WorldWideScience

Sample records for richard feynman nobel

  1. Professor Richard Feynman colloquium

    CERN Multimedia

    1965-01-01

    Richard P. Feynman received the Nobel Prize for physics in 1965. Following the ceremony in Stockholm, Feynman gave the colloquium "Development of the space-time view of quantum electrodynamics" at CERN on 17th December.

  2. Richard Feynman a life in science

    CERN Document Server

    Gribbin, John

    1998-01-01

    This text is a portrayal of one of the greatest scientists of the late 20th-century, which also provides a picture of the significant physics of the period. It combines personal anecdotes, writings and recollections with narrative. Richard Feynman's career included: war-time work on the atomic bomb at Los Alamos; a theory of quantum mechanics for which he won the Nobel prize; and major contributions to the sciences of gravity, nuclear physics and particle theory. In 1986, he was able to show that the Challenger disaster was due to the effect of cold on the booster rocket rubber sealings.

  3. Richard Phillips Feynman

    Indian Academy of Sciences (India)

    ARTICLE-IN-A-BOX. 797. RESONANCE │ September 2011. The war years interrupted the efforts of both Feynman and Schwinger to tackle the divergence problems in quantum electrodynamics, another of Dirac's pioneering creations from 1927. In 1965 the Physics Nobel Prize was shared by the two of them and Sin-Ichiro ...

  4. Richard Feynman Quarks, Bombs, and Bongos

    CERN Document Server

    Henderson, Harry

    2010-01-01

    Described by his peers as the "finest physicist of his generation," Richard Feynman defied scientist stereotypes. This brash New York-born American physicist startled the more conservative giants of European physics with his endless ability to improvise. Indeed, later in life, Feynman became an accomplished bongo player. Feynman's legacy to physics was his ability to simplify complex equations and clarify fundamental principles through the use of graphs. He developed the theory of quantum electrodynamics, which illustrates the behavior of electrically charged particles, such as elect

  5. Quantum Man: Richard Feynman's Life in Science

    CERN Document Server

    CERN. Geneva

    2011-01-01

    It took a man who was willing to break all the rules to tame a theory that breaks all the rules. This talk will be based on my new book Quantum Man: Richard Feynman's life in science. I will try and present a scientific overview of the contributions of Richard Feynman, as seen through the arc of his fascinating life. From Quantum Mechanics to Antiparticles, from Rio de Janeiro to Los Alamos, a whirlwind tour will provide insights into the character, life and accomplishments of one of the 20th centuries most important scientists, and provide an object lesson in scientific integrity.

  6. To Have Been a Student of Richard Feynman

    Indian Academy of Sciences (India)

    Excerpt from Most of the Good Stuff: Memories of Richard Feynman, 1993, ... of Feynman, but while it inspired us to try for originality after we left Cornell, it also lowered our productivity to a point that at times was dangerous to our academic careers. In truth .... (However, my actual thesis topic turned out to be a different one.).

  7. Richard Phillips Feynman

    Indian Academy of Sciences (India)

    While the two relativity theories were largely the creation of Albert Einstein, the quantum ... of what may lie in store for anyone who dares to follow the beat of a different drum. ... saw Feynman's exceptional talents and in a special lecture explained to him the beautiful principle ... The Character of Physical Law – 1965. c).

  8. Feynman Lectures on Computation

    CERN Document Server

    Feynman, Richard Phillips; Allen, Robin W

    1999-01-01

    "When, in 1984-86, Richard P. Feynman gave his famous course on computation at the California Institute of Technology, he asked Tony Hey to adapt his lecture notes into a book. Although led by Feynman,"

  9. Le cours de physique de Feynman

    CERN Document Server

    Feynman, Richard; Sands, Matthew

    L’ampleur du succès qu’a rencontré le « Cours de physique de Feynman » dès sa parution s’explique par son caractère fondamentalement novateur. Richard Feynman, qui fut professeur d’université dès l’âge de vingt-quatre ans, a exprimé dans ce cours, avant d’obtenir le prix Nobel de Physique, une vision expérimentale et extrêmement personnelle de l’enseignement de la physique. Cette vision a, depuis, remporté l’adhésion des physiciens du monde entier, faisant de cet ouvrage un grand classique. Ce cours en cinq volumes (Électromagnétisme 1 et 2, Mécanique 1 et 2, Mécanique quantique) s’adresse aux étudiants de tous niveaux qui y trouveront aussi bien les notions de base débarrassées de tout appareil mathématique inutile, que les avancées les plus modernes de cette science passionnante qu’est la physique. Cette nouvelle édition corrigée bénéficie d’une mise en page plus aérée pour un meilleur confort de lecture.

  10. Quantum mechanics in the cold war; Quantenmechanik im Kalten Krieg. David Bohm und Richard Feynman

    Energy Technology Data Exchange (ETDEWEB)

    Forstner, C.

    2007-07-01

    In the middle of the 20th century David Bohm and Richard Feynman developed two fundamentally different approaches of modern quantum mechanics: Bohm a realistic interpretation by means of hidden parameters and Feynman the path-integral formalism. This is by this more remarakable, because both physicists started from similar conditions and originated from similar connections. By its comparing approach this study presents more than a contribution to the history of the quantum theory. By the question for the social and cultural conditions of the formation of theories it is furthermore of science-sociological and science-theoretical interest. The in the beginning similar and later different binding of both scientists into the scientific community allows furthermore to study, which adapting pressure each group puts on the individual scientist and the fundamental parts of his research, and which new degrees of freedom in the formation of theories arise, when this constraint is cancelled.

  11. QED the strange theory of light and matter

    CERN Document Server

    Feynman, Richard Phillips

    2006-01-01

    Celebrated for his brilliantly quirky insights into the physical world, Nobel laureate Richard Feynman also possessed an extraordinary talent for explaining difficult concepts to the general public. Here Feynman provides a classic and definitive introduction to QED (namely quantum electrodynamics), that part of quantum field theory describing the interactions of light with charged particles. Using everyday language, spatial concepts, visualizations, and his renowned ""Feynman diagrams"" instead of advanced mathematics, Feynman clearly and humorously communicates both the substance and spiri

  12. Physicists bag Chemistry Nobel for microscopy method

    Science.gov (United States)

    Johnston, Hamish

    2017-11-01

    The 2017 Nobel Prize for Chemistry has been given to Jacques Dubochet, Joachim Frank and Richard Henderson “for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution”.

  13. 1990 Nobel Prize for the 'discovery' of quarks

    International Nuclear Information System (INIS)

    Taylor, G.N.

    1991-01-01

    The 1990 Nobel Prize in Physics has been awarded to Jerome I. Friedman, Henry W. Kendall and Richard E. Taylor for pioneering investigations of deep inelastic electron scattering off protons and neutrons, which played a crucial role in the development of quark model in particle physics. This paper is an attempt to present some background to the 1990 Nobel Prize and outlines the consequences of the experiments cited

  14. Elementary particles and the laws of physics: The 1986 Dirac Memorial Lectures

    International Nuclear Information System (INIS)

    Feynman, R.P.; Weinberg, S.

    1987-01-01

    Elementary Particles and the Laws of Physics contains transcriptions of the two lectures given in Cambridge, England, in 1986 by Nobel Laureates Richard P. Feynman and Steven Weinberg to commemorate the famous British physicist Paul Dirac. The talks focus on the fundamental problems of physics and the present state of our knowledge. Professor Feynman discusses how the laws of physics require the existence of antiparticles; Professor Weinberg examines the development of the fundamental laws of elementary particle intersection

  15. Coupled oscillators and Feynman's three papers

    International Nuclear Information System (INIS)

    Kim, Y S

    2007-01-01

    According to Richard Feynman, the adventure of our science of physics is a perpetual attempt to recognize that the different aspects of nature are really different aspects of the same thing. It is therefore interesting to combine some, if not all, of Feynman's papers into one. The first of his three papers is on the 'rest of the universe' contained in his 1972 book on statistical mechanics. The second idea is Feynman's parton picture which he presented in 1969 at the Stony Brook conference on high-energy physics. The third idea is contained in the 1971 paper he published with his students, where they show that the hadronic spectra on Regge trajectories are manifestations of harmonic-oscillator degeneracies. In this report, we formulate these three ideas using the mathematics of two coupled oscillators. It is shown that the idea of entanglement is contained in his rest of the universe, and can be extended to a space-time entanglement. It is shown also that his parton model and the static quark model can be combined into one Lorentz-covariant entity. Furthermore, Einstein's special relativity, based on the Lorentz group, can also be formulated within the mathematical framework of two coupled oscillators

  16. Feynman Lectures on Gravitation

    International Nuclear Information System (INIS)

    Borcherds, P

    2003-01-01

    years ago, and since then there have been many discoveries: black holes and the cosmic microwave background have been observed. There have also been theoretical developments. Unless you are a category 1 reader, you will find there are substantial passages you will need to skip over. There are also substantial sections throughout the book accessible to all, such as the following excerpt from lecture 13 (there are 16 lectures) in a section entitled 'Disappearing galaxies and energy conservation'. 'Let me also say something that people who worry about mathematical proofs and inconsistencies seem not to know. There is no way of showing mathematically that a physical conclusion is wrong or inconsistent. All that can be shown is that the mathematical assumptions are wrong. If we find that certain mathematical assumptions lead to a logically inconsistent description of Nature, we change the assumptions, not nature.' If you admire Feynman, then you are likely to enjoy this book. If you want an introduction to gravitation and relativity, there are other more recent and accessible books, but Feynman's insight may help your understanding. Think about buying it for yourself, but make sure there is a copy in your library. (book review: Feynman, Richard P; Morinigo, Fernando B; Wagner, William G - ISBN 0-813-34038-1)

  17. Drawing theories apart the dispersion of Feynman diagrams in postwar physics

    CERN Document Server

    Kaiser, David

    2005-01-01

    Winner of the 2007 Pfizer Prize from the History of Science Society. Feynman diagrams have revolutionized nearly every aspect of theoretical physics since the middle of the twentieth century. Introduced by the American physicist Richard Feynman (1918-88) soon after World War II as a means of simplifying lengthy calculations in quantum electrodynamics, they soon gained adherents in many branches of the discipline. Yet as new physicists adopted the tiny line drawings, they also adapted the diagrams and introduced their own interpretations. Drawing Theories Apart traces how generations of young theorists learned to frame their research in terms of the diagrams—and how both the diagrams and their users were molded in the process.Drawing on rich archival materials, interviews, and more than five hundred scientific articles from the period, Drawing Theories Apart uses the Feynman diagrams as a means to explore the development of American postwar physics. By focusing on the ways young physicists learned new calcul...

  18. Departure from the world formula. The new invention of physics

    International Nuclear Information System (INIS)

    Laughlin, Robert B.

    2009-01-01

    Robert B. Laughlin, the most brilliant physicist since Richard Feynman, explains the new theory of emergence: Why all, what we know about physics, must be newly thought and why the greatest physical mysteries ly not at the end of the univers, but in an ice cube ore a salt grain. The Nobel-price carrier draws a clear picture of that, which physics will be in the future

  19. The 2017 Nobel Prize in Chemistry: cryo-EM comes of age.

    Science.gov (United States)

    Shen, Peter S

    2018-03-01

    The 2017 Nobel Prize in Chemistry was awarded to Jacques Dubochet, Joachim Frank, and Richard Henderson for "developing cryo-electron microscopy (cryo-EM) for the high-resolution structure determination of biomolecules in solution." This feature article summarizes some of the major achievements leading to the development of cryo-EM and recent technological breakthroughs that have transformed the method into a mainstream tool for structure determination.

  20. Destructive interferences results in bosons anti bunching: refining Feynman's argument

    Science.gov (United States)

    Marchewka, Avi; Granot, Er'el

    2014-09-01

    The effect of boson bunching is frequently mentioned and discussed in the literature. This effect is the manifestation of bosons tendency to "travel" in clusters. One of the core arguments for boson bunching was formulated by Feynman in his well-known lecture series and has been frequently used ever since. By comparing the scattering probabilities of two bosons and of two distinguishable particles, he concluded: "We have the result that it is twice as likely to find two identical Bose particles scattered into the same state as you would calculate assuming the particles were different" [R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics: Quantum mechanics (Addison-Wesley, 1965)]. This argument was rooted in the scientific community (see for example [C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (John Wiley & Sons, Paris, 1977); W. Pauli, Exclusion Principle and Quantum Mechanics, Nobel Lecture (1946)]), however, while this sentence is completely valid, as is proved in [C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (John Wiley & Sons, Paris, 1977)], it is not a synonym of bunching. In fact, as it is shown in this paper, wherever one of the wavefunctions has a zero, bosons can anti-bunch and fermions can bunch. It should be stressed that zeros in the wavefunctions are ubiquitous in Quantum Mechanics and therefore the effect should be common. Several scenarios are suggested to witness the effect.

  1. Vous voulez rire, monsieur Feynman !

    CERN Document Server

    Feynman, Richard P

    2000-01-01

    Richard Feynman fut un scientifique hors norme. Non seulement il contribua en profondeur à la grande aventure de la physique des particules élémentaires, depuis la fabrication de la bombe atomique pendant la guerre alors qu'il n'a pas 25 ans, jusqu'à ses diagrammes qui permettent d'y voir un peu plus clair dans les processus physiques de base. Non seulement il fut un professeur génial, n'hésitant pas à faire le clown pour garder l'attention de ses étudiants et à simplifier pour aller à l'essentiel. Mais il mena une vie excentrique - collectionneur, bouffon, impertinent, joueur de bongo, amateur de strip-tease, séducteur impénitent, déchiffreur de codes secrets et de textes mayas, explorateur en Asie centrale -, qu'il raconte ici avec l'humour du gamin des rues de New York qu'il n'a jamais cessé d'être.

  2. Feynman integral calculus

    CERN Document Server

    Smirnov, Vladimir A

    2006-01-01

    The problem of evaluating Feynman integrals over loop momenta has existed from the early days of perturbative quantum field theory. The goal of the book is to summarize those methods for evaluating Feynman integrals that have been developed over a span of more than fifty years. `Feynman Integral Calculus' characterizes the most powerful methods in a systematic way. It concentrates on the methods that have been employed recently for most sophisticated calculations and illustrates them with numerous examples, starting from very simple ones and progressing to nontrivial examples. It also shows how to choose adequate methods and combine them in a non-trivial way. This is a textbook version of the previous book (Evaluating Feynman integrals, STMP 211) of the author. Problems and solutions have been included, Appendix G has been added, more details have been presented, recent publications on evaluating Feynman integrals have been taken into account and the bibliography has been updated.

  3. Introduction to Feynman diagrams

    CERN Document Server

    Bilenky, Samoil Mikhelevich

    1974-01-01

    Introduction to Feynman Diagrams provides Feynman diagram techniques and methods for calculating quantities measured experimentally. The book discusses topics Feynman diagrams intended for experimental physicists. Topics presented include methods for calculating the matrix elements (by perturbation theory) and the basic rules for constructing Feynman diagrams; techniques for calculating cross sections and polarizations; processes in which both leptons and hadrons take part; and the electromagnetic and weak form factors of nucleons. Experimental physicists and graduate students of physics will

  4. A Staged Reading of the Play: Moving Bodies

    Science.gov (United States)

    Schwartz, Brian

    Moving Bodies is about Nobel Prize-winning physicist Richard Feynman as he explores nature, science, sex, anti-Semitism, and the world around him. This epic, comic journey portrays Feynman as an iconoclastic young man, a physicist with the Manhattan Project and confronting the mystery of the Challenger disaster. The Atomic Bomb is central to the play, but it is also very much about human loves and losses. We learn about his (Feynman's) eccentricities: his bongo playing, his penchant for picking locks, and most notably his appreciation for women. Through playwright Arthur Giron's eyes, we see how Feynman became one of the most important scientists of our time. The playwright, Arthur Giron, is the co-playwright of the recent 2015 Broadway Musical, Amazing Grace. The staged reading is performed by the Southern Rep Theatre. http://www.southernrep.com/ The play director and actors as well as a historian-scientist who knew Feynman will be available for a talk-back discussion after the play reading. Produced by Brian Schwartz, CUNY and Gregory Mack, APS. Sponsored by: The Forum on the History of Physics, The Forum on Outreach and Engaging the Public and The Forum on Physics and Society.

  5. Nano materials for Renewable Energy Storage: Synthesis, Characterization, and Applications

    International Nuclear Information System (INIS)

    Rather, S.U.; Zacharia, R.; Stephan, A.M.; Petrov, L.A.; Nair, J.R.

    2015-01-01

    Nano technology and nano scale materials have been part of human history and in use since centuries. Staining of glass windows hundreds of years ago is one of the examples where people created beautiful works without knowing that they are using nano processing. The beginning of modern era of nano technology dates back to the talk of the Nobel laureate Professor Richard Feynman in There plenty of room at the bottom. Professor Feynman hypothesized that in near future scientists would be able to control and modulate individual molecules and atoms. After a decade, Professor Norio Taniguchi introduced the magical word nano technology. However, in 1981, the introduction of scanning tunnelling microscope enabled the scientists to see the materials in nano scale that propagated the new age of nano technology.

  6. Nobels Nobels laureates photographed by Peter Badge

    CERN Document Server

    2008-01-01

    A unique photographic record of all living Nobel laureates. In this handsome coffee-table book, photographer Peter Badge captures the likeness of every living Nobel laureate in a lasting black-and-white image -- more than 300 striking portraits in all. Brief biographical sketches accompanying the large-scale photographs pay homage to each laureate's singular contribution to science, literature or world peace. Bringing readers face-to-face with Nelson Mandela, Jimmy Carter, the Dalai Lama, James Watson, Gabriel García Márquez, Toni Morrison, Rita Levi-Montalcini, Linda Buck, and Paul Samuelson among many others, NOBELS offers an intimate and compelling look at well-known honorees as well as lesser-known recipients. A fascinating word/image tableau.

  7. Combinatorial and geometric aspects of Feynman graphs and Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Bergbauer, Christoph

    2009-06-11

    The integrals associated to Feynman graphs must have been a source of frustration for particle physicists ever since. Indeed there is a delicate difference between being able to draw a Feynman graph and being able to compute the associated Feynman integral. Although perturbation theory has brought enormous breakthroughs, many physicists turned to more abstract developments in quantum field theory, looked for other ways to produce perturbational results, or left the field entirely. Nonetheless there is a significant number of physicists, computational and theoretical, who pursue the quest for concepts and algorithms to compute and understand those integrals to higher and higher orders. Their motivation is to help test the validity of the underlying physical theory. For a mathematician, Feynman graphs and their integrals provide a rich subject in their own right, independent of their computability. It was only recently though that the work of Bloch, Esnault and Kreimer has brought a growing interest of mathematicians from various disciplines to the subject. In fact it opened up a completely new direction of research: a motivic interpretation of Feynman graphs that unites their combinatorial, geometric and arithmetic aspects. This idea had been in the air for a while, based on computational results of Broadhurst and Kreimer, and on a theorem of Belkale and Brosnan related to a conjecture of Kontsevich about the generality of the underlying motives. A prerequisite for the motivic approach is a profound understanding of renormalization that was established less recently in a modern language by Connes and Kreimer. This dissertation studies the renormalization of Feynman graphs in position space using an adapted resolution of singularities, and makes two other contributions of mostly combinatorial nature to the subject. I hope this may serve as a reference for somebody who feels comfortable with the traditional position space literature and looks for a transition to the

  8. Combinatorial and geometric aspects of Feynman graphs and Feynman integrals

    International Nuclear Information System (INIS)

    Bergbauer, Christoph

    2009-01-01

    The integrals associated to Feynman graphs must have been a source of frustration for particle physicists ever since. Indeed there is a delicate difference between being able to draw a Feynman graph and being able to compute the associated Feynman integral. Although perturbation theory has brought enormous breakthroughs, many physicists turned to more abstract developments in quantum field theory, looked for other ways to produce perturbational results, or left the field entirely. Nonetheless there is a significant number of physicists, computational and theoretical, who pursue the quest for concepts and algorithms to compute and understand those integrals to higher and higher orders. Their motivation is to help test the validity of the underlying physical theory. For a mathematician, Feynman graphs and their integrals provide a rich subject in their own right, independent of their computability. It was only recently though that the work of Bloch, Esnault and Kreimer has brought a growing interest of mathematicians from various disciplines to the subject. In fact it opened up a completely new direction of research: a motivic interpretation of Feynman graphs that unites their combinatorial, geometric and arithmetic aspects. This idea had been in the air for a while, based on computational results of Broadhurst and Kreimer, and on a theorem of Belkale and Brosnan related to a conjecture of Kontsevich about the generality of the underlying motives. A prerequisite for the motivic approach is a profound understanding of renormalization that was established less recently in a modern language by Connes and Kreimer. This dissertation studies the renormalization of Feynman graphs in position space using an adapted resolution of singularities, and makes two other contributions of mostly combinatorial nature to the subject. I hope this may serve as a reference for somebody who feels comfortable with the traditional position space literature and looks for a transition to the

  9. Nobel Prize ceremony 2013

    CERN Multimedia

    2013-01-01

    On 10 December 2013 particle physics took central stage at the Nobel ceremony in Stockholm. Among the invitees were Fabiola Gianotti, former ATLAS spokesperson, Joseph Incandela, CMS Spokesperson, and CERN theorist Luis Alvarez-Gaume. They share their feelings of the memorable day with us.   Overview of the 2013 Nobel Prize Award Ceremony at the Stockholm Concert Hall. © Nobel Media AB 2013. Photo: Alex Ljungdahl. Fabiola Gianotti and Joe Incandela, at the Nobel Banquet in the Stockholm City Hall.   "It was an honour and a thrill for us to attend such a memorable Nobel prize ceremony and we are very grateful to Peter Higgs for having included us among his invited guests. The ceremony held some special moments for the LHC. In his speech prior to the award of the Nobel prize to Francois Englert and Peter Higgs by King Carl XVI Gustaf of Sweden, Lars Brink (Chair of the Physics Nobel Prize Committee) stressed the importance of the results from the LHC exper...

  10. Nobel peace speech

    Directory of Open Access Journals (Sweden)

    Joshua FRYE

    2017-07-01

    Full Text Available The Nobel Peace Prize has long been considered the premier peace prize in the world. According to Geir Lundestad, Secretary of the Nobel Committee, of the 300 some peace prizes awarded worldwide, “none is in any way as well known and as highly respected as the Nobel Peace Prize” (Lundestad, 2001. Nobel peace speech is a unique and significant international site of public discourse committed to articulating the universal grammar of peace. Spanning over 100 years of sociopolitical history on the world stage, Nobel Peace Laureates richly represent an important cross-section of domestic and international issues increasingly germane to many publics. Communication scholars’ interest in this rhetorical genre has increased in the past decade. Yet, the norm has been to analyze a single speech artifact from a prestigious or controversial winner rather than examine the collection of speeches for generic commonalities of import. In this essay, we analyze the discourse of Nobel peace speech inductively and argue that the organizing principle of the Nobel peace speech genre is the repetitive form of normative liberal principles and values that function as rhetorical topoi. These topoi include freedom and justice and appeal to the inviolable, inborn right of human beings to exercise certain political and civil liberties and the expectation of equality of protection from totalitarian and tyrannical abuses. The significance of this essay to contemporary communication theory is to expand our theoretical understanding of rhetoric’s role in the maintenance and development of an international and cross-cultural vocabulary for the grammar of peace.

  11. Feynman formulae and phase space Feynman path integrals for tau-quantization of some Lévy-Khintchine type Hamilton functions

    Energy Technology Data Exchange (ETDEWEB)

    Butko, Yana A., E-mail: yanabutko@yandex.ru, E-mail: kinderknecht@math.uni-sb.de [Bauman Moscow State Technical University, 2nd Baumanskaya street, 5, Moscow 105005, Russia and University of Saarland, Postfach 151150, D-66041 Saarbrücken (Germany); Grothaus, Martin, E-mail: grothaus@mathematik.uni-kl.de [University of Kaiserslautern, 67653 Kaiserslautern (Germany); Smolyanov, Oleg G., E-mail: Smolyanov@yandex.ru [Lomonosov Moscow State University, Vorob’evy gory 1, Moscow 119992 (Russian Federation)

    2016-02-15

    Evolution semigroups generated by pseudo-differential operators are considered. These operators are obtained by different (parameterized by a number τ) procedures of quantization from a certain class of functions (or symbols) defined on the phase space. This class contains Hamilton functions of particles with variable mass in magnetic and potential fields and more general symbols given by the Lévy-Khintchine formula. The considered semigroups are represented as limits of n-fold iterated integrals when n tends to infinity. Such representations are called Feynman formulae. Some of these representations are constructed with the help of another pseudo-differential operator, obtained by the same procedure of quantization; such representations are called Hamiltonian Feynman formulae. Some representations are based on integral operators with elementary kernels; these are called Lagrangian Feynman formulae. Langrangian Feynman formulae provide approximations of evolution semigroups, suitable for direct computations and numerical modeling of the corresponding dynamics. Hamiltonian Feynman formulae allow to represent the considered semigroups by means of Feynman path integrals. In the article, a family of phase space Feynman pseudomeasures corresponding to different procedures of quantization is introduced. The considered evolution semigroups are represented as phase space Feynman path integrals with respect to these Feynman pseudomeasures, i.e., different quantizations correspond to Feynman path integrals with the same integrand but with respect to different pseudomeasures. This answers Berezin’s problem of distinguishing a procedure of quantization on the language of Feynman path integrals. Moreover, the obtained Lagrangian Feynman formulae allow also to calculate these phase space Feynman path integrals and to connect them with some functional integrals with respect to probability measures.

  12. Feynman formulae and phase space Feynman path integrals for tau-quantization of some Lévy-Khintchine type Hamilton functions

    International Nuclear Information System (INIS)

    Butko, Yana A.; Grothaus, Martin; Smolyanov, Oleg G.

    2016-01-01

    Evolution semigroups generated by pseudo-differential operators are considered. These operators are obtained by different (parameterized by a number τ) procedures of quantization from a certain class of functions (or symbols) defined on the phase space. This class contains Hamilton functions of particles with variable mass in magnetic and potential fields and more general symbols given by the Lévy-Khintchine formula. The considered semigroups are represented as limits of n-fold iterated integrals when n tends to infinity. Such representations are called Feynman formulae. Some of these representations are constructed with the help of another pseudo-differential operator, obtained by the same procedure of quantization; such representations are called Hamiltonian Feynman formulae. Some representations are based on integral operators with elementary kernels; these are called Lagrangian Feynman formulae. Langrangian Feynman formulae provide approximations of evolution semigroups, suitable for direct computations and numerical modeling of the corresponding dynamics. Hamiltonian Feynman formulae allow to represent the considered semigroups by means of Feynman path integrals. In the article, a family of phase space Feynman pseudomeasures corresponding to different procedures of quantization is introduced. The considered evolution semigroups are represented as phase space Feynman path integrals with respect to these Feynman pseudomeasures, i.e., different quantizations correspond to Feynman path integrals with the same integrand but with respect to different pseudomeasures. This answers Berezin’s problem of distinguishing a procedure of quantization on the language of Feynman path integrals. Moreover, the obtained Lagrangian Feynman formulae allow also to calculate these phase space Feynman path integrals and to connect them with some functional integrals with respect to probability measures

  13. Detailed balance of the Feynman micromotor

    Science.gov (United States)

    Abbott, Derek; Davis, Bruce R.; Parrondo, Juan M. R.

    1999-09-01

    One existing implication of micromotors is that they can be powered by rectifying non-equilibrium thermal fluctuations or mechanical vibrations via the so-called Feynman- micromotor. An example of mechanical rectification is found in the batteryless wristwatch. The original concept was described in as early as 1912 by Smoluchowski and was later revisited in 1963 by Feynman, in the context of rectifying thermal fluctuations to obtain useful motion. It has been shown that, although rectification is impossible at equilibrium, it is possible for the Feynman-micromotor to perform work under non-equilibrium conditions. These concepts can now be realized by MEMS technology and may have exciting implications in biomedicine - where the Feynman- micromotor can be used to power a smart pill, for example. Previously, Feynman's analysis of the motor's efficiency has been shown to be flawed by Parrondo and Espanol. We now show there are further problems in Feynman's treatment of detailed balance. In order to design and understand this device correctly, the equations of detailed balance must be found. Feynman's approach was to use probabilities based on energies and we show that this is problematic. In this paper, we demonstrate corrected equations using level crossing probabilities instead. A potential application of the Feynman-micromotor is a batteryless nanopump that consists of a small MEMS chip that adheres to the skin of a patient and dispense nanoliter quantities of medication. Either mechanical or thermal rectification via a Feynman- micromotor, as the power source, is open for possible investigation.

  14. Feynman integrals and hyperlogarithms

    Energy Technology Data Exchange (ETDEWEB)

    Panzer, Erik

    2015-02-05

    We study Feynman integrals in the representation with Schwinger parameters and derive recursive integral formulas for massless 3- and 4-point functions. Properties of analytic (including dimensional) regularization are summarized and we prove that in the Euclidean region, each Feynman integral can be written as a linear combination of convergent Feynman integrals. This means that one can choose a basis of convergent master integrals and need not evaluate any divergent Feynman graph directly. Secondly we give a self-contained account of hyperlogarithms and explain in detail the algorithms needed for their application to the evaluation of multivariate integrals. We define a new method to track singularities of such integrals and present a computer program that implements the integration method. As our main result, we prove the existence of infinite families of massless 3- and 4-point graphs (including the ladder box graphs with arbitrary loop number and their minors) whose Feynman integrals can be expressed in terms of multiple polylogarithms, to all orders in the ε-expansion. These integrals can be computed effectively with the presented program. We include interesting examples of explicit results for Feynman integrals with up to 6 loops. In particular we present the first exactly computed counterterm in massless φ{sup 4} theory which is not a multiple zeta value, but a linear combination of multiple polylogarithms at primitive sixth roots of unity (and divided by the √(3)). To this end we derive a parity result on the reducibility of the real- and imaginary parts of such numbers into products and terms of lower depth.

  15. Feynman integrals and hyperlogarithms

    International Nuclear Information System (INIS)

    Panzer, Erik

    2015-01-01

    We study Feynman integrals in the representation with Schwinger parameters and derive recursive integral formulas for massless 3- and 4-point functions. Properties of analytic (including dimensional) regularization are summarized and we prove that in the Euclidean region, each Feynman integral can be written as a linear combination of convergent Feynman integrals. This means that one can choose a basis of convergent master integrals and need not evaluate any divergent Feynman graph directly. Secondly we give a self-contained account of hyperlogarithms and explain in detail the algorithms needed for their application to the evaluation of multivariate integrals. We define a new method to track singularities of such integrals and present a computer program that implements the integration method. As our main result, we prove the existence of infinite families of massless 3- and 4-point graphs (including the ladder box graphs with arbitrary loop number and their minors) whose Feynman integrals can be expressed in terms of multiple polylogarithms, to all orders in the ε-expansion. These integrals can be computed effectively with the presented program. We include interesting examples of explicit results for Feynman integrals with up to 6 loops. In particular we present the first exactly computed counterterm in massless φ 4 theory which is not a multiple zeta value, but a linear combination of multiple polylogarithms at primitive sixth roots of unity (and divided by the √(3)). To this end we derive a parity result on the reducibility of the real- and imaginary parts of such numbers into products and terms of lower depth.

  16. Baikov-Lee representations of cut Feynman integrals

    International Nuclear Information System (INIS)

    Harley, Mark; Moriello, Francesco; Schabinger, Robert M.

    2017-01-01

    We develop a general framework for the evaluation of d-dimensional cut Feynman integrals based on the Baikov-Lee representation of purely-virtual Feynman integrals. We implement the generalized Cutkosky cutting rule using Cauchy’s residue theorem and identify a set of constraints which determine the integration domain. The method applies equally well to Feynman integrals with a unitarity cut in a single kinematic channel and to maximally-cut Feynman integrals. Our cut Baikov-Lee representation reproduces the expected relation between cuts and discontinuities in a given kinematic channel and furthermore makes the dependence on the kinematic variables manifest from the beginning. By combining the Baikov-Lee representation of maximally-cut Feynman integrals and the properties of periods of algebraic curves, we are able to obtain complete solution sets for the homogeneous differential equations satisfied by Feynman integrals which go beyond multiple polylogarithms. We apply our formalism to the direct evaluation of a number of interesting cut Feynman integrals.

  17. Feynman diagrams without Feynman parameters

    International Nuclear Information System (INIS)

    Mendels, E.

    1978-01-01

    Dimensionally regularized Feynman diagrams are represented by means of products of k-functions. The infinite part of these diagrams is found very easily, also if they are overlapping, and the separation of the several kinds of divergences comes out quite naturally. Ward identities are proven in a transparent way. Series expansions in terms of the external momenta and their inner products are possible

  18. Alfred Bernhard Nobel

    Indian Academy of Sciences (India)

    IAS Admin

    There are few inventors who could be placed in the same class as. Alfred Nobel. .... Along with the production, the safety concerns were also growing. Nobel continued ... Until World War I most of the world demand for kieselguhr was met by the mines in ... He started expanding the manufacturing activity to other countries by ...

  19. Nobel Prize in Physiology or Medicine

    Science.gov (United States)

    ... Educational - Medicine Prize Related The Nobel Prize in Physiology or Medicine has been awarded to people and ... this page MLA style: "The Nobel Prize in Physiology or Medicine – Educational". Nobelprize.org. Nobel Media ...

  20. The Nobel Legacy: A Journey through Chemistry Inspired by the Achievements of Nobel Laureates.

    Science.gov (United States)

    Novara, Francesca Rita; Ross, Haymo

    2018-03-15

    The Prize is right! Chemistry-A European Journal will start an exciting journey exploring the significance of Nobel Prize awards in Chemistry in the corresponding contemporary chemistry fields. In this new journal feature called "The Nobel Legacy", a recurring series of invited Review-type articles each one connected to a particular Nobel Prize in Chemistry will be published. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. FeynRules - Feynman rules made easy

    OpenAIRE

    Christensen, Neil D.; Duhr, Claude

    2008-01-01

    In this paper we present FeynRules, a new Mathematica package that facilitates the implementation of new particle physics models. After the user implements the basic model information (e.g. particle content, parameters and Lagrangian), FeynRules derives the Feynman rules and stores them in a generic form suitable for translation to any Feynman diagram calculation program. The model can then be translated to the format specific to a particular Feynman diagram calculator via F...

  2. Nobel Prizes: Contributions to Cardiology

    International Nuclear Information System (INIS)

    Mesquita, Evandro Tinoco; Marchese, Luana de Decco; Dias, Danielle Warol; Barbeito, Andressa Brasil; Gomes, Jonathan Costa; Muradas, Maria Clara Soares; Lanzieri, Pedro Gemal; Gismondi, Ronaldo Altenburg

    2015-01-01

    The Nobel Prize was created by Alfred Nobel. The first prize was awarded in 1901 and Emil Adolf von Behring was the first laureate in medicine due to his research in diphtheria serum. Regarding cardiology, Nobel Prize’s history permits a global comprehension of progress in pathophysiology, diagnosis and therapeutics of various cardiac diseases in last 120 years. The objective of this study was to review the major scientific discoveries contemplated by Nobel Prizes that contributed to cardiology. In addition, we also hypothesized why Carlos Chagas, one of our most important scientists, did not win the prize in two occasions. We carried out a non-systematic review of Nobel Prize winners, selecting the main studies relevant to heart diseaseamong the laureates. In the period between 1901 and 2013, 204 researches and 104 prizes were awarded in Nobel Prize, of which 16 (15%) studies were important for cardiovascular area. There were 33 (16%) laureates, and two (6%) were women. Fourteen (42%) were American, 15 (45%) Europeans and four (13%) were from other countries. There was only one winner born in Brazil, Peter Medawar, whose career was all in England. Reviewing the history of the Nobel Prize in physiology or medicine area made possible to identify which researchers and studies had contributed to advances in the diagnosis, prevention and treatment of cardiovascular diseases. Most winners were North Americans and Europeans, and male

  3. Nobel Prizes: Contributions to Cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Evandro Tinoco; Marchese, Luana de Decco; Dias, Danielle Warol; Barbeito, Andressa Brasil; Gomes, Jonathan Costa; Muradas, Maria Clara Soares; Lanzieri, Pedro Gemal; Gismondi, Ronaldo Altenburg, E-mail: ronaldo@floralia.com.br [Universidade Federal Fluminense, Niterói, RJ (Brazil)

    2015-08-15

    The Nobel Prize was created by Alfred Nobel. The first prize was awarded in 1901 and Emil Adolf von Behring was the first laureate in medicine due to his research in diphtheria serum. Regarding cardiology, Nobel Prize’s history permits a global comprehension of progress in pathophysiology, diagnosis and therapeutics of various cardiac diseases in last 120 years. The objective of this study was to review the major scientific discoveries contemplated by Nobel Prizes that contributed to cardiology. In addition, we also hypothesized why Carlos Chagas, one of our most important scientists, did not win the prize in two occasions. We carried out a non-systematic review of Nobel Prize winners, selecting the main studies relevant to heart diseaseamong the laureates. In the period between 1901 and 2013, 204 researches and 104 prizes were awarded in Nobel Prize, of which 16 (15%) studies were important for cardiovascular area. There were 33 (16%) laureates, and two (6%) were women. Fourteen (42%) were American, 15 (45%) Europeans and four (13%) were from other countries. There was only one winner born in Brazil, Peter Medawar, whose career was all in England. Reviewing the history of the Nobel Prize in physiology or medicine area made possible to identify which researchers and studies had contributed to advances in the diagnosis, prevention and treatment of cardiovascular diseases. Most winners were North Americans and Europeans, and male.

  4. Analytic Tools for Feynman Integrals

    CERN Document Server

    Smirnov, Vladimir A

    2012-01-01

    The goal of this book is to describe the most powerful methods for evaluating multiloop Feynman integrals that are currently used in practice.  This book supersedes the author’s previous Springer book “Evaluating Feynman Integrals” and its textbook version “Feynman Integral Calculus.” Since the publication of these two books, powerful new methods have arisen and conventional methods have been improved on in essential ways. A further qualitative change is the fact that most of the methods and the corresponding algorithms have now been implemented in computer codes which are often public. In comparison to the two previous books, three new chapters have been added:  One is on sector decomposition, while the second describes a new method by Lee. The third new chapter concerns the asymptotic expansions of Feynman integrals in momenta and masses, which were described in detail in another Springer book, “Applied Asymptotic Expansions in Momenta and Masses,” by the author. This chapter describes, on t...

  5. Feynman integral calculus

    International Nuclear Information System (INIS)

    Smirnov, V.A.

    2006-01-01

    The goal of the book is to summarize those methods for evaluating Feynman integrals that have been developed over a span of more than fifty years. The book characterizes the most powerful methods and illustrates them with numerous examples starting from very simple ones and progressing to nontrivial examples. The book demonstrates how to choose adequate methods and combine evaluation methods in a non-trivial way. The most powerful methods are characterized and then illustrated through numerous examples. This is an updated textbook version of the previous book (Evaluating Feynman integrals, STMP 211) of the author. (orig.)

  6. Feynman integral calculus

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, V.A. [Lomonosov Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics

    2006-07-01

    The goal of the book is to summarize those methods for evaluating Feynman integrals that have been developed over a span of more than fifty years. The book characterizes the most powerful methods and illustrates them with numerous examples starting from very simple ones and progressing to nontrivial examples. The book demonstrates how to choose adequate methods and combine evaluation methods in a non-trivial way. The most powerful methods are characterized and then illustrated through numerous examples. This is an updated textbook version of the previous book (Evaluating Feynman integrals, STMP 211) of the author. (orig.)

  7. A note on relativistic Feynman-type integrals

    International Nuclear Information System (INIS)

    Namsrai, Kh.

    1979-01-01

    An attempt is made to generalize the definition of Feynman path integral to the relativistic case within the framework of the Kershaw stochastic model. The Smoluchowski type equations are used which allow one to obtain easily the Schrodinger, Klein-Gordon and Dirac equations. The interaction is introduced by using Weyl's gaude theory. In the model developed the Feynman process may formally by interpreted as a stochastic diffusion process in complex times with a real probability measure which occurs in the Euclidean space. Feynman path integrals themselves are not obtained in the model, nonetheless it represents an interest as one of possibilities of the relativistic generalization of Feynman type integrals

  8. Analytic tools for Feynman integrals

    International Nuclear Information System (INIS)

    Smirnov, Vladimir A.

    2012-01-01

    Most powerful methods of evaluating Feynman integrals are presented. Reader will be able to apply them in practice. Contains numerous examples. The goal of this book is to describe the most powerful methods for evaluating multiloop Feynman integrals that are currently used in practice. This book supersedes the author's previous Springer book ''Evaluating Feynman Integrals'' and its textbook version ''Feynman Integral Calculus.'' Since the publication of these two books, powerful new methods have arisen and conventional methods have been improved on in essential ways. A further qualitative change is the fact that most of the methods and the corresponding algorithms have now been implemented in computer codes which are often public. In comparison to the two previous books, three new chapters have been added: One is on sector decomposition, while the second describes a new method by Lee. The third new chapter concerns the asymptotic expansions of Feynman integrals in momenta and masses, which were described in detail in another Springer book, ''Applied Asymptotic Expansions in Momenta and Masses,'' by the author. This chapter describes, on the basis of papers that appeared after the publication of said book, how to algorithmically discover the regions relevant to a given limit within the strategy of expansion by regions. In addition, the chapters on the method of Mellin-Barnes representation and on the method of integration by parts have been substantially rewritten, with an emphasis on the corresponding algorithms and computer codes.

  9. Mathematical aspects of Feynman integrals

    International Nuclear Information System (INIS)

    Bogner, Christian

    2009-08-01

    In the present dissertation we consider Feynman integrals in the framework of dimensional regularization. As all such integrals can be expressed in terms of scalar integrals, we focus on this latter kind of integrals in their Feynman parametric representation and study their mathematical properties, partially applying graph theory, algebraic geometry and number theory. The three main topics are the graph theoretic properties of the Symanzik polynomials, the termination of the sector decomposition algorithm of Binoth and Heinrich and the arithmetic nature of the Laurent coefficients of Feynman integrals. The integrand of an arbitrary dimensionally regularised, scalar Feynman integral can be expressed in terms of the two well-known Symanzik polynomials. We give a detailed review on the graph theoretic properties of these polynomials. Due to the matrix-tree-theorem the first of these polynomials can be constructed from the determinant of a minor of the generic Laplacian matrix of a graph. By use of a generalization of this theorem, the all-minors-matrix-tree theorem, we derive a new relation which furthermore relates the second Symanzik polynomial to the Laplacian matrix of a graph. Starting from the Feynman parametric parameterization, the sector decomposition algorithm of Binoth and Heinrich serves for the numerical evaluation of the Laurent coefficients of an arbitrary Feynman integral in the Euclidean momentum region. This widely used algorithm contains an iterated step, consisting of an appropriate decomposition of the domain of integration and the deformation of the resulting pieces. This procedure leads to a disentanglement of the overlapping singularities of the integral. By giving a counter-example we exhibit the problem, that this iterative step of the algorithm does not terminate for every possible case. We solve this problem by presenting an appropriate extension of the algorithm, which is guaranteed to terminate. This is achieved by mapping the iterative

  10. Mathematical aspects of Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Bogner, Christian

    2009-08-15

    In the present dissertation we consider Feynman integrals in the framework of dimensional regularization. As all such integrals can be expressed in terms of scalar integrals, we focus on this latter kind of integrals in their Feynman parametric representation and study their mathematical properties, partially applying graph theory, algebraic geometry and number theory. The three main topics are the graph theoretic properties of the Symanzik polynomials, the termination of the sector decomposition algorithm of Binoth and Heinrich and the arithmetic nature of the Laurent coefficients of Feynman integrals. The integrand of an arbitrary dimensionally regularised, scalar Feynman integral can be expressed in terms of the two well-known Symanzik polynomials. We give a detailed review on the graph theoretic properties of these polynomials. Due to the matrix-tree-theorem the first of these polynomials can be constructed from the determinant of a minor of the generic Laplacian matrix of a graph. By use of a generalization of this theorem, the all-minors-matrix-tree theorem, we derive a new relation which furthermore relates the second Symanzik polynomial to the Laplacian matrix of a graph. Starting from the Feynman parametric parameterization, the sector decomposition algorithm of Binoth and Heinrich serves for the numerical evaluation of the Laurent coefficients of an arbitrary Feynman integral in the Euclidean momentum region. This widely used algorithm contains an iterated step, consisting of an appropriate decomposition of the domain of integration and the deformation of the resulting pieces. This procedure leads to a disentanglement of the overlapping singularities of the integral. By giving a counter-example we exhibit the problem, that this iterative step of the algorithm does not terminate for every possible case. We solve this problem by presenting an appropriate extension of the algorithm, which is guaranteed to terminate. This is achieved by mapping the iterative

  11. Analytic tools for Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Vladimir A. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics

    2012-07-01

    Most powerful methods of evaluating Feynman integrals are presented. Reader will be able to apply them in practice. Contains numerous examples. The goal of this book is to describe the most powerful methods for evaluating multiloop Feynman integrals that are currently used in practice. This book supersedes the author's previous Springer book ''Evaluating Feynman Integrals'' and its textbook version ''Feynman Integral Calculus.'' Since the publication of these two books, powerful new methods have arisen and conventional methods have been improved on in essential ways. A further qualitative change is the fact that most of the methods and the corresponding algorithms have now been implemented in computer codes which are often public. In comparison to the two previous books, three new chapters have been added: One is on sector decomposition, while the second describes a new method by Lee. The third new chapter concerns the asymptotic expansions of Feynman integrals in momenta and masses, which were described in detail in another Springer book, ''Applied Asymptotic Expansions in Momenta and Masses,'' by the author. This chapter describes, on the basis of papers that appeared after the publication of said book, how to algorithmically discover the regions relevant to a given limit within the strategy of expansion by regions. In addition, the chapters on the method of Mellin-Barnes representation and on the method of integration by parts have been substantially rewritten, with an emphasis on the corresponding algorithms and computer codes.

  12. #FakeNobelDelayReasons

    CERN Multimedia

    2013-01-01

    Tuesday’s hour-long delay of the Nobel Prize in Physics announcement was (and still is) quite the cause for speculation. But on the Twittersphere, it was simply the catalyst for some fantastic puns, so-bad-they're-good physics jokes and other shenanigans. Here are some of our favourite #FakeNobelDelayReasons.    

  13. The image of the Nobel Prize.

    Science.gov (United States)

    Källstrand, Gustav

    2018-05-01

    This article traces the origins of the Nobel Prize as a ubiquitous symbol of excellence in science. The public image of the Nobel Prize was created and became established quickly, which can be explained by it being such a useful phenomenon for the co-production of other values and ideas such as national prestige. Through being an easily recognizable symbol for excellence, the Nobel Prize is an important factor for the public image of science. And the image of the Nobel Prize is co-produced with several other sets of values and images that range from the large and thematic to the local and specific.

  14. Analytic continuation of dual Feynman amplitudes

    International Nuclear Information System (INIS)

    Bleher, P.M.

    1981-01-01

    A notion of dual Feynman amplitude is introduced and a theorem on the existence of analytic continuation of this amplitude from the convergence domain to the whole complex is proved. The case under consideration corresponds to massless power propagators and the analytic continuation is constructed on the propagators powers. Analytic continuation poles and singular set of external impulses are found explicitly. The proof of the theorem on the existence of analytic continuation is based on the introduction of α-representation for dual Feynman amplitudes. In proving, the so-called ''trees formula'' and ''trees-with-cycles formula'' are established that are dual by formulation to the trees and 2-trees formulae for usual Feynman amplitudes. (Auth.)

  15. Vision and the Nobel Prize.

    Science.gov (United States)

    Morais, Fábio Barreto

    2018-04-01

    The Nobel Prize is the world's foremost honor for scientific advances in medicine and other areas. Founded by Alfred Nobel, the prizes have been awarded annually since 1901. We reviewed the literature on persons who have won or competed for this prize in subjects related to vision and ophthalmology. The topics were divided into vision physiology, diagnostic and therapeutic methods, disease mechanism, and miscellaneous categories. Allvar Gullstrand is the only ophthalmologist to win a Nobel Prize; he is also the only one to receive it for work in ophthalmology. Other ophthalmologists that have been nominated were Hjalmar Schiötz (tonometer), Karl Koller (topical anesthesia), and Jules Gonin (retinal detachment). Other scientists have won the prize for eye-related research: Ragnar Granit, Haldan Hartline and George Wald (chemistry and physiology of vision), and David Hubel and Torsten Wiesel (processing in the visual system). Peter Medawar is the only person born in Brazil to have won the Nobel Prize.

  16. Automated generation of lattice QCD Feynman rules

    Energy Technology Data Exchange (ETDEWEB)

    Hart, A.; Mueller, E.H. [Edinburgh Univ. (United Kingdom). SUPA School of Physics and Astronomy; von Hippel, G.M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Horgan, R.R. [Cambridge Univ. (United Kingdom). DAMTP, CMS

    2009-04-15

    The derivation of the Feynman rules for lattice perturbation theory from actions and operators is complicated, especially for highly improved actions such as HISQ. This task is, however, both important and particularly suitable for automation. We describe a suite of software to generate and evaluate Feynman rules for a wide range of lattice field theories with gluons and (relativistic and/or heavy) quarks. Our programs are capable of dealing with actions as complicated as (m)NRQCD and HISQ. Automated differentiation methods are used to calculate also the derivatives of Feynman diagrams. (orig.)

  17. Automated generation of lattice QCD Feynman rules

    International Nuclear Information System (INIS)

    Hart, A.; Mueller, E.H.; Horgan, R.R.

    2009-04-01

    The derivation of the Feynman rules for lattice perturbation theory from actions and operators is complicated, especially for highly improved actions such as HISQ. This task is, however, both important and particularly suitable for automation. We describe a suite of software to generate and evaluate Feynman rules for a wide range of lattice field theories with gluons and (relativistic and/or heavy) quarks. Our programs are capable of dealing with actions as complicated as (m)NRQCD and HISQ. Automated differentiation methods are used to calculate also the derivatives of Feynman diagrams. (orig.)

  18. [Women in natural sciences--Nobel Prize winners].

    Science.gov (United States)

    Zuskin, Eugenija; Mustajbegović, Jadranka; Lipozencić, Jasna; Kolcić, Ivana; Spoljar-Vrzina, Sanja; Polasek, Ozren

    2006-01-01

    Alfred Bernhard Nobel was the founder of the Nobel Foundation, which has been awarding world-known scientists since 1901, for their contribution to the welfare of mankind. The life and accomplishments of Alfred Bernhard Nobel are described as well as scientific achivements of 11 women, Nobel prize winners in the field of physics, chemistry, physiology and/or medicine. They are Marie Sklodowska Curie, Maria Goeppert Mayer, Irene Joliot-Curie, Dorothy Crowfoot Hodgkin, Gerty Theresa Radnitz Cori, Rosalyn Sussman Yalow, Barbara McClintock, Rita Levi-Montalcini, Gertrude Elion, Christine Nusslein-Volhard and Linda B. Buck.

  19. Feynman diagram drawing made easy

    International Nuclear Information System (INIS)

    Baillargeon, M.

    1997-01-01

    We present a drawing package optimised for Feynman diagrams. These can be constructed interactively with a mouse-driven graphical interface or from a script file, more suitable to work with a diagram generator. It provides most features encountered in Feynman diagrams and allows to modify every part of a diagram after its creation. Special attention has been paid to obtain a high quality printout as easily as possible. This package is written in Tcl/Tk and in C. (orig.)

  20. Beyond Feynman Diagrams (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    For decades the central theoretical tool for computing scattering amplitudes has been the Feynman diagram. However, Feynman diagrams are just too slow, even on fast computers, to be able to go beyond the leading order in QCD, for complicated events with many jets of hadrons in the final state. Such events are produced copiously at the LHC, and constitute formidable backgrounds to many searches for new physics. Over the past few years, alternative methods that go beyond ...

  1. A nobel house

    International Nuclear Information System (INIS)

    2006-01-01

    The Nobel Prize is awarded annually in recognition of achievements in the fields of medicine, physics, literature, and chemistry, as well as for peace. Since 1901, the best and brightest minds across the globe - 776 of them, in fact - have had the distinct privilege of being honoured by the Swedish Nobel Committee for their work and efforts in these fields. The International Atomic Energy Agency and its Director General, Mohamed ElBaradei, were awarded the 2005 Nobel Peace Prize. Although this is a tremendous achievement for the Agency, it is by no means an isolated one within the UN family. The IAEA award is the eighth time the United Nations or partner international organization has won the Peace Prize. UN Secretary-General Kofi Annan and the UN shared the 2001 prize; the UN Peacekeeping Forces were honored in 1988; the UN Children's Fund (UNICEF) in 1965; the UN High Commissioner for Refugees in 1981 and 1954; and the International Labor Organization in 1969. The late UN Secretary General Dag Hammarskjold won the prize posthumously in 1961

  2. Feynman integrals in QCD made simple

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    A key insight is that important properties of these functions can be predicted by inspecting the singularity structure of the Feynman integrand. Combined with the differential equations technique, this gives a powerful method for computing the necessary Feynman integrals. I will review these ideas, based on Phys.Rev.Lett. 110 (2013) 25, and present recent new results relevant for QCD scattering amplitudes.

  3. (U) Feynman-Y calculations using PARTISN

    Energy Technology Data Exchange (ETDEWEB)

    Favorite, Jeffrey A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-31

    A prescription for computing the Feynman Y as a function of coincidence gate width using a deterministic multigroup neutron transport code has been published and the results compared favorably with measurements of the BeRP ball. In this paper, we report on our project to implement the method and reproduce the results. There are several clarifications and corrections of the published prescription. We show results using two multigroup cross section libraries compared with measurements and with Monte Carlo results. Deterministic simulations of the mean count rates compare very favorably with previously published Monte Carlo results, and deterministic simulations of the Feynman Y asymptote compare somewhat favorably. In Feynman beta plots, the deterministic simulations reached the asymptotic value much sooner than did a fit to the measured data.

  4. The Feynman-Dyson view

    International Nuclear Information System (INIS)

    Gill, Tepper L.

    2017-01-01

    This paper is a survey of our work on the mathematical foundations for the Feynman-Dyson program in quantum electrodynamics (QED). After a brief discussion of the history, we provide a representation theory for the Feynman operator calculus. This allows us to solve the general initial-value problem and construct the Dyson series. We show that the series is asymptotic, thus proving Dyson’s second conjecture for quantum electrodynamics. In addition, we show that the expansion may be considered exact to any finite order by producing the remainder term. This implies that every nonperturbative solution has a perturbative expansion. Using a physical analysis of information from experiment versus that implied by our models, we reformulate our theory as a sum over paths. This allows us to relate our theory to Feynman’s path integral, and to prove Dyson’s first conjecture that the divergences are in part due to a violation of Heisenberg’s uncertainly relations. As a by-product, we also prove Feynman’s conjecture about the relationship between the operator calculus and has path integral. Thus, providing the first rigorous justification for the Feynman formulation of quantum mechanics. (paper)

  5. The Feynman-Dyson view

    Science.gov (United States)

    Gill, Tepper L.

    2017-05-01

    This paper is a survey of our work on the mathematical foundations for the Feynman-Dyson program in quantum electrodynamics (QED). After a brief discussion of the history, we provide a representation theory for the Feynman operator calculus. This allows us to solve the general initial-value problem and construct the Dyson series. We show that the series is asymptotic, thus proving Dyson’s second conjecture for quantum electrodynamics. In addition, we show that the expansion may be considered exact to any finite order by producing the remainder term. This implies that every nonperturbative solution has a perturbative expansion. Using a physical analysis of information from experiment versus that implied by our models, we reformulate our theory as a sum over paths. This allows us to relate our theory to Feynman’s path integral, and to prove Dyson’s first conjecture that the divergences are in part due to a violation of Heisenberg’s uncertainly relations. As a by-product, we also prove Feynman’s conjecture about the relationship between the operator calculus and has path integral. Thus, providing the first rigorous justification for the Feynman formulation of quantum mechanics.

  6. Research Capabilities

    Science.gov (United States)

    ; Sponsored Work Regional Economic Development Technology Opportunities User Facilities About Us Metrics In Search Site submit About Us Los Alamos National LaboratoryRichard P. Feynman Center for Innovation Innovation protecting tomorrow Los Alamos National Laboratory The Richard P. Feynman Center for Innovation

  7. Spin wave Feynman diagram vertex computation package

    Science.gov (United States)

    Price, Alexander; Javernick, Philip; Datta, Trinanjan

    Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.

  8. [Surgeons and Neurosurgeons as Nobel Prize Winners].

    Science.gov (United States)

    Chrastina, Jan; Jančálek, Radim; Hrabovský, Dušan; Novák, Zdeněk

    Since 1901 Nobel Prize is awarded for exceptional achievements in physics, chemistry, literature, peace, economy (since 1968) and medicine or physiology. The first aim of the paper is to provide an overview of surgeons - winners of Nobel Prize for medicine or physiology. Although the prominent neurosurgeons were frequently nominated as Nobel Prize candidates, surprisingly no neurosurgeon received this prestigious award so far despite that the results of their research transgressed the relatively narrow limits of neurosurgical speciality.The most prominent leaders in the field of neurosurgery, such as Victor Horsley, Otfrid Foerster, Walter Dandy and Harvey Cushing are discussed from the point of their nominations. The overview of the activity of the Portuguese neurologists and Nobel Prize Winter in 1949 Egas Moniz (occasionally erroneously reported as neurosurgeon) is also provided. Although his work on brain angiography has fundamentally changed the diagnostic possibilities in neurology and neurosurgery, he was eventually awarded Nobel Prize for the introduction of the currently outdated frontal lobotomy.The fact that none of the above mentioned prominent neurosurgeons has not been recognised by Nobel Prize, may be attributed to the fact that their extensive work cannot be captured in a short summary pinpointing its groundbreaking character.

  9. Nobel Connection to the Space Program

    Science.gov (United States)

    Ng, Edward W.; Nash, Rebecca

    2007-09-01

    The 2006 Nobel Prize in Physics was heralded by some in the press as the "First Nobel Prize for Space Exploration." Indeed the Nobel Foundation's announcement specifically cited the Cosmic Background Explorer (COBE) satellite launched by NASA in 1989 as the prime-enabling instrument It elaborated further, "The COBE results provided increased support for the Big Bang scenario for the origin of the Universe... These measurements also marked the inception of cosmology as a precise science." NASA also seized this unique moment of fame to honor its favorite son, the first Nobel scientist of the agency, John Mather, of the Goddard Space Flight Center, who shared the honor with Professor G. Smoot of the University of California, the Principal Investigator of the COBE measurement. It is without any dispute that the Nobel Prize is the highest scientific honor and best-known award of admiration and inspiration to the public and educational sectors. Unfortunately in the American culture, youths are mostly exposed to success icons in the sports, entertainment, and business domains. Science icons (of either gender) are largely unknown to them. We sincerely hope that success stories of Nobel scientists will become part of the learning curriculum in the K-16 educational experience. In this paper, we examine the pedigree of a number of Nobel Prizes over the years, and discuss their interactions with, and connections to, the space program. It is advantageous for the context of educational and public outreach to see such connections, because in a number of public surveys, one important customer expectation for the space program is the search for new knowledge, to which the Nobel Prize is a prominent benchmark. We have organized this paper into nine, fairly independent sections for ease of reading: I. "Michael Jordan or Mia Hamm" - Introduction and Background II. "Connecting the Dots Between the Heavens and Earth" - From Newton to Bethe III. "From Cosmic Noise to the Big Bang" - The

  10. Some recent results on evaluating Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, V.A. [Nuclear Physics Institute of Moscow State University, Moscow 119992 (Russian Federation)

    2006-07-15

    Some recent results on evaluating Feynman integrals are reviewed. The status of the method based on Mellin-Barnes representation as a powerful tool to evaluate individual Feynman integrals is characterized. A new method based on Groebner bases to solve integration by parts relations in an automatic way is described.

  11. Some recent results on evaluating Feynman integrals

    International Nuclear Information System (INIS)

    Smirnov, V.A.

    2006-01-01

    Some recent results on evaluating Feynman integrals are reviewed. The status of the method based on Mellin-Barnes representation as a powerful tool to evaluate individual Feynman integrals is characterized. A new method based on Groebner bases to solve integration by parts relations in an automatic way is described

  12. Nobel prize winners from Siemens company

    International Nuclear Information System (INIS)

    Anon

    2007-01-01

    This paper deals with the history of discoveries and scientists which worked in the Siemens company. First Nobel prize winners from Siemens company was Gustav Ludwig Hertz from Hamburg. In his doctoral dissertation he deals with the study of collisions of electrons with molecules of gases. In the physics this experiment is known as 'Franc and Hertz experiment', which confirmed state of energy in Bohr theory and in 1925 he obtained Nobel prize. In 1945, as a director of the Department of physics in the research laboratories of Siemens, he constructed cyclotron kernel - magnet with mass of 80 tonnes. The second Nobel prize winner was Dennis Gabor worked in the Laboratory for measurement and medicinal technology in Siemensstadt (Berlin). When he tried to increase the resolution of electron microscopy he discovered the holography (method of 3-dimensional imaging). In 1971 he obtained the Nobel prize. The third scientist - Ernst Ruska discovered electron microscope. At Siemens, he was involved in developing the first commercially-produced electron microscope in 1939. In 1986, Ernst Ruska was awarded half of the Nobel Prize in Physics for his many achievements in electron optics.

  13. A Feynman graph selection tool in GRACE system

    International Nuclear Information System (INIS)

    Yuasa, Fukuko; Ishikawa, Tadashi; Kaneko, Toshiaki

    2001-01-01

    We present a Feynman graph selection tool grcsel, which is an interpreter written in C language. In the framework of GRACE, it enables us to get a subset of Feynman graphs according to given conditions

  14. Numerical evaluation of tensor Feynman integrals in Euclidean kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Gluza, J.; Kajda [Silesia Univ., Katowice (Poland). Inst. of Physics; Riemann, T.; Yundin, V. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2010-10-15

    For the investigation of higher order Feynman integrals, potentially with tensor structure, it is highly desirable to have numerical methods and automated tools for dedicated, but sufficiently 'simple' numerical approaches. We elaborate two algorithms for this purpose which may be applied in the Euclidean kinematical region and in d=4-2{epsilon} dimensions. One method uses Mellin-Barnes representations for the Feynman parameter representation of multi-loop Feynman integrals with arbitrary tensor rank. Our Mathematica package AMBRE has been extended for that purpose, and together with the packages MB (M. Czakon) or MBresolve (A. V. Smirnov and V. A. Smirnov) one may perform automatically a numerical evaluation of planar tensor Feynman integrals. Alternatively, one may apply sector decomposition to planar and non-planar multi-loop {epsilon}-expanded Feynman integrals with arbitrary tensor rank. We automatized the preparations of Feynman integrals for an immediate application of the package sectordecomposition (C. Bogner and S. Weinzierl) so that one has to give only a proper definition of propagators and numerators. The efficiency of the two implementations, based on Mellin-Barnes representations and sector decompositions, is compared. The computational packages are publicly available. (orig.)

  15. Application of difference filter to Feynman-α analysis

    International Nuclear Information System (INIS)

    Mouri, Tomoaki; Ohtani, Nobuo

    1997-11-01

    The Feynman-α method has been developed for monitoring sub-criticality in nuclear fuel facilities. It is difficult to apply the Feynman-α method which estimates statistical variation of the number of neutron counts per unit time, to the system in transient condition such that the averaged neutron flux varies with time. In the application of Feynman-α method to such system, it is suggested to remove the averaged variation of neutron flux from neutron count data by the use of the difference filter. In this study, we applied the difference filter to reactor noise data at sub-criticality near to criticality, where the prompt decay constant was difficult to estimate due to the large effect of delayed neutron. With the difference filter, accurate prompt decay constants for effective multiplication factors from 0.999 to 0.994 were obtained by Feynman-α method. It was cleared that the difference filter is effective to estimate accurate prompt decay constant, so that there is the prospect to be able to apply Feynman-α method having the difference filter to the system in the transient condition. (author)

  16. Feynman diagrams coupled to three-dimensional quantum gravity

    International Nuclear Information System (INIS)

    Barrett, John W

    2006-01-01

    A framework for quantum field theory coupled to three-dimensional quantum gravity is proposed. The coupling with quantum gravity regulates the Feynman diagrams. One recovers the usual Feynman amplitudes in the limit as the cosmological constant tends to zero

  17. Nobel prizes that changed medicine

    CERN Document Server

    2012-01-01

    This book brings together in one volume fifteen Nobel Prize-winning discoveries that have had the greatest impact upon medical science and the practice of medicine during the 20th century and up to the present time. Its overall aim is to enlighten, entertain and stimulate. This is especially so for those who are involved in or contemplating a career in medical research. Anyone interested in the particulars of a specific award or Laureate can obtain detailed information on the topic by accessing the Nobel Foundation's website. In contrast, this book aims to provide a less formal and more personal view of the science and scientists involved, by having prominent academics write a chapter each about a Nobel Prize-winning discovery in their own areas of interest and expertise.

  18. Feynman maps without improper integrals

    International Nuclear Information System (INIS)

    Exner, P.; Kolerov, G.I.

    1980-01-01

    The Feynman maps introduced first by Truman are examined. The domain considered here consists of the Fresnel-inteo-rable functions in the sense of Albeverio and Hoegh-Krohn. The original definition of the F-maps is slightly modified: it is started from the underlying measures on the Hilbert space of paths in order to avoid use of improper integrals. Some new properties of the F-maps are derived. In particular, the dominated convergence theorem is shown to be not valid for the F 1 -map (or Feynman integral); this fact is of a certain importance for classical limit of quantum mechanics

  19. Factorization in QCD in Feynman gauge

    International Nuclear Information System (INIS)

    Tucci, R.R.

    1985-01-01

    We present a mass divergence power counting technique for QCD in the Feynman gauge. For the process γ/sup */ → qq, we find the leading regions of integration and show that single diagrams are at worst logarithmically divergent. Using the Weyl representation facilities the γ matrix manipulations necessary for power counting and adds much physical insight. We prove Ward type identities which are needed in the proof of factorization of the Drill Yan process. Previous treatments prove them only for an axial gauge, and the proofs are diagrammatic in nature. We, on the other hand, establish the identities for the Feynman gauge and through symmetry considerations at the Lagrangian level. The strategy is to first derive exact results in a background field gauge and then to show that to leading order in the mass divergences the background field gauge results can be used in the Feynman gauge

  20. The Nobel Connection to the Space Program

    Science.gov (United States)

    Ng, E. N.; Nash, R. L.

    2007-09-01

    The 2006 Nobel Prize in Physics was heralded by some in the press as the "First Nobel Prize for Space Exploration." Indeed the Nobel Foundation's announcement specifically cited the Cosmic Background Explorer (COBE) satellite launched by NASA in 1989 as the prime-enabling instrument It elaborated further, "The COBE results provided increased support for the Big Bang scenario for the origin of the Universe. These measurements also marked the inception of cosmology as a precise science." NASA also seized this unique moment of fame to honor its favorite son, the first Nobel scientist of the agency, John Mather, of the Goddard Space Flight Center, who shared the honor with Professor G. Smoot of the University of California, the Principal Investigator of the COBE measurement. It is without any dispute that the Nobel Prize is the highest scientific honor and best-known award of admiration and inspiration to the public and educational sectors. Unfortunately in the American culture, youths are mostly exposed to success icons in the sports, entertainment, and business domains. Science icons are largely unknown to them. We sincerely hope that success stories of Nobel scientists will become part of the learning curriculum in the K-16 educational experience. In this paper, we examine the pedigree of a number of Nobel Prizes over the years, and discuss their interactions with, and connections to, the space program. It is advantageous for the context of educational and public outreach to see such connections, because in a number of public surveys, one important customer expectation for the space program is the search for new knowledge, to which the Nobel Prize is a prominent benchmark. We have organized this lengthy paper into nine, fairly independent sections for ease of reading:1."Michael Jordan or Mia Hamm" - Introduction and Background2."Connecting the Dots Between the Heavens and Earth" - From Newton to Bethe3."From Cosmic Noise to the Big Bang" - The First Nobel

  1. Rigorous time slicing approach to Feynman path integrals

    CERN Document Server

    Fujiwara, Daisuke

    2017-01-01

    This book proves that Feynman's original definition of the path integral actually converges to the fundamental solution of the Schrödinger equation at least in the short term if the potential is differentiable sufficiently many times and its derivatives of order equal to or higher than two are bounded. The semi-classical asymptotic formula up to the second term of the fundamental solution is also proved by a method different from that of Birkhoff. A bound of the remainder term is also proved. The Feynman path integral is a method of quantization using the Lagrangian function, whereas Schrödinger's quantization uses the Hamiltonian function. These two methods are believed to be equivalent. But equivalence is not fully proved mathematically, because, compared with Schrödinger's method, there is still much to be done concerning rigorous mathematical treatment of Feynman's method. Feynman himself defined a path integral as the limit of a sequence of integrals over finite-dimensional spaces which is obtained by...

  2. LHC Nobel Symposium Proceedings

    Science.gov (United States)

    Ekelöf, Tord

    2013-12-01

    In the summer of 2012, a great discovery emerged at the Large Hadron Collider (LHC) at CERN in Geneva. A plethora of new precision data had already by then been collected by the ATLAS and CMS experiments at LHC, providing further extensive support for the validity of the Standard Model of particle physics. But what now appeared was the first evidence for what was not only the last unverified prediction of the Standard Model, but also perhaps the most decisive one: the prediction made already in 1964 of a unique scalar boson required by the theory of François Englert and Peter Higgs on how fundamental particles acquire mass. At that moment in 2012, it seemed particularly appropriate to start planning a gathering of world experts in particle physics to take stock of the situation and try to answer the challenging question: what next? By May 2013, when the LHC Nobel Symposium was held at the Krusenberg Mansion outside Uppsala in Sweden, the first signs of a great discovery had already turned into fully convincing experimental evidence for the existence of a scalar boson of mass about 125 GeV, having properties compatible with the 50-year-old prediction. And in October 2013, the evidence was deemed so convincing that the Swedish Royal Academy of Sciences awarded the Nobel Prize in Physics to Englert and Higgs for their pioneering work. At the same time the search at the LHC for other particles, beyond those predicted by the Standard Model, with heavier masses up to—and in some cases beyond—1 TeV, had provided no positive result. The triumph of the Standard Model seems resounding, in particular because the mass of the discovered scalar boson is such that, when identified with the Higgs boson, the Standard Model is able to provide predictions at energies as high as the Planck mass, although at the price of accepting that the vacuum would be metastable. However, even if there were some feelings of triumph, the ambience at the LHC Nobel Symposium was more one of

  3. Richard III

    DEFF Research Database (Denmark)

    Lauridsen, Palle Schantz

    2017-01-01

    Kort analyse af Shakespeares Richard III med fokus på, hvordan denne skurk fremstilles, så tilskuere (og læsere) langt henad vejen kan føle sympati med ham. Med paralleller til Netflix-serien "House of Cards"......Kort analyse af Shakespeares Richard III med fokus på, hvordan denne skurk fremstilles, så tilskuere (og læsere) langt henad vejen kan føle sympati med ham. Med paralleller til Netflix-serien "House of Cards"...

  4. Counting the number of Feynman graphs in QCD

    Science.gov (United States)

    Kaneko, T.

    2018-05-01

    Information about the number of Feynman graphs for a given physical process in a given field theory is especially useful for confirming the result of a Feynman graph generator used in an automatic system of perturbative calculations. A method of counting the number of Feynman graphs with weight of symmetry factor was established based on zero-dimensional field theory, and was used in scalar theories and QED. In this article this method is generalized to more complicated models by direct calculation of generating functions on a computer algebra system. This method is applied to QCD with and without counter terms, where many higher order are being calculated automatically.

  5. Nobel prize awards in radiochemistry

    International Nuclear Information System (INIS)

    Adloff, J.P.

    2012-01-01

    In 1996 the Editors of Radiochimica Acta brought out a special volume of the journal to celebrate the hundredth anniversary of the discovery of radioactivity. On the occasion of the 50 th anniversary of Radiochimica Acta, which follows closely upon the centenary of Marie Curie's second Nobel Prize in 1911, the author has the privilege to informally review 'Radiochemistry and Nobel Prize Awards', including discoveries of radioelements and new fields in chemistry based on radiochemical methods. (orig.)

  6. Herbert A. Simon: Nobel Prize in Economic Sciences, 1978.

    Science.gov (United States)

    Leahey, Thomas H

    2003-09-01

    In 1978, Herbert A. Simon won the Nobel Prize in Economic Sciences, the same Nobel won by Daniel Kahneman in 2002. Simon's work in fact paved the way for Kahneman's Nobel. Although trained in political science and economics rather than psychology, Simon applied psychological ideas to economic theorizing. Classical and neoclassical economic theories assume that people are perfectly rational and strive to optimize economic outcomes. Simon argued that human rationality is constrained, not perfect, and that people seek satisfactory rather than ideal outcomes. Despite his Nobel, Simon felt isolated in economics and ultimately moved into psychology. Nevertheless, his ideas percolated through the economic community, so that Kahneman, whose research advanced Simon's broad perspective, could be the psychologist who won the Nobel in economics.

  7. Who can get the next Nobel Prize in infectious diseases?

    Directory of Open Access Journals (Sweden)

    Onder Ergonul

    2016-04-01

    Full Text Available The aim of this paper is to deliver a perspective on future Nobel prizes by reviewing the features of Nobel prizes awarded in the infectious diseases-related (IDR field over the last 115 years. Thirty-three out of 106 Nobel prizes (31% in Physiology or Medicine have been awarded for IDR topics. Out of 58 Nobel laureates for IDR topics, two have been female; 67% have been medical doctors. The median age of Nobel laureates in Physiology or Medicine was found to be lower than the median age of laureates in Literature (p < 0.001. Since the Second World War, US-affiliated scientists have dominated the Nobel prizes (53%; however before 1945, German scientists did so (p = 0.005. The new antimicrobials received Nobel prizes until 1960; however no treatment study was awarded the Prize until the discovery of artemisinin and ivermectin, for which the Nobel Prize was awarded in 2015. Collaborative works have increasingly been appreciated. In the future, more female laureates would be expected in the IDR field. Medical graduates and scientists involved in multi-institutional and multidisciplinary collaborative efforts seem to have an advantage.

  8. The Feynman integral for time-dependent anharmonic oscillators

    International Nuclear Information System (INIS)

    Grothaus, M.; Khandekar, D.C.; da Silva, J.L.; Streit, L.

    1997-01-01

    We review some basic notions and results of white noise analysis that are used in the construction of the Feynman integrand as a generalized white noise functional. We show that the Feynman integrand for the time-dependent harmonic oscillator in an external potential is a Hida distribution. copyright 1997 American Institute of Physics

  9. Nobel prize awards in radiochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Adloff, J.P. [Strasbourg Univ. (France)

    2012-07-01

    In 1996 the Editors of Radiochimica Acta brought out a special volume of the journal to celebrate the hundredth anniversary of the discovery of radioactivity. On the occasion of the 50{sup th} anniversary of Radiochimica Acta, which follows closely upon the centenary of Marie Curie's second Nobel Prize in 1911, the author has the privilege to informally review 'Radiochemistry and Nobel Prize Awards', including discoveries of radioelements and new fields in chemistry based on radiochemical methods. (orig.)

  10. Synthesis and the Nobel Prize in Chemistry

    Science.gov (United States)

    Seeman, Jeffrey I.

    2017-10-01

    The question often arises as to who may have deserved a Nobel Prize but was not awarded one. Rarely is this discussion extended to who should have received more than one Nobel Prize, but in the field of organic synthesis there are some compelling candidates.

  11. Two Nobel Prize winners in two days

    CERN Document Server

    2006-01-01

    Living legend of physics, Professor Chen Ning Yang, delivered his CERN Colloquium in the Main Auditorium on 12th October (see photo). His numerous contributions to physics include the famous Yang-Mills theory, which underlies the Standard Model of particle physics, and the prediction of parity violation in weak interactions, for which he shared the Nobel prize with T. D. Lee in 1957. The day before, another Nobel laureate, Norman Ramsey, gave a TH Exceptional Seminar in the same auditorium. Ramsey shared the Nobel Prize with Hans G. Dehmelt and Wolfgang Paul in 1989 for developments in atomic precision spectroscopy.

  12. Alfred nobel.

    Science.gov (United States)

    Holmin, L R

    1996-10-01

    Alfred Nobel never spoke publicly about his problems of ill health, but a detailed, subjective record has recently been published in the form of 216 letters written to his mistress during an 18-year period. His descriptions of constant pain, debilitating migraine, and "paralyzing" fatigue permit a hypothesis that he might have had a long struggle with fibromyalgia. This does not preclude his having suffered other illnesses as well. He thought he had heart disease, which his physicians denied until his final years, when he was diagnosed with angina pectoris. He died of a cerebral hemorrhage in 1896 at the age of 63. His letters describe a 30-year search for diagnosis from the best physicians in Europe. He was ridiculed by many people as a hypochondriac, and he never received a diagnosis for "the pain that will not go away." This may well have contributed to the bitterness and depression of his final years. Increasing worldwide interest and research in this elusive syndrome will hopefully prevent a repetition of the Nobel story of a century ago.

  13. Nobel Prize for work on broken symmetries

    CERN Multimedia

    2008-01-01

    The 2008 Nobel Prize for Physics goes to three physicists who have worked on broken symmetries in particle physics. The announcement of the 2008 Nobel Prize for physics was transmitted to the Globe of Science and Innovation via webcast on the occasion of the preview of the Nobel Accelerator exhibition.On 7 October it was announced that the Royal Swedish Academy of Sciences had awarded the 2008 Nobel Prize for physics to three particle physicists for their fundamental work on the mechanisms of broken symmetries. Half the prize was awarded to Yoichiro Nambu of Fermilab for "the discovery of the mechanism of spontaneous broken symmetry in subatomic physics". The other half is shared by Makato Kobayashi of Japan’s KEK Institute and Toshihide Maskawa of the Yukawa Institute at the University of Kyoto "for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in Nature". At th...

  14. Feynman rules for fermion-number-violating interactions

    International Nuclear Information System (INIS)

    Denner, A.; Eck, H.; Hahn, O.; Kueblbeck, J.

    1992-01-01

    We present simple algorithmic Feynman rules for fermion-number-violating interactions. They do not involve explicit charge-conjugation matrices and resemble closely the familiar rules for Dirac fermions. We insist on a fermion flow through the graphs along fermion lines and get the correct relative signs between different interfering Feynman graphs as in the case of Dirac fermions. We only need the familiar Dirac propagator and fewer vertices than in the usual treatment of fermion-number-violating interactions. (orig.)

  15. The Hellman-Feynman theorem at finite temperature

    International Nuclear Information System (INIS)

    Cabrera, A.; Calles, A.

    1990-01-01

    The possibility of a kind of Hellman-Feynman theorem at finite temperature is discussed. Using the cannonical ensembles, the derivative of the internal energy is obtained when it depends explicitly on a parameter. It is found that under the low temperature regime the derivative of the energy can be obtained as the statistical average of the derivative of the hamiltonian operator. The result allows to speak of the existence of the Hellman-Feynman theorem at finite temperatures (Author)

  16. Near threshold expansion of Feynman diagrams

    International Nuclear Information System (INIS)

    Mendels, E.

    2005-01-01

    The near threshold expansion of Feynman diagrams is derived from their configuration space representation, by performing all x integrations. The general scalar Feynman diagram is considered, with an arbitrary number of external momenta, an arbitrary number of internal lines and an arbitrary number of loops, in n dimensions and all masses may be different. The expansions are considered both below and above threshold. Rules, giving real and imaginary part, are derived. Unitarity of a sunset diagram with I internal lines is checked in a direct way by showing that its imaginary part is equal to the phase space integral of I particles

  17. Nobel prizes 1975

    International Nuclear Information System (INIS)

    Braunbek, W.

    1975-01-01

    The 1975 Nobel prize in physics was awarded to A. Bohr, B. Mottelson and J. Rainwater for their new ideas about the structure of the heavier atomic nuclei and the foundation of the 'unified model' of these nuclei. (orig.) [de

  18. Feynman path integral and the interaction picture

    International Nuclear Information System (INIS)

    Pugh, R.E.

    1986-01-01

    The role of interaction-picture fields in the construction of coherent states and in the derivation of the Feynman path integral for interacting scalar quantum fields is examined. Special attention is paid to the dependence of the integrand on the intermediate times and it is shown that the Feynman rules are valid prior to taking the limit wherein the number of intermediate times goes to infinity; thus, this number does not act as a cutoff in divergent amplitudes. Specific normalization factors are determined

  19. Feynman versus Bakamjian-Thomas in light-front dynamics

    International Nuclear Information System (INIS)

    Araujo, W.R.B. de; Beyer, M.; Weber, H.J.; Frederico, T.

    1999-01-01

    We compare the Bakamjian-Thomas (BT) formulation of relativistic few-body systems with light-front field theories that maintain closer contact with Feynman diagrams. We find that Feynman diagrams distinguish Melosh rotations and other kinematical quantities belonging to various composite subsystem frames that correspond to different loop integrals. The BT formalism knows only the rest frame of the whole composite system, where everything is evaluated. (author)

  20. Polio and Nobel prizes: looking back 50 years.

    Science.gov (United States)

    Norrby, Erling; Prusiner, Stanley B

    2007-05-01

    In 1954, John Enders, Thomas Weller, and Frederick Robbins were awarded the Nobel Prize in Physiology or Medicine "for their discovery of the ability of poliomyelitis viruses to grow in cultures of various types of tissue."5370 This discovery provided for the first time opportunities to produce both inactivated and live polio vaccines. By searching previously sealed Nobel Committee archives, we were able to review the deliberations that led to the award. It appears that Sven Gard, who was Professor of Virus Research at the Karolinska Institute and an adjunct member of the Nobel Committee at the time, played a major role in the events leading to the awarding of the Prize. It appears that Gard persuaded the College of Teachers at the Institute to decide not to follow the recommendation by their Nobel Committee to give the Prize to Vincent du Vigneaud. Another peculiar feature of the 1954 Prize is that Weller and Robbins were included based on only two nominations submitted for the first time that year. In his speech at the Nobel Prize ceremony, Gard mentioned the importance of the discovery for the future production of vaccines, but emphasized the implications of this work for growing many different, medically important viruses. We can only speculate on why later nominations highlighting the contributions of scientists such as Jonas Salk, Hilary Koprowski, and Albert Sabin in the development of poliovirus vaccines have not been recognized by a Nobel Prize.

  1. The signed permutation group on Feynman graphs

    Energy Technology Data Exchange (ETDEWEB)

    Purkart, Julian, E-mail: purkart@physik.hu-berlin.de [Institute of Physics, Humboldt University, D-12489 Berlin (Germany)

    2016-08-15

    The Feynman rules assign to every graph an integral which can be written as a function of a scaling parameter L. Assuming L for the process under consideration is very small, so that contributions to the renormalization group are small, we can expand the integral and only consider the lowest orders in the scaling. The aim of this article is to determine specific combinations of graphs in a scalar quantum field theory that lead to a remarkable simplification of the first non-trivial term in the perturbation series. It will be seen that the result is independent of the renormalization scheme and the scattering angles. To achieve that goal we will utilize the parametric representation of scalar Feynman integrals as well as the Hopf algebraic structure of the Feynman graphs under consideration. Moreover, we will present a formula which reduces the effort of determining the first-order term in the perturbation series for the specific combination of graphs to a minimum.

  2. A LaTeX graphics routine for drawing Feynman diagrams

    International Nuclear Information System (INIS)

    Levine, M.J.S.

    1990-01-01

    FEYNMAN is a LaTeX macropackage which allows the user to construct a versatile range of Feynman diagrams within the text of a document. Diagrams of publication quality may be drawn with relative ease and rapidity. (orig.)

  3. Paul Krugman : (presque un Nobel de géographie Paul Krugman: A Nobel Prize in geography?

    Directory of Open Access Journals (Sweden)

    Olivier Walther

    2011-09-01

    Full Text Available Paul Krugman a reçu le Prix Nobel d’économie pour son analyse des modèles du commerce mondial et de la localisation de l’activité économique. Voilà une nouvelle qui devrait réjouir certains géographes.Paul Krugman recently won Nobel Economics Prize for his work on trade patterns and location of economic activities. This sounds like good news for (some geographers.

  4. Electrodynamic metaphors: communicating particle physics with Feynman diagrams

    Directory of Open Access Journals (Sweden)

    Pietroni Massimo

    2002-03-01

    Full Text Available The aim of this project is to communicate the basic laws of particle physics with Feynman diagrams - visual tools which represent elementary particle processes. They were originally developed as a code to be used by physicists and are still used today for calculations and elaborations of theoretical nature. The technical and mathematical rules of Feynman diagrams are obviously the exclusive concern of physicists, but on a pictorial level they can help to popularize many concepts, ranging from matter and the antimatter; the creation, destruction and transformation of particles; the role of ‘virtual’ particles in interactions; the conservation laws, symmetries, etc. Unlike the metaphors often used to describe the microcosm, these graphic representations provide an unequivocal translation of the physical content of the underlying quantum theory. As such they are perfect metaphors, not misleading constructions. A brief introduction on Feynman diagrams will be followed by the practical realization of this project, which will be carried out with the help of an experiment based on three-dimensional manipulable objects. The Feynman rules are expressed in terms of mechanical constraints on the possible conjuctions among the various elements of the experiment. The final part of the project will present the results of this experiment, which has been conducted among high-school students.

  5. On application of analytical transformation system using a computer for Feynman intearal calculation

    International Nuclear Information System (INIS)

    Gerdt, V.P.

    1978-01-01

    Various systems of analytic transformations for the calculation of Feynman integrals using computers are discussed. The hyperspheric technique Which is used to calculate Feynman integrals enables to perform angular integration for a set of diagrams, thus reducing the multiplicity of integral. All calculations based on this method are made with the ASHMEDAL program. Feynman integrals are calculated in Euclidean space using integration by parts and some differential identities. Analytic calculation of Feynman integral is performed by the MACSYMA system. Dispersion method of integral calculation is implemented in the SCHOONSCHIP system, calculations based on features of Nielsen function are made using efficient SINAC and RSIN programs. A tube of basic Feynman integral parameters calculated using the above techniques is given

  6. J. Richard Hackman (1940-2013)

    OpenAIRE

    Wageman, Ruth; Amabile, Teresa M.

    2013-01-01

    When J. Richard Hackman died in Cambridge, Massachusetts, on January 8, 2013, psychology lost a giant. Six and a half feet tall, with an outsize personality to match, Richard was the leading scholar in two distinct areas: work design and team effectiveness. In both domains, his work is foundational. Throughout his career, Richard applied rigorous methods to problems of great social importance, tirelessly championing multi-level analyses of problems that matter. His impact on our field has bee...

  7. Applying Groebner bases to solve reduction problems for Feynman integrals

    International Nuclear Information System (INIS)

    Smirnov, Alexander V.; Smirnov, Vladimir A.

    2006-01-01

    We describe how Groebner bases can be used to solve the reduction problem for Feynman integrals, i.e. to construct an algorithm that provides the possibility to express a Feynman integral of a given family as a linear combination of some master integrals. Our approach is based on a generalized Buchberger algorithm for constructing Groebner-type bases associated with polynomials of shift operators. We illustrate it through various examples of reduction problems for families of one- and two-loop Feynman integrals. We also solve the reduction problem for a family of integrals contributing to the three-loop static quark potential

  8. Applying Groebner bases to solve reduction problems for Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Alexander V. [Mechanical and Mathematical Department and Scientific Research Computer Center of Moscow State University, Moscow 119992 (Russian Federation); Smirnov, Vladimir A. [Nuclear Physics Institute of Moscow State University, Moscow 119992 (Russian Federation)

    2006-01-15

    We describe how Groebner bases can be used to solve the reduction problem for Feynman integrals, i.e. to construct an algorithm that provides the possibility to express a Feynman integral of a given family as a linear combination of some master integrals. Our approach is based on a generalized Buchberger algorithm for constructing Groebner-type bases associated with polynomials of shift operators. We illustrate it through various examples of reduction problems for families of one- and two-loop Feynman integrals. We also solve the reduction problem for a family of integrals contributing to the three-loop static quark potential.

  9. Nobel Lecture: Topological quantum matter*

    Science.gov (United States)

    Haldane, F. Duncan M.

    2017-10-01

    Nobel Lecture, presented December 8, 2016, Aula Magna, Stockholm University. I will describe the history and background of three discoveries cited in this Nobel Prize: The "TKNN" topological formula for the integer quantum Hall effect found by David Thouless and collaborators, the Chern insulator or quantum anomalous Hall effect, and its role in the later discovery of time-reversal-invariant topological insulators, and the unexpected topological spin-liquid state of the spin-1 quantum antiferromagnetic chain, which provided an initial example of topological quantum matter. I will summarize how these early beginnings have led to the exciting, and currently extremely active, field of "topological matter."

  10. Sources of funding for Nobel Prize-winning work: public or private?

    Science.gov (United States)

    Tatsioni, Athina; Vavva, Effie; Ioannidis, John P A

    2010-05-01

    Funding is important for scientists' work and may contribute to exceptional research outcomes. We analyzed the funding sources reported in the landmark scientific papers of Nobel Prize winners. Between 2000 and 2008, 70 Nobel laureates won recognition in medicine, physics, and chemistry. Sixty five (70%) of the 93 selected papers related to the Nobel-awarded work reported some funding source including U.S. government sources in 53 (82%), non-U.S. government sources in 19 (29%), and nongovernment sources in 33 (51%). A substantial portion of this exceptional work was unfunded. We contacted Nobel laureates whose landmark papers reported no funding. Thirteen Nobel laureates responded and offered their insights about the funding process and difficulties inherent in funding. Overall, very diverse sources amounting to a total of 64 different listed sponsors supported Nobel-related work. A few public institutions, in particular the U.S. National Institutes of Health (with n=26 funded papers) and the National Science Foundation (with n=17 papers), stood out for their successful record for funding exceptional research. However, Nobel-level work arose even from completely unfunded research, especially when institutions offered a protected environment for dedicated scientists.

  11. A convergence theorem for asymptotic expansions of Feynman amplitudes

    International Nuclear Information System (INIS)

    Mabouisson, A.P.C.

    1999-06-01

    The Mellin representations of Feynman integrals is revisited. From this representation, and asymptotic expansion for generic Feynman amplitudes, for any set of invariants going to zero or to ∞, may be obtained. In the case of all masses going to zero in Euclidean metric, we show that the truncated expansion has a rest compatible with convergence of the series. (author)

  12. An Astrosocial Observation: The Nobel Connection to the Space Program

    Science.gov (United States)

    Ng, Edward W.; Nash, Rebecca L.

    2007-01-01

    The 2006 Nobel Prize in Physics was heralded by some in the press as the 'First Nobel Prize for Space Exploration.' Indeed the Nobel Foundation's announcement specifically cited the Cosmic Background Explorer (COBE) satellite launched by NASA in 1989 as the prime-enabling instrument It elaborated further, 'The COBE results provided increased support for the Big Bang scenario for the origin of the Universe... These measurements also marked the inception of cosmology as a precise science.' NASA also seized this unique moment of fame to honor its favorite son, the first Nobel scientist of the agency, John Mather, of the Goddard Space Flight Center, who shared the honor with Professor G. Smoot of the University of California, the Principal Investigator of the COBE measurement. It is without any dispute that the Nobel Prize is the highest scientific honor and best-known award of admiration and inspiration to the public and educational sectors. Unfortunately in the American culture, youths are mostly exposed to success icons in the sports, entertainment, and business domains. Science icons (of either gender) are largely unknown to them. We sincerely hope that success stories of Nobel scientists will become part of the learning curriculum in the K-16 educational experience. In this paper, we examine the pedigree of a number of Nobel Prizes over the years, and discuss their interactions with, and connections to, the space program. It is advantageous for the context of educational and public outreach to see such connections, because in a number of public surveys, one important customer expectation for the space program is the search for new knowledge, to which the Nobel Prize is a prominent benchmark.

  13. Richard Nixon, 1972-2016 Obituary

    OpenAIRE

    Tom, Brian Dermot; Thompson, Simon Gregory; Duffy, SW; Sweeting, Michael John; Ohlssen, DI

    2017-01-01

    After a year-long journey with cancer, Dr Richard Nixon died on August 26th, 2016, aged only 43 years. He leaves behind his wife of 5 years, Valda, and their 1-year-old baby daughter, Kyra. Richard, a Yorkshireman, was born on September 8th, 1972. He attended Ilkley Grammar School, studied mathematics at Durham University (1991–1994) and was awarded the Diploma in Mathematical Statistics from the University of Cambridge in 1995. Richard then took a career break for a couple of years to...

  14. In the service of peace: 2005 Nobel Peace prize

    International Nuclear Information System (INIS)

    2006-01-01

    Nobel Citation: The Norwegian Nobel Committee has decided that the Nobel Peace Prize for 2005 is to be shared, in two equal parts, between the International Atomic Energy Agency (IAEA) and its Director General, Mohamed ElBaradei, for their efforts to prevent nuclear energy from being used for military purposes and to ensure that nuclear energy for peaceful purposes is used in the safest possible way. At a time when the threat of nuclear arms is again increasing, the Norwegian Nobel Committee wishes to underline that this threat must be met through the broadest possible international cooperation. This principle finds its clearest expression today in the work of the IAEA and its Director General. In the nuclear non-proliferation regime, it is the IAEA which controls that nuclear energy is not misused for military purposes, and the Director General has stood out as an unafraid advocate of new measures to strengthen that regime. At a time when disarmament efforts appear deadlocked, when there is a danger that nuclear arms will spread both to states and to terrorist groups, and when nuclear power again appears to be playing an increasingly significant role, IAEA's work is of incalculable importance. In his will, Alfred Nobel wrote that the Peace Prize should, among other criteria, be awarded to whoever had done most for the abolition or reduction of standing armies. In its application of this criterion in recent decades, the Norwegian Nobel Committee has concentrated on the struggle to diminish the significance of nuclear arms in international politics, with a view to their abolition. That the world has achieved little in this respect makes active opposition to nuclear arms all the more important today. The full Nobel Lecture of the Director General of the IAEA, Mr. Mohamed ElBaradei is given in this paper

  15. Mathematical theory of Feynman path integrals an introduction

    CERN Document Server

    Albeverio, Sergio A; Mazzucchi, Sonia

    2008-01-01

    Feynman path integrals, suggested heuristically by Feynman in the 40s, have become the basis of much of contemporary physics, from non-relativistic quantum mechanics to quantum fields, including gauge fields, gravitation, cosmology. Recently ideas based on Feynman path integrals have also played an important role in areas of mathematics like low-dimensional topology and differential geometry, algebraic geometry, infinite-dimensional analysis and geometry, and number theory. The 2nd edition of LNM 523 is based on the two first authors' mathematical approach of this theory presented in its 1st edition in 1976. To take care of the many developments since then, an entire new chapter on the current forefront of research has been added. Except for this new chapter and the correction of a few misprints, the basic material and presentation of the first edition has been maintained. At the end of each chapter the reader will also find notes with further bibliographical information.

  16. Constructive Representation Theory for the Feynman Operator Calculus

    CERN Document Server

    Gill, T L

    2006-01-01

    In this paper, we survey recent progress on the constructive theory of the Feynman operator calculus. We first develop an operator version of the Henstock-Kurzweil integral, and a new Hilbert space that allows us to construct the elementary path integral in the manner originally envisioned by Feynman. After developing our time-ordered operator theory we extend a few of the important theorems of semigroup theory, including the Hille-Yosida theorem. As an application, we unify and extend the theory of time-dependent parabolic and hyperbolic evolution equations. We then develop a general perturbation theory and use it to prove that all theories generated by semigroups are asympotic in the operator-valued sense of Poincar e. This allows us to provide a general theory for the interaction representation of relativistic quantum theory. We then show that our theory can be reformulated as a physically motivated sum over paths, and use this version to extend the Feynman path integral to include more general interaction...

  17. Richard's back: death, scoliosis and myth making.

    Science.gov (United States)

    Lund, Mary Ann

    2015-12-01

    The body of a mediaeval monarch was always under scrutiny, and Richard III's was no exception. In death, however, his body became subject to new forms of examination and interpretation: stripped naked after the battle of Bosworth, his corpse was carried to Leicester and exhibited before being buried. In 2012, it was rediscovered. The revelation that Richard suffered from scoliosis prompts this article to re-evaluate the historical sources about Richard's physique and his posthumous reputation. This article argues that Richard's death and his myth as 'crookback' are inextricably linked and traces attitudes to spinal curvature in the early modern period. It also considers how Shakespeare represented Richard as deformed, and aspects of performance history which suggest physical vulnerability. It then considers Richard's scoliosis from the perspective of medical history, reviewing classical accounts of scoliosis and arguing that Richard was probably treated with a mixture of axial traction and pressure. It demonstrates from the evidence of Richard's medical household that he was well placed to receive hands-on therapies and considers in particular the role of his physician and surgeon, William Hobbes. Finally, it shows how the case of Richard III demonstrates the close relationship between politics and medicine in the period and the contorted process of historical myth making. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. A Nobel prize to public science communication

    Directory of Open Access Journals (Sweden)

    Pietro Greco

    2007-12-01

    Full Text Available The Norwegian Nobel Committee has bestowed the 2007 Nobel Peace Price equally upon the scientists of the Intergovernmental Panel on Climate Change (IPCC and Al Gore, former vice-President of the United States of America, with the same motivation: «for their efforts to build up and disseminate greater knowledge about man-made climate change, and to lay the foundations for the measures that are needed to counteract such change».

  19. Feynman integrals and the moment problem

    International Nuclear Information System (INIS)

    Pusterla, M.; Turchetti, G.; Vitali, G.

    1976-01-01

    In this letter it is illustrated a general procedure, based on the momentum method, to estimate the scalar Feynman integrals. In order to illustrate the various situations discussed, some numerical examples are presented

  20. New framework for the Feynman path integral

    International Nuclear Information System (INIS)

    Shaharir, M.Z.

    1986-01-01

    The well-known Fourier integral solution of the free diffusion equation in an arbitrary Euclidean space is reduced to Feynmannian integrals using the method partly contained in the formulation of the Fresnelian integral. By replacing the standard Hilbert space underlying the present mathematical formulation of the Feynman path integral by a new Hilbert space, the space of classical paths on the tangent bundle to the Euclidean space (and more general to an arbitrary Riemannian manifold) equipped with a natural inner product, we show that our Feynmannian integral is in better agreement with the qualitative features of the original Feynman path integral than the previous formulations of the integral

  1. Posters of the 2013 Nobel Prize in Physics available from the Library

    CERN Multimedia

    CERN Library

    2014-01-01

    The Royal Swedish Academy of Sciences produces three posters annually, each of which explains the motivation for the award of the Nobel prizes in Physics, Chemistry and Economics.   The files of the posters are available here: http://www.kva.se/en/Prizes/Nobel-prizes/Nobel-Posters/ The good news is that the CERN Library has got a stock of posters of the 2013 Nobel Prize in Physics. They are available free from the Library (52-1-052).

  2. Richard Lavenham on Future Contingents

    DEFF Research Database (Denmark)

    Øhrstrøm, Peter

    1983-01-01

    Richard Lavenham on Future Contingents’, Cahiers de l’Institut du Moyen-âge Grec et Latin, 44 (1983), p.180-186.......‘Richard Lavenham on Future Contingents’, Cahiers de l’Institut du Moyen-âge Grec et Latin, 44 (1983), p.180-186....

  3. The Alfred Nobel rocket camera. An early aerial photography attempt

    Science.gov (United States)

    Ingemar Skoog, A.

    2010-02-01

    Alfred Nobel (1833-1896), mainly known for his invention of dynamite and the creation of the Nobel Prices, was an engineer and inventor active in many fields of science and engineering, e.g. chemistry, medicine, mechanics, metallurgy, optics, armoury and rocketry. Amongst his inventions in rocketry was the smokeless solid propellant ballistite (i.e. cordite) patented for the first time in 1887. As a very wealthy person he actively supported many Swedish inventors in their work. One of them was W.T. Unge, who was devoted to the development of rockets and their applications. Nobel and Unge had several rocket patents together and also jointly worked on various rocket applications. In mid-1896 Nobel applied for patents in England and France for "An Improved Mode of Obtaining Photographic Maps and Earth or Ground Measurements" using a photographic camera carried by a "…balloon, rocket or missile…". During the remaining of 1896 the mechanical design of the camera mechanism was pursued and cameras manufactured. In April 1897 (after the death of Alfred Nobel) the first aerial photos were taken by these cameras. These photos might be the first documented aerial photos taken by a rocket borne camera. Cameras and photos from 1897 have been preserved. Nobel did not only develop the rocket borne camera but also proposed methods on how to use the photographs taken for ground measurements and preparing maps.

  4. Nobel 1984

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    There was general jubilation at CERN following the announcement from Stockholm on 17 October that Carlo Rubbia and Simon van der Meer had been nominated for the 1984 Nobel Prize for physics by the Royal Swedish Academy of Sciences 'for their decisive contributions to the large project which led to the discovery of the field particles W and Z, communicators of the weak interaction'. These discoveries, made last year at CERN, rank among the greatest achievements in the history of science

  5. Soviet Union in the context of the Nobel prize

    CERN Document Server

    Blokh, Abram M

    2018-01-01

    The result of meticulous research by Professor Abram Blokh, this book presents facts, documents, thoughts and comments on the system of the Nobel Prize awards to Russian and Soviet scientists. It provides a comprehensive overview of the relationship between the ideas expressed by the Nobel Foundation and those expressed by the autocratic and totalitarian regimes in Russia and the ex-Soviet Union during the 20th century who had the same attitude of revulsion toward the intellectual and humanistic values represented by the Nobel Prizes. To do his research, the author had access to the declassified documents in the archives of the Nobel Foundation for many years. Also included in the book are new materials obtained and developed by the author after the publication of the first two editions (in Russian). This additional information is from the archives of the Soviet Ministry of Foreign Affairs, the Russian Academy of Sciences, the Soviet Writers' Union et al. in Moscow and St Petersburg. These documents shed new...

  6. A New Comment on Dyson's Exposition of Feynman's Proof of Maxwell Equations

    International Nuclear Information System (INIS)

    Pombo, Claudia

    2009-01-01

    A paper by Dyson, published nearly two decades ago, describing Feynman's proof of Maxwell equations, has generated many comments, analysis, discussions and generalizations of the proof. Feynman's derivation is assumed to be based on two main sets of equations. One is supposed to be the second law of Newton and the other a set of basic commutation relations from quantum physics.Here we present a new comment on this paper, focusing mainly on the initial arguments and applying a new method of analysis and interpretation of physics, named observational realism. The present discussion does not alter the technical steps of Feynman, but do clarify their basis. We show that Newton's physics is not a starting point in Feynman's derivation, neither is quantum physics involved in it, but the foundations of relativity only.

  7. arXiv Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case

    CERN Document Server

    Abreu, Samuel; Duhr, Claude; Gardi, Einan

    2017-12-15

    We construct a diagrammatic coaction acting on one-loop Feynman graphs and their cuts. The graphs are naturally identified with the corresponding (cut) Feynman integrals in dimensional regularization, whose coefficients of the Laurent expansion in the dimensional regulator are multiple polylogarithms (MPLs). Our main result is the conjecture that this diagrammatic coaction reproduces the combinatorics of the coaction on MPLs order by order in the Laurent expansion. We show that our conjecture holds in a broad range of nontrivial one-loop integrals. We then explore its consequences for the study of discontinuities of Feynman integrals, and the differential equations that they satisfy. In particular, using the diagrammatic coaction along with information from cuts, we explicitly derive differential equations for any one-loop Feynman integral. We also explain how to construct the symbol of any one-loop Feynman integral recursively. Finally, we show that our diagrammatic coaction follows, in the special case of o...

  8. DOE-Supported Researcher Is Co-Winner of 2006 Nobel Prize in Physics

    Science.gov (United States)

    DOE-Supported Researcher Is Co-Winner of 2006 Nobel Prize in Physics October 3, 2006 WASHINGTON, DC Space Flight Center for co-winning the 2006 Nobel Prize in Physics. "I offer my congratulations to with the 2006 Nobel Prize in Physics," Secretary Bodman said. "The groundbreaking work of

  9. Nobel prize-winner Heinrich Rohrer visits CERN

    CERN Document Server

    2008-01-01

    The Nobel prize-winner Heinrich Rohrer met young scientists on a recent visit to the Laboratory. From left to right: Xavier Gréhant (CERN Openlab), Ewa Stanecka (ATLAS), Magda Kowalska (ISOLDE), Heinrich Rohrer, Stéphanie Beauceron (CMS) and Ana Gago Da Silva (UNOSAT).Heinrich Rohrer, who shared the 1986 Nobel prize for physics with Gerd Binnig for the design of the scanning tunnelling microscope, visited CERN on 25 June. Welcomed by the Director-General, Robert Aymar, he visited the ATLAS cavern and control room, the Computer Centre, the Unosat project, the Antimatter Decelerator and ISOLDE. At the end of his visit, he voiced his admiration for CERN and its personnel. As a renowned Nobel prize-winner Heinrich Rohrer has the opportunity to pass on his experience and enthusiasm to young scientists. During the evening meal, at which he met five young physicists and computer scientists, who were delighted with the chance to talk to him, he stressed the importance for re...

  10. Akzo Nobel Science Award: Svensk upptaeckt botar framtidens cancer

    CERN Multimedia

    2003-01-01

    'Akzo Nobel Science Award: Svensk upptaeckt botar framtidens cancerStockholm, 27 februari, 2003. Aarets Akzo Nobel Science Award Sweden paa 500 000 kronor gaar till professorn i medicinsk straalningsfysik Anders Brahme. Han prisas foer "sin unika forskargaerning inom straalbehandlingsysiken samt kombinationen av grundforskning, tillaempad forskning och interaktion med industrin"' (1 page).

  11. Path-integral quantization of solitons using the zero-mode Feynman rule

    International Nuclear Information System (INIS)

    Sung Sheng Chang

    1978-01-01

    We propose a direct expansion treatment to quantize solitons without collective coordinates. Feynman's path integral for a free particle subject to an external force is directly used as the generating functional for the zero-frequency mode. The generating functional has no infrared singularity and defines a zero-mode Feynman rule which also gives a correct perturbative expansion for the harmonic-oscillator Green's function by treating the quadratic potential as a perturbation. We use the zero-mode Feynman rule to calculate the energy shift due to the second-order quantum corrections for solitons. Our result agrees with previous predictions using the collective-coordinate method or the method of Goldstone and Jackiw

  12. Feynman variance-to-mean method

    International Nuclear Information System (INIS)

    Dowdy, E.J.; Hansen, G.E.; Robba, A.A.

    1985-01-01

    The Feynman and other fluctuation techniques have been shown to be useful for determining the multiplication of subcritical systems. The moments of the counting distribution from neutron detectors is analyzed to yield the multiplication value. The authors present the methodology and some selected applications and results and comparisons with Monte Carlo calculations

  13. Algorithm FIRE-Feynman Integral REduction

    International Nuclear Information System (INIS)

    Smirnov, A.V.

    2008-01-01

    The recently developed algorithm FIRE performs the reduction of Feynman integrals to master integrals. It is based on a number of strategies, such as applying the Laporta algorithm, the s-bases algorithm, region-bases and integrating explicitly over loop momenta when possible. Currently it is being used in complicated three-loop calculations.

  14. Automatically generating Feynman rules for improved lattice field theories

    International Nuclear Information System (INIS)

    Hart, A.; Hippel, G.M. von; Horgan, R.R.; Storoni, L.C.

    2005-01-01

    Deriving the Feynman rules for lattice perturbation theory from actions and operators is complicated, especially when improvement terms are present. This physically important task is, however, suitable for automation. We describe a flexible algorithm for generating Feynman rules for a wide range of lattice field theories including gluons, relativistic fermions and heavy quarks. We also present an efficient implementation of this in a freely available, multi-platform programming language (PYTHON), optimised to deal with a wide class of lattice field theories

  15. Basics of introduction to Feynman diagrams and electroweak interactions physics

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Mikhov, S.G.

    1994-01-01

    The Feynman diagrams are the main computational method for the evaluation of the matrix elements of different processes. Although it is a perturbative method, its significance is not restricted to perturbation theory only. In this book, the elements of quantum field theory, the Feynman diagram method, the theory of electroweak interactions and other topics are discussed. A number of classical weak and electroweak processes are considered in details. This involves, first of all, the construction of the matrix elements of the process using both the Feynman diagram method (when perturbation theory can be applied) and the invariance principles (when perturbation theory fails). Then the cross sections and the decay probabilities are computed. The text is providing widely used computational techniques and some experimental data. (A.B.). 32 refs., 7 appendix

  16. Nobel physics prize to Charpak for inventing particle detectors

    International Nuclear Information System (INIS)

    Schwarzschild, B.

    1993-01-01

    This article describes the work of Georges Charpak of France leading to his receipt of the 1992 Nobel Prize in Physics. The Nobel Prize was awarded to Charpak open-quotes for his invention and development of particle detectors, in particular the multiwire proportional chamber.close quotes Historical aspects of Charpak's life and research are given

  17. Feynman's operational calculus and beyond noncommutativity and time-ordering

    CERN Document Server

    Johnson, George W; Nielsen, Lance

    2015-01-01

    This book is aimed at providing a coherent, essentially self-contained, rigorous and comprehensive abstract theory of Feynman's operational calculus for noncommuting operators. Although it is inspired by Feynman's original heuristic suggestions and time-ordering rules in his seminal 1951 paper An operator calculus having applications in quantum electrodynamics, as will be made abundantly clear in the introduction (Chapter 1) and elsewhere in the text, the theory developed in this book also goes well beyond them in a number of directions which were not anticipated in Feynman's work. Hence, the second part of the main title of this book. The basic properties of the operational calculus are developed and certain algebraic and analytic properties of the operational calculus are explored. Also, the operational calculus will be seen to possess some pleasant stability properties. Furthermore, an evolution equation and a generalized integral equation obeyed by the operational calculus are discussed and connections wi...

  18. A multi-region multi-energy formalism for the Feynman-alpha formulas

    International Nuclear Information System (INIS)

    Malinovitch, T.; Dubi, C.

    2015-01-01

    Highlights: • A formalism of N regions and M groups for the Feynman-α method is introduced. • Using a space-energy cell notation the expressions are simplified significantly. • A simple way to incorporate the detectors in the system is used. • The results have been verified by a Monte Carlo simulation in a two-region case. - Abstract: The stochastic transport equation, describing the dynamics in time of the neutron population in a nuclear system, is used to gain expressions for the higher moments of the neutron population in a sub-critical system. Such expressions are the bone structure of the so called Feynman-α method to analyze noise experiments, aimed to determine the reactivity of sub-critical systems. In the present study, a general formalism for the stochastic transport equation in an N regions system, under the M energy groups approximation will be introduced. In particular, expressions for the Feynman variance to mean (or the Feynman-Y function) under the above mentioned restriction will be sought by using the steady state mode of the solution

  19. Simplifying Differential Equations for Multiscale Feynman Integrals beyond Multiple Polylogarithms.

    Science.gov (United States)

    Adams, Luise; Chaubey, Ekta; Weinzierl, Stefan

    2017-04-07

    In this Letter we exploit factorization properties of Picard-Fuchs operators to decouple differential equations for multiscale Feynman integrals. The algorithm reduces the differential equations to blocks of the size of the order of the irreducible factors of the Picard-Fuchs operator. As a side product, our method can be used to easily convert the differential equations for Feynman integrals which evaluate to multiple polylogarithms to an ϵ form.

  20. Nobel Prize in Physics 20161

    Indian Academy of Sciences (India)

    pected behaviour when things are close together, encapsulated in ... ductance, Haldane gap, Chern number. phone, the laptop, the TV display) are; perhaps both. The pio- neering basic research of 2016's Nobel laureates points to a new.

  1. Extension of a theory of Feynman

    International Nuclear Information System (INIS)

    Blaquiere, Augustin

    1979-01-01

    We propose a relativistic extension of a method through which Feynman derives the Schroedinger equation. The equation of Klein-Gordon for a charged particle in a magnetic field is obtained. Some connections with the nonrelativistic and the classical approximations are discussed [fr

  2. Richards Barrier LA Reference Design Feature Evaluation

    International Nuclear Information System (INIS)

    N.E. Kramer

    1999-01-01

    The Richards Barrier is one of the design features of the repository to be considered for the License Application (LA), Richards was a soil scientist who first described the diversion of moisture between two materials with different hydrologic properties. In this report, a Richards Barrier is a special type of backfill with a fine-grained material (such as sand) overlaying a coarse-grained material (such as gravel). Water that enters an emplacement drift will first encounter the fine-grained material and be transported around the coarse-grained material covering the waste package, thus protecting the waste package from contact with most of the groundwater. The objective of this report is to discuss the benefits and liabilities to the repository by the inclusion of a Richards Barrier type backfill in emplacement drifts. The Richards Barrier can act as a barrier to water flow, can reduce the waste package material dissolution rate, limit mobilization of the radionuclides, and can provide structural protection for the waste package. The scope of this report is to: (1) Analyze the behavior of barrier materials following the intrusion of groundwater for influxes of 1 to 300 mm per year. The report will demonstrate diversion of groundwater intrusions into the barrier over an extended time period when seismic activity and consolidation may cause the potential for liquefaction and settlement of the Richards Barrier. (2) Review the thermal effects of the Richards Barrier on material behavior. (3) Analyze the effect of rockfall on the performance of the Richards Barrier and the depth of the barrier required to protect waste packages under the barrier. (4) Review radiological and heating conditions on placement of multiple layers of the barrier. Subsurface Nuclear Safety personnel will perform calculations to determine the radiation reduction-time relationship and shielding capacity of the barrier. (5) Evaluate the effects of ventilation on cooling of emplacement drifts and

  3. Obituary: Richard Joseph Elston, 1960-2004

    Science.gov (United States)

    Jannuzi, Buell Tomasson; Bechtold, Jill

    2004-12-01

    Richard Joseph Elston, known for his development of innovative astronomical instrumentation, died on 26 January 2004 in Gainesville, Florida, after a four-year battle with Hodgkin's lymphoma. A professor of astronomy at the University of Florida, Richard had an unusually broad range of interests and skills, and a willingness to share his passion for astronomy with others, which made him a highly valued member of the astronomical community. Born 1 July 1960, in Albuquerque, New Mexico, Richard was the son of a geologist father and journalist mother. His childhood interest in astronomy and instrumentation matured as he majored in physics and astronomy at the University of New Mexico (BS, 1983) under the mentorship of Michael Zeilik. Richard pursued his PhD in astronomy at the University of Arizona and earned his degree in 1988. He pioneered the use of IR arrays for deep imaging surveys of the sky to study galaxy formation, and completed his thesis Search for Rapidly Forming Galaxies at High Redshift under the direction of George Rieke. Richard's graduate work included the first detection of galaxies at intermediate redshifts with evolved populations too red to have been identifiable from optical imaging surveys alone. In the Astrophysical Journal Letters in 1988, he, George Rieke, and Marcia Rieke reported the discovery of this new class of galaxies, now known as EROs (Extremely Red Objects), important as the possible progenitors of present day elliptical galaxies. Following post-doctoral positions at Kitt Peak National Observatory from 1988 to 1991 and at the Observatories of the Carnegie Institution of Washington from 1991 to 1992, Richard joined the scientific staff of Cerro Tololo Inter-American Observatory in Chile, part of the NSF's National Optical Astronomy Observatory. By 1994, he had become head of CTIO's IR instrumentation program and was leading the development of new instruments for the US astronomical community. In 1996, Richard married astronomer

  4. Automation of Feynman diagram evaluations

    International Nuclear Information System (INIS)

    Tentyukov, M.N.

    1998-01-01

    A C-program DIANA (DIagram ANAlyser) for the automation of Feynman diagram evaluations is presented. It consists of two parts: the analyzer of diagrams and the interpreter of a special text manipulating language. This language can be used to create a source code for analytical or numerical evaluations and to keep the control of the process in general

  5. Nobel Prize in Chemistry-1997

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 2. Nobel Prize in Chemistry – 1997 The Story of Two Extra-ordinary Enzymes. Subramania Ranganathan. General Article Volume 3 Issue 2 February 1998 pp 45-52 ...

  6. Quantum gravitation. The Feynman path integral approach

    International Nuclear Information System (INIS)

    Hamber, Herbert W.

    2009-01-01

    The book covers the theory of Quantum Gravitation from the point of view of Feynman path integrals. These provide a manifestly covariant approach in which fundamental quantum aspects of the theory such as radiative corrections and the renormalization group can be systematically and consistently addressed. The path integral method is suitable for both perturbative as well as non-perturbative studies, and is known to already provide a framework of choice for the theoretical investigation of non-abelian gauge theories, the basis for three of the four known fundamental forces in nature. The book thus provides a coherent outline of the present status of the theory gravity based on Feynman's formulation, with an emphasis on quantitative results. Topics are organized in such a way that the correspondence to similar methods and results in modern gauge theories becomes apparent. Covariant perturbation theory are developed using the full machinery of Feynman rules, gauge fixing, background methods and ghosts. The renormalization group for gravity and the existence of non-trivial ultraviolet fixed points are investigated, stressing a close correspondence with well understood statistical field theory models. Later the lattice formulation of gravity is presented as an essential tool towards an understanding of key features of the non-perturbative vacuum. The book ends with a discussion of contemporary issues in quantum cosmology such as scale dependent gravitational constants and quantum effects in the early universe. (orig.)

  7. Calculation of the pulsed Feynman- and Rossi-alpha formulae with delayed neutrons

    International Nuclear Information System (INIS)

    Kitamura, Y.; Pazsit, I.; Wright, J.; Yamamoto, A.; Yamane, Y.

    2005-01-01

    In previous works, the authors have developed an effective solution technique for calculating the pulsed Feynman- and Rossi-alpha formulae. Through derivation of these formulae, it was shown that the technique can easily handle various pulse shapes of the pulsed neutron source. Furthermore, it was also shown that both the deterministic (i.e., synchronizing with the pulsing of neutron source) and stochastic (non-synchronizing) Feynman-alpha formulae can be obtained with this solution technique. However, for mathematical simplicity and the sake of insight, the formal derivation was performed in a model without delayed neutrons. In this paper, to demonstrate the robustness of the technique, the pulsed Feynman- and Rossi-alpha formulae were re-derived by taking one group of delayed neutrons into account. The results show that the advantages of this technique are retained even by inclusion of the delayed neutrons. Compact explicit formulae are derived for the Feynman- and Rossi-alpha methods for various pulse shapes and pulsing methods

  8. Analytic properties of Feynman diagrams in quantum field theory

    CERN Document Server

    Todorov, I T

    1971-01-01

    Analytic Properties of Feynman Diagrams in Quantum Field Theory deals with quantum field theory, particularly in the study of the analytic properties of Feynman graphs. This book is an elementary presentation of a self-contained exposition of the majorization method used in the study of these graphs. The author has taken the intermediate position between Eden et al. who assumes the physics of the analytic properties of the S-matrix, containing physical ideas and test results without using the proper mathematical methods, and Hwa and Teplitz, whose works are more mathematically inclined with a

  9. Transport coefficients for deeply inelastic scattering from the Feynman path integral method

    International Nuclear Information System (INIS)

    Brink, D.M.; Neto, J.; Weidenmueller, H.A.

    1979-01-01

    Friction and diffusion coefficients can be derived simply by combining statistical arguments with the Feynman path integral method. A transport equation for Feynman's influence functional is obtained, and transport coefficients are deduced from it. The expressions are discussed in the limits of weak, and of strong coupling. (Auth.)

  10. The R{sup ∗}-operation for Feynman graphs with generic numerators

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Franz [Nikhef Theory Group,Science Park 105, 1098 XG Amsterdam (Netherlands); Ruijl, Ben [Nikhef Theory Group,Science Park 105, 1098 XG Amsterdam (Netherlands); Leiden University,Niels Bohrweg 1, 2333 CA Leiden (Netherlands)

    2017-05-08

    The R{sup ∗}-operation by Chetyrkin, Tkachov, and Smirnov is a generalisation of the BPHZ R-operation, which subtracts both ultraviolet and infrared divergences of euclidean Feynman graphs with non-exceptional external momenta. It can be used to compute the divergent parts of such Feynman graphs from products of simpler Feynman graphs of lower loops. In this paper we extend the R{sup ∗}-operation to Feynman graphs with arbitrary numerators, including tensors. We also provide a novel way of defining infrared counterterms which closely resembles the definition of its ultraviolet counterpart. We further express both infrared and ultraviolet counterterms in terms of scaleless vacuum graphs with a logarithmic degree of divergence. By exploiting symmetries, integrand and integral relations, which the counterterms of scaleless vacuum graphs satisfy, we can vastly reduce their number and complexity. A FORM implementation of this method was used to compute the five loop beta function in QCD for a general gauge group. To illustrate the procedure, we compute the poles in the dimensional regulator of all top-level propagator graphs at five loops in four dimensional ϕ{sup 3} theory.

  11. Solutions of the Wheeler-Feynman equations with discontinuous velocities.

    Science.gov (United States)

    de Souza, Daniel Câmara; De Luca, Jayme

    2015-01-01

    We generalize Wheeler-Feynman electrodynamics with a variational boundary value problem for continuous boundary segments that might include velocity discontinuity points. Critical-point orbits must satisfy the Euler-Lagrange equations of the action functional at most points, which are neutral differential delay equations (the Wheeler-Feynman equations of motion). At velocity discontinuity points, critical-point orbits must satisfy the Weierstrass-Erdmann continuity conditions for the partial momenta and the partial energies. We study a special setup having the shortest time-separation between the (infinite-dimensional) boundary segments, for which case the critical-point orbit can be found using a two-point boundary problem for an ordinary differential equation. For this simplest setup, we prove that orbits can have discontinuous velocities. We construct a numerical method to solve the Wheeler-Feynman equations together with the Weierstrass-Erdmann conditions and calculate some numerical orbits with discontinuous velocities. We also prove that the variational boundary value problem has a unique solution depending continuously on boundary data, if the continuous boundary segments have velocity discontinuities along a reduced local space.

  12. Richard Florida : loovsektor on majanduskasvu mootor / Richard Florida ; interv. Argo Ideon

    Index Scriptorium Estoniae

    Florida, Richard

    2008-01-01

    USA majandus- ja ühiskonnateadlane Richard Florida loovklassi teooriast, selle osast majanduskasvu tagamisel, seosest ühiskonna tolerantsuse ja ühiskonna majandusliku edukuse vahel, sotsiaalse sidususe takistavast rollist loovuse motiveerimisel

  13. Waiting for the new Nobel laureate(s in economic sciences

    Directory of Open Access Journals (Sweden)

    Pantelić Svetlana

    2016-01-01

    Full Text Available Since the start in 1901, with the exception of the war years, the Nobel Prizes have always been awarded on the 10th of December, to mark the day of Alfred Nobel's demise. The exception is the prize for achievements in economic sciences which only started to be awarded in 1969. Since 1995 the Prize in Economic Sciences has been defined as the Prize in Social Sciences, so that the other recognized scientists in these fields, such as political sciences, psychology and sociology, could be awarded. Moreover, it was established that the Prize can be divided among no more than three winners. The Prize in Economic Sciences has been awarded to the total of 76 scientists, most of which, i.e. 52 of them, were the citizens of the USA. The largest number of laureates, i.e. twelve, came from the University of Chicago, six of them from Princeton, and five from Berkley. It was only once, in 2009, that the Nobel Prize in Economics was awarded to a woman - Elinor Ostrom (1933-2012 from the USA, together with Oliver Williamson. The average age of the Nobel Prize winners is about 60 years. The oldest laureate to have ever won the prize was Leonid Hurwicz, who received the Nobel Prize in Economic Sciences in 2007 at the age of 90.

  14. Fulltext PDF

    Indian Academy of Sciences (India)

    shop'. Richard Feynman, in his ... his life, Feynman investigated the mechanical failure in the space shuttle Challenger. There are many more ... Eiffel stands out as tall as the famous tower his company designed and built in 1889. In this issue, we ...

  15. Feynman-Kac equations for reaction and diffusion processes

    Science.gov (United States)

    Hou, Ru; Deng, Weihua

    2018-04-01

    This paper provides a theoretical framework for deriving the forward and backward Feynman-Kac equations for the distribution of functionals of the path of a particle undergoing both diffusion and reaction processes. Once given the diffusion type and reaction rate, a specific forward or backward Feynman-Kac equation can be obtained. The results in this paper include those for normal/anomalous diffusions and reactions with linear/nonlinear rates. Using the derived equations, we apply our findings to compute some physical (experimentally measurable) statistics, including the occupation time in half-space, the first passage time, and the occupation time in half-interval with an absorbing or reflecting boundary, for the physical system with anomalous diffusion and spontaneous evanescence.

  16. Nobel laureates in fiction: From La fin du monde to The Big Bang Theory.

    Science.gov (United States)

    Brodesco, Alberto

    2018-05-01

    The history of the Nobel Prize, since its establishment, interlaces with the history of the public image of science. The aim of this article is to illustrate cinematic scientists, portrayed precisely in their moment of maximum glory. The films and television shows upon which the study is based compose a corpus of 189 media texts. The article identifies three main areas that concern the relation between the Nobel Prize and its audiovisual representations: biopics of real Nobel laureates, the presence of real or fictional Nobel laureates in the film or the show plot, and films and TV series that depict the Nobel ceremony. The article then focuses on four texts that deserve a detailed examination: La fin du monde, The Prize, The Simpsons and The Big Bang Theory. The conclusion compares the representation of the Nobel scientist with general changes in the image of the scientist conveyed by cinema and television.

  17. Nobel for a Minus Sign

    Indian Academy of Sciences (India)

    The Nobel Academy's announcement concludes with the ... elementary particles, the latter being known as force ...... Gross, born in 1941, received his undergraduate education in physics at the Hebrew University, ... Institute for Advanced Study, Princeton, and finally to the Masschussetts Institute of Technology in 2000.

  18. Global and local "teachable moments": The role of Nobel Prize and national pride.

    Science.gov (United States)

    Baram-Tsabari, Ayelet; Segev, Elad

    2018-05-01

    This study examined to what extent Nobel Prize announcements and awards trigger global and local searches or "teachable moments" related to the laureates and their discoveries. We examined the longitudinal trends in Google searches for the names and discoveries of Nobel laureates from 2012 to 2017. The findings show that Nobel Prize events clearly trigger more searches for laureates, but also for their respective discoveries. We suggest that fascination with the Nobel prize creates a teachable moment not only for the underlying science, but also about the nature of science. Locality also emerged as playing a significant role in intensifying interest.

  19. EDITORIAL: Nobel Symposium 148: Graphene and Quantum Matter Nobel Symposium 148: Graphene and Quantum Matter

    Science.gov (United States)

    Niemi, Antti; Wilczek, Frank; Ardonne, Eddy; Hansson, Hans

    2012-01-01

    The 2010 Nobel Symposium on Graphene and Quantum Matter, was held at the Grand Hotel in Saltsjöbaden south of Stockholm on 27-31 May. The main theme of the meeting was graphene, and the symposium turned out to be very timely: two of the participants, Andre Geim and Kanstantin Novoselov returned to Stockholm less then six months later to receive the 2010 Nobel Prize in Physics. In these proceedings leading experts give up-to-date, historical, experimental, theoretical and technological perspectives on the remarkable material graphene, and several papers also make connections to other states of quantum matter. Saltsjöbaden is beautifully situated in the inner archipelago of Stockholm. It provided a pleasant setting for the talks and the ensuing discussions that took place in an enthusiastic and friendly atmosphere. The social programme included a boat trip in the light summer night and a dinner at the renowned Grand Hotel. These proceedings are ordered thematically, starting with historical overviews, followed by first experimental and then theoretical papers on the physics of graphene. Next are several papers addressing more general topics in quantum matter and finally contributions on the technological applications of graphene. We hope that this volume will serve as a source of knowledge and inspiration for any physicist interested in graphene, and at the same time provide a snapshot of a young field of research that is developing at very high speed. We are grateful to Marja Fahlander for excellent administrative support, and to the Nobel Foundation who funded the symposium.

  20. Systematic approximation of multi-scale Feynman integrals arXiv

    CERN Document Server

    Borowka, Sophia; Hulme, Daniel

    An algorithm for the systematic analytical approximation of multi-scale Feynman integrals is presented. The algorithm produces algebraic expressions as functions of the kinematical parameters and mass scales appearing in the Feynman integrals, allowing for fast numerical evaluation. The results are valid in all kinematical regions, both above and below thresholds, up to in principle arbitrary orders in the dimensional regulator. The scope of the algorithm is demonstrated by presenting results for selected two-loop three-point and four-point integrals with an internal mass scale that appear in the two-loop amplitudes for Higgs+jet production.

  1. Statistical error estimation of the Feynman-α method using the bootstrap method

    International Nuclear Information System (INIS)

    Endo, Tomohiro; Yamamoto, Akio; Yagi, Takahiro; Pyeon, Cheol Ho

    2016-01-01

    Applicability of the bootstrap method is investigated to estimate the statistical error of the Feynman-α method, which is one of the subcritical measurement techniques on the basis of reactor noise analysis. In the Feynman-α method, the statistical error can be simply estimated from multiple measurements of reactor noise, however it requires additional measurement time to repeat the multiple times of measurements. Using a resampling technique called 'bootstrap method' standard deviation and confidence interval of measurement results obtained by the Feynman-α method can be estimated as the statistical error, using only a single measurement of reactor noise. In order to validate our proposed technique, we carried out a passive measurement of reactor noise without any external source, i.e. with only inherent neutron source by spontaneous fission and (α,n) reactions in nuclear fuels at the Kyoto University Criticality Assembly. Through the actual measurement, it is confirmed that the bootstrap method is applicable to approximately estimate the statistical error of measurement results obtained by the Feynman-α method. (author)

  2. Feynman integrals and difference equations

    International Nuclear Information System (INIS)

    Moch, S.; Schneider, C.

    2007-09-01

    We report on the calculation of multi-loop Feynman integrals for single-scale problems by means of difference equations in Mellin space. The solution to these difference equations in terms of harmonic sums can be constructed algorithmically over difference fields, the so-called ΠΣ * -fields. We test the implementation of the Mathematica package Sigma on examples from recent higher order perturbative calculations in Quantum Chromodynamics. (orig.)

  3. Connection between Feynman integrals having different values of the space-time dimension

    International Nuclear Information System (INIS)

    Tarasov, O.V.

    1996-05-01

    A systematic algorithm for obtaining recurrence relations for dimensionally regularized Feynman integrals w.r.t. the space-time dimension d is proposed. The relation between d and d-2 dimensional integrals is given in terms of a differential operator for which an explicit formula can be obtained for each Feynman diagram. We show how the method works for one-, two- and three-loop integrals. The new recurrence relations w.r.t. d are complementary to the recurrence relations which derive from the method of integration by parts. We find that the problem of the irreducible numerators in Feynman integrals can be naturally solved in the framework of the proposed generalized recurrence relations. (orig.)

  4. Lectures on differential equations for Feynman integrals

    International Nuclear Information System (INIS)

    Henn, Johannes M

    2015-01-01

    Over the last year significant progress was made in the understanding of the computation of Feynman integrals using differential equations (DE). These lectures give a review of these developments, while not assuming any prior knowledge of the subject. After an introduction to DE for Feynman integrals, we point out how they can be simplified using algorithms available in the mathematical literature. We discuss how this is related to a recent conjecture for a canonical form of the equations. We also discuss a complementary approach that is based on properties of the space–time loop integrands, and explain how the ideas of leading singularities and d-log representations can be used to find an optimal basis for the DE. Finally, as an application of these ideas we show how single-scale integrals can be bootstrapped using the Drinfeld associator of a DE. (topical review)

  5. A recursive reduction of tensor Feynman integrals

    International Nuclear Information System (INIS)

    Diakonidis, T.; Riemann, T.; Tausk, J.B.; Fleischer, J.

    2009-07-01

    We perform a recursive reduction of one-loop n-point rank R tensor Feynman integrals [in short: (n,R)-integrals] for n≤6 with R≤n by representing (n,R)-integrals in terms of (n,R-1)- and (n-1,R-1)-integrals. We use the known representation of tensor integrals in terms of scalar integrals in higher dimension, which are then reduced by recurrence relations to integrals in generic dimension. With a systematic application of metric tensor representations in terms of chords, and by decomposing and recombining these representations, we find the recursive reduction for the tensors. The procedure represents a compact, sequential algorithm for numerical evaluations of tensor Feynman integrals appearing in next-to-leading order contributions to massless and massive three- and four-particle production at LHC and ILC, as well as at meson factories. (orig.)

  6. A Nobel laureate's formula for the universe

    CERN Multimedia

    2014-01-01

    A Nobel laureate and a blackboard at CERN is all you need to explain the fundamental physics of the universe. At least, that's what François Englert convinced us of on his visit to CERN on 21 February 2014. Englert shared the 2013 Nobel prize in Physics with Peter Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles". In the video below, he explains how he and Higgs manipulated equations containing mathematical constructs called scalar fields to predict the existence of the Brout-Englert-Higgs field.   For more information on this topic, click here.

  7. A Feynman-Hellmann approach to the spin structure of hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, A.J. [Adelaide Univ., SA (Australia). CSSM, Dept. of Physics; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Collaboration: CSSM and QCDSF/UKQCD Collaborations; and others

    2014-05-15

    We perform a N{sub f}=2+1 lattice QCD simulation to determine the quark spin fractions of hadrons using the Feynman-Hellmann theorem. By introducing an external spin operator to the fermion action, the matrix elements relevant for quark spin fractions are extracted from the linear response of the hadron energies. Simulations indicate that the Feynman-Hellmann method offers statistical precision that is comparable to the standard three-point function approach, with the added benefit that it is less susceptible to excited state contamination. This suggests that the Feynman-Hellmann technique offers a promising alternative for calculations of quark line disconnected contributions to hadronic matrix elements. At the SU(3)-flavour symmetry point, we find that the connected quark spin fractions are universally in the range 55-70% for vector mesons and octet and decuplet baryons. There is an indication that the amount of spin suppression is quite sensitive to the strength of SU(3) breaking.

  8. Non-planar Feynman diagrams and Mellin-Barnes representations with AMBRE 3.0

    International Nuclear Information System (INIS)

    Dubovyk, Ievgen; Gluza, Janusz; Riemann, Tord

    2016-04-01

    We introduce the Mellin-Barnes representation of general Feynman integrals and discuss their evaluation. The Mathematica package AMBRE has been recently extended in order to cover consistently non-planar Feynman integrals with two loops. Prospects for the near future are outlined. This write-up is an introduction to new results which have also been presented elsewhere.

  9. Translation, Littérisation, and the Nobel Prize for Literature

    Directory of Open Access Journals (Sweden)

    Kelly Washbourne

    2016-07-01

    Full Text Available This work is a cultural economics study of the problem of translation production and assessment in and leading up to the literary Nobel Prize deliberations. I argue that the constraints of assessing an unevenly and partially translated body of literary works, many of them from less common languages, present an unbreachable expertise gap. Translation as a sacralization, or consecration in Casanova’s (2004 term, of a writer’s work is considered in the context of the award. Ultimately the prize is shown to depend upon translations carried out in dissimilar circumstances for each candidate. The award of the Nobel is part of the founder’s call for works to be more widely circulated, not to reward fame; thus a Nobel is more an invitation to translate than a recognition of an author in translation, although evidence suggests that the post-Nobel translational impact may vary by writer and over time. This study sheds light on the degree to which the Prize is an authority-mediated phenomenon, and while critiquing the quixotic task of judging disparate forms and amounts of cultural capital side by side, and never from a point of neutrality, it also attempts to show how translation shapes this symbolic form of prestige in the struggle for existence. I posit that alternative prizes and prize-awarding in general as fraught with similar cross-language challenges. Possibilities for future research, qualitative analysis of the Nobel and translation demand, among other consequences, are briefly sketched.

  10. Koshiba, Tanaka give Nobel lectures

    CERN Multimedia

    2002-01-01

    Masatoshi Kosiba and Koichi Tanaka presented lectures in English on Sunday, touching on topics ranging from particle physics, to teamwork to commemorate their reception of this year's Nobel Prize for Physics and Chemistry. The two will receive their respective prizes in an awards ceremony scheduled for Tuesday (1 page).

  11. Cockcroft and Walton. Nobel Prize for Physics (1951); Cockcroft y Walton. Premio Nobel de Fisica (1951)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In 1951, the Nobel Prize for Physics was shared by researchers John Douglas Cockcroft (1897-1969) and Ernest Thomas Sinton Walton (1903-1995), for their pioneer work on the transmutation of the atomic nuclei by artificial acceleration of atomic particles. (Author)

  12. Solving recurrence relations for multi-loop Feynman integrals

    International Nuclear Information System (INIS)

    Smirnov, Vladimir A.; Steinhauser, Matthias

    2003-01-01

    We study the problem of solving integration-by-parts recurrence relations for a given class of Feynman integrals which is characterized by an arbitrary polynomial in the numerator and arbitrary integer powers of propagators, i.e., the problem of expressing any Feynman integral from this class as a linear combination of master integrals. We show how the parametric representation invented by Baikov [Phys. Lett. B 385 (1996) 404, Nucl. Instrum. Methods A 389 (1997) 347] can be used to characterize the master integrals and to construct an algorithm for evaluating the corresponding coefficient functions. To illustrate this procedure we use simple one-loop examples as well as the class of diagrams appearing in the calculation of the two-loop heavy quark potential

  13. Feynman integrals and difference equations

    Energy Technology Data Exchange (ETDEWEB)

    Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation

    2007-09-15

    We report on the calculation of multi-loop Feynman integrals for single-scale problems by means of difference equations in Mellin space. The solution to these difference equations in terms of harmonic sums can be constructed algorithmically over difference fields, the so-called {pi}{sigma}{sup *}-fields. We test the implementation of the Mathematica package Sigma on examples from recent higher order perturbative calculations in Quantum Chromodynamics. (orig.)

  14. S-bases as a tool to solve reduction problems for Feynman integrals

    International Nuclear Information System (INIS)

    Smirnov, A.V.; Smirnov, V.A.

    2006-01-01

    We suggest a mathematical definition of the notion of master integrals and present a brief review of algorithmic methods to solve reduction problems for Feynman integrals based on integration by parts relations. In particular, we discuss a recently suggested reduction algorithm which uses Groebner bases. New results obtained with its help for a family of three-loop Feynman integrals are outlined

  15. S-bases as a tool to solve reduction problems for Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.V. [Scientific Research Computing Center of Moscow State University, Moscow 119992 (Russian Federation); Smirnov, V.A. [Nuclear Physics Institute of Moscow State University, Moscow 119992 (Russian Federation)

    2006-10-15

    We suggest a mathematical definition of the notion of master integrals and present a brief review of algorithmic methods to solve reduction problems for Feynman integrals based on integration by parts relations. In particular, we discuss a recently suggested reduction algorithm which uses Groebner bases. New results obtained with its help for a family of three-loop Feynman integrals are outlined.

  16. Cuts of Feynman Integrals in Baikov representation

    Energy Technology Data Exchange (ETDEWEB)

    Frellesvig, Hjalte; Papadopoulos, Costas G. [Institute of Nuclear and Particle Physics, NCSR ‘Demokritos’,P.O. Box 60037, Agia Paraskevi, 15310 (Greece)

    2017-04-13

    Based on the Baikov representation, we present a systematic approach to compute cuts of Feynman Integrals, appropriately defined in d dimensions. The information provided by these computations may be used to determine the class of functions needed to analytically express the full integrals.

  17. Cuts of Feynman Integrals in Baikov representation

    International Nuclear Information System (INIS)

    Frellesvig, Hjalte; Papadopoulos, Costas G.

    2017-01-01

    Based on the Baikov representation, we present a systematic approach to compute cuts of Feynman Integrals, appropriately defined in d dimensions. The information provided by these computations may be used to determine the class of functions needed to analytically express the full integrals.

  18. Quadratic forms for Feynman-Kac semigroups

    International Nuclear Information System (INIS)

    Hibey, Joseph L.; Charalambous, Charalambos D.

    2006-01-01

    Some problems in a stochastic setting often involve the need to evaluate the Feynman-Kac formula that follows from models described in terms of stochastic differential equations. Equivalent representations in terms of partial differential equations are also of interest, and these establish the well-known connection between probabilistic and deterministic formulations of these problems. In this Letter, this connection is studied in terms of the quadratic form associated with the Feynman-Kac semigroup. The probability measures that naturally arise in this approach, and thus define how Brownian motion is killed at a specified rate while exiting a set, are interpreted as a random time change of the original stochastic differential equation. Furthermore, since random time changes alter the diffusion coefficients in stochastic differential equations while Girsanov-type measure transformations alter their drift coefficients, their simultaneous use should lead to more tractable solutions for some classes of problems. For example, the minimization of some quadratic forms leads to solutions that satisfy certain partial differential equations and, therefore, the techniques discussed provide a variational approach for finding these solutions

  19. 14 Nobel, preocupados por el CERN

    CERN Multimedia

    Rivera, A

    2003-01-01

    "E l presidente del Consejo del CERN (Laboratorio Europeo de Fisica de Particulas, junto a Ginebra), Maurice Bourquin, ha recibido una carta firmada por un grupo de cientificos muy especiales: 14 premios Nobel de Fisica" (1 page).

  20. Construction of renormalized coefficient functions of the Feynman diagrams by means of a computer

    International Nuclear Information System (INIS)

    Tarasov, O.V.

    1978-01-01

    An algorithm and short description of computer program, written in SCHOONSCHIP, are given. The program is assigned for construction of integrands of renormalized coefficient functions of the Feynman diagrams in scalar theories in the case of arbitrary subtraction point. For the given Feynman graph computer completely realizes the R-operation of Bogolubov-Parasjuk and gives the result as an integral over Feynman parameters. With the help of the program the time construction of the whole renormalized coefficient function is equal approximately 30 s on the CDC-6500 computer

  1. Feynman and physics. Life and research of an exceptional man; Feynman und die Physik. Leben und Forschung eines aussergewoehnlichen Menschen

    Energy Technology Data Exchange (ETDEWEB)

    Resag, Joerg

    2018-04-01

    The life of Feynman is described together with his work on path integrals, quantum electrodynmaics, helium at low temperatures, the weak interaction, the quark model, and computer-calculation methods, and his contribution to the Manhattan project. (HSI)

  2. Equivariance, Variational Principles, and the Feynman Integral

    Directory of Open Access Journals (Sweden)

    George Svetlichny

    2008-03-01

    Full Text Available We argue that the variational calculus leading to Euler's equations and Noether's theorem can be replaced by equivariance and invariance conditions avoiding the action integral. We also speculate about the origin of Lagrangian theories in physics and their connection to Feynman's integral.

  3. ["If Berger had survived the second world war - he certainly would have been a candidate for the Nobel Prize". Hans Berger and the legend of the Nobel Prize].

    Science.gov (United States)

    Gerhard, U-J; Schönberg, A; Blanz, B

    2005-03-01

    The public opinion pays much attention to the Nobel Prize as an indicator for the scientific efficiency of a university or a country in connection with foundation of so-called elite universities. The former holder of the psychiatric chair in Jena and discoverer of the electroencephalogram Hans Berger (1873 - 1941) came into discussion as candidate for the Nobel Prize in physiology or medicine. The current medical-historical publications maintain the view that Berger should have received the Nobel Prize in 1936 as well as in 1949. This was prevented in 1936 by an enactment from Hitler, which forbid him to accept the prize, and later in 1949 by Berger's own death. According to documents of the Nobel archives these statements can be disproved. Berger was only nominated three times out of 65 nominations in 1940. Because of his death the other two recommendations in 1942 and 1947 were never evaluated.

  4. A mapping between Feynman and string motivated one-loop rules in gauge theories

    International Nuclear Information System (INIS)

    Bern, Z.

    1992-01-01

    Recently, computationally efficient rules for one-loop gauge theory amplitudes have been derived from string theory. We demonstrate the relationship of the compact string organization of the amplitude to Feynman diagrams. In particular, we explicitly show how large cancellations inherent in conventional Feynman diagram computations are avoided by the string motivated rules. (orig.)

  5. Feynman Integrals with Absorbing Boundaries

    OpenAIRE

    Marchewka, A.; Schuss, Z.

    1997-01-01

    We propose a formulation of an absorbing boundary for a quantum particle. The formulation is based on a Feynman-type integral over trajectories that are confined to the non-absorbing region. Trajectories that reach the absorbing wall are discounted from the population of the surviving trajectories with a certain weighting factor. Under the assumption that absorbed trajectories do not interfere with the surviving trajectories, we obtain a time dependent absorption law. Two examples are worked ...

  6. The 2009 Nobel Prize in Physics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 8. The 2009 Nobel Prize in Physics - Honoring Achievements in Optics that have Changed Modern Life. Vasant Natarajan. General Article Volume 15 Issue 8 August 2010 pp 723-732 ...

  7. The Ripple Effect: Citation Chain Reactions of a Nobel Prize

    DEFF Research Database (Denmark)

    Faber Frandsen, Tove; Nicolaisen, Jeppe

    2013-01-01

    This paper explores the possible citation chain reactions of a Nobel Prize using the mathematician Robert J. Aumann as a case example. The results show that the award of the Nobel Prize in 2005 affected not only the citations to his work, but also affected the citations to the references in his s...... citation network. The effect is discussed using innovation decision process theory as a point of departure to identify the factors that created a bandwagon effect leading to the reported observations....... scientific oeuvre. The results indicate that the spillover effect is almost as powerful as the effect itself. We are consequently able to document a ripple effect in which the awarding of the Nobel Prize ignites a citation chain reaction to Aumann's scientific ouvre and to the references in its nearest...

  8. The character of scientists in the Nobel Prize speeches.

    Science.gov (United States)

    Condit, Celeste M

    2018-05-01

    This essay describes the ethos (i.e. the character projected to specific audiences) of the 25 Nobel Lectures in Physics, Chemistry, and Physiology or Medicine given in 2013-2015 and the 15 Presentation Speeches given at the Nobel Banquets between 2011 and 2015. A thematically focused qualitative analysis grounded in theories of epideictic discourse indicates the Nobel speakers demonstrated a range of strategies for and degrees of success in negotiating the tensions created by the implicit demands of ceremonial speeches, the scientific emphasis on didactic style and research content, and the different potential audiences (scientific experts and interested publics). Relatively few speeches explicitly displayed goodwill toward humanity instead of primarily toward the scientific community. Some speakers emphasized qualities of goodness in line with social values shared by broad audiences, but some reinforced stereotypes of scientists as anti-social. Speakers were variable in their ability to bridge the substantial gaps in resources for shared good sense.

  9. The Nobel Prize in the Physics Class: Science, History, and Glamour

    Science.gov (United States)

    Eshach, Haim

    2009-01-01

    This paper introduces a novel strategy for teaching physics: using the Nobel Physics Prize as an organizational theme for high school or even first year university physics, bringing together history, social contexts of science, and central themes in modern physics. The idea underlying the strategy is that the glamour and glitter of the Nobel Prize…

  10. The Errors of Feynman and Hibbs

    Indian Academy of Sciences (India)

    rors simply because he was so smart. He would write down equations that got to the gist of the difficult ... work at a level somewhat below Feynman's, these fac- tors and limits and so forth are not obvious, and their ... an interview with Hibbs in which he said he's working on a book to be titled Quantum Mechanics and Path In-.

  11. The end of a noble narrative? European integration narratives after the Nobel Peace Prize

    DEFF Research Database (Denmark)

    Manners, Ian James; Murray, Philomena

    The award of the Nobel Peace Prize 2012 to the European Union (EU) came as a shock and surprise. Not only was the Eurozone economic crisis undermining public support for the EU, but the crisis was also seriously challenging the EU’s image in global politics. Although the Nobel Committee acknowled......The award of the Nobel Peace Prize 2012 to the European Union (EU) came as a shock and surprise. Not only was the Eurozone economic crisis undermining public support for the EU, but the crisis was also seriously challenging the EU’s image in global politics. Although the Nobel Committee...... integration both in the past and in the future. We differentiate between scholarly and policy-oriented narratives in the development of our argument. The critical question is whether these narratives have and should – or could - provide legitimation for the EU after the award of the Nobel Peace Prize....

  12. Probing finite coarse-grained virtual Feynman histories with sequential weak values

    Science.gov (United States)

    Georgiev, Danko; Cohen, Eliahu

    2018-05-01

    Feynman's sum-over-histories formulation of quantum mechanics has been considered a useful calculational tool in which virtual Feynman histories entering into a coherent quantum superposition cannot be individually measured. Here we show that sequential weak values, inferred by consecutive weak measurements of projectors, allow direct experimental probing of individual virtual Feynman histories, thereby revealing the exact nature of quantum interference of coherently superposed histories. Because the total sum of sequential weak values of multitime projection operators for a complete set of orthogonal quantum histories is unity, complete sets of weak values could be interpreted in agreement with the standard quantum mechanical picture. We also elucidate the relationship between sequential weak values of quantum histories with different coarse graining in time and establish the incompatibility of weak values for nonorthogonal quantum histories in history Hilbert space. Bridging theory and experiment, the presented results may enhance our understanding of both weak values and quantum histories.

  13. Exact Maximum-Entropy Estimation with Feynman Diagrams

    Science.gov (United States)

    Netser Zernik, Amitai; Schlank, Tomer M.; Tessler, Ran J.

    2018-02-01

    A longstanding open problem in statistics is finding an explicit expression for the probability measure which maximizes entropy with respect to given constraints. In this paper a solution to this problem is found, using perturbative Feynman calculus. The explicit expression is given as a sum over weighted trees.

  14. Juvenile Cosmology; Or Richard Powers’ Post-Global Doughnut

    Directory of Open Access Journals (Sweden)

    Judith Roof

    2010-02-01

    Full Text Available Le roman de Richard Powers, Operation Wandering Soul (1993, présente le lien subtil qui associe un mondialisme déjà usé et vieillissant à l’enfant perçu comme catégorie dominante. Comme les faces serpentines d’un ruban de Möbius lové autour de l’illimité et de l’intemporel, le texte, tendu entre ses deux infinis – l’univers et l’enfant – révise la portée, la conception, la structure et le style du genre romanesque. Délaissant Aristote pour Einstein, Operation Wandering Soul se place sur le terrain de la cosmologie. Le récit, qui rassemble la kyrielle des grands ralliements juvéniles et leurs vains pèlerinages, concentre l’espace-temps dans une présentation qui évoque la « somme des histoires » de Richard Feynman. La contraction de l’espace-temps opérée par le roman ne fait pas de celui-ci un hymne simpliste au global (catégorie déjà aussi datée que celle des malheureux vétérans du Vietnam, mais capte au contraire la conscience grandissante d’une existence sans origine qui s’étend à perte de vue au-delà de ses coordonnées supposées. Le roman s’enroule sur lui-même tout en s’épanchant au dehors, boucle ses cadres et ses détours tout en desserrant leur emprise. Il fait tourner la roue de ses récits comme des planètes en rotation, la ronde d’un système solaire, le tourbillon d’une galaxie. La conscience que présente Operation Wandering Soul ne se résume donc pas au seul point de vue de l’âme errante qu’est le personnage de Kraft, mais consiste en la somme de tous les temps et de tous les lieux, de leurs strates accumulées comme une conscience en acte, complexe et tissée de réseaux, qui n’appartient à personne et est partagée par tous. Cette accumulation organise le jeu des perspectives multiples qui instaurent l’acte de lecture et sont instaurées par lui. À cet égard, lire constitue ici une physique des oubliés.Richard Powers’ novel Operation Wandering

  15. A Nobel prize to public science communication (Italian original version

    Directory of Open Access Journals (Sweden)

    Pietro Greco

    2007-12-01

    Full Text Available The Norwegian Nobel Committee has bestowed the 2007 Nobel Peace Price equally upon the scientists of the Intergovernmental Panel on Climate Change (IPCC and Al Gore, former vice-President of the United States of America, with the same motivation: «for their efforts to build up and disseminate greater knowledge about man-made climate change, and to lay the foundations for the measures that are needed to counteract such change».

  16. AMBRE - a mathematica package for the construction of Mellin-Barnes representations for Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Gluza, J.; Kajda, K. [Silesia Univ, Katowice (Poland). Dept. of Field Theory and Particle Physics, Inst. of Phsyics; Riemann, T. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2007-05-15

    The Mathematica toolkit AMBRE derives Mellin-Barnes (MB) representations for Feynman integrals in d=4-2{epsilon} dimensions. It may be applied for tadpoles as well as for multi-leg multi-loop scalar and tensor integrals. AMBRE uses a loop-by-loop approach and aims at lowest dimensions of the final MB representations. The present version of AMBRE works fine for planar Feynman diagrams. The output may be further processed by the package MB for the determination of its singularity structure in {epsilon}. The AMBRE package contains various sample applications for Feynman integrals with up to six external particles and up to four loops. (orig.)

  17. Computer generation of integrands for Feynman parametric integrals

    International Nuclear Information System (INIS)

    Cvitanovic, Predrag

    1973-01-01

    TECO text editing language, available on PDP-10 computers, is used for the generation and simplification of Feynman integrals. This example shows that TECO can be a useful computational tool in complicated calculations where similar algebraic structures recur many times

  18. Science Underlying 2008 Nobel Prizes

    Science.gov (United States)

    Caldwell, Bernadette A.

    2009-01-01

    JCE offers a wealth of materials for teaching and learning chemistry that you can explore online. In the list below, Bernadette Caldwell of the Editorial Staff suggests additional resources that are available through JCE for teaching the science behind some of the 2008 Nobel Prizes . Discovering and Applying the Chemistry of GFP The Royal Swedish Academy of Sciences awarded the 2008 Nobel Prize in Chemistry for the discovery and development of the green fluorescent protein, GFP to three scientists: Osamu Shimomura, Martin Chalfie, and Roger Y. Tsien. These scientists led the field in discovering and introducing a fluorescing protein from jellyfish into cells and genes under study, which allows researchers to witness biochemistry in action. Now tags are available that emit light in different colors, revealing myriad biological processes and their interactions simultaneously. Identifying HPV and HIV, HIV's Replication Cycle, and HIV Virus-Host Interactions The Nobel Assembly at Karolinska Institutet awarded the 2008 Nobel Prize in Medicine or Physiology for their discovery of human immunodeficiency virus (HIV) to two scientists: Françoise Barré-Sinoussi and Luc Montagnier; and for his discovery of human papilloma viruses [HPV] causing cervical cancer to one scientist, Harald zur Hausen. Diseases caused by these infectious agents significantly affect global health. While isolating and studying the virus, researchers discovered HIV is an uncommon retrovirus that infects humans and relies on the host to make its viral DNA, infecting and killing the host's white blood cells, ultimately destroying the immune systems of infected humans. Related Resources at JCE Online The Journal has published articles relating to GFP specifically, and more generally to fluorescing compounds applied to biochemistry. The Journal has also published an article and a video on protease inhibition—a strategy to suppress HIV's biological processes. With the video clips, an accompanying guide

  19. Nobel Prize Honors Autophagy Discovery.

    Science.gov (United States)

    2016-12-01

    Japanese cell biologist Yoshinori Ohsumi, PhD, was awarded this year's Nobel Prize in Physiology or Medicine for his discovery of autophagy. His groundbreaking studies in yeast cells illuminated how cells break down and recycle damaged material, a process that is critical to the survival of both normal cells and some cancer cells. ©2016 American Association for Cancer Research.

  20. A complete algebraic reduction of one-loop tensor Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bielefeld Univ. (Germany). Fakultaet fuer Physik; Riemann, T. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2010-09-15

    Guided by the need to eliminate inverse Gram determinants (){sub 5} from tensorial 5-point functions and sub-Gram determinants (){sub 4} from tensorial 4-point functions, we set up a new and very efficient approach for the tensor reduction of Feynman integrals. We eliminate all Gram determinants for one-loop 5-point integrals up to tensors of rank R=5 by reducing their tensor coefficients to higherdimensional 4-point tensor coefficients. These in turn are reduced to expressions which are free of inverse powers of (){sub 4}, but depend on higher-dimensional integrals I{sub 4}{sup (d)} with d{<=}2R. Their expression in terms of scalar integrals defined in the generic dimension, I{sub 4}; I{sub 3}; I{sub 2}; I{sub 1}, however, introduces coefficients [1=(){sub 4}]{sup R} for tensors of rank R. For small or vanishing (){sub 4}, an efficient expansion is found so that a stable numerical evaluation of massive and massless Feynman integrals at arbitrary values of the Gram determinants is made possible. Finally, some relations are mentioned which may be useful for analytic simplifications of the original Feynman diagrams. (orig.)

  1. Asymptotic behaviour of Feynman integrals

    International Nuclear Information System (INIS)

    Bergere, M.C.

    1980-01-01

    In these lecture notes, we describe how to obtain the asymptotic behaviour of Feynman amplitudes; this technique has been already applied in several cases, but the general solution for any kind of asymptotic behaviour has not yet been found. From the mathematical point of view, the problem to solve is close to the following problem: find the asymptotic expansion at large lambda of the integral ∫...∫ [dx] esup(-LambdaP[x]) where P[x] is a polynomial of several variables. (orig.)

  2. The 2016 Nobel Prize: Chemistry and Physics

    Directory of Open Access Journals (Sweden)

    José Maria Filardo Bassalo

    2017-08-01

    Full Text Available In this article, we will deal with the 2016 Nobel Prizes: Chemistry and Physics, since they are related to the same theme: nanostructures / molecular machines (conception, fabrication and topological theoretical explanation.

  3. Feynman path integrals - from the prodistribution definition to the calculation of glory scattering

    International Nuclear Information System (INIS)

    DeWitt-Morette, C.

    1984-01-01

    In these lectures I present a path integral calculation, starting from a global definition of Feynman path integrals and ending at a scattering cross section formula. Along the way I discuss some basic issues which had to be resolved to exploit the computational power of the proposed definition of Feynman integrals. I propose to compute the glory scattering of gravitational waves by black holes. (orig./HSI)

  4. IAEA Nobel Peace Prize cancer and nutrition fund

    International Nuclear Information System (INIS)

    Kinley, D. III

    2006-05-01

    The Norwegian Nobel Committee awarded the 2005 Nobel Peace Prize to the IAEA and Director General ElBaradei in equal shares. The IAEA and its Director General won the 2005 Peace Prize for their efforts to prevent nuclear energy from being used for military purposes and to ensure that nuclear energy for peaceful purposes is used in the safest possible way. The IAEA Board of Governors subsequently decided that the IAEA's share of the prestigious prize would be used to create a special fund for fellowships and training to improve cancer control and childhood nutrition in the developing world. This fund is known as the 'IAEA Nobel Peace Prize Cancer and Nutrition Fund'. The money will be dedicated to enhancing human resources in developing regions of the world for improved cancer control and childhood nutrition. In the area of cancer control, the money will be spent on establishing regional cancer training institutes for the training of new doctors, medical physicists and technologists in radiation oncology to improve cancer treatment and care, as part of the IAEA's Programme of Action for Cancer Therapy (PACT). In the realm of nutrition, the focus of the Fund will be on capacity building in the use of nuclear techniques to develop interventions to contribute to improved nutrition and health for children in the developing world. Fund-supported fellowship awards will target young professionals, especially women, from Member States, through the IAEA's Technical Cooperation (TC) Programme. Alongside such awards, regional events will be organized in Africa, Asia and Latin America in cancer control and nutrition during 2006. The IAEA Secretariat is encouraging Member States and donors to contribute to the IAEA Nobel Peace Prize Cancer and Nutrition Fund by providing additional resources, in cash and in-kind

  5. A Nobel Prize in Czechoslovakia; Yaroslav Geyrovskiy

    National Research Council Canada - National Science Library

    Brabernets, Irzhi

    1960-01-01

    The notification of the awarding of a Nobel Prize to Yaroslav Geyrovskiy in the field of chemistry in l959 came to the scientist while he was at work at the Polarographic Institute of the Czechoslovak...

  6. Norman Ramsey. Nobel Prize Winner in Physics (1989); Norman Ramsey. Premio Nobel de fisica (1989)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Norman Ramsey (Washington 1915) received the Nobel Prize in Physics (shared with con H. G. Dehmelt and W. Paul) for the development of study techniques for Atomic Physics. This tireless researcher participated in the discovery of the Magnetic Resonance Method for Molecular Emission. He invented the hydrogen maser and the hydrogen atomic clock, in addition to being a profile author. (Author)

  7. Alfred Nobel and His Prizes: From Dynamite to DNA.

    Science.gov (United States)

    Lichtman, Marshall A

    2017-07-01

    Alfred Nobel was one of the most successful chemists, inventors, entrepreneurs, and businessmen of the late nineteenth century. In a decision later in life, he rewrote his will to leave virtually all his fortune to establish prizes for persons of any nationality who made the most compelling achievement for the benefit of mankind in the fields of chemistry, physics, physiology or medicine, literature, and peace among nations. The prizes were first awarded in 1901, five years after his death. In considering his choice of prizes, it may be pertinent that he used the principles of chemistry and physics in his inventions and he had a lifelong devotion to science, he suffered and died from severe coronary and cerebral atherosclerosis, and he was a bibliophile, an author, and mingled with the literati of Paris. His interest in harmony among nations may have derived from the effects of the applications of his inventions in warfare ("merchant of death") and his friendship with a leader in the movement to bring peace to nations of Europe. After some controversy, including Nobel's citizenship, the mechanisms to choose the laureates and make four of the awards were developed by a foundation established in Stockholm; the choice of the laureate for promoting harmony among nations was assigned to the Norwegian Storting, another controversy. The Nobel Prizes after 115 years remain the most prestigious of awards. This review describes the man, his foundation, and the prizes with a special commentary on the Nobel Prize in Physiology or Medicine.

  8. Feynman propagator in curved space-time

    International Nuclear Information System (INIS)

    Candelas, P.; Raine, D.J.

    1977-01-01

    The Wick rotation is generalized in a covariant manner so as to apply to curved manifolds in a way that is independent of the analytic properties of the manifold. This enables us to show that various methods for defining a Feynman propagator to be found in the literature are equivalent where they are applicable. We are also able to discuss the relation between certain regularization methods that have been employed

  9. Learning by Viewing - Nobel Labs 360

    Science.gov (United States)

    Mather, John C.

    2013-01-01

    First of all, my thanks to the Nobel Lindau Foundation for their inspiration and leadership in sharing the excitement of scientific discovery with the public and with future scientists! I have had the pleasure of participating twice in the Lindau meetings, and recently worked with the Nobel Labs 360 project to show how we are building the world's greatest telescope yet, the James Webb Space Telescope (JWST). For the future, I see the greatest challenges for all the sciences in continued public outreach and inspiration. Outreach, so the public knows why we are doing what we are doing, and what difference it makes for them today and in the long-term future. Who knows what our destiny may be? It could be glorious, or not, depending on how we all behave. Inspiration, so that the most creative and inquisitive minds can pursue the scientific and engineering discoveries that are at the heart of so much of human prosperity, health, and progress. And, of course, national and local security depend on those discoveries too; scientists have been working with "the government" throughout recorded history. For the Lindau Nobel experiment, we have a truly abundant supply of knowledge and excitement, through the interactions of young scientists with the Nobelists, and through the lectures and the video recordings we can now share with the whole world across the Internet. But the challenge is always to draw attention! With 7 billion inhabitants on Earth, trying to earn a living and have some fun, there are plenty of competing opportunities and demands on us all. So what will draw attention to our efforts at Lindau? These days, word of mouth has become word of (computer) mouse, and ideas propagate as viruses ( or memes) across the Internet according to the interests of the participants. So our challenge is to find and match those interests, so that the efforts of our scientists, photographers, moviemakers, and writers are rewarded by our public. The world changes every day, so there

  10. The 2009 Physics Nobel Prize

    Directory of Open Access Journals (Sweden)

    José Maria Filardo Bassalo

    2010-09-01

    Full Text Available In this article we will talk about the Nobel Prize in Physics 2009, granted to the physicists north-americans: Charles Kuen Kao (born in China, for its discovery of the process of transmission of light in optical fibers; and Willard Sterling Boyle (born in Canada and George Elwood Smith, for the invention of an imaging semiconductor circuit – the CCD sensor.

  11. Perturbation theory via Feynman diagrams in classical mechanics

    OpenAIRE

    Penco, R.; Mauro, D.

    2006-01-01

    In this paper we show how Feynman diagrams, which are used as a tool to implement perturbation theory in quantum field theory, can be very useful also in classical mechanics, provided we introduce also at the classical level concepts like path integrals and generating functionals.

  12. Following Zahka: Using Nobel Prize Winners' Speeches and Ideas to Teach Economics

    Science.gov (United States)

    Shanahan, Martin P.; Wilson, John K.; Becker, William E.

    2012-01-01

    Over 20 years ago, the late William Zahka (1990, 1998) outlined how the acceptance speeches of those who received the Nobel Memorial Prize in Economic Science could be used to teach undergraduates. This article updates and expands Zahka's work, identifying some of the issues discussed by recent Nobel Laureates, classifying their speeches by topic…

  13. Feynman path integral formulation of quantum mechanics

    International Nuclear Information System (INIS)

    Mizrahi, M.M.

    1975-01-01

    The subject of this investigation is Feynman's path integral quantization scheme, which is a powerful global formalism with great intuitive appeal. It stems from the simple idea that a probability amplitude for a system to make a transition between two states is the ''sum'' of the amplitudes for all the possible ways the transition can take place

  14. Nobel Prize 1990

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The most prestigious award in physics went this year to Jerome I. Friedman and Henry W. Kendall, both of the Massachusetts Institute of Technology (MIT), and Richard E. Taylor of Stanford 'for their pioneering investigations concerning deep inelastic scattering of electrons on protons and bound neutrons, which have been of essential importance for the development of the quark model in particle physics'

  15. A quantum formulation of the Feynman-Kac formula

    International Nuclear Information System (INIS)

    Accardi, L.

    1981-01-01

    The author discusses a formulation, in the general setting of W*- (or C*)-algebras, of the classical Feynman-Kac formula. The equivalence, in the commutative case, of the present formulation and the usual one is based on the identification between stochastic processes and local algebras. (Auth.)

  16. The ε-form of the differential equations for Feynman integrals in the elliptic case

    Science.gov (United States)

    Adams, Luise; Weinzierl, Stefan

    2018-06-01

    Feynman integrals are easily solved if their system of differential equations is in ε-form. In this letter we show by the explicit example of the kite integral family that an ε-form can even be achieved, if the Feynman integrals do not evaluate to multiple polylogarithms. The ε-form is obtained by a (non-algebraic) change of basis for the master integrals.

  17. [Commentary on the Nobel Prize that has been granted in Medicine-Physiology, Chemistry and Physics to noteable investigators].

    Science.gov (United States)

    Zárate, Arturo; Apolinar, Leticia Manuel; Saucedo, Renata; Basurto, Lourdes

    2015-01-01

    The Nobel Prize was established by Alfred Nobel in 1901 to award people who have made outstanding achievements in physics, chemistry and medicine. So far, from 852 laureates, 45 have been female. Marie Curie was the first woman to receive the Nobel Prize in 1903 for physics and eight years later also for chemistry It is remarkable that her daughter Irene and her husband also received the Nobel Prize for chemistry in 1935. Other two married couples, Cori and Moser, have also been awarded the Nobel Prize. The present commentary attempts to show the female participation in the progress of scientific activities.

  18. A partial solution for Feynman's problem: A new derivation of the Weyl equation

    Directory of Open Access Journals (Sweden)

    Atsushi Inoue

    2000-07-01

    Full Text Available Associating classical mechanics to a system of partial differential equations, we give a procedure for Feynman-type quantization of a "Schrodinger-type equation with spin." Mathematically, we construct a "good parametrix" for the Weyl equation with an external electromagnetic field. Main ingredients are (i a new interpretation of the matrix structure using superanalysis and (ii another interpretation of the method of characteristics as a quantization procedure of Feynman type.

  19. ["In Stockholm they apparently had some kind of countermovement" - Ferdinand Sauerbruch (1875-1951) and the Nobel prize].

    Science.gov (United States)

    Hansson, Nils; Schagen, Udo

    2014-01-01

    The archive of the Nobel Assembly for Physiology or Medicine in Solna, Sweden, is a remarkable repository that contains reports and dossiers of the Nobel Prize nominations of senior and junior physicians from around the world. Although this archive has begun to be used more by scholars, it has been insufficiently examined by historians of surgery. No other German surgeon was nominated as often as Ferdinand Sauerbruch for the Nobel Prize for Physiology or Medicine in the first half of the 20th century. This contribution reconstructs why and by whom Sauerbruch was nominated, and discusses the Nobel committee evaluations of his work. Political factors did not play an obvious role in the Nobel committee discussions, in spite of the fact that Adolf Hitler in 1937 had prohibited all German citizens to accept the Nobel Prize. The main reasons why Sauerbruch ultimately was not considered prize- worthy were that Sauerbruch's achievements were marked by scientific priority disputes, and that his work was not seen as original enough.

  20. IAEA Nobel Peace fund schools for nutrition. Combating child malnutrition

    International Nuclear Information System (INIS)

    2007-01-01

    Full text: Dhaka, Bangladesh - Malnutrition remains the world's most serious health problem and the single biggest contributor to child deaths in the developing world, according to the World Bank. Now, the International Atomic Energy Agency (IAEA) is using its Nobel Peace Prize earnings to promote the use of nuclear techniques to combat malnutrition during the earliest years of life. 'One out of every ten children born in developing countries will die before his or her fifth birthday,' explains IAEA nutrition expert Lena Davidsson. 'That's more than 10 million dead children each year. And the vast majority of these child deaths in developing countries are preventable with a combination of good care, adequate nutrition and appropriate medical treatment,' explains Dr. Davidsson. 'This brings us hope that unacceptably high childhood mortality can be substantially reduced with effective and well-targeted nutritional interventions.' Undernutrition is an important factor in more than half of all child deaths worldwide. The high prevalence of infants born with low birth weight and undernutrition among Asian children, especially in South Asia, emphasizes the urgent need to develop effective nutrition interventions within 'the window of opportunity', i.e., to target young women before pregnancy as well as infants and young children during the first 2 years of life. The IAEA Nobel Peace Prize Fund School for Nutrition for Asia will be held in Dhaka, Bangladesh, April 22-26, 2007. It will focus on Interventions to combat undernutrition during early life and seeks to disseminate information about the usefulness of stable isotope techniques in intervention programs that reduce malnutrition, in particular in infants and children. The event is hosted by the Government of Bangladesh through the International Centre for Health and Population Research (ICDDR, B) and the Bangladesh Atomic Energy Commission (BAEC). The IAEA is assisting some of the world's poorest countries in their

  1. Mellin-Barnes representations of Feynman diagrams, linear systems of differential equations, and polynomial solutions

    International Nuclear Information System (INIS)

    Kalmykov, Mikhail Yu.; Kniehl, Bernd A.

    2012-05-01

    We argue that the Mellin-Barnes representations of Feynman diagrams can be used for obtaining linear systems of homogeneous differential equations for the original Feynman diagrams with arbitrary powers of propagators without recourse to the integration-by-parts technique. These systems of differential equation can be used (i) for the differential reductions to sets of basic functions and (ii) for counting the numbers of master-integrals.

  2. El premio Nobel de la Paz 1901-1914. Voluntad o interés

    OpenAIRE

    Hernández García, Eugenio

    2015-01-01

    Los primeros premios Nobel de la Paz, (al igual que los otros premios Nobel), se concedieron en diciembre de 1901, entre esa fecha y el inicio de la I Guerra Mundial en 1914, el premio se consolida, igualmente se sientan las bases de lo que será en el fu

  3. Picard-Fuchs equations of dimensionally regulated Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Zayadeh, Raphael

    2013-12-15

    This thesis is devoted to studying differential equations of Feynman integrals. A Feynman integral depends on a dimension D. For integer values of D it can be written as a projective integral, which is called the Feynman parameter prescription. A major complication arises from the fact that for some values of D the integral can diverge. This problem is solved within dimensional regularization by continuing the integral as a meromorphic function on the complex plane and replacing the ill-defined quantity by a Laurent series in a dimensional regularization parameter. All terms in such a Laurent expansion are periods in the sense of Kontsevich and Zagier. We describe a new method to compute differential equations of Feynman integrals. So far, the standard has been to use integration-by-parts (IBP) identities to obtain coupled systems of linear differential equations for the master integrals. Our method is based on the theory of Picard-Fuchs equations. In the case we are interested in, that of projective and quasiprojective families, a Picard-Fuchs equation can be computed by means of the Griffiths-Dwork reduction. We describe a method that is designed for fixed integer dimension. After a suitable integer shift of dimension we obtain a period of a family of hypersurfaces, hence a Picard-Fuchs equation. This equation is inhomogeneous because the domain of integration has a boundary and we only obtain a relative cycle. As a second step we shift back the dimension using Tarasov's generalized dimensional recurrence relations. Furthermore, we describe a method to directly compute the differential equation for general D without shifting the dimension. This is based on the Griffiths-Dwork reduction. The success of this method depends on the ability to solve large systems of linear equations. We give examples of two and three-loop graphs. Tarasov classifies two-loop two-point functions and we give differential equations for these. For us the most interesting example is

  4. Picard-Fuchs equations of dimensionally regulated Feynman integrals

    International Nuclear Information System (INIS)

    Zayadeh, Raphael

    2013-12-01

    This thesis is devoted to studying differential equations of Feynman integrals. A Feynman integral depends on a dimension D. For integer values of D it can be written as a projective integral, which is called the Feynman parameter prescription. A major complication arises from the fact that for some values of D the integral can diverge. This problem is solved within dimensional regularization by continuing the integral as a meromorphic function on the complex plane and replacing the ill-defined quantity by a Laurent series in a dimensional regularization parameter. All terms in such a Laurent expansion are periods in the sense of Kontsevich and Zagier. We describe a new method to compute differential equations of Feynman integrals. So far, the standard has been to use integration-by-parts (IBP) identities to obtain coupled systems of linear differential equations for the master integrals. Our method is based on the theory of Picard-Fuchs equations. In the case we are interested in, that of projective and quasiprojective families, a Picard-Fuchs equation can be computed by means of the Griffiths-Dwork reduction. We describe a method that is designed for fixed integer dimension. After a suitable integer shift of dimension we obtain a period of a family of hypersurfaces, hence a Picard-Fuchs equation. This equation is inhomogeneous because the domain of integration has a boundary and we only obtain a relative cycle. As a second step we shift back the dimension using Tarasov's generalized dimensional recurrence relations. Furthermore, we describe a method to directly compute the differential equation for general D without shifting the dimension. This is based on the Griffiths-Dwork reduction. The success of this method depends on the ability to solve large systems of linear equations. We give examples of two and three-loop graphs. Tarasov classifies two-loop two-point functions and we give differential equations for these. For us the most interesting example is the two

  5. The algebraic locus of Feynman integrals

    OpenAIRE

    Kol, Barak

    2016-01-01

    In the Symmetries of Feynman Integrals (SFI) approach, a diagram's parameter space is foliated by orbits of a Lie group associated with the diagram. SFI is related to the important methods of Integrations By Parts and of Differential Equations. It is shown that sometimes there exist a locus in parameter space where the set of SFI differential equations degenerates into an algebraic equation, thereby enabling a solution in terms of integrals associated with degenerations of the diagram. This i...

  6. Two paradigms and Nobel prizes in economics : a contradiction or coexistence?

    OpenAIRE

    Levy, Haim; De Giorgi, Enrico; Hens, Thorsten

    2003-01-01

    Markowitz and Sharpe won the Nobel Prize in Economics more than a decade ago for the development of Mean-Variance analysis and the Capital Asset Pricing Model (CAPM). In the year 2002, Kahneman won the Nobel Prize in Economics for the development of Prospect Theory. Can these two apparently contradictory paradigms coexist? In deriving the CAPM, Sharpe, Lintner and Mossin assume expected utility (EU) maximization following the approach proposed by Markowitz, normal distributions and risk avers...

  7. Richard von Volkmann

    Science.gov (United States)

    Willy, Christian; Schneider, Peter; Engelhardt, Michael; Hargens, Alan R.

    2008-01-01

    Richard von Volkmann (1830–1889), one of the most important surgeons of the 19th century, is regarded as one of the fathers of orthopaedic surgery. He was a contemporary of Langenbeck, Esmarch, Lister, Billroth, Kocher, and Trendelenburg. He was head of the Department of Surgery at the University of Halle, Germany (1867–1889). His popularity attracted doctors and patients from all over the world. He was the lead physician for the German military during two wars. From this experience, he compared the mortality of civilian and war injuries and investigated the general poor hygienic conditions in civilian hospitals. This led him to introduce the “antiseptic technique” to Germany that was developed by Lister. His powers of observation and creativity led him to findings and achievements that to this day bear his name: Volkmann’s contracture and the Hueter-Volkmann law. Additionally, he was a gifted writer; he published not only scientific literature but also books of children’s fairy tales and poems under the pen name of Richard Leander, assuring him a permanent place in the world of literature as well as orthopaedics. PMID:18196438

  8. Eight Nobel prizewinners at CERN in 1962

    CERN Multimedia

    1962-01-01

    In 1962, CERN hosted the 11th International Conference on High Energy Physics. Among the distinguished visitors were eight Nobel prizewinners. Left to right: Cecil F Powell, Isidor I Rabi, Werner Heisenberg, Edwin M McMillan, Emile Segre, Tsung Dao Lee, Chen Ning Yang and Robert Hofstadter.

  9. Richard Avedon ja Annie Leibovitz laulsid kaanonit / Marika Alver

    Index Scriptorium Estoniae

    Alver, Marika

    2008-01-01

    Richard Avedoni (1923-2004) retrospektiivnäitusest (fotod aastatest 1946-2004) kuraator Helle Crenzien (Lousiana Kaasaegse Kunsti muuseum Taanis), millega kaasnes ka Helen Whitney film "Richard Avedon : darkness and light" ja Annie Leibovitzi (1949) suurprojektist "A photographer's life 1990-2005" Pariisis

  10. Introducing Taiwanese undergraduate students to the nature of science through Nobel Prize stories

    Directory of Open Access Journals (Sweden)

    Haim Eshach

    2013-04-01

    Full Text Available Although there is a broad agreement among scientists and science educators that students should not only learn science, but also acquire some sense of its nature, it has been reported that undergraduate students possess an inadequate grasp of the nature of science (NOS. The study presented here examined the potential and effectiveness of Nobel Prize stories as a vehicle for teaching NOS. For this purpose, a 36-hour course, “Albert Einstein’s Nobel Prize and the Nature of Science,” was developed and conducted in Taiwan Normal University. Ten undergraduate physics students participated in the course. Analysis of the Views of Nature of Science questionnaires completed by the students before and after the course, as well as the students’ own presentations of Nobel Prize stories (with an emphasis on how NOS characteristics are reflected in the story, showed that the students who participated in the course enriched their views concerning all aspects of NOS. The paper concludes with some suggestions for applying the novel idea of using Nobel Prize stories in physics classrooms.

  11. [On the Awarding of the First Nobel Prize for Physiology or Medicine to Emil von Behring].

    Science.gov (United States)

    Hansson, Nils; Enke, Ulrike

    2015-12-01

    In his will of 1895, the Swedish inventor Alfred Nobel laid the foundation for prizes in physics, chemistry, physiology or medicine, literature, and peace to those who had "conferred the greatest benefit on mankind" during the last year. The Nobel Prize is today widely considered as the most prestigious international symbol of scientific excellence, but it still is an exciting research question how it gained such prestige. Drawing on files from the Emil von Behring Archive in Marburg, Germany, and the Archive of the Nobel Assembly for Physiology or Medicine in Stockholm this essay aims at shedding light on why the first Nobel Prize for Physiology or Medicine in 1901 was awarded the German immunologist Emil von Behring, and how this decision was viewed at that time. This study is part of a research project that explores mechanisms leading to scientific recognition by using the example of the Nobel Prize for Physiology or Medicine. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Physics Nobel Prize (PNP in 2008

    Directory of Open Access Journals (Sweden)

    José Maria Filardo Bassalo

    2009-08-01

    Full Text Available In this article we will talk about the Nobel Prize in Physics 2008, granted  to  the Japanese  physicists  Yoichiro  Nambu,  Makoto Kobayashi and Toshihide Maskawa,  for  their  discovery  of  the mechanisms involving strong interactions symmetries (quiral, by Nambu, and in weak interactions (charge-parity, by Kobayashi and Maskawa.

  13. Remark on the solution of the Schroedinger equation for anharmonic oscillators via the Feynman path integral

    International Nuclear Information System (INIS)

    Rezende, J.

    1983-01-01

    We give a simple proof of Feynman's formula for the Green's function of the n-dimensional harmonic oscillator valid for every time t with Im t<=0. As a consequence the Schroedinger equation for the anharmonic oscillator is integrated and expressed by the Feynman path integral on Hilbert space. (orig.)

  14. JaxoDraw: A graphical user interface for drawing Feynman diagrams

    Science.gov (United States)

    Binosi, D.; Theußl, L.

    2004-08-01

    JaxoDraw is a Feynman graph plotting tool written in Java. It has a complete graphical user interface that allows all actions to be carried out via mouse click-and-drag operations in a WYSIWYG fashion. Graphs may be exported to postscript/EPS format and can be saved in XML files to be used for later sessions. One of JaxoDraw's main features is the possibility to create ? code that may be used to generate graphics output, thus combining the powers of ? with those of a modern day drawing program. With JaxoDraw it becomes possible to draw even complicated Feynman diagrams with just a few mouse clicks, without the knowledge of any programming language. Program summaryTitle of program: JaxoDraw Catalogue identifier: ADUA Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUA Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar gzip file Operating system: Any Java-enabled platform, tested on Linux, Windows ME, XP, Mac OS X Programming language used: Java License: GPL Nature of problem: Existing methods for drawing Feynman diagrams usually require some 'hard-coding' in one or the other programming or scripting language. It is not very convenient and often time consuming, to generate relatively simple diagrams. Method of solution: A program is provided that allows for the interactive drawing of Feynman diagrams with a graphical user interface. The program is easy to learn and use, produces high quality output in several formats and runs on any operating system where a Java Runtime Environment is available. Number of bytes in distributed program, including test data: 2 117 863 Number of lines in distributed program, including test data: 60 000 Restrictions: Certain operations (like internal latex compilation, Postscript preview) require the execution of external commands that might not work on untested operating systems. Typical running time: As an interactive program, the running time depends on the complexity

  15. Differential reduction of generalized hypergeometric functions from Feynman diagrams. One-variable case

    Energy Technology Data Exchange (ETDEWEB)

    Bytev, Vladimir V.; Kalmykov, Mikhail Yu.; Kniehl, Bernd A. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2010-03-15

    The differential-reduction algorithm, which allows one to express generalized hypergeometric functions with parameters of arbitrary values in terms of such functions with parameters whose values differ from the original ones by integers, is discussed in the context of evaluating Feynman diagrams. Where this is possible, we compare our results with those obtained using standard techniques. It is shown that the criterion of reducibility of multiloop Feynman integrals can be reformulated in terms of the criterion of reducibility of hypergeometric functions. The relation between the numbers of master integrals obtained by differential reduction and integration by parts is discussed. (orig.)

  16. Summing over Feynman histories by functional contour integration

    International Nuclear Information System (INIS)

    Garrison, J.C.; Wright, E.M.

    1986-01-01

    The authors show how complex paths can be consistently introduced into sums for Feynman histories by using the notion of functional contour integration. For a kappa-dimensional system specified by a potential with suitable analyticity properties, each coordinate axis is replaced by a copy of the complex plane, and at each instant of time a contour is chosen in each plane. This map from the time axis into the set of complex contours defines a functional contour. The family of contours labelled by time generates a (kappa+1)-dimensional submanifold of the (2kappa+1)-dimensional space defined by the cartesian product of the time axis and the coordinate planes. The complex Feynman paths lie on this submanifold. An application of this idea to systems described by absorptive potentials yields a simple derivation of the correct WKB result in terms of a complex path that extremalises the action. The method can also be applied to spherically symmetric potentials by using a partial wave expansion and restricting the contours appropriately. (author)

  17. Feynman path integral related to stochastic schroedinger equation

    International Nuclear Information System (INIS)

    Belavkin, V.P.; Smolyanov, O.G.

    1998-01-01

    The derivation of the Schroedinger equation describing the continuous measurement process is presented. The representation of the solution of the stochastic Schroedinger equation for continuous measurements is obtained by means of the Feynman path integral. The connection with the heuristic approach to the description of continuous measurements is considered. The connection with the Senon paradox is established [ru

  18. In conversation with: Professor Richard James

    Directory of Open Access Journals (Sweden)

    John Clarke

    2014-03-01

    Full Text Available In 2011, Richard James wrote in the Foreword to Nelson, Clarke, Kift, and Creagh’s (2012 monograph on Australasian literature on the First Year Experience that:The trend towards universal participation will usher in dramatic changes in the character of the first year in higher education. … (p. iiiIn an interview at the University of Melbourne, Australia in July 2013 between Richard James and John Clarke, Co-editor of the International Journal of the First Year in Higher Education, these and related issues were explored.  The interview picks up where the Foreword left off:  focussing on universal participation.

  19. Cockcroft and Walton. Nobel Prize for Physics (1951)

    International Nuclear Information System (INIS)

    2003-01-01

    In 1951, the Nobel Prize for Physics was shared by researchers John Douglas Cockcroft (1897-1969) and Ernest Thomas Sinton Walton (1903-1995), for their pioneer work on the transmutation of the atomic nuclei by artificial acceleration of atomic particles. (Author)

  20. The power counting theorem for Feynman integrals with massless propagators

    International Nuclear Information System (INIS)

    Lowenstein, J.H.

    2000-01-01

    Dyson's power counting theorem is extended to the case where some of the mass parameters vanish. Weinberg's ultraviolet convergence conditions are supplemented by infrared convergence conditions which combined are sufficient for the convergence of Feynman integrals. (orig.)

  1. Feynman and physics. Life and research of an exceptional man

    International Nuclear Information System (INIS)

    Resag, Joerg

    2018-01-01

    The life of Feynman is described together with his work on path integrals, quantum electrodynmaics, helium at low temperatures, the weak interaction, the quark model, and computer-calculation methods, and his contribution to the Manhattan project. (HSI)

  2. Reactivity determination in accelerator driven nuclear reactors by statistics from neutron detectors (Feynman-Alpha Method)

    International Nuclear Information System (INIS)

    Ceder, M.

    2002-03-01

    The Feynman-alpha method is used in traditional nuclear reactors to determine the subcritical reactivity of a system. The method is based on the measurement of the mean number and the variance of detector counts for different measurement times. The measurement is performed while a steady-state neutron flux is maintained in the reactor by an external neutron source, as a rule a radioactive source. From a plot of the variance-to-mean ratio as a function of measurement time ('gate length'), the reactivity can be determined by fitting the measured curve to the analytical solution. A new situation arises in the planned accelerator driven systems (ADS). An ADS will be run in a subcritical mode, and the steady flux will be maintained by an accelerator based source. Such a source has statistical properties that are different from those of a steady radioactive source. As one example, in a currently running European Community project for ADS research, the MUSE project, the source will be a periodically pulsed neutron generator. The theory of Feynman-alpha method needs to be extended to such nonstationary sources. There are two ways of performing and evaluating such pulsed source experiments. One is to synchronise the detector time gate start with the beginning of an incoming pulse. The Feynman-alpha method has been elaborated for such a case recently. The other method can be called stochastic pulsing. It means that there is no synchronisation between the detector time gate start and the source pulsing, i.e. the start of each measurement is chosen at a random time. The analytical solution to the Feynman-alpha formula from this latter method is the subject of this report. We have obtained an analytical Feynman-alpha formula for the case of stochastic pulsing by two different methods. One is completely based on the use of the symbolic algebra code Mathematica, whereas the other is based on complex function techniques. Closed form solutions could be obtained by both methods

  3. Reactivity determination in accelerator driven nuclear reactors by statistics from neutron detectors (Feynman-Alpha Method)

    Energy Technology Data Exchange (ETDEWEB)

    Ceder, M

    2002-03-01

    The Feynman-alpha method is used in traditional nuclear reactors to determine the subcritical reactivity of a system. The method is based on the measurement of the mean number and the variance of detector counts for different measurement times. The measurement is performed while a steady-state neutron flux is maintained in the reactor by an external neutron source, as a rule a radioactive source. From a plot of the variance-to-mean ratio as a function of measurement time ('gate length'), the reactivity can be determined by fitting the measured curve to the analytical solution. A new situation arises in the planned accelerator driven systems (ADS). An ADS will be run in a subcritical mode, and the steady flux will be maintained by an accelerator based source. Such a source has statistical properties that are different from those of a steady radioactive source. As one example, in a currently running European Community project for ADS research, the MUSE project, the source will be a periodically pulsed neutron generator. The theory of Feynman-alpha method needs to be extended to such nonstationary sources. There are two ways of performing and evaluating such pulsed source experiments. One is to synchronise the detector time gate start with the beginning of an incoming pulse. The Feynman-alpha method has been elaborated for such a case recently. The other method can be called stochastic pulsing. It means that there is no synchronisation between the detector time gate start and the source pulsing, i.e. the start of each measurement is chosen at a random time. The analytical solution to the Feynman-alpha formula from this latter method is the subject of this report. We have obtained an analytical Feynman-alpha formula for the case of stochastic pulsing by two different methods. One is completely based on the use of the symbolic algebra code Mathematica, whereas the other is based on complex function techniques. Closed form solutions could be obtained by both methods

  4. 77 FR 21555 - Manning, Richard W.; Notice of Filing

    Science.gov (United States)

    2012-04-10

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ID-6835-001] Manning, Richard W.; Notice of Filing Take notice that on April 2, 2012, Richard W. Manning submitted for filing... not serve to make protestants parties to the proceeding. Any person wishing to become a party must...

  5. Quantum cosmology based on discrete Feynman paths

    International Nuclear Information System (INIS)

    Chew, Geoffrey F.

    2002-01-01

    Although the rules for interpreting local quantum theory imply discretization of process, Lorentz covariance is usually regarded as precluding time quantization. Nevertheless a time-discretized quantum representation of redshifting spatially-homogeneous universe may be based on discrete-step Feynman paths carrying causal Lorentz-invariant action--paths that not only propagate the wave function but provide a phenomenologically-promising elementary-particle Hilbert-space basis. In a model under development, local path steps are at Planck scale while, at a much larger ''wave-function scale'', global steps separate successive wave-functions. Wave-function spacetime is but a tiny fraction of path spacetime. Electromagnetic and gravitational actions are ''at a distance'' in Wheeler-Feynman sense while strong (color) and weak (isospin) actions, as well as action of particle motion, are ''local'' in a sense paralleling the action of local field theory. ''Nonmaterial'' path segments and ''trivial events'' collaborate to define energy and gravity. Photons coupled to conserved electric charge enjoy privileged model status among elementary fermions and vector bosons. Although real path parameters provide no immediate meaning for ''measurement'', the phase of the complex wave function allows significance for ''information'' accumulated through ''gentle'' electromagnetic events involving charged matter and ''soft'' photons. Through its soft-photon content the wave function is an ''information reservoir''

  6. Derivation and analysis of the Feynman-alpha formula for deterministically pulsed sources

    International Nuclear Information System (INIS)

    Wright, J.; Pazsit, I.

    2004-03-01

    The purpose or this report is to give a detailed description of the calculation of the Feynman-alpha formula with deterministically pulsed sources. In contrast to previous calculations, Laplace transform and complex function methods are used to arrive at a compact solution in form of a Fourier series-like expansion. The advantage of this method is that it is capable to treat various pulse shapes. In particular, in addition to square- and Dirac delta pulses, a more realistic Gauss-shaped pulse is also considered here. The final solution of the modified variance-to-mean, that is the Feynman Y(t) function, can be quantitatively evaluated fast and with little computational effort. The analytical solutions obtained are then analysed quantitatively. The behaviour of the number or neutrons in the system is investigated in detail, together with the transient that follows the switching on of the source. An analysis of the behaviour of the Feynman Y(t) function was made with respect to the pulse width and repetition frequency. Lastly, the possibility of using me formulae for the extraction of the parameter alpha from a simulated measurement is also investigated

  7. The power counting theorem for Feynman integrals with massless propagators

    International Nuclear Information System (INIS)

    Lowenstein, J.H.

    1975-01-01

    Dyson's power counting theorem is extended to the case where some of the mass parameters vanish. Weinberg's ultraviolet convergence conditions are supplemented by infrared convergence conditions which combined are sufficient for the convergence of Feynman integrals. (orig.) [de

  8. FF. A package to evaluate one-loop Feynman diagrams

    International Nuclear Information System (INIS)

    Oldenborgh, G.J. van

    1990-09-01

    A short description and a user's guide of the FF package are given. This package contains routines to evaluate numerically the scalar one-loop integrals occurring in the evaluation in one-loop Feynman diagrams. The algorithms chosen are numerically stable over most parameter space. (author). 5 refs.; 1 tab

  9. Advanced computer algebra algorithms for the expansion of Feynman integrals

    International Nuclear Information System (INIS)

    Ablinger, Jakob; Round, Mark; Schneider, Carsten

    2012-10-01

    Two-point Feynman parameter integrals, with at most one mass and containing local operator insertions in 4+ε-dimensional Minkowski space, can be transformed to multi-integrals or multi-sums over hyperexponential and/or hypergeometric functions depending on a discrete parameter n. Given such a specific representation, we utilize an enhanced version of the multivariate Almkvist-Zeilberger algorithm (for multi-integrals) and a common summation framework of the holonomic and difference field approach (for multi-sums) to calculate recurrence relations in n. Finally, solving the recurrence we can decide efficiently if the first coefficients of the Laurent series expansion of a given Feynman integral can be expressed in terms of indefinite nested sums and products; if yes, the all n solution is returned in compact representations, i.e., no algebraic relations exist among the occurring sums and products.

  10. Advanced computer algebra algorithms for the expansion of Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob; Round, Mark; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2012-10-15

    Two-point Feynman parameter integrals, with at most one mass and containing local operator insertions in 4+{epsilon}-dimensional Minkowski space, can be transformed to multi-integrals or multi-sums over hyperexponential and/or hypergeometric functions depending on a discrete parameter n. Given such a specific representation, we utilize an enhanced version of the multivariate Almkvist-Zeilberger algorithm (for multi-integrals) and a common summation framework of the holonomic and difference field approach (for multi-sums) to calculate recurrence relations in n. Finally, solving the recurrence we can decide efficiently if the first coefficients of the Laurent series expansion of a given Feynman integral can be expressed in terms of indefinite nested sums and products; if yes, the all n solution is returned in compact representations, i.e., no algebraic relations exist among the occurring sums and products.

  11. The ozone hole and the 1995 Nobel prize in chemistry; Trou d`ozone et Prix Nobel 1995 de chimie

    Energy Technology Data Exchange (ETDEWEB)

    Berger, A. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium). Inst. d`Astronomie et de Geophysique G. Lemaitre

    1996-03-01

    To mark to award of the 1995 Nobel Prize in chemistry to three world renowned atmospheric chemists, this paper recalls the history of scientific progress in stratospheric ozone chemistry. Then it summarizes current knowledge of ozone-layer depletion and its impact on climate, vegetation and human health. (author). 21 refs., 12 figs.

  12. Solving differential equations for Feynman integrals by expansions near singular points

    Science.gov (United States)

    Lee, Roman N.; Smirnov, Alexander V.; Smirnov, Vladimir A.

    2018-03-01

    We describe a strategy to solve differential equations for Feynman integrals by powers series expansions near singular points and to obtain high precision results for the corresponding master integrals. We consider Feynman integrals with two scales, i.e. non-trivially depending on one variable. The corresponding algorithm is oriented at situations where canonical form of the differential equations is impossible. We provide a computer code constructed with the help of our algorithm for a simple example of four-loop generalized sunset integrals with three equal non-zero masses and two zero masses. Our code gives values of the master integrals at any given point on the real axis with a required accuracy and a given order of expansion in the regularization parameter ɛ.

  13. Richard Halliburton's Bearded Tales

    Science.gov (United States)

    Morris, Charles E., III

    2009-01-01

    Fusing the concept of "the beard" with the genre of the tall tale to theorize bearded tales deepens our understanding of closet eloquence, or rhetorical repertories of sexual passing in U.S. history. An examination of adventurer-writer-lecturer Richard Halliburton's sexual provenance and bestselling travel tale, "The Royal Road to Romance" (1925),…

  14. Relativistic generalization and extension to the non-Abelian gauge theory of Feynman's proof of the Maxwell equations

    International Nuclear Information System (INIS)

    Tanimura, Shogo

    1992-01-01

    R. P. Feynman showed F. J. Dyson a proof of the Lorentz force law and the homogeneous Maxwell equations, which he obtained starting from Newton's law of motion and the commutation relations between position and velocity for a single nonrelativistic particle. The author formulate both a special relativistic and a general relativistic version of Feynman's derivation. Especially in the general relativistic version they prove that the only possible fields that can consistently act on a quantum mechanical particle are scalar, gauge, and gravitational fields. They also extend Feynman's scheme to the case of non-Abelian gauge theory in the special relativistic context. 8 refs

  15. Nobel Prize in Physiology or Medicine 1999

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 5. Nobel Prize in Physiology or Medicine 1999. Utpal Tatu. Research News Volume 5 Issue 5 May 2000 pp 91-95. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/005/05/0091-0095 ...

  16. [The Nobel Prize database as an indicator of the internationalization of Brazilian science from 1901 to 1966].

    Science.gov (United States)

    Pittella, José Eymard Homem

    2018-01-01

    Working with the Nobel Prize database, covering 1901-1966, the article examines the analytical potential of the participation of Brazilians both as nominees for the world's most prestigious award in science, the Nobel Prize, and also as invited nominators. Of the 18 Brazilians nominated for the Nobel, nine were in the category Peace, four in Literature, four in Physiology or Medicine, and one in Physics. The article comments on the nominations of Brazilian scientists in the categories of Physics and Physiology or Medicine, as well as on nominations by Brazilian nominators in these same two categories. It also discusses the process of science evaluation, based on the information attained through analysis of these data on the Nobel award.

  17. Physics Nobel prize 2004: Surprising theory wins physics Nobel

    CERN Multimedia

    2004-01-01

    From left to right: David Politzer, David Gross and Frank Wilczek. For their understanding of counter-intuitive aspects of the strong force, which governs quarks inside protons and neutrons, on 5 October three American physicists were awarded the 2004 Nobel Prize in Physics. David J. Gross (Kavli Institute of Theoretical Physics, University of California, Santa Barbara), H. David Politzer (California Institute of Technology), and Frank Wilczek (Massachusetts Institute of Technology) made a key theoretical discovery with a surprising result: the closer quarks are together, the weaker the force - opposite to what is seen with electromagnetism and gravity. Rather, the strong force is analogous to a rubber band stretching, where the force increases as the quarks get farther apart. These physicists discovered this property of quarks, known as asymptotic freedom, in 1976. It later became a key part of the theory of quantum chromodynamics (QCD) and the Standard Model, the current best theory to describe the interac...

  18. Mean energy of some interacting bosonic systems derived by virtue of the generalized Hellmann-Feynman theorem

    Science.gov (United States)

    Fan, Hong-yi; Xu, Xue-xiang

    2009-06-01

    By virtue of the generalized Hellmann-Feynman theorem [H. Y. Fan and B. Z. Chen, Phys. Lett. A 203, 95 (1995)], we derive the mean energy of some interacting bosonic systems for some Hamiltonian models without proceeding with diagonalizing the Hamiltonians. Our work extends the field of applications of the Hellmann-Feynman theorem and may enrich the theory of quantum statistics.

  19. Richards Bay effluent pipeline

    CSIR Research Space (South Africa)

    Lord, DA

    1986-07-01

    Full Text Available of major concern identified in the effluent are the large volume of byproduct calcium sulphate (phosphogypsum) which would smother marine life, high concentrations of fluoride highly toxic to marine life, heavy metals, chlorinated organic material... ........................ 9 THE RICHARDS BAY PIPELINE ........................................ 16 Environmental considerations ................................... 16 - Phosphogypsum disposal ................................... 16 - Effects of fluoride on locally occurring...

  20. Biochemistry graduate student selected to meet with Nobel Laureates

    OpenAIRE

    Trulove, Susan

    2006-01-01

    January Haile of Athens, Tenn., a Ph.D. student in biochemistry at Virginia Tech has been selected by Oak Ridge Associated Universities (ORAU) to attend a meeting of Nobel Laureates in Lindau, Germany, in June.

  1. Some remarks on non-planar Feynman diagrams

    International Nuclear Information System (INIS)

    Bielas, Krzysztof; Dubovyk, Ievgen; Gluza, Janusz

    2013-12-01

    Two criteria for planarity of a Feynman diagram upon its propagators (momentum ows) are presented. Instructive Mathematica programs that solve the problem and examples are provided. A simple geometric argument is used to show that while one can planarize non-planar graphs by embedding them on higher-genus surfaces (in the example it is a torus), there is still a problem with defining appropriate dual variables since the corresponding faces of the graph are absorbed by torus generators.

  2. Some remarks on non-planar Feynman diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Bielas, Krzysztof; Dubovyk, Ievgen; Gluza, Janusz [Silesia Univ., Katowice (Poland). Inst. of Physics; Riemann, Tord [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-12-15

    Two criteria for planarity of a Feynman diagram upon its propagators (momentum ows) are presented. Instructive Mathematica programs that solve the problem and examples are provided. A simple geometric argument is used to show that while one can planarize non-planar graphs by embedding them on higher-genus surfaces (in the example it is a torus), there is still a problem with defining appropriate dual variables since the corresponding faces of the graph are absorbed by torus generators.

  3. Huygens-Feynman-Fresnel principle as the basis of applied optics.

    Science.gov (United States)

    Gitin, Andrey V

    2013-11-01

    The main relationships of wave optics are derived from a combination of the Huygens-Fresnel principle and the Feynman integral over all paths. The stationary-phase approximation of the wave relations gives the correspondent relations from the point of view of geometrical optics.

  4. Nobels attest to emergence of Japan as physics mecca

    CERN Multimedia

    Asaba, M

    2003-01-01

    " The Nobel Prizes in Physics and Chemistry received by two Japanese had the whole nation bubbling with excitement in the face of gloomy news reports that predominated in the second half of last year" (1 page).

  5. Wars of the holographic world

    Science.gov (United States)

    Preskill, John

    2008-12-01

    In the popular imagination, the iconic American theoretical physicist is Richard Feynman, in all his safe-cracking, bongo-thumping, woman-chasing glory. I suspect that many physicists, if asked to name a living colleague who best captures the spirit of Feynman, would give the same answer as me: Leonard Susskind. As far as I know, Susskind does not crack safes, thump bongos, or chase women, yet he shares Feynman's brash cockiness (which in Susskind's case is leavened by occasional redeeming flashes of self-deprecation) and Feynman's gift for spinning fascinating anecdotes. If you are having a group of physicists over for dinner and want to be sure to have a good time, invite Susskind.

  6. James Chadwick Nobel Prize for Physics 1935. Discovery of the neutron; James Chadwick Premio Nobel de Fisica 1935. Descubrimiento del neutron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    James Chadwick (1981-1974) was a key figure in the field of nuclear science. Through his studies, he researched the disintegration of atoms by bombarding alpha particles and proved the existence of neutrons. For this discovery, he was awarded the Nobel Prize for physics in 1935. (Author)

  7. Feynman's path integrals and Bohm's particle paths

    International Nuclear Information System (INIS)

    Tumulka, Roderich

    2005-01-01

    Both Bohmian mechanics, a version of quantum mechanics with trajectories, and Feynman's path integral formalism have something to do with particle paths in space and time. The question thus arises how the two ideas relate to each other. In short, the answer is, path integrals provide a re-formulation of Schroedinger's equation, which is half of the defining equations of Bohmian mechanics. I try to give a clear and concise description of the various aspects of the situation. (letters and comments)

  8. Angular momentum, g-value, and magnetic flux of gyration states

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1991-10-01

    Two of the world's leading (Nobel laureate) physicists disagree on the definition of the orbital angular momentum L of the Landau gyration states of a spinless charged particle in a uniform external magnetic field B = B i Z . According to Richard P. Feynman (and also Frank Wilczek) L = (rxμv) = rx(p - qA/c), while Felix Bloch (and also Kerson Huang) defines it as L = rxp. We show here that Bloch's definition is the correct one since it satisfies the necessary and sufficient condition LxL = iℎ L, while Feynman's definition does not. However, as a consequence of the quantized Aharonov-Bohm magnetic flux, this canonical orbital angular momentum (surprisingly enough) takes half-odd-integral values with a zero-point gyration states of L Z = ℎ/2. Further, since the diamagnetic and the paramagnetic contributions to the magnetic moment are interdependent, the g-value of these gyration states is two and not one, again a surprising result for a spinless case. The differences between the gauge invariance in classical and quantum mechanics, Onsager's suggestion that the flux quantization might be an intrinsic property of the electromagnetic field-charged particle interaction, the possibility that the experimentally measured fundamental unit of the flux quantum need not necessarily imply the existence of ''electron pairing'' of the Bardeen-Cooper-Schrieffer superconductivity theory, and the relationship to the Dirac's angular momentum quantization condition for the magnetic monopole-charged particle composites (i.e. Schwinger's dyons), are also briefly examined from a pedestrian viewpoint

  9. Swearing Used in Richard Wright’s Black Boy

    OpenAIRE

    Giyatmi Giyatmi; Ratih WIjayava; Nunun Tri Widarwati

    2017-01-01

    This research aims at finding the types of swearing expressions and linguistic forms of English swearing used in Richard Wright's Black Boy. This is a descriptive qualitative research since it describes the phenomena of swearing used in the novel. The data of the research are all the conversations or sentences used swearing in the novel written by Richard Wright namely Black Boy as the main data source. The method of collecting data in this research is observation and teknik lanjut catat. Aft...

  10. EDITORIAL: Richard Palmer: celebrating 37 years with Journal of Physics: Condensed Matter Richard Palmer: celebrating 37 years with Journal of Physics: Condensed Matter

    Science.gov (United States)

    Ferry, David

    2009-01-01

    It is with a great deal of both happiness and sadness that I have to announce that we are losing one of the real strengths of the Journal of Physics: Condensed Matter (JPCM). Dr Richard Palmer, our Senior Publisher, announced his retirement, and this issue marks the first without his involvement. Of course, we are happy that he will get to enjoy his retirement, but we are sad to lose such a valuable member of our team. Richard first started work at IOP Publishing in March 1971 as an Editorial Assistant with Journal of Physics B: Atomic and Molecular Physics. After a few months, he transferred to Journal of Physics C: Solid State Physics. During his first year, he was sent on a residential publishing training course and asked to sign an undertaking to stay at IOP Publishing for at least two years. Although Richard refused to sign, as he did not want to commit himself, he has remained with the journal since then. The following year, the Assistant Editor of Journal of Physics C: Solid State Physics, Malcolm Haines, walked out without notice in order to work on his family vineyard in France, and Richard stepped into the breach. In those days, external editors had a much more hands-on role in IOP Publishing and he had to travel to Harwell to be interviewed by Alan Lidiard, the Honorary Editor of Journal of Physics C: Solid State Physics, before being given the job of Assistant Editor permanently. I am told that in those days the job consisted mainly of editing and proofreading and peer review. There was no journal development work. At some point in the early 1980s, production and peer review were split into separate departments and Richard then headed a group of journals consisting of Journal of Physics C: Solid State Physics, Journal of Physics D: Applied Physics and Journal of Physics F: Metal Physics, Semiconductor Science and Technology, Superconductor Science and Technology, Plasma Physics and Controlled Fusion, and later Nanotechnology and Modelling and Simulation

  11. A practical criterion of irreducibility of multi-loop Feynman integrals

    International Nuclear Information System (INIS)

    Baikov, P.A.

    2006-01-01

    A practical criterion for the irreducibility (with respect to integration by part identities) of a particular Feynman integral to a given set of integrals is presented. The irreducibility is shown to be related to the existence of stable (with zero gradient) points of a specially constructed polynomial

  12. Neutron scattering and the 1994 Nobel Physics Prize

    International Nuclear Information System (INIS)

    Sun Xiangdong

    1995-01-01

    Neutron scattering is an efficient method for detecting the microstructure of matter by which we can study, for example, details of the phonon spectrum in solids, and the isotopic effect. Bertram N. Brockhouse and Clifford G. Shull earned the Nobel Physics Prize in 1994 for their significant contributions in this domain

  13. Academic Training Lecture | Beyond Feynman Diagrams (1/3) | 24 April

    CERN Multimedia

    2013-01-01

    by Prof. Lance Dixon (SLAC National Accelerator Laboratory (US)). Wednesday 24 April 2013, from 11 a.m. to 12 p.m. at CERN (222-R-001 - Filtration Plant) Description: The search for new physics at the LHC, and accurate measurements of Standard Model processes, all benefit from precise theoretical predictions of collider event rates, which in turn rely on higher order computations in QCD, the theory of the strong interactions. Key ingredients for such computations are scattering amplitudes, the quantum-mechanical transition amplitudes between the incoming quarks and gluons and the outgoing produced particles. To go beyond leading order, we need both classical tree amplitudes and quantum loop amplitudes. For decades the central theoretical tool for computing scattering amplitudes has been the Feynman diagram. However, Feynman diagrams are just too slow, even on fast computers, to be able to go beyond the leading order in QCD, for complicated events with many jets of hadrons in the final state. Such events ...

  14. You err, Einstein.. Newton, Einstein, Heisenberg, and Feynman discuss quantum physics

    International Nuclear Information System (INIS)

    Fritzsch, Harald

    2008-01-01

    Harald Fritzsch and his star physicists Einstein, Heisenberg, and Feynman explain the central concept of nowadays physics, quantum mechanics, without it nothing goes in modern world. And the great Isaac newton puts the questions, which all would put

  15. Orbit-averaged quantities, the classical Hellmann-Feynman theorem, and the magnetic flux enclosed by gyro-motion

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, R. J., E-mail: rperkins@pppl.gov; Bellan, P. M. [Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-02-15

    Action integrals are often used to average a system over fast oscillations and obtain reduced dynamics. It is not surprising, then, that action integrals play a central role in the Hellmann-Feynman theorem of classical mechanics, which furnishes the values of certain quantities averaged over one period of rapid oscillation. This paper revisits the classical Hellmann-Feynman theorem, rederiving it in connection to an analogous theorem involving the time-averaged evolution of canonical coordinates. We then apply a modified version of the Hellmann-Feynman theorem to obtain a new result: the magnetic flux enclosed by one period of gyro-motion of a charged particle in a non-uniform magnetic field. These results further demonstrate the utility of the action integral in regards to obtaining orbit-averaged quantities and the usefulness of this formalism in characterizing charged particle motion.

  16. Convergence theorems for renormalized Feynman integrals with zero-mass propagators

    International Nuclear Information System (INIS)

    Lowenstein, J.H.

    1976-01-01

    A general momentum-space subtraction procedure is proposed for the removal of both ultraviolet and infrared divergences of Feynman integrals. Convergence theorems are proved which allow one to define time-ordered Green functions, as tempered distributions for a wide class of theories with zero-mass propagators. (orig.) [de

  17. Automatic calculation of Feynman amplitude - GRACE/CHANEL

    International Nuclear Information System (INIS)

    Kurihara, Yoshimasa

    1992-01-01

    To investigate feasibility of physics at TeV energy region, cross sections from Feynman amplitudes have to be calculated for processes with multi-particle final state. Event generation and detector simulation must also be carried out to determine a detector design and a requirement of necessary luminosity. The JLC (Japan Linear Collider) working group has developed useful software and hardware tools for above purposes. An overview of the tools developed for the physics study at the JLC is given in this report. (author) 7 refs.; 2 figs

  18. Feynman rules of quantum chromodynamics inside a hadron

    International Nuclear Information System (INIS)

    Lee, T.D.

    1979-01-01

    We start from quantum chromodynamics in a finite volume of linear size L and examine its color-dielectric constant kappa/sub L/, especially the limit kappa/sub infinity/ as L → infinity. By choosing as our standard kappa/sub L/ = 1 when L = some hadron size R, we conclude that kappa/sub infinity/ must be -2 α where α is the fine-structure constant of QCD inside the hadron. A permanent quark confinement corresponds to the limit kappa/sub infinity/ = 0. The hadrons are viewed as small domain structures (with color-dielectric constant = 1) immersed in a perfect, or nearly perfect, color-dia-electric medium, which is the vacuum. The Feynman rules of QCD inside the hadron are derived; they are found to depend on the color-dielectric constant kappa/sub infinity/ of the vacuum that lies outside. We show that, when kappa/sub infinity/ → 0, the mass of any color-nonsinglet state becomes infinity, but for color-singlet states their masses and scattering amplitudes remain finite. These new Feynman rules also depend on the hadron size R. Only at high energy and large four-momentum transfer can such R dependence be neglected and, for color-singlet states, these new rules be reduced to the usual ones

  19. Potshemu medved rõtshit / Richard Pipes

    Index Scriptorium Estoniae

    Pipes, Richard

    2006-01-01

    Harvardi ülikooli ajalooprofessor Richard Pipes arutleb, miks Venemaa viimase aja käitumises väljendub soovimatus koostööks, sageli ka vaenulikkus. Venemaa võimetus rahvusvahelises kontekstis oma kohta leida, selle ajaloolised juured

  20. A guide to Feynman diagrams in the many-body problem

    CERN Document Server

    Mattuck, Richard D

    1976-01-01

    Until this book, most treatments of this topic were inaccessible to nonspecialists. A superb introduction to important areas of modern physics, it covers Feynman diagrams, quasi particles, Fermi systems at finite temperature, superconductivity, vacuum amplitude, Dyson's equation, ladder approximation, and much more. ""A great delight to read."" - Physics Today. 1974 edition.

  1. Towards Producing Black Nobel Laureates Affiliated with ``African Universities''

    Science.gov (United States)

    Kenneth, Jude

    While Africa has produced a handful Nobel laureate in literature and peace, it has continued to shy away from producing any in the other categories. The reason is not farfetched; our university system is not up to standard. It is saddening that in this century, African countries place emphasis on certificates and not on knowledge. This has made the continent produce students that lack the intellectual capability, experimental ability, fundamental training, creativity, and motivation to excel except they get a foreign training. It is this backdrop that precipitated the research into the methods of teaching and research in universities across Africa. The study is designed to identify the problems and proffer solution to them. Two important questions immediately come to mind. (1) What factors account for the difficulty in producing Nobel laureates affiliated with African universities? (2) What strategies could be adopted to improve teaching and research in African universities? Several factors were investigated which revolve around funding, the competence of the lecturers, quality of students admitted, attitude of the students, parents and government. Nigerian universities were investigated and important deductions were made. During the study an inquiry was made on the method of instruction at various universities, from result obtained, the study therefore concluded that adequate funding, the presence of erudite scholars and brilliant minds will produce future Nobel laureate affiliated with the continent. The study therefore recommended admission and employment of only students and lecturers who have got a thing for academics into the universities and adequate funding of universities and research centres.

  2. 2016 Nobel Prize in Chemistry: Conferring Molecular Machines as ...

    Indian Academy of Sciences (India)

    The Nobel Prize in Chemistry for the year 2016 was awardedto three illustrious chemists, Professors Jean-Pierre Sauvage,Sir Fraser Stoddart, and Ben Feringa. Pioneering works ofthese chemists on designing molecules, chemically synthesizingthem, and extracting a work out of such designedmoleculesopen-up a new ...

  3. 2008 Nobel prize in Medicine for discoverers of HIV

    NARCIS (Netherlands)

    Lever, Andrew M. L.; Berkhout, Ben

    2008-01-01

    ABSTRACT: Francoise Barre-Sinoussi and Luc Montagnier, codiscoverers of HIV, the causative agent of AIDS, have been awarded the 2008 Nobel Prize in Physiology or Medicine. They share this prize with Harald zur Hausen who was responsible for establishing the link between human papilloma virus

  4. The competition 'First Step to Nobel Prize in Physics'

    International Nuclear Information System (INIS)

    Gorzkowski, W; Zuberek, R; Surya, Y

    2011-01-01

    This paper presents the history of the competition First Step to Nobel Prize in Physics organized by Poland, its development from a national workshop in 1991/92 to an international competition nowadays and its organization, as well as the results obtained by the participants.

  5. Richard Peters and Valuing Authenticity

    Science.gov (United States)

    Degenhardt, M. A. B.

    2009-01-01

    Richard Peters has been praised for the authenticity of his philosophy, and inquiry into aspects of the development of his philosophy reveals a profound authenticity. Yet authenticity is something he seems not to favour. The apparent paradox is resolved by observing historical changes in the understanding of authenticity as an important value.…

  6. On the centenary of the Nobel Prize: Russian laureates in physics

    International Nuclear Information System (INIS)

    Mukhin, Konstantin N; Sustavov, Aleksandr F; Tikhonov, Viktor N

    2003-01-01

    The history and development of the branches of physics which profited significantly from the work of Russian Nobel laureates (P A Cherenkov, I E Tamm, I M Frank, L D Landau, N G Basov, A M Prokhorov, P L Kapitza, and Zh I Alferov) are reviewed in popular form to mark the recent Nobel Foundation centenary. Apart from the Russian prize winners' achievements, the major contributions of their colleagues - Russian and foreign, predecessors and successors - are briefly discussed. The current state of the branches of physics advanced with the participation of Russian laureates is reviewed, and the practical implications of their work for science, technology, and everyday life are discussed. (from the history of physics)

  7. On the centenary of the Nobel Prize: Russian laureates in physics

    Energy Technology Data Exchange (ETDEWEB)

    Mukhin, Konstantin N; Sustavov, Aleksandr F; Tikhonov, Viktor N [Institute of General and Nuclear Physics, Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2003-05-31

    The history and development of the branches of physics which profited significantly from the work of Russian Nobel laureates (P A Cherenkov, I E Tamm, I M Frank, L D Landau, N G Basov, A M Prokhorov, P L Kapitza, and Zh I Alferov) are reviewed in popular form to mark the recent Nobel Foundation centenary. Apart from the Russian prize winners' achievements, the major contributions of their colleagues - Russian and foreign, predecessors and successors - are briefly discussed. The current state of the branches of physics advanced with the participation of Russian laureates is reviewed, and the practical implications of their work for science, technology, and everyday life are discussed. (from the history of physics)

  8. Memorial Meeting for Nobel Laureate Professor Abdus Salam's 90th Birthday

    CERN Document Server

    2016-01-01

    Abdus Salam was one of the most prolific and exciting scientists of the second half of the last century. From humble beginnings in a village in Pakistan, he rose to become one of the world's most original and influential particle physicists. He shared the 1979 Nobel Prize with Glashow and Weinberg for contributions to electroweak unification, which forms an integral part of the Standard Model. He was the first Pakistani Nobel Laureate and the second only Muslim after Anwar Sadat. After gaining his doctorate in Cambridge, he moved to Imperial College in 1957 where he founded the very successful Theoretical High Energy Physics Group. He remained there as Professor of Physics until his death in 1996.

  9. A power counting theorem for Feynman integrals on the lattice

    International Nuclear Information System (INIS)

    Reisz, T.

    1988-01-01

    A convergence theorem is proved, which states sufficient conditions for the existence of the continuum limit for a wide class of Feynman integrals on a space-time lattice. A new kind of a UV-divergence degree is introduced, which allows the formulation of the theorem in terms of power counting conditions. (orig.)

  10. CAN WE CONSIDER AS BEING „MIRACULOUS” THE SOLUTIONS SUGGESTED BY THE LAUREATES OF NOBEL PRIZE IN ORDER TO STOP THE WORLD ECONOMICAL CRISIS

    Directory of Open Access Journals (Sweden)

    Constanţa ENEA

    2010-09-01

    Full Text Available Today we are in a global economic crisis. It is not an economic crisis because of scale, for the worst case there was a recession of a few percent of GDP, but rather because it was consistently induced. The best strategies have been proposed so far are essentially neo-Keynesian, as private demand fell, public expenditure can change aggregate demand to provide a stimulus to the economy. At best, this can provide the necessary infrastructure for positive externalities through network effects, at worst, will only serve as a delay tactic, leading to a greater crisis in the near future. Nobel prizes were created by scientist and businessman Alfred Nobel (1833 - 1896, inventor (1867, which, in his will asked that his immense wealth income are offered each year „awards as the which, in the previous year, brought the greatest service of humanity”. Thus, by the will left by Alfred Nobel, Nobel prizes are awarded to institutions: - Swedish Royal Academy of Science: Nobel Prize in Physics, Chemistry Nobel Prize Nobel Prize in Economics; - Carolina Institute in Stockholm: Nobel Prize for Medicine; - Swedish Academy: Nobel Prize for Literature; - Committee composed of five persons of Parliament of Norway: Nobel Peace Prize Nobel prizes are awarded, so in 1901, except for economics, established in 1968 by the Central Bank of Sweden to commemorate the 300th anniversary of the founding of this institution. More specifically, Nobel Prizes have been awarded since December 10, 1901, after their author's death. They consist of: a medal, a diploma and a sum of money, which at first was worth U.S. $ 40,000, then increased to $ 1,000,000. Nobel Prize in cash value increased slightly since 1950, according to the Foundation website. Should mention that The Nobel Foundation has awarded prizes during World War or during World War II. Given these great discoveries of illustrious researchers could find solutions to global economic crisis. If so intense study should find

  11. The Competition "First Step to Nobel Prize in Physics"

    Science.gov (United States)

    Gorzkowski, W.; Surya, Y; Zuberek, R

    2011-01-01

    This paper presents the history of the competition First Step to Nobel Prize in Physics organized by Poland, its development from a national workshop in 1991/92 to an international competition nowadays and its organization, as well as the results obtained by the participants. (Contains 1 table.)

  12. The laureate as celebrity genius: How Scientific American's John Horgan profiled Nobel Prize winners.

    Science.gov (United States)

    Fahy, Declan

    2018-05-01

    When scientists become Nobel laureates, they become famous in science and public life, but few studies have examined the nature of their scientific celebrity. This article examines how Scientific American portrayed laureates in order to identify and explain core features of Nobel fame. It examines the portrayals of seven laureates - Francis Crick, Linus Pauling, Hans Bethe, Murray Gell-Mann, Brian Josephson, Philip Anderson and Subrahmanyan Chandrasekhar - in magazine profiles written between 1992 and 1995 by science writer John Horgan. Its textual analysis finds the scientists are portrayed as combining the sociological characteristics of genius, including enormous productivity and lasting impact, with the representational characteristics of celebrities, such as the merging of public and private lives. Their form of scientific celebrity is grounded in their field-changing research, which is presented as a product of their idiosyncratic personalities. Nobel science is presented as knowledge created by an ultra-elite of exceptional individuals.

  13. In Conversation with Paul Richards

    Science.gov (United States)

    Holman, Andrew

    2013-01-01

    Paul Richards is one of those individuals who make a difference and is as far from institutional as one can be. The author met up with him at the Learning Disability Today conference in London to talk more about his work and life. Paul coordinates the service user involvement across Southdown Housing Association, based in Sussex.

  14. Obituary: Dr. Richard Roland Baker

    Directory of Open Access Journals (Sweden)

    Thornton R

    2014-12-01

    Full Text Available Richard Baker died at Easter 2007 after a very short illness. It is sad that he died so soon after his retirement from the British American Tobacco Company at the end of 2005, and just as he was beginning to enjoy his new life, even though tobacco science still had a part to play.

  15. Feynman's Operational Calculi: Spectral Theory for Noncommuting Self-adjoint Operators

    International Nuclear Information System (INIS)

    Jefferies, Brian; Johnson, Gerald W.; Nielsen, Lance

    2007-01-01

    The spectral theorem for commuting self-adjoint operators along with the associated functional (or operational) calculus is among the most useful and beautiful results of analysis. It is well known that forming a functional calculus for noncommuting self-adjoint operators is far more problematic. The central result of this paper establishes a rich functional calculus for any finite number of noncommuting (i.e. not necessarily commuting) bounded, self-adjoint operators A 1 ,..., A n and associated continuous Borel probability measures μ 1 , ?, μ n on [0,1]. Fix A 1 ,..., A n . Then each choice of an n-tuple (μ 1 ,...,μ n ) of measures determines one of Feynman's operational calculi acting on a certain Banach algebra of analytic functions even when A 1 , ..., A n are just bounded linear operators on a Banach space. The Hilbert space setting along with self-adjointness allows us to extend the operational calculi well beyond the analytic functions. Using results and ideas drawn largely from the proof of our main theorem, we also establish a family of Trotter product type formulas suitable for Feynman's operational calculi

  16. Six Nobel de physique réunis à Gardanne

    CERN Multimedia

    Crozel, Jean-Luc

    2008-01-01

    It's a single, exceptional event: six Nobel for Physics to inaugurate the new technological center: a school for engineers in the microelectronics field, amphitheaters for conferences, and a researche center; this will give to Gardanne a key role in the development of the french microelectronic industry. (1 page)

  17. 'Exhibitions and experiments', in celebration of nobel prize in physics

    International Nuclear Information System (INIS)

    Hayashi, Masahito; Nakanishi, Akira; Nakano, Masahiro

    2010-01-01

    The Nobel Prize in Physics for 2008 was awarded to Professors Yoichiro Nambu, Makoto Kobayashi and Toshihide Maskawa. At this opportunity, we held an exhibition to introduce the achievements of the laureates for 10 days at the Omiya campus in May 2009. With the explanations of elementary particle physics, we prepared several experimental instruments with which visitors could play and learn the spontaneous symmetry breaking, cosmic rays, a circle path of an electron in a magnetic field and so on. Our main purpose of the exhibition was, however, not just to explain the contents of the Nobel Prize in Physics, but also to attract students' interests to physics. More than 800 individual students attended during the period, and the survey of questionnaires shows positive contributions to raise the students' awareness of the excitement of physics. (author)

  18. The Feynman integrand as a white noise distribution beyond perturbation theory

    International Nuclear Information System (INIS)

    Grothaus, Martin; Vogel, Anna

    2008-01-01

    In this note the concepts of path integrals and techniques how to construct them are presented. Here we concentrate on a White Noise approach. Combining White Noise techniques with a generalized time-dependent Doss' formula Feynman integrands are constructed as white noise distributions beyond perturbation theory

  19. Premio Nobel de ciencias Económicas 1998

    Directory of Open Access Journals (Sweden)

    Sen Amartya

    1998-12-01

    Full Text Available

    La Academia Real de Ciencias de Suecia ha decidido otorgar el premio Banco de Suecia 1998 en Ciencias Económicas, en Memoria de Alfred Nobel, al Profesor Amartya Sen, del Trinity College, Reino Unido, y ciudadano indio, por sus contribuciones a la economía del bienestar.

     

     

     

  20. Norman Ramsey. Nobel Prize Winner in Physics (1989)

    International Nuclear Information System (INIS)

    2003-01-01

    Norman Ramsey (Washington 1915) received the Nobel Prize in Physics (shared with con H. G. Dehmelt and W. Paul) for the development of study techniques for Atomic Physics. This tireless researcher participated in the discovery of the Magnetic Resonance Method for Molecular Emission. He invented the hydrogen maser and the hydrogen atomic clock, in addition to being a profile author. (Author)

  1. From the Big Bang to the Nobel Prize and the JWST

    Science.gov (United States)

    Mather, John C.

    2007-01-01

    I will describe the history of the universe, from the Big Bang to 2013, when the JWST is to be launched to look back towards our beginnings. I will discuss how the COBE results led to the Nobel Prize, how the COBE results have been confirmed and extended, and their implications for future observations. The James Webb Space Telescope will be used to examine every part of our history from the first stars and galaxies to the formation of individual stars and planets and the delivery of life-supporting materials to the Earth. I will describe the plans for the JWST and how observers may use it. With luck, the JWST may produce a Nobel Prize for some discovery we can only guess today.

  2. Foundations for relativistic quantum theory. I. Feynman's operator calculus and the Dyson conjectures

    International Nuclear Information System (INIS)

    Gill, Tepper L.; Zachary, W.W.

    2002-01-01

    In this paper, we provide a representation theory for the Feynman operator calculus. This allows us to solve the general initial-value problem and construct the Dyson series. We show that the series is asymptotic, thus proving Dyson's second conjecture for quantum electrodynamics. In addition, we show that the expansion may be considered exact to any finite order by producing the remainder term. This implies that every nonperturbative solution has a perturbative expansion. Using a physical analysis of information from experiment versus that implied by our models, we reformulate our theory as a sum over paths. This allows us to relate our theory to Feynman's path integral, and to prove Dyson's first conjecture that the divergences are in part due to a violation of Heisenberg's uncertainly relations

  3. Teaching Electron--Positron--Photon Interactions with Hands-on Feynman Diagrams

    Science.gov (United States)

    Kontokostas, George; Kalkanis, George

    2013-01-01

    Feynman diagrams are introduced in many physics textbooks, such as those by Alonso and Finn and Serway, and their use in physics education has been discussed by various authors. They have an appealing simplicity and can give insight into events in the microworld. Yet students often do not understand their significance and often cannot combine the…

  4. Theory of Feynman-alpha technique with masking window for accelerator-driven systems

    International Nuclear Information System (INIS)

    Kitamura, Yasunori; Misawa, Tsuyoshi

    2017-01-01

    Highlights: • A theory of the modified Feynman-alpha technique for the ADS was developed. • The experimental conditions under which this technique works were discussed. • It is expected this technique is applied to the subcriticality monitor for the ADS. - Abstract: Recently, a modified Feynman-alpha technique for the subcritical system driven by periodically triggered neutron bursts was developed. One of the main features of this technique is utilization of a simple formula that is advantageous in evaluating the subcriticality. However, owing to the absence of the theory of this technique, this feature has not been fully investigated yet. In the present study, a theory of this technique is provided. Furthermore, the experimental conditions under which the simple formula works are discussed to apply this technique to the subcriticality monitor for the accelerator-driven system.

  5. Urdu literature at the World Forum: Nobel Prize for literature and Urdu/Hindi recognition

    OpenAIRE

    Qadeer, Altaf

    2017-01-01

    Urdu language is well-known for literary beauty and other linguistic as well as social factors. Over centuries Urdu/Hindi has gone through many cultural, political and linguistic changes. Urdu language has also changed in some ways of spoken and written forms. Despite the long history and literary power of Urdu, no Urdu author received a Nobel Prize in literature. Some data is presented about the trends in awarding Nobel Prize for literature. This article analyzes and highlights pathways for ...

  6. Richard W. Ziolkowski Receives Honorary Doctorate

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2012-01-01

    At the annual Commemoration of the Technical University of Denmark (DTU) on April 27, 2012, Prof. Richard W. Ziolkowski, University of Arizona (UoA), received DTU's highest academic degree, the Honorary Doctor degree: Doctor Technices Honoris Causa (Figure 1). Prof. Ziolkowski has been a close...

  7. ALOHA: Automatic libraries of helicity amplitudes for Feynman diagram computations

    Science.gov (United States)

    de Aquino, Priscila; Link, William; Maltoni, Fabio; Mattelaer, Olivier; Stelzer, Tim

    2012-10-01

    We present an application that automatically writes the HELAS (HELicity Amplitude Subroutines) library corresponding to the Feynman rules of any quantum field theory Lagrangian. The code is written in Python and takes the Universal FeynRules Output (UFO) as an input. From this input it produces the complete set of routines, wave-functions and amplitudes, that are needed for the computation of Feynman diagrams at leading as well as at higher orders. The representation is language independent and currently it can output routines in Fortran, C++, and Python. A few sample applications implemented in the MADGRAPH 5 framework are presented. Program summary Program title: ALOHA Catalogue identifier: AEMS_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: http://www.opensource.org/licenses/UoI-NCSA.php No. of lines in distributed program, including test data, etc.: 6094320 No. of bytes in distributed program, including test data, etc.: 7479819 Distribution format: tar.gz Programming language: Python2.6 Computer: 32/64 bit Operating system: Linux/Mac/Windows RAM: 512 Mbytes Classification: 4.4, 11.6 Nature of problem: An effcient numerical evaluation of a squared matrix element can be done with the help of the helicity routines implemented in the HELAS library [1]. This static library contains a limited number of helicity functions and is therefore not always able to provide the needed routine in the presence of an arbitrary interaction. This program provides a way to automatically create the corresponding routines for any given model. Solution method: ALOHA takes the Feynman rules associated to the vertex obtained from the model information (in the UFO format [2]), and multiplies it by the different wavefunctions or propagators. As a result the analytical expression of the helicity routines is obtained. Subsequently, this expression is

  8. Feynman's thesis: A new approach to quantum theory

    International Nuclear Information System (INIS)

    Das, Ashok

    2007-01-01

    It is not usual for someone to write a book on someone else's Ph.D. thesis, but then Feynman was not a usual physicist. He was without doubt one of the most original physicists of the twentieth century, who has strongly influenced the developments in quantum field theory through his many ingenious contributions. Path integral approach to quantum theories is one such contribution which pervades almost all areas of physics. What is astonishing is that he developed this idea as a graduate student for his Ph.D. thesis which has been printed, for the first time, in the present book along with two other related articles. The early developments in quantum theory, by Heisenberg and Schroedinger, were based on the Hamiltonian formulation, where one starts with the Hamiltonian description of a classical system and then promotes the classical observables to noncommuting quantum operators. However, Dirac had already stressed in an article in 1932 (this article is also reproduced in the present book) that the Lagrangian is more fundamental than the Hamiltonian, at least from the point of view of relativistic invariance and he wondered how the Lagrangian may enter into the quantum description. He had developed this idea through his 'transformation matrix' theory and had even hinted on how the action of the classical theory may enter such a description. However, although the brief paper by Dirac contained the basic essential ideas, it did not fully develop the idea of a Lagrangian description in detail in the functional language. Feynman, on the other hand, was interested in the electromagnetic interactions of the electron from a completely different point of view rooted in a theory involving action-at-a-distance. His theory (along with John Wheeler) did not have a Hamiltonian description and, in order to quantize such a theory, he needed an alternative formulation of quantum mechanics. When the article by Dirac was brought to his attention, he immediately realized what he was

  9. Superconductivity. Discoveries and discoverers. Ten physics nobel laureates tell their story

    Energy Technology Data Exchange (ETDEWEB)

    Fossheim, Kristian [Norwegian Univ. of Science and Technology, Trondheim (Norway). Dept. of Physics

    2013-10-01

    Displays the life and work of 10 Nobel laureates. Presents interesting background information on how great science is achieved. Presents the history of superconductivity through 100 years of progress. 10 great scientists tell their unique stories in their own words. Personal stories of Bednorz, Mueller and 8 other Nobel laureates. This book is about the work of 10 great scientists; who they were and are, their personal background and how they achieved their outstanding results and took their prominent place in science history. We follow one of physics and science history's most enigmatic phenomena, superconductivity, through 100 years, from its discovery in 1911 to the present, not as a history book in the usual sense, but through close ups of the leading characters and their role in that story, the Nobel laureates, who were still among us in the years 2001-2004 when the main round of interviews was carried out. Since then two of them already passed away. For each one of the 10 laureates, the author tells their story by direct quotation from interviews in their own words. Each chapter treats one laureate. The author first gives a brief account of the laureates' scientific background and main contribution. Then each laureate tells his own story in his own words. This book is unique in its approach to science history.

  10. Superconductivity. Discoveries and discoverers. Ten physics nobel laureates tell their story

    International Nuclear Information System (INIS)

    Fossheim, Kristian

    2013-01-01

    Displays the life and work of 10 Nobel laureates. Presents interesting background information on how great science is achieved. Presents the history of superconductivity through 100 years of progress. 10 great scientists tell their unique stories in their own words. Personal stories of Bednorz, Mueller and 8 other Nobel laureates. This book is about the work of 10 great scientists; who they were and are, their personal background and how they achieved their outstanding results and took their prominent place in science history. We follow one of physics and science history's most enigmatic phenomena, superconductivity, through 100 years, from its discovery in 1911 to the present, not as a history book in the usual sense, but through close ups of the leading characters and their role in that story, the Nobel laureates, who were still among us in the years 2001-2004 when the main round of interviews was carried out. Since then two of them already passed away. For each one of the 10 laureates, the author tells their story by direct quotation from interviews in their own words. Each chapter treats one laureate. The author first gives a brief account of the laureates' scientific background and main contribution. Then each laureate tells his own story in his own words. This book is unique in its approach to science history.

  11. Arthur B. McDonald, Physics Nobel Laureate 2015, at CERN colloquium

    CERN Multimedia

    Ordan, Julien Marius

    2017-01-01

    Arthur B. McDonald, Physics Nobel Laureate 2015, photographed at CERN colloquium on the "Science of the Sudbury Neutrino Observatory (SNO) and SNOLAB” given in CERN Main Auditorium on Monday 4 Sep 2017

  12. Recensie "The Great Reset" : Richard Florida

    NARCIS (Netherlands)

    Roy van Dalm

    2010-01-01

    Like the Great Depression and the Long Depression before it, experts have viewed prolonged economic downturns as crises. In The Great Reset , bestselling author Richard Florida argues that we should instead see the recent recession as an opportunity to create entirely new ways of working and living

  13. On the classical Maxwell-Lorentz electrodynamics, the electron inertia problem, and the Feynman proper time paradigm

    International Nuclear Information System (INIS)

    Prykarpatsky, A.K.; Bogolubov, J.R.

    2016-01-01

    The classical Maxwell electromagnetic field and the Lorentz-type force equations are rederived in the framework of the Feynman proper time paradigm and the related vacuum field theory approach. The classical Ampere law origin is rederived, and its relationship with the Feynman proper time paradigm is discussed. The electron inertia problem is analyzed in detail within the Lagrangian and Hamiltonian formalisms and the related pressure-energy compensation principle of stochastic electrodynamics. The modified Abraham-Lorentz damping radiation force is derived and the electromagnetic electron mass origin is argued

  14. Artemisinin: The journey from natural product to Nobel Prize ...

    African Journals Online (AJOL)

    The 2014 Nobel Prize for Physiology and Medicine was announced on 5th October. One-half ... The novel therapy that was given this huge recognition was artemisinin, a drug (isolated from the plant Artemisia annua) that has saved millions of lives and rekindled the dream of a world where malaria has been eradicated.

  15. E Pluribus Tres: The 2009 Nobel Prize in Chemistry

    OpenAIRE

    Carter Jr., Charles W.

    2009-01-01

    This year’s Nobel Prize in Chemistry celebrates a multitude of research areas, making the difficult selection of those most responsible for providing atomic details of the nanomachine that makes proteins according to genetic instructions. The Ribosome and RNA polymerase (recognized in 2006) structures highlight a puzzling asymmetry at the origins of biology.

  16. Seeing Scale: Richard Dunn’s Structuralism

    Directory of Open Access Journals (Sweden)

    Keith Broadfoot

    2012-11-01

    Full Text Available Writing on the occasion of a retrospective of Richard Dunn’s work, Terence Maloon argued that ‘structuralism had an important bearing on virtually all of Richard Dunn’s mature works’, with ‘his modular, “crossed” formats’ being the most obvious manifestation of this. In this article I wish to reconsider this relation, withdrawing from a broad consideration of the framework of structuralism to focus on some of the quite particular ideas that Lacan proposed in response to structuralism. Beginning from a pivotal painting in the 1960s that developed out of Dunn’s experience of viewing the work of Barnett Newman, I wish to suggest a relation between the ongoing exploration of the thematic of scale in Dunn’s work and the idea of the symbolic that Lacan derives from structuralist thought. This relation, I argue, opens up a different way of understanding the art historical transition from Minimalism to Conceptual art.

  17. Theodore William Richards and the Periodic Table

    Science.gov (United States)

    Conant, James B.

    1970-01-01

    Discusses the contribution of Theodore Richards to the accurate determination of atomic weights of copper and other elements; his major contribution was to the building of the definitive periodic table of the elements. (BR)

  18. The Hellmann–Feynman theorem, the comparison theorem, and the envelope theory

    Directory of Open Access Journals (Sweden)

    Claude Semay

    2015-01-01

    Full Text Available The envelope theory is a convenient method to compute approximate solutions for bound state equations in quantum mechanics. It is shown that these approximate solutions obey a kind of Hellmann–Feynman theorem, and that the comparison theorem can be applied to these approximate solutions for two ordered Hamiltonians.

  19. Asymptotic expansions of Feynman diagrams and the Mellin-Barnes representation

    International Nuclear Information System (INIS)

    Friot, Samuel; Greynat, David

    2007-01-01

    In this talk, we describe part of our recent work [S. Friot, D. Greynat and E. de Rafael, Phys. Lett. B 628 (2005) 73 [ (arXiv:hep-ph/0505038)] (see also [S. Friot, PhD Thesis (2005); D. Greynat, PhD Thesis (2005)]) that gives new results in the context of asymptotic expansions of Feynman diagrams using the Mellin-Barnes representation

  20. Relation between Feynman Cycles and Off-Diagonal Long-Range Order

    International Nuclear Information System (INIS)

    Ueltschi, Daniel

    2006-01-01

    The usual order parameter for Bose-Einstein condensation involves the off-diagonal correlation function of Penrose and Onsager, but an alternative is Feynman's notion of infinite cycles. We present a formula that relates both order parameters. We discuss its validity with the help of rigorous results and heuristic arguments. The conclusion is that infinite cycles do not always represent the Bose condensate

  1. Feynman propagator for a particle with arbitrary spin

    International Nuclear Information System (INIS)

    Huang Shi-Zhong; Zhang Peng-Fei; Ruan Tu-Nan; Zhu Yu-Can; Zheng Zhi-Peng

    2005-01-01

    Based on the solution to the Rarita-Schwinger equations, a direct derivation of the projection operator and propagator for a particle with arbitrary spin is worked out. The projection operator constructed by Behrends and Fronsdal is re-deduced and confirmed, and simplified in the case of half-integral spin; the general commutation rules and Feynman propagator for a free particle of any spin are derived, and explicit expressions for the propagators for spins 3/2, 2, 5/2, 3, 7/2, 4 are provided. (orig.)

  2. The 2010 Nobel Prize in physics—ground-breaking experiments on graphene

    International Nuclear Information System (INIS)

    Hancock, Y

    2011-01-01

    The 2010 Nobel Prize in physics was awarded to Professors Andre Geim and Konstantin Novoselov for their ground-breaking experiments on graphene, a single atomic layer of carbon, and more generally, for their pioneering work in uncovering a new class of materials, namely two-dimensional atomic crystals. This paper gives an accessible account and review of the story of graphene; from its first description in the literature, to the realization and confirmation of its remarkable properties, through to its impressive potential for broad-reaching applications. The story of graphene is written within the context of the enormous impact that Geim and Novoselovs' work has had on this field of research, and recounts their personal pathways of discovery, which ultimately led to their award of the 2010 Nobel Prize. (topical review)

  3. O Prêmio Nobel de Física de 2010

    Directory of Open Access Journals (Sweden)

    José Maria Filardo Bassalo

    2011-01-01

    Full Text Available http://dx.doi.org/10.5007/2175-7941.2011v28n1p205 Neste artigo, trataremos do Prêmio Nobel de Física de 2010, concedido aos físicos, de origem russa, o inglês Konstantin Sergeevich Novoselov e o holandês Andre Konstantinov Geim, pela descoberta do grafeno.

  4. 2008 Nobel prize in Medicine for discoverers of HIV

    Directory of Open Access Journals (Sweden)

    Berkhout Ben

    2008-10-01

    Full Text Available Abstract Françoise Barré-Sinoussi and Luc Montagnier, codiscoverers of HIV, the causative agent of AIDS, have been awarded the 2008 Nobel Prize in Physiology or Medicine. They share this prize with Harald zur Hausen who was responsible for establishing the link between human papilloma virus infection and cervical carcinoma.

  5. Contestation des Nobel une tradition aussi ancienne que leur attribution

    CERN Document Server

    Sevestre, G

    2003-01-01

    "La contestation des Nobel, avec cette annee la campagne lancee par un Americain afin de faire reconnaitre son role dans la mise au point de l'imagerie a resonance magnetique (IRM), constitue une tradition, quasiment aussi ancienne que l'attribution de ces distinctions" (1 page).

  6. Daniel Kahneman: premio Nobel de Economia 2002

    Directory of Open Access Journals (Sweden)

    Hugo J. Contreras Sosa

    2003-01-01

    Full Text Available Se presenta una retrospección general del perfil del premio Nobel en economía 2002, además se realiza un análisis del llamado “desafío Kahneman-Tversky” y se confrontan los problemas de racionalidad limitada implícitos en el desafío K-T frente a la hipótesis dominante en la teoría económica estándar, acerca de que los agentes formulan expectativas racionales.

  7. A Nobel Prize winner visits CERN

    CERN Multimedia

    2007-01-01

    Nobel Prize-winning astrophysicist George Smoot visited CERN on 2 February with a message for particle physicists and cosmologists alike. After a tour of ATLAS and CMS, Smoot gave a talk to a packed Council Chamber about the connections between particle physics and cosmology, and how the two disciplines can help each other to find answers to their cosmic questions. Smoot's group at Lawrence Berkeley National Laboratory is currently working on the development of the Max Planck Surveyor, the next generation of satellite to study cosmic microwave background anisotropy, which will teach us about how our universe was formed.

  8. Closure of the gauge algebra, generalized Lie equations and Feynman rules

    International Nuclear Information System (INIS)

    Batalin, I.A.

    1984-01-01

    A method is given by which an open gauge algebra can always be closed and even made abelian. As a preliminary the generalized Lie equations for the open group are obtained. The Feynman rules for gauge theories with open algebras are derived by reducing the gauge theory to a non-gauge one. (orig.)

  9. Axiomatic derivation of Feynman rules and related topics

    International Nuclear Information System (INIS)

    Dorfmeister, G.K.

    1992-01-01

    Previous results in axiomatic field theory by Steinmann and Epstein-Glaser establish the existence of the retarded and time ordered Green's functions in every order of perturbation. To connect these Green's functions with the ones calculated in canonical field theories via the Feynman rules, one has to consistently build them not just for every order of perturbation but for each specific graph. (open-quotes Consisentlyclose quotes means here that the Green functions associated with two open-quotes smallclose quotes graphs build up to the Green's functions of the open-quotes bigclose quotes graph formed by connecting the two open-quotes smallclose quotes ones). This paper shows that this can indeed be done; that in this sense the Feynman rules of perturbative Lagrangian field theory can be derived from the abstract, but physically very basic, principles of axiomatic field theory. All results hold only for massive field theories. The LSZ formalism, to the best knowledge of the author, has so far not been modified to admit mass zero fields. To make the representation simpler and more transparent, the author restricts the discussion to a single component, scalar Φ 4 interaction which is a part of the Standard Model of Particle Physics. Motivated by its role in particle physics, the author complements the perturbative study of Φ 4 -theory by reviewing the status of non-perturbative solutions to the theory in the final chapter

  10. Hellmann–Feynman connection for the relative Fisher information

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, R.C., E-mail: ravi@systemsresearchcorp.com [Systems Research Corporation, Aundh, Pune 411007 (India); Plastino, A., E-mail: plastino@fisica.unlp.edu.ar [IFLP, National University La Plata & National Research (CONICET) C. C., 727 1900, La Plata (Argentina)

    2015-08-15

    The (i) reciprocity relations for the relative Fisher information (RFI, hereafter) and (ii) a generalized RFI–Euler theorem are self-consistently derived from the Hellmann–Feynman theorem. These new reciprocity relations generalize the RFI–Euler theorem and constitute the basis for building up a mathematical Legendre transform structure (LTS, hereafter), akin to that of thermodynamics, that underlies the RFI scenario. This demonstrates the possibility of translating the entire mathematical structure of thermodynamics into a RFI-based theoretical framework. Virial theorems play a prominent role in this endeavor, as a Schrödinger-like equation can be associated to the RFI. Lagrange multipliers are determined invoking the RFI–LTS link and the quantum mechanical virial theorem. An appropriate ansatz allows for the inference of probability density functions (pdf’s, hereafter) and energy-eigenvalues of the above mentioned Schrödinger-like equation. The energy-eigenvalues obtained here via inference are benchmarked against established theoretical and numerical results. A principled theoretical basis to reconstruct the RFI-framework from the FIM framework is established. Numerical examples for exemplary cases are provided. - Highlights: • Legendre transform structure for the RFI is obtained with the Hellmann–Feynman theorem. • Inference of the energy-eigenvalues of the SWE-like equation for the RFI is accomplished. • Basis for reconstruction of the RFI framework from the FIM-case is established. • Substantial qualitative and quantitative distinctions with prior studies are discussed.

  11. Neutrinos - the perfect wave. From the Nobel price to the world of Higgs, extra-dimensions and time voyages

    International Nuclear Information System (INIS)

    Paes, Heinrich

    2017-01-01

    This book tells the history of the discoveries, which have led to the physics Nobel price 2015. It explains and speculates completely concretely, how it could continue with the neutrinos, and how radically the Nobel-price crowned discoveries of McDonald and Kajita could change our picture of the universe.

  12. The Feynman fluid analogy in e+e- annihilation

    International Nuclear Information System (INIS)

    Hegyi, S.; Krasznovszky, S.

    1990-07-01

    An analysis of the charged particle multiplicity distributions observed in e + e - annihilation is given using the generalized Feynman fluid analogy of multiparticle production. Only the two-and three-particle integrated correlation functions are included into the scheme. It is shown that the model correctly describes the available experimental data from the TASSO and HRS collaborations. Some properties of the fluid of the analogy are computed and a prediction is made for the multiplicity distribution at √s = 91 GeV. (author) 19 refs.; 5 figs.; 1 tab

  13. Method of lines solution of Richards` equation

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, C.T.; Miller, C.T.; Tocci, M.D.

    1996-12-31

    We consider the method of lines solution of Richard`s equation, which models flow through porous media, as an example of a situation in which the method can give incorrect results because of premature termination of the nonlinear corrector iteration. This premature termination arises when the solution has a sharp moving front and the Jacobian is ill-conditioned. While this problem can be solved by tightening the tolerances provided to the ODE or DAE solver used for the temporal integration, it is more efficient to modify the termination criteria of the nonlinear solver and/or recompute the Jacobian more frequently. In this paper we continue previous work on this topic by analyzing the modifications in more detail and giving a strategy on how the modifications can be turned on and off in response to changes in the character of the solution.

  14. Extended Hellmann-Feynman theorem for degenerate eigenstates

    Science.gov (United States)

    Zhang, G. P.; George, Thomas F.

    2004-04-01

    In a previous paper, we reported a failure of the traditional Hellmann-Feynman theorem (HFT) for degenerate eigenstates. This has generated enormous interest among different groups. In four independent papers by Fernandez, by Balawender, Hola, and March, by Vatsya, and by Alon and Cederbaum, an elegant method to solve the problem was devised. The main idea is that one has to construct and diagonalize the force matrix for the degenerate case, and only the eigenforces are well defined. We believe this is an important extension to HFT. Using our previous example for an energy level of fivefold degeneracy, we find that those eigenforces correctly reflect the symmetry of the molecule.

  15. A new approach to the Taylor expansion of multiloop Feynman diagrams

    International Nuclear Information System (INIS)

    Tarasov, O.V.

    1996-01-01

    We present a new method for the Taylor expansion of Feynman integrals with arbitrary masses and any number of loops and external momenta. By using the parametric representation we derive a generating function for the coefficients of the small momentum expansion of an arbitrary diagram. The method is applicable for the expansion with respect to all or a subset of external momenta. The coefficients of the expansion are obtained by applying a differential operator to a given integral with shifted value of the space-time dimension d and the expansion momenta set equal to zero. Integrals with changed d are evaluated by using the generalized recurrence relations recently proposed [O.V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, preprint DESY 96-068, JINR E2-96-62 (hep-th/9606018), to be published in Phys. Rev. D 54, No. 10 (1996)]. We show how the method works for one- and two-loop integrals. It is also illustrated that our method is simpler and more efficient than others. (orig.)

  16. The dependence of J/ψ-nucleon inelastic cross section on the Feynman variable

    International Nuclear Information System (INIS)

    Duan Chungui; Liu Na; Miao Wendan

    2011-01-01

    By means of two typical sets of nuclear parton distribution functions, meanwhile taking account of the energy loss of the beam proton and the nuclear absorption of the charmonium states traversing the nuclear matter in the uniform framework of the Glauber model, a leading order phenomenological analysis is given in the color evaporation model of the E866 experimental data on J/ψ production differential cross section ratios R Fe/Be (x F ). It is shown that the energy loss effect of beam proton on R Fe/Be (x F ) is more important than the nuclear effects on parton distribution functions in the high Feynman variable x F region. It is found that the J/ψ-nucleon inelastic cross section depends on the Feynman variable x F and increases linearly with x F in the region x F > 0.2. (authors)

  17. Spazio ASI, INFN e Nobel Ting a caccia di antimateria

    CERN Document Server

    Boz,

    2003-01-01

    "Una apparecchiatura per la ricerca dell' antimateria che nell'autunno del 2005 sara' installata sulla Stazione Spaziale e' al centro di un accordo di collaborazione tra l'Agenzia Spaziale Italiana e il Nobel Samuel Ting, del Mit e del Cern di Ginevra, firmato oggi a Roma (1 page).

  18. W. Richard Scott, Institutions and Organizations: Ideas, Interests, and Identities

    DEFF Research Database (Denmark)

    Jakobsen, Michael

    2014-01-01

    Book review of: W. Richard Scott: Institutions and Organizations: Ideas, Interests, and Identities. 4th edition. Thousand Oaks, CA: SAGE Publications, 2014. xiii, 345 pp.......Book review of: W. Richard Scott: Institutions and Organizations: Ideas, Interests, and Identities. 4th edition. Thousand Oaks, CA: SAGE Publications, 2014. xiii, 345 pp....

  19. Hazardous Waste Cleanup: Akzo Nobel Polymer Chemicals, LLC, Burt, New York

    Science.gov (United States)

    Akzo Nobel Polymer Chemicals, LLC is located in northern Niagara County, south of Lake Ontario. The facility encompasses 350 acres, of which 30 acres are used for the production of organic peroxides. Eighteen Mile Creek is located immediately west of the

  20. Nobel prize women in science their lives, struggles, and momentous discoveries

    CERN Document Server

    McGrayne, Sharon Bertsch

    1993-01-01

    An examination of the lives of Nobel Prize-winning women scientists discusses the work of Marie Curie, Emmy Noether, Lisa Meitner, and others, and explains why more than four hundred men and only nine women have won this prestigious award.

  1. Advanced quantum theory and its applications through Feynman diagrams

    International Nuclear Information System (INIS)

    Scadron, M.D.

    1979-01-01

    The two themes of scattering diagrams and the fundamental forces characterize this book. Transformation theory is developed to review the concepts of nonrelativistic quantum mechanics and to formulate the relativistic Klein-Gordon, Maxwell, and Dirac wave equations for relativistic spin-0, massless spin-1, and spin-1/2 particles, respectively. The language of group theory is used to write relativistic Lorentz transformations in a form similar to ordinary rotations and to describe the important discrete symmetries of C, P, and T. Then quantum mechanics is reformulated in the language of scattering theory, with the momentum-space S matrix replacing the coordinate-space hamiltonian as the central dynamical operator. Nonrelativistic perturbation scattering diagrams are then developed, and simple applications given for nuclear, atomic, and solid-state scattering problems. Next, relativistic scattering diagrams built up from covariant Feynman propagators and vertices in a manner consistent with the CPT theorem are considered. The theory is systematically applied to the lowest-order fundamental electromagnetic, strong, weak, and gravitational interactions. Finally, the use of higher-order Feynman diagrams to explain more detailed aspects of quantum electrodynamics (QED) and strong-interaction elementary-particle physics is surveyed. Throughout, the notion of currents is used to exploit the underlying symmetries and dynamical interactions of the various quantum forces. 258 references, 77 figures, 1 table

  2. Diagnostic value of NobelGuide to minimize the need for reconstructive surgery of jaws before implant placement: a review.

    Science.gov (United States)

    Scotti, Roberto; Pellegrino, Gerardo; Marchetti, Claudio; Corinaldesi, Guiseppe; Ciocca, Leonardo

    2010-01-01

    To test if using a CAD/CAM system might reduce the necessity of bone augmentation in patients with atrophic maxillary arches before implant therapy. Twenty male and female patients consecutively scheduled for bone augmentation of the jaw before implant surgery were included in this study, with a total of 29 jaws (maxillary and mandibular) to analyze for the implant-supported fixed prosthesis group and 19 maxillary arches for the implant-supported removable prosthesis group. NobelGuide System (Nobel Biocare), Autocad System (Autodesk), and routine manual CT measurements of available bone were used in this study. The total results of the mean values of the fixed prosthesis group plus the mean values of the removable prosthesis group showed a statistically significant difference between the NobelGuide intervention score and both manual (P = .004) and Autocad (P = .001) measurements. The NobelGuide System represents a viable diagnostic device to reduce the entity or avoid bone reconstructive surgery before implant placements in the atrophic maxilla and mandible.

  3. Un Nobel para el tiempo biológico

    Directory of Open Access Journals (Sweden)

    Diego Golombek

    2018-01-01

    Full Text Available El premio Nobel en Fisiología o Medicina de 2017 fue otorgado a tres investigadores norteamericanos pioneros en el descubrimiento del mecanismo de los ritmos circadianos. Ya era hora… y es una excelente excusa para destacar la importancia de la Cronobiología – la ciencia que estudia los ritmos y relojes biológicos - tanto en la vida cotidiana en general como en las ciencias médicas en particular.

  4. Briton wins Nobel physics prize for work on superfluids

    CERN Multimedia

    Connor, S

    2003-01-01

    A British born scientist, Anthony Leggett, 65, has jointly won this year's Nobel prize in physics for research into the arcane area of superfluids - when matter behaves in its lowest and most ordered state. He shares the 800,000 pounds prize with two Russian physicists who have worked in the field of superconductivity - when electrical conductors lose resistance (1/2 page).

  5. Specific features of the REDUCE system and calculation of QCD Feynman graphs

    International Nuclear Information System (INIS)

    Dulyan, L.S.

    1990-01-01

    The ways and methods used in calculation of one class of the QCD Feynman graphs with the help of the REDUCE system are described. It is shown how by introducing new constructions and operations the user could avoid difficulties connected with specific restrictions and features of the REDUCE system

  6. Kuues väljasuremine / Richard Leakey, Roger Lewin

    Index Scriptorium Estoniae

    Leakey, Richard

    2002-01-01

    Inimtegevuse hävitavast toimest looduslikule mitmekesisusele, mis tingib loodusliku energiatootmise järsu kahanemise, millest omakorda sõltub inimese enda ellujäämine. Lühidalt Richard Leakey'st

  7. Bridging the Knowledge Gaps between Richards' Equation and Budyko Equation

    Science.gov (United States)

    Wang, D.

    2017-12-01

    The empirical Budyko equation represents the partitioning of mean annual precipitation into evaporation and runoff. Richards' equation, based on Darcy's law, represents the movement of water in unsaturated soils. The linkage between Richards' equation and Budyko equation is presented by invoking the empirical Soil Conservation Service curve number (SCS-CN) model for computing surface runoff at the event-scale. The basis of the SCS-CN method is the proportionality relationship, i.e., the ratio of continuing abstraction to its potential is equal to the ratio of surface runoff to its potential value. The proportionality relationship can be derived from the Richards' equation for computing infiltration excess and saturation excess models at the catchment scale. Meanwhile, the generalized proportionality relationship is demonstrated as the common basis of SCS-CN method, monthly "abcd" model, and Budyko equation. Therefore, the linkage between Darcy's law and the emergent pattern of mean annual water balance at the catchment scale is presented through the proportionality relationship.

  8. The 2010 Chemistry Nobel Prize: Pd(0)-Catalyzed Organic Synthesis

    Indian Academy of Sciences (India)

    The 2010 Nobel Prize in Chemistry was awarded to three scientists, R F ... reactions are scalable to industrial production level and satisfy several 'Green ... Ph Br. H2C CH2. Pd(PPh3)4 or Pd(OAc2). HC CH2. Ph base, solvent, heat. 1. 2. 3. (1).

  9. Richard A. Werners forskning i pengeskabelse

    DEFF Research Database (Denmark)

    2016-01-01

    Hvilken rolle spiller penge i samfundsøkonomien og hvilken rolle burde penge spille i den økonomiske videnskab? Det forsker Richard Werner i. Han er professor i økonomi ved Southampton University i England, og her præsenteres fire dele af hans forskning i penge: (1) Hvad foregår der egentlig i en...

  10. Do we need Feynman diagrams for higher order perturbation theory?

    International Nuclear Information System (INIS)

    Jora, Renata

    2012-01-01

    We compute the two loop and three loop corrections to the beta function for Yang-Mills theories in the background gauge field method and using the background gauge field as the only source. The calculations are based on the separation of the one loop effective potential into zero and positive modes contributions and are entirely analytical. No two or three loop Feynman diagrams are considered in the process.

  11. Numerical calculations in elementary quantum mechanics using Feynman path integrals

    International Nuclear Information System (INIS)

    Scher, G.; Smith, M.; Baranger, M.

    1980-01-01

    We show that it is possible to do numerical calculations in elementary quantum mechanics using Feynman path integrals. Our method involves discretizing both time and space, and summing paths through matrix multiplication. We give numerical results for various one-dimensional potentials. The calculations of energy levels and wavefunctions take approximately 100 times longer than with standard methods, but there are other problems for which such an approach should be more efficient

  12. On the Human Aspect of Nobel Prize

    Science.gov (United States)

    Durand, G.

    1990-10-01

    One night, Nico invited for dinner all his postdoc and graduate students, in a German restaurant close to Harvard Square. Just before we were to pay for our meal, he told us: "Tomorrow, we shall know the Nobel prize winner. Can you people make a guess on his name?" All my colleagues nominated great physicists. In my turn, I suggested naively (and perhaps nationalistically) the name of Alfred Kastler who had been my thesis adviser. "Come on," joked Nico, "I know a lot of physicists who would deserve it much better.."

  13. Autophagy: one more Nobel Prize for yeast

    Directory of Open Access Journals (Sweden)

    Andreas Zimmermann

    2016-12-01

    Full Text Available The recent announcement of the 2016 Nobel Prize in Physiology or Medicine, awarded to Yoshinori Ohsumi for the discoveries of mechanisms governing autophagy, underscores the importance of intracellular degradation and recycling. At the same time, it further cements yeast, in which this field decisively developed, as a prolific model organism. Here we provide a quick historical overview that mirrors both the importance of autophagy as a conserved and essential process for cellular life and death as well as the crucial role of yeast in its mechanistic characterization.

  14. The contribution of several Nobel Laureates in the development of the Theory of general economic equilibrium

    OpenAIRE

    Florentina Xhelili Krasniqi; Rahmie Topxhiu; Donat Rexha

    2016-01-01

    Nobel Laureates with their contributions to the development of the theory of general equilibrium have enabled this theory to be one of the most important for theoretical and practical analysis of the overall economy and the efficient use of economic resources. Results of the research showing that contributions of Nobel Laureates in the economy belong to two main frameworks of development of the general equilibrium theory: one was the mathematical model of general equilibrium developed by J...

  15. The History of Molecular Structure Determination Viewed through the Nobel Prizes.

    Science.gov (United States)

    Jensen, William P.; Palenik, Gus J.; Suh, Il-Hwan

    2003-01-01

    Discusses the importance of complex molecular structures. Emphasizes their individual significance through examination of the Nobel Prizes of the 20th century. Highlights prizes awarded to Conrad Rontgen, Francis H.C. Crick, James D. Watson, Maurice H.F. Wilkins, and others. (SOE)

  16. A lecture by Saul Perlmutter, winner of the 2011 Nobel prize in physics

    CERN Multimedia

    2011-01-01

    The CNRS National Institute of Nuclear Physics and Particle Physics (IN2P3), Pierre et Marie Curie University and the Laboratory of Nuclear and High-energy Physics (LPNHE) are happy to invite you to a talk by Nobel laureate Saul Perlmutter.   Perlmutter shared the 2011 Nobel prize in physics "for the discovery of the accelerating expansion of the Universe through observations of distant supernovae." He will give a public talk in Paris on 17 December at 5pm: "Supernovae, Dark Energy, and the Accelerating Universe" Amphithéâtre Farabeuf des Cordeliers 21, rue de l’école de Médecine 75006 Paris Free entrance (places are limited) and live translation available.

  17. Experimental demonstration of the finite measurement time effect on the Feynman-{alpha} technique

    Energy Technology Data Exchange (ETDEWEB)

    Wallerbos, E.J.M.; Hoogenboom, J.E

    1998-09-01

    The reactivity of a subcritical system is determined by fitting two different theoretical models to a measured Feynman-{alpha} curve. The first model is the expression usually found in the literature, which can be shown to be the expectation value of the experimental quality if the measurement time is infinite. The second model is a new expression which is the expectation value of the experimental quantity for a finite measurement time. The reactivity inferred with the new model is seen to be independent of the length of the fitting interval, whereas the reactivity inferred with the conventional model is seen to vary. This difference demonstrates the effect of the finite measurement time. As a reference, the reactivity is also measured with the pulsed-neutron source method. It is seen to be in good agreement with the reactivity obtained with the Feynman-{alpha} technique when the new expression is applied.

  18. The discovery, development and future of GMR: The Nobel Prize 2007

    International Nuclear Information System (INIS)

    Thompson, Sarah M

    2008-01-01

    One hundred and one years after J J Thomson was awarded the Nobel Prize for the discovery of the electron, the 2007 Nobel Prize for Physics was awarded to Professors Peter Gruenberg and Albert Fert for the discovery of giant magnetoresistance (GMR) in which the spin as well as the charge of the electron is manipulated and exploited in nanoscale magnetic materials. The journey to GMR started with Lord Kelvin who 150 years ago in 1857 made the first observations of anisotropic magnetoresistance and includes Sir Neville Mott who in 1936 realized that electric current in metals could be considered as two independent spin channels. Modern technology also has a significant role to play in the award of this Nobel Prize: GMR is only manifest in nanoscale materials, and the development of nanotechnology growth techniques was a necessary pre-requisite; further, the considerable demands of the magnetic data storage industry to drive up the data density stored on a hard disk fuelled an enormous international research effort following the initial discovery with the result that more than 5 billion GMR read heads have been manufactured since 1997, ubiquitous in hard disks today. This technology drive continues to inspire exploration of the spin current in the field now known as spintronics, generating new ideas and applications. This review explores the science underpinning GMR and spintronics, the different routes to its discovery taken by Professors Gruenberg and Fert, the new science, materials and applications that the discovery has triggered and the considerable potential for the future. (topical review)

  19. The discovery, development and future of GMR: The Nobel Prize 2007

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Sarah M [Department of Physics, University of York, York, YO10 5DD (United Kingdom)

    2008-05-07

    One hundred and one years after J J Thomson was awarded the Nobel Prize for the discovery of the electron, the 2007 Nobel Prize for Physics was awarded to Professors Peter Gruenberg and Albert Fert for the discovery of giant magnetoresistance (GMR) in which the spin as well as the charge of the electron is manipulated and exploited in nanoscale magnetic materials. The journey to GMR started with Lord Kelvin who 150 years ago in 1857 made the first observations of anisotropic magnetoresistance and includes Sir Neville Mott who in 1936 realized that electric current in metals could be considered as two independent spin channels. Modern technology also has a significant role to play in the award of this Nobel Prize: GMR is only manifest in nanoscale materials, and the development of nanotechnology growth techniques was a necessary pre-requisite; further, the considerable demands of the magnetic data storage industry to drive up the data density stored on a hard disk fuelled an enormous international research effort following the initial discovery with the result that more than 5 billion GMR read heads have been manufactured since 1997, ubiquitous in hard disks today. This technology drive continues to inspire exploration of the spin current in the field now known as spintronics, generating new ideas and applications. This review explores the science underpinning GMR and spintronics, the different routes to its discovery taken by Professors Gruenberg and Fert, the new science, materials and applications that the discovery has triggered and the considerable potential for the future. (topical review)

  20. The diamond rule for multi-loop Feynman diagrams

    International Nuclear Information System (INIS)

    Ruijl, B.; Ueda, T.; Vermaseren, J.A.M.

    2015-01-01

    An important aspect of improving perturbative predictions in high energy physics is efficiently reducing dimensionally regularised Feynman integrals through integration by parts (IBP) relations. The well-known triangle rule has been used to achieve simple reduction schemes. In this work we introduce an extensible, multi-loop version of the triangle rule, which we refer to as the diamond rule. Such a structure appears frequently in higher-loop calculations. We derive an explicit solution for the recursion, which prevents spurious poles in intermediate steps of the computations. Applications for massless propagator type diagrams at three, four, and five loops are discussed

  1. S-matrix, Feynman zigzag and Einstein correlation

    International Nuclear Information System (INIS)

    Costa de Beauregard, O.

    1978-01-01

    An inherent binding between Einstein correlations and the S-matrix formalism entails full relativistic covariance, complete time symmetry, and spacelike connexions via Feynman zigzags. The relay is in the past for predictive correlations between future measurements, and in the future for retrodictive correlations between past preparations (Pflegor and Mandel). An analogy and a partial binding exist between intrinsic symmetry together with factlike asymmetry of (1) 'blind statistical' prediction and retrodiction (retarded and advanced waves, information as cognizance and as will) and (2) positive and negative frequencies (particles and antiparticles). As advanced waves are required for completeness of expansions, 'antiphysics' obeying blind statistical retrodiction should show up in appropriate contexts, 'parapsychology' being submitted as one of them. (Auth.)

  2. 2013 Physics Nobel Prize

    International Nuclear Information System (INIS)

    Orloff, J.

    2013-01-01

    The 2013 Physics Nobel Prize was awarded conjointly to Englert F. and Higgs, P.W. for the theoretical discovery of a mechanism that contribute to our understanding of the origin of the mass of subatomic particles and which was recently confirmed by the discovery of the predicted Higgs boson in the ATLAS and CMS experiments at the LHC. The Brout-Englert-Higgs (BEH) mechanism allows the conciliation of finite range interaction and then non-null mass with symmetry through the concept of spontaneous symmetry breaking. As mass and couplings are relativist invariants, they stay unchanged in the rotation of the space for instance, the BEH field must be too and as a consequence must be a scalar field associated with a null spin particle called the Higgs boson. As the BEH mechanism explains the mass of elementary particles, it gives no hint about the reason of the broad range of particle masses we observe. (A.C.)

  3. A development of an accelerator board dedicated for multi-precision arithmetic operations and its application to Feynman loop integrals

    International Nuclear Information System (INIS)

    Motoki, S; Ishikawa, T; Yuasa, F; Daisaka, H; Nakasato, N; Fukushige, T; Kawai, A; Makino, J

    2015-01-01

    Higher order corrections in perturbative quantum field theory are required for precise theoretical analysis to investigate new physics beyond the Standard Model. This indicates that we need to evaluate Feynman loop diagrams with multi-loop integrals which may require multi-precision calculation. We developed a dedicated accelerator system for multiprecision calculations (GRAPE9-MPX). We present performance results of our system for the case of Feynman two-loop box and three-loop selfenergy diagrams with multi-precision. (paper)

  4. The competition 'First Step to Nobel Prize in Physics'

    Energy Technology Data Exchange (ETDEWEB)

    Gorzkowski, W; Zuberek, R [Institute of Physics of the Polish Academy of Science, Warsaw (Poland); Surya, Y [TOFI, Tangerang-Karawaci (Indonesia)

    2011-07-15

    This paper presents the history of the competition First Step to Nobel Prize in Physics organized by Poland, its development from a national workshop in 1991/92 to an international competition nowadays and its organization, as well as the results obtained by the participants.

  5. The 2015 Nobel Prize in Physiology or Medicine: A Soil Bacterium ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 4. The 2015 Nobel Prize in Physiology or Medicine: A Soil Bacterium and a Chinese Herb Steal the Show. Pundi N Rangarajan. General Article Volume 21 Issue 4 April 2016 pp 315-326 ...

  6. Hellmann-Feynman theorem and the definition of forces in quantum time-dependent and transport problems

    International Nuclear Information System (INIS)

    Di Ventra, Massimiliano; Pantelides, Sokrates T.

    2000-01-01

    The conventional Hellmann-Feynman theorem for the definition of forces on nuclei is not directly applicable to quantum time-dependent and transport problems. We present a rigorous derivation of a general Hellmann-Feynman-like theorem that applies to all quantum mechanical systems and reduces to well-known results for ground-state problems. It provides a rigorous definition of forces in time-dependent and transport problems. Explicit forms of Pulay-like forces are derived and the conditions for them to be zero are identified. A practical scheme for ab initio calculations of current-induced forces is described and the study of the transfer of a Si atom between two electrodes is presented as an example. (c) 2000 The American Physical Society

  7. Biomedical applications of green synthesized Nobel metal nanoparticles.

    Science.gov (United States)

    Khan, Zia Ul Haq; Khan, Amjad; Chen, Yongmei; Shah, Noor S; Muhammad, Nawshad; Khan, Arif Ullah; Tahir, Kamran; Khan, Faheem Ullah; Murtaza, Behzad; Hassan, Sadaf Ul; Qaisrani, Saeed Ahmad; Wan, Pingyu

    2017-08-01

    Synthesis of Nobel metal nanoparticles, play a key role in the field of medicine. Plants contain a substantial number of organic constituents, like phenolic compounds and various types of glycosides that help in synthesis of metal nanoparticles. Synthesis of metal nanoparticles by green method is one of the best and environment friendly methods. The major significance of the green synthesis is lack of toxic by-products produced during metal nanoparticle synthesis. The nanoparticles, synthesized by green method show various significant biological activities. Most of the research articles report the synthesized nanoparticles to be active against gram positive and gram negative bacteria. Some of these bacteria include Escherichia coli, Bacillus subtilis, Klebsiella pneumonia and Pseudomonas fluorescens. The synthesized nanoparticles also show significant antifungal activity against Trichophyton simii, Trichophyton mentagrophytes and Trichophyton rubrum as well as different types of cancer cells such as breast cancer cell line. They also exhibit significant antioxidant activity. The activities of these Nobel metal nano-particles mainly depend on the size and shape. The particles of small size with large surface area show good activity in the field of medicine. The synthesized nanoparticles are also active against leishmanial diseases. This research article explores in detail the green synthesis of the nanoparticles and their uses thereof. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Exploring the Uses of RNAi — Gene Knockdown and the Nobel Prize

    NARCIS (Netherlands)

    Bernards, R.A.

    2006-01-01

    The Nobel Prize in Physiology or Medicine was awarded this year to Andrew Fire (Stanford University School of Medicine) and Craig Mello (University of Massachusetts Medical School) for their discovery of a new form of gene silencing.

  9. Statement on occasion of receipt of the Nobel Peace Prize 2005, 7 October 2005. Nobel Peace Prize awarded to IAEA and Director General

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2005-01-01

    On the occasion of receiving the Nobel Price the Director General of the International Atomic Energy Agency, Dr. Mohamed ElBaradei expressed his feeling of gratitude, pride and hope. He stated that with this recognition, the Norwegian Nobel Committee underscores the value and the relevance of the work the IAEA has been doing. It recognizes the urgency of addressing the dangers we face: nuclear proliferation, nuclear armaments, and nuclear terrorism. The award will lend prominence and impetus to the IAEA's ultimate objective - of passing to our children a world free of nuclear weapons - and for that I am deeply grateful. He takes great pride in all the men and women who serve at the International Atomic Energy Agency. The IAEA was founded with a simple credo: 'Atoms for Peace' - meaning that nuclear science should be used safely and securely in the service of humankind - in peaceful applications related to energy production, health, water, agriculture and other aspects of development -- and not for its destruction. More than anything, this award suggests that, almost five decades later, we are still focused unwaveringly on living up to that objective. He believes that the road to international peace and security lies through multilateralism - the collective search by people of all racial, religious, ethnic and national backgrounds to find a common ground, based not on intimidation or rivalry but on understanding and human solidarity. In a practical sense, this means developing a functional system of international security that does not derive from a nuclear weapons deterrent - but rather based on addressing the security concerns of all. The fact that the IAEA was awarded the Nobel Peace Prize gives renewed hope that, working in concert, the international community can achieve this goal. It strengthens both aspects of the Agency's mandate: ensuring that the benefits of nuclear energy are distributed as broadly as possible in the service of humankind, and working

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 9. Five Things I Learned from Richard Feynman About Science Education. Kathy Ceceri. Personal Reflections Volume 16 Issue 9 September 2011 pp 879-880. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. James Chadwick Nobel Prize for Physics 1935. Discovery of the neutron

    International Nuclear Information System (INIS)

    2004-01-01

    James Chadwick (1981-1974) was a key figure in the field of nuclear science. Through his studies, he researched the disintegration of atoms by bombarding alpha particles and proved the existence of neutrons. For this discovery, he was awarded the Nobel Prize for physics in 1935. (Author)

  12. Lecture by the winner of the 2007 Nobel Prize for physics

    CERN Multimedia

    2007-01-01

    Professor Albert Fert, who has just been awarded the Nobel Prize for physics for his work on giant magneto-resistance and spintronics, will give a lecture at the University of Geneva on 16 November on this booming field of science. (c) CNRS Photothèque - C. LebedinskyOn 9 October, the 2007 Nobel Prize for physics was jointly awarded to Albert Fert of the CNRS and Peter Grünberg of the Jülich Research Centre for their simultaneous and independent discovery of giant magneto-resistance (GMR) in 1988. This discovery had a significant impact in the fields of information technology and communications as it was rapidly used to develop extremely sensitive hard disk read-out heads that are capable of reading information stored at very high densities, thereby allowing further progress in the miniaturisation of data-storage devices. Since the first GMR read-out head was launched in 1997, the technology has become the standard in the m...

  13. Global Estimates of Errors in Quantum Computation by the Feynman-Vernon Formalism

    Science.gov (United States)

    Aurell, Erik

    2018-04-01

    The operation of a quantum computer is considered as a general quantum operation on a mixed state on many qubits followed by a measurement. The general quantum operation is further represented as a Feynman-Vernon double path integral over the histories of the qubits and of an environment, and afterward tracing out the environment. The qubit histories are taken to be paths on the two-sphere S^2 as in Klauder's coherent-state path integral of spin, and the environment is assumed to consist of harmonic oscillators initially in thermal equilibrium, and linearly coupled to to qubit operators \\hat{S}_z . The environment can then be integrated out to give a Feynman-Vernon influence action coupling the forward and backward histories of the qubits. This representation allows to derive in a simple way estimates that the total error of operation of a quantum computer without error correction scales linearly with the number of qubits and the time of operation. It also allows to discuss Kitaev's toric code interacting with an environment in the same manner.

  14. Global Estimates of Errors in Quantum Computation by the Feynman-Vernon Formalism

    Science.gov (United States)

    Aurell, Erik

    2018-06-01

    The operation of a quantum computer is considered as a general quantum operation on a mixed state on many qubits followed by a measurement. The general quantum operation is further represented as a Feynman-Vernon double path integral over the histories of the qubits and of an environment, and afterward tracing out the environment. The qubit histories are taken to be paths on the two-sphere S^2 as in Klauder's coherent-state path integral of spin, and the environment is assumed to consist of harmonic oscillators initially in thermal equilibrium, and linearly coupled to to qubit operators \\hat{S}_z. The environment can then be integrated out to give a Feynman-Vernon influence action coupling the forward and backward histories of the qubits. This representation allows to derive in a simple way estimates that the total error of operation of a quantum computer without error correction scales linearly with the number of qubits and the time of operation. It also allows to discuss Kitaev's toric code interacting with an environment in the same manner.

  15. Expressing Solutions of the Dirac Equation in Terms of Feynman Path Integral

    CERN Document Server

    Hose, R D

    2006-01-01

    Using the separation of the variables technique, the free particle solutions of the Dirac equation in the momentum space are shown to be actually providing the definition of Delta function for the Schr dinger picture. Further, the said solution is shown to be derivable on the sole strength of geometrical argument that the Dirac equation for free particle is an equation of a plane in momentum space. During the evolution of time in the Schr dinger picture, the normal to the said Dirac equation plane is shown to be constantly changing in direction due to the uncertainty principle and thereby, leading to a zigzag path for the Dirac particle in the momentum space. Further, the time evolution of the said Delta function solutions of the Dirac equation is shown to provide Feynman integral of all such zigzag paths in the momentum space. Towards the end of the paper, Feynman path integral between two fixed spatial points in the co-ordinate space during a certain time interv! al is shown to be composed, in time sequence...

  16. Richard Mattessich: vida y obra

    OpenAIRE

    Daniel Carrasco Díaz

    2006-01-01

    El texto que se ofrece a continuación constituye el discurso pronunciado por el profesor Daniel Carrasco Díaz, catedrático de Economía Financiera y Contabilidad como padrino del homenajeado, en el solemne acto de investidura del Prof. Dr. Richard Mattessich, profesor emérito de la Sauder School of Commerce, de la University of British Columbia, Vancouver (Canadá), como Doctor honoris causa por la Universidad de Málaga, celebrado el 18 de mayo de 2006.

  17. Failed Mothers, Monster Sons. Reading Shakespeare’S Richard Iii as a Fairy Tale

    Directory of Open Access Journals (Sweden)

    Percec Dana

    2014-03-01

    Full Text Available The paper looks at Shakespeare’s historical play Richard III and its fairy tale-like character given by the configuration of the main character as an arch-villain and the presence of motifs and patterns typically associated with the fairy tale genre. More specifically, it considers the mother-son relationship between the Duchess of York and Richard in the light of the motif of monstrous birth. It is not a coincidence that the emergence of such motifs coincides with the historical contexts of the early modern period. Reading Richard III in this key is related to the revisionist approach to chronicle plays.

  18. Feynman rules and generalized ward identities in phase space functional integral

    International Nuclear Information System (INIS)

    Li Ziping

    1996-01-01

    Based on the phase-space generating functional of Green function, the generalized canonical Ward identities are derived. It is point out that one can deduce Feynman rules in tree approximation without carrying out explicit integration over canonical momenta in phase-space generating functional. If one adds a four-dimensional divergence term to a Lagrangian of the field, then, the propagator of the field can be changed

  19. Richard Weaver's Untraditional Case for Federalism

    OpenAIRE

    Jeremy David Bailey

    2004-01-01

    Although Richard M. Weaver's political writings do not offer a systematic examination of federalism, they include a defense of federalist arrangements. Because Weaver's federalism is central to his conservatism, and because his argument for federalism differs from more common conservative defenses of federalism offered in the twentieth century, his writings allow students of federalism to examine possible connections between federalism and conservative political thought. Copyright 2004, Oxfor...

  20. Discovery of superfluid 3He phases wins 1996 nobel prize in physics

    International Nuclear Information System (INIS)

    Yan Shousheng

    1997-01-01

    The 1996 Nobel prize in physics was awarded to David M. Lee, Douglas D. Osheroff and Robert C. Richardson for their discovery of superfluidity in 3 He in 1971. A short account of the discovery and its importance is given

  1. Interpretation of the evolution parameter of the Feynman parametrization of the Dirac equation

    International Nuclear Information System (INIS)

    Aparicio, J.P.; Garcia Alvarez, E.T.

    1995-01-01

    The Feynman parametrization of the Dirac equation is considered in order to obtain an indefinite mass formulation of relativistic quantum mechanics. It is shown that the parameter that labels the evolution is related to the proper time. The Stueckelberg interpretation of antiparticles naturally arises from the formalism. ((orig.))

  2. Feynman propagator for spin foam quantum gravity.

    Science.gov (United States)

    Oriti, Daniele

    2005-03-25

    We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".

  3. ECONOMICS NOBEL: Dealing With Biases and Discrete Choices.

    Science.gov (United States)

    Seife, C

    2000-10-20

    This year's Bank of Sweden Prize in Economic Sciences, given in honor of Alfred Nobel, goes to two researchers who gave the field of microeconomics--the study of individuals' economic behavior--new tools to help draw conclusions from imperfect data. James Heckman of the University of Chicago wins half of this year's prize for coming up with ways to deal with selection biases. Daniel McFadden of the University of California, Berkeley, tackled a different conundrum: how to quantify discrete choices rather than continuous ones.

  4. In memoriam: Richard (Rick) G. Harrison—benefactor for ...

    Indian Academy of Sciences (India)

    Professor Richard Harrison (1946–2016), a most influential evolutionary biologist of ... were profoundly important in my development as a scientist and a person. ... observations to infer his love of family, but I am going to risk correction by those ...

  5. PREFACE: Celebrating 20 years of Journal of Physics: Condensed Matter—in honour of Richard Palmer Celebrating 20 years of Journal of Physics: Condensed Matter—in honour of Richard Palmer

    Science.gov (United States)

    Ferry, David; Dowben, Peter; Inglesfield, John

    2009-11-01

    This year marks the 20th anniversary of the launch of Journal of Physics: Condensed Matter in 1989. The journal was formed from the merger of Journal of Physics C: Solid State Physics and Journal of Physics F: Metal Physics which had separated in 1971. In the 20 years since its launch, Journal of Physics: Condensed Matter has more than doubled in size, while raising standards. Indeed, Journal of Physics: Condensed Matter has become one of the leading scientific journals for our field. This could not have occurred without great leadership at the top. No one has been more responsible for this growth in both size and quality than our Senior Publisher, Richard Palmer. Richard first started work at IOP in March 1971 as an Editorial Assistant with J. Phys. B After a few months, he transferred to J. Phys.C The following year, the Assistant Editor of J. Phys. C, Malcolm Haines, left suddenly in order to work on his family vineyard in France, and Richard stepped into the breach. In those days, external editors had a much more hands-on role in IOP Publishing and he had to travel to Harwell to be interviewed by Alan Lidiard, the Honorary Editor of J. Phys. C, before being given the job of Assistant Editor permanently. Since J. Phys. C and J. Phys. F re-merged to form Journal of Physics: Condensed Matter, Richard gradually shed his other journal responsibilities, except for Reports on Progress in Physics, to build up Journal of Physics: Condensed Matter. He has worked closely with four Editors-in-Chief of J. Phys. C and five of Journal of Physics: Condensed Matter. When Richard announced his retirement this past winter, we met it with a great deal of both happiness and sadness. Of course, we are happy that he is going to be allowed to enjoy his retirement, but we remain very sad to lose such a valuable member of our team, especially the one who had provided the heart and soul of the journal over its 20 years. We will be able to rely upon the team which Richard ably trained as

  6. Trochanteric fractures. Classification and mechanical stability in McLaughlin, Ender and Richard osteosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Herrlin, K.; Stroemberg, T.; Lidgren, L.; Walloee, A.; Pettersson, H.

    Four hundred and thirty trochanteric factures operated upon with McLaughlin, Ender or Richard's osteosynthesis were divided into 6 different types based on their radiographic appearance before and immediately after reposition with special reference to the medial cortical support. A significant correlation was found between the fracture type and subsequent mechanical complications where types 1 and 2 gave less, and types 4 and 5 more complications. A comparison of the various osteosyntheses showed that Richard's had significantly fewer complications than either the Ender or McLaughlin types. For Richard's osteosynthesis alone no correlation to fracture type could be made because of the small number of complications in this group.

  7. A Hundred Years of Physics on Show

    CERN Multimedia

    2002-01-01

    The New Yorker Richard Feynman, well known to all physicists for his diagrams. Eleven vivid posters have recently been hung along the Theoretical Physics corridor on the first floor of Building 53. They tell the story of a century of physics, between 1900 and the end of the nineteen-nineties, the century that gave us atomic and quantum physics and the great breakthroughs that have rocked our understanding of the world and the universe. The posters are a gift from the American Physical Society to the CERN Library. As they were designed for high school and university book collections in the US, they necessarily have a somewhat American view of the history of science. But it is still instructive to revisit contemporary physics through its great figures, such as Marie Curie, Stephen Hawking, and Richard Feynman, not to mention Albert Einstein and many others. Why not take the time for a little trip down this particular stretch of Memory Lane?

  8. Teaching Basic Quantum Mechanics in Secondary School Using Concepts of Feynman Path Integrals Method

    Science.gov (United States)

    Fanaro, Maria de los Angeles; Otero, Maria Rita; Arlego, Marcelo

    2012-01-01

    This paper discusses the teaching of basic quantum mechanics in high school. Rather than following the usual formalism, our approach is based on Feynman's path integral method. Our presentation makes use of simulation software and avoids sophisticated mathematical formalism. (Contains 3 figures.)

  9. Feynman graphs and gauge theories for experimental physicists. 2. rev. ed.

    International Nuclear Information System (INIS)

    Schmueser, P.

    1995-01-01

    This book is an introduction to the foundations of quantum field theory with special regards to gauge theory. After a general introduction to relativistic wave equations the concept of Feynman graphs is introduced. Then after an introduction to the phenomenology of weak interactions and the principle of gauge invariance the standard model of the electroweak interaction is presented. Finally quantum chromodynamics is described. Every chapter contains exercise problems. (HSI)

  10. INTRODUCTION: Physics of Low-dimensional Systems: Nobel Symposium 73

    Science.gov (United States)

    Lundqvist, Stig

    1989-01-01

    The physics of low-dimensional systems has developed in a remarkable way over the last decade and has accelerated over the last few years, in particular because of the discovery of the new high temperature superconductors. The new developments started more than fifteen years ago with the discovery of the unexpected quasi-one-dimensional character of the TTF-TCNQ. Since then the field of conducting quasi-one-dimensional organic systems have been rapidly growing. Parallel to the experimental work there has been an important theoretical development of great conceptual importance, such as charge density waves, soliton-like excitations, fractional charges, new symmetry properties etc. A new field of fundamental importance was the discovery of the Quantum Hall Effect in 1980. This field is still expanding with new experimental and theoretical discoveries. In 1986, then, came the totally unexpected discovery of high temperature superconductivity which started an explosive development. The three areas just mentioned formed the main themes of the Symposium. They do not in any way exhaust the progress in low-dimensional physics. We should mention the recent important development with both two-dimensional and one-dimensional and even zero-dimensional structures (quantum dots). The physics of mesoscopic systems is another important area where the low dimensionality is a key feature. Because of the small format of this Symposium we could unfortunately not cover these areas. A Nobel Symposium provides an excellent opportunity to bring together a group of prominent scientists for a stimulating exchange of new ideas and results. The Nobel Symposia are very small meetings by invitation only and the number of key international participants is typically in the range 25-40. These Symposia are arranged through a special Nobel Symposium Committee after proposal from individuals. This Symposium was sponsored by the Nobel Foundation through its Nobel Symposium Fund with grants from The

  11. Richard Wollheim 1923-2003 / Marek Volt

    Index Scriptorium Estoniae

    Volt, Marek

    2004-01-01

    Järelehüüe anglo-ameerika filosoofile Richard Wollheimile (5. V 1923-4. XI 2003), kes huvitus maalist ja psühhoanalüüsist ning kuulub XX sajandi analüütilist kunstifilosoofiat enim kujundanud filosoofide hulka. Tema peamised tööd: "Art and Its Objects" (1968), "Painting As an Art" (1987), "On Painting and the Self" (1992). Ilmunud ka raamatus: Volt, Marek. Esteetikast. Tallinn : Sirp, 2006

  12. Anomaly detection in random heterogeneous media Feynman-Kac formulae, stochastic homogenization and statistical inversion

    CERN Document Server

    Simon, Martin

    2015-01-01

    This monograph is concerned with the analysis and numerical solution of a stochastic inverse anomaly detection problem in electrical impedance tomography (EIT). Martin Simon studies the problem of detecting a parameterized anomaly in an isotropic, stationary and ergodic conductivity random field whose realizations are rapidly oscillating. For this purpose, he derives Feynman-Kac formulae to rigorously justify stochastic homogenization in the case of the underlying stochastic boundary value problem. The author combines techniques from the theory of partial differential equations and functional analysis with probabilistic ideas, paving the way to new mathematical theorems which may be fruitfully used in the treatment of the problem at hand. Moreover, the author proposes an efficient numerical method in the framework of Bayesian inversion for the practical solution of the stochastic inverse anomaly detection problem.   Contents Feynman-Kac formulae Stochastic homogenization Statistical inverse problems  Targe...

  13. Richard von Volkmann: surgeon and Renaissance man.

    Science.gov (United States)

    Willy, Christian; Schneider, Peter; Engelhardt, Michael; Hargens, Alan R; Mubarak, Scott J

    2008-02-01

    Richard von Volkmann (1830-1889), one of the most important surgeons of the 19(th) century, is regarded as one of the fathers of orthopaedic surgery. He was a contemporary of Langenbeck, Esmarch, Lister, Billroth, Kocher, and Trendelenburg. He was head of the Department of Surgery at the University of Halle, Germany (1867-1889). His popularity attracted doctors and patients from all over the world. He was the lead physician for the German military during two wars. From this experience, he compared the mortality of civilian and war injuries and investigated the general poor hygienic conditions in civilian hospitals. This led him to introduce the "antiseptic technique" to Germany that was developed by Lister. His powers of observation and creativity led him to findings and achievements that to this day bear his name: Volkmann's contracture and the Hueter-Volkmann law. Additionally, he was a gifted writer; he published not only scientific literature but also books of children's fairy tales and poems under the pen name of Richard Leander, assuring him a permanent place in the world of literature as well as orthopaedics.

  14. The contribution of several Nobel Laureates in the development of the Theory of general economic equilibrium

    Directory of Open Access Journals (Sweden)

    Florentina Xhelili Krasniqi

    2016-12-01

    Full Text Available Nobel Laureates with their contributions to the development of the theory of general equilibrium have enabled this theory to be one of the most important for theoretical and practical analysis of the overall economy and the efficient use of economic resources. Results of the research showing that contributions of Nobel Laureates in the economy belong to two main frameworks of development of the general equilibrium theory: one was the mathematical model of general equilibrium developed by John R. Hicks (1939, Kenneth J.Arrow (1951 and Gerard Debreu (1954 and second frames of general equilibrium belongs to Paul A. Samuelson (1958. To highlight the contributions of these Nobel laureates in the development of the theory of general equilibrium have been selected and are presented in the paper some views, estimates and assumptions that have contributed not only in solving concrete problems, but also to the development of economic science in general. Their works represent a synthesis of theoretical and practical aspects of treatment of general equilibrium which are the starting point for further research in this field.

  15. Narva keskosa planeeringu võistlus = Narva Central Area Planning Competition

    Index Scriptorium Estoniae

    2001-01-01

    Rahvusvahelise arhitektuurivõistluse zürii koosseis. Preemiad: I - Inga Raukas, Toomas Tammis, Tarmo Teedumäe; II - Erik Nobel (Kopenhaagen); III - Mark Hemel, Barbara Kuit (London); ost - Villem Tomiste ja Veronika Valk ning Richard Havenhand, Gregg Wilson ja Steve Kemp (Lincoln, Inglismaa).

  16. Complete algebraic reduction of one-loop tensor Feynman integrals

    International Nuclear Information System (INIS)

    Fleischer, J.; Riemann, T.

    2011-01-01

    We set up a new, flexible approach for the tensor reduction of one-loop Feynman integrals. The 5-point tensor integrals up to rank R=5 are expressed by 4-point tensor integrals of rank R-1, such that the appearance of the inverse 5-point Gram determinant is avoided. The 4-point tensor coefficients are represented in terms of 4-point integrals, defined in d dimensions, 4-2ε≤d≤4-2ε+2(R-1), with higher powers of the propagators. They can be further reduced to expressions which stay free of the inverse 4-point Gram determinants but contain higher-dimensional 4-point integrals with only the first power of scalar propagators, plus 3-point tensor coefficients. A direct evaluation of the higher-dimensional 4-point functions would avoid the appearance of inverse powers of the Gram determinants completely. The simplest approach, however, is to apply here dimensional recurrence relations in order to reduce them to the familiar 2- to 4-point functions in generic dimension d=4-2ε, introducing thereby coefficients with inverse 4-point Gram determinants up to power R for tensors of rank R. For small or vanishing Gram determinants--where this reduction is not applicable--we use analytic expansions in positive powers of the Gram determinants. Improving the convergence of the expansions substantially with Pade approximants we close up to the evaluation of the 4-point tensor coefficients for larger Gram determinants. Finally, some relations are discussed which may be useful for analytic simplifications of Feynman diagrams.

  17. The young centre of the Earth

    DEFF Research Database (Denmark)

    Uggerhoj, U. I.; Mikkelsen, R. E.; Faye, J.

    2016-01-01

    We treat, as an illustrative example of gravitational time dilation in relativity, the observation that the centre of the Earth is younger than the surface by an appreciable amount. Richard Feynman first made this insightful point and presented an estimate of the size of the effect in a talk...

  18. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Kathy Ceceri. Articles written in Resonance – Journal of Science Education. Volume 16 Issue 9 September 2011 pp 879-880 Personal Reflections. Five Things I Learned from Richard Feynman About Science Education · Kathy Ceceri · More Details Fulltext PDF ...

  19. Marcus wins nobel prize in chemistry for electron transfer theory

    International Nuclear Information System (INIS)

    Levi, B.G.

    1993-01-01

    This article describes the work of Rudolf Marcus of Caltech leading to his receipt of the 1992 Nobel Prize in Chemistry open-quotes for his contributions to the theory of electron transfer reactions in chemical systems.close quotes Applications of Marcus' theory include such diverse phenomena as photosynthesis, electrically conducting polymers, chemiluminescence, and corrosion. Historical aspects of his career are given. 10 refs., 1 fig

  20. Shifts of integration variable within four- and N-dimensional Feynman integrals

    International Nuclear Information System (INIS)

    Elias, V.; McKeon, G.; Mann, R.B.

    1983-01-01

    We resolve inconsistencies between integration in four dimensions, where shifts of integration variable may lead to surface terms, and dimensional regularization, where no surface terms accompany such shifts, by showing that surface terms arise only for discrete values of the dimension parameter. General formulas for variable-of-integration shifts within N-dimensional Feynman integrals are presented, and the VVA triangle anomaly is interpreted as a manifestation of surface terms occurring in exactly four dimensions

  1. Convergence of The Nobel Fields of Telomere Biology and DNA Repair.

    Science.gov (United States)

    Fouquerel, Elise; Opresko, Patricia L

    2017-01-01

    The fields of telomere biology and DNA repair have enjoyed a great deal of cross-fertilization and convergence in recent years. Telomeres function at chromosome ends to prevent them from being falsely recognized as chromosome breaks by the DNA damage response and repair machineries. Conversely, both canonical and nonconical functions of numerous DNA repair proteins have been found to be critical for preserving telomere structure and function. In 2009, Elizabeth Blackburn, Carol Greider and Jack Szostak were awarded the Nobel prize in Physiology or Medicine for the discovery of telomeres and telomerase. Four years later, pioneers in the field of DNA repair, Aziz Sancar, Tomas Lindahl and Paul Modrich were recognized for their seminal contributions by being awarded the Nobel Prize in Chemistry. This review is part of a special issue meant to celebrate this amazing achievement, and will focus in particular on the convergence of nucleotide excision repair and telomere biology, and will discuss the profound implications for human health. © 2016 The American Society of Photobiology.

  2. Studies of particles statistics in one and two dimensions, based on the quantization methods of Heisenberg, Schroedinger and Feynman

    International Nuclear Information System (INIS)

    Myrheim, J.

    1993-06-01

    The thesis deals with the application of different methods to the quantization problem for system of identical particles in one and two dimensions. The standard method is the analytic quantization method due to Schroedinger, which leads to the concept of fractional statistics in one and two dimensions. Two-dimensional particles with fractional statistics are well known by the name of anyons. Two alternative quantization methods are shown by the author, the algebraic method of Heisenberg and the Feynman path integral method. The Feynman method is closely related to the Schroedinger method, whereas the Heisenberg and Schroedinger methods may give different results. The relation between the Heisenberg and Schroedinger methods is discussed. The Heisenberg method is applied to the equations of motion of vortices in superfluid helium, which have the form of Hamiltonian equations for a one-dimensional system. The same method is also discussed more generally for systems of identical particles in one and two dimensions. An application of the Feynman method to the problem of computing the equation of state for a gas of anyons is presented. 104 refs., 4 figs

  3. 75 FR 53730 - Culturally Significant Objects Imported for Exhibition Determinations: “Richard Hawkins-Third Mind”

    Science.gov (United States)

    2010-09-01

    ... DEPARTMENT OF STATE [Public Notice 7148] Culturally Significant Objects Imported for Exhibition Determinations: ``Richard Hawkins--Third Mind'' SUMMARY: Notice is hereby given of the following determinations... the exhibition ``Richard Hawkins--Third Mind,'' imported from abroad for temporary exhibition within...

  4. Appell functions and the scalar one-loop three-point integrals in Feynman diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Cabral-Rosetti, L G [Departamento de Posgrado, Centro Interdisciplinario de Investigacion y Docencia en Educacion Tecnica (CIIDET), Av. Universidad 282 Pte., Col. Centro, A. Postal 752, C.P. 76000, Santiago de Queretaro, Qro. (Mexico); Sanchis-Lozano, M A [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, 46100 Burjassot, Valencia (Spain)

    2006-05-15

    The scalar three-point function appearing in one-loop Feynman diagrams is compactly expressed in terms of a generalized hypergeometric function of two variables. Use is made of the connection between such Appell function and dilogarithms coming from a previous investigation. Special cases are obtained for particular values of internal masses and external momenta.

  5. Fluid flow in porous media using image-based modelling to parametrize Richards' equation.

    Science.gov (United States)

    Cooper, L J; Daly, K R; Hallett, P D; Naveed, M; Koebernick, N; Bengough, A G; George, T S; Roose, T

    2017-11-01

    The parameters in Richards' equation are usually calculated from experimentally measured values of the soil-water characteristic curve and saturated hydraulic conductivity. The complex pore structures that often occur in porous media complicate such parametrization due to hysteresis between wetting and drying and the effects of tortuosity. Rather than estimate the parameters in Richards' equation from these indirect measurements, image-based modelling is used to investigate the relationship between the pore structure and the parameters. A three-dimensional, X-ray computed tomography image stack of a soil sample with voxel resolution of 6 μm has been used to create a computational mesh. The Cahn-Hilliard-Stokes equations for two-fluid flow, in this case water and air, were applied to this mesh and solved using the finite-element method in COMSOL Multiphysics. The upscaled parameters in Richards' equation are then obtained via homogenization. The effect on the soil-water retention curve due to three different contact angles, 0°, 20° and 60°, was also investigated. The results show that the pore structure affects the properties of the flow on the large scale, and different contact angles can change the parameters for Richards' equation.

  6. A symbolic summation approach to Feynman integral calculus

    International Nuclear Information System (INIS)

    Bluemlein, Johannes; Klein, Sebastian

    2010-11-01

    Given a Feynman parameter integral, depending on a single discrete variable N and a real parameter ε, we discuss a new algorithmic framework to compute the first coefficients of its Laurent series expansion in ε. In a first step, the integrals are expressed by hypergeometric multi sums by means of symbolic transformations. Given this sum format, we develop new summation tools to extract the first coefficients of its series expansion whenever they are expressible in terms of indefinite nested product-sum expressions. In particular, we enhance the known multi-sum algorithms to derive recurrences for sums with complicated boundary conditions, and we present new algorithms to find formal Laurent series solutions of a given recurrence relation. (orig.)

  7. A symbolic summation approach to Feynman integral calculus

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Klein, Sebastian [Technische Hochschule Aachen (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Schneider, Carsten; Stan, Flavia [Johannes Kepler Univ. Linz (AT). Research Inst. for Symbolic Computation (RISC)

    2010-11-15

    Given a Feynman parameter integral, depending on a single discrete variable N and a real parameter {epsilon}, we discuss a new algorithmic framework to compute the first coefficients of its Laurent series expansion in {epsilon}. In a first step, the integrals are expressed by hypergeometric multi sums by means of symbolic transformations. Given this sum format, we develop new summation tools to extract the first coefficients of its series expansion whenever they are expressible in terms of indefinite nested product-sum expressions. In particular, we enhance the known multi-sum algorithms to derive recurrences for sums with complicated boundary conditions, and we present new algorithms to find formal Laurent series solutions of a given recurrence relation. (orig.)

  8. Fuchsia. A tool for reducing differential equations for Feynman master integral to epsilon form

    Energy Technology Data Exchange (ETDEWEB)

    Gituliar, Oleksandr [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Magerya, Vitaly

    2017-01-15

    We present Fuchsia - an implementation of the Lee algorithm, which for a given system of ordinary differential equations with rational coefficients ∂{sub x}f(x,ε)=A(x,ε)f(x,ε) finds a basis transformation T(x,ε), i.e., f(x,ε)=T(x,ε)g(x,ε), such that the system turns into the epsilon form: ∂{sub x}g(x,ε)=εS(x)g(x,ε), where S(x) is a Fuchsian matrix. A system of this form can be trivially solved in terms of polylogarithms as a Laurent series in the dimensional regulator ε. That makes the construction of the transformation T(x,ε) crucial for obtaining solutions of the initial system. In principle, Fuchsia can deal with any regular systems, however its primary task is to reduce differential equations for Feynman master integrals. It ensures that solutions contain only regular singularities due to the properties of Feynman integrals.

  9. Fuchsia. A tool for reducing differential equations for Feynman master integral to epsilon form

    International Nuclear Information System (INIS)

    Gituliar, Oleksandr; Magerya, Vitaly

    2017-01-01

    We present Fuchsia - an implementation of the Lee algorithm, which for a given system of ordinary differential equations with rational coefficients ∂ x f(x,ε)=A(x,ε)f(x,ε) finds a basis transformation T(x,ε), i.e., f(x,ε)=T(x,ε)g(x,ε), such that the system turns into the epsilon form: ∂ x g(x,ε)=εS(x)g(x,ε), where S(x) is a Fuchsian matrix. A system of this form can be trivially solved in terms of polylogarithms as a Laurent series in the dimensional regulator ε. That makes the construction of the transformation T(x,ε) crucial for obtaining solutions of the initial system. In principle, Fuchsia can deal with any regular systems, however its primary task is to reduce differential equations for Feynman master integrals. It ensures that solutions contain only regular singularities due to the properties of Feynman integrals.

  10. I am the smartest man I know a Nobel laureate's difficult journey

    CERN Document Server

    Giaever, Ivar

    2016-01-01

    A unique individual with a fascinating life story, Ivar Giaever is a scientist who won the Nobel Prize in Experimental Physics in 1973. In his own words, Giaever relates an absorbing tale of how important luck and good fortune have been in shaping his life. He narrates the story of an ordinary childhood in Norway and an unremarkable undergraduate career at university. After finishing his engineering degree, he served in the Norwegian army and married his childhood sweetheart, Inger Skramstad. His desire to make a better life for his new family led Ivar to Canada and then to the United States. Even without an advanced degree in a scientific field, Ivar was given the opportunity to work with cutting-edge scientific researchers at General Electric R&D in Schenectady, New York. While there, he completed his PhD at Rensselaer Polytechnic Institute — one of the nation's oldest technological universities. His work on superconductivity led to worldwide recognition and the Nobel Prize. This memoire is more than ...

  11. ANALISIS WANPRESTASI KEAGENAN PENJUALAN KENDARAAN BERMOTOR (Studi CV Nobel Perdana Kabupaten Tulang Bawang

    Directory of Open Access Journals (Sweden)

    Heri Yulianto

    2017-03-01

    Full Text Available Standard by PT Sumber Trada Motor leads to no availability of vehicles to be sold by outlets CV Nobel Perdana. Giving great discounts and gifts, making consumers tend to buy directly from outlets PT Sumber Trada Motor. This agency system turns into competition due to the sales and market share CV Nobel Perdana excellent. The usefulness of this study as a researcher competence in the field of business law violations agreement. The problem of research is how the legal provisions breach agreement, the implementation of competition law to businesses which violate the agreement. Is expected to the Government through the KPPU to crack down on employers who violate the law No. 5 of 1999 on Competition, so as to control the businesses that destroy the independence of other businesses.   Keywords: Standard, Agreement, Agency

  12. 76 FR 10936 - Culturally Significant Objects Imported for Exhibition Determinations: “Richard Serra Drawing: A...

    Science.gov (United States)

    2011-02-28

    ... DEPARTMENT OF STATE [Public Notice: 7348] Culturally Significant Objects Imported for Exhibition Determinations: ``Richard Serra Drawing: A Retrospective'' SUMMARY: Notice is hereby given of the following... objects to be included in the exhibition ``Richard Serra Drawing: A Retrospective,'' imported from abroad...

  13. Feynman variance-to-mean in the context of passive neutron coincidence counting

    Energy Technology Data Exchange (ETDEWEB)

    Croft, S., E-mail: scroft@lanl.gov [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States); Favalli, A.; Hauck, D.K.; Henzlova, D.; Santi, P.A. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States)

    2012-09-11

    Passive Neutron Coincidence Counting (PNCC) based on shift register autocorrelation time analysis of the detected neutron pulse train is an important Nondestructive Assay (NDA) method. It is used extensively in the quantification of plutonium and other spontaneously fissile materials for purposes of nuclear materials accountancy. In addition to the totals count rate, which is also referred to as the singles, gross or trigger rate, a quantity known as the reals coincidence rate, also called the pairs or doubles, is obtained from the difference between the measured neutron multiplicities in two measurement gates triggered by the incoming events on the pulse train. The reals rate is a measure of the number of time correlated pairs present on the pulse train and this can be related to the fission rates (and hence material mass) since fissions emit neutrons in bursts which are also detected in characteristic clusters. A closely related measurement objective is the determination of the reactivity of systems as they approach criticality. In this field an alternative autocorrelation signature is popular, the so called Feynman variance-to-mean technique which makes use of the multiplicity histogram formed the periodic, or clock-triggered opening of a coincidence gate. Workers in these two application areas share common challenges and improvement opportunities but are often separated by tradition, problem focus and technical language. The purpose of this paper is to recognize the close link between the Feynman variance-to-mean metric and traditional PNCC using shift register logic applied to correlated pulse trains. We, show using relationships for the late-gate (or accidentals) histogram recorded using a multiplicity shift register, how the Feynman Y-statistic, defined as the excess variance-to-mean ratio, can be expressed in terms of the singles and doubles rates familiar to the safeguards and waste assay communities. These two specialisms now have a direct bridge between

  14. Travelling wave solutions for the Richards equation incorporating non-equilibrium effects in the capillarity pressure

    NARCIS (Netherlands)

    van Duijn, C. J.; Mitra, K.; Pop, I. S.

    2018-01-01

    The Richards equation is a mathematical model for unsaturated flow through porous media. This paper considers an extension of the Richards equation, where non-equilibrium effects like hysteresis and dynamic capillarity are incorporated in the relationship that relates the water pressure and the

  15. Modern Summation Methods and the Computation of 2- and 3-loop Feynman Diagrams

    International Nuclear Information System (INIS)

    Ablinger, Jakob; Bluemlein, Johannes; Klein, Sebastian; Schneider, Carsten

    2010-01-01

    By symbolic summation methods based on difference fields we present a general strategy that transforms definite multi-sums, e.g., in terms of hypergeometric terms and harmonic sums, to indefinite nested sums and products. We succeeded in this task with all our concrete calculations of 2-loop and 3-loop massive single scale Feynman diagrams with local operator insertion.

  16. The inner representation of the external world - from conditioned reflexes to high level mental functions in the light of Nobel Prizes

    Directory of Open Access Journals (Sweden)

    Szilágyi T.

    2014-12-01

    Full Text Available In this paper the seminal results of the 2014 Nobel Prize in Physiology or Medicine Laureates are presented. First, a historical review of the development of our knowledge is provided along with the major paradigm shifts, by looking at the Nobel prizes awarded in the field of neuroscience in the last 110 years. We outline the major discoveries that were necessary for humankind to pass through the road leading to the remarkable understanding of high level mental functions, which led to this year’s Nobel Prize award. Next, the ground breaking discoveries of this year Nobel laureates are presented, which provide insights how neural representations of the environment are formed in the association cortices. These cortical areas are many synapses away from sensory receptors and motor outputs, and their activity do not reflect directly the activation patterns of the receptor population, but depends more strongly on intrinsic cortical computations. We also present how ensembles of specialized cells work together to compute complex cognitive functions and behaviour.

  17. DOE-Supported Physicists are Co-Winners of 2004 Nobel Prize in Physics

    Science.gov (United States)

    in Physics WASHINGTON, DC -- "On behalf of the U.S. Department of Energy, I congratulate Frank Wilczek, H. David Politzer and David J. Gross for winning the 2004 Nobel Prize in Physics," said agencies, have been the leading Federal supporter of research in physics, enabling vital advances and

  18. Century of Nobel Prizes:1909 Chemistry Laureate -R-ES-O-N-A-N ...

    Indian Academy of Sciences (India)

    The Nobel Prize in 1909 for Chemistry was awarded to Wilhelm. Ostwald, for his pioneering ... It is reported that as an eleven-year old boy, he made his own ... member of the international peace conference and the permanent international ...

  19. 78 FR 43093 - Richard C. Theuer; Filing of Food Additive Petition and Citizen Petition

    Science.gov (United States)

    2013-07-19

    ... [Docket Nos. FDA-2013-F-0700 and FDA-2013-P-0472] Richard C. Theuer; Filing of Food Additive Petition and... proposing that the food additive regulations be amended to prohibit the use of carrageenan and salts of... that Richard C. Theuer, Ph.D., 7904 Sutterton Ct., Raleigh, NC 27615, has filed a food additive...

  20. An approach to the calculation of many-loop massless Feynman integrals

    International Nuclear Information System (INIS)

    Gorishnii, S.G.; Isaev, A.P.

    1985-01-01

    A generalization of the identity of dimensionless regular-zation is proposed. The generalization is used to divide the complete set of dimensionally (and analytically) regularized Feynman integrals with one external momentum into classes of equal integrals, and also for calculating some of them. A nontrivial symmetry of the propagator integrals is revealed, on the basis of which a complete system of functional equations for determining two-loop integrals is derived. Possible generalizations of these equations are discussed

  1. Improved parametrization of K+ production in p-Be collisions at low energy using Feynman scaling

    International Nuclear Information System (INIS)

    Mariani, C.; Cheng, G.; Shaevitz, M. H.; Conrad, J. M.

    2011-01-01

    This paper describes an improved parametrization for proton-beryllium production of secondary K + mesons for experiments with primary proton beams from 8.89 to 24 GeV/c. The parametrization is based on Feynman scaling in which the invariant cross section is described as a function of x F and p T . This method is theoretically motivated and provides a better description of the energy dependence of kaon production at low beam energies than other parametrizations such as the commonly used modified Sanford-Wang model. This Feynman scaling parametrization has been used for the simulation of the neutrino flux from the Booster Neutrino Beam at Fermilab and has been shown to agree with the neutrino interaction data from the SciBooNE experiment. This parametrization will also be useful for future neutrino experiments with low primary beam energies, such as those planned for the Project X accelerator.

  2. When Richard Branson wants to build his own facility; Quand Richard Branson veut construire son propre complexe

    Energy Technology Data Exchange (ETDEWEB)

    Cosnard, D

    2005-10-01

    The capacity of petroleum refineries is today insufficient to meet the demand. In front of this shortage, Sir Richard Branson, the owner of Virgin Atlantic Airways, has decided to invest in the building of a refinery in Europe or in Canada. His new company, Virgin Oil, is already launched. However, the setting up of a new facility is very expensive and raises important problems of permits and public contestation which remain to be solved. Short paper. (J.S.)

  3. The asymmetry between discoveries and inventions in the Nobel Prize for Physics

    NARCIS (Netherlands)

    Bartneck, C.; Rauterberg, G.W.M.

    2008-01-01

    This paper presents an empirical study on the frequency of discoveries and inventions that were awarded with the. More than 70 per cent of all Nobel Prizes were given to discoveries. The majority of inventions were awarded at the beginning of the twentieth century and only three inventions had a

  4. The long way to success. Jaroslav Heyrovský and the Nobel Prize

    Czech Academy of Sciences Publication Activity Database

    Jindra, Jiří

    2010-01-01

    Roč. 22, 17/18 (2010), s. 1933-1936 ISSN 1040-0397. [ Modern Electroanalytical Methods 2009. Prague, 09.12.2009-13.12.2009] Institutional research plan: CEZ:AV0Z80630520 Keywords : Jaroslav Heyrovský * Nobel Prize for chemistry 1959 Subject RIV: AB - History Impact factor: 2.721, year: 2010

  5. The Art of Building Small : From Molecular Switches to Motors (Nobel Lecture)

    NARCIS (Netherlands)

    Feringa, Ben L.

    2017-01-01

    A journey into the nano-world: The ability to design, use and control motor-like functions at the molecular level sets the stage for numerous dynamic molecular systems. In his Nobel Lecture, B. L. Feringa describes the evolution of the field of molecular motors and explains how to program and

  6. Numerical Feynman integrals with physically inspired interpolation: Faster convergence and significant reduction of computational cost

    Directory of Open Access Journals (Sweden)

    Nikesh S. Dattani

    2012-03-01

    Full Text Available One of the most successful methods for calculating reduced density operator dynamics in open quantum systems, that can give numerically exact results, uses Feynman integrals. However, when simulating the dynamics for a given amount of time, the number of time steps that can realistically be used with this method is always limited, therefore one often obtains an approximation of the reduced density operator at a sparse grid of points in time. Instead of relying only on ad hoc interpolation methods (such as splines to estimate the system density operator in between these points, I propose a method that uses physical information to assist with this interpolation. This method is tested on a physically significant system, on which its use allows important qualitative features of the density operator dynamics to be captured with as little as two time steps in the Feynman integral. This method allows for an enormous reduction in the amount of memory and CPU time required for approximating density operator dynamics within a desired accuracy. Since this method does not change the way the Feynman integral itself is calculated, the value of the density operator approximation at the points in time used to discretize the Feynamn integral will be the same whether or not this method is used, but its approximation in between these points in time is considerably improved by this method. A list of ways in which this proposed method can be further improved is presented in the last section of the article.

  7. Reading 'blackface': A (narrative) introduction to Richard Kearney's ...

    African Journals Online (AJOL)

    Prominent Irish philosopher Richard Kearney's notion of 'carnal hermeneutics' is introduced by applying it to a case study of a recent event that took place at one of South Africa's university campuses. The narrative assists in illuminating some of the core principles of carnal hermeneutics and illustrates the applicability of ...

  8. H.E. Mr Richard J. Fredericks, Ambassador of the United States of America to Switzerland

    CERN Document Server

    Patrice Loïez

    2001-01-01

    Photo 01 : Prof. L. Maiani, CERN Director-General, gives a piece of LHC super conducting wire to H.E. Mr. Richard J. Fredericks; Photo 02 : Prof. L. Maiani, CERN Director-General, Mr. Jan van der Boon, CERN Director of Administration and H.E. Mr. J. Richard Fredericks

  9. 3 scientists win Nobel for physics electric superconductivity, superfluidity work honoured

    CERN Multimedia

    2003-01-01

    The Royal Swedish Academy of Sciences awarded the Nobel prize for physics to Russian Vitaly Ginzburg, 87, and Russian-born American Alexei Abrikosov, 75, for their work on electric superconductivity, and to British-born American Anthony Leggett, 65, for describing how liquid helium can become a "superfluid." The three scientists will split $1.3 million in prize money (1 page).

  10. Modern summation methods and the computation of 2- and 3-loop Feynman diagrams

    International Nuclear Information System (INIS)

    Ablinger, Jakob; Schneider, Carsten; Bluemlein, Johannes; Klein, Sebastian

    2010-06-01

    By symbolic summation methods based on difference fields we present a general strategy that transforms definite multi-sums, e.g., in terms of hypergeometric terms and harmonic sums, to indefinite nested sums and products. We succeeded in this task with all our concrete calculations of 2-loop and 3-loop massive single scale Feynman diagrams with local operator insertion. (orig.)

  11. Modern summation methods and the computation of 2- and 3-loop Feynman diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob; Schneider, Carsten [Linz Univ. (AT). Research Inst. for Symbolic Computation (RISC); Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Klein, Sebastian [RWTH Aachen (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie

    2010-06-15

    By symbolic summation methods based on difference fields we present a general strategy that transforms definite multi-sums, e.g., in terms of hypergeometric terms and harmonic sums, to indefinite nested sums and products. We succeeded in this task with all our concrete calculations of 2-loop and 3-loop massive single scale Feynman diagrams with local operator insertion. (orig.)

  12. Alert with destruction of stratospheric ozone: 95 Nobel Prize Winners

    International Nuclear Information System (INIS)

    Santamaria, J.; Zurita, E.

    1995-01-01

    After briefly summarizing the discoveries of the 95 Nobel Prize Winners in Chemistry related to the threats to the ozone layer by chemical pollutants, we make a soft presentation of the overall problem of stratospheric ozone, starting with the destructive catalytic cycles of the pollutant-based free radicals, following with the diffusion mathematical models in Atmospheric Chemistry, and ending with the increasing annual drama of the ozone hole in the Antarctica. (Author)

  13. Nanotechnology: The Incredible Invisible World

    Science.gov (United States)

    Roberts, Amanda S.

    2011-01-01

    The concept of nanotechnology was first introduced in 1959 by Richard Feynman at a meeting of the American Physical Society. Nanotechnology opens the door to an exciting new science/technology/engineering field. The possibilities for the uses of this technology should inspire the imagination to think big. Many are already pursuing such feats…

  14. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 12. The Theory of Positrons. Richard P Feynman. Classics Volume 2 Issue 12 December 1997 pp 107-107. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/002/12/0107-0107. Author Affiliations.

  15. From the PS to the LHC. 50 years of Nobel memories in high-energy physics

    International Nuclear Information System (INIS)

    Alvarez-Gaume, Luis

    2012-01-01

    Collects lectures and essays from leading players in the field, among them thirteen Nobel Laureates. Provides unique insights into the history of the field for active researchers. Constitutes a primary source of information for historians of science. This collection of lectures and essays by eminent researchers in the field, many of them nobel laureates, is an outgrow of a special event held at CERN in late 2009, coinciding with the start of LHC operations. Careful transcriptions of the lectures have been worked out, subsequently validated and edited by the lecturers themselves. This unique insight into the history of the field includes also some perspectives on modern developments and will benefit everyone working in the field, as well as historians of science.

  16. Feynman diagrams sampling for quantum field theories on the QPACE 2 supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Rappl, Florian

    2016-08-01

    This work discusses the application of Feynman diagram sampling in quantum field theories. The method uses a computer simulation to sample the diagrammatic space obtained in a series expansion. For running large physical simulations powerful computers are obligatory, effectively splitting the thesis in two parts. The first part deals with the method of Feynman diagram sampling. Here the theoretical background of the method itself is discussed. Additionally, important statistical concepts and the theory of the strong force, quantum chromodynamics, are introduced. This sets the context of the simulations. We create and evaluate a variety of models to estimate the applicability of diagrammatic methods. The method is then applied to sample the perturbative expansion of the vertex correction. In the end we obtain the value for the anomalous magnetic moment of the electron. The second part looks at the QPACE 2 supercomputer. This includes a short introduction to supercomputers in general, as well as a closer look at the architecture and the cooling system of QPACE 2. Guiding benchmarks of the InfiniBand network are presented. At the core of this part, a collection of best practices and useful programming concepts are outlined, which enables the development of efficient, yet easily portable, applications for the QPACE 2 system.

  17. Implant planning on NobelClinician software‎ : incidence of bone density on the implants orientation for completely edentulous maxillae

    OpenAIRE

    Vankelst, Maëva

    2016-01-01

    The Purpose of this study wasto compare bone density in straight and tilted implants using the software NobelClinician on fifteen maxillary edentulous. For each patient, two schedules were created on NobelClinician: a first plan of 6 implants placed axially and a second plan where the last implant of each sector was tilted of 30 ° from the occlusal plane. The laying of the first four implants being common to both plans.The study was performed on DICOM files coming from the CBCT’s of 15 patien...

  18. Success: Richard Dyer on Diana Ross [and Beyond

    NARCIS (Netherlands)

    Kooijman, J.

    2016-01-01

    In June 1982, film scholar Richard Dyer published a two-page essay on African-American star Diana Ross in the journal Marxism Today. Part of Dyer’s essay focuses on the American conception of success and specifically on how Ross is one of the few black artists who has been "allowed" to be such a

  19. Feynman rules for the Standard Model Effective Field Theory in R ξ -gauges

    Science.gov (United States)

    Dedes, A.; Materkowska, W.; Paraskevas, M.; Rosiek, J.; Suxho, K.

    2017-06-01

    We assume that New Physics effects are parametrized within the Standard Model Effective Field Theory (SMEFT) written in a complete basis of gauge invariant operators up to dimension 6, commonly referred to as "Warsaw basis". We discuss all steps necessary to obtain a consistent transition to the spontaneously broken theory and several other important aspects, including the BRST-invariance of the SMEFT action for linear R ξ -gauges. The final theory is expressed in a basis characterized by SM-like propagators for all physical and unphysical fields. The effect of the non-renormalizable operators appears explicitly in triple or higher multiplicity vertices. In this mass basis we derive the complete set of Feynman rules, without resorting to any simplifying assumptions such as baryon-, lepton-number or CP conservation. As it turns out, for most SMEFT vertices the expressions are reasonably short, with a noticeable exception of those involving 4, 5 and 6 gluons. We have also supplemented our set of Feynman rules, given in an appendix here, with a publicly available Mathematica code working with the FeynRules package and producing output which can be integrated with other symbolic algebra or numerical codes for automatic SMEFT amplitude calculations.

  20. Manne Siegbahn and the 1924 Nobel Prize for Physics

    International Nuclear Information System (INIS)

    Bergstroem, I.

    1988-01-01

    The Research Institute of Physics celebrates its fiftieth anniversary with a Workshop and Symposium on the Physics of Low-Energy Stored and Trapped Particles. On July 1, 1937, Professor Manne Siegbahn was appointed the first director of the Institute. Because of this celebration a personal account is given of Manne Siegbahn's contribution to atomic structure physics. Comments will also be given on the procedure in the Swedish Academy of Sciences when Siegbahn in 1925 received the 1924 Nobel Prize for Physics 'for his discoveries and research in the field of X-ray spectroscopy'. (orig.)

  1. Feynman graph derivation of Einstein quadrupole formula

    International Nuclear Information System (INIS)

    Dass, N.D.H.; Soni, V.

    1980-11-01

    The one graviton transition operator, and consequently, the classical energy loss formula for gravitational radiation are derived from the Feynman graphs of helicity +- 2 theories of gravitation. The calculations are done both for the case of electromagnetic and gravitational scattering. The departure of the in and out states from plane waves owing to the long range nature of gravitation is taken into account to improve the Born approximation calculations. This also includes a long range modification of the graviton wave function which is shown to be equivalent to the classical problem of the true light cones deviating logarithmically at large distances from the flat space light cones. The transition from the S-matrix elements calculated graphically to the graviton transition operator is done by using complimentarity of space-time and momentum descriptions. The energy loss formula derived originally by Einstein is shown to be correct. (Auth.)

  2. The 2008 Lindau Nobel Laureate Meeting: Robert Huber, Chemistry 1988. Interview by Klaus J. Korak.

    Science.gov (United States)

    Huber, Robert

    2008-11-25

    Robert Huber and his colleagues, Johann Deisenhofer and Hartmut Michel, elucidated the three-dimensional structure of the Rhodopseudomonas viridis photosynthetic reaction center. This membrane protein complex is a basic component of photosynthesis - a process fundamental to life on Earth - and for their work, Huber and his colleagues received the 1988 Nobel Prize in Chemistry. Because structural information is central to understanding virtually any biological process, Huber likens their discovery to "switching on the light" for scientists trying to understand photosynthesis. Huber marvels at the growth of structural biology since the time he entered the field, when crystallographers worked with hand-made instruments and primitive computers, and only "a handful" of crystallographers would meet annually in the Bavarian Alps. In the "explosion" of structural biology since his early days of research, Huber looks to the rising generation of scientists to solve the remaining mysteries in the field - such as the mechanisms that underlie protein folding. A strong proponent of science mentorship, Huber delights in meeting young researchers at the annual Nobel Laureate Meetings in Lindau, Germany. He hopes that among these young scientists is an "Einstein of biology" who, he says with a twinkle in his eye, "doesn't know it yet." The interview was conducted by JoVE co-founder Klaus J. Korak at the Lindau Nobel Laureate Meeting 2008 in Lindau, Germany.

  3. Feynman quasi probability distribution for spin-(1/2), and its generalizations

    International Nuclear Information System (INIS)

    Colucci, M.

    1999-01-01

    It has been examined the Feynman's paper Negative probability, in which, after a discussion about the possibility of attributing a real physical meaning to quasi probability distributions, he introduces a new kind of distribution for spin-(1/2), with a possible method of generalization to systems with arbitrary number of states. The principal aim of this article is to shed light upon the method of construction of these distributions, taking into consideration their application to some experiments, and discussing their positive and negative aspects

  4. Léon Lederman, Mel Schwartz and Jack Steinberger wre awarded the 1988 Nobel Physics Prize.

    CERN Multimedia

    Photographic Service

    1988-01-01

    Léon Lederman (left), Mel Schwartz (right) and Jack Steinberger were awarded the 1988 Nobel Physics Prize for their 1962 experiment at Brookhaven which showed that neutrinos come in more than one kind.

  5. Advanced Thin Layer Deposition of Materials for Li-ion Batteries via Electrospray

    NARCIS (Netherlands)

    Garcia-Tamayo, E.

    2014-01-01

    The remarkable physicist Richard P. Feynman once said, more than fifty years ago: ”the principles of physics, as far as I can see, do not speak against the possibility of maneuvering things atom by atom. It is not an attempt to violate any laws; it is something, in principle, that can be done; but

  6. Chronobiology --2017 Nobel Prize in Physiology or Medicine.

    Science.gov (United States)

    Yuan, Li; Li, Yi-Rou; Xu, Xiao-Dong

    2018-01-20

    Chronobiology is a field of biology that examines the generation of biological rhythms in various creatures and in many parts of body, and their adaptive fitness to solar- and lunar-related periodic phenomena. The synchronization of internal circadian clocks with external timing signals confers accurate phase response and tissue homeostasis. Herein we state a series of studies on circadian rhythms and introduce the brief history of chronobiology. We also present a detailed timeline of the discoveries on molecular mechanisms controlling circadian rhythm in Drosophila, which was awarded the 2017 Nobel Prize in Physiology or Medicine. The latest findings and new perspectives are further summarized to indicate the significance of circadian research.

  7. Some remarks on Feynman rules for non-commutative gauge theories based on groups G≠U(N)

    International Nuclear Information System (INIS)

    Dorn, Harald; Sieg, Christoph

    2002-01-01

    We study for subgroups G is a subset of U(N) partial summations of the θ-expanded perturbation theory. On diagrammatic level a summation procedure is established, which in the U(N) case delivers the full star-product induced rules. Thereby we uncover a cancellation mechanism between certain diagrams, which is crucial in the U(N) case, but set out of work for G is a subset of U(N). In addition, an explicit proof is given that for G is a subset of U(N), G≠U(M), M< N there is no partial summation of the θ-expanded rules resulting in new Feynman rules using the U(N) star-product vertices and besides suitable modified propagators at most a finite number of additional building blocks. Finally, we show that certain SO(N) Feynman rules conjectured in the literature cannot be derived from the enveloping algebra approach. (author)

  8. An appreciation of Richard Threlkeld Cox

    Science.gov (United States)

    Tribus, Myron

    2002-05-01

    Richard T. Cox's contributions to the foundations of probability theory and inductive logic are not generally appreciated or understood. This paper reviews his life and accomplishments, especially those in his book The Algebra of Probable Inference and his final publication Inference and Inquiry which, in this author's opinion, has the potential to influence in a significant way the design and analysis of self organizing systems which learn from experience. A simple application to the simulation of a neuron is presented as an example of the power of Cox's contribution.

  9. Infrared finite ghost propagator in the Feynman gauge

    International Nuclear Information System (INIS)

    Aguilar, A. C.; Papavassiliou, J.

    2008-01-01

    We demonstrate how to obtain from the Schwinger-Dyson equations of QCD an infrared finite ghost propagator in the Feynman gauge. The key ingredient in this construction is the longitudinal form factor of the nonperturbative gluon-ghost vertex, which, contrary to what happens in the Landau gauge, contributes nontrivially to the gap equation of the ghost. The detailed study of the corresponding vertex equation reveals that in the presence of a dynamical infrared cutoff this form factor remains finite in the limit of vanishing ghost momentum. This, in turn, allows the ghost self-energy to reach a finite value in the infrared, without having to assume any additional properties for the gluon-ghost vertex, such as the presence of massless poles. The implications of this result and possible future directions are briefly outlined

  10. Calculations in the Wheeler-Feynman absorber theory of radiation

    International Nuclear Information System (INIS)

    Balaji, K.S.

    1986-01-01

    One dimensional computer aided calculations were done to find the self consistent solutions for various absorber configurations in the context of the Wheeler-Feynman absorber theory, wherein every accelerating charge is assumed to produce a time symmetric combination of advanced and retarded fields. These calculations picked out the so called outerface solution for incomplete absorbers and showed that advanced as well as retarded signals interact with matter in the same manner as in the full retarded theory. Based on these calculations, the Partridge experiment and the Schmidt-Newman experiment were ruled out as tests of the absorber theory. An experiment designed to produce and detect advanced effects is proposed, based on more one-dimensional calculations

  11. Mellin-Barnes meets Method of Brackets: a novel approach to Mellin-Barnes representations of Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Prausa, Mario [RWTH Aachen University, Institute for Theoretical Particle Physics and Cosmology, Aachen (Germany)

    2017-09-15

    In this paper, we present a new approach to the construction of Mellin-Barnes representations for Feynman integrals inspired by the Method of Brackets. The novel technique is helpful to lower the dimensionality of Mellin-Barnes representations in complicated cases, some examples are given. (orig.)

  12. The 2009 Lindau Nobel Laureate Meeting: Martin Chalfie, Chemistry 2008

    OpenAIRE

    Chalfie, Martin

    2010-01-01

    American Biologist Martin Chalfie shared the 2008 Nobel Prize in Chemistry with Roger Tsien and Osamu Shimomura for their discovery and development of the Green Fluorescent Protein (GFP). Martin Chalfie was born in Chicago in 1947 and grew up in Skokie Illinois. Although he had an interest in science from a young age-- learning the names of the planets and reading books about dinosaurs-- his journey to a career in biological science was circuitous. In high school, Chalfie enjoyed his AP Chemi...

  13. Planck's Constant as a Natural Unit of Measurement

    Science.gov (United States)

    Quincey, Paul

    2013-01-01

    The proposed revision of SI units would embed Planck's constant into the definition of the kilogram, as a fixed constant of nature. Traditionally, Planck's constant is not readily interpreted as the size of something physical, and it is generally only encountered by students in the mathematics of quantum physics. Richard Feynman's…

  14. Die grossen Physiker und ihre Entdeckungen von den fallenden Körpern zu den Quarks

    CERN Document Server

    Segrè, Emilio

    1998-01-01

    Von Galileo Galilei bis zu Richard Feynman und Murray Gell-Mann - von den fallenden Körpern zu den Quarks: Der Physiknobelpreisträger Emilio Segre hat seine ganz persönliche Geschichte der Physik geschrieben. Er erzählt von den großen Gestalten und deren wichtigen Entdeckungen mit großer Anschaulichkeit und Lebendigkeit.

  15. Modified Feynman ratchet with velocity-dependent fluctuations

    Directory of Open Access Journals (Sweden)

    Jack Denur

    2004-03-01

    Full Text Available Abstract: The randomness of Brownian motion at thermodynamic equilibrium can be spontaneously broken by velocity-dependence of fluctuations, i.e., by dependence of values or probability distributions of fluctuating properties on Brownian-motional velocity. Such randomness-breaking can spontaneously obtain via interaction between Brownian-motional Doppler effects --- which manifest the required velocity-dependence --- and system geometrical asymmetry. A non random walk is thereby spontaneously superposed on Brownian motion, resulting in a systematic net drift velocity despite thermodynamic equilibrium. The time evolution of this systematic net drift velocity --- and of velocity probability density, force, and power output --- is derived for a velocity-dependent modification of Feynman's ratchet. We show that said spontaneous randomness-breaking, and consequent systematic net drift velocity, imply: bias from the Maxwellian of the system's velocity probability density, the force that tends to accelerate it, and its power output. Maximization, especially of power output, is discussed. Uncompensated decreases in total entropy, challenging the second law of thermodynamics, are thereby implied.

  16. Richard H. Thaler: Wirtschaftsnobelpreisträger 2017

    OpenAIRE

    Bruttel, Lisa Verena; Stolley, Florian

    2017-01-01

    Der diesjährige Nobelpreisträger Richard H. Thaler ist einer breiteren Öffentlichkeit vor allem durch sein mit Cass R. Sunstein gemeinsam verfasstes Buch zum Nudging bekannt geworden. Tatsächlich hat er in den vergangenen 40 Jahren die Entwicklung der Verhaltensökonomie entscheidend mitgeprägt und vorangebracht. Thaler hat die Annahmen hinter dem Modell des Homo oeconomicus untersucht und die Abweichungen menschlichen Verhaltens von den Rationalitätsannahmen auf zwei wesentliche Ursachen zurü...

  17. Amartya Sen, premio nobel de economía 1998

    Directory of Open Access Journals (Sweden)

    Sen Amartya Kumar

    1998-12-01

    Full Text Available

    Entrevista

    El economista Amartya Sen, de 64 años, fue galardonado el pasado miércoles con el Premio Nobel de Economía por sus trabajos sobre el hambre en el mundo y su relación entre la democracia y la satisfacción de las necesidades básicas de los seres humanos. Casado en terceras nupcias, Sen ha sido profesor en universidades de Asia, América del Norte y Europa. Actualmente enseña en el Trinity College, de la Universidad de Cambridge, en el Reino Unido.

  18. Manne Siegbahn and the 1924 Nobel Prize for Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, I.

    1988-01-01

    The Research Institute of Physics celebrates its fiftieth anniversary with a Workshop and Symposium on the Physics of Low-Energy Stored and Trapped Particles. On July 1, 1937, Professor Manne Siegbahn was appointed the first director of the Institute. Because of this celebration a personal account is given of Manne Siegbahn's contribution to atomic structure physics. Comments will also be given on the procedure in the Swedish Academy of Sciences when Siegbahn in 1925 received the 1924 Nobel Prize for Physics 'for his discoveries and research in the field of X-ray spectroscopy'.

  19. Cosmic Anger Abdus Salam - The First Muslim Nobel Scientist

    CERN Document Server

    Fraser, Gordon Murray

    2008-01-01

    This book presents a biography of Abdus Salam, the first Muslim to win a Nobel Prize for Science (Physics 1979), who was nevertheless excommunicated and branded as a heretic in his own country. His achievements are often overlooked, even besmirched. Realizing that the whole world had to be his stage, he pioneered the International Centre for Theoretical Physics in Trieste, a vital focus of Third World science which remains as his monument. A staunch Muslim, he was ashamed of thedecline of science in the heritage of Islam, and struggled doggedly to restore it to its former glory. Undermined by

  20. Non-negative Feynman endash Kac kernels in Schroedinger close-quote s interpolation problem

    International Nuclear Information System (INIS)

    Blanchard, P.; Garbaczewski, P.; Olkiewicz, R.

    1997-01-01

    The local formulations of the Markovian interpolating dynamics, which is constrained by the prescribed input-output statistics data, usually utilize strictly positive Feynman endash Kac kernels. This implies that the related Markov diffusion processes admit vanishing probability densities only at the boundaries of the spatial volume confining the process. We discuss an extension of the framework to encompass singular potentials and associated non-negative Feynman endash Kac-type kernels. It allows us to deal with a class of continuous interpolations admitted by general non-negative solutions of the Schroedinger boundary data problem. The resulting nonstationary stochastic processes are capable of both developing and destroying nodes (zeros) of probability densities in the course of their evolution, also away from the spatial boundaries. This observation conforms with the general mathematical theory (due to M. Nagasawa and R. Aebi) that is based on the notion of multiplicative functionals, extending in turn the well known Doob close-quote s h-transformation technique. In view of emphasizing the role of the theory of non-negative solutions of parabolic partial differential equations and the link with open-quotes Wiener exclusionclose quotes techniques used to evaluate certain Wiener functionals, we give an alternative insight into the issue, that opens a transparent route towards applications.copyright 1997 American Institute of Physics

  1. Technical realization of a closure concept for a chamber-system in the underground Richard repository in the Czech Republic

    International Nuclear Information System (INIS)

    Kucerka, Miroslav

    2006-01-01

    The Phare project CZ 632.02.04 'Realization of closure of a chamber in the Richard repository as input for establishing a safety case' is a follow up implementation phase of the Phare project, CZ 01.14.03 'Solution for closure of a chamber in the Richard repository'. Main objective of both projects is to propose and realize a disposal system in selected chambers of the Richard repository, which will eliminate burden from the past practices in waste management during the first phase of the Richard repository operation (1965 - 1980) and which will improve its overall long term safety. This objective will be assured by realization of the concept of so called 'hydraulic cage', which technical solution was developed by DBE Technology within the Phare project CZ 01.14.03. The solution is described in the previous presentation 'Hydraulic Cage Concept for Waste Chambers and its Technical Implementation for the Underground Richard Repository, Litomerice, Czech Republic'. (author)

  2. Equivalence between the Arquès-Walsh sequence formula and the number of connected Feynman diagrams for every perturbation order in the fermionic many-body problem

    Science.gov (United States)

    Castro, E.

    2018-02-01

    From the perturbative expansion of the exact Green function, an exact counting formula is derived to determine the number of different types of connected Feynman diagrams. This formula coincides with the Arquès-Walsh sequence formula in the rooted map theory, supporting the topological connection between Feynman diagrams and rooted maps. A classificatory summing-terms approach is used, in connection to discrete mathematical theory.

  3. Nobel Prize in physics 1985: Quantum Hall effect

    International Nuclear Information System (INIS)

    Herrmann, R.

    1986-01-01

    The conditions (like very strong magnetic fields, ultralow temperatures, and occurrence of a two-dimensional electron gas in microelectronic structures) for the measurement of the quantum Hall effect are explained. Two possible measuring methods are described. Measuring results for p-Si-MOSFET, GaAs/AlGaAs heterojuntions and grain boundaries in InSb crystals are reported. Differences between normal (integer) and fractional quantum Hall effect are discussed. One of the important consequences is that by means of the quantum Hall effect the value h/e 2 can be determined with very high accuracy. In 1985 Klaus von Klitzing was awarded the Nobel Prize for his work on the quantum Hall effect

  4. Reflections on the Cultural Background to China's Reaction to the Nobel Prize Award

    Directory of Open Access Journals (Sweden)

    Gunnar Haaland

    2012-06-01

    Full Text Available This paper deals with some complex and controversial issues that arose in connection with the 2010 Nobel Prize Peace award to the Chinese dissident Liu Xiao Bo. These issues involve different levels. On one level it is important not to confuse the Nobel committee’s independence of outside interference from political and other organized agencies, with the question of whether the Nobel Prize committee’s decisions can be ideological or politically unbiased in its decisions. Part of the strong Chinese reaction to the award is related to this issue. Another level deals with the Committee’s widening of the criteria to be taken into account in the selection of candidates from the original criterion focused on direct contribution to reduction of armed conflicts, to the wider issues of indirect contributions like alleviation of poverty, ecological sustainability and most crucial the issue of human rights. The last issue is particularly critical since different states have different perspectives of what constitute human rights, and what rights should be given priority on different levels of the country’s development. The main point of the article is to look at historical events and socio-cultural conditions that shape the Chine Government’s (and many citizens’ reaction to the 2010 award. This is placed in the context of the widening income differences emerging in the modern political economy of China and how these may affect the growth of civil society. The critical question is: will the reward contribute to promotion of civil society or will it lead to increased crackdown on dissident voices. DOI: http://dx.doi.org/10.3126/dsaj.v5i0.6357 Dhaulagiri Journal of Sociology and Anthropology Vol. 5, 2011: 81-100

  5. Discovery of the τ lepton and electron antineutrino awarded the 1995 Nobel Physics Prize

    International Nuclear Information System (INIS)

    Gu Yifan

    1996-01-01

    American physicists Martin Perl and Fredrick Reines shared the 1995 Nobel Prize for physics for the discoveries of two of nature's most remarkable subatomic particles. Their pioneering contributions in lepton physics under-pinned subsequent developments in establishing the present picture of matter at the lepton-quark level

  6. Illustrated & Dissected: Professor Richard Sawdon Smith.

    Science.gov (United States)

    2015-06-01

    This Alternative Gallery feature introduces the photographic artist Professor Richard Sawdon Smith. Professor Sawdon Smith's work stems around a fascination with representations of anatomy that have been fuelled by his experience as a hospital patient. The work has allowed him to explore ideas through the use of medical illustrations which include early anatomical drawings, personal medical photography and facial modelling. The work highlights how such imagery can be used in the context of a patient seeking understanding and acceptance of ill health and disease using the body as a canvas on which to translate the experience.

  7. Richard Bright and his neurological studies.

    Science.gov (United States)

    Pearce, J M S

    2009-01-01

    Richard Bright was one of the famous triumvirate of Guy's Hospital physicians in the Victorian era. Remembered for his account of glomerulonephritis (Bright's disease) he also made many important and original contributions to medicine and neurology. These included his work on cortical epileptogenesis, descriptions of simple partial (Jacksonian) seizures, infantile convulsions, and a variety of nervous diseases. Most notable were his reports of neurological studies including papers on traumatic tetanus, syringomyelia, arteries of the brain, contractures of spinal origin, tumours of the base of the brain, and narcolepsy. His career and these contributions are outlined. Copyright 2009 S. Karger AG, Basel.

  8. Lord Rutherford of Nelson, his 1908 Nobel Prize in Chemistry, and why he didn't get a second prize

    International Nuclear Information System (INIS)

    Jarlskog, Cecilia

    2008-01-01

    'I have dealt with many different transformations with various periods of time, but the quickest that I have met was my own transformation in one moment from a physicist to a chemist.' Ernest Rutherford (Nobel Banquet, 1908) This article is about how Ernest Rutherford (1871-1937) got the 1908 Nobel Prize in Chemistry and why he did not get a second Prize for his subsequent outstanding discoveries in physics, specially the discovery of the atomic nucleus and the proton. Who were those who nominated him and who did he nominate for the Nobel Prizes? In order to put the Prize issue into its proper context, I will briefly describe Rutherford's whereabouts. Rutherford, an exceptionally gifted scientist who revolutionized chemistry and physics, was moulded in the finest classical tradition. What were his opinions on some scientific issues such as Einstein's photon, uncertainty relations and the future prospects for atomic energy? What would he have said about the 'Theory of Everything'? Extended version of an invited talk presented at the conference 'Neutrino 2008', Christchurch, NZ, 25-31 May 2008

  9. Gore's Nobel May Bring Even More Attention on Campuses to Environmental Issues: Award for Combating Climate Change Implicitly Honors the Work of Academic Scientists

    Science.gov (United States)

    Byrne, Richard; Monastersky, Richard

    2007-01-01

    When the Norwegian Nobel Committee announced that the 2007 Nobel Peace Prize would be shared by Al Gore, the former U.S. vice president, and the Intergovernmental Panel on Climate Change, the award implicitly celebrated a third party--academic institutions. Much of the research on global warming has come from university scientists, and higher…

  10. Two Nobel Prizes connected to CERN

    CERN Multimedia

    2003-01-01

    The 2003 Nobel Prizes in Physics and in Physiology or Medicine, announced last week, both have connections with particle physics and CERN. Alexei Abrikosov, Vitaly Ginzburg and Anthony Leggett have received the prize in physics for their "pioneering contributions to the theory of superconductors and superfluids". The most important superconducting materials technically have proved to be those known as type II superconductors, which allow superconductivity and magnetism to exist at the same time and remain superconductive in high magnetic fields. The coils for the superconducting magnets in CERN's Large Hadron Collider are made from niobium-titanium alloy - a type II superconductor. The LHC will operate thanks to magnets made of type II superconductors. Here, superconducting cables for the LHC are on display during a VIP visit.Abrikosov, who is now at the Argonne National Laboratory, was working at the Kapitsa Institute for Physical Problems in his native Moscow when he succeeded in formula...

  11. Nobel laureate in literature visits CERN

    CERN Multimedia

    Anaïs Schaeffer

    2015-01-01

    Gao Xingjian, winner of the Nobel Prize for Literature in 2000, was invited to visit CERN as part of European Researchers’ Night. During his visit to the Laboratory, he took time out to give us a dose of his optimism.   Gao Xingjian in IdeaSquare's bus during his visit to CERN.   “The idea of bringing scientists and artists together is wonderful!” An enthusiastic first-time visitor to the Laboratory, Gao Xingjian regaled his audience with his thoughts on human reality at the conference 'Made of Shadow and Light', in which he took part on 24 September, alongside Sergio Bertolucci, CERN’s Director for Research and Computing. Interested in science since his childhood (his marks in physics and maths at school were excellent, he explains with a smile), he draws an interesting parallel between human consciousness and dark matter: “The concept of dark matter makes complete sense to me,”&nbs...

  12. The Nobel Laureates’ Campaign Supporting GMOs

    Directory of Open Access Journals (Sweden)

    Richard J. Roberts

    2018-05-01

    Full Text Available More than 800 million people suffer from hunger in the world. Using modern plant breeding methods to generate so-called GMOs (Genetically Modified Organisms, agricultural scientists have shown that crop yields and nutritional quality can be greatly improved. Many GMO varieties have been specifically developed with the aim of being resistant to pests, tolerant to drought and containing beneficial nutrients. This leads to a reduction in the use of insecticides in water and on land. If anything, the GMO varieties are safer than traditionally bred varieties because they are made in a very precise manner. However, the scientific evidence on this issue is being ignored by the Green Parties such as Greenpeace who continue to deny the science and mislead the public. 129 Nobel Laureates have joined in a campaign to convince the Green Parties and the public that they should support the use of GMOs, especially for the sake of the developing world. Keywords: GMO, Hunger, Nutrition, Crop, Pest, Food, Precision agriculture

  13. PREFACE: Nobel Symposium 141: Qubits for Future Quantum Information Nobel Symposium 141: Qubits for Future Quantum Information

    Science.gov (United States)

    Claeson, Tord; Delsing, Per; Wendin, Göran

    2009-12-01

    correction, have yet to be solved. It has been predicted that quantum computers will be able to perform certain complicated computations or simulations in minutes or hours instead of years as with present computers. So far there exist very few useful quantum algorithms; however there is hope that the development of these will be stimulated once there is a breakthrough in hardware. Remarkable progress has been made in quantum engineering and quantum measurements, but a large scale quantum computer is still far off. Quantum communication and cryptography are much closer to the market than a quantum computer. The development of quantum information has meant a large push in the field of quantum physics, that previously could only be studied in the microscopic world. Artificial atoms, realized by circuit technology and mimicking the properties of 'natural' atoms, are one example of the new possibilities opened up by quantum engineering. Several different types of qubits have been suggested. Some are based upon microscopic entities, like atoms and ions in traps, or nuclear spins in molecules. They can have long coherence times (i.e. a long period allowing many operations, of the order of 10 000, to be performed before the state needs to be refreshed) but they are difficult to integrate into large systems. Other qubits are based upon solid state components that facilitate integration and coupling between qubits, but they suffer from interactions with the environment and their coherent states have a limited lifetime. Advanced experiments have been performed with superconducting Josephson junctions and many breakthroughs have been reported in the last few years. They have an advantage in the inherent coherence of superconducting Cooper pairs over macroscopic distances. We chose to focus the Nobel Symposium on Qubits for Future Quantum Information on superconducting qubits to allow for depth in discussions, but at the same time to allow comparison with other types of qubits that may

  14. Polygonal-path approximation on the path spaces of quantum mechanical systems: extended Feynman maps

    International Nuclear Information System (INIS)

    Exner, R.; Kolerov, G.I.

    1981-01-01

    Various types of polygonal-path approximations appearing in the functional-integration theory are discussed. The uniform approximation is applied to extend the definition of the Feynman maps from our previous paper and to prove consistency of this extension. Relations of the extended Fsub(-i)-map to the Wiener integral are given. In particular, the basic theorem about the sequential Wiener integral by Cameron is improved [ru

  15. Integral Hellmann--Feynman analysis of nonisoelectronic processes and the determination of local ionization potentials

    International Nuclear Information System (INIS)

    Simons, G.

    1975-01-01

    The integral Hellmann--Feynmann theorem is extended to apply to nonisoelectronic processes. A local ionization potential formula is proposed, and test calculations on three different approximate helium wavefunctions are reported which suggest that it may be numerically superior to the standard difference of expectation values. Arguments for the physical utility of the new concept are presented, and an integral Hellmann--Feynman analysis of transition energies is begun

  16. Optimized negative dimensional integration method (NDIM) and multiloop Feynman diagram calculation

    International Nuclear Information System (INIS)

    Gonzalez, Ivan; Schmidt, Ivan

    2007-01-01

    We present an improved form of the integration technique known as NDIM (negative dimensional integration method), which is a powerful tool in the analytical evaluation of Feynman diagrams. Using this technique we study a φ 3 +φ 4 theory in D=4-2ε dimensions, considering generic topologies of L loops and E independent external momenta, and where the propagator powers are arbitrary. The method transforms the Schwinger parametric integral associated to the diagram into a multiple series expansion, whose main characteristic is that the argument contains several Kronecker deltas which appear naturally in the application of the method, and which we call diagram presolution. The optimization we present here consists in a procedure that minimizes the series multiplicity, through appropriate factorizations in the multinomials that appear in the parametric integral, and which maximizes the number of Kronecker deltas that are generated in the process. The solutions are presented in terms of generalized hypergeometric functions, obtained once the Kronecker deltas have been used in the series. Although the technique is general, we apply it to cases in which there are 2 or 3 different energy scales (masses or kinematic variables associated to the external momenta), obtaining solutions in terms of a finite sum of generalized hypergeometric series 1 and 2 variables respectively, each of them expressible as ratios between the different energy scales that characterize the topology. The main result is a method capable of solving Feynman integrals, expressing the solutions as hypergeometric series of multiplicity (n-1), where n is the number of energy scales present in the diagram

  17. Le Petit Parisien of 10 January 1904 and the 1903 Nobel Prize for Physics

    International Nuclear Information System (INIS)

    Mould, R. F.; Asselain, B.

    2009-01-01

    This description of the discovery of radium and the award of the 1903 Nobel Prize for Physics is of historical interest as it represents public opinion in France in 1904. It has never previously been translated into English and neither has the French text been republished since 1904. (authors)

  18. Fuchsia : A tool for reducing differential equations for Feynman master integrals to epsilon form

    Science.gov (United States)

    Gituliar, Oleksandr; Magerya, Vitaly

    2017-10-01

    We present Fuchsia - an implementation of the Lee algorithm, which for a given system of ordinary differential equations with rational coefficients ∂x J(x , ɛ) = A(x , ɛ) J(x , ɛ) finds a basis transformation T(x , ɛ) , i.e., J(x , ɛ) = T(x , ɛ) J‧(x , ɛ) , such that the system turns into the epsilon form : ∂xJ‧(x , ɛ) = ɛ S(x) J‧(x , ɛ) , where S(x) is a Fuchsian matrix. A system of this form can be trivially solved in terms of polylogarithms as a Laurent series in the dimensional regulator ɛ. That makes the construction of the transformation T(x , ɛ) crucial for obtaining solutions of the initial system. In principle, Fuchsia can deal with any regular systems, however its primary task is to reduce differential equations for Feynman master integrals. It ensures that solutions contain only regular singularities due to the properties of Feynman integrals. Program Files doi:http://dx.doi.org/10.17632/zj6zn9vfkh.1 Licensing provisions: MIT Programming language:Python 2.7 Nature of problem: Feynman master integrals may be calculated from solutions of a linear system of differential equations with rational coefficients. Such a system can be easily solved as an ɛ-series when its epsilon form is known. Hence, a tool which is able to find the epsilon form transformations can be used to evaluate Feynman master integrals. Solution method: The solution method is based on the Lee algorithm (Lee, 2015) which consists of three main steps: fuchsification, normalization, and factorization. During the fuchsification step a given system of differential equations is transformed into the Fuchsian form with the help of the Moser method (Moser, 1959). Next, during the normalization step the system is transformed to the form where eigenvalues of all residues are proportional to the dimensional regulator ɛ. Finally, the system is factorized to the epsilon form by finding an unknown transformation which satisfies a system of linear equations. Additional comments

  19. One of the many visiting theoreticians, R P Feynman, who gave lectures at CERN during the year

    CERN Multimedia

    CERN PhotoLab

    1970-01-01

    Visiting CERN in January was R P Feynman, who has recently been working on strong interaction theory. On 8 January, he packed the lecture theatre, as usual, when he gave a talk on inelastic hadron collisions and is here caught in a typically graphic pose.

  20. Feynman-Hellmann theorem for resonances and the quest for QCD exotica

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz de Elvira, J. [University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Meissner, U.G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen-und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Juelich Center for Hadron Physics and JARA-HPC, Forschungszentrum Juelich, Institute for Advanced Simulation (IAS-4), Institut fuer Kernphysik (IKP-3), Juelich (Germany); Rusetsky, A. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen-und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Schierholz, G. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)

    2017-10-15

    The generalization of the Feynman-Hellmann theorem for resonance states in quantum field theory is derived. On the basis of this theorem, a criterion is proposed to study the possible exotic nature of certain hadronic states emerging in QCD. It is shown that this proposal is supported by explicit calculations in chiral perturbation theory and by large-N{sub c} arguments. Analyzing recent lattice data on the quark mass dependence in the pseudoscalar, vector meson, baryon octet and baryon decuplet sectors, we conclude that, as expected, these are predominately quark-model states, albeit the corrections are non-negligible. (orig.)

  1. Theoretical confirmation of Feynman's hypothesis on the creation of circular vortices in Bose-Einstein condensates: II

    Energy Technology Data Exchange (ETDEWEB)

    Senatorski, A; Infeld, E [Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland)

    2004-09-15

    In a recent paper (Infeld and Senatorski 2003 J. Phys.: Condens. Matter 15 5865) we confirmed Feynman's hypothesis on how circular vortices can be created from an oppositely polarized linear pair in a Bose-Einstein condensate. This was done by perturbing the original pair numerically, so that a circular vortex (or array of identical circular vortices) was created as a result of reconnection. These circular vortices were then checked against known theoretical relations binding velocities and radii. Agreement to a high degree of accuracy was found. Here in part II, we give examples of the creation of several different vortices from one linear pair. All are checked as above. We also confirm the limit of separation of the line vortices below which mutual attraction, followed by annihilation, prevents the Feynman metamorphosis. Other possible modes of behaviour are illustrated.

  2. The 2012 Nobel Prize in physics and David Wineland

    International Nuclear Information System (INIS)

    Mark, Um; Kihwan, Kim

    2013-01-01

    The 2012 Nobel prize in physics was awarded to David Wineland, together with Serge Haroche. David Wineland received the prize for ground-breaking experimental methods that enabled the measurement and manipulation of individual quantum systems, especially systems with trapped ions. He improved a trapped ion system and opened a new quantum world leading to quantum computation. He also realized optical atomic ion clocks with unprecedented precision through his experimental research. This article briefly reviews the history of trapped ion systems, the development of trapped-ion based quantum computation, and the development of the atomic ion clock, which are closely related to Wineland's achievements. (authors)

  3. Quasi-constitutional change without intent : A response to Richard Albert

    NARCIS (Netherlands)

    Passchier, Reijer

    2017-01-01

    Recently, Buffalo Law Review published Richard Albert’s article on “quasi-constitutional amendments.” These are, in Albert’s words, “sub-constitutional changes that do not possess the same legal status as a constitutional amendment, that are formally susceptible to statutory repeal or revision, but

  4. Koht, kust tagasi ei tulda / Mark Jenkins ; fotod Cory Richards

    Index Scriptorium Estoniae

    Jenkins, Mark

    2015-01-01

    National Geographicu ekspeditsiooni, mille koosseisu kuulusid Renan Ozturk, Mark Jenkins, Cory Richards, Emily Harrington ja Kilaree O'Neill, püüdlustest tõusta Kagu-Aasia kõrgeima mäe Hkakabo Razi tippu ning mõõta selle täpset kõrgust GPS-i abil

  5. A Nobel Prize for empirical macroeconometrics: assessing the contributions of Thomas Sargent and Christopher Sims

    NARCIS (Netherlands)

    Boumans, M.; Sent, E.M.

    2013-01-01

    This paper provides an assessment of the contributions of the 2011 Nobel Prize winners, Thomas Sargent and Christopher Sims. They received the prize ‘for their empirical research on cause and effect in the macroeconomy’. The paper illustrates that Sargent entertained different interpretations of

  6. Wooing-Scenes in “Richard III”: A Parody of Courtliness?

    Directory of Open Access Journals (Sweden)

    Agnieszka Stępkowska

    2009-11-01

    Full Text Available In the famous opening soliloquy of Shakespeare’s Richard III, Richard mightily voices his repugnance to “fair well-spoken days” and their “idle pleasures”. He realizes his physical deformity and believes that it sets him apart from others. He openly admits that he is “not shaped for sportive tricks, nor made to court an amorous looking-glass”. Yet, his monstrosity constitutes more perhaps of his aggressive masculine exceptionality rather than of his deformity. Richard’s bullying masculinity manifests itself in his contempt for women. In the wooing scenes we clearly see his pugnacious pursuit of power over effeminate contentment by reducing women to mere objects. Additionally, those scenes are interesting from a psychological viewpoint as they brim over with conflicting emotions. Therefore, the paper explores two wooing encounters of the play, which belong the best examples of effective persuasion and also something we may refer to as ‘the power of eloquence’.

  7. Richard Kelly: Pioneirismo na iluminação da arquitetura moderna

    Directory of Open Access Journals (Sweden)

    Fernanda Brito Bandeira

    2018-04-01

    Full Text Available Livros resenhado: NEUMANN, Dietrich; STERN, Robert A. M. The structure of light: Richard Kelly and the illumination of modern architecture. New York: Yale University Press, 2010, 214 p. ISBN: 978-0-300-16370-4

  8. [The 69th Congress-urologists nominated for the Nobel Prize : Not everyone got a prize: four biographical sketches].

    Science.gov (United States)

    Moll, F H; Halling, T; Krischel, M; Hansson, N; Fangerau, H

    2017-09-01

    Our research group has reconstructed why the board certified urologists Werner Forssmann (1904-1979) and Charles Huggins (1901-1997) received the Nobel Prize in physiology or medicine (1956, and 1966, respectively). But the history of "Urology and the Nobel Prize" is in fact more multifaceted than the success stories of these two laureates suggest. James Israel (1848-1926), Berlin, Félix Guyon (1831-1920), Paris, Peter J. Freyer (1852-1921), London and Edwin Beer (1876-1938), New York were nominated for the award during the first three decades of the 20th century. Their candidacies mirror trends among leading urologists during the time when urology became a specialty in its own right.

  9. Richard Rorty's Conception of Philosophy of Education Revisited

    Science.gov (United States)

    Noaparast, Khosrow Bagheri

    2014-01-01

    In this essay Khosrow Bagheri Noaparast argues that, by focusing on acculturation and edification, Richard Rorty has provided a promising view for education because without acculturation, education turns into a destructive endeavor, and without edification, education risks the danger of being repetitive and reproductive. However, Rorty's view…

  10. Nobel Peace Laureate Muhammad Yunus: A Banker Who Believes Credit is a Human Right

    Science.gov (United States)

    Szpara, Michelle Yvonne; Ahmad, Iftikhar; Pederson, Patricia Velde

    2007-01-01

    The article profiles Nobel Peace Laureate Muhammad Yunus, founder of Grameen Bank (an independent financial institution in Bangladesh), as well as an economics professor at the University of Chittagong. In his birthplace of Bangladesh, 49.8 percent of people exist below the poverty line, and 73.2 percent of the women are categorized as…

  11. Paul Ehrlich: the Nobel Prize in physiology or medicine 1908.

    Science.gov (United States)

    Piro, Anna; Tagarelli, Antonio; Tagarelli, Giuseppe; Lagonia, Paolo; Quattrone, Aldo

    2008-01-01

    We wish to commemorate Paul Ehrlich on the centennial of his being awarded the Nobel Prize in Physiology or Medicine in 1908. His studies are now considered as milestones in immunology: the morphology of leukocytes; his side-chain theory where he defined the cellular receptor for first time; and his clarification of the difference between serum therapy and chemotherapy. Ehrlich also invented the first chemotherapeutic drug: compound 606, or Salvarsan. We have used some original documents from the Royal Society of London, where Ehrlich was a fellow, and from Leipzig University, where he took a degree in medicine.

  12. The Paradox of the Public Realm in Richard Rorty

    Directory of Open Access Journals (Sweden)

    Martha Palacio Avendaño

    2008-12-01

    Full Text Available The concepto of the public sphere in Richard Rorty's philosophy, inherited of liberal tradition, allows be treated as a part of a game of language called democratic liberalism. One of the rules for validating a move in this game consists in taking for granted the distinction between the public and the private spheres. Richard Rorty thought that democratic liberalism did not need any foundation beyond the way to play it; its only criteria would be the game's practices, according an utopia which would allow us to make more movements in the game. That is, democratic liberalism does not require foundations, but just practices for achieving a social hioe inspired on freedom and pluralism. This kind of utopia, based upon the non-cruelty principle, would make possible an inclusive society where everyone would have a place for their own private vocabulary. In this way, Rorty would have linked freedom and solidarity. However, this language-game reveals the paradox of the link which implies the meaning of the public shere. Herein, freedom is not a sufficient condition of solidarity; hence, there is no place for social inclusion in Rorty's language game.

  13. Has Richard Rorty a moral philosophy?

    Directory of Open Access Journals (Sweden)

    Mohammad Asghari

    2015-06-01

    Full Text Available I try to show that Richard Rorty, although is not a moral philosopher like Kant, nerveless, has moral philosophy that must be taken seriously. Rorty was not engaged with moral philosophy in the systematic manner common among leading modern and contemporary moral philosophers. This paper has two parts: first part, in brief, is concerned with principles of his philosophy such as anti-essentialism, Darwinism, Freudism, and historicism. Second part which be long and detailed, considers many moral themes in Rorty's thought such as critique of Kantian morality, solidarity, moral progress, cruelty and concept of other, etc. Subsequently, I will try to answer the research question of the article namely, has Rorty a moral philosophy?

  14. Do Nobel Laureates Create Prize-Winning Networks? An Analysis of Collaborative Research in Physiology or Medicine

    NARCIS (Netherlands)

    Wagner, Caroline S.; Horlings, Edwin; Whetsell, Travis A.; Mattson, Pauline; Nordqvist, Katarina

    2015-01-01

    Nobel Laureates in Physiology or Medicine who received the Prize between 1969 and 2011 are compared to a matched group of scientists to examine productivity, impact, coauthorship and international collaboration patterns embedded within research networks. After matching for research domain, h-index,

  15. Whatever Happened to Richard Reid's List of First Programming Languages?

    Science.gov (United States)

    Siegfried, Robert M.; Greco, Daniel M.; Miceli, Nicholas G.; Siegfried, Jason P.

    2012-01-01

    Throughout the 1990s, Richard Reid of Michigan State University maintained a list showing the first programming language used in introductory programming courses taken by computer science and information systems majors; it was updated for several years afterwards by Frances Van Scoy of West Virginia University. However, it has been 5 years since…

  16. Richard Wright, Toni Morrison, and United States book clubs

    Directory of Open Access Journals (Sweden)

    Mark Madigan

    2004-12-01

    Full Text Available This essay focuses on the influence of commercial book clubs in the United States. It will examine the country's oldest commercial book club, the Book-of-the-Month Club (BOMC, Oprah's Book Club (OBC, which bears the name of its founder, television personality Oprah Winfrey, and their roles in the careers of two African-American authors, Richard Wright and Toni Morrison.

  17. Self-consistence equations for extended Feynman rules in quantum chromodynamics

    International Nuclear Information System (INIS)

    Wielenberg, A.

    2005-01-01

    In this thesis improved solutions for Green's functions are obtained. First the for this thesis essential techniques and concepts of QCD as euclidean field theory are presented. After a discussion of the foundations of the extended approach for the Feynman rules of QCD with a systematic approach for the 4-gluon vertex a modified renormalization scheme for the extended approach is developed. Thereafter the resummation of the Dyson-Schwinger equations (DSE) by the appropriately modified Bethe-Salpeter equation is discussed. Then the leading divergences for the 1-loop graphs of the resummed DSE are determined. Thereafter the equation-of-motion condensate is defined as result of an operator-product expansion. Then the self-consistency equations for the extended approaches are defined and numerically solved. (HSI)

  18. Argument from Design in Richard Baxter's Natural Theology

    Directory of Open Access Journals (Sweden)

    Igor Koshelev

    2017-12-01

    Full Text Available The article deals with the teleological argument, or argument from design, as expounded by a famous English Protestant theologian Richard Baxter, one of the leading 17-th century English Puritans, in his work “The Reasons of the Christian Religion”. Natural theology, providing arguments for the existence of God based on reason and without appeal to the Revelation, has always played a vital role throughout the entire history of theological thought. The most popular was the so called teleological argument, or the argument from design, which stands out among all rational arguments for the existence of the Creator. It is mostly known from the “Fifth Way” of the medieval Scholastic philosopher Thomas Aquinas and a famous work “Natural Theology” by an English 19-th century theologian William Paley. The foundation for the modern research in the area was laid during the age of the Scientific Revolution of the 17th century English nature philosophers and theologians, especially Robert Boyle, who believed the teleological argument to be the key element of Natural Theology. His friend and confessor, Richard Baxter, a prominent representative of the Puritan Natural Theology, mostly known by his theological works, paved the way for Natural Theology both in his own time and the following centuries. His work was thought to be the best collection of the evidences for Christianity.

  19. Tight connexion between the Einstein-Podolsky-Rosen non-separability and the non-locality in Feynman's theory of antiparticles

    International Nuclear Information System (INIS)

    Costa de Beauregard, Olivier

    1976-01-01

    The Feynman amplitude for the annihilation transition of an electron-positon pair contains the two polarization correlations of the photons respectively characterizing the 0-1-0 and 1-1-0 cascades. The overall system is in general neither P- nor C-, but is PC-invariant [fr

  20. Properties of the Feynman-alpha method applied to accelerator-driven subcritical systems.

    Science.gov (United States)

    Taczanowski, S; Domanska, G; Kopec, M; Janczyszyn, J

    2005-01-01

    A Monte Carlo study of the Feynman-method with a simple code simulating the multiplication chain, confined to pertinent time-dependent phenomena has been done. The significance of its key parameters (detector efficiency and dead time, k-source and spallation neutrons multiplicities, required number of fissions etc.) has been discussed. It has been demonstrated that this method can be insensitive to properties of the zones surrounding the core, whereas is strongly affected by the detector dead time. In turn, the influence of harmonics in the neutron field and of the dispersion of spallation neutrons has proven much less pronounced.