism, and present one of the most detailed imagery to date of a massive and complex magmatic system beneath Axial seamount, an active submarine volcano that lies at the intersection of the Juan de Fuca ridge and the Cobb-Eickelberg seamount chain. We present high-resolution images along 12 seismic lines that span the volcano. We refine the extent/volume of the main crustal magma reservoir that lies beneath the central caldera. We investigate the extent, volume and physical state of a secondary magma body present to the southwest and study its connections with the main magma reservoir. Additionally, we present a 3D tomographic model of the entire volcano that reveals a subsiding caldera floor that provides a near perfect trap for the ponding of lava flows, supporting a "trapdoor

  15. Calendar year 1995 groundwater quality report for the Chestnut Ridge Hydrogeological Regime, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. 1995 Groundwater quality data and calculated rate of contaminant migration

    International Nuclear Information System (INIS)

    1996-02-01

    This annual groundwater quality report (GWQR) contains groundwater quality data obtained during the 1995 calendar year (CY) at several hazardous and nonhazardous waste management facilities associated with the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The U.S. Environmental Protection Agency (EPA) identification number for the Y-12 Plant is TN

  16. Safety Analysis Report for Packaging (SARP) of the Oak Ridge National Laboratory TRU Californium Shipping Container

    International Nuclear Information System (INIS)

    Box, W.D.; Shappert, L.B.; Seagren, R.D.; Klima, B.B.; Jurgensen, M.C.; Hammond, C.R.; Watson, C.D.

    1980-01-01

    An analytical evaluation of the Oak Ridge National Laboratory TRU Californium Shipping Container was made in order to demonstrate its compliance with the regulations governing off-site shipment of packages that contain radioactive material. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of this evaluation demonstrate that the container complies with the applicable regulations

  17. A Case Report of Ridge Augmentation using Onlay Interpositional Graft: An Approach to Improve Prosthetic Prognosis of a Deficit Ridge

    Directory of Open Access Journals (Sweden)

    Devanand Shetty

    2014-01-01

    Full Text Available Background: Periodontal therapy has developed beyond the scope of the treatment of periodontal pathoses. Periodontal plastic surgery consists of the reconstructive procedures designed to enhance the both function and esthetics. Deficient ridges pose a severe problem to the restorative dentist in restoring the natural form, function and esthetics of the prosthesis replacing the natural dentition. Depending upon the severity, location of these defects and the prosthetic option chosen, hard and soft tissue ridge augmentation or non-surgical approach or a combination may help to address them. The present clinical report describes a soft tissue ridge augmentation of a localized ridge defect in maxillary aesthetic region using onlay interpositional graft followed by fixed partial denture.

  18. COMPLEX GEOLOGICAL–GEOPHYSICAL 3D MODEL OF THE CRUST IN THE SOUTHEASTERN FENNOSCANDIAN SHIELD: NATURE OF DENSITY LAYERING OF THE CRUST AND THE CRUST–MANTLE BOUNDARY

    Directory of Open Access Journals (Sweden)

    V. N. Glaznev

    2015-01-01

    Full Text Available The complex geophysical 3D model of the Earth's crust and the upper mantle is created for the Archaean Karelian Craton and the Late Palaeoproterozoic accretionary Svecofennian Orogen of the southeastern Fennoscandian Shield with the use of methods of complex inversion of geophysical data based on stochastic description of interrelations of physical properties of the medium (density, P-wave velocity, and heat generation. To develop the model, we use results of deep seismic studies, gravity and surficial heat flow data on the studied region. Numerical solutions of 3D problems are obtained in the spherical setting with an allowance for the Earth's surface topography. The geophysical model is correlated with the regional geological data on the surface and results of seismic CMP studies along 4B, FIRE-1 and FIRE-3-3A profiles. Based on results of complex geophysical simulation and geological interpretation of the 3D model, the following conclusions are drawn. (1 The nearly horizontal density layering of the continental crust is superimposed on the previously formed geological structure; rock differentiation by density is decreasing with depth; the density layering is controlled by the recent and near-recent state of the crust, but can be disturbed by the latest deformations. (2 Temperature variations at the Moho are partially determined by local variations of heat generation in the mantle, which, in turn, are related to local features of its origin and transformation. (3 The concept of the lower continental crust being a reflectivity zone and the concept of the lower continental crust being a layer of high density and velocity are not equivalent: the lower crust is the deepest, high-density element of near-horizontal layering, whereas the seismic image of the reflectivity zone is primarily related to transformation of the crust as a result of magmatic under- and intraplating under conditions of extension and mantle-plume activity. (4 At certain

  19. Calorimetric studies of cryptogamic crust metabolism in response to temperature, water vapor, and liquid water

    Science.gov (United States)

    Dorothy A. Stradling; Tonya Thygerson; Bruce N. Smith; Lee D. Hansen; Richard S. Criddle; Rosemary L. Pendleton

    2001-01-01

    Cryptogamic crusts are communities composed of lichens, cyanobacteria, algae, mosses, and fungi. These integrated soil crusts are susceptible to disturbance, but if intact, appear to play a role in providing nutrients, especially nitrogen, to higher plants. It is not known how or under what conditions desert crusts can grow. Crust samples from localities on the...

  20. ENVIRONMENTAL BASELINE SURVEY REPORT FOR WEST BLACK OAK RIDGE, EAST BLACK OAK RIDGE, MCKINNEY RIDGE, WEST PINE RIDGE, AND PARCEL 21D IN THE VICINITY OF THE EAST TENNESSEE TECHNOLOGY PARK, OAK RIDGE, TENNESSEE

    Energy Technology Data Exchange (ETDEWEB)

    David A. King

    2012-11-29

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of five land parcels located near the U.S. Department of Energy’s (DOE’s) East Tennessee Technology Park (ETTP), including West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge, and Parcel 21d. The goal is to obtain all media no-further-investigation (NFI) determinations for the subject parcels considering existing soils. To augment the existing soils-only NFI determinations, samples of groundwater, surface water, soil, and sediment were collected to support all media NFI decisions. The only updates presented here are those that were made after the original issuance of the NFI documents. In the subject parcel where the soils NFI determination was not completed for approval (Parcel 21d), the full process has been performed to address the soils as well. Preparation of this report included the detailed search of federal government records, title documents, aerial photos that may reflect prior uses, and visual inspections of the property and adjacent properties. Interviews with current employees involved in, or familiar with, operations on the real property were also conducted to identify any areas on the property where hazardous substances and petroleum products, or their derivatives, and acutely hazardous wastes may have been released or disposed. In addition, a search was made of reasonably obtainable federal, state, and local government records of each adjacent facility where there has been a release of any hazardous substance or any petroleum product or their derivatives, including aviation fuel and motor oil, and which is likely to cause or contribute to a release of any hazardous substance or any petroleum product or its derivatives, including aviation fuel or motor oil, on the real property. A radiological survey and soil/sediment sampling was conducted to assess baseline conditions of Parcel 21d that were not addressed by the soils-only NFI

  1. Magma Transport from Deep to Shallow Crust and Eruption

    Science.gov (United States)

    White, R. S.; Greenfield, T. S.; Green, R. G.; Brandsdottir, B.; Hudson, T.; Woods, J.; Donaldson, C.; Ágústsdóttir, T.

    2016-12-01

    We have mapped magma transport paths from the deep (20 km) to the shallow (6 km) crust and in two cases to eventual surface eruption under several Icelandic volcanoes (Askja, Bardarbunga, Eyjafjallajokull, Upptyppingar). We use microearthquakes caused by brittle fracture to map magma on the move and tomographic seismic studies of velocity perturbations beneath volcanoes to map the magma storage regions. High-frequency brittle failure earthquakes with magnitudes of typically 0-2 occur where melt is forcing its way through the country rock, or where previously frozen melt is repeatedly re-broken in conduits and dykes. The Icelandic crust on the rift zones where these earthquakes occur is ductile at depths greater than 7 km beneath the surface, so the occurrence of brittle failure seismicity at depths as great as 20 km is indicative of high strain rates, for which magma movement is the most likely explanation. We suggest that high volatile pressures caused by the exsolution of carbon dioxide in the deep crust is driving the magma movement and seismicity at depths of 15-20 km. Eruptions from shallow crustal storage areas are likewise driven by volatile exsolution, though additional volatiles, and in particular water are also involved in the shallow crust.

  2. Intensive Ammonia and Methane Oxidation in Organic Liquid Manure Crusts

    DEFF Research Database (Denmark)

    Nielsen, Daniel Aagren; Nielsen, Lars Peter; Schramm, Andreas

    methane oxidizing bacteria (MOB) and are known to accumulate nitrite and nitrate, indicating the presence of ammonia oxidizers (AOB). We have surveyed six manure tanks with organic covers to investigate the prevalence of MOB and AOB and to link the potential activity with physical and chemical aspects...... characterized with respect to O2 availability by in situ profiling with electrochemical microsensors. Results show that oxygen penetration increased from few micrometers up to several centimetres with crust age. AOB and ammonium oxidation are ubiquitously present in well-developed manure crusts whereas MOB were...... also CH4 emission mitigation, an organic surface crust can be effective if populations of MOB and AOB are allowed to build up....

  3. Microstructure, texture and colour development during crust formation on whole muscle chicken fillets.

    Science.gov (United States)

    Barbut, S

    2013-01-01

    1. The development of crust during a 22-min period was evaluated in an oven, and in previously cooked-in-bag products (no crust) placed in an oven for 10 min. The oven-roasted products started to develop a thin (2-4 μm) crust layer after 4 min. At that point, the colour of the fillets turned white but no browning was observed. As roasting time increased, crust thickness and shear force increased, the product turned brown and eventually black at certain spots. 2. Light microscopy revealed the shrinking of muscle fibres close to the surface, as they also lost water. At a certain point, tears between the different layers started to appear. The inner muscle fibres also progressively shrank and the spaces between them increased. Microscopy of cook-in-bag products revealed no crust formation during heating. Upon moving to the oven, crust started to form but was much faster compared with the other products. 3. Cook-in-the-bag samples showed a higher rate of cook loss during the first 12 min (to internal 70°C) compared with oven heating. This could have been due to the fast heating rate in water and/or no crust formation. 4. White colour was fully formed on water-cooked fillets within 2 min (L* = 83), while it was gradually forming on oven-roasted samples (max L* of 79 after 12 min). 5. Shear force measurements showed an increase in both treatments up to 18 min, with a decrease thereafter (when dry crust started to crack).

  4. Sulfide geochronlogy along the Southwest Indian Ridge

    Science.gov (United States)

    Yang, W.; Tao, C.; Li, H.; Liang, J.; Liao, S.

    2017-12-01

    Dragon Flag and Duanqiao hydrothermal field is located between the Indomed and Gallieni fracture zones in the ultraslow-spreading Southwest Indian Ridge (SWIR). Ten subsamples from active and inactive vents of Dragon Flag hydrothermal field and twenty-eight subsamples from Duanqiao hydrothermal field were dated using the 230Th/238U method. Four main episodes of hydrothermal activity of Duanqiao were determined according to the restricted results: 68.9-84.3, 43.9-48.4, 25.3-34.8, and 0.7-17.3 kyrs. Hydrothermal activity of Duanqiao probably started about 84.3 (±0.5) kyrs ago and ceased about 0.737 (±0.023) kyrs ago. And sulfide samples from the nearby Dragon Flag filed at the same time and the results show that the ages of most sulfides from Dragon Flag field range from 1.496(±0.176) to 5.416 (±0.116) kyrs with the oldest age estimated at 15.997 (±0.155) kyrs Münch et al. (2001) reconstructed the evolution history of Mt. Jourdanne hydrothermal field. The age dating results indicate activity in two episodes, at 70-40 and 27-13 kyrs. The hydrothermal activity in Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. The massive sulfides are younger than the sulfides from other hydrothermal fields such as Rainbow, Sonne and Ashadze-2. All these results suggest that hydrothermal activity of Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. Mt. Jourdanne is situated on an axial volcanic ridge which has both volcanic and tectonic activity. This is necessary to develop the heat source and pathways for the fluid convection, which enables the hydrothermal circulation. Hydrothermal activity in Dragon Flag Field is located next to the detachment fault termination. The detachment fault system provides a pathway for hydrothermal convection. Such style of heat source can contribute to continuous hydrothermal activity for over 1000 years. Duanqiao field is located near the central volcano and there is a hot

  5. Dew formation on the surface of biological soil crusts in central European sand ecosystems

    Directory of Open Access Journals (Sweden)

    T. Fischer

    2012-11-01

    Full Text Available Dew formation was investigated in three developmental stages of biological soil crusts (BSC, which were collected along a catena of an inland dune and in the initial substrate. The Penman equation, which was developed for saturated surfaces, was modified for unsaturated surfaces and used for prediction of dewfall rates. The levels of surface saturation required for this approach were predicted using the water retention functions and the thicknesses of the BSCs. During a first field campaign (2–3 August 2011, dewfall increased from 0.042 kg m−2 for the initial sandy substrate to 0.058, 0.143 and 0.178 kg m−2 for crusts 1 to 3, respectively. During a second field campaign (17–18 August 2011, where dew formation was recorded in 1.5 to 2.75-h intervals after installation at 21:30 CEST, dewfall increased from 0.011 kg m−2 for the initial sandy substrate to 0.013, 0.028 and 0.055 kg m−2 for crusts 1 to 3, respectively. Dewfall rates remained on low levels for the substrate and for crust 1, and decreased overnight for crusts 2 and 3 (with crust 3 > crust 2 > crust 1 throughout the campaign. Dew formation was well reflected by the model response. The suggested mechanism of dew formation involves a delay in water saturation in near-surface soil pores and extracellular polymeric substances (EPS where the crusts were thicker and where the water capacity was high, resulting in elevated vapor flux towards the surface. The results also indicate that the amount of dewfall was too low to saturate the BSCs and to observe water flow into deeper soil. Analysis of the soil water retention curves revealed that, despite the sandy mineral matrix, moist crusts clogged by swollen EPS pores exhibited a clay-like behavior. It is hypothesized that BSCs gain double benefit from suppressing their competitors by runoff generation and from improving their water supply by dew collection. Despite higher amounts of dew, the

  6. Mechanical impedance of soil crusts and water content in loamy soils

    Science.gov (United States)

    Josa March, Ramon; Verdú, Antoni M. C.; Mas, Maria Teresa

    2013-04-01

    Soil crust development affects soil water dynamics and soil aeration. Soil crusts act as mechanical barriers to fluid flow and, as their mechanical impedance increases with drying, they also become obstacles to seedling emergence. As a consequence, the emergence of seedling cohorts (sensitive seeds) might be reduced. However, this may be of interest to be used as an effective system of weed control. Soil crusting is determined by several factors: soil texture, rain intensity, sedimentation processes, etc. There are different ways to characterize the crusts. One of them is to measure their mechanical impedance (MI), which is linked to their moisture level. In this study, we measured the evolution of the mechanical impedance of crusts formed by three loamy soil types (clay loam, loam and sandy clay loam, USDA) with different soil water contents. The aim of this communication was to establish a mathematical relationship between the crust water content and its MI. A saturated soil paste was prepared and placed in PVC cylinders (50 mm diameter and 10 mm height) arranged on a plastic tray. Previously the plastic tray was sprayed with a hydrophobic liquid to prevent the adherence of samples. The samples on the plastic tray were left to air-dry under laboratory conditions until their IM was measured. To measure IM, a food texture analyzer was used. The equipment incorporates a mobile arm, a load cell to apply force and a probe. The arm moves down vertically at a constant rate and the cylindrical steel probe (4 mm diameter) penetrates the soil sample vertically at a constant rate. The equipment is provided with software to store data (time, vertical distance and force values) at a rate of up to 500 points per second. Water content in crust soil samples was determined as the loss of weight after oven-drying (105°C). From the results, an exponential regression between MI and the water content was obtained (determination coefficient very close to 1). This methodology allows

  7. Statistics of Magnetar Crusts Magnetoemission

    Directory of Open Access Journals (Sweden)

    Kondratyev V. N.

    2016-01-01

    Full Text Available Soft repeating gamma-ray (SGR bursts are considered as magnetoemission of crusts of magnetars (ultranamagnetized neutron stars. It is shown that all the SGR burst observations can be described and systematized within randomly jumping interacting moments model including quantum fluctuations and internuclear magnetic interaction in an inhomogeneous crusty nuclear matter.

  8. A deep structural ridge beneath central India

    Science.gov (United States)

    Agrawal, P. K.; Thakur, N. K.; Negi, J. G.

    A joint-inversion of magnetic satellite (MAGSAT) and free air gravity data has been conducted to quantitatively investigate the cause for Bouguer gravity anomaly over Central Indian plateaus and possible fold consequences beside Himalayan zone in the Indian sub-continent due to collision between Indian and Eurasian plates. The appropriate inversion with 40 km crustal depth model has delineated after discriminating high density and magnetisation models, for the first time, about 1500 km long hidden ridge structure trending NW-SE. The structure is parallel to Himalayan fold axis and the Indian Ocean ridge in the Arabian Sea. A quantitative relief model across a representative anomaly profile confirms the ridge structure with its highest point nearly 6 km higher than the surrounding crustal level in peninsular India. The ridge structure finds visible support from the astro-geoidal contours.

  9. Metallogenesis along the Indian Ocean Ridge System

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Ray, Dwijesh

    including India. Among these studies majority were concentrated around the Central Indian Ridge and the Southwest Indian Ridge areas, while a few observations were made around the rest of the areas in the IORS. The findings of these studies are discussed...

  10. Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate

    Science.gov (United States)

    Himmer, Phillip; Battle, Philip; Suckow, William; Switzer, Greg

    2011-01-01

    This work proposes to establish the feasibility of fabricating isolated ridge waveguides in 5% MgO:LN. Ridge waveguides in MgO:LN will significantly improve power handling and conversion efficiency, increase photonic component integration, and be well suited to spacebased applications. The key innovation in this effort is to combine recently available large, high-photorefractive-damage-threshold, z-cut 5% MgO:LN with novel ridge fabrication techniques to achieve high-optical power, low-cost, high-volume manufacturing of frequency conversion structures. The proposed ridge waveguide structure should maintain the characteristics of the periodically poled bulk substrate, allowing for the efficient frequency conversion typical of waveguides and the high optical damage threshold and long lifetimes typical of the 5% doped bulk substrate. The low cost and large area of 5% MgO:LN wafers, and the improved performance of the proposed ridge waveguide structure, will enhance existing measurement capabilities as well as reduce the resources required to achieve high-performance specifications. The purpose of the ridge waveguides in MgO:LN is to provide platform technology that will improve optical power handling and conversion efficiency compared to existing waveguide technology. The proposed ridge waveguide is produced using standard microfabrication techniques. The approach is enabled by recent advances in inductively coupled plasma etchers and chemical mechanical planarization techniques. In conjunction with wafer bonding, this fabrication methodology can be used to create arbitrarily shaped waveguides allowing complex optical circuits to be engineered in nonlinear optical materials such as magnesium doped lithium niobate. Researchers here have identified NLO (nonlinear optical) ridge waveguide structures as having suitable value to be the leading frequency conversion structures. Its value is based on having the low-cost fabrication necessary to satisfy the challenging pricing

  11. Some improved classification-based ridge parameter of Hoerl and ...

    African Journals Online (AJOL)

    Some improved classification-based ridge parameter of Hoerl and Kennard estimation techniques. ... This assumption is often violated and Ridge Regression estimator introduced by [2]has been identified to be more efficient than ordinary least square (OLS) in handling it. However, it requires a ridge parameter, K, of which ...

  12. The Imaging and Evolution of Seismic Layer 2A Thickness from a 0-70 Ma Oceanic Crustal Transect in the South Atlantic

    Science.gov (United States)

    Estep, J. D.; Reece, R.; Kardell, D. A.; Christeson, G. L.; Carlson, R. L.

    2017-12-01

    Seismic layer 2A, the uppermost igneous portion of oceanic crust, is commonly used to refer to the seismic velocities of upper crust that are bounded below by a steep vertical velocity gradient. Layer 2A velocities are known to increase with crustal age, from 2.5 km/s in crust 15 Ma. Thickness of layer 2A has been shown to increase by a factor of 2 within 1 Ma at fast spreading ridges and then remain relatively constant, while layer 2A maintains a fairly consistent thickness, irrespective of age, at slow-intermediate spreading ridges. Layer 2A thickness and velocity evolution studies to date have been largely focused on young oceanic crust very proximal to a spreading center with little investigation of changes (or lack thereof) that occur at crustal ages >10 Ma. We utilize a multichannel seismic dataset collected at 30° S in the western South Atlantic that continuously images 0 - 70 Ma oceanic crust along a single flowline generated at the slow-intermediate spreading Mid-Atlantic Ridge. We follow the methods of previous studies by processing the data to image the layer 2A event, which is then used for calculating thickness. 1D travel time forward modeling at regularly spaced age intervals across the transect provides for the conversion of time to depth thickness, and for determining the evolution of velocities with age. Our results show layer 2A in 20 Ma crust is roughly double the thickness of that in crust 0-5 Ma (830 vs. 440 m), but thickness does not appear to change beyond 20 Ma. The layer 2A event is readily observable in crust 0-50 Ma, is nearly completely absent in crust 50-65 Ma, and then reappears with anomalously high amplitude and lateral continuity in crust 65-70 Ma. Our results suggest that layer 2A thickens with age at the slow-intermediate spreading southern Mid-Atlantic Ridge, and that layer 2A either continues to evolve at the older crustal ages, well beyond the expected 10-15 Ma "mature age", or that external factors have altered the crust at

  13. Discovery and Distribution of Black Smokers on the Western Galapagos Spreading Center: Implications for Spatial and Temporal Controls on High Temperature Venting at Ridge/Hotspot Intersections

    Science.gov (United States)

    Haymon, R. M.; Anderson, P. G.; Baker, E. T.; Resing, J. A.; White, S. M.; MacDonald, K. C.

    2006-12-01

    Though nearly one-fifth of the mid-ocean ridge (MOR) lies on or near hotspots, it has been debated whether hotspots increase or decrease MOR hydrothermal flux, or affect vent biota. Despite hotspot enhancement of melt supply, high-temperature vent plumes are enigmatically sparse along two previously-surveyed ridge- hotspot intersections [Reykjanes Ridge (RR), Southeast Indian Ridge (SEIR)]. This has been attributed to crustal thickening by excess volcanism. During the 2005-06 GalAPAGoS expedition, we conducted nested sonar, plume, and camera surveys along a 540 km-long portion of the Galapagos Spreading Center (GSC) where the ridge intersects the Galapagos hotspot at lon. 94.5 -89.5 deg. W. Although MOR hydrothermal springs were first found along the eastern GSC crest in 1977 near lon. 86 deg. W, the GalAPAGoS smokers are the first active high-temperature vents to be found anywhere along the Cocos-Nazca plate boundary. Active and/or recently-inactive smokers were located beneath plumes at 5 sites on the seafloor between lon. 91 deg. W and 94.5 deg. W (see Anderson et al., this session) during near-bottom, real-time fiber-optic Medea camera surveys. Smokers occur along eruptive seafloor fissures atop axial volcanic ridges near the middles of ridge segments, mainly in areas underlain by relatively shallow, continuous axial magma chamber (AMC) seismic reflectors. These findings (1) support magmatic, rather than tectonic, control of GSC smoker distribution; (2) demonstrate that thick crust at MOR-hotspot intersections does not prevent high-temperature hydrothermal vents from forming; and, (3) appear to be inconsistent with models suggesting that enhanced hydrothermal cooling causes abrupt deepening of the AMC and transition from non-rifted to rifted GSC morphology near lon. 92.7 deg. W. The widely-spaced smoker sites located on different GSC segments exhibit remarkably similar characteristics and seafloor settings. Most sites are mature or extinct, and are on lava

  14. Spatial dynamic of mobile dunes, soil crusting and Yobe's bank ...

    African Journals Online (AJOL)

    In the fluvio-deltaic area of Kadzell, the soil crusting and the Yobe River retreat remain the major damages. The crusting area has been multiplied by more than two while the lateral migration of the Yobe bank reached near of 3 m.yr-1. This study highlights the key role of man in the process of degradation related to climate ...

  15. Conductivity structure of crust and mantle in the northeastern Japan prospected by MT and GEMIT method. 1. ; East to west section along 40[degree]40'N traverse

    Energy Technology Data Exchange (ETDEWEB)

    Nabetani, S; Maekawa, K; Uchida, K [Hirosaki Univ., Aomori (Japan). Faculty of Science

    1992-08-31

    In order to investigate geophysical structure, especially conductivity structure, of the crust and the mantle in the northeastern Japan, exploration was carried out by MT and GEMIT method. The GEMIT is an electromagnetic prospecting method recently developed, which means geo-electromagnetic induction tomography. This report concerns the first traverse carried out on the above-mentioned area in 1990. Thirty six observation points were located at latitude 40[degree]35 to 45'N from the sea of Japan to the Pacific Ocean. Three components of geomagnetic field and two horizontal components of electric field were measured at each point. Geomagnetic and differential electric fields detected by a system of three induction magnetometers and two sets of differential electrodes were recorded by 14-bit digital recorder. Planar and sectional distribution of resistivity in the crust and the mantle was profiled been on these data. In this paper, these profiles are shown and structure of the upper and lower crust and the mantle is discussed. 6 refs., 5 figs.

  16. Entrainment in the inner crust of a neutron star

    International Nuclear Information System (INIS)

    Chamel, N.

    2004-01-01

    The inner crust of a neutron star, which is composed of a solid Coulomb lattice of nuclei immersed in a neutron super-fluid, is studied from both a macroscopic and a microscopic level. In the first part, we develop a non-relativistic but 4-dimensionally covariant formulation of the hydrodynamics of a perfect fluid mixture based on a variational principle. This formalism is applied to the description of neutron star crust as 2-fluid model, a neutron super-fluid and a plasma of nuclei and electrons coupled via non dissipative entrainment effects, whose microscopic evaluation is studied in a second part. Applying mean field methods beyond the Wigner-Seitz approximation, the Bragg scattering of dripped neutrons upon crustal nuclei lead to a 'mesoscopic' effective neutron mass, which unlike the 'microscopic' effective mass, takes very large values compared to the bare mass in the middle layers of the crust. (author)

  17. Design assessment for the Bethel Valley FFA Upgrades at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-09-01

    This report describes the proposed upgrades to Building 3025 and the Evaporator Area at Oak Ridge National Laboratory. Design assessments, specifications and drawings are provided. Building 3025 is a general purpose research facility utilized by the Materials and Ceramics Division to conduct research on irradiated materials. The Evaporator Area, building 2531, serves as the collection point for all low-level liquid wastes generated at the Oak Ridge National Laboratory

  18. Crust morphology and crispness development during deep-fat frying of potato

    NARCIS (Netherlands)

    Koerten, van K.N.; Schutyser, M.A.I.; Somsen, D.; Boom, R.M.

    2015-01-01

    Crust formation is an important factor in determining the crispness of French fries. This study aimed at unravelling detailed structural and textural properties of the crust in relation to crispness during frying as a function of the process temperature and time. X-ray tomography showed a larger

  19. Electrical resistivity and porosity structure of the upper Biscayne Aquifer in Miami-Dade County, Florida

    Science.gov (United States)

    Whitman, Dean; Yeboah-Forson, Albert

    2015-12-01

    Square array electrical soundings were made at 13 sites in the Biscayne Aquifer distributed between 1 and 20 km from the shoreline. These soundings were modeled to investigate how resistivity varies spatially and with depth in the upper 15 m of the aquifer. Porosity was estimated from the modeled formation resistivity and observed pore fluid resistivity with Archie's Law. The models were used to interpolate resistivity and porosity surfaces at -2, -5, -8, and -15 m elevations. Modeled resistivity in the unsaturated zone is generally higher than 300 Ω m with the resistivity at sites with thick unsaturated zones greater than 1000 Ω m. Resistivity in the saturated zone ranges from 30 to 320 Ω m. At many sites in the western portions of the study area, resistivity is constant or increases with depth whereas sites in the center of the Atlantic Coastal Ridge exhibit a distinct low resistivity zone (ρ aquifer. The estimated porosity ranges between 14% and 71% with modal values near 25%. The porosity structure varies both with depth and spatially. Western sites exhibit a high porosity zone at shallow depths best expressed in a NE-SW trending zone of 40-50% porosity situated near the western margin of the Atlantic Coastal Ridge. This zone roughly corresponds in depth with the Q5 chronostratigraphic unit of the Miami Fm. which constitutes the upper flow unit of the Biscayne Aquifer. The highest porosity (>50%) is seen at elevations below -5 m at sites in the center of the Atlantic Coastal Ridge and likely corresponds to solution features. The general NE-SW trend of the resistivity and porosity structure suggests a causal connection with the Pleistocene paleogeography and sedimentary environments.

  20. Variations of Oceanic Crust in the Northeastern Gulf of Mexico From Integrated Geophysical Analysis

    Science.gov (United States)

    Liu, M.; Filina, I.

    2017-12-01

    Tectonic history of the Gulf of Mexico remains a subject of debate due to structural complexity of the area and lack of geological constraints. In this study, we focus our investigation on oceanic domain of the northeastern Gulf of Mexico to characterize the crustal distribution and structures. We use published satellite derived potential fields (gravity and magnetics), seismic refraction data (GUMBO3 and GUMBO4) and well logs to build the subsurface models that honor all available datasets. In the previous study, we have applied filters to potential fields grids and mapped the segments of an extinct mid-ocean ridge, ocean-continent boundary (OCB) and several transform faults in our study area. We also developed the 2D potential fields model for seismic profile GUMBO3 (Eddy et al., 2014). The objectives of this study are: 1) to develop a similar model for another seismic profile GUMBO 4 (Christeson, 2014) and derive subsurface properties (densities and magnetic susceptibilities), 2) to compare and contrast the two models, 3) to establish spatial relationship between the two crustal domains. Interpreted seismic velocities for the profiles GUMBO 3 and GUMBO 4 show significant differences, suggesting that these two profiles cross different segments of oceanic crust. The total crustal thickness along GUMBO 3 is much thicker (up to 10 km) than the one for GUMBO 4 (5.7 km). The upper crustal velocity along GUMBO 4 (6.0-6.7 km/s) is significantly higher than the one for GUMBO 3 ( 5.8 km/s). Based our 2D potential fields models along both of the GUMBO lines, we summarize physical properties (seismic velocities, densities and magnetic susceptibilities) for different crustal segments, which are proxies for lithologies. We use our filtered potential fields grids to establish the spatial relationship between these two segments of oceanic crust. The results of our integrated geophysical analysis will be used as additional constraints for the future tectonic reconstruction of

  1. Crust and mantle of the gulf of Mexico

    Science.gov (United States)

    Moore, G.W.

    1972-01-01

    A SEEMING paradox has puzzled investigators of the crustal structure of the Gulf of Mexico since Ewing et al.1 calculated that a unit area of the rather thick crust in the gulf contains less mass than does a combination of the crust and enough of the upper mantle to make a comparable thickness in the Atlantic Ocean. They also noted that the free-air gravity of the gulf is essentially normal and fails by a large factor to be low enough to reflect the mass difference that they calculated. We propose a solution to this problem. ?? 1972 Nature Publishing Group.

  2. Geomorphological investigation of multiphase glacitectonic composite ridge systems in Svalbard

    Science.gov (United States)

    Lovell, Harold; Benn, Douglas I.; Lukas, Sven; Spagnolo, Matteo; Cook, Simon J.; Swift, Darrel A.; Clark, Chris D.; Yde, Jacob C.; Watts, Tom

    2018-01-01

    Some surge-type glaciers on the High-Arctic archipelago of Svalbard have large glacitectonic composite ridge systems at their terrestrial margins. These have formed by rapid glacier advance into proglacial sediments during the active surge phase, creating multicrested moraine complexes. Such complexes can be formed during single surge advances or multiple surges to successively less-extensive positions. The few existing studies of composite ridge systems have largely relied on detailed information on internal structure and sedimentology to reconstruct their formation and links to surge processes. However, natural exposures of internal structure are commonly unavailable, and the creation of artificial exposures is often problematic in fragile Arctic environments. To compensate for these issues, we investigate the potential for reconstructing composite ridge system formation based on geomorphological evidence alone, focusing on clear morphostratigraphic relationships between ridges within the moraine complex and relict meltwater channels/outwash fans. Based on mapping at the margins of Finsterwalderbreen (in Van Keulenfjorden) and Grønfjordbreen (in Grønfjorden), we show that relict meltwater channels that breach outer parts of the composite ridge systems are in most cases truncated upstream within the ridge complex by an inner pushed ridge or ridges at their ice-proximal extents. Our interpretation of this relationship is that the entire composite ridge system is unlikely to have formed during the same glacier advance but is instead the product of multiple advances to successively less-extensive positions, whereby younger ridges are emplaced on the ice-proximal side of older ridges. This indicates that the Finsterwalderbreen composite ridge system has been formed by multiple separate advances, consistent with the cyclicity of surges. Being able to identify the frequency and magnitude of former surges is important as it provides insight into the past behaviour of

  3. Oak Ridge reservation land-use plan

    Energy Technology Data Exchange (ETDEWEB)

    Bibb, W. R.; Hardin, T. H.; Hawkins, C. C.; Johnson, W. A.; Peitzsch, F. C.; Scott, T. H.; Theisen, M. R.; Tuck, S. C.

    1980-03-01

    This study establishes a basis for long-range land-use planning to accommodate both present and projected DOE program requirements in Oak Ridge. In addition to technological requirements, this land-use plan incorporates in-depth ecological concepts that recognize multiple uses of land as a viable option. Neither environmental research nor technological operations need to be mutually exclusive in all instances. Unique biological areas, as well as rare and endangered species, need to be protected, and human and environmental health and safety must be maintained. The plan is based on the concept that the primary use of DOE land resources must be to implement the overall DOE mission in Oak Ridge. This document, along with the base map and overlay maps, provides a reasonably detailed description of the DOE Oak Ridge land resources and of the current and potential uses of the land. A description of the land characteristics, including geomorphology, agricultural productivity and soils, water courses, vegetation, and terrestrial and aquatic animal habitats, is presented to serve as a resource document. Essentially all DOE land in the Oak Ridge area is being fully used for ongoing DOE programs or has been set aside as protected areas.

  4. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-02-01

    This annual groundwater report contains groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the Chestnut Ridge Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline

  5. A New Device for Studying Deep-Frying Behavior of Batters and Resulting Crust Properties

    NARCIS (Netherlands)

    Visser, J.E.; Beukelaer, de H.J.; Hamer, R.J.; Vliet, van T.

    2008-01-01

    The formation and properties of a crust during and after deep frying are difficult to study. Batter pickup (the amount of batter adhering to a product) and core properties affect crust formation and properties of the crust in such way that it is difficult to compare batters of different viscosity or

  6. Safety Analysis Report for Packaging (SARP) of the Oak Ridge National Laboratory Garden Carrier No. 2. Revision 1

    International Nuclear Information System (INIS)

    Box, W.D.; Klima, B.B.; Seagren, R.D.; Shappert, L.B.; Watson, C.D.; Aramayo, G.A.

    1979-08-01

    An analytical evaluation of the Oak Ridge National Laboratory Garden Carrier No. 2 was made to demonstrate its compliance with the regulations governing off-site radioactive material shipping packages. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of the evaluation show that the cask complies with the applicable regulations

  7. Safety Analysis Report for Packaging (SARP) of the Oak Ridge National Laboratory Shipping Cask D-38. Revision 1

    International Nuclear Information System (INIS)

    Box, W.D.; Shappert, L.B.; Seagren, R.D.; Watson, C.D.; Hammond, C.R.; Klima, B.B.

    1979-09-01

    An analytical evaluation of the Oak Ridge National Laboratory Shipping Cask D-38 (solids shipments) was made to demonstrate its compliance with the regulations governing off-site radioactive material shipping packages. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of the evaluation show that the cask complies with the applicable regulations

  8. Safety Analysis Report for Packaging (SARP) of the Oak Ridge National Laboratory Garden Carrier No. 2. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Box, W.D.; Klima, B.B.; Seagren, R.D.; Shappert, L.B.; Watson, C.D.; Aramayo, G.A.

    1979-08-01

    An analytical evaluation of the Oak Ridge National Laboratory Garden Carrier No. 2 was made to demonstrate its compliance with the regulations governing off-site radioactive material shipping packages. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of the evaluation show that the cask complies with the applicable regulations.

  9. Safety Analysis Report for Packaging (SARP) of the Oak Ridge National Laboratory Shipping Cask D-38. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Box, W.D.; Shappert, L.B.; Seagren, R.D.; Watson, C.D.; Hammond, C.R.; Klima, B.B.

    1979-09-01

    An analytical evaluation of the Oak Ridge National Laboratory Shipping Cask D-38 (solids shipments) was made to demonstrate its compliance with the regulations governing off-site radioactive material shipping packages. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of the evaluation show that the cask complies with the applicable regulations.

  10. Outer crust of nonaccreting cold neutron stars

    International Nuclear Information System (INIS)

    Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen

    2006-01-01

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars

  11. Oak Ridge low-level waste disposal facility designs

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Jones, L.S.

    1991-01-01

    The strategic planning process that culuminates in the identification, selection, construction, and ultimate operation of treatment, storage, and disposal facilities for all types of low-level waste (LLW) generated on the Oak Ridge Reservation (ORR) was conducted under the Low-Level Waste Disposal Development and Demonstration (LLWDDD) Program. This program considered management of various concentrations of short half-life radionuclides generated principally at Oak Ridge National Laboratory (ORNL) and long half-life radionuclides (principally uranium) generated at the Oak Ridge Y-12 Plant and the Oak Ridge K-25 Plant. The LLWDDD Program is still ongoing and involves four phases: (1) alternative identification and evaluation, (2) technology demonstration, (3) limited operational implementation, and (4) full operational implementation. This document provides a discussion of these phases

  12. Sub-millimeter scale magnetostratigraphy and environmental magnetism of ferromanganese crusts using a scanning SQUID microscope

    Science.gov (United States)

    Oda, H.; Noguchi, A.; Yamamoto, Y.; Usui, A.; Ito, T.; Kawai, J.; Takahashi, H.

    2017-12-01

    Ferromanganese crusts are chemical sedimentary rock composed mainly of iron-manganese oxide. Because the ferromanganese crusts grow very slowly on the sea floor at rates of 3-10 mm/Ma, long-term deep-sea environmental changes can be reconstructed from the ferromanganese crusts. Thus, it is important to provide reliable age model for the crusts. For the past decades 10Be/9Be dating method has been used extensively to give age models for crusts younger than 15 Ma. Alternatively, sub-millimeter scale magnetostratigraphic study on a ferromanganese crust sample using a scanning SQUID (superconducting quantum interference device) microscope (Kawai et al., 2016; Oda et al., 2016) has been applied successfully (e.g. Oda et al., 2011; Noguchi et al. 2017). Also, environmental magnetic mapping was successful for the ferromanganese crust from the Takuyo Daigo Seamount (Noguchi et al., 2017). The ferromanganese crust used in this study was sampled from the Hanzawa Seamount, Ryukyu trench and the Shotoku Seamount. The vertical component of the magnetic field above thin section samples of the ferromanganese crust was measured using the scanning SQUID microscope on 100 μm grids. Magnetic mapping of the Hanzawa Seamount shows sub-millimeter scale magnetic stripes parallel to lamina. By correlating the boundaries of magnetic stripes with known geomagnetic reversals, we estimated that average growth rate of the Hanzawa Seamount is 2.67 +/- 0.04 mm/Ma , which is consistent with that deduced from the 10Be/9Be dating method (2.56 +/- 0.04 mm/Ma). The crust sample from the Shotoku Seamount used by Oda et al. (2011) shows prominent periodical lamination. Further details are going to be discussed together with the environmental magnetic mapping.

  13. Low Density Symmetry Energy Effects and the Neutron Star Crust Properties

    International Nuclear Information System (INIS)

    Kubis, S.; Alvarez-Castillo, D.E.; Porebska, J.

    2010-01-01

    The form of the nuclear symmetry energy E s around saturation point density leads to a different crust-core transition point in the neutron star and affects the crust properties. We show that the knowledge of E s close to the saturation point is not sufficient to determine the position of the transition point and the very low density behaviour is required. We also claim that crust properties are strongly influenced by the very high density behaviour of E s , so in order to conclude about the form of low density part of the symmetry energy from astrophysical data one must isolate properly the high density part. (authors)

  14. Osmium isotope and highly siderophile element systematics of the lunar crust

    Science.gov (United States)

    Day, J.M.D.; Walker, R.J.; James, O.B.; Puchtel, I.S.

    2010-01-01

    Coupled 187Os/188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ?? 0.3 pg g- 1 Os, 1.5 ?? 0.6 pg g- 1 Ir, 6.8 ?? 2.7 pg g- 1 Ru, 16 ?? 15 pg g- 1 Pt, 33 ?? 30 pg g- 1 Pd and 0.29 ?? 0.10 pg g- 1 Re (??? 0.00002 ?? CI) and Re/Os ratios that were modestly elevated (187Re/188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (??? 0.00007 ?? CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle-crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments. If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust-mantle concentration ratios (D-values) must be ??? 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust-mantle HSE partitioning for the Earth and Moon are somewhat

  15. A review of shear wave splitting in the crack-critical crust

    Science.gov (United States)

    Crampin, Stuart; Chastin, Sebastien

    2003-10-01

    Over the last 15 years, it has become established that crack-induced stress-aligned shear wave splitting, with azimuthal anisotropy, is an inherent characteristic of almost all rocks in the crust. This means that most in situ rocks are pervaded by fluid-saturated microcracks and consequently are highly compliant. The evolution of such stress-aligned fluid-saturated grain-boundary cracks and pore throats in response to changing conditions can be calculated, in some cases with great accuracy, using anisotropic poro-elasticity (APE). APE is tightly constrained with no free parameters, yet dynamic modelling with APE currently matches a wide range of phenomena concerning anisotropy, stress, shear waves and cracks. In particular, APE has allowed the anisotropic response of a reservoir to injection to be calculated (predicted with hindsight), and the time and magnitude of an earthquake to be correctly stress-forecast. The reason for this calculability and predictability is that the microcracks in the crust are so closely spaced that they form critical systems. This crack-critical crust leads to a new style of geophysics that has profound implications for almost all aspects of pre-fracturing deformation of the crust and for solid-earth geophysics and geology. We review past, present and speculate about the future of shear wave splitting in the crack-critical crust. Shear wave splitting is seen to be a dynamic measure of the deformation of the rock mass. There is some good news and some bad news for conventional geophysics. Many accepted phenomena are no longer valid at high spatial and temporal resolution. A major effect is that the detailed crack geometry changes with time and varies from place to place in response to very small previously negligible changes. However, at least in some circumstances, the behaviour of the rock in the highly complex inhomogeneous Earth may be calculated and the response predicted, opening the way to possible control by feedback. The need is

  16. [Nitrogen fixation potential of biological soil crusts in southeast edge of Tengger Desert, Northwest China].

    Science.gov (United States)

    Zhang, Peng; Li, Xin-Rong; Zhang, Zhi-Shan; Pan, Yan-Xia; Liu, Yan-Mei; Su, Jie-Qiong

    2012-08-01

    Taking three typical types of biological soil crusts (BSCs), i.e., cyanobacterial-algal crust, lichen crust, and moss crust, in the southeast fringe of Tengger Desert as test objects, this paper studied their nitrogen fixation potential, seasonal fluctuation, and responses to the environmental factors from June 2010 to May 2011. During the whole study period, the nitrogenase activity (NA) of the cyanobacterial-algal, lichen, and moss crusts had significant difference, being 14-133, 20-101, and 4-28 micromol x m(-2) x h(-1), respectively, which indicated the critical role of the species composition of BSCs in nitrogen fixation. The NA of the three crust types had similar response characteristics to environmental factors. The NA had less correlation with the precipitation during the study period, but was positively correlated to the spring > summer > winter. The high air temperature in summer and the low air temperature (desert zone had nitrogen fixation capacity throughout the year, and the controlling effects of environmental factors on the nitrogen fixation were hierarchical. Water condition was the key factor affecting the nitrogen fixation rate and duration of the crusts, while under the conditions of sufficient water supply and carbon storage, heat condition dominated the crusts nitrogen fixation rate.

  17. Continental Growth and Recycling in Convergent Orogens with Large Turbidite Fans on Oceanic Crust

    Directory of Open Access Journals (Sweden)

    Ben D. Goscombe

    2013-07-01

    Full Text Available Convergent plate margins where large turbidite fans with slivers of oceanic basement are accreted to continents represent important sites of continental crustal growth and recycling. Crust accreted in these settings is dominated by an upper layer of recycled crustal and arc detritus (turbidites underlain by a layer of tectonically imbricated upper oceanic crust and/or thinned continental crust. When oceanic crust is converted to lower continental crust it represents a juvenile addition to the continental growth budget. This two-tiered accreted crust is often the same thickness as average continental crustal and is isostatically balanced near sea level. The Paleozoic Lachlan Orogen of eastern Australia is the archetypical example of a tubidite-dominated accretionary orogeny. The Neoproterozoic-Cambrian Damaran Orogen of SW Africa is similar to the Lachlan Orogen except that it was incorporated into Gondwana via a continent-continent collision. The Mesozoic Rangitatan Orogen of New Zealand illustrates the transition of convergent margin from a Lachlan-type to more typical accretionary wedge type orogen. The spatial and temporal variations in deformation, metamorphism, and magmatism across these orogens illustrate how large volumes of turbidite and their relict oceanic basement eventually become stable continental crust. The timing of deformation and metamorphism recorded in these rocks reflects the crustal thickening phase, whereas post-tectonic magmatism constrains the timing of chemical maturation and cratonization. Cratonization of continental crust is fostered because turbidites represent fertile sources for felsic magmatism. Recognition of similar orogens in the Proterozoic and Archean is important for the evaluation of crustal growth models, particularly for those based on detrital zircon age patterns, because crustal growth by accretion of upper oceanic crust or mafic underplating does not readily result in the addition of voluminous zircon

  18. Lateral ridge split and immediate implant placement in moderately resorbed alveolar ridges: How much is the added width?

    Directory of Open Access Journals (Sweden)

    Amin Rahpeyma

    2013-01-01

    Full Text Available Background: Lateral ridge split technique is a way to solve the problem of the width in narrow ridges with adequate height. Simultaneous insertion of dental implants will considerably reduce the edentulism time. Materials and Methods: Twenty-five patients who were managed with ridge splitting technique were enrolled. Thirty-eight locations in both jaws with near equal distribution in quadrants received 82 dental fixtures. Beta Tricalcium phosphate (Cerasorb® was used as biomaterial to fill the intercortical space. Submerged implants were used and 3 months later healing caps were placed. Direct bone measurements before and after split were done with a Collis. Patients were clinically re-evaluated at least 6 months after implant loading. All the data were analyzed by Statistical Package for Social Sciences (SPSS software version 11.5 (SPSS Inc, Chicago Illinois, USA. Frequency of edentulous spaces and pre/post operative bone width was analyzed. Paired t-test was used for statistical analysis. Difference was considered significant if P value was less than 0.05. Results: Mean value for presplit width was 3.2 ± 0.34 mm while post-split mean width was 5.57 ± 0.49 mm. Mean gain in crest ridge after ridge splitting was 2 ± 0.3 mm. Statistical analysis showed significant differences in width before and after operation ((P < 0.05. All implants (n = 82 survived and were in full function at follow up (at least 6 months after implant loading. Conclusion: Ridge splitting technique in both jaws showed the predictable outcomes, if appropriate cases selected and special attention paid to details; then the waiting time between surgery and beginning of prosthodontic treatment can be reduced to 3 month.

  19. Magmatic tectonic effects of high thermal regime at the site of active ridge subduction: the Chile Triple Junction model

    Science.gov (United States)

    Lagabrielle, Yves; Guivel, Christèle; Maury, René C.; Bourgois, Jacques; Fourcade, Serge; Martin, Hervé

    2000-11-01

    High thermal gradients are expected to be found at sites of subduction of very young oceanic lithosphere and more particularly at ridge-trench-trench (RTT) triple junctions, where active oceanic spreading ridges enter a subduction zone. Active tectonics, associated with the emplacement of two main types of volcanic products, (1) MORB-type magmas, and (2) calc-alkaline acidic magmas in the forearc, also characterize these plate junction domains. In this context, MORB-type magmas are generally thought to derive from the buried active spreading center subducted at shallow depths, whereas the origin of calc-alkaline acidic magmas is more problematic. One of the best constrained examples of ridge-trench interaction is the Chile Triple Junction (CTJ) located southwest of the South American plate at 46°12'S, where the active Chile spreading center enters the subduction zone. In this area, there is a clear correlation between the emplacement of magmatic products and the migration of the triple junction along the active margin. The CTJ lava population is bimodal, with mafic to intermediate lavas (48-56% SiO 2) and acidic lavas ranging from dacites to rhyolites (66-73% SiO 2). Previous models have shown that partial melting of oceanic crust plus 10-20% of sediments, leaving an amphibole- and plagioclase-rich residue, is the only process that may account for the genesis of acidic magmas. Due to special plate geometry in the CTJ area, a given section of the margin may be successively affected by the passage of several ridge segments. We emphasize that repeated passages will lead to the development of very high thermal gradients allowing melting of rocks of oceanic origin at temperatures of 800-900°C and low pressures, corresponding to depths of 10-20 km depth only. In addition, the structure of the CTJ forearc domain is dominated by horizontal displacements and tilting of crustal blocks along a network of strike-slip faults. The occurrence of such a deformed domain implies

  20. Influence of Maillard products from bread crust on magnesium bioavailability in rats.

    Science.gov (United States)

    Roncero-Ramos, Irene; Delgado-Andrade, Cristina; Morales, Francisco J; Navarro, María Pilar

    2013-06-01

    Consumption of Maillard reaction products (MRPs) present in food has been related to deterioration of protein digestibility and changes in mineral bioavailability. We aimed to investigate the effects of MRP intake from bread crust on magnesium balance and tissue distribution, seeking causative factors among its different components. During the final stage of the trial, magnesium digestibility improved by around 15% in rats fed diets containing bread crust or its derivatives compared with the control diet. Despite certain enhancements in magnesium bioavailability in this stage, for the experimental period as a whole, this parameter remained unchanged. However, specific changes in the content and/or concentration in some organs were observed, particularly in the femur, where magnesium levels were higher due to the smaller size of the bones. Consumption of MRPs from bread crust or its different components did not modify the magnesium balance. Nevertheless, the bread crust fractions led to some changes in magnesium tissue distribution which did not match the effects induced by complete bread crust intake, suggesting the importance of designing studies with real-food systems, in order to reinforce the validity of the findings obtained. © 2012 Society of Chemical Industry.

  1. Geochemistry, Nd-Pb Isotopes, and Pb-Pb Ages of the Mesoproterozoic Pea Ridge Iron Oxide-Apatite–Rare Earth Element Deposit, Southeast Missouri

    Science.gov (United States)

    Ayuso, Robert A.; Slack, John F.; Day, Warren C.; McCafferty, Anne E.

    2016-01-01

    magnetite ore shared a common origin from a similar source.Lead isotope ratios are diverse: (1) host rhyolite has 206Pb/204Pb from 24.261 to 50.091; (2) Pea Ridge and regional galenas have 206Pb/204Pb from 16.030 to 33.548; (3) REE-rich breccia, magnetite ore, and specular hematite rock are more radiogenic than galena; (4) REE-rich breccias have high 206Pb/204Pb (38.122–1277.61) compared to host rhyolites; and (5) REE-rich breccias are more radiogenic than magnetite ore and specular-hematite rock, having 206Pb/204Pb up to 230.65. Radiogenic 207Pb/206Pb age estimates suggest the following: (1) rhyolitic host rocks have ages of ~1.50 Ga, (2) magnetite ore is ~1.44 Ga, and (3) REE-rich breccias are ~1.48 Ga. These estimates are broadly consistent and genetically link the host rhyolite, REE-rich breccia, and magnetite ore as being contemporaneous.Alteration style and mineralogical or textural distinctions among the magnetite-rich rocks and REE-rich breccias do not correlate with different isotopic sources. In our model, magmatic fluids leached metals from the coeval felsic rocks (rhyolites), which provided the metal source reflected in the compositions of the REE-rich breccias and mineralized rocks. This model allows for the likelihood of contributions from other genetically related felsic and intermediate to more mafic rocks stored deeper in the crust. The deposit thus records an origin as a magmatic-hydrothermal system that was not affected by Nd and Pb remobilization processes, particularly if these processes also triggered mixing with externally sourced metal-bearing fluids. The Pea Ridge deposit was part of a single, widespread, homogeneous mixing system that produced a uniform isotopic composition, thus representing an excellent example of an igneous-dominated system that generated coeval magmatism and REE mineralization. Geochemical features suggest that components in the Pea Ridge deposit originated from sources in an orogenic margin. Basaltic magmatism produced

  2. Remedial investigation work plan for Chestnut Ridge Operable Unit 4 (Rogers Quarry/Lower McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Oak Ridge Y-12 Plant includes - 800 acres near the northeast comer of the reservation and adjacent to the city of Oak Ridge (Fig. 1-1). The plant is a manufacturing and developmental engineering facility that produced components for various nuclear weapons systems and provides engineering support to other Energy Systems facilities. More than 200 contaminated sites have been identified at the Y-12 Plant that resulted from past waste management practices. Many of the sites have operable units (OUs) based on priority and on investigative and remediation requirements. This Remedial Investigation RI work plan specifically addresses Chestnut Ridge OU 4. Chestnut Ridge OU 4 consists of Rogers Quarry and Lower McCoy Branch (MCB). Rogers Quarry, which is also known as Old Rogers Quarry or Bethel Valley Quarry was used for quarrying from the late 1940s or early 1950s until about 1960. Since that time, the quarry has been used for disposal of coal ash and materials from Y-12 production operations, including classified materials. Disposal of coal ash ended in July 1993. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern, support an Ecological Risk Assessment and a Human Health Risk Assessment, support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this work plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU 4. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the risk posed to human health and the environment by OU 4.

  3. Responses of photosynthetic properties and chloroplast ultrastructure of two moss crusts from a desert biological soil crust to supplementary UV-B radiation

    Science.gov (United States)

    Hui, Rong; Li, Xinrong; Zhao, Yang; Pan, Yanxia

    2016-04-01

    Our understanding of plant responses to supplementary ultraviolet-B (UV-B) radiation due to stratospheric ozone depletion has improved over recent decades. However, research on biological soil crusts (BSCs) is scarce and it remains controversial. Laboratory studies were conducted to investigate the influence of UV-B radiation on the Bryum argenteum and Didymodon vinealis isolated from BSCs, which are both dominant species in moss crusts found within patches of shrubs and herbs in the Tengger Desert of northern China. The aim of the current work was to evaluate whether supplementary UV-B radiation affected photosynthetic properties and chloroplast ultrastructure of two moss crusts and whether response differences were observed between the crusts. Four levels of UV-B radiation of 2.75 (control), 3.08, 3.25, and 3.41 W m-2 was achieved using fluorescence tube systems for 10 days, simulating 0, 6, 9, and 12% of stratospheric ozone at the latitude of Shapotou, respectively. We measured photosynthetic apparatus as assessed by chlorophyll a fluorescence parameters, photosynthetic pigment contents, and observations of chloroplast ultrastructure. Additionally, soluble proteins and UV-B absorbing compounds were simultaneously investigated. The results of this study showed that chlorophyll a fluorescence parameters (i.e., the maximal quantum yield of PSII photochemistry, the effective quantum yield of PSII photochemistry, and photochemical quenching coefficient), photosynthetic pigment contents, soluble protein contents, total flavonoid contents and the ultrastructure were negatively influenced by elevated UV-B radiation and the degree of detrimental effects significantly increased with the intensity of UV-B radiation. Moreover, results demonstrated that the negative effects on photosynthesis and chloroplast ultrastructure were more serious in B. argenteum than that in D. vinealis. These results may not only provide a potential mechanism for supplemental UV-B effects on

  4. Earth's oldest stable crust in the Pilbara Craton formed by cyclic gravitational overturns

    Science.gov (United States)

    Wiemer, Daniel; Schrank, Christoph E.; Murphy, David T.; Wenham, Lana; Allen, Charlotte M.

    2018-05-01

    During the early Archaean, the Earth was too hot to sustain rigid lithospheric plates subject to Wilson Cycle-style plate tectonics. Yet by that time, up to 50% of the present-day continental crust was generated. Preserved continental fragments from the early Archaean have distinct granite-dome/greenstone-keel crust that is interpreted to be the result of a gravitationally unstable stratification of felsic proto-crust overlain by denser mafic volcanic rocks, subject to reorganization by Rayleigh-Taylor flow. Here we provide age constraints on the duration of gravitational overturn in the East Pilbara Terrane. Our U-Pb ages indicate the emplacement of 3,600-3,460-million-year-old granitoid rocks, and their uplift during an overturn event ceasing about 3,413 million years ago. Exhumation and erosion of this felsic proto-crust accompanied crustal reorganization. Petrology and thermodynamic modelling suggest that the early felsic magmas were derived from the base of thick ( 43 km) basaltic proto-crust. Combining our data with regional geochronological studies unveils characteristic growth cycles on the order of 100 million years. We propose that maturation of the early crust over three of these cycles was required before a stable, differentiated continent emerged with sufficient rigidity for plate-like behaviour.

  5. Orientationally ordered ridge structures of aluminum films on hydrogen terminated silicon

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Pantleon, Karen

    2006-01-01

    Films of aluminum deposited onto Si(100) substrates show a surface structure of parallel ridges. On films deposited on oxidized silicon substrates the direction of the ridges is arbitrary, but on films deposited on hydrogen-terminated Si(100) the ridges are oriented parallel to the < 110 > direct......Films of aluminum deposited onto Si(100) substrates show a surface structure of parallel ridges. On films deposited on oxidized silicon substrates the direction of the ridges is arbitrary, but on films deposited on hydrogen-terminated Si(100) the ridges are oriented parallel to the ... > directions on the silicon substrate. The ridge structure appears when the film thickness is above 500 nm, and increasing the film thickness makes the structure more distinct. Anodic oxidation enhances the structure even further. X-ray diffraction indicates that grains in the film have mostly (110) facets...

  6. The role of the gluten network in the crispness of bread crust

    NARCIS (Netherlands)

    Primo-Martín, C.; Pijpekamp, A.v.d.; Vliet, T.v.; Jongh, H.H.J.d.; Plijter, J.J.; Hamer, R.J.

    2006-01-01

    Crispness features of baked products strongly determine consumer acceptability. For many baked products, such as bread, the outer crust gives the crispy sensation. Confocal scanning laser microscopy of the structure of bread crust revealed a continuous protein phase and a discontinuous

  7. Research for the physics and structure of earth's crust in Romania

    International Nuclear Information System (INIS)

    Ghitulescu, T.P.; Popescu, M.N.

    1987-10-01

    Systematic research for the deciphering of the physic and structure of Earth's crust in our country by geophysical methods were performed in the frame of Romanian Geological Institute since 1925. We put into evidence the principle achievements obtained by the geological and geophysical research for the mineral resources existing in the Romanian earth's crust. (authors)

  8. Effect of crust increase on natural convection heat transfer in the molten metal pool

    International Nuclear Information System (INIS)

    Park, Rae Joon; Kim, Sang Baik; Kim, Hee Dong; Choi, Sang Min

    1999-01-01

    An experimental study has been performed on natural convection heat transfer with a rapid crust formation in the molten metal pool of a low Prandtl number fluid. Two types of steady state tests, a low and high geometric aspect ratio cases in the molten metal pool, were performed. The crust thickness by solidification was measured as a function of boundary surface temperatures. The experimental results on the relationship between the Nusselt number and Rayleigh number in the molten metal pool with a crust formation were compared with existing correlations. The experimental study has shown that the bottom surface temperature of the molten metal layer, in all experiments, is the major influential parameter in the crust formation, due to the natural convection flow. The Nusselt number of the case without a crust formation in the molten metal pool is greater than that of the case with the crust formation at the same Rayleigh number. The present experimental results on the relationship between the Nusselt number and Rayleigh number in the molten metal pool match well with Globe and Dropkin's correlation. From the experimental results, a new correlation between the Nusselt number and Rayleigh number in the molten metal pool with the crust formation was developed as Nu=0.0923 (Ra) 0.0923 (2 X 10 4 7 ). (author)

  9. The Great Wall: Urca Cooling Layers in the Accreted NS Crust

    Directory of Open Access Journals (Sweden)

    Meisel Zach

    2018-01-01

    Full Text Available Accreting neutron stars host a number of astronomical observables which can be used to infer the properties of the underlying dense matter. These observables are sensitive to the heating and cooling processes taking place in the accreted neutron star (NS crust. Within the past few years it has become apparent that electron-capture/beta-decay (urca cycles can operate within the NS crust at high temperatures. Layers of nuclei undergoing urca cycling can create a thermal barrier, or Great Wall, between heating occurring deep in the crust and the regions above the urca layers. This paper briefly reviews the urca process and the implications for observables from accreting neutron stars.

  10. Internal doses in Oak Ridge. The Internet beams

    International Nuclear Information System (INIS)

    Passchier, W.F.

    1997-01-01

    A brief overview is given of the information, presented by the Radiation Internal Dose Information Center (RIDIC) of the Oak Ridge Associated Universities in Oak Ridge, TN, USA, via Internet (www.orau.gov/ehsd/ridic.htm)

  11. Optical dating of dune ridges on Rømø

    DEFF Research Database (Denmark)

    Madsen, Anni Tindahl; Murray, A. S.; Andersen, Thorbjørn Joest

    2007-01-01

    The application of optically stimulated luminescence (OSL) to the dating of recent aeolian sand ridges on Rømø, an island off the southwest coast of Denmark, is tested. These sand ridges began to form approximately 300 years ago, and estimates of the ages are available from historical records....... Samples for OSL dating were taken ~0.5 m below the crests of four different dune ridges; at least five samples were recovered from each ridge to test the internal consistency of the ages. Additional samples were recovered from the low lying areas in the swales and from the scattered dune formations......-defined building phases separated by inactive periods and the first major ridge formed ~235 years ago. This study demonstrates that optical dating can be successfully applied to these young aeolian sand deposits, and we conclude that OSL dating is a powerful chronological tool in studies of coastal change....

  12. Don’t bust the biological soil crust: Preserving and restoring an important desert resource

    Science.gov (United States)

    Sue Miller; Steve Warren; Larry St. Clair

    2017-01-01

    Biological soil crusts are a complex of microscopic organisms growing on the soil surface in many arid and semi-arid ecosystems. These crusts perform the important role of stabilizing soil and reducing or eliminating water and wind erosion. One of the largest threats to biological soil crusts in the arid and semi-arid areas of the western United States is mechanical...

  13. Normalization Ridge Regression in Practice I: Comparisons Between Ordinary Least Squares, Ridge Regression and Normalization Ridge Regression.

    Science.gov (United States)

    Bulcock, J. W.

    The problem of model estimation when the data are collinear was examined. Though the ridge regression (RR) outperforms ordinary least squares (OLS) regression in the presence of acute multicollinearity, it is not a problem free technique for reducing the variance of the estimates. It is a stochastic procedure when it should be nonstochastic and it…

  14. Hydrodynamic role of longitudinal ridges in a leatherback turtle swimming

    Science.gov (United States)

    Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon

    2015-11-01

    The leatherback sea turtle (Dermochelys coriacea), the fastest swimmer and the deepest diver among marine turtles, has five longitudinal ridges on its carapace. These ridges are the most remarkable morphological features distinguished from other marine turtles. To investigate the hydrodynamic role of these ridges in the leatherback turtle swimming, we model a carapace with and without ridges by using three dimensional surface data of a stuffed leatherback turtle in the National Science Museum, Korea. The experiment is conducted in a wind tunnel in the ranges of the real leatherback turtle's Reynolds number (Re) and angle of attack (α). The longitudinal ridges function differently according to the flow condition (i.e. Re and α). At low Re and negative α that represent the swimming condition of hatchlings and juveniles, the ridges significantly decrease the drag by generating streamwise vortices and delaying the main separation. On the other hand, at high Re and positive α that represent the swimming condition of adults, the ridges suppress the laminar separation bubble near the front part by generating streamwise vortices and enhance the lift and lift-to-drag ratio. Supported by the NRF program (2011-0028032).

  15. Physics of the earth crust

    International Nuclear Information System (INIS)

    Lauterbach, R.

    1977-01-01

    This book deals in 12 chapters, amongst other things, with the subjects: Structure of the crust and the upper earth mantle, geology and geophysics of sea beds, satellite and aero-methods of geophysics, state of the art of geothermal research, geophysical potential fields and their anomalies, applied seismology, electrical methods of geophysics, geophysics in engineering and rock engineering, borehole geophysics, petrophysics, and geochemistry. (RW) [de

  16. Equatorial segment of the mid-atlantic ridge

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Equatorial Segment of the Mid-Atlantic Ridge is a part of this mid-oceanic ridge limited by a cluster of fracture zones - Cape Verde, Marathon, Mercury, Vema, Doldrums, Vernadsky and Sierra Leone - in the North, and a similar cluster of fracture zones - St Paul, Romanche and Chain - in the South. During recent decades, following the publication of the 5. edition of the General Bathymetric Chart of the Oceans (GEBCO), there has been a great deal of geological-geophysical research and mapping of the World Ocean. The results have led to the development of a number of theories concerning the essential heterogeneity of the structure of the ocean floor and, in particular, the heterogeneity of the structure and segmentation of mid-oceanic ridges. Research on the nature of such segmentation is of great importance for an understanding of the processes of development of such ridges and oceanic basins as a whole. Chapter 20 is dedicated to the study of the atlantic ocean mantle by using (Th.U)Th, (Th/U)pb and K/Ti systematics 380 refs.

  17. Equatorial segment of the mid-atlantic ridge

    International Nuclear Information System (INIS)

    1996-01-01

    The Equatorial Segment of the Mid-Atlantic Ridge is a part of this mid-oceanic ridge limited by a cluster of fracture zones - Cape Verde, Marathon, Mercury, Vema, Doldrums, Vernadsky and Sierra Leone - in the North, and a similar cluster of fracture zones - St Paul, Romanche and Chain - in the South. During recent decades, following the publication of the 5. edition of the General Bathymetric Chart of the Oceans (GEBCO), there has been a great deal of geological-geophysical research and mapping of the World Ocean. The results have led to the development of a number of theories concerning the essential heterogeneity of the structure of the ocean floor and, in particular, the heterogeneity of the structure and segmentation of mid-oceanic ridges. Research on the nature of such segmentation is of great importance for an understanding of the processes of development of such ridges and oceanic basins as a whole. Chapter 20 is dedicated to the study of the atlantic ocean mantle by using (Th.U)Th, (Th/U)pb and K/Ti systematics

  18. Equatorial segment of the mid-atlantic ridge

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Equatorial Segment of the Mid-Atlantic Ridge is a part of this mid-oceanic ridge limited by a cluster of fracture zones - Cape Verde, Marathon, Mercury, Vema, Doldrums, Vernadsky and Sierra Leone - in the North, and a similar cluster of fracture zones - St Paul, Romanche and Chain - in the South. During recent decades, following the publication of the 5. edition of the General Bathymetric Chart of the Oceans (GEBCO), there has been a great deal of geological-geophysical research and mapping of the World Ocean. The results have led to the development of a number of theories concerning the essential heterogeneity of the structure of the ocean floor and, in particular, the heterogeneity of the structure and segmentation of mid-oceanic ridges. Research on the nature of such segmentation is of great importance for an understanding of the processes of development of such ridges and oceanic basins as a whole. Chapter 20 is dedicated to the study of the atlantic ocean mantle by using (Th.U)Th, (Th/U)pb and K/Ti systematics 380 refs.

  19. A Discussion of SY-101 Crust Gas Retention and Release Mechanisms

    International Nuclear Information System (INIS)

    Mendoza, D.P.; Mahoney, L.A.; Gauglitz, P.A.; Rassat, S.D.; Caley, S.M.

    1999-01-01

    The flammable gas hazard in Hanford waste tanks was made an issue by the behavior of double-shell Tank (DST) 241-SY-101 (SY-101). Shortly after SY-101 was filled in 1980, the waste level began rising periodically, due to the generation and retention of gases within the slurry, and then suddenly dropping as the gases were released. An intensive study of the tank's behavior revealed that these episodic releases posed a safety hazard because the released gas was flammable, and, in some cases, the volume of gas released was sufficient to exceed the lower flammability limit (LFL) in the tank headspace (Alleinann et al. 1993). A mixer pump was installed in SY-101 in late 1993 to prevent gases from building up in the settled solids layer, and the large episodic gas releases have since ceased (Allemann et al. 1994; Stewart et al. 1994; Brewster et al. 1995). However, the surface level of SY-101 has been increasing since at least 1995, and in recent months the level growth has shown significant and unexpected acceleration. Based on a number of observations and measurements, including data from the void fraction instrument (VFI), we have concluded that the level growth is caused largely by increased gas retention in the floating crust. In September 1998, the crust contained between about 21 and 43% void based on VFI measurements (Stewart et al. 1998). Accordingly, it is important to understand the dominant mechanisms of gas retention, why the gas retention is increasing, and whether the accelerating level increase will continue, diminish or even reverse. It is expected that the retained gas in the crust is flammable, with hydrogen as a major constituent. This gas inventory would pose a flammable gas hazard if it were to release suddenly. In May 1997, the mechanisms of bubble retention and release from crust material were the subject of a workshop. The evaluation of the crust and potential hazards assumed a more typical void of roughly 15% gas. It could be similar to

  20. A Discussion of SY-101 Crust Gas Retention and Release Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    SD Rassat; PA Gauglitz; SM Caley; LA Mahoney; DP Mendoza

    1999-02-23

    The flammable gas hazard in Hanford waste tanks was made an issue by the behavior of double-shell Tank (DST) 241-SY-101 (SY-101). Shortly after SY-101 was filled in 1980, the waste level began rising periodically, due to the generation and retention of gases within the slurry, and then suddenly dropping as the gases were released. An intensive study of the tank's behavior revealed that these episodic releases posed a safety hazard because the released gas was flammable, and, in some cases, the volume of gas released was sufficient to exceed the lower flammability limit (LFL) in the tank headspace (Allemann et al. 1993). A mixer pump was installed in SY-101 in late 1993 to prevent gases from building up in the settled solids layer, and the large episodic gas releases have since ceased (Allemann et al. 1994; Stewart et al. 1994; Brewster et al. 1995). However, the surface level of SY-101 has been increasing since at least 1995, and in recent months the level growth has shown significant and unexpected acceleration. Based on a number of observations and measurements, including data from the void fraction instrument (VFI), we have concluded that the level growth is caused largely by increased gas retention in the floating crust. In September 1998, the crust contained between about 21 and 43% void based on VFI measurements (Stewart et al. 1998). Accordingly, it is important to understand the dominant mechanisms of gas retention, why the gas retention is increasing, and whether the accelerating level increase will continue, diminish or even reverse. It is expected that the retained gas in the crust is flammable, with hydrogen as a major constituent. This gas inventory would pose a flammable gas hazard if it were to release suddenly. In May 1997, the mechanisms of bubble retention and release from crust material were the subject of a workshop. The evaluation of the crust and potential hazards assumed a more typical void of roughly 15% gas. It could be similar to

  1. Temperature of the Icelandic crust: Inferred from electrical conductivity, temperature surface gradient, and maximum depth of earthquakes

    Science.gov (United States)

    Björnsson, Axel

    2008-02-01

    Two different models of the structure of the Icelandic crust have been presented. One is the thin-crust model with a 10-15 km thick crust beneath the axial rift zones, with an intermediate layer of partially molten basalt at the base of the crust and on the top of an up-domed asthenosphere. The thick-crust model assumes a 40 km thick and relatively cold crust beneath central Iceland. The most important and crucial parameter to distinguish between these different models is the temperature distribution with depth. Three methods are used to estimate the temperature distribution with depth. First, the surface temperature gradient measured in shallow wells drilled outside geothermal areas. Second, the thickness of the seismogenic zone which is associated with a 750 °C isothermal surface. Third, the depth to a layer with high electrical conductivity which is associated with partially molten basalt with temperature around 1100 °C at the base of the crust. Combination of these data shows that the temperature gradient can be assumed to be nearly linear from the surface down to the base of the crust. These results are strongly in favour of the thin-crust model. The scattered deep seismic reflectors interpreted as Moho in the thick-crust model could be caused by phase transitions or reflections from melt pockets in the mantle.

  2. Masirah – the other Oman ophiolite: A better analogue for mid-ocean ridge processes?

    Directory of Open Access Journals (Sweden)

    Hugh Rollinson

    2017-11-01

    Full Text Available Oman has two ophiolites – the better known late Cretaceous northern Oman (or Semail ophiolite and the lesser known and smaller, Jurassic Masirah ophiolite located on the eastern coast of the country adjacent to the Indian Ocean. A number of geological, geochronological and geochemical lines of evidence strongly suggest that the northern Oman ophiolite did not form at a mid-ocean ridge but rather in a supra-subduction zone setting by fast spreading during subduction initiation. In contrast the Masirah ophiolite is structurally part of a series of ophiolite nappes which are rooted in the Indian Ocean floor. There are significant geochemical differences between the Masirah and northern Oman ophiolites and none of the supra-subduction features typical of the northern Oman ophiolite are found at Masirah. Geochemically Masirah is MORB, although in detail it contains both enriched and depleted MORB reflecting a complex source for the lavas and dykes. The enrichment of this source predates the formation of the ophiolite. The condensed crustal section on Masirah (ca. 2 km contains a very thin gabbro sequence and is thought to reflect its genesis from a cool mantle source associated with the early stages of sea-floor spreading during the early separation of eastern and western Gondwana. These data suggest that the Masirah ophiolite is a suitable analogue for an ophiolite created at a mid-ocean ridge, whereas the northern Oman ophiolite is not. The stratigraphic history of the Masirah ophiolite shows that it remained a part of the oceanic crust for ca. 80 Ma. The chemical variability and enrichment of the Masirah lavas is similar to that found elsewhere in Indian Ocean basalts and may simply reflect a similar provenance rather than a feature fundamental to the formation of the ophiolite.

  3. Does the lateral intercondylar ridge disappear in ACL deficient patients?

    NARCIS (Netherlands)

    van Eck, C.F.; Martins, C.A.Q.; Vyas, S.M.; Celentano, U.; van Dijk, C.N.; Fu, F.H.

    2010-01-01

    The aim of this study was to determine whether there is a difference in the presence of the lateral intercondylar ridge and the lateral bifurcate ridge between patients with sub-acute and chronic ACL injuries. We hypothesized that the ridges would be present less often with chronic ACL deficiency.

  4. Sex Determination from Fingerprint Ridge Density | Gungadin ...

    African Journals Online (AJOL)

    This study was conducted with an aim to establish a relationship between sex and fingerprint ridge density. The fingerprints were taken from 500 subjects (250 males and 250 females) in the age group of 18-60 years. After taking fingerprints, the ridges were counted in the upper portion of the radial border of each print for all ...

  5. Geotectonic structural interpretation of the basement complex at the eastern border of the Espinhaco ridge, in Guanhaes and Gouveia region, based on an integration of their U/Pb and K/Ar geochronology united

    International Nuclear Information System (INIS)

    Teixeira, W.; Salvador, E.D.; Siga Junior, O.; Sato, K.; Dossin, I.A.; Dossin, T.M.

    1990-01-01

    The basement complex at the eastern border of the Espinhaco ridge is composed of predominantly gneissic rocks which were subjected to migmatization and granitization. Overall the area shows complex tectonic evolution with recurrence of tectonomagmatic and metamorphic events as supported by geological, geochronological and structural studies. The Rb/Sr geochronology carried out on the basement rocks and metavolcanics from the Espinhaco interpreted together with the published U-Pb, Rb-Sr and K-Ar data defines the following scenario for the Precambrian crustal evolution. 1. Primary origin of a sialic crust at 2.97-2.84 Ga. ago as supported by U-Pb zircon ages. 2. Crustal reworking of the Archean crust and subordinate juvenile accretion from upper mantle during the 2.2-2.OGa. period, as suggested by the isochrons. 3. Recurrence of Middle Proterozoic events over the basement rocks (gneisses and charnockites) and metavolcanics of the Espinhaco as showed by isochrons. 4. Development of Late Proterozoic migmatization over the basement rocks (0.75 Ga., R.I.= 0.787) is association with Collisional tectonics and resetting of K-Ar mineral systems. (author)

  6. Calendar year 1996 annual groundwater monitoring report for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-02-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) during calendar year (CY) 1996. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge west of Scarboro Road and east of an unnamed drainage feature southwest of the US Department of Energy (DOE) Oak Ridge Y-12 Plant (unless otherwise noted, directions are in reference to the Y-12 Plant administrative grid). The Chestnut Ridge Regime contains several sites used for management of hazardous and nonhazardous wastes associated with plant operations. Groundwater and surface water quality monitoring associated with these waste management sites is performed under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). Included in this annual monitoring report are the groundwater monitoring data obtained in compliance with the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit for the Chestnut Ridge Regime (post-closure permit) issued by the Tennessee Department of Environment and Conservation (TDEC) in June 1996. Besides the signed certification statement and the RCRA facility information summarized below, condition II.C.6 of the post-closure permit requires annual reporting of groundwater monitoring activities, inclusive of the analytical data and results of applicable data evaluations, performed at three RCRA hazardous waste treatment, storage, or disposal (TSD) units: the Chestnut Ridge Sediment Disposal Basin (Sediment Disposal Basin), the Chestnut Ridge Security Pits (Security Pits), and Kerr Hollow Quarry

  7. Evolution of Fractal Parameters through Development Stage of Soil Crust

    Science.gov (United States)

    Ospina, Abelardo; Florentino, Adriana; Tarquis, Ana Maria

    2016-04-01

    Soil surface characteristics are subjected to changes driven by several interactions between water, air, biotic and abiotic components. One of the examples of such interactions is provided through biological soil crusts (BSC) in arid and semi-arid environments. BSC are communities composed of cyanobacteria, fungi, mosses, lichens, algae and liverworts covering the soil surface and play an important role in ecosystem functioning. The characteristics and formation of these BSC influence the soil hydrological balance, control the mass of eroded sediment, increase stability of soil surface, and influence plant productivity through the modification of nitrogen and carbon cycle. The site of this work is located at Quibor and Ojo de Agua (Lara state, Venezuela). The Quibor Depression in Venezuela is a major agricultural area being at semi-arid conditions and limited drainage favor the natural process of salinization. Additionally, the extension and intensification of agriculture has led to over-exploitation of groundwater in the past 30 years (Méndoza et al., 2013). The soil microbial crust develops initially on physical crusts which are mainly generated since wetting and drying, being a recurrent feature in the Quíbor arid zone. The microbiotic crust is organic, composed of macro organisms (bryophytes and lichens) and microorganisms (cyanobacteria, fungi algae, etc.); growing on the ground, forming a thickness no greater than 3 mm. For further details see Toledo and Florentino (2009). This study focus on characterize the development stage of the BSC based on image analysis. To this end, grayscale images of different types of biological soil crust at different stages where taken, each image corresponding to an area of 12.96 cm2 with a resolution of 1024x1024 pixels (Ospina et al., 2015). For each image lacunarity and fractal dimension through the differential box counting method were calculated. These were made with the software ImageJ/Fraclac (Karperien, 2013

  8. Neutron flux variations near the Earth’s crust. A possible tectonic activity detection

    Directory of Open Access Journals (Sweden)

    B. M. Kuzhevskij

    2003-01-01

    Full Text Available The present work contains some results of observations of neutron flux variations near the Earth’s surface. The Earth’s crust is determined to be a significant source of thermal and slow neutrons, originated from the interaction between the nuclei of the elements of the Earth’s crust and the atmosphere and α-particles, produced by decay of radioactive gases (Radon, Thoron and Actinon. In turn, variations of radioactive gases exhalation is connected with geodynamical processes in the Earth’s crust, including tectonic activity. This determined relation between the processes in the Earth’s crust and neutrons’ flux allow to use variations of thermal and slow neutrons’ flux in order to observe increasing tectonic activity and to develop methods for short-term prediction of natural hazards.

  9. The thermal structure of a wind-driven Reynolds ridge

    Energy Technology Data Exchange (ETDEWEB)

    Phongikaroon, Supathorn; Peter Judd, K.; Smith, Geoffrey B.; Handler, Robert A. [Remote Sensing Division, Naval Research Laboratory, 20375, Washington, DC (United States)

    2004-08-01

    In this study, we investigate the nature of a Reynolds ridge formed by wind shear. We have simultaneously imaged the water surface, with a deposit of a monolayer of the surfactant, oleyl alcohol, subject to different wind shears, by using a high-resolution infrared (IR) detector and a high-speed (HS) digital camera. The results reveal that the regions around the wind-driven Reynolds ridge, which have subtle manifestations in visual imagery, possess surprisingly complex hydrodynamical and thermal structures when observed in the infrared. The IR measurements reveal a warm, clean region upstream of the ridge, which is composed of the so called fishscale structures observed in earlier investigations. The region downstream of the ridge is composed of colder fluid which forms two counter-rotating cells. A region of intermediate temperature, which we call the mixing (wake) region, forms immediately downstream of the ridge near the channel centerline. By measuring the velocity of the advected fishscales, we have determined a surface drift speed of about 2% of the wind speed. The spanwise length-scale of the structures has also been used to estimate the wind shear. In addition, a comparison of IR and visual imagery shows that the thermal field is a very sensitive indicator of the exact position of the ridge itself. (orig.)

  10. Safety analysis report for packaging (SARP) of the Oak Ridge National Laboratory Garden Carrier No. 2

    International Nuclear Information System (INIS)

    Klima, B.B.; Shappert, L.B.; Seagren, R.D.; Box, W.D.

    1978-04-01

    An analytical evaluation of the Oak Ridge National Laboratory Garden Carrier No. 2 was made to demonstrate its compliance with the regulations governing off-site radioactive material shipping packages. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of the evaluation show that the cask complies with the applicable regulations. The package is designed to ship large quantities of fissile and radioactive materials as solids

  11. Global maps of the CRUST 2.0 crustal components stripped gravity disturbances

    NARCIS (Netherlands)

    Tenzer, R.; Hamayun, K.; Vajda, P.

    2009-01-01

    We use the CRUST 2.0 crustal model and the EGM08 geopotential model to compile global maps of the gravity disturbances corrected for the gravitational effects (attractions) of the topography and of the density contrasts of the oceans, sediments, ice, and the remaining crust down to the Moho

  12. Strongly coupled interaction between a ridge of fluid and an inviscid airflow

    KAUST Repository

    Paterson, C.

    2015-07-01

    © 2015 AIP Publishing LLC. The behaviour of a steady thin sessile or pendent ridge of fluid on an inclined planar substrate which is strongly coupled to the external pressure gradient arising from an inviscid airflow parallel to the substrate far from the ridge is described. When the substrate is nearly horizontal, a very wide ridge can be supported against gravity by capillary and/or external pressure forces; otherwise, only a narrower (but still wide) ridge can be supported. Classical thin-aerofoil theory is adapted to obtain the governing singular integro-differential equation for the profile of the ridge in each case. Attention is focused mainly on the case of a very wide sessile ridge. The effect of strengthening the airflow is to push a pinned ridge down near to its edges and to pull it up near to its middle. At a critical airflow strength, the upslope contact angle reaches the receding contact angle at which the upslope contact line de-pins, and continuing to increase the airflow strength beyond this critical value results in the de-pinned ridge becoming narrower, thicker, and closer to being symmetric in the limit of a strong airflow. The effect of tilting the substrate is to skew a pinned ridge in the downslope direction. Depending on the values of the advancing and receding contact angles, the ridge may first de-pin at either the upslope or the downslope contact line but, in general, eventually both contact lines de-pin. The special cases in which only one of the contact lines de-pins are also considered. It is also shown that the behaviour of a very wide pendent ridge is qualitatively similar to that of a very wide sessile ridge, while the important qualitative difference between the behaviour of a very wide ridge and a narrower ridge is that, in general, for the latter one or both of the contact lines may never de-pin.

  13. Site descriptions of environmental restoration units at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Kuhaida, A.J. Jr.; Parker, A.F.

    1997-02-01

    This report provides summary information on Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) sites as listed in the Oak Ridge Reservation Federal Facility Agreement (FFA), dated January 1, 1992, Appendix C. The Oak Ridge National Laboratory was built in 1943 as part of the World War II Manhattan Project. The original mission of ORNL was to produce and chemically separate the first gram-quantities of plutonium as part of the national effort to produce the atomic bomb. The current mission of ORNL is to provide applied research and development in support of the U.S. Department of Energy (DOE) programs in nuclear fusion and fission, energy conservation, fossil fuels, and other energy technologies and to perform basic scientific research in selected areas of the physical, life, and environmental sciences. ER is also tasked with clean up or mitigation of environmental impacts resulting from past waste management practices on portions of the approximately 37,000 acres within the Oak Ridge Reservation (ORR). Other installations located within the ORR are the Gaseous Diffusion Plant (K-25) and the Y-12 plant. The remedial action strategy currently integrates state and federal regulations for efficient compliance and approaches for both investigations and remediation efforts on a Waste Area Grouping (WAG) basis. As defined in the ORR FFA Quarterly Report July - September 1995, a WAG is a grouping of potentially contaminated sites based on drainage area and similar waste characteristics. These contaminated sites are further divided into four categories based on existing information concerning whether the data are generated for scoping or remedial investigation (RI) purposes. These areas are as follows: (1) Operable Units (OU); (2) Characterization Areas (CA); (3) Remedial Site Evaluation (RSE) Areas; and (4) Removal Site Evaluation (RmSE) Areas.

  14. Small-scale density variations in the lunar crust revealed by GRAIL

    Science.gov (United States)

    Jansen, J. C.; Andrews-Hanna, J. C.; Li, Y.; Lucey, P. G.; Taylor, G. J.; Goossens, S.; Lemoine, F. G.; Mazarico, E.; Head, J. W.; Milbury, C.; Kiefer, W. S.; Soderblom, J. M.; Zuber, M. T.

    2017-07-01

    Data from the Gravity Recovery and Interior Laboratory (GRAIL) mission have revealed that ∼98% of the power of the gravity signal of the Moon at high spherical harmonic degrees correlates with the topography. The remaining 2% of the signal, which cannot be explained by topography, contains information about density variations within the crust. These high-degree Bouguer gravity anomalies are likely caused by small-scale (10‧s of km) shallow density variations. Here we use gravity inversions to model the small-scale three-dimensional variations in the density of the lunar crust. Inversion results from three non-descript areas yield shallow density variations in the range of 100-200 kg/m3. Three end-member scenarios of variations in porosity, intrusions into the crust, and variations in bulk crustal composition were tested as possible sources of the density variations. We find that the density anomalies can be caused entirely by changes in porosity. Characteristics of density anomalies in the South Pole-Aitken basin also support porosity as a primary source of these variations. Mafic intrusions into the crust could explain many, but not all of the anomalies. Additionally, variations in crustal composition revealed by spectral data could only explain a small fraction of the density anomalies. Nevertheless, all three sources of density variations likely contribute. Collectively, results from this study of GRAIL gravity data, combined with other studies of remote sensing data and lunar samples, show that the lunar crust exhibits variations in density by ± 10% over scales ranging from centimeters to 100‧s of kilometers.

  15. Response of Surface Soil Hydrology to the Micro-Pattern of Bio-Crust in a Dry-Land Loess Environment, China.

    Directory of Open Access Journals (Sweden)

    Wei Wei

    Full Text Available The specific bio-species and their spatial patterns play crucial roles in regulating eco-hydrologic process, which is significant for large-scale habitat promotion and vegetation restoration in many dry-land ecosystems. Such effects, however, are not yet fully studied. In this study, 12 micro-plots, each with size of 0.5 m in depth and 1 m in length, were constructed on a gentle grassy hill-slope with a mean gradient of 8° in a semiarid loess hilly area of China. Two major bio-crusts, including mosses and lichens, had been cultivated for two years prior to the field simulation experiments, while physical crusts and non-crusted bare soils were used for comparison. By using rainfall simulation method, four designed micro-patterns (i.e., upper bio-crust and lower bare soil, scattered bio-crust, upper bare soil and lower bio-crust, fully-covered bio-crust to the soil hydrological response were analyzed. We found that soil surface bio-crusts were more efficient in improving soil structure, water holding capacity and runoff retention particularly at surface 10 cm layers, compared with physical soil crusts and non-crusted bare soils. We re-confirmed that mosses functioned better than lichens, partly due to their higher successional stage and deeper biomass accumulation. Physical crusts were least efficient in water conservation and erosion control, followed by non-crusted bare soils. More importantly, there were marked differences in the efficiency of the different spatial arrangements of bio-crusts in controlling runoff and sediment generation. Fully-covered bio-crust pattern provides the best option for soil loss reduction and runoff retention, while a combination of upper bio-crust and lower bare soil pattern is the least one. These findings are suggested to be significant for surface-cover protection, rainwater infiltration, runoff retention, and erosion control in water-restricted and degraded natural slopes.

  16. Response of Surface Soil Hydrology to the Micro-Pattern of Bio-Crust in a Dry-Land Loess Environment, China

    Science.gov (United States)

    Wei, Wei; Yu, Yun; Chen, Liding

    2015-01-01

    The specific bio-species and their spatial patterns play crucial roles in regulating eco-hydrologic process, which is significant for large-scale habitat promotion and vegetation restoration in many dry-land ecosystems. Such effects, however, are not yet fully studied. In this study, 12 micro-plots, each with size of 0.5 m in depth and 1 m in length, were constructed on a gentle grassy hill-slope with a mean gradient of 8° in a semiarid loess hilly area of China. Two major bio-crusts, including mosses and lichens, had been cultivated for two years prior to the field simulation experiments, while physical crusts and non-crusted bare soils were used for comparison. By using rainfall simulation method, four designed micro-patterns (i.e., upper bio-crust and lower bare soil, scattered bio-crust, upper bare soil and lower bio-crust, fully-covered bio-crust) to the soil hydrological response were analyzed. We found that soil surface bio-crusts were more efficient in improving soil structure, water holding capacity and runoff retention particularly at surface 10 cm layers, compared with physical soil crusts and non-crusted bare soils. We re-confirmed that mosses functioned better than lichens, partly due to their higher successional stage and deeper biomass accumulation. Physical crusts were least efficient in water conservation and erosion control, followed by non-crusted bare soils. More importantly, there were marked differences in the efficiency of the different spatial arrangements of bio-crusts in controlling runoff and sediment generation. Fully-covered bio-crust pattern provides the best option for soil loss reduction and runoff retention, while a combination of upper bio-crust and lower bare soil pattern is the least one. These findings are suggested to be significant for surface-cover protection, rainwater infiltration, runoff retention, and erosion control in water-restricted and degraded natural slopes. PMID:26207757

  17. Response of Surface Soil Hydrology to the Micro-Pattern of Bio-Crust in a Dry-Land Loess Environment, China.

    Science.gov (United States)

    Wei, Wei; Yu, Yun; Chen, Liding

    2015-01-01

    The specific bio-species and their spatial patterns play crucial roles in regulating eco-hydrologic process, which is significant for large-scale habitat promotion and vegetation restoration in many dry-land ecosystems. Such effects, however, are not yet fully studied. In this study, 12 micro-plots, each with size of 0.5 m in depth and 1 m in length, were constructed on a gentle grassy hill-slope with a mean gradient of 8° in a semiarid loess hilly area of China. Two major bio-crusts, including mosses and lichens, had been cultivated for two years prior to the field simulation experiments, while physical crusts and non-crusted bare soils were used for comparison. By using rainfall simulation method, four designed micro-patterns (i.e., upper bio-crust and lower bare soil, scattered bio-crust, upper bare soil and lower bio-crust, fully-covered bio-crust) to the soil hydrological response were analyzed. We found that soil surface bio-crusts were more efficient in improving soil structure, water holding capacity and runoff retention particularly at surface 10 cm layers, compared with physical soil crusts and non-crusted bare soils. We re-confirmed that mosses functioned better than lichens, partly due to their higher successional stage and deeper biomass accumulation. Physical crusts were least efficient in water conservation and erosion control, followed by non-crusted bare soils. More importantly, there were marked differences in the efficiency of the different spatial arrangements of bio-crusts in controlling runoff and sediment generation. Fully-covered bio-crust pattern provides the best option for soil loss reduction and runoff retention, while a combination of upper bio-crust and lower bare soil pattern is the least one. These findings are suggested to be significant for surface-cover protection, rainwater infiltration, runoff retention, and erosion control in water-restricted and degraded natural slopes.

  18. Maxillary anterior ridge augmentation with recombinant human bone morphogenetic protein 2.

    Science.gov (United States)

    Edmunds, Ryan K; Mealey, Brian L; Mills, Michael P; Thoma, Daniel S; Schoolfield, John; Cochran, David L; Mellonig, Jim

    2014-01-01

    No human studies exist on the use of recombinant human bone morphogenetic protein 2 (rhBMP-2) on an absorbable collagen sponge (ACS) as a sole graft material for lateral ridge augmentation in large ridge defect sites. This series evaluates the treatment outcome of maxillary anterior lateral ridge augmentation with rhBMP-2/ACS. Twenty patients were treated with rhBMP-2/ACS and fixation screws for space maintenance. Cone beam volumetric tomography measurements were used to determine gain in ridge width, and a bone core biopsy was obtained. The mean horizontal ridge gain was 1.2 mm across sites, and every site gained width.

  19. The effects of ridging, row-spacing and seeding rate on carrot yield

    Directory of Open Access Journals (Sweden)

    S. TAIVALMAA

    2008-12-01

    Full Text Available Cool, wet spring weather often delays the early growth of carrots (Daucus carota L. in northern Europe. This effect may be partly obviated by sowing in ridges. Many types of ridges are used, but the most suitable for carrot cultivation under the conditions prevailing in northern Europe has yet to be determined. The effects of ridging, seeding rate and sowing system on the yield and visible quality of carrots were therefore studied in the field during three years. The highest yields were recorded for carrots sown in double rows on a narrow ridge. The effect of sowing system on mean root weight differed depending on the ridging regime. The mean weight of roots was higher for carrots cultivated on broad ridges than in other systems. Seeding rate had the most significant effect on mean root weight. For industrial purposes it is recommended that carrots be cultivated on broad ridges in double rows at low seeding rates with irrigation. The optimal cultivation technique for carrots destined for the fresh vegetable market would be narrow ridges sown in double rows at high seeding rates. The ridging system, seeding rate and row spacing did not appear to affect the external quality of roots. More detailed studies should be carried out to establish the effects of abiotic growth factors under different ridging regimes.;

  20. The effects of ridging, row-spacing and seeding rate on carrot yield

    Directory of Open Access Journals (Sweden)

    Sanna-Liisa Taivalmaa

    1997-12-01

    Full Text Available Cool, wet spring weather often delays the early growth of carrots (Daucus carota L. in northern Europe. This effect may be partly obviated by sowing in ridges. Many types of ridges are used, but the most suitable for carrot cultivation under the conditions prevailing in northern Europe has yet to be determined. The effects of ridging, seeding rate and sowing system on the yield and visible quality of carrots were therefore studied in the field during three years. The highest yields were recorded for carrots sown in double rows on a narrow ridge. The effect of sowing system on mean root weight differed depending on the ridging regime. The mean weight of roots was higher for carrots cultivated on broad ridges than in other systems. Seeding rate had the most significant effect on mean root weight. For industrial purposes it is recommended that carrots be cultivated on broad ridges in double rows at low seeding rates with irrigation. The optimal cultivation technique for carrots destined for the fresh vegetable market would be narrow ridges sown in double rows at high seeding rates. The ridging system, seeding rate and row spacing did not appear to affect the external quality of roots. More detailed studies should be carried out to establish the effects of abiotic growth factors under different ridging regimes.

  1. A Geochemical View on the Interplay Between Earth's Mantle and Crust

    Science.gov (United States)

    Chauvel, C.

    2017-12-01

    Over most of Earth history, oceanic and continental crust was created and destroyed. The formation of both types of crust involves the crystallization and differentiation of magmas producing by mantle melting. Their destruction proceeds by mechanical erosion and weathering above sea level, chemical alteration on the seafloor, and bulk recycling in subduction zones. All these processes enrich of some chemical element and deplete others but each process has its own effect on chemical elements. While the flux of material from mantle to crust is well understood, the return flux is much more complex. In contrast to mantle processes, erosion, weathering, chemical alteration and sedimentary processes strongly decouple elements such as the rare earths and high-field strength elements due to their different solubilities in surface fluids and mineralogical sorting during transport. Soluble elements such as strontium or uranium are quantitatively transported to the ocean by rivers and decoupled from less soluble elements. Over geological time, such decoupling significantly influences the extent to which chemical elements remain at the Earth's surface or find their way back to the mantle through subduction zones. For example, elements like Hf or Nd are retained in heavy minerals on continents whereas U and Sr are transported to the oceans and then in subduction zones to the mantle. The consequence is that different radiogenic isotopic systems give disparate age estimates for the continental crust; e.g, Hf ages could be too old. In subduction zones, chemical elements are also decoupled, due to contrasting behavior during dehydration or melting in subducting slabs. The material sent back into the mantle is generally enriched in non-soluble elements while most fluid-mobile elements return to the crust. This, in turn, affects the relationship between the Rb-Sr, Sm-Nd, Lu-Hf and U-Th-Pb isotopic systems and creates correlations unlike those based on magmatic processes. By

  2. Unfaulting the Sardarapat Ridge, Southwest Armenia

    Science.gov (United States)

    Wetmore, P.; Connor, C.; Connor, L. J.; Savov, I. P.; Karakhanyan, A.

    2012-12-01

    Armenia is located near the core of contractional deformation associated with the collision between the Arabian and Eurasian tectonic plates. Several studies of this region, including portions of adjacent Georgia, Iran, and Turkey, have indicated that 1-2 mm/yr of intra-plate, north-south shortening is primarily accommodated by a network of E-W trending thrust faults, and NW-trending (dextral) and NE-trending (sinistral) strike-slip faults. One proposed fault in this network, the Sardarapat Fault (SF), was investigated as part of a regional seismic hazard assessment ahead of the installation of a replacement reactor at the Armenian Nuclear Power Plant (ANPP). The SF is primarily defined by the Sardarapat Ridge (SR), which is a WNW-trending, 40-70 m high topographic feature located just north of the Arax River and the Turkey-Armenia border. The stratigraphy comprising this ridge includes alluvium overlying several meters of lacustrine deposits above a crystal-rich basaltic lava flow that yields an Ar-Ar age of 0.9 +/- 0.02 Ma. The alluvial sediments on the ridge contain early Bronze age (3832-3470 BP) artifacts at an elevation 25 m above those of the surrounding alluvial plane. This has lead to the suggestion that the SR is bound to the south (the steepest side) by the SF, which is uplifting the ridge at a rate of 0.7 mm/yr. However, despite the prominence and trend of the ridge there are no unequivocal observations, such as scarps or exposures of fault rocks, to support the existence of the SF. The goal of the investigation of the SR area was to test various models for the formation of the ridge including faulting and combined volcanic and erosional processes. We therefore collected gravimetric, magnetic, magneto-tellurics (MT), and transient electromagnetic (TEM) data across an area of ~400 km2, and used correlations of stratigraphic data from coreholes drilled proximal to the study area to define the geometry of the contact between the basement and basin fill to

  3. Pliocene granodioritic knoll with continental crust affinities discovered in the intra-oceanic Izu-Bonin-Mariana Arc: Syntectonic granitic crust formation during back-arc rifting

    Science.gov (United States)

    Tani, Kenichiro; Dunkley, Daniel J.; Chang, Qing; Nichols, Alexander R. L.; Shukuno, Hiroshi; Hirahara, Yuka; Ishizuka, Osamu; Arima, Makoto; Tatsumi, Yoshiyuki

    2015-08-01

    A widely held hypothesis is that modern continental crust of an intermediate (i.e. andesitic) bulk composition forms at intra-oceanic arcs through subduction zone magmatism. However, there is a critical paradox in this hypothesis: to date, the dominant granitic rocks discovered in these arcs are tonalite, rocks that are significantly depleted in incompatible (i.e. magma-preferred) elements and do not geochemically and petrographically represent those of the continents. Here we describe the discovery of a submarine knoll, the Daisan-West Sumisu Knoll, situated in the rear-arc region of the intra-oceanic Izu-Bonin-Mariana Arc. Remotely-operated vehicle surveys reveal that this knoll is made up entirely of a 2.6 million year old porphyritic to equigranular granodiorite intrusion with a geochemical signature typical of continental crust. We present a model of granodiorite magma formation that involves partial remelting of enriched mafic rear-arc crust during the initial phase of back-arc rifting, which is supported by the preservation of relic cores inherited from initial rear-arc source rocks within magmatic zircon crystals. The strong extensional tectonic regime at the time of intrusion may have allowed the granodioritic magma to be emplaced at an extremely shallow level, with later erosion of sediment and volcanic covers exposing the internal plutonic body. These findings suggest that rear-arc regions could be the potential sites of continental crust formation in intra-oceanic convergent margins.

  4. Fast Radio Bursts from the Collapse of Strange Star Crusts

    Science.gov (United States)

    Zhang, Yue; Geng, Jin-Jun; Huang, Yong-Feng

    2018-05-01

    Fast radio bursts (FRBs) are transient radio sources at cosmological distances. No counterparts in other bands have been observed for non-repeating FRBs. Here we suggest the collapse of strange star (SS) crusts as a possible origin for FRBs. SSs, which are composed of almost equal numbers of u, d, and s quarks, may be encapsulated by a thin crust of normal hadronic matter. When a SS accretes matter from its environment, the crust becomes heavier and heavier. It may finally collapse, leading to the release of a large amount of magnetic energy and plenty of electron/positron pairs on a very short timescale. Electron/positron pairs in the polar cap region of the SS can be accelerated to relativistic velocities, streaming along the magnetic field lines to form a thin shell. FRBs are produced by coherent emission from these electrons when the shell is expanding. Basic characteristics of observed FRBs can be explained in our model.

  5. Study of marine magnetic field

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattacharya, G.C.

    magnetized in the direction of the Earth’s magnetic field at that time. As seafloor spreading pulls the new oceanic crust apart, stripes of approximately the same size gets carried away from the ridge on each side. The basaltic oceanic crust formed...

  6. Analysis of volatile compounds in gluten-free bread crusts with an optimised and validated SPME-GC/QTOF methodology.

    Science.gov (United States)

    Pico, Joana; Antolín, Beatriz; Román, Laura; Gómez, Manuel; Bernal, José

    2018-04-01

    The aroma of bread crust, as one of the first characteristics perceived, is essential for bread acceptance. However, gluten-free bread crusts exhibit weak aroma. A SPME-GC/QTOF methodology was optimised with PCA and RSM and validated for the quantification of 44 volatile compounds in bread crust, extracting 0.75 g of crust at 60 °C for 51 min. LODs ranged between 3.60 and 1760 μg Kg -1 , all the R 2 were higher than 0.99 and %RSD for precision and %Er for accuracy were lower than 9% and 12%, respectively. A commercial wheat bread crust was quantified, and furfural was the most abundant compound. Bread crusts of wheat starch and of japonica rice, basmati rice and teff flours were also quantified. Teff flour and wheat starch crusts were very suitable for improving gluten-free bread crust aroma, due to their similar content in 2-acetyl-1-pyrroline and 4-hydroxy-2,5-dimethyl-3(2H)-furanone compared to wheat flour crust and also for their high content in pyrazines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Microgravity survey of the Oak Ridge K-25 Site, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Kaufmann, R.D.

    1996-05-01

    Karst features are known to exist within the carbonate bedrock of the Oak Ridge K-25 Site and may play an important role in groundwater flow and contaminant migration. This report discusses the results of a microgravity survey of the Oak Ridge K-25 Site. The main objective of the survey is to identify areas containing bedrock cavities. Secondary objectives included correlating the observed gravity to the geology and to variations in overburden thickness. The analysis includes 11 profile lines that are oriented perpendicular to the geologic strike and major structures throughout the K-25 Site. The profile lines are modeled in an effort to relate gravity anomalies to karst features such as concentrations of mud-filled cavities. Regolith thickness and density data provided by boreholes constrain the models. Areally distributed points are added to the profile lines to produce a gravity contour map of the site. In addition, data from the K-901 area are combined with data from previous surveys to produce a high resolution map of that site. The K-25 Site is located in an area of folded and faulted sedimentary rocks within the Appalachian Valley and Ridge physiographic province. Paleozoic age rocks of the Rome Formation, Knox Group, and Chickamauga Supergroup underlie the K-25 Site and contain structures that include the Whiteoak Mountain Fault, the K-25 Fault, a syncline, and an anticline. The mapped locations of the rock units and complex structures are currently derived from outcrop and well log analysis

  8. Self-Consistent Generation of Primordial Continental Crust in Global Mantle Convection Models

    Science.gov (United States)

    Jain, C.; Rozel, A.; Tackley, P. J.

    2017-12-01

    We present the generation of primordial continental crust (TTG rocks) using self-consistent and evolutionary thermochemical mantle convection models (Tackley, PEPI 2008). Numerical modelling commonly shows that mantle convection and continents have strong feedbacks on each other. However in most studies, continents are inserted a priori while basaltic (oceanic) crust is generated self-consistently in some models (Lourenco et al., EPSL 2016). Formation of primordial continental crust happened by fractional melting and crystallisation in episodes of relatively rapid growth from late Archean to late Proterozoic eras (3-1 Ga) (Hawkesworth & Kemp, Nature 2006) and it has also been linked to the onset of plate tectonics around 3 Ga. It takes several stages of differentiation to generate Tonalite-Trondhjemite-Granodiorite (TTG) rocks or proto-continents. First, the basaltic magma is extracted from the pyrolitic mantle which is both erupted at the surface and intruded at the base of the crust. Second, it goes through eclogitic transformation and then partially melts to form TTGs (Rudnick, Nature 1995; Herzberg & Rudnick, Lithos 2012). TTGs account for the majority of the Archean continental crust. Based on the melting conditions proposed by Moyen (Lithos 2011), the feasibility of generating TTG rocks in numerical simulations has already been demonstrated by Rozel et al. (Nature, 2017). Here, we have developed the code further by parameterising TTG formation. We vary the ratio of intrusive (plutonic) and extrusive (volcanic) magmatism (Crisp, Volcanol. Geotherm. 1984) to study the relative volumes of three petrological TTG compositions as reported from field data (Moyen, Lithos 2011). Furthermore, we systematically vary parameters such as friction coefficient, initial core temperature and composition-dependent viscosity to investigate the global tectonic regime of early Earth. Continental crust can also be destroyed by subduction or delamination. We will investigate

  9. Estimating the formation age distribution of continental crust by unmixing zircon ages

    Science.gov (United States)

    Korenaga, Jun

    2018-01-01

    Continental crust provides first-order control on Earth's surface environment, enabling the presence of stable dry landmasses surrounded by deep oceans. The evolution of continental crust is important for atmospheric evolution, because continental crust is an essential component of deep carbon cycle and is likely to have played a critical role in the oxygenation of the atmosphere. Geochemical information stored in the mineral zircon, known for its resilience to diagenesis and metamorphism, has been central to ongoing debates on the genesis and evolution of continental crust. However, correction for crustal reworking, which is the most critical step when estimating original formation ages, has been incorrectly formulated, undermining the significance of previous estimates. Here I suggest a simple yet promising approach for reworking correction using the global compilation of zircon data. The present-day distribution of crustal formation age estimated by the new "unmixing" method serves as the lower bound to the true crustal growth, and large deviations from growth models based on mantle depletion imply the important role of crustal recycling through the Earth history.

  10. The tectonic origin of the Bay of Bengal and Bangladesh

    Digital Repository Service at National Institute of Oceanography (India)

    Talwani, M.; Desa, M.; Ismaiel, M.; Krishna, K.S.

    direction for the Indian plate.  4. The 85°E Ridge was initially evolved as a fracture zone, and subsequently associated with volcanism.   5. The oceanic crust of the Western Basin of the Bay of Bengal is older than the crust of the Eastern Basin and Bangla... it a northern extension of the 86°E fracture zone, while Sar et al. [2009] suggested it could have a continental origin. Gibbons et al. [2013] inferred that the 85°E Ridge and the Kerguelen Fracture Zone formed as conjugate flanks of a 'leaky...

  11. Consequences of the low density of the lunar primary crust on its magmatic history (Invited)

    Science.gov (United States)

    Michaut, C.; Thorey, C.

    2013-12-01

    The lunar highlands are very old, with ages covering a timespan between 4.5 to 4.2 Gyr, and probably formed by flotation of light plagioclase minerals on top of the lunar magma ocean. The lunar crust provides thus an invaluable evidence of the geological and magmatic processes occurring in the first times of the terrestrial planets history. According to the last estimates from the GRAIL mission, the lunar primary crust is particularly light and relatively thick. This low-density crust acted as a barrier for the dense primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basins: at least part of the crust must have been removed for the magma to reach the surface. However, the trajectory of the magma from the mantle to the surface is unknown. Here, we provide evidence of intrusions within the crust of the Moon as surface deformations in the form of low-slope lunar domes and floor-fractured craters. All these geological features have morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. Furthermore, at floor-fractured craters, the deformation is contained within the crater interior, suggesting that the overpressure at the origin of magma ascent and intrusion was less than the pressure due to the weight of the crust removed by impact. The pressure release due to material removal by impact is significant over a depth equivalent to the crater radius. Because many of these floor-fractured craters are relatively small, i.e. less than 20 to 30 km in radius, this observation suggests that the magma at the origin of the intrusion was already stored within or just below the crust, in deeper intrusions. Thus, a large fraction of the mantle melt might have stored at depth below or within the light primary crust before reaching shallower layers. And hence, magma intrusions must have had a large influence on the thermal and geological evolution of the

  12. Effect of temperature and ridge-width on the lasing characteristics of InAs/InP quantum-dash lasers: A thermal analysis view

    Science.gov (United States)

    Alkhazraji, E.; Khan, M. T. A.; Ragheb, A. M.; Fathallah, H.; Qureshi, K. K.; Alshebeili, S.; Khan, M. Z. M.

    2018-01-01

    We investigate the thermal characteristics of multi-stack chirped barrier thickness InAs/InGaAlAs/InP quantum-dash-in-a-well lasers of different ridge widths 2, 3, 4 and 15 μm. The effect of varying this geometrical parameter on the extracted thermal resistance and characteristic temperature, and their stability with temperature are examined. The results show an inverse relation of ridge-width with junction temperature with 2 μm device exhibiting the largest junction temperature buildup owing to an associated high thermal resistance of ∼45 °C/W. Under the light of this thermal analysis, lasing behavior of different ridge-width quantum-dash (Qdash) lasers with injection currents and operating temperatures, is investigated. Thermionic carrier escape and phonon-assisted tunneling are found to be the dominant carrier transport mechanisms resulting in wide thermal spread of carriers across the available transition states of the chirped active region. An emission coverage of ∼75 nm and 3 dB bandwidth of ∼55 nm is exhibited by the 2 μm device, thus possibly exploiting the inhomogeneous optical transitions to the fullest. Furthermore, successful external modulation of a single Qdash Fabry-Perot laser mode via injection locking is demonstrated with eye diagrams at bit rates of 2-12 Gbit/s incorporating various modulation schemes. These devices are being considered as potential light sources for future high-speed wavelength-division multiplexed optical communication systems.

  13. Subseafloor seawater-basalt-microbe reactions: Continuous sampling of borehole fluids in a ridge flank environment

    Science.gov (United States)

    Wheat, C. Geoffrey; Jannasch, Hans W.; Fisher, Andrew T.; Becker, Keir; Sharkey, Jessica; Hulme, Samuel

    2010-07-01

    Integrated Ocean Drilling Program (IODP) Hole 1301A was drilled, cased, and instrumented with a long-term, subseafloor observatory (CORK) on the eastern flank of the Juan de Fuca Ridge in summer 2004. This borehole is located 1 km south of ODP Hole 1026B and 5 km north of Baby Bare outcrop. Hole 1301A penetrates 262 m of sediment and 108 m of the uppermost 3.5 Ma basaltic basement in an area of warm (64°C) hydrothermal circulation. The borehole was instrumented, and those instruments were recovered 4 years later. Here we report chemical data from two continuous fluid samplers (OsmoSamplers) and temperature recording tools that monitored changes in the state of borehole (formation) fluids. These changes document the effects of drilling, fluid overpressure and flow, seawater-basalt interactions, and microbial metababolic activity. Initially, bottom seawater flowed into the borehole through a leak between concentric CORK casing strings. Eventually, the direction of flow reversed, and warm, altered formation fluid flowed into the borehole and discharged at the seafloor. This reversal occurred during 1 week in September 2007, 3 years after drilling operations ceased. The composition of the formation fluid around Hole 1301A generally lies within bounds defined by springs on Baby Bare outcrop (to the south) and fluids that discharged from Hole 1026B (to the north); deviations likely result from reactions with drilling products. Simple conservative mixing of two end-member fluids reveals reactions occurring within the crust, including nitrate reduction presumably by denitrifying microbes. The observed changes in borehole fluid composition provide the foundation for a conceptual model of chemical and microbial change during recharge of a warm ridge-flank hydrothermal system. This model can be tested through future scientific ocean drilling experiments.

  14. Removal action report on the Building 3001 canal at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-05-01

    Oak Ridge National Laboratory (ORNL) is a federal facility managed by Lockheed Martin C, Energy Research, Inc., for the U.S. Department of Energy (DOE). ORNL on the Oak Ridge Reservation in East Tennessee at the Anderson and Roane County lines, approximately 38 km (24 miles) west of Knoxville, Tennessee, and 18 km (11 miles) southwest of downtown Oak Ridge. The Oak Ridge Graphite Reactor and its storage and transfer canal are located in Bldg. 3001 in the approximate center of Waste Area Grouping I in the ORNL main complex. 4:1 The Bldg. 3001 Storage Canal is an L-shaped, underground, reinforced-concrete structure running from the back and below the Graphite Reactor in Bldg. 3001 to a location beneath a hot cell in the adjacent Bldg. 3019. The Graphite Reactor was built in 1943 to produce small quantities of plutonium and was subsequently used to produce other isotopes for medical research before it was finally shut down in 1963. The associated canal was used to transport, under water, spent fuel slugs and other isotopes from the back of the reactor to the adjacent Bldg. 31319 hot cell for further processing. During its operation and years subsequent to operation, the canal's concrete walls and floor became contaminated with radioisotopes from the water.This report documents the activities involved with replacing the canal water with a solid, controlled, low-strength material (CLSM) in response to a Comprehensive Environmental Response, Compensation, and Liability Act non-time-critical removal action

  15. Impact of Environmental Factors and Biological Soil Crust Types on Soil Respiration in a Desert Ecosystem

    Science.gov (United States)

    Feng, Wei; Zhang, Yuqing; Jia, Xin; Wu, Bin; Zha, Tianshan; Qin, Shugao; Wang, Ben; Shao, Chenxi; Liu, Jiabin; Fa, Keyu

    2014-01-01

    The responses of soil respiration to environmental conditions have been studied extensively in various ecosystems. However, little is known about the impacts of temperature and moisture on soils respiration under biological soil crusts. In this study, CO2 efflux from biologically-crusted soils was measured continuously with an automated chamber system in Ningxia, northwest China, from June to October 2012. The highest soil respiration was observed in lichen-crusted soil (0.93±0.43 µmol m−2 s−1) and the lowest values in algae-crusted soil (0.73±0.31 µmol m−2 s−1). Over the diurnal scale, soil respiration was highest in the morning whereas soil temperature was highest in the midday, which resulted in diurnal hysteresis between the two variables. In addition, the lag time between soil respiration and soil temperature was negatively correlated with the soil volumetric water content and was reduced as soil water content increased. Over the seasonal scale, daily mean nighttime soil respiration was positively correlated with soil temperature when moisture exceeded 0.075 and 0.085 m3 m−3 in lichen- and moss-crusted soil, respectively. However, moisture did not affect on soil respiration in algae-crusted soil during the study period. Daily mean nighttime soil respiration normalized by soil temperature increased with water content in lichen- and moss-crusted soil. Our results indicated that different types of biological soil crusts could affect response of soil respiration to environmental factors. There is a need to consider the spatial distribution of different types of biological soil crusts and their relative contributions to the total C budgets at the ecosystem or landscape level. PMID:25050837

  16. Impact of environmental factors and biological soil crust types on soil respiration in a desert ecosystem.

    Science.gov (United States)

    Feng, Wei; Zhang, Yuqing; Jia, Xin; Wu, Bin; Zha, Tianshan; Qin, Shugao; Wang, Ben; Shao, Chenxi; Liu, Jiabin; Fa, Keyu

    2014-01-01

    The responses of soil respiration to environmental conditions have been studied extensively in various ecosystems. However, little is known about the impacts of temperature and moisture on soils respiration under biological soil crusts. In this study, CO2 efflux from biologically-crusted soils was measured continuously with an automated chamber system in Ningxia, northwest China, from June to October 2012. The highest soil respiration was observed in lichen-crusted soil (0.93 ± 0.43 µmol m-2 s-1) and the lowest values in algae-crusted soil (0.73 ± 0.31 µmol m-2 s-1). Over the diurnal scale, soil respiration was highest in the morning whereas soil temperature was highest in the midday, which resulted in diurnal hysteresis between the two variables. In addition, the lag time between soil respiration and soil temperature was negatively correlated with the soil volumetric water content and was reduced as soil water content increased. Over the seasonal scale, daily mean nighttime soil respiration was positively correlated with soil temperature when moisture exceeded 0.075 and 0.085 m3 m-3 in lichen- and moss-crusted soil, respectively. However, moisture did not affect on soil respiration in algae-crusted soil during the study period. Daily mean nighttime soil respiration normalized by soil temperature increased with water content in lichen- and moss-crusted soil. Our results indicated that different types of biological soil crusts could affect response of soil respiration to environmental factors. There is a need to consider the spatial distribution of different types of biological soil crusts and their relative contributions to the total C budgets at the ecosystem or landscape level.

  17. Transitions in axial morphology along the Southeast Indian Ridge

    Science.gov (United States)

    Ma, Ying; Cochran, James R.

    1996-07-01

    Shipboard bathymetric and magnetic profiles across the Southeast Indian Ridge (SEIR) were analyzed in order to examine the nature of along-axis variations in axial morphology at this intermediate spreading rate ridge. Three types of axial morphology are observed along the SEIR: an axial high, a shallow (200-700 m deep) axial valley and a deep (>1000 m deep) axial valley. An axial high is found to the east of the Australian-Antarctic Discordance (AAD) (east of 128°E) and between 82°E and 104°E. A shallow rift valley is found from 104°E to 114°E and from 82°E westward past the Amerstdam/St. Paul hotspot (ASP) to about 30°S, 75°E. Deep rift valleys are found from 114°E to 128°E in the vicinity of the AAD and from the Indian Ocean Triple Junction (IOTJ) at 25°S, 70°E to about 30°S, 75°E. The transition near 30°S occurs in an area of constant zero-age depth and does not appear to result from an increase in mantle temperature. It could be the result of the rapid increase in spreading rate along that portion of the SEIR. The most likely cause of the other transitions in axial morphology is variations in mantle temperature. The transitions between the different types of axial morphology are well defined and occur over a limited distance. Transitions in axial morphology are accompanied by significant changes in ridge flank topographic roughness. The transitions from axial valleys to axial highs are also accompanied by changes in the amplitude of the seafloor magnetic anomalies. Our observations suggest that there are distinct modes rather than a continuum of axial morphology on the SEIR and that there appears to be a "threshold" mechanism for a rapid change between different states of axial morphology. The ASP has only a limited influence on the SEIR. The ridge axis is marked by an axial valley for the entire distance from the IOTJ up to and past the ASP. The ridge axis becomes shallower as the ASP is approached from the northwest but only by about 300 m over

  18. Accretion mode of oceanic ridges governed by axial mechanical strength

    Science.gov (United States)

    Sibrant, A. L. R.; Mittelstaedt, E.; Davaille, A.; Pauchard, L.; Aubertin, A.; Auffray, L.; Pidoux, R.

    2018-04-01

    Oceanic spreading ridges exhibit structural changes as a function of spreading rate, mantle temperature and the balance of tectonic and magmatic accretion. The role that these or other processes have in governing the overall shape of oceanic ridges is unclear. Here, we use laboratory experiments to simulate ridge spreading in colloidal aqueous dispersions whose rheology evolves from purely viscous to elastic and brittle when placed in contact with a saline water solution. We find that ridge shape becomes increasingly linear with spreading rate until reaching a minimum tortuosity. This behaviour is predicted by the axial failure parameter ΠF, a dimensionless number describing the balance of brittle and plastic failure of axial lithosphere. Slow-spreading, fault-dominated and fast-spreading, fluid intrusion-dominated ridges on Earth and in the laboratory are separated by the same critical ΠF value, suggesting that the axial failure mode governs ridge geometry. Values of ΠF can also be calculated for different mantle temperatures and applied to other planets or the early Earth. For higher mantle temperatures during the Archaean, our results preclude the predicted formation of large tectonic plates at high spreading velocity.

  19. Alveolar Ridge Split Technique Using Piezosurgery with Specially Designed Tips

    Directory of Open Access Journals (Sweden)

    Alessandro Moro

    2017-01-01

    Full Text Available The treatment of patients with atrophic ridge who need prosthetic rehabilitation is a common problem in oral and maxillofacial surgery. Among the various techniques introduced for the expansion of alveolar ridges with a horizontal bone deficit is the alveolar ridge split technique. The aim of this article is to give a description of some new tips that have been specifically designed for the treatment of atrophic ridges with transversal bone deficit. A two-step piezosurgical split technique is also described, based on specific osteotomies of the vestibular cortex and the use of a mandibular ramus graft as interpositional graft. A total of 15 patients were treated with the proposed new tips by our department. All the expanded areas were successful in providing an adequate width and height to insert implants according to the prosthetic plan and the proposed tips allowed obtaining the most from the alveolar ridge split technique and piezosurgery. These tips have made alveolar ridge split technique simple, safe, and effective for the treatment of horizontal and vertical bone defects. Furthermore the proposed piezosurgical split technique allows obtaining horizontal and vertical bone augmentation.

  20. Alveolar Ridge Split Technique Using Piezosurgery with Specially Designed Tips.

    Science.gov (United States)

    Moro, Alessandro; Gasparini, Giulio; Foresta, Enrico; Saponaro, Gianmarco; Falchi, Marco; Cardarelli, Lorenzo; De Angelis, Paolo; Forcione, Mario; Garagiola, Umberto; D'Amato, Giuseppe; Pelo, Sandro

    2017-01-01

    The treatment of patients with atrophic ridge who need prosthetic rehabilitation is a common problem in oral and maxillofacial surgery. Among the various techniques introduced for the expansion of alveolar ridges with a horizontal bone deficit is the alveolar ridge split technique. The aim of this article is to give a description of some new tips that have been specifically designed for the treatment of atrophic ridges with transversal bone deficit. A two-step piezosurgical split technique is also described, based on specific osteotomies of the vestibular cortex and the use of a mandibular ramus graft as interpositional graft. A total of 15 patients were treated with the proposed new tips by our department. All the expanded areas were successful in providing an adequate width and height to insert implants according to the prosthetic plan and the proposed tips allowed obtaining the most from the alveolar ridge split technique and piezosurgery. These tips have made alveolar ridge split technique simple, safe, and effective for the treatment of horizontal and vertical bone defects. Furthermore the proposed piezosurgical split technique allows obtaining horizontal and vertical bone augmentation.

  1. Biological soil crusts across disturbance–recovery scenarios: effect of grazing regime on community dynamics.

    Science.gov (United States)

    Concostrina-Zubiri, L; Huber-Sannwald, E; Martínez, I; Flores Flores, J L; Reyes-Agüero, J A; Escude, A; Belnap, J

    Grazing represents one of the most common disturbances in drylands worldwide, affecting both ecosystem structure and functioning. Despite the efforts to understand the nature and magnitude of grazing effects on ecosystem components and processes, contrasting results continue to arise. This is particularly remarkable for the biological soil crust (BSC) communities (i.e., cyanobacteria, lichens, and bryophytes), which play an important role in soil dynamics. Here we evaluated simultaneously the effect of grazing impact on BSC communities (resistance) and recovery after livestock exclusion (resilience) in a semiarid grassland of Central Mexico. In particular, we examined BSC species distribution, species richness, taxonomical group cover (i.e., cyanobacteria, lichen, bryophyte), and composition along a disturbance gradient with different grazing regimes (low, medium, high impact) and along a recovery gradient with differently aged livestock exclosures (short-, medium-, long-term exclusion). Differences in grazing impact and time of recovery from grazing both resulted in slight changes in species richness; however, there were pronounced shifts in species composition and group cover. We found we could distinguish four highly diverse and dynamic BSC species groups: (1) species with high resistance and resilience to grazing, (2) species with high resistance but low resilience, (3) species with low resistance but high resilience, and (4) species with low resistance and resilience. While disturbance resulted in a novel diversity configuration, which may profoundly affect ecosystem functioning, we observed that 10 years of disturbance removal did not lead to the ecosystem structure found after 27 years of recovery. These findings are an important contribution to our understanding of BCS dynamics from a species and community perspective placed in a land use change context.

  2. Biological soil crusts across disturbance-recovery scenarios: effect of grazing regime on community dynamics

    Science.gov (United States)

    Concostrina-Zubiri, L.; Huber-Sannwald, E.; Martínez, I.; Flores Flores, J. L.; Reyes-Agüero, J. A.; Escudero, A.; Belnap, Jayne

    2014-01-01

    Grazing represents one of the most common disturbances in drylands worldwide, affecting both ecosystem structure and functioning. Despite the efforts to understand the nature and magnitude of grazing effects on ecosystem components and processes, contrasting results continue to arise. This is particularly remarkable for the biological soil crust (BSC) communities (i.e., cyanobacteria, lichens, and bryophytes), which play an important role in soil dynamics. Here we evaluated simultaneously the effect of grazing impact on BSC communities (resistance) and recovery after livestock exclusion (resilience) in a semiarid grassland of Central Mexico. In particular, we examined BSC species distribution, species richness, taxonomical group cover (i.e., cyanobacteria, lichen, bryophyte), and composition along a disturbance gradient with different grazing regimes (low, medium, high impact) and along a recovery gradient with differently aged livestock exclosures (short-, medium-, long-term exclusion). Differences in grazing impact and time of recovery from grazing both resulted in slight changes in species richness; however, there were pronounced shifts in species composition and group cover. We found we could distinguish four highly diverse and dynamic BSC species groups: (1) species with high resistance and resilience to grazing, (2) species with high resistance but low resilience, (3) species with low resistance but high resilience, and (4) species with low resistance and resilience. While disturbance resulted in a novel diversity configuration, which may profoundly affect ecosystem functioning, we observed that 10 years of disturbance removal did not lead to the ecosystem structure found after 27 years of recovery. These findings are an important contribution to our understanding of BCS dynamics from a species and community perspective placed in a land use change context.

  3. Small-Scale Density Variations in the Lunar Crust Revealed by GRAIL

    Science.gov (United States)

    Jansen, J. C.; Andrews-Hanna, J. C.; Li, Y.; Lucey, P. G.; Taylor, G. J.; Goossens, S.; Lemoine, F. G.; Mazarico, E.; Head, J. W., III; Milbury, C.; hide

    2017-01-01

    Data from the Gravity Recovery and Interior Laboratory (GRAIL) mission have revealed that approximately 98 percent of the power of the gravity signal of the Moon at high spherical harmonic degrees correlates with the topography. The remaining 2 percent of the signal, which cannot be explained by topography, contains information about density variations within the crust. These high-degree Bouguer gravity anomalies are likely caused by small-scale (10's of km) shallow density variations. Here we use gravity inversions to model the small-scale three-dimensional variations in the density of the lunar crust. Inversion results from three non-descript areas yield shallow density variations in the range of 100-200 kg/m3. Three end-member scenarios of variations in porosity, intrusions into the crust, and variations in bulk crustal composition were tested as possible sources of the density variations. We find that the density anomalies can be caused entirely by changes in porosity. Characteristics of density anomalies in the South Pole-Aitken basin also support porosity as a primary source of these variations. Mafic intrusions into the crust could explain many, but not all of the anomalies. Additionally, variations in crustal composition revealed by spectral data could only explain a small fraction of the density anomalies. Nevertheless, all three sources of density variations likely contribute. Collectively, results from this study of GRAIL gravity data, combined with other studies of remote sensing data and lunar samples, show that the lunar crust exhibits variations in density by plus or minus 10 percent over scales ranging from centimeters to 100’s of kilometers.

  4. Alveolar Ridge Carcinoma. Two Cases Report

    International Nuclear Information System (INIS)

    Pupo Triguero, Raul J; Vivar Bauza, Miriam; Alvarez Infante, Elisa

    2008-01-01

    Two cases with alveolar ridge carcinoma due to prosthetist traumatism are discussed in this paper, after 9 and 10 years of using dental prosthesis. Both patients began with disturbance in the alveolar ridge. The clinical examination and biopsy showed a well differenced carcinoma. The treatment was radical surgery and radiotherapy in the first patient, and conservative surgery with radiotherapy in the second case .The patients had xerostomia after radiotherapy and the woman had difficulties with mastication. The advantages and disadvantages of the treatment were discussed, focused on the prevention and treatment for oral

  5. ORLANDO - Oak Ridge Large Neutrino Detector

    International Nuclear Information System (INIS)

    Bugg, W.; Cohn, H.; Efremenko, Yu.; Fazely, A.; Gabriel, T.; Kamyshkov, Yu.; Plasil, F.; Svoboda, R.

    1999-01-01

    We discuss a proposal for construction of an Oak Ridge LArge Neutrino DetectOr (ORLANDO) to search for neutrino oscillations at the Spallation Neutron Source (SNS). A 4 MW SNS is proposed to be built at the Oak Ridge National Laboratory with the first stage to be operative around 2006. It will have two target stations, which makes it possible with a single detector to perform a neutrino oscillation search at two different distances. Initial plans for the placement of the detector and the discovery potential of such a detector are discussed

  6. Contraction or expansion of the Moon's crust during magma ocean freezing?

    Science.gov (United States)

    Elkins-Tanton, Linda T; Bercovici, David

    2014-09-13

    The lack of contraction features on the Moon has been used to argue that the Moon underwent limited secular cooling, and thus had a relatively cool initial state. A cool early state in turn limits the depth of the lunar magma ocean. Recent GRAIL gravity measurements, however, suggest that dikes were emplaced in the lower crust, requiring global lunar expansion. Starting from the magma ocean state, we show that solidification of the lunar magma ocean would most likely result in expansion of the young lunar crust, and that viscous relaxation of the crust would prevent early tectonic features of contraction or expansion from being recorded permanently. The most likely process for creating the expansion recorded by the dikes is melting during cumulate overturn of the newly solidified lunar mantle. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Birth of an oceanic spreading center at a magma-poor rift system.

    Science.gov (United States)

    Gillard, Morgane; Sauter, Daniel; Tugend, Julie; Tomasi, Simon; Epin, Marie-Eva; Manatschal, Gianreto

    2017-11-08

    Oceanic crust is continuously created at mid-oceanic ridges and seafloor spreading represents one of the main processes of plate tectonics. However, if oceanic crust architecture, composition and formation at present-day oceanic ridges are largely described, the processes governing the birth of a spreading center remain enigmatic. Understanding the transition between inherited continental and new oceanic domains is a prerequisite to constrain one of the last major unsolved problems of plate tectonics, namely the formation of a stable divergent plate boundary. In this paper, we present newly released high-resolution seismic reflection profiles that image the complete transition from unambiguous continental to oceanic crusts in the Gulf of Guinea. Based on these high-resolution seismic sections we show that onset of oceanic seafloor spreading is associated with the formation of a hybrid crust in which thinned continental crust and/or exhumed mantle is sandwiched between magmatic intrusive and extrusive bodies. This crust results from a polyphase evolution showing a gradual transition from tectonic-driven to magmatic-driven processes. The results presented in this paper provide a characterization of the domain in which lithospheric breakup occurs and enable to define the processes controlling formation of a new plate boundary.

  8. Growth of the lower continental crust via the relamination of arc magma

    Science.gov (United States)

    He, Yumei; Zheng, Tianyu; Ai, Yinshuang; Hou, Guangbing; Chen, Qi-Fu

    2018-01-01

    How does continental crust transition from basaltic mantle-derived magmas into an andesitic composition? The relamination hypothesis has been presented as an alternative dynamical mechanism to classical delamination theory to explain new crust generation and has been supported by petrological and geochemical studies as well as by thermomechanical numerical modeling. However, direct evidence of this process from detailed seismic velocity structures is lacking. Here, we imaged the three-dimensional (3D) velocity structures of the crust and uppermost mantle beneath the geologically stable Ordos terrane of the North China Craton (NCC). We identify a region of continental crust that exhibits extreme growth using teleseismic data and an imaging technique that models the Common Conversion Point (CCP) stacking profiles. Our results show an approximately 400 × 400 km2 wide growth zone that underlies the primitive crust at depths of 30-50 km and exhibits a gradual increase of velocity with depth. The upper layer of the growth zone has a shear wave velocity of 3.6-3.9 km/s (Vp = 6.2-6.8 km/s), indicating felsic material, and the lower layer has a shear wave velocity of 4.1-4.3 km/s (Vp = 7.2-7.5 km/s), which corresponds to mafic material. We suggest that this vertical evolution of the layered structure could be created by relamination and that the keel structure formed by relamination may be the root of the supernormal stability of the ancient Ordos terrane.

  9. Biotic soil crusts in relation to topography, cheatgrass, and fire in the Columbia Basin, Washington

    Science.gov (United States)

    Ponzetti, Jeanne; McCune, B.; Pyke, David A.

    2007-01-01

    We studied lichen and bryophyte soil crust communities in a large public grazing allotment within a sagebrush steppe ecosystem in which the biotic soil crusts are largely intact. The allotment had been rested from grazing for 12 years, but experienced an extensive series of wildfires. In the 350, 4 ?? 0.5 m plots, stratified by topographic position, we found 60 species or species groups that can be distinguished in the field with a hand lens, averaging 11.5 species groups per plot. Lichen and bryophyte soil crust communities differed among topographic positions. Draws were the most disturbed, apparently from water erosion in a narrow channel and mass wasting from the steepened sides. Presumably because of this disturbance, draws had the lowest average species richness of all the topographic strata we examined. Biotic crust species richness and cover were inversely related to cover of the invasive annual, cheatgrass (Bromus tectorum), and positively related to cover of native bunchgrasses. Integrity of the biotic crust was more strongly related to cheatgrass than to fire. In general, we observed good recovery of crusts following fire, but only in those areas dominated by perennial bunchgrasses. We interpret the resilience of the biotic crust, in this case, to the low abundance of cheatgrass, low amounts of soil disturbance and high moss cover. These fires have not resulted in an explosion of the cheatgrass population, perhaps because of the historically low levels of livestock grazing.

  10. Millennial-scale ocean acidification and late Quaternary decline of cryptic bacterial crusts in tropical reefs.

    Science.gov (United States)

    Riding, R; Liang, L; Braga, J C

    2014-09-01

    Ocean acidification by atmospheric carbon dioxide has increased almost continuously since the last glacial maximum (LGM), 21,000 years ago. It is expected to impair tropical reef development, but effects on reefs at the present day and in the recent past have proved difficult to evaluate. We present evidence that acidification has already significantly reduced the formation of calcified bacterial crusts in tropical reefs. Unlike major reef builders such as coralline algae and corals that more closely control their calcification, bacterial calcification is very sensitive to ambient changes in carbonate chemistry. Bacterial crusts in reef cavities have declined in thickness over the past 14,000 years with largest reduction occurring 12,000-10,000 years ago. We interpret this as an early effect of deglacial ocean acidification on reef calcification and infer that similar crusts were likely to have been thicker when seawater carbonate saturation was increased during earlier glacial intervals, and thinner during interglacials. These changes in crust thickness could have substantially affected reef development over glacial cycles, as rigid crusts significantly strengthen framework and their reduction would have increased the susceptibility of reefs to biological and physical erosion. Bacterial crust decline reveals previously unrecognized millennial-scale acidification effects on tropical reefs. This directs attention to the role of crusts in reef formation and the ability of bioinduced calcification to reflect changes in seawater chemistry. It also provides a long-term context for assessing anticipated anthropogenic effects. © 2014 John Wiley & Sons Ltd.

  11. Uranium-series growth history of a Quaternary phosphatic crust from the Peruvian continental margin

    International Nuclear Information System (INIS)

    Kim, Kee Hyun; Burnett, W.C.

    1986-01-01

    A 20-mm-thick oriented phosphatic crust recovered together with its overlying (14 cm) and underlying (4 cm) associated sediment from the Peruvian sea floor has been analyzed in detail for uranium-series radionuclides in an attempt to determine its rate and direction of growth. Growth curves based upon 226 Ra and 230 Th ages show that this crust grew upward toward the sediment-water interface. Calculated growth rates in the range of 12-13 mm ka -1 are slightly higher but comparable to values previously reported. Crystallographical analyses of this phosphatic crust show a trend of decreasing unit-cell dimension a with sample age. The upward growth of a buried crust toward the sediment-water interface is consistent with results from recent pore-water studies of fluoride and phosphate in Peru shelf sediments. (orig.)

  12. Structure of the crust beneath the Southeastern Tibetan Plateau from Teleseismic Receiver Functions

    NARCIS (Netherlands)

    Xu, Lili; Rondenay, S.; Hilst, R.D. van der

    Southeastern Tibet marks the site of presumed clockwise rotation of the crust due to the India-Eurasian collision and abutment against the stable Sichuan basin and South China block. Knowing the structure of the crust is a key to better understanding crustal deformation and seismicity in this

  13. The Mozambique Ridge: a document of massive multistage magmatism

    Science.gov (United States)

    Fischer, Maximilian D.; Uenzelmann-Neben, Gabriele; Jacques, Guillaume; Werner, Reinhard

    2017-01-01

    The Mozambique Ridge, a prominent basement high in the southwestern Indian Ocean, consists of four major geomorphological segments associated with numerous phases of volcanic activity in the Lower Cretaceous. The nature and origin of the Mozambique Ridge have been intensely debated with one hypothesis suggesting a Large Igneous Province origin. High-resolution seismic reflection data reveal a large number of extrusion centres with a random distribution throughout the southern Mozambique Ridge and the nearby Transkei Rise. Intrabasement reflections emerge from the extrusion centres and are interpreted to represent massive lava flow sequences. Such lava flow sequences are characteristic of eruptions leading to the formation of continental and oceanic flood basalt provinces, hence supporting a Large Igneous Province origin of the Mozambique Ridge. We observe evidence for widespread post-sedimentary magmatic activity that we correlate with a southward propagation of the East African Rift System. Based on our volumetric analysis of the southern Mozambique Ridge we infer a rapid sequential emplacement between ˜131 and ˜125 Ma, which is similar to the short formation periods of other Large Igneous Provinces like the Agulhas Plateau.

  14. Yellow sorediate crusts called Caloplaca citrina in England

    Czech Academy of Sciences Publication Activity Database

    Powell, M.; Vondrák, Jan

    2012-01-01

    Roč. 2012, č. 110 (2012), s. 20-24 ISSN 0300-4562 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : biodiversity * crytic species * sorediate crusts Subject RIV: EF - Botanics

  15. Dew formation and activity of biological crusts

    NARCIS (Netherlands)

    Veste, M.; Heusinkveld, B.G.; Berkowicz, S.M.; Breckle, S.W.; Littmann, T.; Jacobs, A.F.G.

    2008-01-01

    Biological soil crusts are prominent in many drylands and can be found in diverse parts of the globe including the Atacama desert, Chile, the Namib desert, Namibia, the Succulent-Karoo desert, South Africa, and the Negev desert, Israel. Because precipitation can be negligible in deserts ¿ the

  16. Deformation and rupture of the oceanic crust may control growth of Hawaiian volcanoes.

    Science.gov (United States)

    Got, Jean-Luc; Monteiller, Vadim; Monteux, Julien; Hassani, Riad; Okubo, Paul

    2008-01-24

    Hawaiian volcanoes are formed by the eruption of large quantities of basaltic magma related to hot-spot activity below the Pacific Plate. Despite the apparent simplicity of the parent process--emission of magma onto the oceanic crust--the resulting edifices display some topographic complexity. Certain features, such as rift zones and large flank slides, are common to all Hawaiian volcanoes, indicating similarities in their genesis; however, the underlying mechanism controlling this process remains unknown. Here we use seismological investigations and finite-element mechanical modelling to show that the load exerted by large Hawaiian volcanoes can be sufficient to rupture the oceanic crust. This intense deformation, combined with the accelerated subsidence of the oceanic crust and the weakness of the volcanic edifice/oceanic crust interface, may control the surface morphology of Hawaiian volcanoes, especially the existence of their giant flank instabilities. Further studies are needed to determine whether such processes occur in other active intraplate volcanoes.

  17. Beach ridge sedimentology: field observation and palaeoenvironmental interpretation for Anegada Island, British Virgin Islands.

    Science.gov (United States)

    Cescon, Anna Lisa; Cooper, J. Andrew G.; Jackson, Derek W. T.

    2014-05-01

    Beach ridge landforms have been observed in different environments and in settings that range from polar to tropical. Their stratigraphy and sedimentology has received a limited amount of discussion in the literature (Tamura, 2012). In coastal geomorphology a beach ridge can be seen as a transitional deposit between onshore and offshore environments. They are regarded as representing high level wave action along a coastline. In the Caribbean the origin of beach ridges has been variously attributed to one of three extreme wave events: extreme swell, extreme storm or tsunami waves. Beach ridges are arranged in beach ridge plains where there is succession of the landforms and can be several kilometres long. Beach ridge accumulation is not continuous and the coast shows alternating accretion and erosion periods. The use of beach ridges as palaeostorm archives is therefore not straightforward. The temporal continuity of beach ridge formation is being assessed on the beach ridge plains of Anegada, British Virgin Islands (Lesser Antilles). This carbonate platform surrounded by a fringing reef contains two beach ridge plains. There are more than 30 ridges in the Atlantic facing- coast and around 10 in the south, Caribbean- facing coast. The sediments of the modern beaches are dominated by the sand fraction and are 100% biogenic origin due to the isolation of Anegada from terrestrial sediment sources. The beach ridge sections have been studied in different area of Anegada beach ridge plains and present low angle seaward-dipping bedding. The sand fraction is dominant in the stratigraphy with a few intact shells. At only one site were coral pebbles deposited in association with the sand fraction. Aeolian deposits represent the upper part of the beach ridges and reflect the stabilization of the beach ridges with ongoing accretion. The sedimentology of the contemporary beach and dunes will be discussed in terms of their implications for understanding beach ridge genesis and its

  18. Ridge Distance Estimation in Fingerprint Images: Algorithm and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Tian Jie

    2004-01-01

    Full Text Available It is important to estimate the ridge distance accurately, an intrinsic texture property of a fingerprint image. Up to now, only several articles have touched directly upon ridge distance estimation. Little has been published providing detailed evaluation of methods for ridge distance estimation, in particular, the traditional spectral analysis method applied in the frequency field. In this paper, a novel method on nonoverlap blocks, called the statistical method, is presented to estimate the ridge distance. Direct estimation ratio (DER and estimation accuracy (EA are defined and used as parameters along with time consumption (TC to evaluate performance of these two methods for ridge distance estimation. Based on comparison of performances of these two methods, a third hybrid method is developed to combine the merits of both methods. Experimental results indicate that DER is 44.7%, 63.8%, and 80.6%; EA is 84%, 93%, and 91%; and TC is , , and seconds, with the spectral analysis method, statistical method, and hybrid method, respectively.

  19. One Piece Orbitozygomatic Approach Based on the Sphenoid Ridge Keyhole

    DEFF Research Database (Denmark)

    Spiriev, Toma; Poulsgaard, Lars; Fugleholm, Kåre

    2016-01-01

    The one-piece orbitozygomatic (OZ) approach is traditionally based on the McCarty keyhole. Here, we present the use of the sphenoid ridge keyhole and its possible advantages as a keyhole for the one-piece OZ approach. Using transillumination technique the osteology of the sphenoid ridge...... was examined on 20 anatomical dry skull specimens. The results were applied to one-piece OZ approaches performed on freshly frozen cadaver heads. We defined the center of the sphenoid ridge keyhole as a superficial projection on the lateral skull surface of the most anterior and thickest part of the sphenoid...... ridge. It was located 22 mm (standard deviation [SD], 0.22 mm) from the superior temporal line; 10.7 mm (SD, 0.08 mm) posterior and 7.1 mm (SD, 0.22 mm) inferior to the frontozygomatic suture. The sphenoid ridge burr hole provides exposure of frontal, temporal dura as well as periorbita, which...

  20. Significance testing in ridge regression for genetic data

    Directory of Open Access Journals (Sweden)

    De Iorio Maria

    2011-09-01

    Full Text Available Abstract Background Technological developments have increased the feasibility of large scale genetic association studies. Densely typed genetic markers are obtained using SNP arrays, next-generation sequencing technologies and imputation. However, SNPs typed using these methods can be highly correlated due to linkage disequilibrium among them, and standard multiple regression techniques fail with these data sets due to their high dimensionality and correlation structure. There has been increasing interest in using penalised regression in the analysis of high dimensional data. Ridge regression is one such penalised regression technique which does not perform variable selection, instead estimating a regression coefficient for each predictor variable. It is therefore desirable to obtain an estimate of the significance of each ridge regression coefficient. Results We develop and evaluate a test of significance for ridge regression coefficients. Using simulation studies, we demonstrate that the performance of the test is comparable to that of a permutation test, with the advantage of a much-reduced computational cost. We introduce the p-value trace, a plot of the negative logarithm of the p-values of ridge regression coefficients with increasing shrinkage parameter, which enables the visualisation of the change in p-value of the regression coefficients with increasing penalisation. We apply the proposed method to a lung cancer case-control data set from EPIC, the European Prospective Investigation into Cancer and Nutrition. Conclusions The proposed test is a useful alternative to a permutation test for the estimation of the significance of ridge regression coefficients, at a much-reduced computational cost. The p-value trace is an informative graphical tool for evaluating the results of a test of significance of ridge regression coefficients as the shrinkage parameter increases, and the proposed test makes its production computationally feasible.

  1. Symmetry energy, unstable nuclei and neutron star crusts

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Kei [Kochi University, Department of Natural Science, Kochi (Japan); RIKEN Nishina Center, Saitama (Japan); Oyamatsu, Kazuhiro [RIKEN Nishina Center, Saitama (Japan); Aichi Shukutoku University, Department of Human Informatics, Aichi (Japan)

    2014-02-15

    The phenomenological approach to inhomogeneous nuclear matter is useful to describe fundamental properties of atomic nuclei and neutron star crusts in terms of the equation of state of uniform nuclear matter. We review a series of researches that we have developed by following this approach. We start with more than 200 equations of state that are consistent with empirical masses and charge radii of stable nuclei and then apply them to describe matter radii and masses of unstable nuclei, proton elastic scattering and total reaction cross sections off unstable nuclei, and nuclei in neutron star crusts including nuclear pasta. We finally discuss the possibility of constraining the density dependence of the symmetry energy from experiments on unstable nuclei and even observations of quasi-periodic oscillations in giant flares of soft gamma-ray repeaters. (orig.)

  2. Efficiency of local surface plasmon polariton excitation on ridges

    DEFF Research Database (Denmark)

    Radko, Ilya; Bozhevolnyi, Sergey I.; Boltasseva, Alexandra

    2008-01-01

    We investigate experimentally and numerically the efficiency of surface plasmon polariton excitation by a focused laser beam using gold ridges. The dependence of the efficiency on geometrical parameters of ridges and wavelength dependence are examined. The experimental measurements accomplished...

  3. Storminess-related rhythmic ridge patterns on the coasts of Estonia

    Directory of Open Access Journals (Sweden)

    Ülo Suursaar

    2017-11-01

    Full Text Available Buried or elevated coastal ridges may serve as archives of past variations in sea level and climate conditions. Sometimes such ridges or coastal scarps appear in patterns, particularly on uplifting coasts with adequate sediment supply. Along the seacoasts of Estonia, where relative-to-geoid postglacial uplift can vary between 1.7 and 3.4 mm/yr, at least 27 areas with rhythmic geomorphic patterns have been identified from LiDAR images and elevation data. Such patterns were mainly found on faster emerging and well-exposed, tideless coasts. These are mostly located at heights between 1 and 21 m above sea level, the formation of which corresponds to a period of up to 7500 years. Up to approximately 150 individual ridges were counted on some cross-shore sections. Ten of these ridge patterns that formed less than 4500 years ago were chosen for detailed characterization and analysis in search of possible forcing mechanisms. Among these more closely studied cases, the mean ridge spacing varied between 19 and 28 m. Using land uplift rates from the late Holocene period, the timespans of the corresponding cross sections were calculated. The average temporal periodicity of the ridges was between 23 and 39 years with a gross mean value of 31 years. Considering the regular nature of the ridges, they mostly do not reflect single extreme events, but rather a decadal-scale periodicity in storminess in the region of the Baltic Sea. Although a contribution from some kind of self-organization process is possible, the rhythmicity in ancient coastal ridge patterns is likely linked to quasi-periodic 25−40-year variability, which can be traced to Estonian long-term sea level records and wave hindcasts, as well as in regional storminess data and the North Atlantic Oscillation index.

  4. Ecological succession, hydrology and carbon acquisition of biological soil crusts measured at the micro-scale.

    Science.gov (United States)

    Tighe, Matthew; Haling, Rebecca E; Flavel, Richard J; Young, Iain M

    2012-01-01

    The hydrological characteristics of biological soil crusts (BSCs) are not well understood. In particular the relationship between runoff and BSC surfaces at relatively large (>1 m(2)) scales is ambiguous. Further, there is a dearth of information on small scale (mm to cm) hydrological characterization of crust types which severely limits any interpretation of trends at larger scales. Site differences and broad classifications of BSCs as one soil surface type rather than into functional form exacerbate the problem. This study examines, for the first time, some hydrological characteristics and related surface variables of a range of crust types at one site and at a small scale (sub mm to mm). X-ray tomography and fine scale hydrological measurements were made on intact BSCs, followed by C and C isotopic analyses. A 'hump' shaped relationship was found between the successional stage/sensitivity to physical disturbance classification of BSCs and their hydrophobicity, and a similar but 'inverse hump' relationship exists with hydraulic conductivity. Several bivariate relationships were found between hydrological variables. Hydraulic conductivity and hydrophobicity of BSCs were closely related but this association was confounded by crust type. The surface coverage of crust and the microporosity 0.5 mm below the crust surface were closely associated irrespective of crust type. The δ (13)C signatures of the BSCs were also related to hydraulic conductivity, suggesting that the hydrological characteristics of BSCs alter the chemical processes of their immediate surroundings via the physiological response (C acquisition) of the crust itself. These small scale results illustrate the wide range of hydrological properties associated with BSCs, and suggest associations between the ecological successional stage/functional form of BSCs and their ecohydrological role that needs further examination.

  5. Influence of mid-crustal rheology on the deformation behavior of continental crust in the continental subduction zone

    Science.gov (United States)

    Li, Fucheng; Sun, Zhen; Zhang, Jiangyang

    2018-06-01

    Although the presence of low-viscosity middle crustal layer in the continental crust has been detected by both geophysical and geochemical studies, its influence on the deformation behavior of continental crust during subduction remains poorly investigated. To illustrate the crustal deformation associated with layered crust during continental subduction, we conducted a suite of 2-D thermo-mechanical numerical studies with visco-brittle/plastic rheology based on finite-differences and marker-in-cell techniques. In the experiments, we established a three-layer crustal model with a quartz-rich middle crustal layer embedded between the upper and lower continental crust. Results show that the middle crustal layer determines the amount of the accreted upper crust, maximum subduction depth, and exhumation path of the subducted upper crust. By varying the initial effective viscosity and thickness of the middle crustal layer, the further effects can be summarized as: (1) a rheologically weaker and/or thicker middle crustal layer results in a larger percentage of the upper crust detaching from the underlying slab and accreting at the trench zone, thereby leading to more serious crustal deformation. The rest of the upper crust only subducts into the depths of high pressure (HP) conditions, causing the absence of ultra-high pressure (UHP) metamorphic rocks; (2) a rheologically stronger and/or thinner middle crustal layer favors the stable subduction of the continental crust, dragging the upper crust to a maximum depth of ∼100 km and forming UHP rocks; (3) the middle crustal layer flows in a ductile way and acts as an exhumation channel for the HP-UHP rocks in both situations. In addition, the higher convergence velocity decreases the amount of subducted upper crust. A detailed comparison of our modeling results with the Himalayan collisional belt are conducted. Our work suggests that the presence of low-viscosity middle crustal layer may be another possible mechanism for

  6. Russian Federation Snow Depth and Ice Crust Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Russian Federation Snow Depth and Ice Crust Surveys, dataset DSI-9808, contains routine snow surveys that run throughout the cold season every 10 days (every five...

  7. The Role of Carbon in Exotic Crust Formation on Mercury

    Science.gov (United States)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.

    2018-01-01

    The terrestrial planets that comprise our inner Solar System, including the Moon, are all rocky bodies that have differentiated into a crust, mantle, and core. Furthermore, all of these bodies have undergone various igneous processes since their time of primary crust formation. These processes have resurfaced each of these bodies, at least in part, resulting in the production of a secondary crust, to which Mercury is no exception. From its first flyby encounter with Mercury on January 14, 2008, the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) spacecraft collected data on the structure, chemical makeup, and density of the planet among other important characteristics. The X-Ray Spectrometer on board MESSENGER measured elevated abundances of sulfur and low abundances of iron, suggesting the planets oxygen fugacity (fO2) is several log10 units below the Iron-Wustite buffer. Similar to the role of other volatiles (e.g. sulfur) on highly reducing planetary bodies, carbon is expected to behave differently in an oxygen starved environment than it does in an oxygen enriched environment (e.g., Earth).

  8. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for the facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities

  9. The Effects of Ridge Axis Width on Mantle Melting at Mid-Ocean Ridges

    Science.gov (United States)

    Montesi, L.; Magni, V.; Gaina, C.

    2017-12-01

    Mantle upwelling in response to plate divergence produces melt at mid-ocean ridges. Melt starts when the solidus is crossed and stops when conductive cooling overcomes heat advection associated with the upwelling. Most mid-ocean ridge models assume that divergence takes place only in a narrow zone that defines the ridge axis, resulting in a single upwelling. However, more complex patterns of divergence are occasionally observed. The rift axis can be 20 km wide at ultraslow spreading center. Overlapping spreading center contain two parallel axes. Rifting in backarc basins is sometimes organized as a series of parallel spreading centers. Distributing plate divergence over several rifts reduces the intensity of upwelling and limits melting. Can this have a significant effect on the expected crustal thickness and on the mode of melt delivery at the seafloor? We address this question by modeling mantle flow and melting underneath two spreading centers separated by a rigid block. We adopt a non-linear rheology that includes dislocation creep, diffusion creep and yielding and include hydrothermal cooling by enhancing thermal conductivity where yielding takes place. The crustal thickness decreases if the rifts are separated by 30 km or more but only if the half spreading rate is between 1 and 2 cm/yr. At melting depth, a single upwelling remains the norm until the separation of the rifts exceeds a critical value ranging from 15 km in the fastest ridges to more than 50 km at ultraslow spreading centers. The stability of the central upwelling is due to hydrothermal cooling, which prevents hot mantle from reaching the surface at each spreading center. When hydrothermal cooling is suppressed, or the spreading centers are sufficiently separated, the rigid block becomes extremely cold and separates two distinct, highly asymmetric upwellings that may focus melt beyond the spreading center. In that case, melt delivery might drive further and further the divergence centers, whereas

  10. Volcanism and Tectonics of the Central Deep Basin, Sea of Japan

    Science.gov (United States)

    Lelikov, E. P.; Emelyanova, T. A.; Pugachev, A. A.

    2018-01-01

    The paper presents the results of a study on the geomorphic structure, tectonic setting, and volcanism of the volcanoes and volcanic ridges in the deep Central Basin of the Sea of Japan. The ridges rise 500-600 m above the acoustic basement of the basin. These ridges were formed on fragments of thinned continental crust along deep faults submeridionally crossing the Central Basin and the adjacent continental part of the Primorye. The morphostructures of the basin began to submerge below sea level in the Middle Miocene and reached their contemporary positions in the Pliocene. Volcanism in the Central Basin occurred mostly in the Middle Miocene-Pliocene and formed marginal-sea basaltoids with OIB (ocean island basalt) geochemical signatures indicating the lower-mantle plume origin of these rocks. The OIB signatures of basaltoids tend to be expressed better in the eastern part of the Central Basin, where juvenile oceanic crust has developed. The genesis of this crust is probably related to rising and melting of the Pacific superplume apophyse.

  11. Oak Ridge Reservation Site Management Plan for the Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This site management plan for the Oak Ridge Reservation (ORR) describes the overall approach for addressing environmental contamination problems at the ORR Superfund site located in eastern Tennessee. The ORR consists of three major US Department of Energy (DOE) installations constructed in the early to mid 1940s as research, development, and process facilities in support of the Manhattan Project. In addition to the three installations -- Oak Ridge National Laboratory (ORNL), the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site (formerly the Oak Ridge Gaseous Diffusion Plant) -- the ORR Superfund Site also includes areas outside the installations, land used by the Oak Ridge Associated Universities and waterways that have been contaminated by releases from the DOE installations. To date, {approximately} 400 areas (Appendix A) requiring evaluation have been identified. Cleanup of the ORR is expected to take two to three decades and cost several billion dollars. This site management plan provides a blueprint to guide this complex effort to ensure that the investigation and cleanup activities are carried out in an efficient and cost-effective manner.

  12. Oak Ridge Reservation Site Management Plan for the Environmental Restoration Program

    International Nuclear Information System (INIS)

    1994-06-01

    This site management plan for the Oak Ridge Reservation (ORR) describes the overall approach for addressing environmental contamination problems at the ORR Superfund site located in eastern Tennessee. The ORR consists of three major US Department of Energy (DOE) installations constructed in the early to mid 1940s as research, development, and process facilities in support of the Manhattan Project. In addition to the three installations -- Oak Ridge National Laboratory (ORNL), the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site (formerly the Oak Ridge Gaseous Diffusion Plant) -- the ORR Superfund Site also includes areas outside the installations, land used by the Oak Ridge Associated Universities and waterways that have been contaminated by releases from the DOE installations. To date, ∼ 400 areas (Appendix A) requiring evaluation have been identified. Cleanup of the ORR is expected to take two to three decades and cost several billion dollars. This site management plan provides a blueprint to guide this complex effort to ensure that the investigation and cleanup activities are carried out in an efficient and cost-effective manner

  13. Evaluating the importance of metamorphism in the foundering of continental crust.

    Science.gov (United States)

    Chapman, Timothy; Clarke, Geoffrey L; Piazolo, Sandra; Daczko, Nathan R

    2017-10-12

    The metamorphic conditions and mechanisms required to induce foundering in deep arc crust are assessed using an example of representative lower crust in SW New Zealand. Composite plutons of Cretaceous monzodiorite and gabbro were emplaced at ~1.2 and 1.8 GPa are parts of the Western Fiordland Orthogneiss (WFO); examples of the plutons are tectonically juxtaposed along a structure that excised ~25 km of crust. The 1.8 GPa Breaksea Orthogneiss includes suitably dense minor components (e.g. eclogite) capable of foundering at peak conditions. As the eclogite facies boundary has a positive dP/dT, cooling from supra-solidus conditions (T > 950 ºC) at high-P should be accompanied by omphacite and garnet growth. However, a high monzodioritic proportion and inefficient metamorphism in the Breaksea Orthogneiss resulted in its positive buoyancy and preservation. Metamorphic inefficiency and compositional relationships in the 1.2 GPa Malaspina Pluton meant it was never likely to have developed densities sufficiently high to founder. These relationships suggest that the deep arc crust must have primarily involved significant igneous accumulation of garnet-clinopyroxene (in proportions >75%). Crustal dismemberment with or without the development of extensional shear zones is proposed to have induced foundering of excised cumulate material at P > 1.2 GPa.

  14. Chemical Evidence for Vertical Transport from Magma Chambers to the Surface During Mid-Ocean Ridge Volcanic Eruptions

    Science.gov (United States)

    Sinton, J. M.; Rubin, K. H.

    2009-12-01

    Many mid-ocean ridge eruptions show significant internal chemical heterogeneity; in general, the amount of chemical heterogeneity within eruptions scales with erupted volume. These variations reflect magmatic processes occurring in magma reservoirs prior to or possibly during eruption. For example, systematic variations in Mg# with along-axis distance in the early 90’s Aldo-Kihi (S. EPR near 17.5°S), 1996 N. Gorda, 1993 Co-Axial (Juan de Fuca Ridge), and 1991-2 and 2005-6 9°50’N EPR eruptions is unlikely to be related to fractionation during emplacement, and rather reflects variations in sub-axial magma reservoirs prior to eruption. Such variations are inconsistent with well-mixed sub-axial reservoirs and, in some cases, require relatively long-lived, systematic variations in reservoir temperatures along axis. Chemical heterogeneity within the Aldo-Kihi eruption preserves spatial variations in mantle-derived isotopic and trace element ratios with implications for the temporal and spatial scales of magma injections to the crust and along-axis mixing within shallow reservoirs. These spatial variations are difficult to reconcile with significant (> ~1 km) along-axis magma transport, as are striking correlations of chemical compositions with surface geological discontinuities or seismically imaged sub-axial magma chamber reflectors in the S. Hump (S. EPR), 9°50’N EPR, N. Gorda and 1975-1984 Krafla (N. Iceland) eruptive units. Rather, spatial correlations between surface lava compositions and sub-axial magma chamber properties or long-lived axial morphology suggest that most of the erupted magma was transported nearly vertically from the underlying reservoirs to the surface during these eruptions. In the case of the Krafla eruption, coincident deformation suggests a component of lateral melt migration at depth, despite chemical evidence for vertical transport of erupted lava from more than one chemical reservoir. In addition, along-ridge movement of earthquake

  15. Geophysical investigations over a segment of the Central Indian Ridge, Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    KameshRaju, K.A.; Ramprasad, T.; Subrahmanyam, C.

    Swath bathymetric, gravity, and magnetic studies were carried out over a 55 km long segment of the Central Indian Ridge. The ridge is characterized by 12 to 15 km wide rift valley bounded by steep walls and prominent volcanic constructional ridges...

  16. Comparison of internal features and microchemistry of ferromanganese crusts from the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.

    are enriched in Ni and Cu. Microstructural and elemental variations, from the ferromanganese crust outer surface to the basalt substrate, probably reflect changes in the accretion or in the source of metals. The major source of the crust metals in seawater...

  17. Three-dimensional crust and upper mantle structure at the Nevada test site

    International Nuclear Information System (INIS)

    Taylor, S.R.

    1983-01-01

    The three-dimensional crust and upper mantle structure at the Nevada Test Site (NTS) is derived by combining teleseismic P wave travel time residuals with Pn source time terms. The NTS time terms and relative teleseismic residuals are calculated by treating the explosions as a network of 'receivers' which record 'shots' located at the surrounding stations. Utilization of the Pn time terms allows for better crustal resolution than is possible from teleseismic information alone. Average relative teleseismic P wave residuals show a consistent progression of positive (late arrivals) to negative residuals from east to west across the NTS. However, Pn time terms beneath Rainier Mesa are at least 0.3 and 0.5 s less than those beneath Pahute Mesa and Yucca Flat, respectively, indicating the presence of high-velocity crustal material or crustal thinning beneath Rainier Mesa. The time terms at Pahute Mesa are surprisingly uniform, and the largest time terms and residuals are observed in the northwest and southern parts of Yucca Flat. The Pn time terms show a slight correlation with the working-point velocity at the shot point for Pahute Mesa and Yucca Flat, indicating that part of the observed lateral variations are caused by shallow effects of the upper crust. Three-dimensional inversion of the travel time residuals suggests that Yucca Flat is characterized by low-velocity anomalies confined to the upper crust, Rainer Mesa by very high velocities in the upper and middle crust, and Pahute Mesa by a high-velocity anomaly extending through the crust and into the upper mantle. Relatively low velocities are observed in the lower crust beneath the Timber Mountain caldera south of Pahute Mesa with no expression in the upper mantle. These observed differences in velocity beneath the Tertiary Silent Canyon and Timber Mountain calderas may be related to their magma volume and mode of enrichment from a mantle-derived magma source

  18. A study regarding the stability of the primordial crust of asteroid Ceres

    Science.gov (United States)

    Formisano, Michelangelo; Federico, Costanzo; De Sanctis, Maria Cristina; De Angelis, Simone

    2016-04-01

    Ceres is a particular object of the solar system, since it is a "transition body" between the icy satellites of the outer solar system and the rocky bodies of the inner part. Probably it is differentiated [1,2], i.e. it has a core made of "rock" (silicates) with a weak presence of metals, a large icy mantle and a rocky crust. In particular, it has been proposed the existence on the surface of the ammoniated phyllosilicates, compatible with an outer solar system origin [3]. Also water in clay minerals, brucite, and iron-rich serpentine have been proposed to exist on the surface [4]. Ice directly on the surface regolith seems to be very unstable: numerical simulations of [5] indicate that it can last for very few orbits. A crust made of a mixture of ice and rock is potentially unstable. In the solar system, for example, Callisto has such a crust but its surface temperature is below the critical temperature for the Rayleigh-Taylor instability [6]: this seems not to be the case of Ceres. In this work, we verify the stability of the primordial crust, by assuming a certain initial composition (ice and rock) and thickness. We assume a post-differentiation Ceres, made of three layers (rocky core, icy mantle and crust). The key role is played by the viscosity of the layers, which influenced the survival or not of the primordial crust. We applied the method of the parametrized thermal convection widely diffused in literature. [1] McCord, T.B. and Sotin, C., 2005, JGR 110 [2] Castillo-Rogez, J.C., and McCord, T.B., 2010, Icarus 205, 443-459 [3] De Sanctis, M.C. et al., 2015, doi:10.1038/nature16172 [4] Rivkin, A.S., et al., 2014, Space Sci Rev, 95-116, 163, doi 10.1007/s11214-010-9677-4 [5] Formisano, M., et al., 2016, MRAS 455, 1892-1904 [6] Shoji, D. and Kurita, K., 2014, doi:10.1002/2014JE004695.

  19. Nonlinear Forecasting With Many Predictors Using Kernel Ridge Regression

    DEFF Research Database (Denmark)

    Exterkate, Peter; Groenen, Patrick J.F.; Heij, Christiaan

    This paper puts forward kernel ridge regression as an approach for forecasting with many predictors that are related nonlinearly to the target variable. In kernel ridge regression, the observed predictor variables are mapped nonlinearly into a high-dimensional space, where estimation of the predi...

  20. In Vitro Evaluation of the Effect of Tooth Structure Loss on Fracture Resistance of Endodontically Treated Teeth

    Directory of Open Access Journals (Sweden)

    Shirinzad M

    2017-06-01

    Full Text Available Introduction: Since preserving the structure of treated teeth is a critical success factor, studying the effects of tooth structure loss on fracture resistance of the tooth tissue appears necessary. The aim of this study was to evaluate the consequences of the loss of different tissues regarding fracture resistance of teeth undergoing root canal treatment without the use of indirect restorations. Methods :In this experimental study, 70 healthy maxillary first premolar teeth were randomly divided into 7 groups of 10 members, including control group, endodontic access preparation only, MOD cavity preparation, cutting buccal cusp, cutting palatal cusp, cutting buccal cusp and marginal ridge, and cutting the palatal cusp and marginal ridge. The coronal section of teeth was restored incrementally with light cure composite. Finally, samples underwent compressive load with 45˚ angle from each cusp slope in the middle of cusp with an instant speed of 1 mm per min in the Instron machine. Fracture resistance was measured and samples were examined under stereo-microscope to evaluate the mode of failure. Results: The resistance to fracture in root canal treated teeth in different groups in order from first to seventh was 797.13 ± 52.92, 722.50 ± 131.40, 432.15 ± 203.20, 592.66 ± 195.86 124.53 ± 33.09, 85.17 ± 18.45, and 26.03 ± 5.21 Newton. ANOVA test showed statistically significant differences between the groups in terms of their fracture resistance (P = 0.000. Conclusions: The results showed that fracture resistance levels of teeth were significantly affected by amount of their tissue loss. In this study, removal of teeth palatal cusp and marginal ridge had a significant effect on decreasing the fracture resistance, while removing the buccal cusps alone cannot have a significant effect.

  1. Using rainfall simulations to understand the relationship between precipitation, soil crust and infiltration in four agricultural soils

    Science.gov (United States)

    Angulo-Martinez, Marta; Alastrué, Juan; Moret-Fernández, David; Beguería, Santiago; López, Mariví; Navas, Ana

    2017-04-01

    Rainfall simulation experiments were carried out in order to study soil crust formation and its relation with soil infiltration parameters—sorptivity (S) and hydraulic conductivity (K)—on four common agricultural soils with contrasted properties; namely, Cambisol, Gypsisol, Solonchak, and Solonetz. Three different rainfall simulations, replicated three times each of them, were performed over the soils. Prior to rainfall simulations all soils were mechanically tilled with a rototiller to create similar soil surface conditions and homogeneous soils. Rainfall simulation parameters were monitored in real time by a Thies Laser Precipitation Monitor, allowing a complete characterization of simulated rainfall microphysics (drop size and velocity distributions) and integrated variables (accumulated rainfall, intensity and kinetic energy). Once soils dried after the simulations, soil penetration resistance was measured and soil hydraulic parameters, S and K, were estimated using the disc infiltrometry technique. There was little variation in rainfall parameters among simulations. Mean intensity and mean median diameter (D50) varied in simulations 1 ( 0.5 bar), 2 ( 0.8 bar) and 3 ( 1.2 bar) from 26.5 mm h-1 and 0.43 mm (s1) to 40.5 mm h-1 and 0.54 mm (s2) and 41.1 mm h-1 and 0.56 mm for (s3), respectively. Crust formation by soil was explained by D50 and subsequently by the total precipitation amount and the percentage of silt and clay in soil, being Cambisol and Gypsisol the soils that showed more increase in penetration resistance by simulation. All soils showed similar S values by simulations which were explained by rainfall intensity. Different patterns of K were shown by the four soils, which were explained by the combined effect of D50 and intensity, together with soil physico-chemical properties. This study highlights the importance of monitoring all precipitation parameters to determine their effect on different soil processes.

  2. Site characterization of the West Chestnut Ridge site

    International Nuclear Information System (INIS)

    Ketelle, R.H.; Huff, D.D.

    1984-09-01

    This report summarizes the results of investigations performed to date on the West Chestnut Ridge Site, on the Department of Energy (DOE) Oak Ridge Reservation. The investigations performed include geomorphic observations, areal geologic mapping, surficial soil mapping, subsurface investigations, soil geochemical and mineralogical analyses, geohydrologic testing, groundwater fluctuation monitoring, and surface water discharge and precipitation monitoring. 33 references, 32 figures, 24 tables

  3. Multimode Interference: Identifying Channels and Ridges in Quantum Probability Distributions

    OpenAIRE

    O'Connell, Ross C.; Loinaz, Will

    2004-01-01

    The multimode interference technique is a simple way to study the interference patterns found in many quantum probability distributions. We demonstrate that this analysis not only explains the existence of so-called "quantum carpets," but can explain the spatial distribution of channels and ridges in the carpets. With an understanding of the factors that govern these channels and ridges we have a limited ability to produce a particular pattern of channels and ridges by carefully choosing the ...

  4. Theoretical analysis of ridge gratings for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Bozhevolnyi, Sergey I.; Boltasseva, Alexandra

    2006-01-01

    Optical properties of ridge gratings for long-range surface plasmon polaritons (LRSPPs) are analyzed theoretically in a two-dimensional configuration via the Lippmann-Schwinger integral equation method. LRSPPs being supported by a thin planar gold film embedded in dielectric are considered...... to be scattered by an array of equidistant gold ridges on each side of the film designed for in-plane Bragg scattering of LRSPPs at the wavelength ~1550 nm. Out-of-plane scattering (OUPS), LRSPP transmission, reflection, and absorption are investigated with respect to the wavelength, the height of the ridges...... peak it is preferable to use longer gratings with smaller ridges compared to gratings with larger ridges, because the former result in a smaller OUPS from the grating facets than the latter. The theoretical analysis and its conclusions are supported with experimental results on the LRSPP reflection...

  5. Wind tunnel experiments on the effects of tillage ridge features on wind erosion horizontal fluxes

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available In addition to the well-known soil factors which control wind erosion on flat, unridged surfaces, two specific processes affect the susceptibility of tillage ridged surfaces to wind erosion: ridge-induced roughness and ridge- trapping efficiency. In order to parameterize horizontal soil fluxes produced by wind over tillage ridges, eight-ridge configurations composed of sandy soil and exhibiting ridge heights to ridge spacing (RH/RS ratios ranging from 0.18 to 0.38 were experimented in a wind tunnel. These experiments are used to develop a parameterization of the horizontal fluxes over tillage ridged surfaces based only on the geometric characteristics of the ridges. Indeed, the key parameters controlling the horizontal flux, namely the friction velocity, threshold friction velocity and the adjustment coefficient, are derived through specific expressions, from ridge heights (RH and ridge spacing (RS. This parameterization was evaluated by comparing the results of the simulations to an additional experimental data set and to the data set obtained by Hagen and Armbrust (1992. In both cases, predicted and measured values are found to be in a satisfying agreement. This parameterization was used to evaluate the efficiency of ridges in reducing wind erosion. The results show that ridged surfaces, when compared to a loose, unridged soil surface, lead to an important reduction in the horizontal fluxes (exceeding 60%. Moreover, the effect of ridges in trapping particles contributes for more than 90% in the flux reduction while the ridge roughness effect is weak and decreases when the wind velocity increases.

  6. Magnetic Anomalies over the Mid-Atlantic Ridge near 27{degrees}N.

    Science.gov (United States)

    Phillips, J D

    1967-08-25

    Ten magnetic profiles across the mid-Atlantic ridge near 27 degrees N show trends that are parallel to the ridge axis and symmetrical about the ridge axis. The configuration of magnetic bodies that could account for the pattern supports the Vine and Matthews hypothesis for the origin of magnetic anomalies over oceanic ridges. A polarity-reversal time scale inferred from models for sea-floor spreading in the Pacific-Antarctic ridge and radiometrically dated reversals of the geomagnetic field indicates a spreading rate of 1.25 centimeters per year during the last 6 million years and a rate of 1.65 centimeters per year between 6 and 10 million years ago. A similar analysis of more limited data over the mid-Atlantic ridge near 22 degrees N also indicates a change in the spreading rate. Here a rate of 1.4 centimeters per year appears to have been in effect during the last 5 million years; between 5 and 9 million years ago, an increased rate of 1.7 centimeters per year is indicated. The time of occurrence and relative magnitude of these changes in the spreading rate, about 5 to 6 million years ago and 18 to 27 percent, respectively, accords with the spreading rate change implied for the Juan de Fuca ridge in the northeast Pacific.

  7. Site characterization plan for groundwater in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.R.; Curtis, A.H.; Houlberg, L.M.; Purucker, S.T.; Singer, M.L.; Tardiff, M.F.; Wolf, D.A.

    1994-07-01

    The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization to identify environmental contamination that may be present. This document, Site Characterization Report for Groundwater in Waste Area Grouping I at Oak Ridge National Laboratory, Oak Ridge, Tennessee, identifies areas of concern with respect to WAG 1 groundwater and presents the rationale, justification, and objectives for conducting this continuing site characterization. This report summarizes the operations that have taken place at each of the areas of concern in WAG 1, summarizes previous characterization studies that have been performed, presents interpretations of previously collected data and information, identifies contaminants of concern, and presents an action plan for further site investigations and early actions that will lead to identification of contaminant sources, their major groundwater pathways, and reduced off-site migration of contaminated groundwater to surface water. Site characterization Activities performed to date at WAG I have indicated that groundwater contamination, principally radiological contamination, is widespread. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to an unknown extent. The general absence of radiological contamination in surface water at the perimeter of WAG 1 is attributed to the presence of pipelines and underground waste storage tank sumps and dry wells distributed throughout WAG 1 which remove more than about 40 million gal of contaminated groundwater per year.

  8. Site characterization plan for groundwater in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Lee, R.R.; Curtis, A.H.; Houlberg, L.M.; Purucker, S.T.; Singer, M.L.; Tardiff, M.F.; Wolf, D.A.

    1994-07-01

    The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization to identify environmental contamination that may be present. This document, Site Characterization Report for Groundwater in Waste Area Grouping I at Oak Ridge National Laboratory, Oak Ridge, Tennessee, identifies areas of concern with respect to WAG 1 groundwater and presents the rationale, justification, and objectives for conducting this continuing site characterization. This report summarizes the operations that have taken place at each of the areas of concern in WAG 1, summarizes previous characterization studies that have been performed, presents interpretations of previously collected data and information, identifies contaminants of concern, and presents an action plan for further site investigations and early actions that will lead to identification of contaminant sources, their major groundwater pathways, and reduced off-site migration of contaminated groundwater to surface water. Site characterization Activities performed to date at WAG I have indicated that groundwater contamination, principally radiological contamination, is widespread. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to an unknown extent. The general absence of radiological contamination in surface water at the perimeter of WAG 1 is attributed to the presence of pipelines and underground waste storage tank sumps and dry wells distributed throughout WAG 1 which remove more than about 40 million gal of contaminated groundwater per year

  9. Compositional variation and genesis of ferromanganese crusts of ...

    Indian Academy of Sciences (India)

    incorporation of various metals in the Fe–Mn crusts ... shown to readily oxidize to their higher oxidation state on adsorption to ... metal species are those of the transition group com- ...... Banakar V K 1990 Uranium–thorium isotopes and tran-.

  10. Extraction of lead and ridge characteristics from SAR images of sea ice

    Science.gov (United States)

    Vesecky, John F.; Smith, Martha P.; Samadani, Ramin

    1990-01-01

    Image-processing techniques for extracting the characteristics of lead and pressure ridge features in SAR images of sea ice are reported. The methods are applied to a SAR image of the Beaufort Sea collected from the Seasat satellite on October 3, 1978. Estimates of lead and ridge statistics are made, e.g., lead and ridge density (number of lead or ridge pixels per unit area of image) and the distribution of lead area and orientation as well as ridge length and orientation. The information derived is useful in both ice science and polar operations for such applications as albedo and heat and momentum transfer estimates, as well as ship routing and offshore engineering.

  11. Crustal structure and mantle transition zone thickness beneath a hydrothermal vent at the ultra-slow spreading Southwest Indian Ridge (49°39'E): a supplementary study based on passive seismic receiver functions

    Science.gov (United States)

    Ruan, Aiguo; Hu, Hao; Li, Jiabiao; Niu, Xiongwei; Wei, Xiaodong; Zhang, Jie; Wang, Aoxing

    2017-06-01

    As a supplementary study, we used passive seismic data recorded by one ocean bottom seismometer (OBS) station (49°41.8'E) close to a hydrothermal vent (49°39'E) at the Southwest Indian Ridge to invert the crustal structure and mantle transition zone (MTZ) thickness by P-to-S receiver functions to investigate previous active seismic tomographic crustal models and determine the influence of the deep mantle thermal anomaly on seafloor hydrothermal venting at an ultra-slow spreading ridge. The new passive seismic S-wave model shows that the crust has a low velocity layer (2.6 km/s) from 4.0 to 6.0 km below the sea floor, which is interpreted as partial melting. We suggest that the Moho discontinuity at 9.0 km is the bottom of a layer (2-3 km thick); the Moho (at depth of 6-7 km), defined by active seismic P-wave models, is interpreted as a serpentinized front. The velocity spectrum stacking plot made from passive seismic data shows that the 410 discontinuity is depressed by 15 km, the 660 discontinuity is elevated by 18 km, and a positive thermal anomaly between 182 and 237 K is inferred.

  12. Effects of dietary bread crust Maillard reaction products on calcium and bone metabolism in rats.

    Science.gov (United States)

    Roncero-Ramos, Irene; Delgado-Andrade, Cristina; Haro, Ana; Ruiz-Roca, Beatriz; Morales, Francisco J; Navarro, María Pilar

    2013-06-01

    Maillard reaction products (MRP) consumption has been related with the development of bone degenerative disorders, probably linked to changes in calcium metabolism. We aimed to investigate the effects of MRP intake from bread crust on calcium balance and its distribution, and bone metabolism. During 88 days, rats were fed control diet or diets containing bread crust as source of MRP, or its soluble high molecular weight, soluble low molecular weight or insoluble fractions (bread crust, HMW, LMW and insoluble diets, respectively). In the final week, a calcium balance was performed, then animals were sacrified and some organs removed to analyse calcium levels. A second balance was carried out throughout the experimental period to calculate global calcium retention. Biochemical parameters and bone metabolism markers were measured in serum or urine. Global calcium bioavailability was unmodified by consumption of bread crust or its isolate fractions, corroborating the previously described low affinity of MRP to bind calcium. Despite this, a higher calcium concentration was found in femur due to smaller bones having a lower relative density. The isolate consumption of the fractions altered some bone markers, reflecting a situation of increased bone resorption or higher turnover; this did not take place in the animals fed the bread crust diet. Thus, the bread crust intake does not affect negatively calcium bioavailability and bone metabolism.

  13. Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-01-01

    The Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (Y/ER-301) was prepared (1) to safely, cost-effectively, and efficiently evaluate the environmental impact of solid material in the two debris areas in the context of industrial land uses (as defined in the Bear Creek Valley Feasibility Study) to support the Engineering Evaluation/Cost Assessment and (2) to evaluate, define, and implement the actions to mitigate these impacts. This work was performed under Work Breakdown Structure 1.x.01.20.01.08

  14. Submarine sand ridges and sand waves in the eastern part of the China Sea

    Science.gov (United States)

    Wu, Ziyin; Li, Shoujun; Shang, Jihong; Zhou, Jieqiong; Zhao, Dineng; Liang, Yuyang

    2016-04-01

    Integrated with multi-beam and single-beam echo sounding data, as well as historical bathymetric data, submarine bathymetric maps of the eastern part of the China Sea, including the Bohai Sea, Huanghai Sea, and East China Sea, are constructed to systematically study submarine sand ridges and sand waves in the eastern part of the China Sea, combined with high-resolution seismic, sub-bottom profile and borehole data. Submarine sand ridges are extraordinarily developed in the eastern part of the China Sea, and 7 sand ridge areas can be divided from north to south, that is, the Laotieshan Channel sand ridge area in the Bohai Sea, the Korea Bay sand ridge area in the southern Huanghai Sea, the sand ridge area in the eastern Huanghai islands and the Huanghai Troughs, the Jianggang sand ridge area in the western Huanghai Sea, the sand ridge area in the East China Sea shelf, and the sand ridge and sand wave area in the Taiwan Strait and Taiwan Banks. The distribution area of the sand ridges and sand waves covers more than 450,000 km2, wherein ~10,000 km2 in the Bohai Bay, ~200,000 km2 in the Huanghai Sea, ~200,000 km2 in the East China Sea shelf, and ~40,000 km2 in the Taiwan Strait and Taiwan Banks, respectively. The great mass of sand ridges are distributed within water depth of 5-160 m, with a total length of over 160 km and a main width of 5-10 km. The inner structure of the sand ridges presents features of high-angle inclined beddings, with main lithology of sands, sand-mud alternations partly visible, and a small number of mud cores. Dating results indicate that the sand ridges in the eastern part of the China Sea are mainly developed in the Holocene. Sea-level variation dominates the sand ridge evolution in the eastern part of the China Sea since the LGM, and the sand ridges developed in the area of < 60m water depth are appeared in bad activity, meanwhile sand ridges with good activity are still developed in large scale.

  15. Anatexis, hybridization and the modification of ancient crust: Mesozoic plutonism in the Old Woman Mountains area, California

    Science.gov (United States)

    Miller, C.F.; Wooden, J.L.

    1994-01-01

    A compositionally expanded array of granitic (s.l.) magmas intruded the > 2 Ga crust of the Old Woman Mountains area between 160 and 70 Ma. These magmas were emplaced near the eastern (inland) edge of the Jurassic/Cretaceous arcs of western North America, in an area where magma flux, especially during the Jurassic, was considerably lower than to the west. The Jurassic intrusives and over half of the Cretaceous intrusives are predominantly metaluminous and variable in composition; a major Cretaceous suite comprises only peraluminous monzogranite. Only the Jurassic intrusions show clear evidence for the presence of mafic liquids. All units, including the most mafic rocks, reveal isotopic evidence for a significant crustal component. However, none of the Mesozoic intrusives matches in isotopic composition either average pre-intrusion crust or any major unit of the exposed crust. Elemental inconsistencies also preclude closed system derivation from exposed crust. Emplacement of these magmas, which doubled the volume of the mid- to upper crust, did not dramatically change its elemental composition. It did, however, affect its Nd and especially Sr isotopic composition and modify some of the distinctive aspects of the elemental chemistry. We propose that Jurassic magmatism was open-system, with a major influx of mantle-derived mafic magma interacting strongly with the ancient crust. Mesozoic crustal thickening may have led to closed-system crustal melting by the Late Cretaceous, but the deep crust had been profoundly modified by earlier Mesozoic hybridization so that crustal melts did not simply reflect the original crustal composition. The clear evidence for a crustal component in magmas of the Old Woman Mountains area may not indicate any fundamental differences from the processes at work elsewhere in this or other magmatic arcs where the role of pre-existing crust is less certain. Rather, a compositionally distinctive, very old crust may simply have yielded a more

  16. Electrical resistivity characterization of anisotropy in the Biscayne Aquifer.

    Science.gov (United States)

    Yeboah-Forson, Albert; Whitman, Dean

    2014-01-01

    Electrical anisotropy occurs when electric current flow varies with azimuth. In porous media, this may correspond to anisotropy in the hydraulic conductivity resulting from sedimentary fabric, fractures, or dissolution. In this study, a 28-electrode resistivity imaging system was used to investigate electrical anisotropy at 13 sites in the Biscayne Aquifer of SE Florida using the rotated square array method. The measured coefficient of electrical anisotropy generally ranged from 1.01 to 1.12 with values as high as 1.36 found at one site. The observed electrical anisotropy was used to estimate hydraulic anisotropy (ratio of maximum to minimum hydraulic conductivity) which ranged from 1.18 to 2.83. The largest values generally were located on the Atlantic Coastal Ridge while the lowest values were in low elevation areas on the margin of the Everglades to the west. The higher values of anisotropy found on the ridge may be due to increased dissolution rates of the oolitic facies of the Miami formation limestone compared with the bryozoan facies to the west. The predominate trend of minimum resistivity and maximum hydraulic conductivity was E-W/SE-NW beneath the ridge and E-W/SW-NE farther west. The anisotropy directions are similar to the predevelopment groundwater flow direction as indicated in published studies. This suggests that the observed anisotropy is related to the paleo-groundwater flow in the Biscayne Aquifer. © 2013, National Ground Water Association.

  17. Fractal scaling of particle size distribution and relationships with topsoil properties affected by biological soil crusts.

    Directory of Open Access Journals (Sweden)

    Guang-Lei Gao

    Full Text Available BACKGROUND: Biological soil crusts are common components of desert ecosystem; they cover ground surface and interact with topsoil that contribute to desertification control and degraded land restoration in arid and semiarid regions. METHODOLOGY/PRINCIPAL FINDINGS: To distinguish the changes in topsoil affected by biological soil crusts, we compared topsoil properties across three types of successional biological soil crusts (algae, lichens, and mosses crust, as well as the referenced sandland in the Mu Us Desert, Northern China. Relationships between fractal dimensions of soil particle size distribution and selected soil properties were discussed as well. The results indicated that biological soil crusts had significant positive effects on soil physical structure (P<0.05; and soil organic carbon and nutrients showed an upward trend across the successional stages of biological soil crusts. Fractal dimensions ranged from 2.1477 to 2.3032, and significantly linear correlated with selected soil properties (R(2 = 0.494∼0.955, P<0.01. CONCLUSIONS/SIGNIFICANCE: Biological soil crusts cause an important increase in soil fertility, and are beneficial to sand fixation, although the process is rather slow. Fractal dimension proves to be a sensitive and useful index for quantifying changes in soil properties that additionally implies desertification. This study will be essential to provide a firm basis for future policy-making on optimal solutions regarding desertification control and assessment, as well as degraded ecosystem restoration in arid and semiarid regions.

  18. Wind tunnel experiments on the effects of tillage ridge features on wind erosion horizontal fluxes

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available In addition to the well-known soil factors which control wind erosion on flat, unridged surfaces, two specific processes affect the susceptibility of tillage ridged surfaces to wind erosion: ridge-induced roughness and ridge- trapping efficiency.

    In order to parameterize horizontal soil fluxes produced by wind over tillage ridges, eight-ridge configurations composed of sandy soil and exhibiting ridge heights to ridge spacing (RH/RS ratios ranging from 0.18 to 0.38 were experimented in a wind tunnel. These experiments are used to develop a parameterization of the horizontal fluxes over tillage ridged surfaces based only on the geometric characteristics of the ridges. Indeed, the key parameters controlling the horizontal flux, namely the friction velocity, threshold friction velocity and the adjustment coefficient, are derived through specific expressions, from ridge heights (RH and ridge spacing (RS. This parameterization was evaluated by comparing the results of the simulations to an additional experimental data set and to the data set obtained by Hagen and Armbrust (1992. In both cases, predicted and measured values are found to be in a satisfying agreement.

    This parameterization was used to evaluate the efficiency of ridges in reducing wind erosion. The results show that ridged surfaces, when compared to a loose, unridged soil surface, lead to an important reduction in the horizontal fluxes (exceeding 60%. Moreover, the effect of ridges in trapping particles contributes for more than 90% in the flux reduction while the ridge roughness effect is weak and decreases when the wind velocity increases.

  19. Development of a carbonate crust on alkaline nuclear waste sludge at the Hanford site.

    Science.gov (United States)

    Page, Jason S; Reynolds, Jacob G; Ely, Tom M; Cooke, Gary A

    2018-01-15

    Hard crusts on aging plutonium production waste have hindered the remediation of the Hanford Site in southeastern Washington, USA. In this study, samples were analyzed to determine the cause of a hard crust that developed on the highly radioactive sludge during 20 years of inactivity in one of the underground tanks (tank 241-C-105). Samples recently taken from the crust were compared with those acquired before the crust appeared. X-ray diffraction and scanning electron microscopy (SEM) indicated that aluminum and uranium phases at the surface had converted from (hydr)oxides (gibbsite and clarkeite) into carbonates (dawsonite and cejkaite) and identified trona as the cementing phase, a bicarbonate that formed at the expense of thermonatrite. Since trona is more stable at lower pH values than thermonatrite, the pH of the surface decreased over time, suggesting that CO 2 from the atmosphere lowered the pH. Thus, a likely cause of crust formation was the absorption of CO 2 from the air, leading to a reduction of the pH and carbonation of the waste surface. The results presented here help establish a model for how nuclear process waste can age and can be used to aid future remediation and retrieval activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Nuclear structure for the crust of neutron stars and exotic nuclei

    International Nuclear Information System (INIS)

    Goegelein, Peter

    2007-01-01

    In this work the Skyrme Hartree-Fock and Relativistic Hartree--Fock approaches have been considered to describe the structure of nuclear systems ranging from finite nuclei, structures in the crust of neutron stars to homogeneous matter. Effects of pairing correlations and finite temperature are also taken into account. The numerical procedure in the cubic box is described for the Skyrme Hartree-Fock as well as the relativistic Hartree-Fock approach. And finally, results for the crust of neutron stars and exotic nuclei are presented and discussed. (orig.)

  1. Nuclear structure for the crust of neutron stars and exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Goegelein, Peter

    2007-07-01

    In this work the Skyrme Hartree-Fock and Relativistic Hartree--Fock approaches have been considered to describe the structure of nuclear systems ranging from finite nuclei, structures in the crust of neutron stars to homogeneous matter. Effects of pairing correlations and finite temperature are also taken into account. The numerical procedure in the cubic box is described for the Skyrme Hartree-Fock as well as the relativistic Hartree-Fock approach. And finally, results for the crust of neutron stars and exotic nuclei are presented and discussed. (orig.)

  2. OECD MCCI Small-Scale Water Ingression and Crust Strength tests (SSWICS) design report, Rev. 2 October 31, 2002

    International Nuclear Information System (INIS)

    Farmer, M.; Lomperski, S.; Kilsdonk, D.; Aeschlimann, B.; Pfeiffer, P.

    2011-01-01

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are planned to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium (∼φ30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. A description of the test apparatus, instrumentation, data reduction, and test matrix are the subject of the first portion of this report. The issue of crust strength will be addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus will measure the fracture strength of the crust while under a thermal load created by a heating element beneath the crust. The introduction of a thermal gradient across the crust is thought to be important for these tests because of uncertainty in the magnitude of the thermal stresses and thus their relative

  3. Geophysical survey work plan for White Wing Scrap Yard (Waste Area Grouping 11) at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-02-01

    The White Wing Scrap Yard, located on the U.S. Department of Energy's Oak Ridge Reservation, served as an aboveground storage and disposal area for contaminated debris and scrap from the Oak Ridge K-25 Site, the Oak Ridge Y-12 Plant, and the Oak Ridge National laboratory. The site is believed to have been active from the early 1950s until the mid-1960s. A variety of materials were disposed of at the site, including contaminated steel tanks and vehicles. As an interim corrective action, a surface debris removal effort was initiated in November 1993 to reduce the potential threat to human health and the environment from the radionuclide-contaminated debris. Following this removal effort, a geophysical survey will be conducted across the site to locate and determine the lateral extent of buried nonindigenous materials. This survey will provide the data necessary to prepare a map showing areas of conductivity and magnetic intensity that vary from measured background values. These anomalies represent potential buried materials and therefore can be targeted for further evaluation. This work plan outlines the activities necessary to conduct the geophysical survey

  4. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Simon P.; Korhonen, Fawna J.; Kirkland, Christopher L.; Cliff, John B.; Belousova, Elena A.; Sheppard, Stephen

    2017-01-01

    The in situ chemical differentiation of continental crust ultimately leads to the long-term stability of the continents. This process, more commonly known as ‘cratonization’, is driven by deep crustal melting with the transfer of those melts to shallower regions resulting in a strongly chemically stratified crust, with a refractory, dehydrated lower portion overlain by a complementary enriched upper portion. Since the lower to mid portions of continental crust are rarely exposed, investigation of the cratonization process must be through indirect methods. In this study we use in situ Hf and O isotope compositions of both magmatic and inherited zircons from several felsic magmatic suites in the Capricorn Orogen of Western Australia to highlight the differentiation history (i.e. cratonization) of this portion of late Archean to Proterozoic orogenic crust. The Capricorn Orogen shows a distinct tectonomagmatic history that evolves from an active continental margin through to intracratonic reworking, ultimately leading to thermally stable crust that responds similarly to the bounding Archean Pilbara and Yilgarn Cratons.

  5. Circulation in the region of the Reykjanes Ridge in June-July 2015

    Science.gov (United States)

    Tillys, Petit; Herle, Mercier; Virginie, Thierry

    2017-04-01

    The Reykjanes Ridge is a major topographic feature of the North-Atlantic Ocean lying south of Iceland that strongly influences the pathways of the upper and lower limbs of the meridional overturning cell. The circulation in the vicinity of the Reykjanes Ridge is anticyclonic and characterized by a southwestward flow (the East Reykjanes Ridge Current, ERRC) along the eastern flank and a northeastward flow (the Irminger Current, IC) along the western flank. Even if it is admitted that the ERRC feeds the IC through a cross-ridge flow, details and magnitude of this circulation remain unclear. In this study, the circulation in the region of the Reykjanes Ridge was investigated based on ADCP and CTDO2 measurements carried out from the R/V Thalassa during the RREX cruise, which provided a snapshot of the water mass distribution and circulation during summer 2015. One hydrographic section followed the top of the Reykjanes Ridge between Iceland and 50˚ N and three other sections were carried out perpendicularly to the ridge at 62˚ N, 58.5˚ N and 56˚ N. Geostrophic transports were estimated by combining ADCP and hydrographic data. Those observations were used to provide an estimate of the circulation around the Ridge and to discuss the meridional evolutions of the ERRC and IC transports along the Ridge and their connection to the cross-Ridge flows. The section along the top of the Reykjanes Ridge allowed us to describe the cross ridge exchanges. A westward flow crossed the Ridge between Iceland and 53˚ N. Its top to bottom integrated transport was estimated at 17.7 Sv. Two main passages were identified for the westward crossing. A first passage is located near 57˚ N (Bight Fracture Zone, BFZ) in agreement with previous studies. More surprisingly, a second passage is located near 59˚ N. The top-to-bottom transports of those two main flows were estimated at 6.5 and 8 Sv respectively. The IC and ERRC top-to-bottom integrated transports were maximum at 58.5˚ N and

  6. The structure of the crust and uppermost mantle beneath Madagascar

    Science.gov (United States)

    Andriampenomanana, Fenitra; Nyblade, Andrew A.; Wysession, Michael E.; Durrheim, Raymond J.; Tilmann, Frederik; Julià, Jordi; Pratt, Martin J.; Rambolamanana, Gérard; Aleqabi, Ghassan; Shore, Patrick J.; Rakotondraibe, Tsiriandrimanana

    2017-09-01

    The lithosphere of Madagascar was initially amalgamated during the Pan-African events in the Neoproterozoic. It has subsequently been reshaped by extensional processes associated with the separation from Africa and India in the Jurassic and Cretaceous, respectively, and been subjected to several magmatic events in the late Cretaceous and the Cenozoic. In this study, the crust and uppermost mantle have been investigated to gain insights into the present-day structure and tectonic evolution of Madagascar. We analysed receiver functions, computed from data recorded on 37 broad-band seismic stations, using the H-κ stacking method and a joint inversion with Rayleigh-wave phase-velocity measurements. The thickness of the Malagasy crust ranges between 18 and 46 km. It is generally thick beneath the spine of mountains in the centre part (up to 46 km thick) and decreases in thickness towards the edges of the island. The shallowest Moho is found beneath the western sedimentary basins (18 km thick), which formed during both the Permo-Triassic Karro rifting in Gondwana and the Jurassic rifting of Madagascar from eastern Africa. The crust below the sedimentary basin thickens towards the north and east, reflecting the progressive development of the basins. In contrast, in the east there was no major rifting episode. Instead, the slight thinning of the crust along the east coast (31-36 km thick) may have been caused by crustal uplift and erosion when Madagascar moved over the Marion hotspot and India broke away from it. The parameters describing the crustal structure of Archean and Proterozoic terranes, including average thickness (40 km versus 35 km), Poisson's ratio (0.25 versus 0.26), average shear-wave velocity (both 3.7 km s-1), and thickness of mafic lower crust (7 km versus 4 km), show weak evidence of secular variation. The uppermost mantle beneath Madagascar is generally characterized by shear-wave velocities typical of stable lithosphere (∼4.5 km s-1). However

  7. Some Improved Classification-Based Ridge Parameter Of Hoerl And ...

    African Journals Online (AJOL)

    Of Hoerl And Kennard Estimation Techniques. 1Adewale F. Lukmanand 1Kayode Ayinde. 1 Department of Statistics, ... ordinary least square (OLS) in handling it. However, it requires a ridge parameter, K, of which many have ... handle the problem of multicollinearity. They suggested the addition of ridge parameter K to the ...

  8. Surface radiological investigation of Trench 5 in Waste Area Grouping 7 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Goff, D.D.

    1991-08-01

    A surface radiological investigation of areas encompassing Trench 5 on the Oak Ridge Reservation (ORR) was conducted from May 1990 through November 1990. This survey was led by the author, assisted by various members of the Measurement Applications and Development (MAD) group of the Health and Safety Research Division (HASRD) of Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The purpose of the investigation was to determine the presence, nature, and extent of surface radiological contamination at Trench 5, the Homogeneous Reactor Experiment fuel wells, and surrounding areas. Based on the data obtained in the field, interim corrective measures were recommended to limit human exposure to radioactivity and to minimize insult to the environment. It should be stressed that this project was not intended to be a complete site characterization but rather to be a preliminary investigation into the potential contamination problem that might exist as a result of past operations at Trench 5

  9. Morphotectonic and petrological variations along the southern Central Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Iyer, S.D.; Ray, Dwijesh; Karisiddaiah, S.M.; Drolia, R.K.

    above the DM and Enriched Mantle (EM2) end member and resemble a linear mixing with Indian Ocean pelagic sediments (Fig. 4a, b). By contrast, the isotope data of IOTJ-MORB occupy a distinct field in the radiogenic Pb-Pb and Sr-Pb binary plots... EM, Karsten JL, 1995 Ocean-ridge basalts with convergent-margin geochemical affinities from the Chile Ridge. Nature 374:52-57 Klein EM, Langmuir CH, 1987 Global correlations of ocean ridge basalt chemistry with axial depth and crustal chemistry...

  10. The thermodynamic properties of the upper continental crust: Exergy, Gibbs free energy and enthalpy

    International Nuclear Information System (INIS)

    Valero, Alicia; Valero, Antonio; Vieillard, Philippe

    2012-01-01

    This paper shows a comprehensive database of the thermodynamic properties of the most abundant minerals of the upper continental crust. For those substances whose thermodynamic properties are not listed in the literature, their enthalpy and Gibbs free energy are calculated with 11 different estimation methods described in this study, with associated errors of up to 10% with respect to values published in the literature. Thanks to this procedure we have been able to make a first estimation of the enthalpy, Gibbs free energy and exergy of the bulk upper continental crust and of each of the nearly 300 most abundant minerals contained in it. Finally, the chemical exergy of the continental crust is compared to the exergy of the concentrated mineral resources. The numbers obtained indicate the huge chemical exergy wealth of the crust: 6 × 10 6 Gtoe. However, this study shows that approximately only 0.01% of that amount can be effectively used by man.

  11. Shear Wave Velocity Structure of Southern African Crust: Evidence for Compositional Heterogeneity within Archaean and Proterozoic Terrains

    Energy Technology Data Exchange (ETDEWEB)

    Kgaswane, E M; Nyblade, A A; Julia, J; Dirks, P H H M; Durrheim, R J; Pasyanos, M E

    2008-11-11

    Crustal structure in southern Africa has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities for 89 broadband seismic stations spanning much of the Precambrian shield of southern Africa. 1-D shear wave velocity profiles obtained from the inversion yield Moho depths that are similar to those reported in previous studies and show considerable variability in the shear wave velocity structure of the lower part of the crust between some terrains. For many of the Archaean and Proterozoic terrains in the shield, S velocities reach 4.0 km/s or higher over a substantial part of the lower crust. However, for most of the Kimberley terrain and adjacent parts of the Kheis Province and Witwatersrand terrain, as well as for the western part of the Tokwe terrain, mean shear wave velocities of {le} 3.9 km/s characterize the lower part of the crust along with slightly ({approx}5 km) thinner crust. These findings indicate that the lower crust across much of the shield has a predominantly mafic composition, except for the southwest portion of the Kaapvaal Craton and western portion of the Zimbabwe Craton, where the lower crust is intermediate-to-felsic in composition. The parts of the Kaapvaal Craton underlain by intermediate-to-felsic lower crust coincide with regions where Ventersdorp rocks have been preserved, and thus we suggest that the intermediate-to-felsic composition of the lower crust and the shallower Moho may have resulted from crustal melting during the Ventersdorp tectonomagmatic event at c. 2.7 Ga and concomitant crustal thinning caused by rifting.

  12. Hydrodynamic behaviour of crusted soils in the Sahel: a possible cause for runoff increase?

    Science.gov (United States)

    Malam Abdou, M.; Vandervaere, J.-P.; Bouzou Moussa, I.; Descroix, L.

    2012-04-01

    Crusted soils are in extension in the Sahel. As rainfall has decreased over the past decades (it is now increasing again in the central Sahel) and no significant change was observed in rainfall intensity and in its time and space distribution, it is supposed that land use management is the main cause for crusts cover increase. Fallow shortening, lack of manure, and land overexploitation (wood harvesting, overgrazing) are frequently cited as main factors of soil degradation. Based on field measurements in some small catchments of Western Niger, the hydrodynamics behaviour of the newly crusted soils of this area is described, mostly constituted by erosion crusts. A strong fall in soil saturated conductivity and in the active porosity as well as a rise in bulk density all lead to a quick onset of runoff production. Results are shown from field experiments in sedimentary and basement areas leading to similar conclusions. In both contexts, runoff plot production was measured at the rain event scale from 10-m2 parcels as well as at the catchment outlet. Soil saturated conductivity was reduced by one order of magnitude when crusting occurs, leading to a sharp runoff coefficient increase, from 4% in a weeded millet field and 10% in an old fallow to more than 60% in a erosion-crusted topsoil at the plot scale. At the experimental catchment scale, runoff coefficient has doubled in less than 20 years. In pure Sahelian basins, this resulted in endorheism breaching, and in a widespread river discharge increase. For some right bank tributaries of the Niger River, discharge is three times higher now than before the drought years, in spite of the remaining rainfall deficit. On the other hand, a general increase in flooding hazard frequency is observed in the whole Sahelian stripe. The role of surface crusts in the Sahel is discussed leading to the implementation of new experiments in the future.

  13. The influence of the crust layer on RPV structural failure under severe accident condition

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jianfeng, E-mail: jianfeng-mao@163.com [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Re-manufacturing, Ministry of Education (China); Li, Xiangqing [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Bao, Shiyi [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Re-manufacturing, Ministry of Education (China); Luo, Lijia [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Gao, Zengliang [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Re-manufacturing, Ministry of Education (China)

    2017-05-15

    Highlights: • The crust layer greatly affects the RPV structural behavior. • The RPV failure is investigated in depth under severe accident. • The creep and plastic damage mainly contribute to RPV failure. • An elastic core in RPV wall is essential for ensuring RPV integrity. • The multiaxial state of stress accelerates the total damage evolution. - Abstract: The so called ‘in-vessel retention (IVR)’ is regarded as a severe accident (SA) mitigation strategy, which is widely used in most of advanced nuclear power plants. The effectiveness of IVR strategy is to employ the external water flooding to cool the reactor pressure vessel (RPV). The RPV integrity has to be maintained within a required period during the IVR period. The degraded melting core is assumed to be arrested in the lower head (LH) to form the melting pool that is bounded by upper, side and lower crusts. Consequently, the existence of the crust layer greatly affects the RPV structural behavior as well as failure process. In order to disclose this influence caused by the crust layer, a detailed investigation is conducted by using numerical simulation on the two RPVs with and without crust layer respectively. Taking the RPV without crust layer as a basis for the comparison, the present study assesses the likelihood and potential failure location, time and mode of the LH under the loadings of the critical heat flux (CHF) and slight internal pressure. Due to the high temperature melt on the inside and nucleate boiling on the outside, the RPV integrity is found to be compromised by melt-through, creep, elasticity, plasticity as well as thermal expansion. Through in-depth investigation, it is found that the creep and plasticity are of vital importance to the final structural failure, and the introduction of crust layer results in a significant change on field parameters in terms of temperature, deformation, stress(strain), triaxiality factor and total damage.

  14. The influence of the crust layer on RPV structural failure under severe accident condition

    International Nuclear Information System (INIS)

    Mao, Jianfeng; Li, Xiangqing; Bao, Shiyi; Luo, Lijia; Gao, Zengliang

    2017-01-01

    Highlights: • The crust layer greatly affects the RPV structural behavior. • The RPV failure is investigated in depth under severe accident. • The creep and plastic damage mainly contribute to RPV failure. • An elastic core in RPV wall is essential for ensuring RPV integrity. • The multiaxial state of stress accelerates the total damage evolution. - Abstract: The so called ‘in-vessel retention (IVR)’ is regarded as a severe accident (SA) mitigation strategy, which is widely used in most of advanced nuclear power plants. The effectiveness of IVR strategy is to employ the external water flooding to cool the reactor pressure vessel (RPV). The RPV integrity has to be maintained within a required period during the IVR period. The degraded melting core is assumed to be arrested in the lower head (LH) to form the melting pool that is bounded by upper, side and lower crusts. Consequently, the existence of the crust layer greatly affects the RPV structural behavior as well as failure process. In order to disclose this influence caused by the crust layer, a detailed investigation is conducted by using numerical simulation on the two RPVs with and without crust layer respectively. Taking the RPV without crust layer as a basis for the comparison, the present study assesses the likelihood and potential failure location, time and mode of the LH under the loadings of the critical heat flux (CHF) and slight internal pressure. Due to the high temperature melt on the inside and nucleate boiling on the outside, the RPV integrity is found to be compromised by melt-through, creep, elasticity, plasticity as well as thermal expansion. Through in-depth investigation, it is found that the creep and plasticity are of vital importance to the final structural failure, and the introduction of crust layer results in a significant change on field parameters in terms of temperature, deformation, stress(strain), triaxiality factor and total damage.

  15. The subduction erosion and mantle source region contamination model of Andean arc magmatism: Isotopic evidence from igneous rocks of central Chile

    International Nuclear Information System (INIS)

    Stern, Charles R

    2001-01-01

    Continental crust may be incorporated in mantle-derived Andean magmas as these magmas rise through the crust (Hildreth and Moorbath, 1988), or alternatively, crust may be tectonically transported into the mantle by subduction of trench sediments and subduction erosion of the continental margin, and then added into the mantle source region of Andean magmas (Stern, 1991). Since the mantle has relatively low Sr, Nd, and Pb concentrations compared to continental crust, differences in the isotopic compositions of magmas erupted in different region of the Andes may be produced by relatively small differences in the amount of subducted crust added to the mantle source region of these magmas. By comparison, significantly larger amounts of crust must be assimilated by mantle-derived magmas to produce isotopic differences of similar magnitude. Therefore, constraining the process by which continental crust is incorporated in Andean magmas has important implications for understanding the chemical cycling that takes place in the Andean subduction-related magma factory. Isotopic data suggest the incorporation of a greater proportion of crust in Andean magmas erupted at the northern portion of the Southern Volcanic Zone of central Chile compared to those erupted in the southern portion of the Southern Volcanic Zone of south central Chile (SSVZ) (Stern et al., 1984; Futa and Stern, 1988; Hildreth and Moorbath, 1988). The NSVZ occurs just south of the current locus of the subduction of the Juan Fernandez Ridge. The southward migration of the locus of subduction of this ridge has resulted in decreasing subduction angle below the NSVZ, the eastward migration of the volcanic front of the Andean arc, and an increase in the crustal thickness below the arc. These factors together have caused changes, since the middle Miocene, in the isotopic composition of Andean igneous rocks of central Chile. The data indicate a close chronologic relation between the southward migrations of the locus

  16. Testing models for the formation of the equatorial ridge on Iapetus via crater counting

    Science.gov (United States)

    Damptz, Amanda L.; Dombard, Andrew J.; Kirchoff, Michelle R.

    2018-03-01

    Iapetus's equatorial ridge, visible in global views of the moon, is unique in the Solar System. The formation of this feature is likely attributed to a key event in the evolution of Iapetus, and various models have been proposed as the source of the ridge. By surveying imagery from the Cassini and Voyager missions, this study aims to compile a database of the impact crater population on and around Iapetus's equatorial ridge, assess the relative age of the ridge from differences in cratering between on ridge and off ridge, and test the various models of ridge formation. This work presents a database that contains 7748 craters ranging from 0.83 km to 591 km in diameter. The database includes the study area in which the crater is located, the latitude and longitude of the crater, the major and minor axis lengths, and the azimuthal angle of orientation of the major axis. Analysis of crater orientation over the entire study area reveals that there is no preference for long-axis orientation, particularly in the area with the highest resolution. Comparison of the crater size-frequency distributions show that the crater distribution on the ridge appears to be depleted in craters larger than 16 km with an abruptly enhanced crater population less than 16 km in diameter up to saturation. One possible interpretation is that the ridge is a relatively younger surface with an enhanced small impactor population. Finally, the compiled results are used to examine each ridge formation hypothesis. Based on these results, a model of ridge formation via a tidally disrupted sub-satellite appears most consistent with our interpretation of a younger ridge with an enhanced small impactor population.

  17. Compositional variation and genesis of ferromanganese crusts of the Afanasiy-Nikitin Seamount, Equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rajani, R.P.; Banakar, V.K.; Parthiban, G.; Mudholkar, A.V.; Chodankar, A.R.

    Eight ferromanganese crusts (Fe-Mn crusts) with igneous and sedimentary substrates collected at different water depths from the Afanasiy-Nikitin Seamount are studied for their bulk major, minor and rare earth element composition. The Mn/Fe ratios...

  18. Petrology and Wavespeeds in Central Tibet Indicate a Partially Melted Mica-Bearing Crust

    Science.gov (United States)

    Hacker, B. R.; Ritzwoller, M. H.; Xie, J.

    2013-12-01

    S-wave speeds and Vp/Vs ratios in the middle to deep crust of Tibet are best explained by a partially melted, mica-bearing middle to lower crust with a subhorizontal to gently dipping foliation. Surface-wave tomography [e.g., Yang et al., 2012; Xie et al., 2013] shows that the central Tibetan Plateau (the Qiangtang block) is characterized by i) slow S-wave speeds of 3.3-3.5 km/s at depths from 20-25 km to 45-50 km, ii) S-wave radial anisotropy of at least 4% (Vsh > Vsv) with stronger anisotropy in the west than the east [Duret et al., 2010], and iii) whole-crust Vp/Vs ratios in the range of 1.73-1.78 [Xu et al., 2013]. The depth of the Curie temperature for magnetite inferred from satellite magnetic measurements [Alsdorf and Nelson, 1999], the depth of the α-β quartz transition inferred from Vp/Vs ratios [Mechie et al., 2004], and the equilibration pressures and temperatures of xenoliths erupted from the mid-deep crust [Hacker et al., 2000] indicate that the thermal gradient in Qiangtang is steep, reaching 1000°C at 30-40 km depth. This thermal gradient crosses the dehydration-melting solidi for crustal rocks at 20-30 km depth, implying the presence or former presence of melt in the mid-deep crust. These temperatures do not require the wholesale breakdown of mica at these depths, because F and Ti can stabilize mica to at least 1300°C [Dooley and Patino Douce, 1996]. Petrology suggests, then, that the Qiangtang middle to deep crust consists of a mica-bearing residue from which melt has been extracted or is being extracted. Wavespeeds calculated for mica-bearing rocks with a subhorizontal to gently dipping foliation and minor silicate melt are the best match to the wavespeeds and anisotropy observed by seismology. Alsdorf, D., and D. Nelson, The Tibetan satellite magnetic low: Evidence for widespread melt in the Tibetan crust?, Geology, 27, 943-946, 1999. Dooley, D.F., and A.F. Patino Douce, Fluid-absent melting of F-rich phlogopite + rutile +quartz, American

  19. Potentially exploitable supercritical geothermal resources in the ductile crust

    Science.gov (United States)

    Watanabe, Noriaki; Numakura, Tatsuya; Sakaguchi, Kiyotoshi; Saishu, Hanae; Okamoto, Atsushi; Ingebritsen, Steven E.; Tsuchiya, Noriyoshi

    2017-01-01

    The hypothesis that the brittle–ductile transition (BDT) drastically reduces permeability implies that potentially exploitable geothermal resources (permeability >10−16 m2) consisting of supercritical water could occur only in rocks with unusually high transition temperatures such as basalt. However, tensile fracturing is possible even in ductile rocks, and some permeability–depth relations proposed for the continental crust show no drastic permeability reduction at the BDT. Here we present experimental results suggesting that the BDT is not the first-order control on rock permeability, and that potentially exploitable resources may occur in rocks with much lower BDT temperatures, such as the granitic rocks that comprise the bulk of the continental crust. We find that permeability behaviour for fractured granite samples at 350–500 °C under effective confining stress is characterized by a transition from a weakly stress-dependent and reversible behaviour to a strongly stress-dependent and irreversible behaviour at a specific, temperature-dependent effective confining stress level. This transition is induced by onset of plastic normal deformation of the fracture surface (elastic–plastic transition) and, importantly, causes no ‘jump’ in the permeability. Empirical equations for this permeability behaviour suggest that potentially exploitable resources exceeding 450 °C may form at depths of 2–6 km even in the nominally ductile crust.

  20. Effects of termites on infiltration in crusted soil.

    NARCIS (Netherlands)

    Mando, A.; Stroosnijder, L.; Brussaard, L.

    1996-01-01

    In northern Burkina Faso (West Africa), a study was undertaken to explore the possibilities of restoring the infiltration capacity of crusted soils through the stimulation of termite activity. Treatments consisted of the application of a mulch of a mixture of wood and straw without insecticides

  1. Seismic imaging of the Formosa Ridge cold seep site offshore of southwestern Taiwan

    Science.gov (United States)

    Hsu, Ho-Han; Liu, Char-Shine; Morita, Sumito; Tu, Shu-Lin; Lin, Saulwood; Machiyama, Hideaki; Azuma, Wataru; Ku, Chia-Yen; Chen, Song-Chuen

    2017-12-01

    Multi-scale reflection seismic data, from deep-penetration to high-resolution, have been analyzed and integrated with near-surface geophysical and geochemical data to investigate the structures and gas hydrate system of the Formosa Ridge offshore of southwestern Taiwan. In 2007, dense and large chemosynthetic communities were discovered on top of the Formosa Ridge at water depth of 1125 m by the ROV Hyper-Dolphin. A continuous and strong BSR has been observed on seismic profiles from 300 to 500 ms two-way-travel-time below the seafloor of this ridge. Sedimentary strata of the Formosa Ridge are generally flat lying which suggests that this ridge was formed by submarine erosion processes of down-slope canyon development. In addition, some sediment waves and mass wasting features are present on the ridge. Beneath the cold seep site, a vertical blanking zone, or seismic chimney, is clearly observed on seismic profiles, and it is interpreted to be a fluid conduit. A thick low velocity zone beneath BSR suggests the presence of a gas reservoir there. This "gas reservoir" is shallower than the surrounding canyon floors along the ridge; therefore as warm methane-rich fluids inside the ridge migrate upward, sulfate carried by cold sea water can flow into the fluid system from both flanks of the ridge. This process may drive a fluid circulation system and the active cold seep site which emits both hydrogen sulfide and methane to feed the chemosynthetic communities.

  2. Global Models of Ridge-Push Force, Geoid, and Lithospheric Strength of Oceanic plates

    Science.gov (United States)

    Mahatsente, Rezene

    2017-12-01

    An understanding of the transmission of ridge-push related stresses in the interior of oceanic plates is important because ridge-push force is one of the principal forces driving plate motion. Here, I assess the transmission of ridge-push related stresses in oceanic plates by comparing the magnitude of the ridge-push force to the integrated strength of oceanic plates. The strength is determined based on plate cooling and rheological models. The strength analysis includes low-temperature plasticity (LTP) in the upper mantle and assumes a range of possible tectonic conditions and rheology in the plates. The ridge-push force has been derived from the thermal state of oceanic lithosphere, seafloor depth and crustal age data. The results of modeling show that the transmission of ridge-push related stresses in oceanic plates mainly depends on rheology and predominant tectonic conditions. If a lithosphere has dry rheology, the estimated strength is higher than the ridge-push force at all ages for compressional tectonics and at old ages (>75 Ma) for extension. Therefore, under such conditions, oceanic plates may not respond to ridge-push force by intraplate deformation. Instead, the plates may transmit the ridge-push related stress in their interior. For a wet rheology, however, the strength of young lithosphere (stress may dissipate in the interior of oceanic plates and diffuses by intraplate deformation. The state of stress within a plate depends on the balance of far-field and intraplate forces.

  3. THE STATISTICAL MODEL OF PRESSURE RIDGE MORPHOMETRY ON THE NORTHEAST SHELF OF SAKHALIN ISLAND

    Directory of Open Access Journals (Sweden)

    E. U. Mironov

    2012-01-01

    Full Text Available The work presents characteristics on geometry and inner structure of ice ridges investigated at offshore the northeast coast of SakhalinIsland. A formula was obtained which allows one to calculate the ice ridge keel depth by the height of its sail. Plots of the probability distribution density for ice ridge characteristics are given. A model of morphometry of a mean statistical ice ridge was constructed, and its mass is determined. Factors influencing the hydrostatic ice ridge equilibrium are considered.

  4. From a collage of microplates to stable continental crust - an example from Precambrian Europe

    Science.gov (United States)

    Korja, Annakaisa

    2013-04-01

    Svecofennian orogen (2.0-1.7 Ga) comprises the oldest undispersed orogenic belt on Baltica and Eurasian plate. Svecofennian orogenic belt evolved from a series of short-lived terrane accretions around Baltica's Archean nucleus during the formation of the Precambrian Nuna supercontinent. Geological and geophysical datasets indicate W-SW growth of Baltica with NE-ward dipping subduction zones. The data suggest a long-lived retreating subduction system in the southwestern parts whereas in the northern and central parts the northeasterly transport of continental fragments or microplates towards the continental nucleus is also documented. The geotectonic environment resembles that of the early stages of the Alpine-Himalayan or Indonesian orogenic system, in which dispersed continental fragments, arcs and microplates have been attached to the Eurasian plate margin. Thus the Svecofennian orogeny can be viewed as proxy for the initial stages of an internal orogenic system. Svecofennian orogeny is a Paleoproterozoic analogue of an evolved orogenic system where terrane accretion is followed by lateral spreading or collapse induced by change in the plate architecture. The exposed parts are composed of granitoid intrusions as well as highly deformed supracrustal units. Supracrustal rocks have been metamorphosed in LP-HT conditions in either paleo-lower-upper crust or paleo-upper-middle crust. Large scale seismic reflection profiles (BABEL and FIRE) across Baltica image the crust as a collage of terranes suggesting that the bedrock has been formed and thickened in sequential accretions. The profiles also image three fold layering of the thickened crust (>55 km) to transect old terrane boundaries, suggesting that the over-thickened bedrock structures have been rearranged in post-collisional spreading and/or collapse processes. The middle crust displays typical large scale flow structures: herringbone and anticlinal ramps, rooted onto large scale listric surfaces also suggestive

  5. Active spreading processes at ultraslow mid-ocean ridges: The 1999-2001 seismo-volcanic episode at 85°E Gakkel ridge, Arctic Ocean

    Science.gov (United States)

    Schlindwein, Vera; Riedel, Carsten; Korger, Edith; Läderach, Christine

    2010-05-01

    The rate of magma and crustal production at mid-ocean ridges is thought to decrease with decreasing spreading rate. At ultraslow spreading rates below 10-20 mm/y full rate, heat loss by conduction greatly reduces melt production with less melt produced at increasingly greater depths. Gakkel Ridge, the actively spreading mid-ocean ridge in the Arctic Ocean, opens at rates of 14 mm/y in the west decreasing to less than 6 mm/y at its eastern termination and demonstrates that magma production is not only a function of spreading rate. Whereas amagmatic spreading takes place at rates of about 12-10 mm/y, focussed melt production occurs at even lower spreading rates in long-lived discrete volcanic centres. One such centre is the 85°E volcanic complex at eastern Gakkel ridge where in 1999 a teleseismically recorded earthquake swarm consisting of more than 250 earthquakes over 9 months signalled the onset of an active spreading episode. The earthquake swarm is believed to be associated with volcanic activity although no concurrent lava effusion was found. We analysed the teleseismic earthquake swarm together with visual observation and microseismic data recorded at this site in 2001 and 2007 and noted the following characteristics which may be indicative for volcanic spreading events at the still poorly explored ultraslow spreading ridges: - unusual duration: The 1999 earthquake swarm lasted over 9 months rather than a few weeks as observed on faster spreading ridges. In addition, in 2001 seismoacoustic sounds which we interpret as gas discharge in Strombolian eruptions and a giant event plume maintained over more than one year indicate waxing and waning volcanic activity since 1999. - unusual strength: The earthquake swarm was detected at teleseismic distances of more than 1000 km and included 11 events with a magnitude >5. No other confirmed mid-ocean ridge eruption released a comparable seismic moment. Rather than focussing in a narrow area or showing pronounced

  6. Lithium isotope as a proxy for water/rock interaction between hydrothermal fluids and oceanic crust at Milos, Greece

    Science.gov (United States)

    Lou, U.-Lat; You, Chen-Feng; Wu, Shein-Fu; Chung, Chuan-Hsiung

    2014-05-01

    Hydrothermal activity at Milos in the Aegean island (Greece) is mainly located at rather shallow depth (about 5 m). It is interesting to compare these chemical compositions and the evolution processes of the hydrothermal fluids at deep sea hydrothermal vents in Mid-ocean Ridge (MOR). Lithium (Li) is a highly mobile element and its isotopic composition varies at different geological settings. Therefore, Li and its isotope could be used as an indicator for many geochemical processes. Since 6Li preferential retained in the mineral phase where 7Li is leached into fluid phase during basalt alteration, the Li isotopic fractionation between the rocks and the fluids reflect sensitively the degree of water-rock interaction. In this study, Bio-Rad AG-50W X8 cation exchange resin was used for purifying the hydrothermal fluids to separate Li from other matrix elements. The Li isotopic composition (δ7Li) was determined by Multi-collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) with precision better than 0.2‰ (2σ, n=20). The Li concentration in the hydrothermal fluids falls between 0.02 to 10.31 mM. The δ7Li values vary from +1.9 to +29.7‰, indicating significant seawater contamination have occurred. These hydrothermal fluids fit well with seawater and brine two end-member binary mixing model. During phase separation, lithium, boron, chlorine, iodine, bromine, sodium and potassium were enriched in the brine phase. On the other hand, aluminum, sulphur and iron were enriched in the vapor phase. There is no significant isotope fractionation between the two phases. The water/rock ratio (W/R) calculated is low (about 1.5 to 1.8) for the Milos fluids, restricted seawater recharge into the oceanic crust. Moreover, the oceanic crust in the region becomes less altered since the W/R is low. The δ7Li value of the hydrothermal fluids can be used as a sensitive tool for studying water-rock interaction.

  7. Hot subduction: Magmatism along the Hunter Ridge, SW Pacific

    International Nuclear Information System (INIS)

    Crawford, A.J.; Verbeeten, A.; Danyushevsky, L.V.; Sigurdsson, I.A.; Maillet, P.; Monzier, M.

    1997-01-01

    The Hunter 'fracture zone' is generally regarded as a transform plate boundary linking the oppositely dipping Tongan and Vanuatu subduction systems. Dredging along the Hunter Ridge and sampling of its northernmost extent, exposed as the island of Kadavu in Fiji, has yielded a diversity of magmatic suites, including arc tholeiites and high-Ca boninites, high-Mg lavas with some affinities to boninites and some affinities to adakites, and true adakitic lavas associated with remarkable low-Fe, high-Na basalts with 8-16 ppm Nb (herein high-Nb basalts). Lavas which show clear evidence of slab melt involvement in their petrogenesis occur at either end of the Hunter Ridge, whereas the arc tholeiites and high-Ca boninites appear to be restricted to the south central part of the ridge. Mineralogical and whole rock geochemical data for each of these suites are summarized, and a tectono-magmatic model for their genesis and distribution is suggested. Trace element features and radiogenic isotope data for the Hunter Ridge lavas indicate compositions analogue to Pacific MORB-like mantle

  8. Crustal structure and tectonics of the Ninetyeast Ridge from seismic and gravity studies

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Neprochnov, Y.P.; Rao, D.G.; Grinko, B.N.

    Seismic reflection and refraction, gravity, and bathymetric data across and along the central part of the Ninetyeast Ridge were analyzed to determine the crustal structure of the ridge and to understand its tectonics. The ridge in the study area...

  9. Disordered nuclear pasta, magnetic field decay, and crust cooling in neutron stars

    Science.gov (United States)

    Horowitz, C. J.; Berry, D. K.; Briggs, C. M.; Caplan, M. E.; Cumming, A.; Schneider, A. S.

    2015-04-01

    Nuclear pasta, with non-spherical shapes, is expected near the base of the crust in neutron stars. Large scale molecular dynamics simulations of pasta show long lived topological defects that could increase electron scattering and reduce both the thermal and electrical conductivities. We model a possible low conductivity pasta layer by increasing an impurity parameter Qimp. Predictions of light curves for the low mass X-ray binary MXB 1659-29, assuming a large Qimp, find continued late time cooling that is consistent with Chandra observations. The electrical and thermal conductivities are likely related. Therefore observations of late time crust cooling can provide insight on the electrical conductivity and the possible decay of neutron star magnetic fields (assuming these are supported by currents in the crust). This research was supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  10. Isolation and characterisation of barium sulphate and titanium oxides in monument crusts

    Energy Technology Data Exchange (ETDEWEB)

    Luis Perez-Rodriguez, Jose; Carmen Jimenez de Haro, Maria del; Maqueda, Celia

    2004-10-25

    Black crusts from historical ornamental materials contain Ba and Ti. These elements are in low proportion, making their determination difficult and especially the characterisation of the phases in which they are present. For this reason, works on the mineralogical composition of the two elements in black crusts is scarce. Thus the isolation, previous to their characterisation, is important for the study of the surface layer in altered monuments. An acid attack for the isolation of barium sulphate and titanium oxides in black crusts from polluted areas has been used. The acid employed is a mixture of HF, HNO{sub 3} and HClO{sub 4}. The residue isolated by acid attack was analysed by energy dispersive X-ray fluorescence and X-ray diffraction. It was characterised, and the percentages of barite (barium sulphate), anatase (titanium oxide), and rutile (titanium oxide) phases present in the surface layers were calculated.

  11. Soil stabilization by a prokaryotic desert crust - Implications for Precambrian land biota

    Science.gov (United States)

    Campbell, S. E.

    1979-01-01

    The ecology of the cyanophyte-dominated stromatolitic mat forming the ground cover over desert areas of Utah and Colorado is investigated and implications for the formation of mature Precambrian soils are discussed. The activation of the growth of the two species of filamentous cyanophyte identified and the mobility of their multiple trichromes upon wetting are observed, accompanied by the production and deposition of a sheath capable of accreting and stabilizing sand and clay particles. The formation of calcium carbonate precipitates upon the repeated wetting and drying of desert crust is noted, and it is suggested that the desert crust community may appear in fossil calcrete deposits as lithified microscopic tubes and cellular remains of algal trichromes. The invasion of dry land by both marine and freshwater algae on the model of the desert crust is proposed to be responsible for the accumulation, stabilization and biogenic modification of mature Precambrian soils.

  12. Biological soil crusts in Chile along the precipitation gradient

    Science.gov (United States)

    Samolov, Elena; Glaser, Karin; Baumann, Karen; Leinweber, Peter; Jung, Patrick; Büdel, Burkhard; Mikhailyuk, Tatiana; Karsten, Ulf

    2017-04-01

    Biological soil crusts in Chile along a precipitation gradient Elena Samolov* (1), Karin Glaser (1), Karen Baumann (2), Peter Leinweber (2), Patrick Jung (3), Burkhard Büdel (3), Tatiana Mikhailyuk (4) and Ulf Karsten (1) (1) Institute of Biological Sciences - Applied Ecology and Phycology, University of Rostock, Rostock, Germany, (2) Faculty of Agricultural and Environmental Sciences - Soil Sciences, University of Rostock, Rostock, Germany (3) University of Kaiserslautern, Kaiserslautern, Germany (4) M.H. Kholodny Institute of Botany, National Academy of Science of Ukraine, Kyiv, Ukraine * elena.samolov@uni-rostock.de Biological soil crusts (BSCs) are an association of different microorganisms and soil particles in the top millimeters of the soil. They are formed by algae, cyanobacteria, microfungi, bacteria, bryophytes and lichens in various compositions; together with their by-products they create a micro-ecosystem that performs important ecological functions, e.g. primary production, nitrogen fixation, mineralization and stabilization of soils. These top-soil assemblages are almost unstudied in South America (Büdel et al. 2016). Therefore, our aim is to investigate for the first time biodiversity of the key photosynthetic organisms, green algae and cyanobacteria following a precipitation gradient along the west coast of Chile. We are applying polyphasic approach - a combination of microscopy, culture dependent (16S and 18S rRNA, ITS) and culture independent molecular techniques (NGS). First results, based on culturing and light microscopy, showed high diversity of eukaryotic algae in biocrusts from humid regions, followed by semi-arid regions. Lichen dominated biocrusts from arid regions were characterized by a high diversity of green algae, while cyanobacteria were scarcely present. The functional role of the BSCs in the biogeochemical cycle of phosphorous (P) was evaluated using state of the art analytical methods including 31P-NMR (nuclear magnetic

  13. Antimony sinks in the weathering crust of bullets from Swiss shooting ranges

    International Nuclear Information System (INIS)

    Ackermann, Sonia; Giere, Reto; Newville, Matthew; Majzlan, Juraj

    2009-01-01

    Shooting ranges represent sites heavily polluted by Pb, Sb, Cu, Ni, and Zn, which are released during the weathering of bullets. The pristine bullets are made of a Pb-Sb core, Fe mantle, and minor amounts of Cu, Ni, and Zn in an interlayer between the core and mantle. At two selected sampling sites (Losone and Lucerne, both in Switzerland), corroding bullets were collected to determine the sinks of Sb within the weathering crust of the bullets. Bulk Sb concentrations in the crust were found to be as high as 1.3 wt.%. The oxalate-extractable fraction of Fe showed that the amorphous Fe oxides (e.g., ferrihydrite) prevail over goethite and lepidocrocite, which were identified by bulk X-ray diffraction experiments. Crystalline Pb phases are litharge (only found by X-ray diffraction) and cerussite, which result from weathering of the Pb core. No distinct Sb minerals were identified by X-ray diffraction. Investigations with electron microprobe (EMP) showed that Sb is mostly accumulated in those regions in the weathering crust where there is also a high concentration of Fe. In the weathering crust from Losone, such Fe-rich regions with Sb are represented by material that cements or rims silicate mineral grains. The cement was identified as lepidocrocite by micro-Raman analysis. At Lucerne, Sb is found in Fe-oxide aggregates, in sawdust particles where it may be bound to organic matter, or in aggregates enriched in Pb and depleted in Fe. Bulk EXAFS experiments suggested that the Fe oxides are the most important sink for Sb. Our modelling of Sb next-nearest neighbours suggests two types of inner-sphere complexes on the surfaces of Fe oxides. These are edge- and corner-sharing adsorption complexes. Hence, the predominant sink of Sb in the weathering crust of the bullets at the selected shooting ranges is Fe oxides, amorphous or crystalline

  14. MODELING OF MOVING DEFORMABLE CONTINENTS BY ACTIVE TRACERS: CLOSING AND OPENING OF OCEANS, RECIRCULATION OF OCEANIC CRUST

    Directory of Open Access Journals (Sweden)

    A. V. Bobrov

    2018-01-01

    Full Text Available The evolution of the ‘mantle – moving deformable continents’ system has been studied by numerical experiments. The continents move self-consistently with the mantle flows of thermo-compositional convection. Our model (two-dimensional mantle convection, non-Newtonian rheology, the presence of deformable continents demonstrates the main features of global geodynamics: convergence and divergence of continents; appearance and disappearance of subduction zones; backrolling of subduction zones; restructuring of mantle flows; stretching, breakup and divergence of continents; opening and closing of oceans; oceanic crust recirculation in the mantle, and overriding of hot mantle plumes by continents. In our study, the continental crust is modeled by active markers which transfer additional viscosity and buoyancy, while the continental lithosphere is marked only by increased viscosity with neutral buoyancy. The oceanic crust, in its turn, is modeled by active markers that have only an additional buoyancy. The principal result of our modeling is a consistency between the numerical calculations and the bimodal dynamics of the real Earth: the oceanic crust, despite its positive buoyancy near the surface, submerges in subduction zones and sinks deep into the mantle. (Some part of the oceanic crust remains attached to the continental margins for a long time. In contrast to the oceanic crust, the continental crust does not sink in subduction zones. The continental lithosphere, despite its neutral buoyancy, also remains on the surface due to its viscosity and coupling with the continental crust. It should be noted that when a continent overrides a subduction zone, the subduction zone disappears, and the flows in the mantle are locally reorganized. The effect of basalt-eclogite transition in the oceanic crust on the mantle flow pattern and on the motion of continents has been studied. Our numerical experiments show that the inclusion of this effect in the

  15. Effects of Altered Temperature & Precipitation on Soil Bacterial & Microfaunal Communities as Mediated by Biological Soil Crusts

    Energy Technology Data Exchange (ETDEWEB)

    Neher, Deborah A. [University of Vermont

    2004-08-31

    With increased temperatures in our original pot study we observed a decline in lichen/moss crust cover and with that a decline in carbon and nitrogen fixation, and thus a probable decline of C and N input into crusts and soils. Soil bacteria and fauna were affected negatively by increased temperature in both light and dark crusts, and with movement from cool to hot and hot to hotter desert climates. Crust microbial biomass and relative abundance of diazotrophs was reduced greatly after one year, even in pots that were not moved from their original location, although no change in diazotroph community structure was observed. Populations of soil fauna moved from cool to hot deserts were affected more negatively than those moved from hot to hotter deserts.

  16. Holifield Heavy-Ion Research Facility at Oak Ridge

    International Nuclear Information System (INIS)

    Jones, C.M.

    1977-01-01

    A new heavy-ion accelerator facility is now under construction at the Oak Ridge National Laboratory. A brief description of the scope and schedule of this project is given, and the new large tandem accelerator, which will be a major element of the facility is discussed in some detail. Several studies which have been made or are in progress in Oak Ridge in preparation for operation of the tandem accelerator are briefly described

  17. Mid Ocean Ridge Processes at Very Low Melt Supply : Submersible Exploration of Smooth Ultramafic Seafloor at the Southwest Indian Ridge, 64 degree E

    Science.gov (United States)

    Cannat, M.; Agrinier, P.; Bickert, M.; Brunelli, D.; Hamelin, C.; Lecoeuvre, A.; Lie Onstad, S.; Maia, M.; Prampolini, M.; Rouméjon, S.; Vitale Brovarone, A.; Besançon, S.; Assaoui, E. M.

    2017-12-01

    Mid-ocean ridges are the Earth's most extensive and active volcanic chains. They are also, particularly at slow spreading rates, rift zones, where plate divergence is in part accommodated by faults. Large offset normal faults, also called detachments, are characteristic of slow-spreading ridges, where they account for the widespread emplacement of mantle-derived rocks at the seafloor. In most cases, these detachments occur together with ridge magmatism, with melt injection and faulting interacting to shape the newly formed oceanic lithosphere. Here, we seek to better understand these interactions and their effects on oceanic accretion by studying the end-member case of a ridge where magmatism is locally almost absent. The portion of the Southwest Indian ridge we are studying has an overal low melt supply, focused to discrete axial volcanoes, leaving almost zero melt to intervening sections of the axial valley. One of these nearly amagmatic section of the ridge, located at 64°E, has been the focus of several past cruises (sampling, mapping and seismic experiments). Here we report on the most recent cruise to the area (RV Pourquoi Pas? with ROV Victor; dec-jan 2017), during which we performed high resolution mapping, submersible exploration and sampling of the ultramafic seafloor and of sparse volcanic formations. Our findings are consistent with the flip-flop detachment hypothesis proposed for this area by Sauter et al. (Nature Geosciences, 2013; ultramafic seafloor forming in the footwall of successive detachment faults, each cutting into the footwall of the previous fault, with an opposite polarity). Our observations also document the extent and geometry of deformation in the footwall of a young axial detachment, the role of mass-wasting for the evolution of this detachment, and provide spectacular evidence for serpentinization-related hydrothermal circulation and for spatial links between faults and volcanic eruptions.

  18. Mid-Ocean Ridge Melt Supply and Glacial Cycles: A 3D EPR Study of Crustal Thickness, Layer 2A, and Bathymetry

    Science.gov (United States)

    Boulahanis, B.; Aghaei, O.; Carbotte, S. M.; Huybers, P. J.; Langmuir, C. H.; Nedimovic, M. R.; Carton, H. D.; Canales, J. P.

    2017-12-01

    Recent studies suggest that eustatic sea level fluctuations induced by glacial cycles in the Pleistocene may influence mantle-melting and volcanic eruptions at mid-ocean ridges (MOR), with models predicting variation in oceanic crustal thickness linked to sea level change. Previous analyses of seafloor bathymetry as a proxy for crustal thickness show significant spectral energy at frequencies linked to Milankovitch cycles of 1/23, 1/41, and 1/100 ky-1, however the effects of faulting in seafloor relief and its spectral characteristics are difficult to separate from climatic signals. Here we investigate the hypothesis of climate driven periodicity in MOR magmatism through spectral analysis, time series comparisons, and statistical characterization of bathymetry data, seismic layer 2A thickness (as a proxy for extrusive volcanism), and seafloor-to-Moho thickness (as a proxy for total magma production). We utilize information from a three-dimensional multichannel seismic study of the East Pacific Rise and its flanks from 9°36`N to 9°57`N. We compare these datasets to the paleoclimate "LR04" benthic δ18O stack. The seismic dataset covers 770 km2 and provides resolution of Moho for 92% of the imaged region. This is the only existing high-resolution 3-D image across oceanic crust, making it ideal for assessing the possibility that glacial cycles modulate magma supply at fast spreading MORs. The layer 2A grid extends 9 km (170 ky) from the ridge axis, while Moho imaging extends to a maximum of 16 km (310 ky). Initial results from the East Pacific Rise show a relationship between sea level and both crustal thickness and sea floor depth, consistent with the hypothesis that magma supply to MORs may be modulated by glacial cycles. Analysis of crustal thickness and bathymetry data reveals spectral peaks at Milankovitch frequencies of 1/100 ky-1 and 1/41 ky-1 where datasets extend sufficiently far from the ridge. The layer 2A grid does not extend sufficiently far from the

  19. The distribution of uranium in some Pacific manganese nodules and crusts

    International Nuclear Information System (INIS)

    Kunzendorf, H.; Glasby, G.P.; Plueger, W.L.; Friedrich, G.H.

    1982-01-01

    A total of 1386 bulk samples of manganese nodules from several areas of the North and South Pacific were analysed for uranium; variations in the U contents of nodules within individual nodules and crusts have been documented on a local scale and on a regional scale. Uranium appears to be one of those elements not associated with the biogenic cycling of elements into nodules in the equatorial high-productivity zone. The principal factor controlling these variations appears to be the clear association of U with Fe in the nodules. Uranium is therefore most probably coprecipitated with Fe from seawater in an iron-rich ferromanganese oxide phase. This explains the higher U contents of nodules containing MnO 2 compared to 10A manganite as the principal manganese oxide phase. Data for a manganese crust from the equatorial North Pacific nodule belt suggest normal seawater deposition for uranium and other metals (Mn, Fe, Ni and Cu) superimposed on possibly basalt alteration as the principal growth mechanisms for the crust. (Auth.)

  20. Inhibition of methane oxidation in slurry surface crust by inorganic nitrogen

    DEFF Research Database (Denmark)

    Duan, Yun-Feng; Elsgaard, Lars; Petersen, Søren O

    2013-01-01

    Livestock slurry is an important source of methane (CH4). Depending on dry matter content, a floating crust may form where methane-oxidizing bacteria (MOB) and CH4 oxidation activity have been found, suggesting that surface crusts may reduce CH4 emissions from slurry. However, it is not known how...... MOB in this environment interact with inorganic nitrogen (N). We studied inhibitory effects of ammonium (NH4+), nitrate (NO3–) and nitrite (NO2–) on potential CH4 oxidation in a cattle slurry surface crust. Methane oxidation was assayed at salt concentrations up to 500 mM at 100 and 10,000 ppmv...... headspace CH4. First-order rate constants were used to evaluate the strength of inhibition. Nitrite was the most potent inhibitor, reducing methanotrophic activity by up to 70% at only 1 mM NO2–. MOB were least sensitive to NO3–, tolerating up to 30 mM NO3– at 100 ppmv CH4 and 50 mM NO3– at 10,000 ppmv CH4...