WorldWideScience

Sample records for rich silicon coatings

  1. Protection against corrosion to high temperature by means of rich silicon coatings; Proteccion contra corrosion a alta temperatura por medio de recubrimientos ricos en silicio

    Energy Technology Data Exchange (ETDEWEB)

    Porcayo Calderon, Jesus [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    1999-07-01

    In this research work the study of the process of corrosion by molten salts of sodium sulphate-vanadium pentoxide and its prevention by means of metallic coatings rich in silicon was contemplated. The research encompassed the development of the coating system, the chemical and thermochemical analysis of the system sodium sulphate - vanadium pentoxide, the evaluation of the resistance to the corrosion of the coating system by gravimetric and electrochemistry techniques, and the study of the stability of the coating system - substrate. [Spanish] En este trabajo de investigacion se contempla el estudio del proceso de corrosion por sales fundidas de sulfato de sodio - pentoxido de vanadio y su prevencion por medio de recubrimientos metalicos ricos en silicio. La investigacion abarca el desarrollo del sistema de recubrimientos, el analisis quimico y termoquimico del sistema sulfato de sodio - pentoxido de vanadio, la evaluacion de la resistencia a la corrosion del sistema de recubrimientos por tecnicas gravimetricas y electroquimicas, y el estudio de la estabilidad del sistema recubrimiento - sustrato.

  2. Coating of silicon pore optics

    DEFF Research Database (Denmark)

    Cooper-Jensen, Carsten P.; Ackermann, M.; Christensen, Finn Erland

    2009-01-01

    For the International X-ray observatory (IXO), a mirror module with an effective area of 3 m2 at 1.25 keV and at least 0.65 m2 at 6 keV has to be realized. To achieve this goal, coated silicon pore optics has been developed over the last years. One of the challenges is to coat the Si plates...... and still to realize Si-Si bonding. It has been demonstrated that ribbed silicon plates can be produced and assembled into stacks. All previously work has been done using uncoated Si plates. In this paper we describe how to coat the ribbed Si plates with an Ir coating and a top C coating through a mask so...... that there will be coating only between the ribs and not in the area where bonding takes place. The paper includes description of the mounting jig and how to align the mask on top of the plate. We will also present energy scans from Si plates coated through a mask....

  3. Plasmonic and silicon spherical nanoparticle antireflective coatings

    Science.gov (United States)

    Baryshnikova, K. V.; Petrov, M. I.; Babicheva, V. E.; Belov, P. A.

    2016-03-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes.

  4. Four-Wave Mixing in Silicon-Rich Nitride Waveguides

    DEFF Research Database (Denmark)

    Mitrovic, Miranda; Guan, Xiaowei; Ji, Hua

    2015-01-01

    We demonstrate four-wave mixing wavelength conversion in silicon-rich nitride waveguides which are a promising alternative to silicon for nonlinear applications. The obtained conversion efficiency reaches -13.6 dB while showing no significant nonlinear loss.......We demonstrate four-wave mixing wavelength conversion in silicon-rich nitride waveguides which are a promising alternative to silicon for nonlinear applications. The obtained conversion efficiency reaches -13.6 dB while showing no significant nonlinear loss....

  5. Photoconduction in silicon rich oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Luna-Lopez, J A; Carrillo-Lopez, J; Flores-Gracia, F J; Garcia-Salgado, G [CIDS-ICUAP, Benemerita Universidad Autonoma de Puebla. Ed. 103 D and C, col. San Manuel, Puebla, Pue. Mexico 72570 (Mexico); Aceves-Mijares, M; Morales-Sanchez, A, E-mail: jluna@buap.siu.m, E-mail: jluna@inaoep.m [INAOE, Luis Enrique Erro No. 1, Apdo. 51, Tonantzintla, Puebla, Mexico 72000 (Mexico)

    2009-05-01

    Photoconduction of silicon rich oxide (SRO) thin films were studied by current-voltage (I-V) measurements, where ultraviolet (UV) and white (Vis) light illumination were applied. SRO thin films were deposited by low pressure chemical vapour deposition (LPCVD) technique, using SiH{sub 4} (silane) and N{sub 2}O (nitrous oxide) as reactive gases at 700 {sup 0}. The gas flow ratio, Ro = [N{sub 2}O]/[SiH{sub 4}] was used to control the silicon excess. The thickness and refractive index of the SRO films were 72.0 nm, 75.5 nm, 59.1 nm, 73.4 nm and 1.7, 1.5, 1.46, 1.45, corresponding to R{sub o} = 10, 20, 30 and 50, respectively. These results were obtained by null ellipsometry. Si nanoparticles (Si-nps) and defects within SRO films permit to obtain interesting photoelectric properties as a high photocurrent and photoconduction. These effects strongly depend on the silicon excess, thickness and structure type. Two different structures (Al/SRO/Si and Al/SRO/SRO/Si metal-oxide-semiconductor (MOS)-like structures) were fabricated and used as devices. The photocurrent in these structures is dominated by the generation of carriers due to the incident photon energies ({approx}3.0-1.6 eV and 5 eV). These structures showed large photoconductive response at room temperature. Therefore, these structures have potential applications in optoelectronics devices.

  6. Silicon Strengthened CrAlVN Coatings

    Institute of Scientific and Technical Information of China (English)

    Qiang LI; Yue-xiu QIU; Bo LI; Dong-liang ZHAO; De-en SUN; De-hui LI

    2015-01-01

    CrAlVN coatings are of good intrinsic mechanical and tribological properties but lack of strength.Silicon can provide nitride coating high strength and excellent oxidation resistance.Logically,the combination of CrAlVN and Si should provide a good candidate for dry machining.The effect of silicon content on CrAlSiVN coating′s me-chanical,tribological properties and oxidation resistance was investigated.The coatings were deposited on cemented tungsten carbide and Si wafer (100)substrates in an in-line magnetron sputtering system.Grazing incidence X-ray diffractometer,scanning electron microscopy,atomic force microscopy,transmission electron microscopy,electron probe micro-analyzer,X-ray photoelectron spectroscopy and Auger electron spectroscopy were employed to charac-terize the microstructure and chemistry.Nanoindentation and ball-on-disc tribo-tester were used in characterization of the mechanical and tribological properties.Incorporating with silicon,the CrAlVN coating was strengthened (hard-ness:21.2 GPa up to 38.7 GPa);even after 2 h exposure to 700 ℃ in air,the hardness still maintains at 11.0 GPa.

  7. Silicon Nitride Antireflection Coatings for Photovoltaic Cells

    Science.gov (United States)

    Johnson, C.; Wydeven, T.; Donohoe, K.

    1984-01-01

    Chemical-vapor deposition adapted to yield graded index of refraction. Silicon nitride deposited in layers, refractive index of which decreases with distance away from cell/coating interface. Changing index of refraction allows adjustment of spectral transmittance for wavelengths which cell is most effective at converting light to electric current. Average conversion efficiency of solar cells increased from 8.84 percent to 12.63 percent.

  8. ITO spin-coated porous silicon structures

    Energy Technology Data Exchange (ETDEWEB)

    Daoudi, K.; Sandu, C.S.; Moadhen, A.; Ghica, C.; Canut, B.; Teodorescu, V.S.; Blanchin, M.G.; Roger, J.A.; Oueslati, M.; Bessaies, B

    2003-08-15

    Porous silicon (PS)-based structures were formed by deposition of an indium tin oxide (ITO) onto PS surface using the sol-gel spin coating route. Two types of thermal annealing processes, classical and rapid thermal annealing, were used in order to crystallise the ITO films. The initial photoluminescence of the PS layers is partly preserved. The morphology of ITO/PS structure was investigated by cross-sectional transmission electron microscopy (XTEM) and by Rutherford backscattering spectrometry (RBS) measurements.

  9. Plasmonic and silicon spherical nanoparticle antireflective coatings

    OpenAIRE

    K. V. Baryshnikova; M. I. Petrov; Babicheva, V. E.; Belov, P. A.

    2016-01-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation result...

  10. Advanced Silicone-based Coatings for Flexible Fabric Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High performance silicone coatings are desired for flexible fabrics used in several space and consumer applications. For instance, the total weight of silicone...

  11. Advanced Silicone-based Coatings for Flexible Fabric Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicone coatings are the system of choice for inflatable fabrics used in several space, military, and consumer applications, including airbags, parachutes, rafts,...

  12. Metallic coatings on silicon substrates, and methods of forming metallic coatings on silicon substrates

    Science.gov (United States)

    Branagan, Daniel J.; Hyde, Timothy A.; Fincke, James R.

    2008-03-11

    The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.

  13. Protective silicon coating for nanodiamonds using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China); Wang, Y.H. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China); Zang, J.B. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China) and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China)]. E-mail: diamondzjb@163.com; Li, Y.N. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China)

    2007-01-30

    Ultrathin silicon coating was deposited on nanodiamonds using atomic layer deposition (ALD) from gaseous monosilane (SiH{sub 4}). The coating was performed by sequential reaction of SiH{sub 4} saturated adsorption and in situ decomposition. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were utilized to investigate the structural and morphological properties of the coating. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to compare the thermal stability of nanodiamonds before and after silicon coating. The results confirmed that the deposited cubic phase silicon coating was even and continuous. The protective silicon coating could effectively improve the oxidation resistance of nanodiamonds in air flow, which facilitates the applications of nanodiamonds that are commonly hampered by their poor thermal stability.

  14. Antifuse with a single silicon-rich silicon nitride insulating layer

    Science.gov (United States)

    Habermehl, Scott D.; Apodaca, Roger T.

    2013-01-22

    An antifuse is disclosed which has an electrically-insulating region sandwiched between two electrodes. The electrically-insulating region has a single layer of a non-hydrogenated silicon-rich (i.e. non-stoichiometric) silicon nitride SiN.sub.X with a nitrogen content X which is generally in the range of 0silicon. Arrays of antifuses can also be formed.

  15. Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics

    DEFF Research Database (Denmark)

    Philipp, Hugh T.; Andersen, Karin Nordström; Svendsen, Winnie Edith

    2004-01-01

    Amorphous silicon rich silicon nitride optical waveguides clad in silica are presented as a high-index contrast platform for high density integrated optics. Performance of different cross-sectional geometries have been measured and are presented with regards to bending loss and insertion loss...

  16. Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics

    DEFF Research Database (Denmark)

    Philipp, Hugh T.; Andersen, Karin Nordström; Svendsen, Winnie Edith

    2004-01-01

    Amorphous silicon rich silicon nitride optical waveguides clad in silica are presented as a high-index contrast platform for high density integrated optics. Performance of different cross-sectional geometries have been measured and are presented with regards to bending loss and insertion loss....... A sample double ring add-drop filter is presented....

  17. Ionic Transport Through Metal-Rich Organic Coatings

    Science.gov (United States)

    2016-08-19

    organic -inorganic hybrid films to be one of the most promising approaches for replacing chromate-based pre-treatments – particularly hexavalent chrome ...NAWCADPAX/TIM-2016/54 IONIC TRANSPORT THROUGH METAL-RICH ORGANIC COATINGS by Brandy Mobley Kevin M. Cook Anna K. Safigan Noah Wichrowski Zachary...PATUXENT RIVER, MARYLAND NAWCADPAX/TIM-2016/54 19 August 2016 IONIC TRANSPORT THROUGH METAL-RICH ORGANIC COATINGS by Brandy Mobley Kevin M. Cook Anna

  18. Ionic Transport Through Metal-Rich Organic Coatings

    Science.gov (United States)

    2016-08-19

    high strength structural aluminum parts. 8 These metal-rich primers are organic -based and comprise the three components mentioned above—e.g...M.G.S Ferreira, O. Nuyken, “Electrochemical Study of Inhibitor-Containing Organic -Inorganic Hybrid Coatings on AA2024,” Corrosion Science 51, 1...NAWCADPAX/TIM-2016/54 IONIC TRANSPORT THROUGH METAL-RICH ORGANIC COATINGS by Brandy Mobley Kevin M. Cook Anna K. Safigan Noah Wichrowski Zachary

  19. Process for coating an object with silicon carbide

    Science.gov (United States)

    Levin, Harry (Inventor)

    1989-01-01

    A process for coating a carbon or graphite object with silicon carbide by contacting it with silicon liquid and vapor over various lengths of contact time. In the process, a stream of silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a co-reactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into a reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. The precursor gas is decomposed directly to silicon in the reaction chamber. A stream of any decomposition gas and any unreacted precursor gas from said reaction chamber is removed. The object within the reaction chamber is then contacted with silicon, and recovered after it has been coated with silicon carbide.

  20. High-Index Contrast Silicon Rich Silicon Nitride Optical Waveguides and Devices

    DEFF Research Database (Denmark)

    Philipp, Hugh Taylor

    2004-01-01

    This research focused on the realization of high-density integrated optical devices made with high-index contrast waveguides. The material platform used for to develop these devices was modeled after standard silicon on silicon technology. The high-index waveguide core material was silicon rich...... silicon nitride. This provided a sharp contrast with silica and made low-loss waveguide bending radii less than 25mm possible. An immediate consequence of such small bending radii is the ability to make practical ring resonator based devices with a large free spectral range. Several ring resonator based...

  1. Adhesion between coating layers based on epoxy and silicone

    DEFF Research Database (Denmark)

    Svendsen, Jacob R.; Kontogeorgis, Georgios; Kiil, Søren

    2007-01-01

    The adhesion between a silicon tie-coat and epoxy primers, used in marine coating systems, has been studied in this work. Six epoxy coatings (with varying chain lengths of the epoxy resins), some of which have shown problems with adhesion to the tie-coat during service life, have been considered....... The experimental investigation includes measurements of the surface tension of the tie-coat and the critical surface tensions of the epoxies, topographic investigation of the surfaces of cured epoxy coatings via atomic force microscopy (AFM), and pull-off tests for investigating the strength of adhesion...... to the silicon/epoxy systems. Calculations for determining the roughness factor of the six epoxy coatings (based on the AFM topographies) and the theoretical work of adhesion have been carried out. The coating surfaces are also characterized based on the van Oss-Good theory. Previous studies on the modulus...

  2. On the wettability transparency of graphene-coated silicon surfaces

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-01-01

    In order to better understand the behavior and governing characteristics of the wetting transparency phenomenon observed in graphene-coated surfaces, molecular dynamics simulations were coupled with a theoretical model. Graphene-coated silicon was selected for this analysis, due to potential applications of hybrid silicon-graphene materials as detectors in aqueous environments. The results indicate good agreement between the theory and simulations at the macroscopic conditions required to observe wetting transparency. A microscopic analysis was also conducted in order to identify the parameters, such as the interaction potential energy landscape and the interfacial liquid structure that govern the wetting behavior of graphene-coated surfaces. The interfacial liquid structure was found to be different between uncoated Si(100) and the graphene-coated version and very similar between uncoated Si(111) and the graphene-coated version. However, the concentration of liquid particles for both silicon surfaces was found to be very similar under transparent wetting conditions.

  3. Performance improvement of silicon solar cells by nanoporous silicon coating

    Directory of Open Access Journals (Sweden)

    Dzhafarov T. D.

    2012-04-01

    Full Text Available In the present paper the method is shown to improve the photovoltaic parameters of screen-printed silicon solar cells by nanoporous silicon film formation on the frontal surface of the cell using the electrochemical etching. The possible mechanisms responsible for observed improvement of silicon solar cell performance are discussed.

  4. Coated silicon comprising material for protection against environmental corrosion

    Science.gov (United States)

    Hazel, Brian Thomas (Inventor)

    2009-01-01

    In accordance with an embodiment of the invention, an article is disclosed. The article comprises a gas turbine engine component substrate comprising a silicon material; and an environmental barrier coating overlying the substrate, wherein the environmental barrier coating comprises cerium oxide, and the cerium oxide reduces formation of silicate glass on the substrate upon exposure to corrodant sulfates.

  5. Plasmonic and silicon spherical nanoparticle anti-reflective coatings

    CERN Document Server

    Baryshnikova, K V; Babicheva, V E; Belov, P A

    2015-01-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflection properties of all-dielectric and plasmonic nanoparticle coatings based on silver and crystalline silicon. Our results of numerical simulations for periodic arrays of spherical nanoparticles on top of amorphous silicon show that both silicon and silver nanoparticle coatings demonstrate strong anti-reflective properties in the visible spectral range. In this work, we show for the first time that blooming effect, that is zero reflection from the structure, with silicon coatings originates from the interference of electric- and magnetic-dipole responses of nanoparticles with the wave reflected from the substrate, and we refer to it as substrate-mediated Kerker ef...

  6. Protective coating for alumina-silicon carbide whisker composites

    Science.gov (United States)

    Tiegs, Terry N.

    1989-01-01

    Ceramic composites formed of an alumina matrix reinforced with silicon carbide whiskers homogenously dispersed therein are provided with a protective coating for preventing fracture strength degradation of the composite by oxidation during exposure to high temperatures in oxygen-containing atmospheres. The coating prevents oxidation of the silicon carbide whiskers within the matrix by sealing off the exterior of the matrix so as to prevent oxygen transport into the interior of the matrix. The coating is formed of mullite or mullite plus silicon oxide and alumina and is formed in place by heating the composite in air to a temperature greater than 1200.degree. C. This coating is less than about 100 microns thick and adequately protects the underlying composite from fracture strength degradation due to oxidation.

  7. Coulomb blockade effects in silicon nanoparticles embedded in thin silicon-rich oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Sanchez, A; Barreto, J; Dominguez, C [IMB-CNM (CSIC), Campus UAB, Bellaterra 08193, Barcelona (Spain); Aceves, M; Yu, Z [INAOE, Electronics Department, Apartado 51, Puebla, 72000 (Mexico); Luna-Lopez, J A [CCMC, UNAM, Optics Department, Ensenada, BC, 22800 (Mexico)], E-mail: alfredo.morales@cnm.es

    2008-04-23

    Silicon nanoparticles (Si-nps) embedded in silicon oxide matrix were created using silicon-rich oxide (SRO) films deposited by low pressure chemical vapour deposition (LPCVD) followed by a thermal annealing at 1100 deg. C. The electrical properties were studied using metal-oxide-semiconductor (MOS) structures with the SRO films as the active layers. Capacitance versus voltage (C-V) exhibited downward and upward peaks in the accumulation region related to charge trapping and de-trapping effects of Si-nps, respectively. Current versus voltage (I-V) measurements showed fluctuations in the form of spike-like peaks and a clear staircase at room temperature. These effects have been related to the Coulomb blockade (CB) effect in the silicon nanoparticles embedded in SRO films. The observed quantum effects are due to 1 nm nanoparticles.

  8. Si-rich Silicon Nitride for Nonlinear Signal Processing Applications.

    Science.gov (United States)

    Lacava, Cosimo; Stankovic, Stevan; Khokhar, Ali Z; Bucio, T Dominguez; Gardes, F Y; Reed, Graham T; Richardson, David J; Petropoulos, Periklis

    2017-02-02

    Nonlinear silicon photonic devices have attracted considerable attention thanks to their ability to show large third-order nonlinear effects at moderate power levels allowing for all-optical signal processing functionalities in miniaturized components. Although significant efforts have been made and many nonlinear optical functions have already been demonstrated in this platform, the performance of nonlinear silicon photonic devices remains fundamentally limited at the telecom wavelength region due to the two photon absorption (TPA) and related effects. In this work, we propose an alternative CMOS-compatible platform, based on silicon-rich silicon nitride that can overcome this limitation. By carefully selecting the material deposition parameters, we show that both of the device linear and nonlinear properties can be tuned in order to exhibit the desired behaviour at the selected wavelength region. A rigorous and systematic fabrication and characterization campaign of different material compositions is presented, enabling us to demonstrate TPA-free CMOS-compatible waveguides with low linear loss (~1.5 dB/cm) and enhanced Kerr nonlinear response (Re{γ} = 16 Wm(-1)). Thanks to these properties, our nonlinear waveguides are able to produce a π nonlinear phase shift, paving the way for the development of practical devices for future optical communication applications.

  9. Single electron charging and transport in silicon rich oxide

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhenrui; Aceves-Mijares, Mariano; Cabrera, Marco Antonio Ipina [Department of Electronics, INAOE, Apartado 51, Puebla, Puebla 72000 (Mexico)

    2006-08-14

    Single electron charging and single electron tunnelling effects were observed in silicon rich oxide (SRO). The devices used in this study have an Al/SRO/Si metal-oxide-semiconductor-like structure, where the SRO layer was deposited using low pressure chemical vapour deposition. Two types of Si nanodots (NDs), interface NDs and bulk NDs, were identified by transmission electron microscopy measurements. Under electric field, charges from the Si substrate are transferred into the interface NDs that locate at the interface, and each interface ND traps only one carrier. As the voltage increases, conduction paths between the Al electrode and the silicon substrate are formed, and the conduction of electrons is via sequential tunnelling through the bulk NDs. Due to the Coulomb blockade effect, only one electron tunnels on each nanodot at a specific electric field. The transport of the electrons through the Si nanodots is due to the Poole-Frenkel mechanism in the voltage regime studied.

  10. Thermal Residual Stress in Environmental Barrier Coated Silicon Nitride - Modeled

    Science.gov (United States)

    Ali, Abdul-Aziz; Bhatt, Ramakrishna T.

    2009-01-01

    When exposed to combustion environments containing moisture both un-reinforced and fiber reinforced silicon based ceramic materials tend to undergo surface recession. To avoid surface recession environmental barrier coating systems are required. However, due to differences in the elastic and thermal properties of the substrate and the environmental barrier coating, thermal residual stresses can be generated in the coated substrate. Depending on their magnitude and nature thermal residual stresses can have significant influence on the strength and fracture behavior of coated substrates. To determine the maximum residual stresses developed during deposition of the coatings, a finite element model (FEM) was developed. Using this model, the thermal residual stresses were predicted in silicon nitride substrates coated with three environmental coating systems namely barium strontium aluminum silicate (BSAS), rare earth mono silicate (REMS) and earth mono di-silicate (REDS). A parametric study was also conducted to determine the influence of coating layer thickness and material parameters on thermal residual stress. Results indicate that z-direction stresses in all three systems are small and negligible, but maximum in-plane stresses can be significant depending on the composition of the constituent layer and the distance from the substrate. The BSAS and REDS systems show much lower thermal residual stresses than REMS system. Parametric analysis indicates that in each system, the thermal residual stresses can be decreased with decreasing the modulus and thickness of the coating.

  11. Improving silicon probe performance through layer-by-layer coating

    OpenAIRE

    Coelho, Nuno Miguel Teixeira

    2015-01-01

    Fully comprehending brain function, as the scale of neural networks, will only be possi-ble with the development of tools by micro and nanofabrication. Regarding specifically silicon microelectrodes arrays, a significant improvement in long-term performance of these implants is essential. This project aims to create a silicon microelectrode coating that provides high-quality electrical recordings, while limiting the inflammatory response of chronic implants. To this purpose, a combined chi...

  12. Plasmon enhanced optical tweezers with gold-coated black silicon

    Science.gov (United States)

    Kotsifaki, D. G.; Kandyla, M.; Lagoudakis, P. G.

    2016-05-01

    Plasmonic optical tweezers are a ubiquitous tool for the precise manipulation of nanoparticles and biomolecules at low photon flux, while femtosecond-laser optical tweezers can probe the nonlinear optical properties of the trapped species with applications in biological diagnostics. In order to adopt plasmonic optical tweezers in real-world applications, it is essential to develop large-scale fabrication processes without compromising the trapping efficiency. Here, we develop a novel platform for continuous wave (CW) and femtosecond plasmonic optical tweezers, based on gold-coated black silicon. In contrast with traditional lithographic methods, the fabrication method relies on simple, single-step, maskless tabletop laser processing of silicon in water that facilitates scalability. Gold-coated black silicon supports repeatable trapping efficiencies comparable to the highest ones reported to date. From a more fundamental aspect, a plasmon-mediated efficiency enhancement is a resonant effect, and therefore, dependent on the wavelength of the trapping beam. Surprisingly, a wavelength characterization of plasmon-enhanced trapping efficiencies has evaded the literature. Here, we exploit the repeatability of the recorded trapping efficiency, offered by the gold-coated black silicon platform, and perform a wavelength-dependent characterization of the trapping process, revealing the resonant character of the trapping efficiency maxima. Gold-coated black silicon is a promising platform for large-scale parallel trapping applications that will broaden the range of optical manipulation in nanoengineering, biology, and the study of collective biophotonic effects.

  13. Plasmon enhanced optical tweezers with gold-coated black silicon.

    Science.gov (United States)

    Kotsifaki, D G; Kandyla, M; Lagoudakis, P G

    2016-05-19

    Plasmonic optical tweezers are a ubiquitous tool for the precise manipulation of nanoparticles and biomolecules at low photon flux, while femtosecond-laser optical tweezers can probe the nonlinear optical properties of the trapped species with applications in biological diagnostics. In order to adopt plasmonic optical tweezers in real-world applications, it is essential to develop large-scale fabrication processes without compromising the trapping efficiency. Here, we develop a novel platform for continuous wave (CW) and femtosecond plasmonic optical tweezers, based on gold-coated black silicon. In contrast with traditional lithographic methods, the fabrication method relies on simple, single-step, maskless tabletop laser processing of silicon in water that facilitates scalability. Gold-coated black silicon supports repeatable trapping efficiencies comparable to the highest ones reported to date. From a more fundamental aspect, a plasmon-mediated efficiency enhancement is a resonant effect, and therefore, dependent on the wavelength of the trapping beam. Surprisingly, a wavelength characterization of plasmon-enhanced trapping efficiencies has evaded the literature. Here, we exploit the repeatability of the recorded trapping efficiency, offered by the gold-coated black silicon platform, and perform a wavelength-dependent characterization of the trapping process, revealing the resonant character of the trapping efficiency maxima. Gold-coated black silicon is a promising platform for large-scale parallel trapping applications that will broaden the range of optical manipulation in nanoengineering, biology, and the study of collective biophotonic effects.

  14. DC and AC electroluminescence in silicon nanoparticles embedded in silicon-rich oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Sanchez, A; Aceves-Mijares, M [INAOE, Electronics Department, Apartado 51, Puebla, 72000 (Mexico); Barreto, J; DomInguez, C [Instituto de Microelectronica de Barcelona, IMB-CNM (CSIC), Barcelona (Spain); Peralvarez, M; Garrido, B [EME, Departament d' Electronica, Universitat de Barcelona, MartI i Franques 1, 08028 Barcelona (Spain); Luna-Lopez, J A, E-mail: amorales@inaoep.mx [CIDS-BUAP, Apartado 1651, Puebla, Pue, 72000 (Mexico)

    2010-02-26

    Electroluminescent properties of silicon-rich oxide (SRO) films were studied using metal oxide semiconductor-(MOS)-like devices. Thin SRO films with 4 at.% of silicon excess were deposited by low pressure chemical vapour deposition followed by a thermal annealing at 1100 deg. C. Intense continuous visible and infrared luminescence has been observed when devices are reversely and forwardly bias, respectively. After an electrical stress, the continuous electroluminescence (EL) is quenched but devices show strong field-effect EL with pulsed polarization. A model based on conductive paths-across the SRO film- has been proposed to explain the EL behaviour in these devices.

  15. Stronger multilayer acrylic dielectric elastomer actuators with silicone gel coatings

    Science.gov (United States)

    Lau, Gih-Keong; La, Thanh-Giang; Sheng-Wei Foong, Ervin; Shrestha, Milan

    2016-12-01

    Multilayer dielectric elastomer actuators (DEA) perform worst off than single-layer DEAs due to higher susceptibility to electro-thermal breakdown. This paper presents a hot-spot model to predict the electro-thermal breakdown field of DEAs and its dependence on thermal insulation. To inhibit the electrothermal breakdown, silicone gel coating was applied as barrier coating to multilayer acrylic DEA. The gel coating helps suppress the electro-thermally induced puncturing of DEA membrane at the hot spot. As a result, the gel-coated DEAs, in either a single layer or a multilayer stack, can produce 30% more isometric stress change as compared to those none-coated. These gel-coated acrylic DEAs show great potential to make stronger artificial muscles.

  16. Sprayed and Spin-Coated Multilayer Antireflection Coating Films for Nonvacuum Processed Crystalline Silicon Solar Cells

    OpenAIRE

    Abdullah Uzum; Masashi Kuriyama; Hiroyuki Kanda; Yutaka Kimura; Kenji Tanimoto; Hidehito Fukui; Taichiro Izumi; Tomitaro Harada; Seigo Ito

    2017-01-01

    Using the simple and cost-effective methods, spin-coated ZrO2-polymer composite/spray-deposited TiO2-compact multilayer antireflection coating film was introduced. With a single TiO2-compact film on the surface of a crystalline silicon wafer, 5.3% average reflectance (the reflectance average between the wavelengths of 300 nm and 1100 nm) was observed. Reflectance decreased further down to 3.3% after forming spin-coated ZrO2 on the spray-deposited TiO2-compact film. Silicon solar cells were fa...

  17. Preparation and characterization of polymer-derived amorphous silicon carbide with silicon-rich stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takashi, E-mail: mtakashi@jaist.ac.jp [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Iwasaka, Akira [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Takagishi, Hideyuki [Faculty of Symbiotic System Science, Fukushima University, 1 Kanayagawa, Fukushima-shi, Fukushima 960-1296 (Japan); Shimoda, Tatsuya [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2016-08-01

    Polydihydrosilane with pendant hexyl groups was synthesized to obtain silicon-rich amorphous silicon carbide (a-SiC) films via the solution route. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross-linkage. Therefore, the polymer provides sufficient purity for the fabrication of semiconducting a-SiC. Here, we investigated the correlation of Si/C stoichiometry between the polymer and the resultant a-SiC film. The structural, optical, and electrical properties of the films with various carbon contents were also explored. Experimental results suggested that the excess carbon that did not participate in Si−C configurations was decomposed and was evaporated during polymer-to-SiC conversion. Consequently, the upper limit of the carbon in resultant a-SiC film was < 50 at.%; namely, the polymer provided silicon-rich a-SiC, whereas the conventionally used polycarbosilane inevitably provides carbon-rich one. These features of this unusual polymer open up a frontier of polymer-derived SiC and solution-processed SiC electronics. - Highlights: • Polymeric precursor solution for silicon carbide (SiC) is synthesized. • Semiconducting amorphous SiC is prepared via solution route. • The excess carbon is decomposed during cross-linking resulting in Si-rich SiC films. • The grown SiC films contain substantial amount of hydrogen atoms as SiH{sub n}/CH{sub n} entities. • Presence of CH{sub n} entities induces dangling bonds, causing poor electrical properties.

  18. Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells.

    Science.gov (United States)

    Nogay, Gizem; Stuckelberger, Josua; Wyss, Philippe; Jeangros, Quentin; Allebé, Christophe; Niquille, Xavier; Debrot, Fabien; Despeisse, Matthieu; Haug, Franz-Josef; Löper, Philipp; Ballif, Christophe

    2016-12-28

    The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiCx(p)] layer and then annealed at 800-900 °C. Transmission electron microscopy reveals that the thin chemical oxide layer disappears upon thermal annealing up to 900 °C, leading to degraded surface passivation. We interpret this in terms of a chemical reaction between carbon atoms in the SiCx(p) layer and the adjacent chemical oxide layer. To prevent this reaction, an intrinsic silicon interlayer was introduced between the chemical oxide and the SiCx(p) layer. We show that this intrinsic silicon interlayer is beneficial for surface passivation. Optimized passivation is obtained with a 10-nm-thick intrinsic silicon interlayer, yielding an emitter saturation current density of 17 fA cm(-2) on p-type wafers, which translates into an implied open-circuit voltage of 708 mV. The potential of the developed contact at the rear side is further investigated by realizing a proof-of-concept hybrid solar cell, featuring a heterojunction front-side contact made of intrinsic amorphous silicon and phosphorus-doped amorphous silicon. Even though the presented cells are limited by front-side reflection and front-side parasitic absorption, the obtained cell with a Voc of 694.7 mV, a FF of 79.1%, and an efficiency of 20.44% demonstrates the potential of the p(+)/p-wafer full-side-passivated rear-side scheme shown here.

  19. Performance Evaluation of Refractory Composite Coatings in Potassium Rich Environment

    Directory of Open Access Journals (Sweden)

    Kristina BRINKIENĖ

    2016-09-01

    Full Text Available A laboratory scale method was used to study the performance of reinforced cement composites in potassium rich environment of biomass combustion. Buckwheat husk (BH was used as potential source of unexploited biomass product applicable as biomass derived fuel. In order to enhance the alkali effect on the properties of the investigated materials, the solution of potassium carbonate (K2CO3 was selected as potassium rich aggressive environment. Two reinforced cement composites as potential repair coatings for restoration of damaged refractory surfaces with different composition of aggregate were used in corrosion tests. Performance of refractory coatings was evaluated by analysing the microstructure of the treated composites as well as mechanical properties. Energy-dispersive X-ray spectroscopy (SEM/EDS and optical microscopy were used to study the microstructure in the corroded region of the refractory coatings. Long term studies in the solution of 1M K2CO3 for 56 months have demonstrated that composite with the additive of fluid cracking catalyst of oil refinery and petrochemical industries is more durable in the potassium rich environment.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.8348

  20. Plasmon enhanced optical tweezers with gold-coated black silicon

    CERN Document Server

    Kotsifaki, Domna G; Lagoudakis, Pavlos G

    2016-01-01

    Plasmonic optical tweezers are a ubiquitous tool for the precise manipulation of nanoparticles and biomolecules at low photon flux, while femtosecond-laser optical tweezers can probe the nonlinear optical properties of the trapped species with applications in biological diagnostics. In order to adopt plasmonic optical tweezers in real-world applications, it is essential to develop large-scale fabrication processes without compromising the trapping efficiency. Here, we develop a novel platform for continuous wave (CW) and femtosecond plasmonic optical tweezers, based on gold-coated black silicon. In contrast with traditional lithographic methods, the fabrication method relies on simple, single-step, maskless tabletop laser processing of silicon in water that facilitates scalability. Gold-coated black silicon supports repeatable trapping efficiencies comparable to the highest ones reported to date. From a more fundamental aspect, a plasmon-mediated efficiency enhancement is a resonant effect, and therefore, dep...

  1. Coating silicon carbide on carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yuqing; Wang Zuoming; Liu Min; Zhou Benlian; Shi Changxu (Inst. of Metal Research, Shenyang (China))

    1992-01-01

    The deposition of an SiC coating on the surface of carbon fibers improves their oxidation resistance and lowers their reactivity with metals at high temperature. Attention is presently given to the case of CVD SiC deposition with a view to the effects of coating thickness, deposition, and crystal structure. The presence of H(+) and other ions during CVD, as well as of free Si, is noted to decrease fiber strength. 10 refs.

  2. Silicon nitride coated silicon thin film on three dimensions current collector for lithium ion battery anode

    Science.gov (United States)

    Wu, Cheng-Yu; Chang, Chun-Chi; Duh, Jenq-Gong

    2016-09-01

    Silicon nitride coated silicon (N-Si) has been synthesized by two-step DC sputtering on Cu Micro-cone arrays (CMAs) at ambient temperature. The electrochemical properties of N-Si anodes with various thickness of nitride layer are investigated. From the potential window of 1.2 V-0.05 V, high rate charge-discharge and long cycle test have been executed to investigate the electrochemical performances of various N-Si coated Si-based lithium ion batteries anode materials. Higher specific capacity can be obtained after 200 cycles. The cycling stability is enhanced via thinner nitride layer coating as silicon nitride films are converted to Li3N with covered Si thin films. These N-Si anodes can be cycled under high rates up to 10 C due to low charge transfer resistance resulted from silicon nitride films. This indicates that the combination of silicon nitride and silicon can effectively endure high current and thus enhance the cycling stability. It is expected that N-Si is a potential candidate for batteries that can work effectively under high power.

  3. Photoluminescence and carrier transport mechanisms of silicon-rich silicon nitride light emitting device

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Wugang [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zeng, Xiangbin, E-mail: eexbzeng@mail.hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Yao, Wei [Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen 518000 (China); Wen, Xixing [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2015-10-01

    Highlights: • Amorphous silicon quantum dots (a-Si QDs) embedded in silicon nitride were fabricated using plasma-enhanced chemical vapor deposition (PECVD). • Two different excitation sources were used to investigate the PL mechanisms. • Light emitting diode (LED) with ITO/SiNx/p-Si/Al structure was fabricated and the carrier transport mechanisms were investigated. - Abstract: Silicon-rich silicon nitride (SRSN) films were prepared on p-type silicon substrates using plasma-enhanced chemical vapor deposition (PECVD). Small size (∼3 nm) amorphous silicon quantum dots (a-Si QDs) were obtained after 1100 °C annealing. Two different excitation sources, namely 325 nm and 532 nm lasers, were introduced to investigate the photoluminescence (PL) properties. The PL bands pumped by 325 nm laser at ∼2.90 eV and ∼1.80 eV were contributed to the radiative centers from N dangling bonds (DBs), while the dominant PL bands at 2.10 eV were ascribed to the instinct PL centers in the nitride matrix. However, PL emissions from band tail luminescence and quantum confined effect (QCE) in a-Si QDs were found under the excitation of 532 nm laser. Light emitting diode (LED) with ITO/SiNx/p-Si/Al structure was fabricated. Intensely red light emission was observed by naked eyes at room temperature under forward 20 V. Three different carrier transport mechanisms, namely Poole–Frenkel (P–F) tunneling, Fowler–Nordheim (F–N) tunneling and space charge limited current (SCLC), were found to fit different electric field regions. These results help to understand the PL mechanisms and to optimize the fabrication of a-Si QD LED.

  4. Silicon Field Emission Arrays Coated with CNx Thin Films

    Institute of Scientific and Technical Information of China (English)

    Chen Min-gan; Chen Ming-an; Li Jin-chai; Li Jin-chai; Liu Chuan-sheng; Liu Chuan-sheng; Ma You-peng; Ma You-peng; Lu Xian-feng; Lu Xian-feng; Ye Ming-sheng; Ye Ming-sheng

    2003-01-01

    Arrays of silicon micro-tips were made by etching the p-type (1 0 0) silicon wafers which had SiO2 masks with alkaline solution. The density of the micro-tips is 2 ×104 cm-2. The Scanning Electron Microscope (SEM) photos showed that the tips in these arrays are uniform and orderly.The CNx thin film, with the thickness of 1.27μm was deposited on the silicon micro-tip arrays by using the middle frequency magnetron sputtering technology. The SEM photos showed that the films on the tips are smoothly without particles. Keeping the sharpness of the tips will benefit the properties of field emission. The X-ray photoelectron spectrum (XPS) showed that carbon, nitrogen and oxygen are the three major elements in the surfaces of the films. The percents of them are C: 69.5 %, N: 12.6 % and O: 17.9 %. The silicon arrays coated with CNx thin films had shown a good field emission characterization. The emission current intensity reached 3.2 mA/cm2 at 32.8 V/μm, so it can be put into use. The result showed that the silicon arrays coated with CNx thin films are likely to be good field emission cathode.The preparation and the characterization of the samples were discussed in detail.

  5. Silicon Field Emission Arrays Coated with CNx Thin Films

    Institute of Scientific and Technical Information of China (English)

    ChertMing-an; LiJin-chai; LiuChuan-sheng; MaYou-peng; LuXlan-feng; YeMing-sheng

    2003-01-01

    Arrays of silicon micro-tips were made by etching the p-type (1 0 0) silicon wafers which had SiO2 masks with alkaline solution. The density of the micro-tips is 2 ×104 cm-2. The Scanning Electron Microscope (SEM) photos showed that the tips in these arrays are uniform and orderly.The CNx thin film, with the thickness of 1.27μm was deposited on the silicon micro-tip arrays by using the middle frequency magnetron sputtering technology. The SEM photos showed that the films on the tips are smoothly without particles. Keeping the sharpness of the tips will benefit the properties of field emission. The X-ray photoelectron spectrum (XPS) showed that carbon, nitrogen and oxygen are the three major elements in the surfaces of the films. The percents of them are C: 69.5 %, N: 12. 6 % and O: 17.9 %. The silicon arrays coated with CNx thin films had shown a good field emission characterization. The emission current intensity reached 3. 2 mA/cm2 at 32.8 V/μm, so it can be put into use. The result showed that the silicon arrays coated with CNx thin films are likely to be good field emission cathode.The preparation and the characterization of the samples were discussed in detail.

  6. Vibrational Spectroscopy of Chemical Species in Silicon and Silicon-Rich Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Kirill O. Bugaev

    2012-01-01

    Full Text Available Vibrational properties of hydrogenated silicon-rich nitride (SiN:H of various stoichiometry (0.6≤≤1.3 and hydrogenated amorphous silicon (a-Si:H films were studied using Raman spectroscopy and Fourier transform infrared spectroscopy. Furnace annealing during 5 hours in Ar ambient at 1130∘C and pulse laser annealing were applied to modify the structure of films. Surprisingly, after annealing with such high-thermal budget, according to the FTIR data, the nearly stoichiometric silicon nitride film contains hydrogen in the form of Si–H bonds. From analysis of the FTIR data of the Si–N bond vibrations, one can conclude that silicon nitride is partly crystallized. According to the Raman data a-Si:H films with hydrogen concentration 15% and lower contain mainly Si–H chemical species, and films with hydrogen concentration 30–35% contain mainly Si–H2 chemical species. Nanosecond pulse laser treatments lead to crystallization of the films and its dehydrogenization.

  7. Charge trapping and carrier transport mechanism in silicon-rich silicon oxynitride

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhenrui [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico)]. E-mail: yinaoep@yahoo.mx; Aceves, Mariano [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico); Carrillo, Jesus [CIDS, BUAP, Puebla, Pue. (Mexico); Lopez-Estopier, Rosa [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico)

    2006-12-05

    The charge-trapping and carrier transport properties of silicon-rich silicon oxynitride (SRO:N) were studied. The SRO:N films were deposited by low pressure chemical vapor deposition. Infrared (IR) and transmission electron microscopic (TEM) measurements were performed to characterize their structural properties. Capacitance versus voltage and current versus voltage measurements (I-V) were used to study the charge-trapping and carrier transport mechanism. IR and TEM measurements revealed the existence of Si nanodots in SRO:N films. I-V measurements revealed that there are two conduction regimes divided by a threshold voltage V {sub T}. When the applied voltage is smaller than V {sub T}, the current is dominated by the charge transfer between the SRO:N and substrate; and in this regime only dynamic charging/discharging of the SRO:N layer is observed. When the voltage is larger than V {sub T}, the current increases rapidly and is dominated by the Poole-Frenkel mechanism; and in this regime, large permanent trapped charge density is obtained. Nitrogen incorporation significantly reduced the silicon nanodots or defects near the SRO:N/Si interface. However, a significant increase of the density of silicon nanodot in the bulk of the SRO:N layer is obtained.

  8. Annealing and deposition effects of the chemical composition of silicon rich nitride

    DEFF Research Database (Denmark)

    Andersen, Karin Nordström; Svendsen, Winnie Edith; Stimpel-Lindner, T.;

    2005-01-01

    Silicon-rich nitride, deposited by LPCVD, is a low stress amorphous material with a high refractive index. After deposition the silicon-rich nitride thin film is annealed at temperatures above 1100 oC to break N-H bonds, which have absorption peaks in the wavelength band important for optical tel...

  9. Performance of multilayer coated silicon pore optics

    DEFF Research Database (Denmark)

    Ackermann, M. D.; Collon, M. J.; Cooper-Jensen, Carsten P.

    2010-01-01

    simultaneously requirements for effective area of 2.5 m2 at 1.25 keV, 0.65 m2 at 6 keV and 150 cm2 at 30 keV. The reflectivity of the bare mirror substrate materials does not allow these requirements to be met. As such the IXO baseline design contains a coating layout that varies as a function of mirror radius...

  10. Mullite Coating on Recrytallized Silicon Carbide and Its Cycling Oxidation Behavior

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Mullite coating on recrystallized silicon carbide was successfully prepared by the sol-gel route. The cycling oxidation of coated recrystallized silicon carbide was performed at 1500℃. For comparison, the oxidation of uncoated recrystallized silicon carbide was also carried out at the same condition. The results indicated that a layer of compact, adhesive and crack free mullite coating was found on the recrystallized silicon carbide. After oxidation, the new coatings exhibit adherence and crack resistance under thermal cycling between room temperature and 1500℃, therefore the oxidation resistance capability of silicon carbide was enhanced. With the increase of the dipping frequencies, namely, the increase of the thickness of mullite coating, the oxidation resistance of silicon carbide would be further improved. The formation mechanism of mullite coating was analyzed and discussed and the oxidation dynamics model of coatedmullite silicon carbide has been also proposed.

  11. Single and Double-Layer Antireflection Coatings on Silicon

    Science.gov (United States)

    Kavakli, Ýpek Gýrgýn; Kantarli, Kayhan

    2002-09-01

    In this study, the effect of single and double-layer thin film coatings on the reflectance spectrum of silicon surfaces has been investigated. Thin film coatings have been prepared by vacuum evaporation of the materials with suitable refractive index. Reflectance measurements in the visible and near infrared have shown that the coated samples acquire antireflection properties. Thickness and wavelength dependence of the antireflection properties of SiO, CeO2 and ZnS single-layer coatings with optical thickness of one quarter wavelength has been studied. In double-layer coatings, a thin film of SiO, CeO2 and ZnS with optical thickness of quarter wavelength were used as inner layer while a thin film of MgF2 with equal optical thickness was used as outer layer. It was shown that double-layer coatings can produce a significantly broader low reflectance region than does the single-layer coating. The results have been discussed by considering the zero reflectance conditions for the refractive index and the optical thickness of layers.

  12. Plasmonic and silicon spherical nanoparticle anti-reflective coatings

    OpenAIRE

    K. V. Baryshnikova; M. I. Petrov; Babicheva, V. E.; Belov, P. A.

    2015-01-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflection properties of all-dielectric and plasmonic nanoparticle coatings based on silver and crystalline silicon. Our results of numerical simulatio...

  13. Silver nanoparticles-coated glass frits for silicon solar cells

    Science.gov (United States)

    Li, Yingfen; Gan, Weiping; Li, Biyuan

    2016-04-01

    Silver nanoparticles-coated glass frit composite powders for silicon solar cells were prepared by electroless plating. Silver colloids were used as the activating agent of glass frits. The products were characterized by X-ray diffraction, scanning electron microscopy, and differential scanning calorimetry. The characterization results indicated that silver nanoparticles with the melting temperature of 838 °C were uniformly deposited on glass frit surface. The particle size of silver nanoparticles could be controlled by adjusting the [Ag(NH3)2]NO3 concentration. The as-prepared composite powders were applied in the front side metallization of silicon solar cells. Compared with those based on pure glass frits, the solar cells containing the composite powders had the denser silver electrodes and the better silver-silicon ohmic contacts. Furthermore, the photovoltaic performances of solar cells were improved after the electroless plating.

  14. Synthetic osteogenic extracellular matrix formed by coated silicon dioxide nanosprings

    Directory of Open Access Journals (Sweden)

    Hass Jamie L

    2012-01-01

    Full Text Available Abstract Background The design of biomimetic materials that parallel the morphology and biology of extracellular matrixes is key to the ability to grow functional tissues in vitro and to enhance the integration of biomaterial implants into existing tissues in vivo. Special attention has been put into mimicking the nanostructures of the extracellular matrix of bone, as there is a need to find biomaterials that can enhance the bonding between orthopedic devices and this tissue. Methods We have tested the ability of normal human osteoblasts to propagate and differentiate on silicon dioxide nanosprings, which can be easily grown on practically any surface. In addition, we tested different metals and metal alloys as coats for the nanosprings in tissue culture experiments with bone cells. Results Normal human osteoblasts grown on coated nanosprings exhibited an enhanced rate of propagation, differentiation into bone forming cells and mineralization. While osteoblasts did not attach effectively to bare nanowires grown on glass, these cells propagated successfully on nanosprings coated with titanium oxide and gold. We observed a 270 fold increase in the division rate of osteoblasts when grow on titanium/gold coated nanosprings. This effect was shown to be dependent on the nanosprings, as the coating by themselves did not alter the growth rate of osteoblast. We also observed that titanium/zinc/gold coated nanosprings increased the levels of osteoblast production of alkaline phosphatase seven folds. This result indicates that osteoblasts grown on this metal alloy coated nanosprings are differentiating to mature bone making cells. Consistent with this hypothesis, we showed that osteoblasts grown on the same metal alloy coated nanosprings have an enhanced ability to deposit calcium salt. Conclusion We have established that metal/metal alloy coated silicon dioxide nanosprings can be used as a biomimetic material paralleling the morphology and biology of

  15. Antifuse with a single silicon-rich silicon nitride insulating layer

    Energy Technology Data Exchange (ETDEWEB)

    Habermehl, Scott D.; Apodaca, Roger T.

    2013-01-22

    An antifuse is disclosed which has an electrically-insulating region sandwiched between two electrodes. The electrically-insulating region has a single layer of a non-hydrogenated silicon-rich (i.e. non-stoichiometric) silicon nitride SiN.sub.X with a nitrogen content X which is generally in the range of 0silicon. Arrays of antifuses can also be formed.

  16. Characterization of silicon carbide coatings on Zircaloy-4 substrates

    Science.gov (United States)

    Al-Olayyan, Yousif Abdullah

    The lifetime of light water reactor (LWR) fuels is limited by the corrosion and degradation of Zircaloy cladding in the high temperature and high pressure operating conditions. As the thickness of the oxide layer increases, stresses build up in the oxide layer due to density differences between the oxide and the zirconium metal which lead to degradation and spallation of the oxide layer. The main objective of this research is to form protective coatings on the Zircaloy clad to prevent or at least slow the oxidation which can allow higher burnup of the fuel resulting in major benefits in plant safety and economics. Silicon carbide was identified as a candidate protective coating to reduce the corrosion and degradation of Zircaloy cladding. Silicon carbide coatings were deposited on Zircaloy substrates using plasma-assisted chemical vapor deposition (PE-CVD) and were found to be amorphous as determined by X-ray analysis. Since the adhesion of the films to the substrate was the most important property of a coating, scratch tests were used to assess the adhesion. The effects of different parameters on the test results including residual stresses, plastic deformation and friction between the stylus and the surface are discussed. Critical loads, characterized by continuous delamination of the SiC coatings deposited on Zircaloy-4, occurred at 0.5--2.5 N. The experimental results indicated that all SiC coatings used in this project, without exception, showed an adhesive failure when tested by scratch and indentation tests. Plastic deformation of the substrate due to compressive stresses induced by the scratch stylus caused flaking of the films at the interface, which was attributed to the low interfacial toughness. The effects of film thickness and substrate surface treatment on the quality and adhesion of SiC coatings were studied in detail. Thick films (5mum) exhibited extensive cracking. The scratch tests indicated higher adhesion with intermediate substrate surface

  17. Rate equation modelling of erbium luminescence dynamics in erbium-doped silicon-rich-silicon-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Miraj, E-mail: m.shah@ee.ucl.ac.uk [Department of Electronic and Electrical Engineering, UCL, Torrington Place, London WC1E 7JE (United Kingdom); Wojdak, Maciej; Kenyon, Anthony J. [Department of Electronic and Electrical Engineering, UCL, Torrington Place, London WC1E 7JE (United Kingdom); Halsall, Matthew P.; Li, Hang; Crowe, Iain F. [Photon Science Institute and School of Electrical and Electronic Engineering, University of Manchester, Sackville St Building, Manchester M13 9PL (United Kingdom)

    2012-12-15

    Erbium doped silicon-rich silica offers broad band and very efficient excitation of erbium photoluminescence (PL) due to a sensitization effect attributed to silicon nanocrystals (Si-nc), which grow during thermal treatment. PL decay lifetime measurements of sensitised Er{sup 3+} ions are usually reported to be stretched or multi exponential, very different to those that are directly excited, which usually show a single exponential decay component. In this paper, we report on SiO{sub 2} thin films doped with Si-nc's and erbium. Time resolved PL measurements reveal two distinct 1.54 {mu}m Er decay components; a fast microsecond component, and a relatively long lifetime component (10 ms). We also study the structural properties of these samples through TEM measurements, and reveal the formation of Er clusters. We propose that these Er clusters are responsible for the fast {mu}s decay component, and we develop rate equation models that reproduce the experimental transient observations, and can explain some of the reported transient behaviour in previously published literature.

  18. Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide

    DEFF Research Database (Denmark)

    Liu, Xing; Pu, Minhao; Zhou, Binbin;

    2016-01-01

    We experimentally show octave-spanning supercontinuum generation in a nonstoichiometric silicon-rich nitride waveguide when pumped by femtosecond pulses from an erbium fiber laser. The pulse energy and bandwidth are comparable to results achieved in stoichiometric silicon nitride waveguides...... the pump in the telecom band....

  19. Carbon nanotube-coated silicone as a flexible and electrically conductive biomedical material

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Makoto, E-mail: matsuoka@den.hokudai.ac.jp [Department of Oral and Maxillofacial Surgery, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo 060-8586 (Japan); Japan Society for the Promotion of Science (Japan); Akasaka, Tsukasa [Department of Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo 060-8586 (Japan); Totsuka, Yasunori [Department of Oral and Maxillofacial Surgery, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo 060-8586 (Japan); Watari, Fumio [Department of Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo 060-8586 (Japan)

    2012-04-01

    Artificial cell scaffolds that support cell adhesion, growth, and organization need to be fabricated for various purposes. Recently, there have been increasing reports of cell patterning using electrical fields. We fabricated scaffolds consisting of silicone sheets coated with single-walled (SW) or multi-walled (MW) carbon nanotubes (CNTs) and evaluated their electrical properties and biocompatibility. We also performed cell alignment with dielectrophoresis using CNT-coated sheets as electrodes. Silicone coated with 10 {mu}g/cm{sup 2} SWCNTs exhibited the least sheet resistance (0.8 k{Omega}/sq); its conductivity was maintained even after 100 stretching cycles. CNT coating also improved cell adhesion and proliferation. When an electric field was applied to the cell suspension introduced on the CNT-coated scaffold, the cells became aligned in a pearl-chain pattern. These results indicate that CNT coating not only provides electro-conductivity but also promotes cell adhesion to the silicone scaffold; cells seeded on the scaffold can be organized using electricity. These findings demonstrate that CNT-coated silicone can be useful as a biocompatible scaffold. - Highlights: Black-Right-Pointing-Pointer We fabricated a CNT-coated silicone which has conductivity and biocompatibility. Black-Right-Pointing-Pointer The conductivity was maintained after 100 cycles of stretching. Black-Right-Pointing-Pointer CNT coatings enabled C2C12 cells adhere to the silicone surface. Black-Right-Pointing-Pointer Cells were aligned with dielectrophoresis between CNT-coated silicone surfaces.

  20. Pulsed Nd:YAG laser cladding of high silicon content coating on low silicon steel

    Institute of Scientific and Technical Information of China (English)

    Danyang Dong; Changsheng Liu; Bin Zhang; Jun Miao

    2007-01-01

    A pulsed Nd:YAG (yttrium aluminum garnet) laser-based technique was employed to clad low silicon steel with preplaced Si and Fe mixed powders for high Si content. The surface morphology, microstructural evolution, phase composition, and Si distribution,within the obtained cladding coatings, were characterized by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), with associated energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The microhardness was also measured along the depth direction of the specimens. A crack- and pore-free cladding coating through excellent metallurgical bonding with the substrate was successfully prepared on low silicon steel by means of optimized single-track and multi-track laser cladding. The phases of the coating are α-Fe, γ-Fe, and FeSi. The high microhardness of the lasercladding zone is considered as an increase in Si content and as the refined microstructure produced by the laser treatment. The Si contents of the cladding coatings were about 5.8wt% in the single-track cladding and 6.5wt% in the multi-track cladding, respectively.

  1. Silicon oxide permeation barrier coating of PET bottles and foils

    Science.gov (United States)

    Steves, Simon; Deilmann, Michael; Awakowicz, Peter

    2009-10-01

    Modern packaging materials such as polyethylene terephthalate (PET) have displaced established materials in many areas of food and beverage packaging. Plastic packing materials offer are various advantages concerning production and handling. PET bottles for instance are non-breakable and lightweight compared to glass and metal containers. However, PET offers poor barrier properties against gas permeation. Therefore, the shelf live of packaged food is reduced. Permeation of gases can be reduced by depositing transparent plasma polymerized silicon oxide (SiOx) barrier coatings. A microwave (2.45 GHz) driven low pressure plasma reactor is developed based on a modified Plasmaline antenna to treat PET foils or bottles. To increase the barrier properties of the coatings furthermore a RF substrate bias (13.56 MHz) is applied. The composition of the coatings is analyzed by means of Fourier transform infrared (FTIR) spectroscopy regarding carbon and hydrogen content. Influence of gas phase composition and substrate bias on chemical composition of the coatings is discussed. A strong relation between barrier properties and film composition is found: good oxygen barriers are observed as carbon content is reduced and films become quartz-like. Regarding oxygen permeation a barrier improvement factor (BIF) of 70 is achieved.

  2. Properties of N-rich Silicon Nitride Film Deposited by Plasma-Enhanced Atomic Layer Deposition

    Science.gov (United States)

    Jhang, Pei-Ci; Lu, Chi-Pin; Shieh, Jung-Yu; Yang, Ling-Wu; Yang, Tahone; Chen, Kuang-Chao; Lu, Chih-Yuan

    2017-07-01

    An N-rich silicon nitride film, with a lower refractive index (RI) than the stoichiometric silicon nitride (RI = 2.01), was deposited by alternating the exposure of dichlorosilane (DCS, SiH2Cl2) and that of ammonia (NH3) in a plasma-enhanced atomic layer deposition (PEALD) process. In this process, the plasma ammonia was easily decomposed to reactive radicals by RF power activating so that the N-rich silicon nitride was easily formed by excited ammonia radicals. The growth kinetics of N-rich silicon nitride were examined at various deposition temperatures ranging from 400 °C to 630 °C; the activation energy (Ea) decreased as the deposition temperature decreased below 550 °C. N-rich silicon nitride film with a wide range of values of refractive index (RI) (RI = 1.86-2.00) was obtained by regulating the deposition temperature. At the optimal deposition temperature, the effects of RF power, NH3 flow rate and NH3 flow time were on the characteristics of the N-rich silicon nitride film were evaluated. The results thus reveal that the properties of the N-rich silicon nitride film that was formed by under plasma-enhanced atomic layer deposition (PEALD) are dominated by deposition temperature. In charge trap flash (CTF) study, an N-rich silicon nitride film was applied to MAONOS device as a charge-trapping layer. The films exhibit excellent electron trapping ability and favor a fresh cell data retention performance as the deposition temperature decreased.

  3. Investigation of High Molar Ratio Potassium Solution Used in Zinc-Rich Coatings

    Institute of Scientific and Technical Information of China (English)

    LI Sheng; WU Hang; YAN Rui

    2004-01-01

    High molar ratio potassium silicate solution used in zinc-rich water-base coatings was prepared by adding the nanosize SiO2 to the low molar ratio potassium silicate solution, and its microstructure was investigated by SEM and IR.Furthermore, the zinc-rich coatings was prepared by adding the zinc powders to this type of solution, and the properties of the coatings were evaluated. The test results show that the high molar ratio potassium silicate solution is the bonder of zinc-rich inorganic coatings with excellent property.

  4. Determination of parameters for successful spray coating of silicon microneedle arrays.

    Science.gov (United States)

    McGrath, Marie G; Vrdoljak, Anto; O'Mahony, Conor; Oliveira, Jorge C; Moore, Anne C; Crean, Abina M

    2011-08-30

    Coated microneedle patches have demonstrated potential for effective, minimally invasive, drug and vaccine delivery. To facilitate cost-effective, industrial-scale production of coated microneedle patches, a continuous coating method which utilises conventional pharmaceutical processes is an attractive prospect. Here, the potential of spray-coating silicon microneedle patches using a conventional film-coating process was evaluated and the key process parameters which impact on coating coalescence and weight were identified by employing a fractional factorial design to coat flat silicon patches. Processing parameters analysed included concentration of coating material, liquid input rate, duration of spraying, atomisation air pressure, gun-to-surface distance and air cap setting. Two film-coating materials were investigated; hydroxypropylmethylcellulose (HPMC) and carboxymethylcellulose (CMC). HPMC readily formed a film-coat on silicon when suitable spray coating parameter settings were determined. CMC films required the inclusion of a surfactant (1%, w/w Tween 80) to facilitate coalescence of the sprayed droplets on the silicon surface. Spray coating parameters identified by experimental design, successfully coated 280μm silicon microneedle arrays, producing an intact film-coat, which follows the contours of the microneedle array without occlusion of the microneedle shape. This study demonstrates a novel method of coating microneedle arrays with biocompatible polymers using a conventional film-coating process. It is the first study to indicate the thickness and roughness of coatings applied to microneedle arrays. The study also highlights the importance of identifying suitable processing parameters when film coating substrates of micron dimensions. The ability of a fractional factorial design to identify these critical parameters is also demonstrated. The polymer coatings applied in this study can potentially be drug loaded for intradermal drug and vaccine delivery

  5. Enhanced photoluminescence of porous silicon nanoparticles coated by bioresorbable polymers

    Science.gov (United States)

    Gongalsky, Maxim B.; Kharin, Alexander Yu; Osminkina, Liubov A.; Timoshenko, Victor Yu; Jeong, Jinyoung; Lee, Han; Chung, Bong Hyun

    2012-08-01

    A significant enhancement of the photoluminescence (PL) efficiency is observed for aqueous suspensions of porous silicon nanoparticles (PSiNPs) coated by bioresorbable polymers, i.e., polylactic-co-glycolic acid (PLGA) and polyvinyl alcohol (PVA). PSiNPs with average size about 100 nm prepared by mechanical grinding of electrochemically etched porous silicon were dispersed in water to prepare the stable suspension. The inner hydrophobic PLGA layer prevents the PSiNPs from the dissolution in water, while the outer PVA layer makes the PSiNPs hydrophilic. The PL quantum yield of PLGA/PVA-coated PSiNPs was found to increase by three times for 2 weeks of the storage in water. The observed effect is explained by taking into account both suppression of the dissolution of PSiNPs in water and a process of the passivation of nonradiative defects in PSiNPs. The obtained results are interesting in view of the potential applications of PSiNPs in bioimaging.

  6. Sprayed and Spin-Coated Multilayer Antireflection Coating Films for Nonvacuum Processed Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdullah Uzum

    2017-01-01

    Full Text Available Using the simple and cost-effective methods, spin-coated ZrO2-polymer composite/spray-deposited TiO2-compact multilayer antireflection coating film was introduced. With a single TiO2-compact film on the surface of a crystalline silicon wafer, 5.3% average reflectance (the reflectance average between the wavelengths of 300 nm and 1100 nm was observed. Reflectance decreased further down to 3.3% after forming spin-coated ZrO2 on the spray-deposited TiO2-compact film. Silicon solar cells were fabricated using CZ-Si p-type wafers in three sets: (1 without antireflection coating (ARC layer, (2 with TiO2-compact ARC film, and (3 with ZrO2-polymer composite/TiO2-compact multilayer ARC film. Conversion efficiency of the cells improved by a factor of 0.8% (from 15.19% to 15.88% owing to the multilayer ARC. Jsc was improved further by 2 mA cm−2 (from 35.3 mA cm−2 to 37.2 mA cm−2 when compared with a single TiO2-compact ARC.

  7. Deep reactive ion etched anti-reflection coatings for sub-millimeter silicon optics.

    Science.gov (United States)

    Gallardo, Patricio A; Koopman, Brian J; Cothard, Nicholas F; Bruno, Sarah Marie M; Cortes-Medellin, German; Marchetti, Galen; Miller, Kevin H; Mockler, Brenna; Niemack, Michael D; Stacey, Gordon; Wollack, Edward J

    2017-04-01

    Refractive optical elements are widely used in millimeter and sub-millimeter (sub-mm) astronomical telescopes. High-resistivity silicon is an excellent material for dielectric lenses given its low loss tangent, high thermal conductivity, and high index of refraction. The high index of refraction of silicon causes a large Fresnel reflectance at the vacuum-silicon interface (up to 30%), which can be reduced with an anti-reflection (AR) coating. In this work, we report techniques for efficiently AR coating silicon at sub-mm wavelengths using deep reactive ion etching (DRIE) and bonding the coated silicon to another silicon optic. Silicon wafers of 100 mm diameter (1 mm thick) were coated and bonded using the silicon direct bonding technique at high temperature (1100°C). No glue is used in this process. Optical tests using a Fourier transform spectrometer show sub-percent reflections for a single-layer DRIE AR coating designed for use at 320 μm on a single wafer. Cryogenic (10 K) measurements of a bonded pair of AR-coated wafers also reached sub-percent reflections. A prototype two-layer DRIE AR coating to reduce reflections and increase bandwidth is presented, and plans for extending this approach are discussed.

  8. Sublimation behavior of silicon nitride /Si3N4/ coated silicon germanium /SiGe/ unicouples. [for Radioisotope Thermoelectric Generators

    Science.gov (United States)

    Stapfer, G.; Truscello, V. C.

    1975-01-01

    For the Multi-Hundred Watt (MHW) Radioisotope Thermoelectric Generator (RTG), the silicon germanium unicouples are coated with silicon nitride to minimize degradation mechanisms which are directly attributable to material sublimation effects. A program is under way to determine the effective vapor suppression of this coating as a function of temperature and gas environment. The results of weight loss experiments, using Si3N4 coated hot shoes (SiMo), operating over a temperature range from 900 C to 1200 C, are analyzed and discussed. These experiments were conducted both in high vacuum and at different pressures of carbon monoxide (CO) to determine its effect on the coating. Although the results show a favorable vapor suppression at all operating temperatures, the pressure of the CO and the thickness of the coating have a decided effect on the useful lifetime of the coating.

  9. Improved multicrystalline silicon ingot quality using single layer silicon beads coated with silicon nitride as seed layer

    Science.gov (United States)

    babu, G. Anandha; Takahashi, Isao; Matsushima, Satoru; Usami, Noritaka

    2016-05-01

    We propose to utilize single layer silicon beads (SLSB) coated with silicon nitride as cost-effective seed layer to grow high-quality multicrystalline silicon (mc-Si) ingot. The texture structure of silicon nitride provides a large number of nucleation sites for the fine grain formation at the bottom of the crucible. No special care is needed to prevent seed melting, which would lead to decrease of red zone owing to decrease of feedstock melting time. As we expected, mc-Si ingot seeded with SLSB was found to consist of small, different grain orientations, more uniform grain distribution, high percentage of random grain boundaries, less twin boundaries, and low density of dislocation clusters compared with conventional mc-Si ingot grown under identical growth conditions. These results show that the SLSB seeded mc-Si ingot has enhanced ingot quality. The correlation between grain boundary structure and defect structure as well as the reason responsible for dislocation clusters reduction in SLSB seeded mc-Si wafer are also discussed.

  10. Nanoscale Transformations in Metastable, Amorphous, Silicon-Rich Silica.

    Science.gov (United States)

    Mehonic, Adnan; Buckwell, Mark; Montesi, Luca; Munde, Manveer Singh; Gao, David; Hudziak, Stephen; Chater, Richard J; Fearn, Sarah; McPhail, David; Bosman, Michel; Shluger, Alexander L; Kenyon, Anthony J

    2016-09-01

    Electrically biasing thin films of amorphous, substoichiometric silicon oxide drives surprisingly large structural changes, apparent as density variations, oxygen movement, and ultimately, emission of superoxide ions. Results from this fundamental study are directly relevant to materials that are increasingly used in a range of technologies, and demonstrate a surprising level of field-driven local reordering of a random oxide network.

  11. Effect of Li3PO4 coating of layered lithium-rich oxide on electrochemical performance

    Science.gov (United States)

    Chen, Dongrui; Zheng, Feng; Li, Liu; Chen, Min; Zhong, Xiaoxin; Li, Weishan; Lu, Li

    2017-02-01

    A novel composite of layered lithium-rich oxide, Li-Rich@Li3PO4, coated with Li3PO4 is synthesized through polydopamine template method. Physical characterizations reveal that Li-Rich@Li3PO4 is composed of nanoparticles of 100-200 nm that are coated with a uniform Li3PO4 layer of about 5 nm in thickness. Galvanostatic charge/discharge tests demonstrate enhanced cycling stability and largely increased rate capability of the material after Li3PO4 coating.

  12. Preparation and Thermal Characterization of Annealed Gold Coated Porous Silicon

    Directory of Open Access Journals (Sweden)

    Afarin Bahrami

    2012-01-01

    Full Text Available Porous silicon (PSi layers were formed on a p-type Si wafer. Six samples were anodised electrically with a 30 mA/cm2 fixed current density for different etching times. The samples were coated with a 50–60 nm gold layer and annealed at different temperatures under Ar flow. The morphology of the layers, before and after annealing, formed by this method was investigated by scanning electron microscopy (SEM. Photoacoustic spectroscopy (PAS measurements were carried out to measure the thermal diffusivity (TD of the PSi and Au/PSi samples. For the Au/PSi samples, the thermal diffusivity was measured before and after annealing to study the effect of annealing. Also to study the aging effect, a comparison was made between freshly annealed samples and samples 30 days after annealing.

  13. High surface area silicon carbide-coated carbon aerogel

    Science.gov (United States)

    Worsley, Marcus A; Kuntz, Joshua D; Baumann, Theodore F; Satcher, Jr, Joe H

    2014-01-14

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicone carbide, improved the thermal stability of the carbon aerogel.

  14. Selective laser sintering of polymer-coated silicon carbide powders

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J.C.; Vail, N.K.; Barlow, J.W.; Beaman, J.J.; Bourell, D.L.; Marcus, H.L. [Univ. of Texas, Austin, TX (United States)

    1995-05-01

    Selective Laser Sintering (SLS) produces three-dimensional objects directly from a computer-aided design (CAD) solid model, without part-specific tooling, by repeatedly depositing thin layers of fusible powder and selective sintering each layer to the next with a rastered, modulated, CO{sub 2} laser beam. This technology, originally intended to produce parts and patterns from powdered waxes and thermoplastics, can be extended through use of thermoplastic-coated inorganic powder to producing green shapes which contain metal or ceramic powder bound together with the thermoplastic. These shapes can be subsequently processed into metal, ceramic, or composite metal/ceramic parts by various methods. Generally, the strength of the green shape critically depends on the layer to layer fusion that is achieved. A model of the SLS process is presented that correctly estimates the sintering depths in poly(methyl methacrylate) (PMMA) and coated silicon carbide (SiC) powders that result from operating parameters including laser power, beam scanning speed, beam diameter, scan spacing, and temperature. Green part densities and strengths are found to correlate with a combination of parameters, termed the energy density, that arise naturally from consideration of the energy input to the powder bed.

  15. Analysis of copper-rich precipitates in silicon: chemical state,gettering, and impact on multicrystalline silicon solar cellmaterial

    Energy Technology Data Exchange (ETDEWEB)

    Buonassisi, Tonio; Marcus, Matthew A.; Istratov, Andrei A.; Heuer, Matthias; Ciszek, Theodore F.; Lai, Barry; Cai, Zhonghou; Weber,Eicke R.

    2004-11-08

    In this study, synchrotron-based x-ray absorption microspectroscopy (mu-XAS) is applied to identifying the chemical states of copper-rich clusters within a variety of silicon materials, including as-grown cast multicrystalline silicon solar cell material with high oxygen concentration and other silicon materials with varying degrees of oxygen concentration and copper contamination pathways. In all samples, copper silicide (Cu3Si) is the only phase of copper identified. It is noted from thermodynamic considerations that unlike certain metal species, copper tends to form a silicide and not an oxidized compound because of the strong silicon-oxygen bonding energy; consequently the likelihood of encountering an oxidized copper particle in silicon is small, in agreement with experimental data. In light of these results, the effectiveness of aluminum gettering for the removal of copper from bulk silicon is quantified via x-ray fluorescence microscopy (mu-XRF),and a segregation coefficient is determined from experimental data to beat least (1-2)'103. Additionally, mu-XAS data directly demonstrates that the segregation mechanism of Cu in Al is the higher solubility of Cu in the liquid phase. In light of these results, possible limitations for the complete removal of Cu from bulk mc-Si are discussed.

  16. Microstructural study of oxidation of carbon-rich amorphous boron carbide coating

    Institute of Scientific and Technical Information of China (English)

    Bin ZENG; Zu-de FENG; Si-wei LI; Yong-sheng LIU

    2008-01-01

    Carbon-rich amorphous boron carbide (BxC) coatings were annealed at 400℃, 700℃, 1000℃ and 1200℃ for 2 h in air atmosphere. The microstructure and composition of the as-deposited and annealed coat-ings were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-Raman spectro-scopy and energy dispersive X-ray spectroscopy (EDS). All of the post-anneal characterizations demonstrated the ability of carbon-rich BxC coatings to protect the graphite substrate against oxidation. Different oxidation modes of the coatings were found at low temperature (400℃), moderate temperature (700℃) and high temper-ature (1000℃ and 1200℃). Finally, the feasibility of the application of carbon-rich BxC instead of pyrolytic car-bon (PyC) as a fiber/matrix interlayer in ceramics-matrix composites (CMCs) is discussed here.

  17. Influence of surface roughness on performance of zinc-rich paint coatings

    Institute of Scientific and Technical Information of China (English)

    谢德明; 王建明; 胡吉明; 张鉴清

    2002-01-01

    The influence of surface roughness on the performance of zinc-rich paint(ZRP) coatings was studied. Electrochemical impedance spectroscopy(EIS) measurements were used to assess the corrosion prevention performance of the ZRP coatings. Furthermore, the EIS data of the steel-ZRP-sea water system were interpreted according to equivalent circuit models and the corresponding parameters were derived to assess the coating deterioration with time. The results show that the rougher surface favors better protection effect of the ZRP coatings. The protection potential of ZRP coatings for the standards and codes of practice is -0.78V(vs SCE).

  18. Deep Reactive Ion Etched Anti-Reflection Coatings for Sub-millimeter Silicon Optics

    CERN Document Server

    Gallardo, Patricio A; Cothard, Nicholas; Bruno, Sarah Marie M; Cortes-Medellin, German; Marchetti, Galen; Miller, Kevin H; Mockler, Brenna; Niemack, Michael D; Stacey, Gordon; Wollack, Edward J

    2016-01-01

    Refractive optical elements are widely used in millimeter and sub-millimeter astronomical telescopes. High resistivity silicon is an excellent material for dielectric lenses given its low loss-tangent, high thermal conductivity and high index of refraction. The high index of refraction of silicon causes a large Fresnel reflectance at the vacuum-silicon interface (up to 30%), which can be reduced with an anti-reflection (AR) coating. In this work we report techniques for efficiently AR coating silicon at sub-millimeter wavelengths using Deep Reactive Ion Etching (DRIE) and bonding the coated silicon to another silicon optic. Silicon wafers of 100 mm diameter (1 mm thick) were coated and bonded using the Silicon Direct Bonding technique at high temperature (1100 C). No glue is used in this process. Optical tests using a Fourier Transform Spectrometer (FTS) show sub-percent reflections for a single-layer DRIE AR coating designed for use at 320 microns on a single wafer. Cryogenic (10 K) measurements of a bonded ...

  19. Studies on Mechanical Behaviour of Aluminium/Nickel Coated Silicon Carbide Reinforced Functionally Graded Composite

    Directory of Open Access Journals (Sweden)

    A. Mohandas

    2017-06-01

    Full Text Available The aim of the work is to fabricate functionally graded aluminium (Al-Si6Cu/ nickel coated SiC metal matrix composite using centrifugal casting route. SiC particles (53-80 µm were coated with nickel using electroless coating technique to enhance the wettability with aluminium matrix. Several attempts were made to coat nickel on SiC by varying the process temperature (65 °C, 75 °C, and 85 °C to obtain a uniform coating. Silicon particles coated with nickel were characterised using EDS enabled Field Emission Scanning Electron Microscope and it was found that the maximum nickel coating on SiC occurred at a process temperature of 75°C. This nickel coated SiC particles were used as the reinforcement for the manufacture of functionally graded metal matrix composite and a cast specimen of dimensions 150×90×15 mm was obtained. To ensure the graded properties in the fabricated composites, microstructure (at a distance of 1, 7 and 14 mm and hardness (at a distance of 1, 3, 7, 10 and 14 mm from outer periphery taken in the radial direction was analysed using Zeiss Axiovert metallurgical microscope and Vickers micro hardness tester respectively. The microstructure reveals presence of more SiC particles at the outer periphery compared to inner periphery and the hardness test shows that the hardness also decreased from outer periphery (90 HV to inner periphery (78 HV.Tensile strength of specimen from outer zone (1-7mm and inner zone (8-14 mm of casting was also tested and found out a value of 153.3 Mpa and 123.3 Mpa for the outer zone and inner zone respectively. An important observation made was that the outer periphery of casting was particle rich and the inner periphery was particle deficient because of centrifugal force and variation in density between aluminium matrix and reinforcement. Functionally graded Al/SiC metal matrix composite could be extensively used in automotive industry especially in the manufacture of liners and brake drums.

  20. Anode properties of silicon-rich amorphous silicon suboxide films in all-solid-state lithium batteries

    Science.gov (United States)

    Miyazaki, Reona; Ohta, Narumi; Ohnishi, Tsuyoshi; Takada, Kazunori

    2016-10-01

    This paper reports the effects of introducing oxygen into amorphous silicon films on their anode properties in all-solid-state lithium batteries. Although poor cycling performance is a critical issue in silicon anodes, it has been effectively improved by introducing even a small amount of oxygen, that is, even in Si-rich amorphous silicon suboxide (a-SiOx) films. Because of the small amount of oxygen in the films, high cycling performance has been achieved without lowering the capacity and power density: an a-Si film delivers discharge capacity of 2500 mAh g-1 under high discharge current density of 10 mA cm-2 (35 C). These results demonstrate that a-SiOx is a promising candidate for high-capacity anode materials in solid-state batteries.

  1. Silicone coating systems to improve corrosion protection of steel; Silikonbeschichtungssysteme zur Verbesserung des Korrosionsschutzes von Stahl

    Energy Technology Data Exchange (ETDEWEB)

    Kucharczyk, P.; Fachinger, J.; Odoj, R. [Forschungszentrum Juelich GmbH (Germany); Boehnert, R. [Fachhochschule Koeln (Germany)

    2006-06-15

    Due to German policy an interim storage of radioactive waste during additional 30 years is needed. This requires a high standard of storage containers especially in terms of corrosion resistance. Silicon elastomers (polysiloxanes) have favourable physical and chemical properties and seem to be appropriate for either outer or inner coating of storage containers. In this paper corrosion protection of different silicon coating systems has been investigated. The addition-curing polysiloxane RT622 (Wacker Chemie) was used for experiments. This is a low-viscosity material that could be modified by corrosion protecting pigments like zinc powder and micaceous iron ore. The pigment coatings assured better corrosion protection than unmodified silicon covering. Furthermore, the zinc powder caused the most notable improvement of corrosion protection. The best coating system consisted of a zinc paint and a polysiloxane coating. (orig.)

  2. Effect of silicon carbide ceramic coating process on the mirror surface quality

    Science.gov (United States)

    Wang, Peipei; Wang, Li; Wang, Gang; Bai, Yunli; Wang, Peng; Xiao, Zhenghang

    2016-10-01

    Silicon carbide, as a new reflector material, its excellent physical and chemical properties has been widely recognized by the industry. In order to make SiC mirror better used in space optical system, we used digital coating equipment during its coating process. By using ion-assisted electron evaporation method, we got a complete metal reflective film system on the surface of finely polished silicon carbide mirror. After automated coating process, by adjusting the coating parameters during the process, the surface roughness of silicon carbide improved from 7.8 nm to 5.1 nm, and the average optical reflectance of the surface reached 95% from visible to near-infrared. The metal reflective film system kept well after annealing and firmness test. As a result, the work of this paper will provide an important reference for high-precision coating process on large diameter SiC mirror.

  3. Photoluminescence and Electroluminescence Studies on Tb-Doped Silicon Rich Oxide Materials and Devices

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Photoluminescence (PL) characteristics of Tb-doped silicon rich oxide (SRO) films prepared by DC-sputtering and post-annealing processes were studied. The silicon richness of the SRO film could be controlled by varying the sputtering power and oxygen concentration in the sputtering chamber. PL emission from the as-deposited sample was found to be composed of Tb3+ intra 4f transition-related emission and the silicon nano particle-related broad bandwidth emission. Thermal annealing could significantly improve the material properties as well as the PL signals. PL properties depended strongly upon the annealing scheme and silicon richness. Annealing at high temperatures (900~1050 ℃) enhanced Tb-related emission and suppressed the silicon nano particle-related emission. For samples with different silicon richness, annealing at 950 ℃ was found to produce higher PL signals than at other temperatures. It was attributed more to lifetime quenching than to concentration quenching. Electroluminescent (EL) devices with a capacitor structure were fabricated, the optimized process condition for the EL device was found to be different from that of PL emission. Among the annealing schemes that were used, wet oxidation was found to improve device performance the most, whereas, dry oxidation was found to improve material property the most. Wet oxidation allowed the breakdown electrical field to increase significantly and to reach above 10 mV·cm-1. The EL spectra showed a typical Tb3+ emission, agreeing well with the PL spectra. The I-V measurements indicated that for 100 nm thick film, the Fowler-Nordheim tunneling started at an electrical field of around 6 mV·cm-1 and the light emission became detectable at a current density of around 10-4 A·cm-2 and higher. Strong electroluminescence light emission was detected when the electrical field was close to 10 mV·cm-1.

  4. Temporal and spatial variation in the fouling of silicone coatings in Pearl Harbor, Hawaii.

    Science.gov (United States)

    Holm, E R; Nedved, B T; Phillips, N; Deangelis, K L; Hadfield, M G; Smith, C M

    2000-01-01

    An antifouling or foul-release coating cannot be globally effective if it does not perform well in a range of environmental conditions, against a diversity of fouling organisms. From 1996 to 1998, the field test sites participating in the United States Navy's Office of Naval Research 6.2 Biofouling program examined global variation in the performance of 3 silicone foul-release coatings, viz. GE RTV11, Dow Corning RTV 3140, and Intersleek (International Coatings Ltd), together with a control anticorrosive coating (Ameron Protective Coatings F-150 series). At the University of Hawaii's test site in Pearl Harbor, significant differences were observed among the coatings in the rate of accumulation of fouling. The control coating failed rapidly; after 180-220 d immersion a community dominated by molluscs and sponges developed that persisted for the remainder of the experiment. Fouling of the GE and Dow Corning silicone coatings was slower, but eventually reached a similar community structure and coverage as the control coatings. The Intersleek coating remained lightly fouled throughout the experiment. Spatial variation in the structure of the community fouling the coatings was observed, but not in the extent of fouling. The rate of accumulation of fouling reflected differences among the coatings in adhesion of the tubeworm Hydroides elegans. The surface properties of these coatings may have affected the rate of fouling and the structure of the fouling community through their influence on larval settlement and subsequent interactions with other residents, predators, and the physical environment.

  5. Dross formation mechanism and development of wear resistant scraper in aluminum-silicon-zinc coating bath

    Science.gov (United States)

    Varadarajan, Ashok

    Steel sheet manufacturers across the globe, face a huge loss of production due to the molten metal corrosion of the pot hardware in continuous galvanizing lines. The development of steel sheet with corrosion resistant for more than 30 years using a high aluminum content zinc coating has made an impact in the construction industry. High aluminum content bath (55 wt%) causes severe corrosion of the pot hardware and causes huge repair and replacement cost with frequent stoppages. One of the main reasons for stoppages is the severe dross formation over the submerged hardware (sink roll), which results in poor coating layer over the steel sheet. Complete understanding of the mechanism of the dross formation over the submerged hardware has not yet been completely achieved. In order to establish the dross formation mechanism, an array of tests was performed. Initial inhibition of Al attack by the silicon rich layer and further formation of Fe2Al 5 layer hindering the diffusion of the Al into the substrate were observed. Also, the effect of the hydrodynamic motion of the bathe in the dross formation mechanism was established. A series of tests for efficient removal of the dross formed over the sink roll using high hardness, corrosion resistant materials were conducted at 600°C. After these tests, an efficient scraping process with a potential for energy and cost savings was developed with a better scraper material, resulting in a reduction of 75% in line stoppages.

  6. Low-Temperature Silicon-to-Silicon Anodic Bonding Using Sodium-Rich Glass for MEMS Applications

    Science.gov (United States)

    Tiwari, Ruchi; Chandra, Sudhir

    2014-02-01

    In the present work, silicon-to-silicon anodic bonding has been accomplished using an intermediate sodium-rich glass layer deposited by a radiofrequency magnetron sputtering process. The bonding was carried out at low direct-current voltage of about 80 V at 365°C. The alkali ion (sodium) concentration in the deposited film, the surface roughness of the film, and the flatness of the silicon wafers were studied in detail and closely monitored to improve the bond strength of the bonded silicon wafers. The effect of chemical mechanical polishing (CMP) on the surface roughness of the deposited film was also investigated. The average roughness of the deposited film was found to be ~6 Å, being reduced to 2 Å after CMP. It was observed that the concentration of sodium ions in the deposited film varied significantly with the sputtering parameters. Scanning electron microscopy was used to obtain cross-sectional images of the bonded pair. The bonding energy of the bonded wafer pair was measured using the crack-opening method. The bonding energy was found to vary from 0.3 J/m2 to 2.1 J/m2 for different bonding conditions. To demonstrate the application of the process developed, a sealed cavity was created using the silicon-to-silicon anodic bonding technique, which can be used for fabrication of devices such as capacitive pressure sensors and Fabry- Perot-based pressure sensors. Also, a matrix of microwells was fabricated using this technique, which can be used in various biomicroelectromechanical system applications.

  7. Dip-coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    Science.gov (United States)

    Zook, J. D.; Heaps, J. D.; Maciolek, R. B.; Koepke, B. G.; Gutter, C. D.; Schuldt, S. B.

    1977-01-01

    The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. The past quarter demonstrated significant progress in several areas. Seeded growth of silicon-on-ceramic (SOC) with an EFG ribbon seed was demonstrated. Different types of mullite were successfully coated with silicon. A new method of deriving minority carrier diffusion length, L sub n from spectral response measurements was evaluated. ECOMOD cost projections were found to be in good agreement with the interim SAMIS method proposed by JPL. On the less positive side, there was a decrease in cell performance which we believe to be due to an unidentified source of impurities.

  8. FUNCTIONALLY GRADED ALUMINA/MULLITE COATINGS FOR PROTECTION OF SILICON CARBIDE CERAMIC COMPONENTS FROM CORROSION

    Energy Technology Data Exchange (ETDEWEB)

    Prof. Stratis V. Sotirchos

    2001-02-01

    The main objective of this research project was the formulation of processes that can be used to prepare compositionally graded alumina/mullite coatings for protection from corrosion of silicon carbide components (monolithic or composite) used or proposed to be used in coal utilization systems (e.g., combustion chamber liners, heat exchanger tubes, particulate removal filters, and turbine components) and other energy-related applications. Since alumina has excellent resistance to corrosion but coefficient than silicon carbide, the key idea of this project has been to develop graded coatings with composition varying smoothly along their thickness between an inner (base) layer of mullite in contact with the silicon carbide component and an outer layer of pure alumina, which would function as the actual protective coating of the component. (Mullite presents very good adhesion towards silicon carbide and has thermal expansion coefficient very close to that of the latter.)

  9. Method of Stabilizing the Surface Energy of Fabrics Coated with Silicone

    Institute of Scientific and Technical Information of China (English)

    Di Jianfeng(狄剑峰); Perwueiz Anne; Gueguen Virginie; Lam Thanh My

    2001-01-01

    Silicone coatings have been used in this study. The method adopted was the liquid drop analysis on the coated fabrics. The contact angle between a liquid drop and the fabric surface was measured with two liquids continuously and recorded by a computer. The surface energy was calculated by means of Owens method.Kinetic measurement was adopted. The contact angle of liquids on the fabric coated silicone decreased with time was found. A compound solution DX has been found, so that the contact angle of the liquids on the fabric washed with DX becomes constant, and the surface energy of the fabric can be reduced to below 15 mJ/m2.

  10. Silicon-on-ceramic coating process. Silicon sheet growth development for the Large-Area Silicon Sheet and Cell Development Tasks of the Low-Cost Silicon Solar Array Project. Quarterly report No. 8, December 28, 1977--March 28, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, P.W. Zook, J.D.; Heaps, J D; Maclolek, R B; Koepke, B; Butter, C D; Schult, S B

    1978-04-20

    A research program to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating inexpensive ceramic substrates with a thin layer of polycrystalline silicon is described. The coating methods to be developed are directed toward a minimum-cost process for producing solar cells with a terrestrial conversion efficiency of 12 percent or greater. By applying a graphite coating to one face of a ceramic substrate, molten silicon can be caused to wet only that graphite-coated face and produce uniform thin layers of large-grain polycrystalline silicon; thus, only a minimal quantity of silicon is consumed. A dip-coating method for putting silicon on ceramic (SOC) has been shown to produce solar-cell-quality sheet silicon. This method and a continuous coating process also being investigated have excellent scale-up potential which offers an outstanding cost-effective way to manufacture large-area solar cells. A variety of ceramic materials have been dip-coated with silicon. The investigation has shown that mullite substrates containing an excess of SiO/sub 2/ best match the thermal expansion coefficient of silicon and hence produce the best SOC layers. With such substrates, smooth and uniform silicon layers 25 cm/sup 2/ in area have been achieved with single-crystal grains as large as 4 mm in width and several cm in length. Solar cells with areas from 1 to 10 cm/sup 2/ have been fabricated from material withas-grown surface. Recently, an antireflection (AR) coating has been applied to SOC cells. Conversion efficiencies greater than 9% have been achieved without optimizing series resistance characteristics. Such cells typically have open-circuit voltages and short-circuit current densities of 0.51 V and 20 mA/cm/sup 2/, respectively.

  11. Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide

    CERN Document Server

    Liu, Xing; Zhou, Binbin; Krückel, Clemens J; Fülöp, Attila; Torres-Company, Victor; Bache, Morten

    2016-01-01

    We experimentally show octave-spanning supercontinuum generation in a non-stoichiometric silicon-rich nitride waveguide when pumped by femtosecond pulses from an erbium fiber laser. The pulse energy and bandwidth are comparable to results achieved in stoichiometric silicon nitride waveguides, but our material platform is simpler to manufacture. We also observe wave-breaking supercontinuum generation by using orthogonal pumping in the same waveguide. Additional analysis reveals that the waveguide height is a powerful tuning parameter for generating mid-infrared dispersive waves while keeping the pump in the telecom band.

  12. Dip coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    Science.gov (United States)

    Heaps, J. D.; Maciolek, R. B.; Harrison, W. B.; Wolner, H. A.

    1975-01-01

    The research program to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by dip-coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon is reported. The initial effort concentrated on the design and construction of the experimental dip-coating facility. The design was completed and its experimental features are discussed. Current status of the program is reported, including progress toward solar cell junction diffusion and miscellaneous ceramic substrate procurement.

  13. Role of silicon excess in Er-doped silicon-rich nitride light emitting devices at 1.54 μm

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez, J. M., E-mail: jmramirez@el.ub.edu; Berencén, Y.; Garrido, B. [MIND-IN2UB, Department Electrònica, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028 (Spain); Cueff, S. [Institut des Nanotechnologies de Lyon, École Centrale de Lyon, Écully 69134 (France); Labbé, C. [Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), UMR 6252 CNRS/CEA/Ensicaen/UCBN, Caen 14050 (France)

    2014-08-28

    Erbium-doped silicon-rich nitride electroluminescent thin-films emitting at 1.54 μm have been fabricated and integrated within a metal-oxide-semiconductor structure. By gradually varying the stoichiometry of the silicon nitride, we uncover the role of silicon excess on the optoelectronic properties of devices. While the electrical transport is mainly enabled in all cases by Poole-Frenkel conduction, power efficiency and conductivity are strongly altered by the silicon excess content. Specifically, the increase in silicon excess remarkably enhances the conductivity and decreases the charge trapping; however, it also reduces the power efficiency. The main excitation mechanism of Er{sup 3+} ions embedded in silicon-rich nitrides is discussed. The optimum Si excess that balances power efficiency, conductivity, and charge trapping density is found to be close to 16%.

  14. Incorporation of Nicotine into Silicone Coatings for Marine Applications

    Science.gov (United States)

    Jaramillo, Sandy Tuyet

    PDMS-based marine coatings presently used are limited by their inability to mitigate microfouling which limits their application to high speed vessels. PDMS coatings are favored when viable, due to their foul release properties of macrofouling organisms. Natural products have been investigated for antifouling properties for potential use in these marine antifouling coatings but few have incorporated natural products into coatings or coating systems. The purpose of the research was to establish the corrosion inhibiting properties of nicotine and to incorporate nicotine, a biodegradable and readily available natural product, into a PDMS coating to demonstrate the use of a natural product in a coating for marine applications. The corrosion inhibiting properties of nicotine was examined using potentiodynamic polarization scans, material characterization techniques such as scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction, quartz crystal microbalance and electrochemical impedance spectroscopy. Nicotine was determined to be an anodic corrosion inhibitor for mild steel immersed in simulated seawater with the ability to precipitate a protective calcium carbonate film. Electrochemical impedance spectroscopy was used to evaluate the performance of the developed nicotine incorporated coatings on mild steel immersed in simulated seawater over 21 days of immersion. The coatings with 2 wt.% of nicotine incorporated in the coating with a ratio of 1:30 of additional platinum catalyst to nicotine exhibited the best performance for intact coatings. This coating had the most favorable balance of the amount of nicotine and platinum catalyst of all the coatings evaluated. Overall, all nicotine incorporated coatings had a performance improvement when compared to the control PDMS coating. Of the nicotine incorporated coatings that were tested with an artificial pin-hole defect, the 2PDMS coating also exhibited the best performance with significant

  15. Assessment of potential toxicological aspects of dietary exposure to silicon-rich spirulina in rats.

    Science.gov (United States)

    Vidé, Joris; Romain, Cindy; Feillet-Coudray, Christine; Bonafos, Béatrice; Cristol, Jean Paul; Fouret, Gilles; Rouanet, Jean-Max; Gaillet, Sylvie

    2015-06-01

    Silicon has beneficial effects especially on bones and skin and is important in cardiovascular pathophysiology. Furthermore, in spontaneously hypertensive rats, it reduces hypertension and increases antihypertensive and antiatherogenic gene expressions in the aorta. Thus, incorporating silicon into spirulina could be a way to produce a bioavailable food supplement. The potential toxic effects of silicon-rich spirulina (SES) through haematological and biochemical parameters and inflammatory and oxidative status were evaluated in rats' blood and liver tissue. The study consisted in a 90-day experiment on female and male rats supplemented with three doses (28.5, 57 and 285 mg/kg BW/day) of SES. No mortality, abnormal clinical signs, behavioural changes or macroscopic findings were observed whatever the groups. Haematological parameters were not modified in SES treated-groups. No marked change was recorded in biochemical parameters The liver endogenous antioxidant enzymes (SOD, GPx, catalase) activities were not modified whatever the gender and the dose, just as markers of oxidative stress (O2°(-), TBARS, thiols) and inflammation such as IL-6 and TNF-alpha. Our findings indicate that dietary supplementation of silicon-rich spirulina on rats has no harmful side nor toxic effects and could be beneficial especially in the case of suspicion or installation of pathologies due to oxidative stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Novel Silicone-Coated 125I Seeds for the Treatment of Extrahepatic Cholangiocarcinoma.

    Science.gov (United States)

    Lin, Lizhou; Guo, Lili; Zhang, Weixing; Cai, Xiaobo; Chen, Dafan; Wan, Xinjian

    2016-01-01

    125I seeds coated with titanium are considered a safe and effective interstitial brachytherapy for tumors, while the cost of 125I seeds is a major problem for the patients implanting lots of seeds. The aim of this paper was to develop a novel silicone coating for 125I seeds with a lower cost. In order to show the radionuclide utilization ratio, the silicone was coated onto the seeds using the electro-spinning method and the radioactivity was evaluated, then the anti-tumor efficacy of silicone 125I seeds was compared with titanium 125I seeds. The seeds were divided into four groups: A (control), B (pure silicone), C (silicone 125I), D (titanium 125I) at 2 Gy or 4 Gy. Their anti-tumour activity and mechanism were assessed in vitro and in vivo using a human extrahepatic cholangiocarcinoma cell line FRH-0201 and tumor-bearing BALB/c nude mice. The silicone 125I seeds showed higher radioactivity; the rate of cell apoptosis in vitro and the histopathology in vivo demonstrated that the silicone 125I seeds shared similar anti-tumor efficacy with the titanium 125I seeds for the treatment of extrahepatic cholangiocarcinoma, while they have a much lower cost.

  17. Floating substrate luminescence from silicon rich oxide metal-oxide-semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Sánchez, A., E-mail: alfredo.morales@cimav.edu.mx [Centro de Investigación en Materiales Avanzados S. C., Unidad Monterrey-PIIT, 66600 Apodaca, Nuevo León (Mexico); Domínguez, C. [Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC). 08193 Barcelona (Spain); Barreto, J. [Nanoscale Physics Research Laboratory, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Aceves-Mijares, M. [INAOE, Electronics Department, Apartado 51, 72000 Puebla (Mexico); Licea-Jiménez, L. [Centro de Investigación en Materiales Avanzados S. C., Unidad Monterrey-PIIT, 66600 Apodaca, Nuevo León (Mexico); Luna-López, J.A.; Carrillo, J. [CIDS-ICUAP. Benemérita Universidad Autónoma de Puebla. 72570 Puebla (Mexico)

    2013-03-01

    The electro-optical properties of metal-oxide-semiconductor devices with embedded Si nanoparticles in silicon-rich (4 at.%) oxide films have been studied. Devices show intense visible continuous luminescence not only in the regular metal-oxide-semiconductor configuration, but when biased via surface electrodes (floating substrate) separated 10 μm. Electroluminescence manifests as extremely bright randomly scattered discrete spots on the gate area or the periphery of the devices depending on the bias direction. The mechanism responsible for the surface-electroluminescence has been related to the recombination of electron–hole pairs injected through enhanced current paths within the silicon-rich oxide film. - Highlights: ► Silicon rich oxide (SRO) based metal-oxide-semiconductor like luminescent devices. ► Electroluminescence (EL) in floating-substrate, horizontal electrodes configuration. ► EL is observed as multiple shining spots with surface electrodes. ► Preferential current paths established in the SRO between several electrodes.

  18. Effect of the Nd content on the structural and photoluminescence properties of silicon-rich silicon dioxide thin films

    Directory of Open Access Journals (Sweden)

    Debieu Olivier

    2011-01-01

    Full Text Available Abstract In this article, the microstructure and photoluminescence (PL properties of Nd-doped silicon-rich silicon oxide (SRSO are reported as a function of the annealing temperature and the Nd concentration. The thin films, which were grown on Si substrates by reactive magnetron co-sputtering, contain the same Si excess as determined by Rutherford backscattering spectrometry. Fourier transform infrared (FTIR spectra show that a phase separation occurs during the annealing because of the condensation of the Si excess resulting in the formation of silicon nanoparticles (Si-np as detected by high-resolution transmission electron microscopy and X-ray diffraction (XRD measurements. Under non-resonant excitation at 488 nm, our Nd-doped SRSO films simultaneously exhibited PL from Si-np and Nd3+ demonstrating the efficient energy transfer between Si-np and Nd3+ and the sensitizing effect of Si-np. Upon increasing the Nd concentration from 0.08 to 4.9 at.%, our samples revealed a progressive quenching of the Nd3+ PL which can be correlated with the concomitant increase of disorder within the host matrix as shown by FTIR experiments. Moreover, the presence of Nd-oxide nanocrystals in the highest Nd-doped sample was established by XRD. It is, therefore, suggested that the Nd clustering, as well as disorder, are responsible for the concentration quenching of the PL of Nd3+.

  19. The evolution of the fraction of Er ions sensitized by Si nanostructures in silicon-rich silicon oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Noe, P; Okuno, H; Jager, J-B; Delamadeleine, E; Demichel, O; Rouviere, J-L; Calvo, V [INAC/SP2M, Commissariat a l' Energie Atomique-MINATEC, 17 rue des Martyrs, F-38054 Grenoble Cedex (France); Maurizio, C; D' Acapito, F [CNR-INFM-OGG c/o ESRF, GILDA-CRG, BP 220, F-38043 Grenoble (France)

    2009-09-02

    Photoluminescence (PL) and time-resolved PL experiments as a function of the elaboration process are performed on Er-doped silicon-rich silicon oxide (SRO:Er) thin films grown under NH{sub 3} atmosphere. These PL measurements of the Er{sup 3+} emission at 1.54 {mu}m under non-resonant pumping with the Er f-f transitions are obtained for different Er{sup 3+} concentrations, ranging from 0.05 to 1.4 at.%, and various post-growth annealing temperatures of the layers. High resolution transmission electron microscopy (HRTEM) and energy-filtered TEM (EFTEM) analysis show a high density of Si nanostructures composed of amorphous and crystalline nanoclusters varying from 2.7 x 10{sup 18} to 10{sup 18} cm{sup -3} as a function of the post-growth annealing temperature. Measurements of PL lifetime and effective Er excitation cross section for all the samples under non-resonant optical excitation with the Er{sup 3+} atomic energy levels show that the number of Er{sup 3+} ions sensitized by the silicon-rich matrix decreases as the annealing temperature is increased from 500 to 1050 {sup 0}C. The origin of this effect is attributed to the reduction of the density of sensitizers for Er ions in the SRO matrix when the annealing temperature increases. Finally, extended x-ray absorption fine-structure spectroscopy (EXAFS) shows a strong correlation between the number of emitters and the mean local order around the erbium ions.

  20. Biological characterization of a new silicon based coating developed for dental implants.

    Science.gov (United States)

    Martínez-Ibáñez, M; Juan-Díaz, M J; Lara-Saez, I; Coso, A; Franco, J; Gurruchaga, M; Suay Antón, J; Goñi, Isabel

    2016-04-01

    Taking into account the influence of Si in osteoblast cell proliferation, a series of sol-gel derived silicon based coating was prepared by controlling the process parameters and varying the different Si-alkoxide precursors molar rate in order to obtain materials able to release Si compounds. For this purpose, methyltrimethoxysilane (MTMOS) and tetraethyl orthosilicate (TEOS) were hydrolysed together and the sol obtained was used to dip-coat the different substrates. The silicon release ability of the coatings was tested finding that it was dependent on the TEOS precursor content, reaching a Si amount value around ninefolds higher for coatings with TEOS than for the pure MTMOS material. To test the effect of this released Si, the in vitro performance of developed coatings was tested with human adipose mesenchymal stem cells finding a significantly higher proliferation and mineralization on the coating with the higher TEOS content. For in vivo evaluation of the biocompatibility, coated implants were placed in the tibia of the rabbit and a histological analysis was performed. The evaluation of parameters such as the bone marrow state, the presence of giant cells and the fibrous capsule proved the biocompatibility of the developed coatings. Furthermore, coated implants seemed to produce a qualitatively higher osteoblastic activity and a higher number of bone spicules than the control (uncoated commercial SLA titanium dental implant).

  1. Effect of solder flux residue on the performance of silicone conformal coatings on printed circuit board assemblies

    DEFF Research Database (Denmark)

    Rathinavelu, Umadevi; Jellesen, Morten Stendahl; Ambat, Rajan

    2013-01-01

    Conformal coatings are applied on printed circuit board assemblies (PCBAs) in order to protect the assembly from environmental influence and silicone-based coating is commonly used. A systematic study on the performance of silicone conformal coating in connection with process-related contaminants...... across the components, morphology of the coating, and analysis of dendrite formation due to electrochemical migration under the coating. The morphology of the coating before and after exposure was investigated using scanning electron microscopy, and energy dispersive X-ray spectroscopy. Results show...

  2. Rear interface engineering of hybrid organic-silicon nanowire solar cells via blade coating.

    Science.gov (United States)

    Lai, Yi-Chun; Chang, Yu-Fan; Tsai, Pei-Ting; Chang, Jan-kai; Tseng, Wei-Hsuan; Lin, Yi-Cheng; Hsiao, Chu-Yen; Zan, Hsiao-Wen; Wu, Chih-I; Chi, Gou-Chung; Meng, Hsin-Fei; Yu, Peichen

    2016-01-25

    In this work, we investigate blade-coated organic interlayers at the rear surface of hybrid organic-silicon photovoltaics based on two small molecules: Tris(8-hydroxyquinolinato) aluminium (Alq(3)) and 1,3-bis(2-(4-tert-butylphenyl)-1,3,4-oxadiazol-5-yl) benzene (OXD-7). In particular, soluble Alq(3) resulting in a uniform thin film with a root-mean-square roughness organic-silicon photovoltaics.

  3. Conformal coating by photoresist of sharp corners of anisotropically etched through-holes in silicon

    DEFF Research Database (Denmark)

    Heschel, Matthias; Bouwstra, Siebe

    1997-01-01

    The authors describe a photoresist treatment yielding conformal coating of three-dimensional silicon structures. This even includes the sharp corners of through-holes obtained by anisotropic etching in (100)-silicon. Resist reflow from these corners is avoided by replacing the common baking proce...... procedure with a proper vacuum treatment. The investigated photoresist is Shipley's Eagle 2100 ED, a negative-working electrodeposited photoresist. Electrical frontside to backside interconnections have been made using this photoresist as an etch mask...

  4. Alleviation of capsular formations on silicone implants in rats using biomembrane-mimicking coatings.

    Science.gov (United States)

    Park, Ji Ung; Ham, Jiyeon; Kim, Sukwha; Seo, Ji-Hun; Kim, Sang-Hyon; Lee, Seonju; Min, Hye Jeong; Choi, Sunghyun; Choi, Ra Mi; Kim, Heejin; Oh, Sohee; Hur, Ji An; Choi, Tae Hyun; Lee, Yan

    2014-10-01

    Despite their popular use in breast augmentation and reconstruction surgeries, the limited biocompatibility of silicone implants can induce severe side effects, including capsular contracture - an excessive foreign body reaction that forms a tight and hard fibrous capsule around the implant. This study examines the effects of using biomembrane-mimicking surface coatings to prevent capsular formations on silicone implants. The covalently attached biomembrane-mimicking polymer, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), prevented nonspecific protein adsorption and fibroblast adhesion on the silicone surface. More importantly, in vivo capsule formations around PMPC-grafted silicone implants in rats were significantly thinner and exhibited lower collagen densities and more regular collagen alignments than bare silicone implants. The observed decrease in α-smooth muscle actin also supported the alleviation of capsular formations by the biomembrane-mimicking coating. Decreases in inflammation-related cells, myeloperoxidase and transforming growth factor-β resulted in reduced inflammation in the capsular tissue. The biomembrane-mimicking coatings used on these silicone implants demonstrate great potential for preventing capsular contracture and developing biocompatible materials for various biomedical applications.

  5. Large-aperture wide-bandwidth antireflection-coated silicon lenses for millimeter wavelengths

    CERN Document Server

    Datta, R; Niemack, M D; McMahon, J J; Britton, J; Wollack, E J; Beall, J; Devlin, M J; Fowler, J; Gallardo, P; Hubmayr, J; Irwin, K; Newburgh, L; Nibarger, J P; Page, L; Quijada, M A; Schmitt, B L; Staggs, S T; Thornton, R; Zhang, L

    2013-01-01

    The increasing scale of cryogenic detector arrays for sub-millimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n = 3.4, low loss, and relatively high thermal conductivity is a nearly optimal material for these purposes, but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coefficient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating. We have fabricated and coated silicon lenses as large as 33.4 cm in diameter with coatings optimized for use between 125-165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30 degrees with low cross-polarization. We describe the design, tolerance, m...

  6. Silicone rubber-coated highly sensitive optical fiber sensor for temperature measurement

    Science.gov (United States)

    Bhardwaj, Vanita; Gangwar, Rahul Kumar; Singh, Vinod Kumar

    2016-12-01

    A silicone rubber-coated Mach-Zehnder interferometer (MZI) is proposed and applied to temperature measurement. The MZI is fabricated by splicing single mode fiber between a short section of no-core fiber (NCF) and the ultra-abrupt taper region. The sensing length of MZI is coated with liquid silicone rubber to enhance the temperature sensitivity. Here, NCF is used to excite the higher order cladding mode, the ultra-abrupt taper region acts as a optical fiber coupler, and the silicone rubber coating on sensing length is used as solid cladding material instead of liquid. The enhancement of the sensitivity of a device is due to the high refractive index (1.42) and thermo-optic coefficient (-1.4×10-4/°C) of silicone rubber as compared to liquid cladding temperature sensors. The experiment was performed for both coated and uncoated MZI and the results were compared. The MZI exhibits a high temperature sensitivity of 253.75 and 121.26 pm/°C for coated and uncoated sensing probes, respectively, in the temperature range from 30°C to 75°C.

  7. Aluminum and aluminum/silicon coatings on ferritic steels by CVD-FBR technology

    Energy Technology Data Exchange (ETDEWEB)

    Perez, F.J. [Grupo de Investigacion de Ingenieria de Superficies, Departamento de Ciencia de los Materiales, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid (Spain)]. E-mail: fjperez@quim.ucm.es; Hierro, M.P. [Grupo de Investigacion de Ingenieria de Superficies, Departamento de Ciencia de los Materiales, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Trilleros, J.A. [Grupo de Investigacion de Ingenieria de Superficies, Departamento de Ciencia de los Materiales, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Carpintero, M.C. [Grupo de Investigacion de Ingenieria de Superficies, Departamento de Ciencia de los Materiales, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Sanchez, L. [Grupo de Investigacion de Ingenieria de Superficies, Departamento de Ciencia de los Materiales, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Bolivar, F.J. [Grupo de Investigacion de Ingenieria de Superficies, Departamento de Ciencia de los Materiales, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2006-05-10

    The use of chemical vapor deposition by fluidized bed reactors (CVD-FBR) offers some advantages in comparison to other coating techniques such as pack cementation, because it allows coating deposition at lower temperatures than pack cementation and at atmospheric pressure without affecting the mechanical properties of material due to heat treatments of the bulk during coating process. Aluminum and aluminum/silicon coatings have been obtained on two different ferritics steels (P-91 and P-92). The coatings were analyzed using several techniques like SEM/EDX and XRD. The results indicated that both coatings were form by Fe{sub 2}Al{sub 5} intermetallic compound, and in the co-deposition the Si was incorporated to the Fe{sub 2}Al{sub 5} structure in small amounts.

  8. Fluorescence and thermoluminescence in silicon oxide films rich in silicon; Fluorescencia y termoluminiscencia en peliculas de oxido de silicio rico en silicio

    Energy Technology Data Exchange (ETDEWEB)

    Berman M, D.; Piters, T. M. [Centro de Investigacion en Fisica, Universidad de Sonora, Apdo. Postal 5-088, Hermosillo 83190, Sonora (Mexico); Aceves M, M.; Berriel V, L. R. [Instituto Nacional de Astrofisica, Optica y Electronica, Apdo. Postal 51, Puebla 72000, Puebla (Mexico); Luna L, J. A. [CIDS, Benemerita Universidad Autonoma de Puebla, Apdo. Postal 1651, Puebla 72000, Puebla (Mexico)

    2009-10-15

    In this work we determined the fluorescence and thermoluminescence (TL) creation spectra of silicon rich oxide films (SRO) with three different silicon excesses. To study the TL of SRO, 550 nm of SRO film were deposited by Low Pressure Chemical Vapor Deposition technique on N-type silicon substrates with resistivity in the order of 3 to 5 {omega}-cm with silicon excess controlled by the ratio of the gases used in the process, SRO films with Ro= 10, 20 and 30 (12-6% silicon excess) were obtained. Then, they were thermally treated in N{sub 2} at high temperatures to diffuse and homogenize the silicon excess. In the fluorescence spectra two main emission regions are observed, one around 400 nm and one around 800 nm. TL creation spectra were determined by plotting the integrated TL intensity as function of the excitation wavelength. (Author)

  9. Magnetic Properties of Cobalt-coated Silicon Steels Prepared by Electrodeposition

    Directory of Open Access Journals (Sweden)

    Somkane PIROMRAK

    2007-01-01

    Full Text Available Magnetic properties of silicon steels (1.26 % silicon coated by cobalt of varying thickness were studied. Cobalt ranging from 11 to 68 µm in thickness was deposited on silicon steel substrates (0.5 mm thick, 0.4 mm wide and 55.0 mm long cut from sheets of recycled transformer cores. By electrodeposition in CoSO4 electrolyte with 90 mA applied current at pH 1.86, the deposition rate was 1.11 µm/min. Although deposition of cobalt increased saturation induction of silicon steels, it also increased hysteresis loss signified by wider hysteresis loops with larger remanent induction and coercive field. Since the magnetoimpedance (MI is related to the magnetic softness of materials, the MI ratio decreased with increasing thickness of the cobalt layer. Although the cobalt coating did not enhance the MI ratio of silicon steels, it expanded the peak of frequency-dependent MI curves. Therefore, the frequency range with large MI ratio in silicon steels can be extended by the deposition of a cobalt layer. From microscopic images, grains and magnetic domains of the silicon steel were of the order of 10 µm whereas smaller domain size was observed in the cobalt layer.

  10. Porous Silicon Coated with Ultrathin Diamond-Like Carbon Film Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Evtukh, A A; Litovchenko, V G; Litvin, Y M; Fedin, D V; Rassamakin, Y V; Sarikov, A V; Chakhovskoi, A G; Felter, T E

    2001-04-01

    The main requirements to electron field emission cathodes are their efficiency, stability and uniformity. In this work we combined the properties of porous silicon layers and diamond-like carbon (DLC) film to obtain emission cathodes with improved parameters. The layered structures of porous silicon and DLC film were formed both on flat n-Si surface and silicon tips created by chemical etching. The conditions of the anodic and stain etching of silicon in HF containing solution under the illumination have been widely changed. The influence of thin ({le} 10nm) DLC film coating of the porous silicon layer on electron emission has been investigated. The parameters of emission efficiency such as field enhancement coefficient, effective emission areas and threshold voltages have been estimated from current-voltage dependencies to compare and characterize different layered structures. The improvement of the emission efficiency of silicon tip arrays with porous layers coated with thin DLC film has been observed. These silicon-based structures are promising for flat panel display applications.

  11. Robust Environmental Barrier Coatings for Silicon Nitride Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicon based ceramics are the leading candidates for the high temperature structural components of the advanced propulsion engines. For such applications, one key...

  12. Low atomic number coating for XEUS silicon pore optics

    DEFF Research Database (Denmark)

    Lumb, D.H.; Cooper-Jensen, Carsten P.; Krumrey, M.

    2008-01-01

    of XEUS graze angles are presented. Reflectance is significantly enhanced for low energies when a low atomic number over-coating is applied. Modeling of the layer thicknesses and roughness is used to investigate the dependence on the layer thicknesses, metal and over coat material choices. We compare...

  13. Bioactive glass-coated silicone for percutaneous devices with improved tissue interaction

    Science.gov (United States)

    Marotta, James Scott

    The discovery of bioactive glasses, in the early 1970s, has produced a material that develops a strong adherent bond with soft tissue. Many medical applications currently use silicone as an implant material, but are hindered by the formation of fibrous scar tissue surrounding the device. This fibrous scar tissue can lead to pain, infection, and/or extrusion of these devices. Bioactive ceramic materials are inherently brittle and can not be used in applications where a flexible material is needed. Therefore, the coating of existing flexible silicone medical devices, like catheters, with a bioactive glass material would give the advantages of both. The research presented here is of methods used to coat silicone with a bioactive glass powder (Bioglass°ler) and the in vitro testing of those coatings. The bioactivity of these coatings was measured using scanning electron microscopy, inductively coupled plasma spectroscopy, and Fourier transform infrared spectroscopy. It was observed that hydroxyapatite, a bonelike apatite, was formed in vitro on both the bioactive glass particles and the silicone surface between these particles. From these results a new theory was developed that related the distance between particles on a surface with the formation of an apatite layer. A critical distance between particles for the formation of an apatite layer on the substrate exists. This critical distance is a function of both the particle size and composition. In addition, a method to coat silicone catheters with bioactive glass powder is also discussed. This coated catheter could ultimately be used for improved percutaneous access in peritoneal dialysis. The one barrier to greater peritoneal dialysis use and the reason many patients switch from peritoneal to hemodialysis is recurrent exit-site infections and subsequent peritonitis. These infections are caused by the lack of a tight seal and downgrowth of epidermal tissue around the catheter at the catheter-skin interface.

  14. Temperature dependence of sensitized Er(3+) luminescence in silicon-rich oxynitride films.

    Science.gov (United States)

    Xu, Lingbo; Li, Si; Jin, Lu; Li, Dongsheng; Yang, Deren

    2014-01-01

    The temperature dependence of sensitized Er(3+) emission via localized states and silicon nanoclusters has been studied to get an insight into the excitation and de-excitation processes in silicon-rich oxynitride films. The thermal quenching of Er(3+) luminescence is elucidated by terms of decay time and effective excitation cross section. The temperature quenching of Er(3+) decay time demonstrates the presence of non-radiative trap states, whose density and energy gap between Er(3+) (4) I 13/2 excited levels are reduced by high-temperature annealing. The effective excitation cross section initially increases and eventually decreases with temperature, indicating that the energy transfer process is phonon assisted in both samples.

  15. Magnesium-Based Sacrificial Anode Cathodic Protection Coatings (Mg-Rich Primers for Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Michael D. Blanton

    2012-09-01

    Full Text Available Magnesium is electrochemically the most active metal employed in common structural alloys of iron and aluminum. Mg is widely used as a sacrificial anode to provide cathodic protection of underground and undersea metallic structures, ships, submarines, bridges, decks, aircraft and ground transportation systems. Following the same principle of utilizing Mg characteristics in engineering advantages in a decade-long successful R&D effort, Mg powder is now employed in organic coatings (termed as Mg-rich primers as a sacrificial anode pigment to protect aerospace grade aluminum alloys against corrosion. Mg-rich primers have performed very well on aluminum alloys when compared against the current chromate standard, but the carcinogenic chromate-based coatings/pretreatments are being widely used by the Department of Defense (DoD to protect its infrastructure and fleets against corrosion damage. Factors such as reactivity of Mg particles in the coating matrix during exposure to aggressive corrosion environments, interaction of atmospheric gases with Mg particles and the impact of Mg dissolution, increases in pH and hydrogen gas liberation at coating-metal interface, and primer adhesion need to be considered for further development of Mg-rich primer technology.

  16. Glass frits coated with silver nanoparticles for silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingfen, E-mail: lyf350857423@163.com; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-06-30

    Graphical abstract: - Highlights: • Silver-coated glass frits for solar cells were prepared by electroless plating. • Gum Arabic was used as the activating agent of glass frits. • Silver-coated glass frits can improve the photovoltaic performances of solar cells. - Abstract: Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells.

  17. Ultraviolet antireflection coatings for use in silicon detector design

    Science.gov (United States)

    Hamden, Erika T.; Greer, Frank; Hoenk, Michael E.; Blacksberg, Jordana; Dickie, Matthew R.; Nikzad, Shouleh; Martin, D. Christopher; Schiminovich, David

    2011-07-01

    We report on the development of coatings for a charged-coupled device (CCD) detector optimized for use in a fixed dispersion UV spectrograph. Because of the rapidly changing index of refraction of Si, single layer broadband antireflection (AR) coatings are not suitable to increase quantum efficiency at all wavelengths of interest. Instead, we describe a creative solution that provides excellent performance over UV wavelengths. We describe progress in the development of a coated CCD detector with theoretical quantum efficiencies (QEs) of greater than 60% at wavelengths from 120 to 300nm. This high efficiency may be reached by coating a backside-illuminated, thinned, delta-doped CCD with a series of thin film AR coatings. The materials tested include MgF2 (optimized for highest performance from 120--150nm), SiO2 (150--180nm), Al2O3 (180--240nm), MgO (200--250nm), and HfO2 (240--300nm). A variety of deposition techniques were tested and a selection of coatings that minimized reflectance on a Si test wafer were applied to functional devices. We also discuss future uses and improvements, including graded and multilayer coatings.

  18. Ultraviolet antireflection coatings for use in silicon detector design

    Energy Technology Data Exchange (ETDEWEB)

    Hamden, Erika T.; Greer, Frank; Hoenk, Michael E.; Blacksberg, Jordana; Dickie, Matthew R.; Nikzad, Shouleh; Martin, D. Christopher; Schiminovich, David

    2011-07-20

    We report on the development of coatings for a charged-coupled device (CCD) detector optimized for use in a fixed dispersion UV spectrograph. Because of the rapidly changing index of refraction of Si, single layer broadband antireflection (AR) coatings are not suitable to increase quantum efficiency at all wavelengths of interest. Instead, we describe a creative solution that provides excellent performance over UV wavelengths. We describe progress in the development of a coated CCD detector with theoretical quantum efficiencies (QEs) of greater than 60% at wavelengths from 120 to 300 nm. This high efficiency may be reached by coating a backside-illuminated, thinned, delta-doped CCD with a series of thin film AR coatings. The materials tested include MgF{sub 2} (optimized for highest performance from 120-150 nm), SiO{sub 2} (150-180 nm), Al{sub 2}O{sub 3} (180-240 nm), MgO (200-250 nm), and HfO{sub 2} (240-300 nm). A variety of deposition techniques were tested and a selection of coatings that minimized reflectance on a Si test wafer were applied to functional devices. We also discuss future uses and improvements, including graded and multilayer coatings.

  19. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings

    KAUST Repository

    Yao, Yan

    2012-01-01

    For silicon nanowires (Si NWs) to be used as a successful high capacity lithium-ion battery anode material, improvements in cycling stability are required. Here we show that a conductive polymer surface coating on the Si NWs improves cycling stability; coating with PEDOT causes the capacity retention after 100 charge-discharge cycles to increase from 30% to 80% over bare NWs. The improvement in cycling stability is attributed to the conductive coating maintaining the mechanical integrity of the cycled Si material, along with preserving electrical connections between NWs that would otherwise have become electrically isolated during volume changes. © 2012 The Royal Society of Chemistry.

  20. Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Gomez, Luis [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Instituto de Ortopedia y Banco de Tejidos Musculoesqueléticos, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Alvarez-Lorenzo, Carmen, E-mail: carmen.alvarez.lorenzo@usc.es [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Concheiro, Angel [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Silva, Maite [Instituto de Ortopedia y Banco de Tejidos Musculoesqueléticos, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Dominguez, Fernando [Fundación Publica Galega de Medicina Xenómica, Santiago de Compostela (Spain); Sheikh, Faheem A.; Cantu, Travis; Desai, Raj; Garcia, Vanessa L. [Department of Chemistry, University of Texas Pan American, Edinburg, TX 78541 (United States); Macossay, Javier, E-mail: jmacossay@utpa.edu [Department of Chemistry, University of Texas Pan American, Edinburg, TX 78541 (United States)

    2014-07-01

    Biodegradable electrospun poly(ε-caprolactone) (PCL) scaffolds were coated with platelet-rich plasma (PRP) to improve cell adhesion and proliferation. PRP was obtained from human buffy coat, and tested on human adipose-derived mesenchymal stem cells (MSCs) to confirm cell proliferation and cytocompatibility. Then, PRP was adsorbed on the PCL scaffolds via lyophilization, which resulted in a uniform sponge-like coating of 2.85 (S.D. 0.14) mg/mg. The scaffolds were evaluated regarding mechanical properties (Young's modulus, tensile stress and tensile strain), sustained release of total protein and growth factors (PDGF-BB, TGF-β1 and VEGF), and hemocompatibility. MSC seeded on the PRP–PCL nanofibers showed an increased adhesion and proliferation compared to pristine PCL fibers. Moreover, the adsorbed PRP enabled angiogenesis features observed as neovascularization in a chicken chorioallantoic membrane (CAM) model. Overall, these results suggest that PRP–PCL scaffolds hold promise for tissue regeneration applications. - Highlights: • Platelet-rich plasma (PRP) can be adsorbed on electrospun fibers via lyophilization. • PRP coating enhanced mesenchymal stem cell adhesion and proliferation on scaffolds. • PRP-coated scaffolds showed sustained release of growth factors. • Adsorbed PRP provided angiogenic features. • PRP-poly(ε-caprolactone) scaffolds hold promise for tissue regeneration applications.

  1. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries.

    Science.gov (United States)

    Hwang, Jeongwoon; Ihm, Jisoon; Lee, Kwang-Ryeol; Kim, Seungchul

    2015-10-13

    We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1-16 eV). As the incident energy decreases, the ratio of sp² carbons increases, that of sp³ decreases, and the carbon films become more porous. The films prepared with very low incident energy contain lithium-ion conducting channels. Also, those films are electrically conductive to supplement the poor conductivity of silicon and can restore their structure after large deformation to accommodate the volume change during the operations. As a result of this study, we suggest that graphite-like porous carbon coating on silicon will extend the lifetime of the silicon anodes of lithium-ion batteries.

  2. Rough SERS substrate based on gold coated porous silicon layer prepared on the silicon backside surface

    Science.gov (United States)

    Dridi, H.; Haji, L.; Moadhen, A.

    2017-04-01

    We report in this paper a novel method to elaborate rough Surface Enhanced Raman Scattering (SERS) substrate. A single layer of porous silicon was formed on the silicon backside surface. Morphological characteristics of the porous silicon layer before and after gold deposition were influenced by the rough character (gold size). The reflectance measurements showed a dependence of the gold nano-grains size on the surface nature, through the Localized Surface Plasmon (LSP) band properties. SERS signal of Rhodamine 6G used as a model analyte, adsorbed on the rough porous silicon layer revealed a marked enhancement of its vibrational modes intensities.

  3. Synthesis and Microstructure Evolution of Nano-Titania Doped Silicon Coatings

    Science.gov (United States)

    Moroz, N. A.; Umapathy, H.; Mohanty, P.

    2010-01-01

    The Anatase phase of Titania (TiO2) in nanocrystalline form is a well known photocatalyst. Photocatalysts are commercially used to accelerate photoreactions and increase photovoltaic efficiency such as in solar cells. This study investigates the in-flight synthesis of Titania and its doping into a Silicon matrix resulting in a catalyst-dispersed coating. A liquid precursor of Titanium Isopropoxide and ethanol was coaxially fed into the plasma gun to form Titania nanoparticles, while Silicon powder was externally injected downstream. Coatings of 75-150 μm thick were deposited onto flat coupons. Further, Silicon powder was alloyed with aluminum to promote crystallization and reduce the amorphous phase in the Silicon matrix. Dense coatings containing nano-Titania particles were observed under electron microscope. X-ray diffraction showed that both the Rutile and Anatase phases of the Titania exist. The influence of process parameters and aluminum alloying on the microstructure evolution of the doped coatings is analyzed and presented.

  4. Diffusion of surface-active amphiphiles in silicone-based fouling-release coatings

    DEFF Research Database (Denmark)

    Noguer, Albert Camós; Olsen, S. M.; Hvilsted, Søren

    2017-01-01

    Amphiphiles (i.e. amphiphilic molecules such as surfactants, block copolymers and similar compounds) are used in small amounts to modify the surface properties of polymeric materials. In silicone fouling-release coatings, PEG-based amphiphiles are added to provide biofouling-resistance. The success...

  5. Development and characterization of coatings on Silicon Pore Optics substrates for the ATHENA mission

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Jakobsen, Anders Clemen; Christensen, Finn Erland

    2012-01-01

    We present description and results of the test campaign performed on Silicon Pore Optics (SPO) samples to be used on the ATHENA mission. We perform a pre-coating characterization of the substrates using Atomic Force Microscopy (AFM), X-ray Re ectometry (XRR) and scatter measurements. X-ray tests ...

  6. Carbothermal synthesis of coatings on silicon carbide fibers

    Science.gov (United States)

    Chen, Linlin

    Four kinds of protective coatings---carbide derived carbon (CDC), boron nitride (BN), Al-O-N and BN doped Al-O-N (BAN) have been successfully synthesized on the surface of SiC fibers on the target to enhance the mechanical properties and oxidation resistance of the coated SiC fibers for the application as the reinforcements in the Ceramic Matrix Composites (CMCs) in the high temperatures. First of all, CDC coatings have been uniformly produced on Tyranno ZMI SiC fibers with good thickness control within nanometer accuracy by the chlorination in the temperature range of 550--700°C at atmospheric pressure. Kinetics of the carbon coating growth on the fibers has been systematically studied and thus a good foundation was set up for the further coating synthesis. BN coatings have been synthesized on the surface of SiC powders, fibers and fabrics by a novel carbothermal nitridation method. Non-bridging has been achieved in the BN-coated fiber tows by the nitridation in ammonia at atmospheric pressure in a temperature below 1200°C, which is lower compared to the traditional BN synthesis method and does not cause the degradation of the coated-fibers. BN coatings on the carbon nanotubes have also been formed and unlike the common methods, no additional dopant (such as metal catalyst) is introduced into the system during the BN coatings syntheses, thus the contamination of the final product is avoided. A novel Al-O-N coating has been explored with the most impressive point is that a more than 65% improvement in the tensile strength (up to ˜5.1GPa) and a three-time increase in the Weibull modulus compared to the as-received fibers are resulted by the formation of 200nm Al-O-N coating on the SiC fibers. It exceeds the strength of all other small diameter SiC fibers reported in the literature. Furthermore, BAN coating has also been produced on the surface of SiC fibers and about 20% enhancement in mechanical strength is achieved compared to that of the original fibers

  7. Annealing Temperature dependence of Photoluminescence from Silicon-rich silica Films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The silicon-rich silica films were prepared by a dual-ion-beam co-sputtering method from a composite Target in an argon atmosphere. The structure of the films studied by the aid of TEM and XRD is amorphous. The photoluminescence (PL) spectra were found to have a 4luminescent band peak at 320 nm, 410 nm, 560 nm, and 630 nm, respectively, at room temperature.The intensity and the wavelength position of PL are dependent on annealing temperature (Ta),and the luminescent mechanism is analyzed.

  8. Formation of boron nitride coatings on silicon carbide fibers using trimethylborate vapor

    Science.gov (United States)

    Yuan, Mengjiao; Zhou, Tong; He, Jing; Chen, Lifu

    2016-09-01

    High quality boron nitride (BN) coatings have been grown on silicon carbide (SiC) fibers by carbothermal nitridation and at atmospheric pressure. SiC fibers were first treated in chlorine gas to form CDC (carbide-derived carbon) film on the fiber surface. The CDC-coated SiC fibers were then reacted with trimethylborate vapor and ammonia vapor at high temperature, forming BN coatings by carbothermal reduction. The FT-IR, XPS, XRD, SEM, TEM and AES were used to investigate the formation of the obtained coatings. It has been found that the obtained coatings are composed of phase mixture of h-BN and amorphous carbon, very uniform in thickness, have smooth surface and adhere well with the SiC fiber substrates. The BN-coated SiC fibers retain ∼80% strength of the as-received SiC fibers and show an obvious interfacial debonding and fiber pullout in the SiCf/SiOC composites. This method may be useful for the large scale production of high quality BN coating on silicon carbide fiber.

  9. Formation of boron nitride coatings on silicon carbide fibers using trimethylborate vapor

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Mengjiao; Zhou, Tong; He, Jing; Chen, Lifu, E-mail: lfchen@xmu.edu.cn

    2016-09-30

    High quality boron nitride (BN) coatings have been grown on silicon carbide (SiC) fibers by carbothermal nitridation and at atmospheric pressure. SiC fibers were first treated in chlorine gas to form CDC (carbide-derived carbon) film on the fiber surface. The CDC-coated SiC fibers were then reacted with trimethylborate vapor and ammonia vapor at high temperature, forming BN coatings by carbothermal reduction. The FT-IR, XPS, XRD, SEM, TEM and AES were used to investigate the formation of the obtained coatings. It has been found that the obtained coatings are composed of phase mixture of h-BN and amorphous carbon, very uniform in thickness, have smooth surface and adhere well with the SiC fiber substrates. The BN-coated SiC fibers retain ∼80% strength of the as-received SiC fibers and show an obvious interfacial debonding and fiber pullout in the SiC{sub f}/SiOC composites. This method may be useful for the large scale production of high quality BN coating on silicon carbide fiber.

  10. Modeling Optical and Electronic Properties of Silica Nano-Clusters in Silicon Rich Oxide Films

    Directory of Open Access Journals (Sweden)

    N.D. Espinosa-Torres

    2013-07-01

    Full Text Available Quantum effects are very important in nano scale systems such as molecules and clusters constituted of particles from a few to hundreds or a few thousands of atoms. Their optical and electronic properties are often dependent on the size of the systems and the way in which the atoms in these molecules or clusters are bonded. Generally, these nano-structures display optical and electronic properties significantly different of the bulk materials. Silica agglomerates expected in Silicon Rich Oxide (SRO films have optical properties, which depend directly on size, and their rationalization can lead to new applications with a potential impact on many fields of science and technology. On the other hand, the room temperature photoluminescence (PL of Si : SiO2 or Si : SiOx structures usually found in SRO has recently generated an enormous interest due to their possible applications in optoelectronic devices. However, the understanding of the emission mechanism is still under debate. In this research, we employed the Density Functional Theory with a functional B3LYP and a basis set 6-31 G* to calculate the electronic and optical properties of molecules and clusters of silicon dioxide. With the theoretical calculation of the structural and optical properties of silicon dioxide clusters is possible to evaluate the contribution of silica in the luminescent emission mechanism experimentally found in thin SRO films. It was found that silica contribution to the luminescent phenomenon in SRO thin films is less important than that of the silicon monoxide agglomerates because the number of silica structures, which may show emission in the visible spectrum, is much lower [1], compared to the number of silicon monoxide structures which emit in this region.

  11. Ultrananocrystalline Diamond-Coated Microporous Silicon Nitride Membranes for Medical Implant Applications

    Science.gov (United States)

    Skoog, Shelby A.; Sumant, Anirudha V.; Monteiro-Riviere, Nancy A.; Narayan, Roger J.

    2012-04-01

    Ultrananocrystalline diamond (UNCD) exhibits excellent biological and mechanical properties, which make it an appropriate choice for promoting epidermal cell migration on the surfaces of percutaneous implants. We deposited a ~150 nm thick UNCD film on a microporous silicon nitride membrane using microwave plasma chemical vapor deposition. Scanning electron microscopy and Raman spectroscopy were used to examine the pore structure and chemical bonding of this material, respectively. Growth of human epidermal keratinocytes on UNCD-coated microporous silicon nitride membranes and uncoated microporous silicon nitride membranes was compared using the 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide (MTT) assay. The results show that the UNCD coating did not significantly alter the viability of human epidermal keratinocytes, indicating potential use of this material for improving skin sealing around percutaneous implants.

  12. Fabrication of carbon-coated silicon nanowires and their application in dye-sensitized solar cells.

    Science.gov (United States)

    Kim, Junhee; Lim, Jeongmin; Kim, Minsoo; Lee, Hae-Seok; Jun, Yongseok; Kim, Donghwan

    2014-11-12

    We report the fabrication of silicon/carbon core/shell nanowire arrays using a two-step process, involving electroless metal deposition and chemical vapor deposition. In general, foreign shell materials that sheath core materials change the inherent characteristics of the core materials. The carbon coating functionalized the silicon nanowire arrays, which subsequently showed electrocatalytic activities for the reduction of iodide/triiodide. This was verified by cyclic voltammetry and electrochemical impedance spectroscopy. We employed the carbon-coated silicon nanowire arrays in dye-sensitized solar cells as counter electrodes. We optimized the carbon shells to maximize the photovoltaic performance of the resulting devices, and subsequently, a peak power conversion efficiency of 9.22% was achieved.

  13. Geochemical Trace of Silicon Isotopes of Intrusions and Ore Veins Related to Alkali-rich Porphyry Deposits in Western Yunnan, China

    Institute of Scientific and Technical Information of China (English)

    LIU Xianfan; YANG Zhengxi; LIU Jiaduo; WU Dechao; ZHANG Chenjiang; LI Youguo

    2004-01-01

    Western Yunnan is the well-known polymetallic province in China. It is characterized by copper-gold mineralization related to Cenozoic alkali-rich porphyry. This paper analyzes the silicon isotope data obtained from four typical alkali-rich porphyry deposits based on the dynamic fractionation principle of silicon isotope. The study shows that the ore materials should originate mainly from alkali-rich magmas, together with silicon-rich mineralizing fluids.The process of mineralization was completed by auto-metasomatism, i.e. silicon-rich mineralizing fluids (including alkali-rich porphyry and wall-rock strata) replaced and altered the country rocks and contaminated with crustal rocks during the crystallization of alkali-rich magmas. Such a process is essentially the continuance of the metasomatism of mantle fluids in crust's mineralization. This provides important evidence of silicon isotopic geochemistry for better understanding the mineralization of the Cenozoic alkali-rich porphyry polymetallic deposits

  14. Development of calcium titanium oxide coated silicon solar cells for enhanced voltage generation capacity

    Directory of Open Access Journals (Sweden)

    Kathirvel K.

    2017-02-01

    Full Text Available Depletion of fossil fuel based energy sources drive the present scenario towards development of solar based alternative energy. Polycrystalline silicon solar cells are preferred due to low cost and abundant availability. However, the power conversion efficiency of polycrystalline silicon is lesser compared to monocrystalline one. The present study aims at analyzing the effect of calcium titanium oxide (CaTiO3 antireflection (AR coating on the power conversion of polycrystalline solar cells. CaTiO3 offers unique characteristics, such as non-radioactive and non-magnetic orthorhombic biaxial structure with bulk density of 3.91 g/cm3. CaTiO3 film deposition on the solar cell substrate has been carried out using Radio Frequency (RF magnetron sputter coating technique under varying time durations (10 min to 45 min. Morphological studies proved the formation of CaTiO3 layer and respective elemental percentages on the coated substrate. Open circuit voltage studies were conducted on bare and coated silicon solar substrates under open and controlled atmospheric conditions. CaTiO3 coated on a solar cell substrate in a deposition time of 30 min showed 8.76 % improvement in the cell voltage compared to the bare solar cell.

  15. Use of coated silicon field emitters as neutralisers for fundamental physics missions in space

    CERN Document Server

    Aplin, K L; Collingwood, C M; Wang, L; Stevens, R; Huq, S E; Malik, A

    2005-01-01

    Spacecraft neutralisers are required as part of the ion propulsion system for accurate station keeping in fundamental physics missions. A silicon field emitter neutraliser is under development at the Rutherford Appleton Laboratory. Thin layers of insulating materials as coatings for the gated field emitter array structure are described, which are postulated to reduce power consumption and reduce overheating. The power consumption and lifetime of aluminium nitrude and amorphous hydrogen diamond-like carbon coatings were promising, performing better in endurance tests than uncoated samples, but further work is required to characterise the coating's physical properties and its effects on field emission. The thermal conductivity of the coating material appeared to have little effect on the sample lifetimes. Aluminium nitride had reduced power consumption compared to diamond-like carbon coated and uncoated samples. A thin (~5nm)layer was optimal, meeting European Space Agency specifications for the neutraliser eng...

  16. Optimization of contaminated oxide inversion layer solar cell. [considering silicon oxide coating

    Science.gov (United States)

    Call, R. L.

    1976-01-01

    Contaminated oxide cells have been fabricated with efficiencies of 8.6% with values of I sub sc = 120 ma, V sub oc = .54 volts, and curve factor of .73. Attempts to optimize the fabrication step to yield a higher output have not been successful. The fundamental limitation is the inadequate antireflection coating afforded by the silicon dioxide coating used to hold the contaminating ions. Coatings of SiO, therefore, were used to obtain a good antireflection coating, but the thinness of the coatings prevented a large concentration of the contaminating ions, and the cells was weak. Data of the best cell were .52 volts V sub oc, 110 ma I sub sc, .66 CFF and 6.7% efficiency.

  17. Characterization of highly hydrophobic coatings deposited onto pre-oxidized silicon from water dispersible organosilanes

    Energy Technology Data Exchange (ETDEWEB)

    Almanza-Workman, A. Marcia; Raghavan, Srini; Petrovic, Slobodan; Gogoi, Bishnu; Deymier, Pierre; Monk, David J.; Roop, Ray

    2003-01-01

    The formation and quality of highly hydrophobic coatings deposited from water dispersible organosilanes onto pre-oxidized single crystal silicon were studied using atomic force microscopy, ellipsometry, dynamic contact angle measurements and electrochemical impedance spectroscopy (EIS). Highly hydrophobic films of a commercially available water dispersible silane and two different cationic alkoxysilanes were prepared by dip coating. It was found using atomic force microscopy that, in general, the structure of these highly hydrophobic films is a continuous film with some particulates attributed to bulk polymerization of the precursor molecule in water. Film defects were quantified using EIS by the value of charge transfer resistance at the hydrofluoric acid/silicon interface. Potential applications of this type of coatings include reduction/elimination of stiction in micro-electromechanical systems, contact printing in materials microfabrication, inhibition of corrosion and oxidation, prevention of water wetting, lubrication and protein adsorption.

  18. A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

    Directory of Open Access Journals (Sweden)

    Hu Z

    2012-11-01

    Full Text Available Zhenhua Hu,1,2,* Meiling Liao,2,* Yinghui Chen,3,* Yunpeng Cai,2 Lele Meng,2 Yajun Liu,2 Nan Lv,2 Zhenguo Liu,1 Weien Yuan21Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; 2School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China; 3Department of Neurology, Jinshan Hospital, Fudan University, Jinshan District, Shanghai, People's Republic of China*These authors contributed equally to this workBackground: Silicone oil, as a major component in conditioner, is beneficial in the moisture preservation and lubrication of hair. However, it is difficult for silicone oil to directly absorb on the hair surface because of its hydrophobicity. Stable nanoemulsions containing silicone oil may present as a potential solution to this problem.Methods: Silicone oil nanoemulsions were prepared using the oil-in-water method with nonionic surfactants. Emulsion particle size and distribution were characterized by scanning electron microscopy. The kinetic stability of this nanoemulsion system was investigated under accelerated stability tests and long-term storage. The effect of silicone oil deposition on hair was examined by analyzing the element of hair after treatment of silicone oil nanoemulsions.Results: Nonionic surfactants such as Span 80 and Tween 80 are suitable emulsifiers to prepare oil-in-water nanoemulsions that are both thermodynamically stable and can enhance the absorption of silicone oil on hair surface.Conclusion: The silicone oil-in-water nanoemulsions containing nonionic surfactants present as a promising solution to improve the silicone oil deposition on the hair surface for hair care applications.Keywords: silicone oil, nanoemulsion, stability, moisture preservation, lubrication

  19. Characterization of Silicon Moth-Eye Antireflection Coatings for Astronomical Applications in the Infrared

    Science.gov (United States)

    Jeram, Sarik; Ge, Jian; Jiang, Peng; Phillips, Blayne

    2016-01-01

    Silicon moth-eye antireflective structures have emerged to be an excellent approachfor reducing the amount of light that is lost upon incidence on a given surface of optics made of silicon. This property has been exploited for a wide variety of products ranging from eyeglasses and flat-panel displays to solar panels. These materials typically come in the form of coatings that are applied to an optical substrate such as glass. Moth-eye coatings, made of a periodic array of subwavelength pillars on silicon substrates or other substrates, can produce the desired antireflection (AR) performance for a broad wavelength range and over a wide range of incident angles. In the field of astronomy, every photon striking a detector is significant - and thus, losses from reflectivity at the various optical interfaces before a detector can have significant implications to the science at hand. Moth-eye AR coatings on these optical interfaces may minimize their reflection losses while maximizing light throughput for a multitude of different astronomical instruments. In addition, moth-eye AR coatings, which are patterned directly on silicon surfaces, can significantly enhance the coating durability. At the University of Florida, we tested two moth-eye filters designed for use in the near-infrared regime at 1-8 microns by examining their optical properties, such as transmission, the scattered light, and wavefront quality, and testing the coatings at cryogenic temperatures to characterize their viability for use in both ground- and space-based infrared instruments. This presentation will report our lab evaluation results.

  20. Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Langli; Zhao, Peng; Yang, Hui; Liu, Borui; Zhang, Jiguang; Cui, Yi; Yu, Guihua; Zhang, Sulin; Wang, Chong M.

    2015-10-01

    One of the key challenges of Si-based anodes for lithium ion batteries is the large volume change upon lithiation and delithiation, which commonly leads to electrochemo-mechanical degradation and subsequent fast capacity fading. Recent studies have shown that applying nanometer-thick coating layers on Si nanoparticle (SiNPs) enhances cyclability and capacity retention. However, it is far from clear how the coating layer function from the point of view of both surface chemistry and electrochemo-mechanical effect. Herein, we use in situ transmission electron microscopy to investigate the lithiation/delithiation kinetics of SiNPs coated with a conductive polymer, polypyrrole (PPy). We discovered that this coating layer can lead to “self-delithiation” or “self-discharging” at different stages of lithiation. We rationalized that the self-discharging is driven by the internal compressive stress generated inside the lithiated SiNPs due to the constraint effect of the coating layer. We also noticed that the critical size of lithiation-induced fracture of SiNPs is increased from ~ 150 nm for bare SiNPs to ~ 380 nm for the PPy-coated SiNPs, showing a mechanically protective role of the coating layer. These observations demonstrate both beneficial and detrimental roles of the surface coatings, shedding light on rational design of surface coatings for silicon to retain high-power and high capacity as anode for lithium ion batteries.

  1. Enhanced optical nonlinearities in CMOS-compatible ultra-silicon-rich nitride photonic crystal waveguides

    Science.gov (United States)

    Sahin, E.; Ooi, K. J. A.; Chen, G. F. R.; Ng, D. K. T.; Png, C. E.; Tan, D. T. H.

    2017-09-01

    We present the design, fabrication, and characterization of photonic crystal waveguides (PhCWs) on an ultra-silicon-rich nitride (USRN) platform, with the goal of augmenting the optical nonlinearities. The design goals are to achieve an optimized group index curve on the PhCW band edge with a non-membrane PhCW with symmetric SiO2 undercladding and overcladding, so as to maintain back-end CMOS compatibility and better structural robustness. Linear optical characterization, as well as nonlinear optical characterization of PhCWs on ultra-silicon-rich nitride is performed at the telecommunication wavelengths. USRN's negligible two-photon absorption and free carrier losses at the telecommunication wavelengths ensure that there is no scaling of two-photon related losses with the group index, thus maintaining a high nonlinear efficiency. Self-phase modulation experiments are performed using a 96.6 μm PhCW. A 1.5π phase shift is achieved with an input peak power of 2.5 W implying an effective nonlinear parameter of 1.97 × 104 (W m)-1. This nonlinear parameter represents a 49× enhancement in the nonlinear parameter from the slow light effect, in good agreement with expected scaling from the measured group index.

  2. Breath Figure-Assisted Fabrication of Nanostructured Coating on Silicon Surface and Evaluation of Its Antireflection Power

    Directory of Open Access Journals (Sweden)

    Francesco Galeotti

    2016-01-01

    Full Text Available We report our recent results on the fabrication of nanostructured polymer layers aimed at developing efficient antireflection coating on silicon. The proposed manufacturing approach is based on self-assembly and relies on breath figure formation. By simple and straightforward operations, we are able to produce different nanostructured coatings: densely packed nanodomes, randomly distributed nanopores, and multilayered close-packed nanopores. By optical reflectivity measurements on coated silicon wafers, we show that the latter type of nanostructure is able to reduce the reflectivity of standard silicon surface (≈40% at 450 nm to about 10%.

  3. Mullite coatings for corrosion protection of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Mulpuri, R.; Sarin, V.K. [Boston Univ., MA (United States)

    1995-08-01

    SiC based ceramics have been identified as the leading candidate materials for elevated temperature applications in harsh oxidation/corrosion environments. It has been established that a protective coating can be effectively used to avoid problems with excessive oxidation and hot corrosion. However, to date, no coating configuration has been developed that can satisfy the stringent requirements imposed by such applications. Chemical Vapor Deposited (CVD) mullite coatings due to their desirable properties of toughness, corrosion resistance, and a good coefficient of thermal expansion match with SiC are being investigated as a potential candidate. Since mullite has never been successfully grown via CVD, the thermodynamics and kinetics of its formation were initially established and used as a guideline in determining the initial process conditions. Process optimization was carried out using an iterative process of theoretical analysis and experimental work coupled with characterization and testing. The results of theoretical analysis and the CVD formation characteristics of mullite are presented.

  4. Coating of tips for electrochemical scanning tunneling microscopy by means of silicon, magnesium, and tungsten oxides.

    Science.gov (United States)

    Salerno, Marco

    2010-09-01

    Different combinations of metal tips and oxide coatings have been tested for possible operation in electrochemical scanning tunneling microscopy. Silicon and magnesium oxides have been thermally evaporated onto gold and platinum-iridium tips, respectively. Two different thickness values have been explored for both materials, namely, 40 and 120 nm for silicon oxide and 20 and 60 nm for magnesium oxide. Alternatively, tungsten oxide has been grown on tungsten tips via electrochemical anodization. In the latter case, to seek optimal results we have varied the pH of the anodizing electrolyte between one and four. The oxide coated tips have been first inspected by means of scanning electron microscopy equipped with microanalysis to determine the morphological results of the coating. Second, the coated tips have been electrically characterized ex situ for stability in time by means of cyclic voltammetry in 1 M aqueous KCl supporting electrolyte, both bare and supplemented with K(3)[Fe(CN)(6)] complex at 10 mM concentration in milliQ water as an analyte. Only the tungsten oxide coated tungsten tips have shown stable electrical behavior in the electrolyte. For these tips, the uncoated metal area has been estimated from the electrical current levels, and they have been successfully tested by imaging a gold grating in situ, which provided stable results for several hours. The successful tungsten oxide coating obtained at pH=4 has been assigned to the WO(3) form.

  5. Interface coatings for Carbon and Silicon Carbide Fibers in Silicon Carbide Matrixes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Interface coatings for fiber-reinforced composites are an enabling technology for high temperature ceramic matrix composites. Because of their availability and...

  6. Mechanical measurements on lithium phosphorous oxynitride coated silicon thin film electrodes for lithium-ion batteries during lithiation and delithiation

    Science.gov (United States)

    Al-Obeidi, Ahmed; Kramer, Dominik; Boles, Steven T.; Mönig, Reiner; Thompson, Carl V.

    2016-08-01

    The development of large stresses during lithiation and delithiation drives mechanical and chemical degradation processes (cracking and electrolyte decomposition) in thin film silicon anodes that complicate the study of normal electrochemical and mechanical processes. To reduce these effects, lithium phosphorous oxynitride (LiPON) coatings were applied to silicon thin film electrodes. Applying a LiPON coating has two purposes. First, the coating acts as a stable artificial solid electrolyte interphase. Second, it limits mechanical degradation by retaining the electrode's planar morphology during cycling. The development of stress in LiPON-coated electrodes was monitored using substrate curvature measurements. LiPON-coated electrodes displayed highly reproducible cycle-to-cycle behavior, unlike uncoated electrodes which had poorer coulombic efficiency and exhibited a continual loss in stress magnitude with continued cycling due to film fracture. The improved mechanical stability of the coated silicon electrodes allowed for a better investigation of rate effects and variations of mechanical properties during electrochemical cycling.

  7. Thermal conductivity of titanium aluminum silicon nitride coatings deposited by lateral rotating cathode arc

    Energy Technology Data Exchange (ETDEWEB)

    Samani, M.K., E-mail: majid1@e.ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); CINTRA-CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553 (Singapore); Ding, X.Z. [Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Amini, S. [School of Materials Science and Engineering. Nanyang Technological University, 50 Nanyang Avenue, Singapore (Singapore); Khosravian, N.; Cheong, J.Y. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Chen, G. [BC Photonics Technological Company, 5255 Woodwards Rd., Richmond, BC V7E 1G9 (Canada); Tay, B.K. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); CINTRA-CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553 (Singapore)

    2013-06-30

    A series of physical vapour deposition titanium aluminum silicon nitride nanocomposite coating with a different (Al + Si)/Ti atomic ratio, with a thickness of around 2.5 μm were deposited on stainless steel substrate by a lateral rotating cathode arc process in a flowing nitrogen atmosphere. The composition and microstructure of the as-deposited coatings were analyzed by energy dispersive X-ray spectroscopy, and X-ray diffraction, and cross-sectional scanning electron microscopy observation. The titanium nitride (TiN) coating shows a clear columnar structure with a predominant (111) preferential orientation. With the incorporation of Al and Si, the crystallite size in the coatings decreased gradually, and the columnar structure and (111) preferred orientation disappeared. Thermal conductivity of the as-deposited coating samples at room temperature was measured by using pulsed photothermal reflectance technique. Thermal conductivity of the pure TiN coating is about 11.9 W/mK. With increasing the (Al + Si)/Ti atomic ratio, the coatings' thermal conductivity decreased monotonously. This reduction of thermal conductivity could be ascribed to the variation of coatings' microstructure, including the decrease of grain size and the resultant increase of grain boundaries, the disruption of columnar structure, and the reduced preferential orientation. - Highlights: • A series of titanium aluminum silicon nitride with different (Al + Si)/Ti atomic ratio were deposited on Fe304. • The composition and microstructure of the as-deposited coatings were analyzed. • Thermal conductivity of the samples was measured by pulsed photothermal reflectance. • With increasing the (Al + Si)/Ti atomic ratio, thermal conductivity decreased. • Reduction of thermal conductivity is ascribed to the variation of its microstructure.

  8. Structural and emission properties of Tb3+-doped nitrogen-rich silicon oxynitride films

    Science.gov (United States)

    Labbé, C.; An, Y.-T.; Zatryb, G.; Portier, X.; Podhorodecki, A.; Marie, P.; Frilay, C.; Cardin, J.; Gourbilleau, F.

    2017-03-01

    Terbium doped silicon oxynitride host matrix is suitable for various applications such as light emitters compatible with CMOS technology or frequency converter systems for photovoltaic cells. In this study, amorphous Tb3+ ion doped nitrogen-rich silicon oxynitride (NRSON) thin films were fabricated using a reactive magnetron co-sputtering method, with various N2 flows and annealing conditions, in order to study their structural and emission properties. Rutherford backscattering (RBS) measurements and refractive index values confirmed the silicon oxynitride nature of the films. An electron microscopy analysis conducted for different annealing temperatures (T A) was also performed up to 1200 °C. Transmission electron microscopy (TEM) images revealed two different sublayers. The top layer showed porosities coming from a degassing of oxygen during deposition and annealing, while in the region close to the substrate, a multilayer-like structure of SiO2 and Si3N4 phases appeared, involving a spinodal decomposition. Upon a 1200 °C annealing treatment, a significant density of Tb clusters was detected, indicating a higher thermal threshold of rare earth (RE) clusterization in comparison to the silicon oxide matrix. With an opposite variation of the N2 flow during the deposition, the nitrogen excess parameter (Nex) estimated by RBS measurements was introduced to investigate the Fourier transform infrared (FTIR) spectrum behavior and emission properties. Different vibration modes of the Si-N and Si-O bonds have been carefully identified from the FTIR spectra characterizing such host matrices, especially the ‘out-of-phase’ stretching vibration mode of the Si-O bond. The highest Tb3+ photoluminescence (PL) intensity was obtained by optimizing the N incorporation and the annealing conditions. In addition, according to these conditions, the integrated PL intensity variation confirmed that the silicon nitride-based host matrix had a higher thermal threshold of rare earth

  9. The Synthesis and Structural Properties of Crystalline Silicon Quantum Dots upon Thermal Annealing of Hydrogenated Amorphous Si-Rich Silicon Carbide Films

    Science.gov (United States)

    Wen, Guozhi; Zeng, Xiangbin; Li, Xianghu

    2016-08-01

    Silicon quantum dots (QDs) embedded in non-stoichiometric hydrogenated silicon carbide (SiC:H) thin films have been successfully synthesized by plasma-enhanced chemical vapor deposition and post-annealing. The chemical composition analyses have been carried out by x-ray photoelectron spectroscopy (XPS). The bonding configurations have been deduced from Fourier transform infrared absorption measurements (FTIR). The evolution of microstructure with temperature has been characterized by glancing incident x-ray diffraction (XRD) and Raman diffraction spectroscopy. XPS and FTIR show that it is in Si-rich feature and there are a few hydrogenated silicon clusters in the as-grown sample. XRD and Raman diffraction spectroscopy show that it is in amorphous for the as-grown sample, while crystalline silicon QDs have been synthesized in the 900°C annealed sample. Silicon atoms precipitation from the SiC matrix or silicon phase transition from amorphous SiC is enhanced with annealing temperature increase. The average sizes of silicon QDs are about 5.1 nm and 5.6 nm, the number densities are as high as 1.7 × 1012 cm-2 and 3.2 × 1012 cm-2, and the crystalline volume fractions are about 58.3% and 61.3% for the 900°C and 1050°C annealed samples, respectively. These structural properties analyses provide an understanding about the synthesis of silicon QDs upon thermal annealing for applications in next generation optoelectronic and photovoltaic devices.

  10. Thermodynamic Calculations of Melt in Melt Pool During Laser Cladding High Silicon Coatings

    Institute of Scientific and Technical Information of China (English)

    DONG Dan-yang; LIU Chang-sheng; ZHANG Bin

    2008-01-01

    Based on the Miedema's formation heat model for binary alloys and the Toop's asymmetric model for terna-ry alloys, the formation heat, excess entropy, and activity coefficients of silicon ranging from 1 900 K to 4 100 K in the Fe-Si-C melt formed during the laser cladding high silicon coatings process were calculated. The results indicated that all values of InγOSi, εCSi, ρSiSi and ρCSi are negative in the temperature range and these values increase as the tempera-ture increases. And all values of εSiSi and ρSi-CSi are positive and these values decrease with increasing temperature. The iso-activity lines of silicon are distributed axisymmetrically to the incident laser beam in the melt pool vertical to the laser scanning direction. And the iso-activity lines of silicon in the front of the melt pool along the laser scanning direction are more intensive than those in the back of the melt pool. The activity of silicon on the bottom of the melt pool is lower than that in the effecting center of laser beam on the top surface of the melt pool and it may be the im-portant reason for the formation of the silicides and excellent metallurgical bonding between the laser cladding coating and the substrate.

  11. Surface-coating regulated lithiation kinetics and degradation in silicon nanowires for lithium ion battery.

    Science.gov (United States)

    Luo, Langli; Yang, Hui; Yan, Pengfei; Travis, Jonathan J; Lee, Younghee; Liu, Nian; Piper, Daniela Molina; Lee, Se-Hee; Zhao, Peng; George, Steven M; Zhang, Ji-Guang; Cui, Yi; Zhang, Sulin; Ban, Chunmei; Wang, Chong-Min

    2015-05-26

    Silicon (Si)-based materials hold promise as the next-generation anodes for high-energy lithium (Li)-ion batteries. Enormous research efforts have been undertaken to mitigate the chemo-mechanical failure due to the large volume changes of Si during lithiation and delithiation cycles. It has been found that nanostructured Si coated with carbon or other functional materials can lead to significantly improved cyclability. However, the underlying mechanism and comparative performance of different coatings remain poorly understood. Herein, using in situ transmission electron microscopy (TEM) through a nanoscale half-cell battery, in combination with chemo-mechanical simulation, we explored the effect of thin (∼5 nm) alucone and Al2O3 coatings on the lithiation kinetics of Si nanowires (SiNWs). We observed that the alucone coating leads to a "V-shaped" lithiation front of the SiNWs, while the Al2O3 coating yields an "H-shaped" lithiation front. These observations indicate that the difference between the Li surface diffusivity and bulk lithiation rate of the coatings dictates lithiation induced morphological evolution in the nanowires. Our experiments also indicate that the reaction rate in the coating layer can be the limiting step for lithiation and therefore critically influences the rate performance of the battery. Further, the failure mechanism of the Al2O3 coated SiNWs was also explored. Our studies shed light on the design of high capacity, high rate and long cycle life Li-ion batteries.

  12. Surface-Coating Regulated Lithiation Kinetics and Degradation in Silicon Nanowires for Lithium Ion Battery

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Langli; Yang, Hui; Yan, Pengfei; Travis, Jonathan J.; Lee, Younghee; Liu, Nian; Piper, Daniela M.; Lee, Se-Hee; Zhao, Peng; George, Steven M.; Zhang, Jiguang; Cui, Yi; Zhang, Sulin; Ban, Chunmei; Wang, Chong M.

    2015-05-26

    Silicon (Si)-based materials hold promise as the next-generation anodes for high-energy lithium (Li)-ion batteries. Enormous research efforts have been undertaken to mitigate the chemo-mechanical failure due to the large volume changes of Si during lithiation and delithiation cycles. It has been found nanostructured Si coated with carbon or other functional materials can lead to significantly improved cyclability. However, the underlying mechanism and comparative performance of different coatings remain poorly understood. Herein, using in situ transmission electron microscopy (TEM) through a nanoscale half-cell battery, in combination with chemo-mechanical simulation, we explored the effect of thin (~5 nm) alucone and Al2O3 coatings on the lithiation kinetics of Si nanowires (SiNWs). We observed that the alucone coating leads to a “V-shaped” lithiation front of the SiNWs , while the Al2O3 coating yields an “H-shaped” lithiation front. These observations indicate that the difference between the Li surface diffusivity and bulk diffusivity of the coatings dictates lithiation induced morphological evolution in the nanowires. Our experiments also indicate that the reaction rate in the coating layer can be the limiting step for lithiation and therefore critically influences the rate performance of the battery. Further, the failure mechanism of the Al2O3 coated SiNWs was also explored. Our studies shed light on the design of high capacity, high rate and long cycle life Li-ion batteries.

  13. Simulation and experimental study of CVD process for low temperature nanocrystalline silicon carbide coating

    Energy Technology Data Exchange (ETDEWEB)

    Kaushal, Amit; Prakash, Jyoti, E-mail: jprakash@barc.gov.in; Dasgupta, Kinshuk; Chakravartty, Jayanta K.

    2016-07-15

    Highlights: • Parametric simulation was carried out for specially designed CVD reactor. • Effect of fluid velocity, heat flow and concentration were studied in CVD reactor. • Coating study carried out using low temperature and environmental safe CVD process. • Dense and uniform nanocrystalline SiC film was coated on zircaloy substrate. - Abstract: There is a huge requirement for development of a coating technique in nuclear industry, which is environmentally safe, economical and applicable to large scale components. In this view, simulation of gas-phase behavior in specially designed CVD reactor was carried out using computational tool, COMSOL. There were two important zones in CVD reactor first one is precursor vaporization zone and second one is coating zone. Optimized parameters for coating were derived from the simulation of gas phase dynamics in both zone of CVD reactor. The overall effect of fluid velocity, heat flow and concentration profile showed that Re = 54 is the optimum reaction condition for uniform coating in CVD system. In CVD coating experiments a synthesized halogen free, non-toxic and non-corrosive silicon carbide precursor was used. Uniform coating of SiC was obtained on zircaloy substrate at 900 °C using as synthesized organosilicon precursor. The X-ray diffraction and scanning electron microscopy analysis show that dense nano crystalline SiC film was deposited on zircaloy substrate.

  14. Development and characterization of coatings on silicon pore optics substrates for the ATHENA Mission

    Science.gov (United States)

    Ferreira, Desiree Della Monica; Jakobsen, Anders C.; Christensen, Finn E.; Shortt, Brian J.; Krumrey, Michael; Garnæs, Jørgen; Simonsen, Ronni B.

    2012-09-01

    We present description and results of the test campaign performed on Silicon Pore Optics (SPO) samples to be used on the ATHENA mission. We perform a pre-coating characterization of the substrates using Atomic Force Microscopy (AFM), X-ray Re ectometry (XRR) and scatter measurements. X-ray tests at DTU Space and correlation between measured roughness and pre-coating characterization are reported. For coating development, a layer of Cr was applied underneath the Ir/B4C bi-layer with the goal of reducing stress, and the use of N2 during the coating process was tested in order to reduce the surface roughness in the coatings. Both processes show promising results. Measurements of the coatings were carried out at the 8 keV X-ray facility at DTU Space and with synchrotron radiation in the laboratory of PTB at BESSY II to determine re ectivity at the grazing incidence angles and energies of ATHENA. Coating development also included a W/Si multilayer coating. We present preliminary results on X-ray Re ectometry and Cross-sectional Transmission Electron Microscopy (TEM) of the W/Si multilayer.

  15. High durability antireflection coatings for silicon and multispectral ZnS

    Science.gov (United States)

    Joseph, Shay; Marcovitch, Orna; Yadin, Ygal; Klaiman, Dror; Koren, Nitzan; Zipin, Hedva

    2007-04-01

    In the current complex battle field, military platforms are required to operate on land, at sea and in the air in all weather conditions both day and night. In order to achieve such capabilities, advanced electro-optical systems are being constantly developed and improved. These systems such as missile seeker heads, reconnaissance and target acquisition pods and tracking, monitoring and alert systems have external optical components (window or dome) which must remain operational even at extreme environmental conditions. Depending on the intended use of the system, there are a few choices of window and dome materials. Amongst the more common materials one can point out sapphire, ZnS, germanium and silicon. Other materials such as spinel, ALON and yittria may also be considered. Most infrared materials have high indices of refraction and therefore they reflect a large part of radiation. To minimize the reflection and increase the transmission, antireflection (AR) coatings are the most common choice. Since these systems operate at different environments and weather conditions, the coatings must be made durable to withstand these extreme conditions. In cases where the window or dome is made of relatively soft materials such as multispectral ZnS, the coating may also serve as protection for the window or dome. In this work, several antireflection coatings have been designed and manufactured for silicon and multispectral ZnS. The coating materials were chosen to be either oxides or fluorides which are known to have high durability. Ellipsometry measurements were used to characterize the optical constants of the thin films. The effects of the deposition conditions on the optical constants of the deposited thin films and durability of the coatings will be discussed. The coatings were tested according to MIL-STD-810E and were also subjected to rain erosion tests at the University of Dayton Research Institute (UDRI) whirling arm apparatus in which one of the coatings showed

  16. Electrophoretic deposition of a bioactive Si, Ca-rich glass coating on 316L stainless steel for biomedical applications

    Directory of Open Access Journals (Sweden)

    H. H. Rodríguez

    2011-12-01

    Full Text Available This work consisted in the development and characterization of a vitroceramic coating on 316L stainless steel bymeans of electrophoretic deposition (EPD. This vitroceramic coating was obtained through a Si-, Ca-rich glas coating crystallization. The electrophoretic deposition tests were performed on 316L stainless steel mechanically polished substrates. The results suggest that the electrophoretic coatings adhered well to the metallic surfaces. Theresults demonstrate that the crystallized coatings are potentially bioactive, because a dense and homogeneous apatite layer, similar to a bone, makes up.

  17. An advance process of aluminum rich coating as tritium permeation barrier on 321 steel workpiece

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G.K., E-mail: Guikaizhang712@163.com [China Academy of Engineering Physics, Mianyang, 621900 (China) and College of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026 (China); Chen, C.A.; Luo, D.L. [China Academy of Engineering Physics, Mianyang, 621900 (China); Wang, X.L. [China Academy of Engineering Physics, Mianyang, 621900 (China); College of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer An advance process of tritium permeation barrier was applied to 321 steel workpiece. Black-Right-Pointing-Pointer Tritium permeation barrier consisted of an outer Al{sub 2}O{sub 3} layer and an inner FeAl alloy layer. Black-Right-Pointing-Pointer Deuterium permeation reduction factor of coated piece increased by 2 orders of magnitude. Black-Right-Pointing-Pointer Tritium permeation barriers were flexibly achieved in high reproducibility. - Abstract: We have proposed an advance three-step process, Al-electroplating in ionic liquid followed by heat treating and selectively oxidation, preparing aluminum rich coating as tritium permeation barrier (TPB). In present work, the advance process was applied to 321 steel workpieces. In the Al-electroplating, pieces were coated by galvanostatic electrodeposition at 20 mA/cm{sup 2} in aluminum chloride (AlCl{sub 3})-1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid. The Al coating on those pieces all displayed attractive brightness and well adhered to surface of pieces. Within the aluminizing time from 1 to 30 h, a series of experiments were carried out to aluminize 321 steel pieces with Al 20 {mu}m coating at 700 Degree-Sign C. After heat treated for 8 h, a 30 {mu}m thick aluminized coating on piece appeared homogeneous, free of porosity, and mainly consisted of (Fe, Cr, Ni)Al{sub 2}, and then was selectively oxidized in argon gas at 700 Degree-Sign C for 50 h to form Al{sub 2}O{sub 3} scale. The finally fabricated aluminum rich coating, without any visible defects, had a double-layered structure consisting of an outer {gamma}-Al{sub 2}O{sub 3} layer with thickness of 0.2 {mu}m and inner (Fe, Cr, Ni)Al/(Fe, Cr, Ni){sub 3}Al layer of 50 {mu}m thickness. The deuterium permeation reduction factor, PRF, of piece ({Phi} 80 Multiplication-Sign 2, L 150 mm) with such coating increased by 2 orders of magnitude at 600-727 Degree-Sign C. The reproducibility of the process was also showed.

  18. Formation of silicon nanoislands on crystalline silicon substrates by thermal annealing of silicon rich oxide deposited by low pressure chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhenrui [Department of Electronics, INAOE, Apartado 51, Puebla, Puebla 72000 (Mexico); Aceves-Mijares, Mariano [Department of Electronics, INAOE, Apartado 51, Puebla, Puebla 72000 (Mexico); Luna-Lopez, A [Department of Electronics, INAOE, Apartado 51, Puebla, Puebla 72000 (Mexico); Du Jinhui [College of Material Science and Chemistry Engineering, Tianjin Polytechnical University (China); Bian Dongcai [College of Material Science and Chemistry Engineering, Tianjin Polytechnical University (China)

    2006-10-14

    We report the preparation and characterization of Si nanoislands grown on a c-Si substrate by thermal annealing of silicon-rich oxide (SRO) films deposited using a conventional low pressure chemical vapour deposition (LPCVD) technique. Transmission electron microscopy revealed that a high density of Si nanoislands was formed on the surface of the c-Si substrate during thermal annealing. The nanoislands are nanocrystallites with the same crystal orientation as the substrate. The strain at the c-Si/SRO interface is probably the main reason for the nucleation of the self-assembled Si nanoislands that epitaxially grow on the c-Si substrate. The proposed method is very simple and compatible with Si integrated circuit technology.

  19. Nested potassium hydroxide etching and protective coatings for silicon-based microreactors

    Science.gov (United States)

    de Mas, Nuria; Schmidt, Martin A.; Jensen, Klavs F.

    2014-03-01

    We have developed a multilayer, multichannel silicon-based microreactor that uses elemental fluorine as a reagent and generates hydrogen fluoride as a byproduct. Nested potassium hydroxide etching (using silicon nitride and silicon oxide as masking materials) was developed to create a large number of channels (60 reaction channels connected to individual gas and liquid distributors) of significantly different depths (50-650 µm) with sloped walls (54.7° with respect to the (1 0 0) wafer surface) and precise control over their geometry. The wetted areas were coated with thermally grown silicon oxide and electron-beam evaporated nickel films to protect them from the corrosive fluorination environment. Up to four Pyrex layers were anodically bonded to three silicon layers in a total of six bonding steps to cap the microchannels and stack the reaction layers. The average pinhole density in as-evaporated films was 3 holes cm-2. Heating during anodic bonding (up to 350 °C for 4 min) did not significantly alter the film composition. Upon fluorine exposure, nickel films (160 nm thick) deposited on an adhesion layer of Cr (10 nm) over an oxidized silicon substrate (up to 500 nm thick SiO2) led to the formation of a nickel fluoride passivation layer. This microreactor was used to investigate direct fluorinations at room temperature over several hours without visible signs of film erosion.

  20. Silicon Carbide/Boron Nitride Dual In-Line Coating of Silicon Carbide Fiber Tows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will demonstrate monolayer and dual layer coating of SiC fiber by leveraging Laser Chemical Vapor Deposition techniques developed by Free...

  1. Reducing The Light Reflected by Silicon Surface Using ZnO/TS Antireflection Coating

    Science.gov (United States)

    Suhandi, Andi; Tayubi, Yuyu R.; Wibowo, Firmanul C.; Arifin, Pepen; Supriyatman

    2017-07-01

    Zinc Oxide (ZnO) thin films was coated on a texturized silicon (TS) surface using a spincoating technique. The TS layer was prepared by a wet etching method using 20 % KOH solution at temperature of 80°C for 5 minutes. To prepared precursor solution for ZnO layer, zinc acetate dehydrate, 2-methoxyethanol and monoethanolamine are used as a starting material, solvent and stabilizer, respectively. The XRD and SEM measurements confirmed that the thin films grown by spincoating technique have a single oriented crystal plane and homogenous surfaces. From photoluminescence measurement found that the optical band gap of grown films to be 3.44 eV. The optical reflectance of the grown films is characterized by UV-VIS spectrometry show that the presence of anti-reflection coating ZnO/TS is proven to reduce the reflection of solar radiation by silicon surface significantly.

  2. Spreading Behaviour of Silicone Oil and Glycerol Drops on Coated Papers

    Directory of Open Access Journals (Sweden)

    Mohammad Ilyas KHAN

    2009-07-01

    Full Text Available The effect of physical properties represented by viscosity and surface tension of liquid spreading on coated papers was investigated. Two substrates of different surface roughness were used to study the spreading behaviour of silicon oil and glycerine/water solutions in terms of contact angle, wetted drop base area and drop height as a function of time. The liquid spreading on coated papers was found to vary depending on the liquid physical properties. Liquids with lower surface tension (silicon oil and viscosity prevailed better wettability and vice versa. High surface roughness reduced the liquid spreading. Despite being traditionally used as a wetting indicator, contact angles were found to be insufficient to evaluate the spreading of liquids on these substrates. Hence, other parameters such as drop base area and drop height should also be considered.

  3. Enhanced Microwave Absorption Properties of Carbon Black/Silicone Rubber Coating by Frequency-Selective Surface

    Science.gov (United States)

    Yang, Zhaoning; Luo, Fa; Gao, Lu; Qing, Yuchang; Zhou, Wancheng; Zhu, Dongmei

    2016-10-01

    A square frequency-selective surface (FSS) design has been employed to improve the microwave absorption properties of carbon black/silicone rubber (CBSR) composite coating. The FSS is placed on the surface of the CBSR coating. The effects of FSS design parameters on the microwave absorption properties of the CBSR coating have been investigated, including the size and period of the FSS design, and the thickness and permittivity of the coating. Simulation results indicate that the absorption peak for the CBSR coating alone is related to its thickness and electromagnetic parameters, while the combination of the CBSR coating with a FSS can exhibit a new absorption peak in the reflection curve; the frequency of the new absorption peak is determined by the resonance of the square FSS design and tightly depends on the size of the squares, with larger squares in the FSS design leading to a lower frequency of the new absorption peak. The enhancement of the absorption performance depends on achievement of a new absorption peak using a suitable size and period of the FSS design. In addition, the FSS design has a stable frequency response for both transverse electromagnetic (TE) and transverse magnetic (TM) polarizations as the incident angle varies from 0° to 40°. The optimized results indicate that the bandwidth with reflection loss below -5 dB can encompass the whole frequency range from 8 GHz to 18 GHz for thickness of the CBSR coating of only 1.8 mm. The simulation results are confirmed by experiments.

  4. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    Science.gov (United States)

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application.

  5. Near-Field Radiative Heat Transfer between Metamaterials coated with Silicon Carbide Film

    OpenAIRE

    Basu, Soumyadipta; YANG, YUE; Wang, Liping

    2014-01-01

    In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC.By careful tuning of the optical properties of metamaterial it is possible to excite electrical and magnetic resonance for the meta...

  6. Preparation and Characterization of Carbon Coated Silicon Nanoparticle as Anode Material for Li-ion Batteries

    Institute of Scientific and Technical Information of China (English)

    T. Zhancg; L.J. Fu; J. Gao; Y. P. Wu; H.Q. Wu

    2005-01-01

    @@ 1Introduction Silicon has been regarded as one of the most promising anode materials for Li-ion batteries. Its theoretical capacity (4 000 mAh/g) is much higher than that of the commercialized graphite (372 mAh/g)[1]. However,the cycle performance of silicon is poor due to the severe volume expansion and shrinkage during Li+ insertion/extraction which results in pulverization of Si particles, eventually losing its Li+ storage ability[2]. To solve this problem, nanosized Si particles were utilized and achieved a partial improvement by reducing the absolute volume change. Nevertheless, a new problem was encountered with nanosized material that small Si particles were aggregated to be larger one during Li+ insertion/extraction, and then pulverized again[3]. In this work, we have succeeded to improve the cycle performance of nanosized Si particles by synthesis of carbon coated silicon nanoparticle.

  7. Cytotoxicity control of silicon nanoparticles by biopolymer coating and ultrasound irradiation for cancer theranostic applications

    Science.gov (United States)

    Sviridov, A. P.; Osminkina, L. A.; Kharin, A. Yu; Gongalsky, M. B.; Kargina, J. V.; Kudryavtsev, A. A.; Bezsudnova, Yu I.; Perova, T. S.; Geloen, A.; Lysenko, V.; Timoshenko, V. Yu

    2017-03-01

    Silicon nanoparticles (SiNPs) prepared by mechanical grinding of luminescent porous silicon were coated with a biopolymer (dextran) and investigated as a potential theranostic agent for bioimaging and sonodynamic therapy. Transmission electron microscopy, photoluminescence and Raman scattering measurements of dextran-coated SiNPs gave evidence of their enhanced stability in water. In vitro experiments confirmed the lower cytotoxicity of the dextran-coated NPs in comparison with uncoated ones, especially for high concentrations of about 2 mg ml-1. Efficient uptake of the NPs by cancer cells was found using bioimaging in the optical transmittance and photoluminescence modes. Treatment of the cells with uptaken SiNPs by therapeutic ultrasound for 5-20 min resulted in a strong decrease in the number of living cells, while the total number of cells remained nearly unchanged. The obtained data indicate a ‘mild’ effect of the combined action of ultrasonic irradiation and SiNPs on cancer cells. The observed results reveal new opportunities for controlling the photoluminescent and sonosensitizing properties of silicon-based NPs for applications in the diagnostics and mild therapy of cancer.

  8. Phase Separation of Silicon-Containing Polymer/Polystyrene Blends in Spin-Coated Films.

    Science.gov (United States)

    Li, Yang; Hu, Kai; Han, Xiao; Yang, Qinyu; Xiong, Yifeng; Bai, Yuhang; Guo, Xu; Cui, Yushuang; Yuan, Changsheng; Ge, Haixiong; Chen, Yanfeng

    2016-04-19

    In this Article, two readily available polymers that contain silicon and have different surface tensions, polydimethylsiloxane (PDMS) and polyphenylsilsequioxane (PPSQ), were used to produce polymer blends with polystyrene (PS). Spin-coated thin films of the polymer blends were treated by O2 reactive-ion etching (RIE). The PS constituent was selectively removed by O2 RIE, whereas the silicon-containing phase remained because of the high etching resistance of silicon. This selective removal of PS substantially enhanced the contrast of the phase separation morphologies for better scanning electron microscope (SEM) and atomic force microscope (AFM) measurements. We investigated the effects of the silicon-containing constituents, polymer blend composition, concentration of the polymer blend solution, surface tension of the substrate, and the spin-coating speed on the ultimate morphologies of phase separation. The average domain size, ranging from 100 nm to 10 μm, was tuned through an interplay of these factors. In addition, the polymer blend film was formed on a pure organic layer, through which the aspect ratio of the phase separation morphologies was further amplified by a selective etching process. The formed nanostructures are compatible with existing nanofabrication techniques for pattern transfer onto substrates.

  9. Robust superhydrophobic silicon without a low surface-energy hydrophobic coating.

    Science.gov (United States)

    Hoshian, Sasha; Jokinen, Ville; Somerkivi, Villeseveri; Lokanathan, Arcot R; Franssila, Sami

    2015-01-14

    Superhydrophobic surfaces without low surface-energy (hydrophobic) modification such as silanization or (fluoro)polymer coatings are crucial for water-repellent applications that need to survive under harsh UV or IR exposures and mechanical abrasion. In this work, robust low-hysteresis superhydrophobic surfaces are demonstrated using a novel hierarchical silicon structure without a low surface-energy coating. The proposed geometry produces superhydrophobicity out of silicon that is naturally hydrophilic. The structure is composed of collapsed silicon nanowires on top and bottom of T-shaped micropillars. Collapsed silicon nanowires cause superhydrophobicity due to nanoscale air pockets trapped below them. T-shaped micropillars significantly decrease the water contact angle hysteresis because microscale air pockets are trapped between them and can not easily escape. Robustness is studied under mechanical polishing, high-energy photoexposure, high temperature, high-pressure water shower, and different acidic and solvent environments. Mechanical abrasion damages the nanowires on top of micropillars, but those at the bottom survive. Small increase of hysteresis is seen, but the surface is still superhydrophobic after abrasion.

  10. Dust formation in carbon-rich Wolf-Rayet stars I. Chemistry of small carbon clusters and silicon species

    NARCIS (Netherlands)

    Cherchneff, [No Value; Le Teuff, YH; Williams, PM; Tielens, AGGM

    2000-01-01

    The formation of small carbon chains and molecular precursors to silicon carbide grains is investigated in the hot, hostile environment of carbon-rich Wolf-Rayet (WC) winds. We consider only WC stars which produce dust on a continuous basis and develop for the first time non-equilibrium, chemical ki

  11. Hydrophobic and ice-retarding properties of doped silicone rubber coatings

    Energy Technology Data Exchange (ETDEWEB)

    Arianpour, F., E-mail: faranak.arianpour@uqac.ca [CIGELE/ENGIVRE, Universite du Quebec a Chicoutimi, 555 University blvd., Saguenay, PQ, G7H 2B1 (Canada); Farzaneh, M. [CIGELE/ENGIVRE, Universite du Quebec a Chicoutimi, 555 University blvd., Saguenay, PQ, G7H 2B1 (Canada); Kulinich, S.A. [Department of Applied Sciences, University of Quebec, 555 University blvd., Saguenay, PQ, G7H 2B1 (Canada)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Superhydrophobic coatings were prepared of silicone rubber doped with different nanoparticles. Black-Right-Pointing-Pointer Freezing of small water droplets on different hydrophobic surfaces was followed. Black-Right-Pointing-Pointer A correlation between surface wetting hysteresis and faster freezing of water was observed. - Abstract: In this study, room-temperature vulcanized silicone rubber coatings were prepared by spin-coating hexane-diluted suspensions onto aluminum substrates. Various amounts of carbon-black, titania or ceria nanopowders were incorporated to the coatings as dopants in order to modify their surface roughness, hydrophobic and electrical properties. By changing deposition parameters, superhydrophobic surfaces could be prepared. The freezing behavior of small water droplets was investigated on nanostructured composite surfaces exhibiting different values of wetting hysteresis and was compared with that on uncoated polished aluminum. At approximately -15 Degree-Sign C, the water droplets were found to freeze on polished aluminum after approximately 5 s, while their freezing was delayed to as long as {approx}12-13 min on superhydrophobic nanocomposite surfaces doped with ceria or titania powders. Correlations between the wetting hysteresis (and surface roughness) of the samples and freezing time of water droplets on their surfaces were also observed. Icing tests demonstrated delayed ice formation and lower adhesion strength on superhydrophobic samples with small wetting hysteresis.

  12. Heat Resistance of Epoxy-modified Silicone/Al-Sm2O3 Composite Coatings

    Directory of Open Access Journals (Sweden)

    ZHANG Weigang

    2017-04-01

    Full Text Available Epoxy-modified silicone/Al-Sm2O3 composite coatings with epoxy-modified silicone and Al & Sm2O3 as adhesives and pigments were prepared through spraying method. The effect of heat treatment temperature and heat treatment time on the appearance, microstructure, near-infrared reflectivity, infrared emissivity and mechanical properties of the coating were systematically investigated. The results indicate that after heat treatment at 300 ℃ with 5 h, the appearance and microstructure of the coatings remain unchanged, and the emissivity and near-infrared reflectivity at 1.06 μm are as low as 0.607 and 64.7% respectively; hardness, adhesion strength, and impact strength are maintained at 4 H, 1 grade and 50 kg·cm respectively. After heat treatment at 250 ℃ with 100 h, the appearance and microstructure of the coatings remain unchanged, and the emissivity and near-infrared reflectivity at 1.06 μm are as low as 0.624 and 67.1% respectively; hardness, adhesion strength and impact strength are maintained at 4 H, 1 grade and 50 kg·cm respectively.

  13. Enhanced Performance of Osteoblasts by Silicon Incorporated Porous TiO2 Coating

    Institute of Scientific and Technical Information of China (English)

    Quanming Wang; Hongjie Hu; Yuqing Qiao; Zhengxiang Zheng; Junying Sun

    2012-01-01

    Silicon (Si) incorporated porous TiO2 coating (Si-TiO2) prepared on titanium (Ti) by micro-arc oxidation (MAO) technique was demonstrated to be cytocompatible in previous studies. In view of the potential clinical applications, a detailed in vitro study of the biological activity of Si-Ti02 coating, in terms of osteoblast (MC3T3-EI cells) morphology, proliferation, differentiation and mineralization was performed. Immunofluo- rescent staining indicated that cells seeded on the Si-TiO2 coating showed improved adhesion with developing mature cytoskeletons, which contained numerous distinct and well-defined actin stress fibers in the cell mem- branes compared with those on the Ti02 coating and Ti plate. Results from proliferation assay showed that the proliferation rate of cells seeded on the Si-TiO2coating was significantly faster than that on the TiO2 coating and Ti plate. Furthermore, the analysis of osteogenic gene expression demonstrated that the Si-Ti02 coating stimulated the expression of osteoblast-related genes and promoted differentiation and mineralization of MC3T3-EI cells. In addition, the Si-TiO2 coating differentially regulated Wnt signaling pathway by up-regulating the expression of low-density lipoprotein (LDL) receptor-related protein 5 (LrpS), and downregulating the expression of Dickkopf-1 (Dkkl). All together, these results indicate that the investigated titanium with Si-TiO2 coating is biocompatible and a good candidate material used as implants.

  14. Preparation of silver-coated glass frit and its application in silicon solar cells

    Science.gov (United States)

    Feng, Xiang; Biyuan, Li; Yingfen, Li; Jian, Zhou; Weiping, Gan

    2016-07-01

    A simple electroless plating process was employed to prepare silver-coated glass frits for solar cells. The surface of the glass frits was modified with polyvinyl-pyrrolidone (PVP) before the electroless plating process. Infrared (IR) spectroscopy, field emission scanning electron microscopy (FESEM), and x-ray diffraction (XRD) were used to characterize the PVP modified glass frits and investigate the mechanism of the modification process. It was found that the PVP molecules adsorbed on the glass frit surface and reduced the silver ions to the silver nanoparticles. Through epitaxial growth, these nanoparticles were uniformly deposited onto the surface of the glass frit. Silicon solar cells with this novel silver coating exhibited a photoelectric conversion efficiency increase of 0.33%. Compared with the electroless plating processes, this method provides a simple route to prepare silver-coated glass frits without introducing impurity ions.

  15. Preparation of silver-coated glass frit and its application in silicon solar cells

    Institute of Scientific and Technical Information of China (English)

    向锋; 李碧渊; 黎应芬; 周健; 甘卫平

    2016-01-01

    A simple electroless plating process was employed to prepare silver-coated glass frits for solar cells. The surface of the glass frits was modified with polyvinyl-pyrrolidone (PVP) before the electroless plating process. Infrared (IR) spectroscopy, field emission scanning electron microscopy (FESEM), and x-ray diffraction (XRD) were used to characterize the PVP modified glass frits and investigate the mechanism of the modification process. It was found that the PVP molecules adsorbed on the glass frit surface and reduced the silver ions to the silver nanoparticles. Through epitaxial growth, these nanoparticles were uniformly deposited onto the surface of the glass frit. Silicon solar cells with this novel silver coating exhibited a photoelectric conversion efficiency increase of 0.33%. Compared with the electroless plating processes, this method provides a simple route to prepare silver-coated glass frits without introducing impurity ions.

  16. "Thunderstruck": Plasma-Polymer-Coated Porous Silicon Microparticles As a Controlled Drug Delivery System.

    Science.gov (United States)

    McInnes, Steven J P; Michl, Thomas D; Delalat, Bahman; Al-Bataineh, Sameer A; Coad, Bryan R; Vasilev, Krasimir; Griesser, Hans J; Voelcker, Nicolas H

    2016-02-01

    Controlling the release kinetics from a drug carrier is crucial to maintain a drug's therapeutic window. We report the use of biodegradable porous silicon microparticles (pSi MPs) loaded with the anticancer drug camphothecin, followed by a plasma polymer overcoating using a loudspeaker plasma reactor. Homogenous "Teflon-like" coatings were achieved by tumbling the particles by playing AC/DC's song "Thunderstruck". The overcoating resulted in a markedly slower release of the cytotoxic drug, and this effect correlated positively with the plasma polymer coating times, ranging from 2-fold up to more than 100-fold. Ultimately, upon characterizing and verifying pSi MP production, loading, and coating with analytical methods such as time-of-flight secondary ion mass spectrometry, scanning electron microscopy, thermal gravimetry, water contact angle measurements, and fluorescence microscopy, human neuroblastoma cells were challenged with pSi MPs in an in vitro assay, revealing a significant time delay in cell death onset.

  17. Reflectance control for multicrystalline-silicon photovoltaic modules using textured-dielectric coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gee, J.M.; Tardy, H.L.; Hund, T.D. [Sandia National Labs., Albuquerque, NM (United States); Gordon, R.; Liang, H. [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry

    1995-01-01

    The authors describe a new approach for controlling the reflectance of photovoltaic modules with planar-surface solar cells. The new approach uses an optically thick, dielectric coating with a large refractive index and a textured surface; this dielectric coating is deposited on the planar-surface solar cell. The textured-dielectric coating works optically with the module encapsulation to promote optical confinement of rays inside the module encapsulation structure, which reduces the net reflectance of the photovoltaic module. The advantage of this approach is that deposition of a textured-dielectric film may be less costly and less intrusive on the cell manufacturing process than texturing multicrystalline-silicon substrates. The authors present detailed optical models and experimental confirmation of the new approach.

  18. Surface Characteristics of Silicon Nanowires/Nanowalls Subjected to Octadecyltrichlorosilane Deposition and n-octadecane Coating.

    Science.gov (United States)

    Yilbas, Bekir Sami; Salhi, Billel; Yousaf, Muhammad Rizwan; Al-Sulaiman, Fahad; Ali, Haider; Al-Aqeeli, Nasser

    2016-12-09

    In this study, nanowires/nanowalls were generated on a silicon wafer through a chemical etching method. Octadecyltrichlorosilane (OTS) was deposited onto the nanowire/nanowall surfaces to alter their hydrophobicity. The hydrophobic characteristics of the surfaces were further modified via a 1.5-μm-thick layer of n-octadecane coating on the OTS-deposited surface. The hydrophobic characteristics of the resulting surfaces were assessed using the sessile water droplet method. Scratch and ultraviolet (UV)-visible reflectivity tests were conducted to measure the friction coefficient and reflectivity of the surfaces. The nanowires formed were normal to the surface and uniformly extended 10.5 μm to the wafer surface. The OTS coating enhanced the hydrophobic state of the surface, and the water contact angle increased from 27° to 165°. The n-octadecane coating formed on the OTS-deposited nanowires/nanowalls altered the hydrophobic state of the surface. This study provides the first demonstration that the surface wetting characteristics change from hydrophobic to hydrophilic after melting of the n-octadecane coating. In addition, this change is reversible; i.e., the hydrophilic surface becomes hydrophobic after the n-octadecane coating solidifies at the surface, and the process again occurs in the opposite direction after the n-octadecane coating melts.

  19. Development and characterization of coatings on Silicon Pore Optics substrates for the ATHENA mission

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Jakobsen, Anders Clemen; Christensen, Finn Erland

    2012-01-01

    at DTU Space and correlation between measured roughness and pre-coating characterization are reported. For coating development, a layer of Cr was applied underneath the Ir/B4C bi-layer with the goal of reducing stress, and the use of N2 during the coating process was tested in order to reduce the surface......We present description and results of the test campaign performed on Silicon Pore Optics (SPO) samples to be used on the ATHENA mission. We perform a pre-coating characterization of the substrates using Atomic Force Microscopy (AFM), X-ray Re ectometry (XRR) and scatter measurements. X-ray tests...... roughness in the coatings. Both processes show promising results. Measurements of the coatings were carried out at the 8 keV X-ray facility at DTU Space and with synchrotron radiation in the laboratory of PTB at BESSY II to determine re ectivity at the grazing incidence angles and energies of ATHENA...

  20. Optimization of textured-dielectric coatings for crystalline-silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gee, J.M. [Sandia National Labs., Albuquerque, NM (United States). Photovoltaic System Components Dept.; Gordon, R.; Liang, H. [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry

    1996-07-01

    The authors report on the optimization of textured-dielectric coatings for reflectance control in crystalline-silicon (c-Si) photovoltaic modules. Textured-dielectric coatings reduce encapsulated-cell reflectance by promoting optical confinement in the module encapsulation; i.e., the textured-dielectric coating randomizes the direction of rays reflected from the dielectric and from the c-Si cell so that many of these reflected rays experience total internal reflection at the glass-air interface. Some important results of this work include the following: the authors demonstrated textured-dielectric coatings (ZnO) deposited by a high-throughput low-cost deposition process; they identified factors important for achieving necessary texture dimensions; they achieved solar-weighted extrinsic reflectances as low as 6% for encapsulated c-Si wafers with optimized textured-ZnO coatings; and they demonstrated improvements in encapsulated cell performance of up to 0.5% absolute compared to encapsulated planar cells with single-layer antireflection coatings.

  1. Optical Properties of Spin-Coated TiO2 Antireflection Films on Textured Single-Crystalline Silicon Substrates

    Directory of Open Access Journals (Sweden)

    Ryosuke Watanabe

    2015-01-01

    Full Text Available Antireflection coating (ARC prepared by a wet process is beneficial for low cost fabrication of photovoltaic cells. In this study, we investigated optical properties and morphologies of spin-coated TiO2 ARCs on alkaline textured single-crystalline silicon wafers. Reflectance spectra of the spin-coated ARCs on alkaline textured silicon wafers exhibit no interferences and low reflectance values in the entire visible range. We modeled the structures of the spin-coated films for ray tracing numerical calculation and compared numerically calculated reflectance spectra with the experimental results. This is the first report to clarify the novel optical properties experimentally and theoretically. Optical properties of the spin-coated ARCs without interference are due to the fractional nonuniformity of the thickness of the spin-coated ARCs that cancels out the interference of the incident light.

  2. Non-Vacuum Processed Polymer Composite Antireflection Coating Films for Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdullah Uzum

    2016-08-01

    Full Text Available A non-vacuum processing method for preparing polymer-based ZrO2/TiO2 multilayer structure antireflection coating (ARC films for crystalline silicon solar cells by spin coating is introduced. Initially, ZrO2, TiO2 and surface deactivated-TiO2 (SD-TiO2 based films were examined separately and the effect of photocatalytic properties of TiO2 film on the reflectivity on silicon surface was investigated. Degradation of the reflectance performance with increasing reflectivity of up to 2% in the ultraviolet region was confirmed. No significant change of the reflectance was observed when utilizing SD-TiO2 and ZrO2 films. Average reflectance (between 300 nm–1100 nm of the silicon surface coated with optimized polymer-based ZrO2 single or ZrO2/SD-TiO2 multilayer composite films was decreased down to 6.5% and 5.5%, respectively. Improvement of photocurrent density (Jsc and conversion efficiency (η of fabricated silicon solar cells owing to the ZrO2/SD-TiO2 multilayer ARC could be confirmed. The photovoltaic properties of Jsc, the open-circuit photo voltage (VOC, the fill factor (FF, and the η were 31.42 mA cm−2, 575 mV, 71.5% and 12.91%. Efficiency of the solar cells was improved by the ZrO2-polymer/SD-TiO2 polymer ARC composite layer by a factor of 0.8% with an increase of Jsc (2.07 mA cm−2 compared to those of fabricated without the ARC.

  3. The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation

    KAUST Repository

    McDowell, Matthew T.

    2012-05-01

    Applying surface coatings to alloying anodes for Li-ion batteries can improve rate capability and cycle life, but it is unclear how this second phase affects mechanical deformation during electrochemical reaction. Here, in-situ transmission electron microscopy is employed to investigate the electrochemical lithiation and delithiation of silicon nanowires (NWs) with copper coatings. When copper is coated on only one sidewall, the NW bilayer structure bends during delithiation due to length changes in the silicon. Tensile hoop stress causes conformal copper coatings to fracture during lithiation without undergoing bending deformation. In addition, in-situ and ex-situ observations indicate that a copper coating plays a role in suppressing volume expansion during lithiation. Finally, the deformation characteristics and dimensional changes of amorphous, polycrystalline, and single-crystalline silicon are compared and related to observed electrochemical behavior. This study reveals important aspects of the deformation process of silicon anodes, and the results suggest that metallic coatings can be used to improve rate behavior and to manage or direct volume expansion in optimized silicon anode frameworks. © 2012 Elsevier Ltd.

  4. The novel silicon-containing epoxy/PEPA phosphate flame retardant for transparent intumescent fire resistant coating

    Science.gov (United States)

    Shi, Yanchao; Wang, Guojian

    2016-11-01

    A series of novel silicon-containing epoxy/PEPA phosphate flame retardants (EPPSi) were synthesized by polyphosphoric acid (PPA), caged bicyclic phosphate 1-oxo-4-hydroxymethyl-2,6,7-trioxa-L-phosphabicyclo [2.2.2] octane (PEPA), and different ratios of silicon-containing epoxy 1,1,3,3-tetramethyl-1,3-bis(3-(oxiran-2-ylmethoxy)propyl)disiloxane (TMSEP) to 1,4-butanediol diglycidyl ether (BDE). The chemical structure of EPPSi was confirmed by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance spectroscopy (1H NMR). Afterwards, the transparent intumescent fire resistant coatings were prepared by mixing EPPSi and melamine formaldehyde resin. The influence of silicon on the fire protection of coatings was intensively investigated by fire protection test, intumescence ratio, scanning electron microscope (SEM), compressive strength test, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and real-time FTIR. It was found that the fire resistant coatings obtained the best fire protection when the ratio of TMESP/BDE was 20/100, while excessive TMSEP made the fire protection of coatings deceased sharply. The intumescence ratio, compressive strength test and SEM result showed that a synergistic effect existed between phosphorus and silicon, which improved the foam structure and compressive strength of the char layer significantly. XPS result proved the out-migration effect of silicon. The high concentration silicon on surface played an important protecting role for the inner char residue and improved the fire protection of the coatings. TGA result demonstrated that silicon enhanced the thermo-oxidation resistance of coatings efficiently. Furthermore, real-time FTIR revealed the intumescent process of the fire resistant coatings according to the chemical structure changes of char residue.

  5. Nano-hydroxyapatite colloid suspension coated on chemically modified porous silicon by cathodic bias: a suitable surface for cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Alejandra [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Electroquimica y Energia Quimica de la Universidad de Costa Rica (CELEQ), Universidad de Costa Rica, 2060 (Costa Rica); Gonzalez, Jerson [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Garcia-Pineres, Alfonso [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Investigacion en Biologia Celular y Molecular (CIBCM), Universidad de Costa Rica, 2060 (Costa Rica); Montero, Mavis L. [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Electroquimica y Energia Quimica de la Universidad de Costa Rica (CELEQ), Universidad de Costa Rica, 2060 (Costa Rica); Centro de Ciencia e Ingenieria en Materiales (CICIMA), Universidad de Costa Rica, 2060 (Costa Rica)

    2011-06-15

    The properties of porous silicon make it an interesting material for biological applications. However, porous silicon is not an appropriate surface for cell growth. Surface modification is an alternative that could afford a bioactive material. In this work, we report a method to yield materials by modification of the porous silicon surface with hydroxyapatite of nanometric dimensions, produced using an electrochemical process and coated on macroporous silicon substrates by cathodic bias. The chemical nature of the calcium phosphate deposited on the substrates after the experimental process and the amount of cell growth on these surfaces were characterized. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Structural characterization of electric-field assisted dip-coating of gold nanoparticles on silicon

    Science.gov (United States)

    Dushaq, Ghada H.; Alkhatib, Amro; Rasras, Mahmoud S.; Nayfeh, Ammar M.

    2015-09-01

    We report the effect of applying an electric field on the surface coverage of 40nm gold colloidal nanoparticles on silicon wafer using dip-coating and electrochemical cell set up. By applying electric field during the dip-coating of silicon wafer in a solution of gold nano particles (GNP) the surface coverage increased by 10% when the electric field varied from 5V/cm to 25V/cm at fixed deposition time of 90s. Ultra High Resolution Scanning Electron Microscopy (HRSEM) images shows that the particle agglomeration becomes more noticeable at higher electric field and as the deposition time increases from 90 s to 20 min a thin film of gold is achieved. Moreover, the results are discussed in terms of chemical bonding, electrostatic force and electrophoretic mobility of Au nano particles during the electric field enhanced deposition on the Si surface. Applied voltage, time of dipping, concentration of the aqueous solution, and particles zeta potential are all can be controlled to enhance the uniformity and particles profile on the silicon surface.

  7. Film properties of alumina passivation layer for silicon solar cells prepared by spin-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Ryosuke, E-mail: rwatanabe@st.seikei.ac.jp; Kawashima, Mizuho; Saito, Yoji

    2015-09-01

    We prepared alumina passivation films deposited by a sol-gel wet process for silicon substrates. Aluminum acetylacetonate was used as a precursor, and the solution was spin-coated onto silicon substrates. Calcination temperature dependence of the passivation quality of the films was evaluated mainly by measuring effective lifetime using a photo conductance decay technique and capacitance–voltage measurements. Also, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were carried out to evaluate film properties. A large amount of negative fixed charge density (Q{sub f} = − 3.1 × 10{sup 12} cm{sup −2}) exists in the films calcined at 300 °C. On the other hand, a long effective lifetime of 400 μs was obtained for the sample calcined at 600 °C, and the passivation films had a large amount of positive fixed charge density (Q{sub f} = 3.6 × 10{sup 12} cm{sup −2}) with a low interface state density. - Highlights: • Alumina passivation films for silicon solar cells were prepared by spin-coating. • Electronic properties and the quality of passivation films were investigated. • Carrier lifetime was enhanced for the samples that were calcined above 400 °C. • The films calcined at 300 °C have high amount of negative fixed charge.

  8. Structural characterization of electric-field assisted dip-coating of gold nanoparticles on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dushaq, Ghada H.; Alkhatib, Amro; Rasras, Mahmoud S.; Nayfeh, Ammar M. [Institute Center for microsystem engineering (iMicro), Department of Electrical Engineering and Computer Science (EECS), Masdar Institute of Science and Technology, PO Box. 54224, Abu Dhabi (United Arab Emirates)

    2015-09-15

    We report the effect of applying an electric field on the surface coverage of 40nm gold colloidal nanoparticles on silicon wafer using dip-coating and electrochemical cell set up. By applying electric field during the dip-coating of silicon wafer in a solution of gold nano particles (GNP) the surface coverage increased by 10% when the electric field varied from 5V/cm to 25V/cm at fixed deposition time of 90s. Ultra High Resolution Scanning Electron Microscopy (HRSEM) images shows that the particle agglomeration becomes more noticeable at higher electric field and as the deposition time increases from 90 s to 20 min a thin film of gold is achieved. Moreover, the results are discussed in terms of chemical bonding, electrostatic force and electrophoretic mobility of Au nano particles during the electric field enhanced deposition on the Si surface. Applied voltage, time of dipping, concentration of the aqueous solution, and particles zeta potential are all can be controlled to enhance the uniformity and particles profile on the silicon surface.

  9. Structural characterization of electric-field assisted dip-coating of gold nanoparticles on silicon

    Directory of Open Access Journals (Sweden)

    Ghada H. Dushaq

    2015-09-01

    Full Text Available We report the effect of applying an electric field on the surface coverage of 40nm gold colloidal nanoparticles on silicon wafer using dip-coating and electrochemical cell set up. By applying electric field during the dip-coating of silicon wafer in a solution of gold nano particles (GNP the surface coverage increased by 10% when the electric field varied from 5V/cm to 25V/cm at fixed deposition time of 90s. Ultra High Resolution Scanning Electron Microscopy (HRSEM images shows that the particle agglomeration becomes more noticeable at higher electric field and as the deposition time increases from 90 s to 20 min a thin film of gold is achieved. Moreover, the results are discussed in terms of chemical bonding, electrostatic force and electrophoretic mobility of Au nano particles during the electric field enhanced deposition on the Si surface. Applied voltage, time of dipping, concentration of the aqueous solution, and particles zeta potential are all can be controlled to enhance the uniformity and particles profile on the silicon surface.

  10. Non-silicon substrate bonding mediated by poly(dimethylsiloxane) interfacial coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hainan [Department of BioNano Technology, Gachon University, Gyeonggi-do 461-701 (Korea, Republic of); Lee, Nae Yoon, E-mail: nylee@gachon.ac.kr [Department of BioNano Technology, Gachon University, Gyeonggi-do 461-701 (Korea, Republic of); Gachon Medical Research Institute, Gil Medical Center, Inchon 405-760 (Korea, Republic of)

    2015-02-01

    Graphical abstract: Low-molecular-weight PDMS coating on the surfaces of non-silicon substrates such as thermoplastics ensures permanent sealing with a silicone elastomer, PDMS, simply by surface oxidization followed by ambient condition bonding, mediated by a robust siloxane bond formation at the interface. - Highlights: • Non-silicon thermoplastic was bonded with poly(dimethylsiloxane) silicone elastomer. • Low-molecular-weight PDMS interfacial layer was chemically coated on thermoplastic. • Bonding was realized by corona treatment and physical contact under ambient condition. • Bonding is universally applicable regardless of thermoplastic type and property. • Homogeneous PDMS-like microchannel was obtained inside the thermoplastic-PDMS microdevice. - Abstract: In this paper, we introduce a simple and robust strategy for bonding poly(dimethylsiloxane) (PDMS) with various thermoplastic substrates to fabricate a thermoplastic-based closed microfluidic device and examine the feasibility of using the proposed method for realizing plastic–plastic bonding. The proposed bonding strategy was realized by first coating amine functionality on an oxidized thermoplastic surface. Next, the amine-functionalized surface was reacted with a monolayer of low-molecular-weight PDMS, terminated with epoxy functionality, by forming a robust amine-epoxy bond. Both the PDMS-coated thermoplastic and PDMS were then oxidized and permanently assembled at 25 °C under a pressure of 0.1 MPa for 15 min, resulting in PDMS-like surfaces on all four inner walls of the microchannel. Surface characterizations were conducted, including water contact angle measurement, X-ray photoelectron spectroscopy (XPS), and fluorescence measurement, to confirm the successful coating of the thin PDMS layer on the plastic surface, and the bond strength was analyzed by conducting a peel test, burst test, and leakage test. Using the proposed method, we could successfully bond various thermoplastics such

  11. The Broadband Anti-reflection Coated Extended Hemispherical Silicon Lenses for Polarbear-2 Experiment

    Science.gov (United States)

    Siritanasak, P.; Aleman, C.; Arnold, K.; Cukierman, A.; Hazumi, M.; Kazemzadeh, K.; Keating, B.; Matsumura, T.; Lee, A. T.; Lee, C.; Quealy, E.; Rosen, D.; Stebor, N.; Suzuki, A.

    2016-08-01

    Polarbear-2 (PB-2) is a next-generation receiver that is part of the Simons Array cosmic microwave background (CMB) polarization experiment which is located in the Atacama desert in Northern Chile. The primary scientific goals of the Simons Array are a deep search for the CMB B-mode signature of gravitational waves from inflation and the characterization of large-scale structure using its effect on CMB polarization. The PB-2 receiver will deploy with 1897 dual-polarization sinuous antenna-coupled pixels, each with a directly contacting extended hemispherical silicon lens. Every pixel has dual polarization sensitivity in two spectral bands centered at 95 and 150 GHz, for a total of 7588 transition edge sensor bolometers operating at 270 mK. To achieve the PB-2 detector requirements, we developed a broadband anti-reflection (AR) coating for the extended hemispherical lenses that uses two molds to apply two layers of epoxy, Stycast 1090 and Stycast 2850FT. Our measurements of the absorption loss from the AR coating on a flat surface at cryogenic temperatures show less than 1 % absorption, and the coating has survived multiple thermal cycles. We can control the diameter of the coating within 25 {\\upmu }m and translation errors are within 25 {\\upmu }m in all directions, which results in less than 1 % decrease in transmittance. We also find the performance of the AR-coated lens matches very well with simulations.

  12. Electrochemical characterization of carbon coated bundle-type silicon nanorod for anode material in lithium ion secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Martin [Center for Energy Convergence, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Energy and Environmental Engineering, Korea University of Science and Technology, Gwahangno, Yuseong-gu, Daejeon, 305-333 (Korea, Republic of); Kim, Jung Sub [Center for Energy Convergence, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Material Science & Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Choi, Jeong-Gil [Department of Chemical Engineering, Hannam University, 461-1 Junmin-dong, Yusung-gu, Taejon 305-811 (Korea, Republic of); Lee, Joong Kee, E-mail: leejk@kist.re.kr [Center for Energy Convergence, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Energy and Environmental Engineering, Korea University of Science and Technology, Gwahangno, Yuseong-gu, Daejeon, 305-333 (Korea, Republic of)

    2015-04-15

    Highlights: • Bundle-type silicon nanorods (BSNR) were synthesized by metal assisted chemical etching. • Novel bundle-type nanorods electrode showed self-relaxant characteristics. • The self-relaxant property was enhanced by increasing the silver concentration. • PAA binder enhanced the self-relaxant property of the silicon material. • Carbon coated BSNR (BSNR@C) has evidently provided better cycle performance. - Abstract: Nanostructured silicon synthesis by surface modification of commercial micro-powder silicon was investigated in order to reduce the maximum volume change over cycle. The surface of micro-powder silicon was modified using an Ag metal-assisted chemical etching technique to produce nanostructured material in the form of bundle-type silicon nanorods. The volume change of the electrode using the nanostructured silicon during cycle was investigated using an in-situ dilatometer. Our result shows that nanostructured silicon synthesized using this method showed a self-relaxant characteristic as an anode material for lithium ion battery application. Moreover, binder selection plays a role in enhancing self-relaxant properties during delithiation via strong hydrogen interaction on the surface of the silicon material. The nanostructured silicon was then coated with carbon from propylene gas and showed higher capacity retention with the use of polyacrylic acid (PAA) binder. While the nano-size of the pore diameter control may significantly affect the capacity fading of nanostructured silicon, it can be mitigated via carbon coating, probably due to the prevention of Li ion penetration into 10 nano-meter sized pores.

  13. The novel silicon-containing epoxy/PEPA phosphate flame retardant for transparent intumescent fire resistant coating

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yanchao [School of Materials Science and Engineering, Tongji University, 4800 Cao' an Road, Shanghai 201804 (China); Wang, Guojian, E-mail: wanggj@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, 4800 Cao' an Road, Shanghai 201804 (China); Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, 4800 Cao' an Road, Shanghai 201804 (China)

    2016-11-01

    Highlights: • The novel halogen-free flame retardant containing silicon and caged bicyclic phosphate was synthesized. • A novel transparent intumescent fire resistant coating was developed by the P-Si synergistic flame retardant and melamine formaldehyde resin. • Excellent fire protection of the transparent intumescent fire resistant coating. • The P-Si synergistic flame retardant could improve the thermo-oxidation resistance of transparent fire resistant coating. - Abstract: A series of novel silicon-containing epoxy/PEPA phosphate flame retardants (EPPSi) were synthesized by polyphosphoric acid (PPA), caged bicyclic phosphate 1-oxo-4-hydroxymethyl-2,6,7-trioxa-L-phosphabicyclo [2.2.2] octane (PEPA), and different ratios of silicon-containing epoxy 1,1,3,3-tetramethyl-1,3-bis(3-(oxiran-2-ylmethoxy)propyl)disiloxane (TMSEP) to 1,4-butanediol diglycidyl ether (BDE). The chemical structure of EPPSi was confirmed by Fourier transform infrared spectroscopy (FTIR) and {sup 1}H nuclear magnetic resonance spectroscopy ({sup 1}H NMR). Afterwards, the transparent intumescent fire resistant coatings were prepared by mixing EPPSi and melamine formaldehyde resin. The influence of silicon on the fire protection of coatings was intensively investigated by fire protection test, intumescence ratio, scanning electron microscope (SEM), compressive strength test, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and real-time FTIR. It was found that the fire resistant coatings obtained the best fire protection when the ratio of TMESP/BDE was 20/100, while excessive TMSEP made the fire protection of coatings deceased sharply. The intumescence ratio, compressive strength test and SEM result showed that a synergistic effect existed between phosphorus and silicon, which improved the foam structure and compressive strength of the char layer significantly. XPS result proved the out-migration effect of silicon. The high concentration silicon on surface played

  14. Silicon Dioxide Coating Deposited by PDPs on PET Films and Influence on Oxygen Transmission Rate

    Institute of Scientific and Technical Information of China (English)

    SUN Yun-Jin; FU Ya-Bo; CHEN Qiang; ZHANG Chun-Mei; SANG Li-Jun; ZHANG Yue-Fei

    2008-01-01

    A silicon dioxide film is deposited on the polyethyleneterephtalate (PET) by a penning discharge plasma source at ambient temperature in a high vacuum chamber.Hexamethyldisiloxane and oxygen are adopted as precursor and reactive reagent to grow a nano-scale silicon dioxide layer on polymer surfaces.For the chemical structure analysis x-ray photoelectron spectroscopy is performed to demonstrate the content of Si,0 and C elements.It is noticed that a higher silicon concentration is contained if Ar plasma is used for pretreatment.X-ray diffraction analysis shows that a micro-crystal silicon dioxide is formed by peak patterns at 25.84° and 21.8°.The barrier properties examined by oxygen transmission rate show that the permeation parameter of the 12-μm-thick PET film drastically decreases from 135 cc/m2 per day for the control one to 0.713 cc/m2 per day for the as-deposited one after Ar plasma treatment.The surface morphology related to the barrier properties of SiOx-coated polymers os also investigated by scanning electron microscopy and atomic force microscopy.

  15. Optical characteristics of silicon nanowires grown from tin catalyst layers on silicon coated glass

    KAUST Repository

    Ball, Jeremy

    2012-08-20

    The optical characteristics of silicon nanowires grown on Si layers on glass have been modeled using the FDTD (Finite Difference Time Domain) technique and compared with experimental results. The wires were grown by the VLS (vapour-liquid-solid) method using Sn catalyst layers and exhibit a conical shape. The resulting measured and modeled absorption, reflectance and transmittance spectra have been investigated as a function of the thickness of the underlying Si layer and the initial catalyst layer, the latter having a strong influence on wire density. High levels of absorption (>90% in the visible wavelength range) and good agreement between the modeling and experiment have been observed when the nanowires have a relatively high density of ∼4 wires/μ m2. The experimental and modeled results diverge for samples with a lower density of wire growth. The results are discussed along with some implications for solar cell fabrication. © 2012 Optical Society of America.

  16. Uniform delivery of silicon nanoparticles on device quality substrates using spin coating from isopropyl alcohol colloids

    Science.gov (United States)

    Nayfeh, Osama M.; Antoniadis, Dimitri A.; Mantey, Kevin; Nayfeh, Munir H.

    2009-01-01

    Silicon nanoparticles, of predominately 2.9 nm in size, in isopropyl alcohol are spin coated directly on device quality silicon-dioxide layers across 150 mm substrates. Atomic force microscopy (AFM) is used to image the nanoparticle distributions and low levels of agglomeration with apparently regular internanoparticle distances are observed. AFM depth profiling of the nanoparticle size is in agreement with independent high resolution transmission electron microscopy measurements. Hartree-Fock based atomistic simulations confirm the possible formation of Si nanoparticle/isopropanol complexes with a calculated electrostatic binding energy of 30 meV, which is slightly larger than the room temperature thermal agitation energy. The low levels of agglomeration can be explained in terms of such complexes that may regulate the internanoparticle and nanoparticle-solvent interactions.

  17. Research on Preparation and Properties of Coated Polyether Silicone Microencapsulation Based on Polystyrene

    Directory of Open Access Journals (Sweden)

    Ren Shuiyun

    2015-01-01

    Full Text Available By the method of interfacial polymerization, the novel microcapsules were prepared with polystyrene as wall material and polyether silicone as core material. In order to demonstrate the morphologies, particle size distribution and properties of microcapsules, scanning electron microscopy (SEM, laser particle size analysis and infrared spectroscopy (FTIR are also applied in the experiments, and the thermal stability of microcapsules is obtained by thermal gravimetric (TG and differential scanning calorimetry (DSC. The material ratio (core to wall in weight of microcapsules and stirring rate ratio are discussed. The results show that under the optimum process conditions of a material ratio (core to wall in weight which is 4:10 and agitating rate of 500r·min‒1, the synthesized polyether silicone microcapsules have a higher yield and the coating and densification properties; their average size is 210μm, and the thermal stability temperature can reach up to 390°C.

  18. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle

    Science.gov (United States)

    Jalili, M.; Rostami, M.; Ramezanzadeh, B.

    2015-02-01

    Aluminum nanoparticle was modified with amino trimethylene phosphonic acid (ATMP). The surface characterization of the nanoparticles was done by X-ray photo electron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis. The influence of the replacement of 2 wt% of zinc dust in the standard zinc-rich epoxy coating by nanoparticles on the electrochemical action of the coating was studied by electrochemical impedance spectroscopy (EIS) and salt spray tests. The morphology and phase composition of the zinc rich paints were evaluated by X-ray diffraction (XRD) and filed-emission scanning electron microscopy (FE-SEM). Results showed that the ATMP molecules successfully adsorbed on the surface of Al nanoparticles. Results obtained from salt spray and electrochemical measurements revealed that the addition of surface modified nanoparticles to the zinc rich coating enhanced its galvanic action and corrosion protection properties.

  19. Deposition, characterization, and in vivo performance of parylene coating on general-purpose silicone for examining potential biocompatible surface modifications

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Man [Division of Pediatric Surgery, Department of Surgery, Taichung Veterans General Hospital, 160, Sec. 3, Taichung Port Rd., Taichung 40705, Taiwan, ROC (China); Department of Medicine, National Yang-Ming University, 155, Sec. 2, Linong Street, Taipei 11221, Taiwan, ROC (China); Shiao, Chiao-Ju [Department of Materials Science and Engineering, Feng Chia University, 100, Wen-Hwa Rd., Taichung 40724, Taiwan, ROC (China); Chung, Chi-Jen, E-mail: cjchung@seed.net.tw [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, 666 Buzih Rd., Beitun District, Taichung 40601, Taiwan, ROC (China); He, Ju-Liang [Department of Materials Science and Engineering, Feng Chia University, 100, Wen-Hwa Rd., Taichung 40724, Taiwan, ROC (China)

    2013-12-31

    In this study, a thorough investigation of parylene coatings was conducted, as follows: microstructure (i.e., X-ray diffractometer (XRD) and cold field emission scanning electron microscope (FESEM)), mechanical property (i.e., pencil hardness and cross-cut adhesion test), surface property (i.e., water contact angle measurement, IR, and X-ray photoelectron spectroscopy (XPS)), and biocompatibility tests (i.e., fibroblast cell culture, platelet adhesion, and animal studies). The results revealed that parylene, a crystalline and brittle coating, exhibited satisfactory film adhesion and relative hydrophobicity, thereby contributing to its effective barrier properties. Fibroblast cell culturing on the parylene-deposited specimen demonstrated improved cell proliferation and equivalent to or superior blood compatibility than that of the medical-grade silicone (currently used clinically). In the animal study, parylene coatings exhibited similar subcutaneous inflammatory reactions compared with the medical-grade silicone. Both in vitro and in vivo tests demonstrated the satisfactory biocompatibility of parylene coatings. - Highlights: • A complete investigation to identify the characteristics of parylene coatings on general-purpose silicones. • Microstructures, surface properties and mechanical properties of parylene coatings were examined. • In vitro (Cell culture, platelet adhesion) tests and animal studies revealed satisfactory biocompatibility. • An alternative of medical-grade silicones is expected to be obtained.

  20. Ultrathin coating of plasma polymer of methane applied on the surface of silicone contact lenses.

    Science.gov (United States)

    Ho, C P; Yasuda, H

    1988-10-01

    Silicone rubber has great advantages as a contact lens material because of its very high oxygen permeability, softness, and excellent mechanical strength and durability. Practical application is hampered by inherent characteristics of elastomers, i.e., high tackiness and highly hydrophobic surface properties. By applying a thin layer, e.g., 5 nm, of plasma polymer of methane, it was found that all these disadvantages can be eliminated without sacrificing high oxygen permeation rate, e.g., less than 15% reduction. Optimization of operational parameters to achieve this task has been investigated. It was also found that under optimum conditions the coating withstood severe and repeated flexing of the contact lens.

  1. Ultrahigh infrared normal spectral emissivity of microstructured silicon coating Au film.

    Science.gov (United States)

    Feng, Guojin; Li, Yuan; Wang, Yu; Li, Ping; Zhu, Jingtao; Zhao, Li

    2012-02-01

    We studied infrared normal spectral emissivity on quasi-periodic microstructured silicon, which was prepared by femtosecond laser irradiation in SF6 ambient gas, coated with 100 nm thick Au thin film. The observed emissivity is higher than any reported previously for a flat material with a thickness of less than 0.5 mm, at a temperature range of 200 °C to 400 °C. The emissivity over the measured wavelength region increases with temperature and the spike height. These results show the potential to be used as a flat blackbody source or for applications in infrared thermal sensor, detector, and stealth military technology.

  2. Interaction of polymer-coated silicon nanocrystals with lipid bilayers and surfactant interfaces

    Science.gov (United States)

    Elbaradei, Ahmed; Brown, Samuel L.; Miller, Joseph B.; May, Sylvio; Hobbie, Erik K.

    2016-10-01

    We use photoluminescence (PL) microscopy to measure the interaction between polyethylene-glycol-coated (PEGylated) silicon nanocrystals (SiNCs) and two model surfaces: lipid bilayers and surfactant interfaces. By characterizing the photostability, transport, and size-dependent emission of the PEGylated nanocrystal clusters, we demonstrate the retention of red PL suitable for detection and tracking with minimal blueshift after a year in an aqueous environment. The predominant interaction measured for both interfaces is short-range repulsion, consistent with the ideal behavior anticipated for PEGylated phospholipid coatings. However, we also observe unanticipated attractive behavior in a small number of scenarios for both interfaces. We attribute this anomaly to defective PEG coverage on a subset of the clusters, suggesting a possible strategy for enhancing cellular uptake by controlling the homogeneity of the PEG corona. In both scenarios, the shape of the apparent potential is modeled through the free or bound diffusion of the clusters near the confining interface.

  3. Experimental Study on Wax Protective Coating for Wet Deep Silicon Etching Processes

    Institute of Scientific and Technical Information of China (English)

    JIANG Jian-liang; ULRICH Hilleringmann

    2006-01-01

    In order to protect the finished structures on the front side during deep silicon wet etching processes,the wax coating for double-sided etching process on the wafer is studied to separate the aforementioned structures from the strong aqueous bases. By way of heating and vacuumization, the air bubbles are expelled from the coating to extend the protection duration. The air pressure in the sealed chamber is 0. 026 7 Pa, and the temperature of the heated wafer is 300 ℃. Two kinds of the wax are used, and the corresponding photos of the etched wafer and the protection times are given. In 75 ℃ 10 % KOH solution, the protection duration is more than 8 h.

  4. Near-Field Radiative Heat Transfer between Metamaterials coated with Silicon Carbide Film

    CERN Document Server

    Basu, Soumyadipta; Wang, Liping

    2014-01-01

    In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC.By careful tuning of the optical properties of metamaterial it is possible to excite electrical and magnetic resonance for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

  5. On the Origin of Light Emission in Silicon Rich Oxide Obtained by Low-Pressure Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    M. Aceves-Mijares

    2012-01-01

    Full Text Available Silicon Rich Oxide (SRO has been considered as a material to overcome the drawbacks of silicon to achieve optical functions. Various techniques can be used to produce it, including Low-Pressure Chemical Vapor Deposition (LPCVD. In this paper, a brief description of the studies carried out and discussions of the results obtained on electro-, cathode-, and photoluminescence properties of SRO prepared by LPCVD and annealed at 1,100°C are presented. The experimental results lead us to accept that SRO emission properties are due to oxidation state nanoagglomerates rather than to nanocrystals. The emission mechanism is similar to Donor-Acceptor decay in semiconductors, and a wide emission spectrum, from 450 to 850 nm, has been observed. The results show that emission is a function of both silicon excess in the film and excitation energy. As a result different color emissions can be obtained by selecting the suitable excitation energy.

  6. MECHANISMS OF MULTI-FUNCTIONAL LAYER COATINGS BASED ON SILICON CARBIDE

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2010-01-01

    Full Text Available The paper investigates regularities pertaining to structure formation in a thin-film coating applied on diamond crystals by magnetron dispersion of a combined cathode (Si + C. It has been  established that an amorphous layer of  Si and C atom mixture is formed in the condensation process of a thin-film coating (up to 20 µm and its glow-discharge plasma processing  is accompanied by action of plasma particles along with formation of surface  waves that contributes to transfer of  active carbon atoms and formation of stronger Si – C connection. Structure formation in coatings (Si + C with thickness over 100 µm proceeds according to diffusion mechanism at low temperatures (650–850ºС with  formation of α-SiC with  an  amorphous layer. Solid-phase reactive sintering of simple elements (silicon and carbon in nano-coatings obtained with the help of diamond powders allows to make composites of such powders with the given complex of properties due to control of  structure of particle-connection zone on atom-cluster levels.

  7. Titanium dioxide antireflection coating for silicon solar cells by spray deposition

    Science.gov (United States)

    Kern, W.; Tracy, E.

    1980-01-01

    A high-speed production process is described for depositing a single-layer, quarter-wavelength thick antireflection coating of titanium dioxide on metal-patterned single-crystal silicon solar cells for terrestrial applications. Controlled atomization spraying of an organotitanium solution was selected as the most cost-effective method of film deposition using commercial automated equipment. The optimal composition consists of titanium isopropoxide as the titanium source, n-butyl acetate as the diluent solvent, sec-butanol as the leveling agent, and 2-ethyl-1-hexanol to render the material uniformly depositable. Application of the process to the coating of circular, large-diameter solar cells with either screen-printed silver metallization or with vacuum-evaporated Ti/Pd/Ag metallization showed increases of over 40% in the electrical conversion efficiency. Optical characteristics, corrosion resistance, and several other important properties of the spray-deposited film are reported. Experimental evidence indicates a wide tolerance in the coating thickness upon the overall efficiency of the cell. Considerations pertaining to the optimization of AR coatings in general are discussed, and a comprehensive critical survey of the literature is presented.

  8. Titanium dioxide antireflection coating for silicon solar cells by spray deposition

    Science.gov (United States)

    Kern, W.; Tracy, E.

    1980-01-01

    A high-speed production process is described for depositing a single-layer, quarter-wavelength thick antireflection coating of titanium dioxide on metal-patterned single-crystal silicon solar cells for terrestrial applications. Controlled atomization spraying of an organotitanium solution was selected as the most cost-effective method of film deposition using commercial automated equipment. The optimal composition consists of titanium isopropoxide as the titanium source, n-butyl acetate as the diluent solvent, sec-butanol as the leveling agent, and 2-ethyl-1-hexanol to render the material uniformly depositable. Application of the process to the coating of circular, large-diameter solar cells with either screen-printed silver metallization or with vacuum-evaporated Ti/Pd/Ag metallization showed increases of over 40% in the electrical conversion efficiency. Optical characteristics, corrosion resistance, and several other important properties of the spray-deposited film are reported. Experimental evidence indicates a wide tolerance in the coating thickness upon the overall efficiency of the cell. Considerations pertaining to the optimization of AR coatings in general are discussed, and a comprehensive critical survey of the literature is presented.

  9. Dip coating process. Silicon sheet growth development for the large-area silicon sheet task of the Low Cost Silicon Solar Array Project. Quarterly report No. 5, December 18, 1976--March 21, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Zook, J.D.; Heaps, J.D.; Maciolek, R.B.; Koepke, B.; Butter, C.D.; Schuldt, S.B.

    1977-03-31

    Ceramic substrates can be coated with a thin layer of large-grain polycrystalline silicon by a dip-coating process. The silicon-on-ceramic (SOC) material appears to be quite promising as a low-cost cell material but requires somewhat special fabrication procedure since the contacts to both the n- and p-layers are now made on the front surface. Solar cells have been made on SOC material and on single-crystal control samples. Photodiodes 0.01 to 0.1 cm/sup 2/ made on substrates coated with vitreous carbon prior to dip coating with silicon showed the best efficiency of SOC material to date, namely over 6 percent uncorrected and about 12 percent inherent efficiency. Etching procedures have indicated that the dislocation density varies from almost 10/sup 7/ cm/sup -2/ to almost dislocation-free material, assuming that all etch pits are due to dislocations. EBIC measurements procedures were also improved, and it was found that diodes appear to be fairly uniform in EBIC response. A new SOC coating facility is being designed which will coat larger substrates in a continuous manner. The purpose is to minimize the contamination problem by reducing the contact area of the substrate with molten silicon. By having much larger throughput, it will also demonstrate the scale-up potential of the silicon-on-ceramic process. Portions of the new facility are under construction. An attempt has been made to model the economics of a large-scale facility for coating ceramic panels with silicon. A first iteration based on available parameters estimates showed that major cost items were poly Si ($2.90 per square meter), labor and burden ($2.50 per square meter), and the ceramic substrate ($2.50 per square meter), for a total price of about $11 per square meter.

  10. Properties of amorphous Si-rich silicon nitride prepared by rf-magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, M.; Rojahn, M. [Stuttgart Univ. (Germany). Inst. fuer Physikalische Elektronik

    2000-02-14

    This article investigates the physics underlying field effect passivation of p-type Si surfaces coated with SiN{sub x}(:H) of various Si contents. We find a correlation between the effective lifetime of minority carriers in p-type Si passivated with SiN{sub x}, on the one hand, and the dark dc-conductivity data of corresponding a-SiN{sub x}-films with different composition, on the other hand. By increasing the amount of Si in a-SiN{sub x}(:H) structures the bandgap decreases from about 5 to 2 eV. As a result, the dark dc-conductivity rises by several orders of magnitude. The conductivity prefactors and the activation energies as calculated from the conductivity versus temperature data obey the Meyer-Neldel relation with an axio-intercept of about 10{sup -7} ({omega}cm){sup -1} and a slope of about 35 meV. Thus, Si-rich a-SiN{sub x}(:H) films behave like a defect doped n-type semiconductor. The activation energy of the conductance in films with the same composition changes with the hydrogen content. A minimum in the activation energy correlates with a minimum of the surface recombination velocity at the a-SiN{sub x}/p-Si interface. We ascribe both effects to a variation of the Fermi level in the films. (orig.)

  11. Porous Spherical Cellulose Composites Coated by Aluminum (Ⅲ) Oxide and Silicone: Preparation,Characterization and Adsorption Behavior

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Porous spherical cellulose composite (PSCA) coated by aluminum (Ⅲ) oxide was prepared andmodified by organosilicone. SEM images of the surface morphology of the bead cellulose shows that it hasspherical shape and abundant porous structure on its surface. The mapping images of aluminum and silicon ofthe composite (PSCAS) present aluminum( Ⅲ ) oxide and silicone are uniformly dispersed on the surface. Theadsorption behavior of PSCAS toward metal ions was determined.

  12. Silicon-rich mineral water as a non-invasive test of the 'aluminum hypothesis' in Alzheimer's disease.

    Science.gov (United States)

    Davenward, Samantha; Bentham, Peter; Wright, Jan; Crome, Peter; Job, Deborah; Polwart, Anthony; Exley, Christopher

    2013-01-01

    There has been a plausible link between human exposure to aluminum and Alzheimer's disease for several decades. We contend that the only direct and ethically acceptable experimental test of the 'aluminum hypothesis', which would provide unequivocal data specific to the link, is to test the null hypothesis that a reduction in the body burden of aluminum to its lowest practical limit would have no influence upon the incidence, progression, or severity of Alzheimer's disease. Herein we are testing the hypothesis that silicon-rich mineral waters can be used as non-invasive methods to reduce the body burden of aluminum in individuals with Alzheimer's disease and a control group consisting of their carers and partners. We have shown that drinking up to 1 L of a silicon-rich mineral water each day for 12 weeks facilitated the removal of aluminum via the urine in both patient and control groups without any concomitant affect upon the urinary excretion of the essential metals, iron and copper. We have provided preliminary evidence that over 12 weeks of silicon-rich mineral water therapy the body burden of aluminum fell in individuals with Alzheimer's disease and, concomitantly, cognitive performance showed clinically relevant improvements in at least 3 out of 15 individuals. This is a first step in a much needed rigorous test of the 'aluminum hypothesis of Alzheimer's disease' and a longer term study involving many more individuals is now warranted.

  13. Device for fracturing silicon-carbide coatings on nuclear-fuel particles

    Science.gov (United States)

    Turner, L.J.; Willey, M.G.; Tiegs, S.M.; Van Cleve, J.E. Jr.

    This invention is a device for fracturing particles. It is designed especially for use in hot cells designed for the handling of radioactive materials. In a typical application, the device is used to fracture a hard silicon-carbide coating present on carbon-matrix microspheres containing nuclear-fuel materials, such as uranium or thorium compounds. To promote remote control and facilitate maintenance, the particle breaker is pneumatically operated and contains no moving parts. It includes means for serially entraining the entrained particles on an anvil housed in a leak-tight chamber. The flow rate of the gas is at a value effecting fracture of the particles; preferably, it is at a value fracturing them into product particulates of fluidizable size. The chamber is provided with an outlet passage whose cross-sectional area decreases in the direction away from the chamber. The outlet is connected tangentially to a vertically oriented vortex-flow separator for recovering the product particulates entrained in the gas outflow from the chamber. The invention can be used on a batch or continuous basis to fracture the silicon-carbide coatings on virtually all of the particles fed thereto.

  14. Composite Reflective Absorptive IR-Blocking Filters Embedded in Metamaterial Antireflection Coated Silicon

    Science.gov (United States)

    Munson, C. D.; Choi, S. K.; Coughlin, K. P.; McMahon, J. J.; Miller, K. H.; Page, L. A.; Wollack, E. J.

    2017-01-01

    Infrared (IR)-blocking filters are crucial for controlling the radiative loading on cryogenic systems and for optimizing the sensitivity of bolometric detectors in the far-IR. We present a new IR filter approach based on a combination of patterned frequency-selective structures on silicon and a thin (2575 micron thick) absorptive composite based on powdered reststrahlen absorbing materials. For a 300 K blackbody, this combination reflects approximately 50% of the incoming light and blocks greater than.99.8% of the total power with negligible thermal gradients and excellent low-frequency transmission. This allows a reduction in the IR thermal loading to negligible levels in a single cold filter. These composite filters are fabricated on silicon substrates, which provide excellent thermal transport laterally through the filter and ensure that the entire area of the absorptive filter stays near the bath temperature. A metamaterial antireflection coating cut into these substrates reduces in-band reflections to below 1%, and the in-band absorption of the powder mix is below 1% for signal bands below 750 GHz. This type of filter can be directly incorporated into silicon refractive optical elements.

  15. Metal-Organic Frameworks (MOFs) as Sandwich Coating Cushion for Silicon Anode in Lithium Ion Batteries.

    Science.gov (United States)

    Han, Yuzhen; Qi, Pengfei; Zhou, Junwen; Feng, Xiao; Li, Siwu; Fu, Xiaotao; Zhao, Jingshu; Yu, Danni; Wang, Bo

    2015-12-09

    A novel metal-organic framework (MOF) sandwich coating method (denoted as MOF-SC) is developed for hybrid Li ion battery electrode preparation, in which the MOF films are casted on the surface of a silicon layer and sandwiched between the active silicon and the separator. The obtained electrodes show improved cycling performance. The areal capacity of the cheap and readily available microsized Si treated with MOF-SC can reach 1700 μAh cm(-2) at 265 μA cm(-2) and maintain at 850 μAh cm(-2) after 50 cycles. Beyond the above, the commercial nanosized Si treated by MOF-SC also shows greatly enhanced areal capacity and outstanding cycle stability, 600 μAh cm(-2) for 100 cycles without any apparent fading. By virtue of the novel structure prepared by the MOFs, this new MOF-SC structure serves as an efficient protection cushion for the drastic volume change of silicon during charge/discharge cycles. Furthermore, this MOF layer, with large pore volume and high surface area, can adsorb electrolyte and allow faster diffusion of Li(+) as evidenced by decreased impedance and improved rate performance.

  16. Investigation on the preparation of Si/mullite/Yb_2Si_2O_7 environmental barrier coatings onto silicon carbide

    Institute of Scientific and Technical Information of China (English)

    许越; 闫钊通

    2010-01-01

    With the development of aero-engine,gas import temperatures of hot section structural materials are increasingly higher.Metal alloy materials due to the rapidly decreased mechanical properties at relative high temperature are gradually replaced with silicon-based non-oxide silicon carbide ceramics.However,silicon carbide ceramic materials tend to spall and deform in engine combustion environment,need environmental barrier coatings for the protection of the matrix.The preparation of Si/mullite/Yb2Si2O7 envir...

  17. Analysis of the anisotropy, stoichiometry and polytypes in pyrolytic carbon and silicon carbide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Honorato, E., E-mail: eddie.lopez@cinvestav.edu.mx [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Zhang, H.; Shatwell, R.A. [Materials Science Centre, School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom); Guillermier, P. [AREVA Lyon, Rue Juliette Recamier, 69006 Lyon (France); Manara, D. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Xiao, P. [Materials Science Centre, School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom); Somers, J. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer We have compared the values of anisotropy of pyrolytic carbon measured by Raman spectroscopy and 2MGEM. Black-Right-Pointing-Pointer The values of anisotropy depend on the sampling area. Black-Right-Pointing-Pointer The values of diattenuation for SiC measured by 2MGEM were affected by the content of stacking faults. Black-Right-Pointing-Pointer Raman spectroscopy can be used as a semi-quantitative tool for the characterisation of excess carbon and silicon in SiC. - Abstract: Silicon carbide (SiC) and pyrolytic carbon (PyC) coatings in tristructural isotropic (TRISO) coated fuel particles were characterised by a combination of 2-modulator generalised ellipsometry microscopy (2-MGEM), Raman spectroscopy and transmission electron microscopy. We compared the values of anisotropy obtained from 2-MGEM and Raman spectroscopy to investigate the effect of sampling area and microstructure. No linear correlation in anisotropy was found between these two techniques despite both sampling areas of 2-5 {mu}m. The largest deviations were observed for highly anisotropic samples with optical anisotropy factors (OPTAFs) above 1.1. For medium and low anisotropy samples (OPTAF < 1.1) the relationship is close to linear. The limited use of only the average value of diattenuation does not give an accurate representation of the characteristics of the coatings as significant areas can exist with considerably higher diattenuations that could increase the probability of failure under neutron irradiation. We also observe a change in the diattenuation of SiC due to the presence of stacking faults as confirmed by Raman spectroscopy. Raman spectroscopy was also used to perform semiquantitative analysis of the Si and carbon excess in SiC in four TRISO particles.

  18. Mechanical measurements on lithium phosphorous oxynitride coated silicon thin film electrodes for lithium-ion batteries during lithiation and delithiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Obeidi, Ahmed, E-mail: alobeidi@mit.edu; Thompson, Carl V., E-mail: reiner.moenig@kit.edu, E-mail: cthomp@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Kramer, Dominik, E-mail: dominik.kramer@kit.edu; Mönig, Reiner, E-mail: reiner.moenig@kit.edu, E-mail: cthomp@mit.edu [Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstraße 11, 89081 Ulm (Germany); Boles, Steven T., E-mail: steven.t.boles@polyu.edu.hk [Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom (Hong Kong)

    2016-08-15

    The development of large stresses during lithiation and delithiation drives mechanical and chemical degradation processes (cracking and electrolyte decomposition) in thin film silicon anodes that complicate the study of normal electrochemical and mechanical processes. To reduce these effects, lithium phosphorous oxynitride (LiPON) coatings were applied to silicon thin film electrodes. Applying a LiPON coating has two purposes. First, the coating acts as a stable artificial solid electrolyte interphase. Second, it limits mechanical degradation by retaining the electrode's planar morphology during cycling. The development of stress in LiPON-coated electrodes was monitored using substrate curvature measurements. LiPON-coated electrodes displayed highly reproducible cycle-to-cycle behavior, unlike uncoated electrodes which had poorer coulombic efficiency and exhibited a continual loss in stress magnitude with continued cycling due to film fracture. The improved mechanical stability of the coated silicon electrodes allowed for a better investigation of rate effects and variations of mechanical properties during electrochemical cycling.

  19. A Well-Defined Silicon Nanocone-Carbon Structure for Demonstrating Exclusive Influences of Carbon Coating on Silicon Anode of Lithium-Ion Batteries.

    Science.gov (United States)

    Wang, Chao; Luo, Fei; Lu, Hao; Rong, Xiaohui; Liu, Bonan; Chu, Geng; Sun, Yu; Quan, Baogang; Zheng, Jieyun; Li, Junjie; Gu, Changzhi; Qiu, Xinping; Li, Hong; Chen, Liquan

    2017-01-25

    Nanotechnology and carbon coating have been applied to silicon anodes to achieve excellent lithium-ion batteries, but the exclusive influence of carbon coating on solid-electrolyte interphase (SEI) formation is difficult to exhibit distinctly because of the impurity and morphological irregularity of most nanostructured anodes. Here, we design a silicon nanocone-carbon (SNC-C) composite structure as a model anode to demonstrate the significant influences of carbon coating on SEI formation and electrochemical performance, unaffectedly as a result of pure electrode component and distinctly due to regular nanocone morphology. As demonstrated by morphological and elemental analysis, compared to the SNC electrode, the SNC-C electrode maintains a thinner SEI layer (∼10 nm) and more stable structure during cycling as well as longer cycle life (>725 cycles), higher Coulombic efficiency (>99%), and lower electrode polarization. This well-defined structure clearly shows the interface stability attributed to carbon coating and is promising in fundamental research of the silicon anode.

  20. Highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles

    Science.gov (United States)

    Huang, Yuewang; Zhao, Qiancheng; Sharac, Nicholas; Ragan, Regina; Boyraz, Ozdal

    2015-05-01

    We demonstrate the fabrication of a highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles for plasmonic enhancement. The average enhancement effect is evaluated by measuring the spectral broadening effect caused by self-phase-modulation. The nonlinear refractive index n2 was measured to be 7.0917×10-19 m2/W for a waveguide whose Wopen is 5 μm. Several waveguides at different locations on one wafer were measured in order to take the randomness of the nanoparticle distribution into consideration. The largest enhancement is measured to be as high as 10 times. Fabrication of this waveguide started with a MEMS grade photomask. By using conventional optical lithography, the wide linewidth was transferred to a wafer. Then the wafer was etched anisotropically by potassium hydroxide (KOH) to engrave trapezoidal trenches with an angle of 54.7º. Side wall roughness was mitigated by KOH etching and thermal oxidation that was used to generate a buffer layer for silicon nitride waveguide. The guiding material silicon nitride was then deposited by low pressure chemical vapor deposition. The waveguide was then patterned with a chemical template, with 20 nm gold particles being chemically attached to the functionalized poly(methyl methacrylate) domains. Since the particles attached only to the PMMA domains, they were confined to localized regions, therefore forcing the nanoparticles into clusters of various numbers and geometries. Experiments reveal that the waveguide has negligible nonlinear absorption loss, and its nonlinear refractive index can be greatly enhanced by gold nano clusters. The silicon nitride trench waveguide has large nonlinear refractive index, rendering itself promising for nonlinear applications.

  1. Sol gel TiO2 antireflection coatings for silicon solar cells

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2012-05-01

    Full Text Available Purpose: The aim of this paper was to investigate changes in surface morphology and optical reflection of thin films of titanium dioxide. Thin films were prepared using sol gel spin coating method.Design/methodology/approach: The microanalysis have been investigated by the Energy-dispersive X-ray spectroscopy EDS. The changes in surface topography was observed by the atomic force microscope AFM and scanning electron microscope SEM. The results of roughness have been prepared in the software XEI Park Systems and optical reflection by the spectrometer UV/VIS.Findings: Results and their analysis allow to conclude that the titanium isopropoxide concentration in solution and spin speed, which is an important factor in spin coating technology has a significant influence on surface morphology and optical reflection of thin films titanium dioxide.Practical implications: Known sol gel titanium dioxide optical parameters and the possibility of obtaining a uniform thin films show that it can be good material for photovoltaic application.Originality/value: The paper presents some researches of titanium dioxide thin films deposited by sol gel spin coating method on monocrystalline silicon.

  2. Teflon-coated silicon microreactors: impact on segmented liquid-liquid multiphase flows.

    Science.gov (United States)

    Kuhn, Simon; Hartman, Ryan L; Sultana, Mahmooda; Nagy, Kevin D; Marre, Samuel; Jensen, Klavs F

    2011-05-17

    We describe fluoropolymer modification of silicon microreactors for control of wetting properties in chemical synthesis applications and characterize the impact of the coating on liquid-liquid multiphase flows of solvents and water. Annular flow of nitrogen gas and a Teflon AF (DuPont) dispersion enable controlled evaporation of fluoropolymer solvent, which in turn brings about three-dimensional polymer deposition on microchannel walls. Consequently, the wetting behavior is switched from hydrophilic to hydrophobic. Analysis of microreactors reveals that the polymer layer thickness increases down the length of the reactor from ∼1 to ∼13 μm with an average thickness of ∼7 μm. Similarly, we show that microreactor surfaces can be modified with poly(tetrafluoroethylene) (PTFE). These PTFE-coated microreactors are further characterized by measuring residence time distributions in segmented liquid-liquid multiphase flows, which display reduced axial dispersion for the coated microreactors. Applying particle image velocimetry, changes in segment shape and velocity fluctuations are observed resulting in reduced axial dispersion. Furthermore, the segment size distribution is narrowed for the hydrophobic microreactors, enabling further control of residence distributions for synthesis and screening applications.

  3. Silicon carbide multilayer protective coating on carbon obtained by thermionic vacuum arc method

    Science.gov (United States)

    Ciupină, Victor; Lungu, Cristian Petrica; Vladoiu, Rodica; Prodan, Gabriel; Porosnicu, Corneliu; Belc, Marius; Stanescu, Iuliana M.; Vasile, Eugeniu; Rughinis, Razvan

    2014-01-01

    Thermionic vacuum arc (TVA) method is currently developing, in particular, to work easily with heavy fusible material for the advantage presented by control of directing energy for the elements forming a plasma. The category of heavy fusible material can recall C and W (high-melting point materials), and are difficult to obtain or to control by other means. Carbon is now used in many areas of special mechanical, thermal, and electrical properties. We refer in particular to high-temperature applications where unwanted effects may occur due to oxidation. Changed properties may lead to improper functioning of the item or device. For example, increasing the coefficient of friction may induce additional heat on moving items. One solution is to protect the item in question by coating with proper materials. Silicon carbide (SiC) was chosen mainly due to compatibility with coated carbon substrate. Recently, SiC has been used as conductive transparent window for optical devices, particularly in thin film solar cells. Using the TVA method, SiC coatings were obtained as thin films (multilayer structures), finishing with a thermal treatment up to 1000°C. Structural properties and oxidation behavior of the multilayer films were investigated, and the measurements showed that the third layer acts as a stopping layer for oxygen. Also, the friction coefficient of the protected films is lower relative to unprotected carbon films.

  4. Core-Shell Coating Silicon Anode Interfaces with Coordination Complex for Stable Lithium-Ion Batteries.

    Science.gov (United States)

    Zhou, Jinqiu; Qian, Tao; Wang, Mengfan; Xu, Na; Zhang, Qi; Li, Qun; Yan, Chenglin

    2016-03-02

    In situ core-shell coating was used to improve the electrochemical performance of Si-based anodes with polypyrrole-Fe coordination complex. The vast functional groups in the organometallic coordination complex easily formed hydrogen bonds when in situ modifying commercial Si nanoparticles. The incorporation of polypyrrole-Fe resulted in the conformal conductive coating surrounding each Si nanoparticle, not only providing good electrical connection to the particles but also promoting the formation of a stable solid-electrolyte-interface layer on the Si electrode surface, enhancing the cycling properties. As an anode material for Li-ion batteries, modified silicon powders exhibited high reversible capacity (3567 mAh/g at 0.3 A/g), good rate property (549.12 mAh/g at 12 A/g), and excellent cycling performance (reversible capacity of 1500 mAh/g after 800 cycles at 1.2 A/g). The constructed novel concept of core-shell coating Si particles presented a promising route for facile and large-scale production of Si-based anodes for extremely durable Li-ion batteries, which provided a wide range of applications in the field of energy storage of the renewable energy derived from the solar energy, hydropower, tidal energy, and geothermal heat.

  5. Modification of silicon nitride and silicon carbide surfaces for food and biosensor applications

    NARCIS (Netherlands)

    Rosso, M.

    2009-01-01

    Silicon-rich silicon nitride (SixN4, x > 3) is a robust insulating material widely used for the coating of microdevices: its high chemical and mechanical inertness make it a material of choice for the reinforcement of fragile microstructures (e.g. suspended microcantilevers, micro-fabricated memb

  6. Modification of silicon nitride and silicon carbide surfaces for food and biosensor applications

    NARCIS (Netherlands)

    Rosso, M.

    2009-01-01

    Silicon-rich silicon nitride (SixN4, x > 3) is a robust insulating material widely used for the coating of microdevices: its high chemical and mechanical inertness make it a material of choice for the reinforcement of fragile microstructures (e.g. suspended microcantilevers, micro-fabricated

  7. Shadow-casted ultrathin surface coatings of titanium and titanium/silicon oxide sol particles via ultrasound-assisted deposition.

    Science.gov (United States)

    Karahan, H Enis; Birer, Özgür; Karakuş, Kerem; Yıldırım, Cansu

    2016-07-01

    Ultrasound-assisted deposition (USAD) of sol nanoparticles enables the formation of uniform and inherently stable thin films. However, the technique still suffers in coating hard substrates and the use of fast-reacting sol-gel precursors still remains challenging. Here, we report on the deposition of ultrathin titanium and titanium/silicon hybrid oxide coatings using hydroxylated silicon wafers as a model hard substrate. We use acetic acid as the catalyst which also suppresses the reactivity of titanium tetraisopropoxide while increasing the reactivity of tetraethyl orthosilicate through chemical modifications. Taking the advantage of this peculiar behavior, we successfully prepared titanium and titanium/silicon hybrid oxide coatings by USAD. Varying the amount of acetic acid in the reaction media, we managed to modulate thickness and surface roughness of the coatings in nanoscale. Field-emission scanning electron microscopy and atomic force microscopy studies showed the formation of conformal coatings having nanoroughness. Quantitative chemical state maps obtained by x-ray photoelectron spectroscopy (XPS) suggested the formation of ultrathin (coatings and thickness measurements by rotating analyzer ellipsometry supported this observation. For the first time, XPS chemical maps revealed the transport effect of ultrasonic waves since coatings were directly cast on rectangular substrates as circular shadows of the horn with clear thickness gradient from the center to the edges. In addition to the progress made in coating hard substrates, employing fast-reacting precursors and achieving hybrid coatings; this report provides the first visual evidence on previously suggested "acceleration and smashing" mechanism as the main driving force of USAD.

  8. Effect of Addition of Polytetrafluoroethylene (PTFE) and Silicon Carbide (SiC) on Properties of Electroless Nickel Alloy Coatings

    Institute of Scientific and Technical Information of China (English)

    WU Yu-cheng; HU Xiao-ye; WANG Wen-fang; HUANG Xin-min

    2004-01-01

    Electroless nickel (copper)-phosphorus-silicon carbide (SiC)-polytetrafluoroethylene (PTFE) composite coatings were prepared by adding SiC and PTFE into electroless nickel (copper)-phosphorus alloy baths. The effects of addition of SiC and PTFE on depositing rate, microhardness, wear resistance and anti-friction of the resulted composite coatings were studied. The results indicated that electroless nickel (copper)-phosphorus alloy coatings were greatly improved in depositing rate, microhardness, wear resistance and antifriction by co-deposited proper amount of SiC and PTFE.

  9. In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber

    NARCIS (Netherlands)

    Gottenbos, B; van der Mei, HC; Klatter, F; Nieuwenhuis, P; Busscher, HJ

    2002-01-01

    Biomaterial-centered infection is a dreaded complication associated with the use of biomedical implants. In this paper, the antimicrobial activity of silicone rubber with a covalently coupled 3-(trimethoxysilyl)-propyldimethyloctadecylammonium chloride (QAS) coating was studied in vitro and in vivo.

  10. Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells.

    Science.gov (United States)

    Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo

    2014-01-01

    The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n(+) emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.

  11. Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings.

    Science.gov (United States)

    Keski-Kuha, R A; Blumenstock, G M; Fleetwood, C M; Schmitt, D R

    1998-12-01

    Two recently developed optical coatings, ion-beam-deposited silicon carbide and ion-beam-deposited boron carbide, are very attractive as coatings on optical components for instruments for space astronomy and earth sciences operating in the extreme-UV spectral region because of their high reflectivity, significantly higher than any conventional coating below 105 nm. To take full advantage of these coatings in space applications, it is important to establish their ability to withstand exposure to the residual atomic oxygen and other environmental effects at low-earth-orbit altitudes. The first two flights of the Surface Effects Sample Monitor experiments flown on the ORFEUS-SPAS and the CRISTA-SPAS Shuttle missions provided the opportunity to study the effects of space exposure on these materials. The results indicate a need to protect ion-beam-deposited silicon-carbide-coated optical components from environmental effects in a low-earth orbit. The boron-carbide thin-film coating is a more robust coating able to withstand short-term exposure to atomic oxygen in a low-earth-orbit environment.

  12. Electroless plating of thin gold films directly onto silicon nitride thin films and into micropores.

    Science.gov (United States)

    Whelan, Julie C; Karawdeniya, Buddini Iroshika; Bandara, Y M Nuwan D Y; Velleco, Brian D; Masterson, Caitlin M; Dwyer, Jason R

    2014-07-23

    A method to directly electrolessly plate silicon-rich silicon nitride with thin gold films was developed and characterized. Films with thicknesses plating free-standing ultrathin silicon nitride membranes, and we successfully plated the interior walls of micropore arrays in 200 nm thick silicon nitride membranes. The method is thus amenable to coating planar, curved, and line-of-sight-obscured silicon nitride surfaces.

  13. Structural and optical properties of silicon rich oxide films in graded-stoichiometric multilayers for optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Palacios-Huerta, L.; Aceves-Mijares, M. [Electronics Department, INAOE, Apdo. 51, Puebla, Pue. 72000, México (Mexico); Cabañas-Tay, S. A.; Cardona-Castro, M. A.; Morales-Sánchez, A., E-mail: alfredo.morales@cimav.edu.mx [Centro de Investigación en Materiales Avanzados S.C., Unidad Monterrey-PIIT, Apodaca, NL 66628, México (Mexico); Domínguez-Horna, C. [Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra 08193, Barcelona (Spain)

    2016-07-18

    Silicon nanocrystals (Si-ncs) are excellent candidates for the development of optoelectronic devices. Nevertheless, different strategies are still necessary to enhance their photo and electroluminescent properties by controlling their structural and compositional properties. In this work, the effect of the stoichiometry and structure on the optical properties of silicon rich oxide (SRO) films in a multilayered (ML) structure is studied. SRO MLs with silicon excess gradually increased towards the top and bottom and towards the center of the ML produced through the variation of the stoichiometry in each SRO layer were fabricated and confirmed by X-ray photoelectron spectroscopy. Si-ncs with three main sizes were observed by a transmission electron microscope, in agreement with the stoichiometric profile of each SRO layer. The presence of the three sized Si-ncs and some oxygen related defects enhances intense violet/blue and red photoluminescence (PL) bands. The SRO MLs were super-enriched with additional excess silicon by Si{sup +} implantation, which enhanced the PL intensity. Oxygen-related defects and small Si-ncs (<2 nm) are mostly generated during ion implantation enhancing the violet/blue band to become comparable to the red band. The structural, compositional, and luminescent characteristics of the multilayers are the result of the contribution of the individual characteristics of each layer.

  14. Systematic studies of the nucleation and growth of ultrananocrystalline diamond films on silicon substrates coated with a tungsten layer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yueh-Chieh; Jiang, Gerald [Institute of Microelectronics, No.1, University Road, Tainan 701, Taiwan (China); Tu, Chia-Hao [Institute of Nanotechnology and Microsystems Engineering, No.1, University Road, Tainan 701, Taiwan (China); Department of Materials Science and Engineering, National Cheng Kung University, No.1, University Road, Tainan 701, Taiwan (China); Chang Chi [Institute of Nanotechnology and Microsystems Engineering, No.1, University Road, Tainan 701, Taiwan (China); Liu, Chuan-pu; Ting, Jyh-Ming [Department of Materials Science and Engineering, National Cheng Kung University, No.1, University Road, Tainan 701, Taiwan (China); Lee, Hsin-Li [Industrial Technology Research Institute - South, Tainan 701, Taiwan (China); Tzeng, Yonhua [Institute of Microelectronics, No.1, University Road, Tainan 701, Taiwan (China); Advanced Optoelectronics Technology Center, No.1, University Road, Tainan 701, Taiwan (China); Auciello, Orlando [Argonne National Laboratory, Materials Science Division, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States)

    2012-06-15

    We report on effects of a tungsten layer deposited on silicon surface on the effectiveness for diamond nanoparticles to be seeded for the deposition of ultrananocrystalline diamond (UNCD). Rough tungsten surface and electrostatic forces between nanodiamond seeds and the tungsten surface layer help to improve the adhesion of nanodiamond seeds on the tungsten surface. The seeding density on tungsten coated silicon thus increases. Tungsten carbide is formed by reactions of the tungsten layer with carbon containing plasma species. It provides favorable (001) crystal planes for the nucleation of (111) crystal planes by Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD) in argon diluted methane plasma and further improves the density of diamond seeds/nuclei. UNCD films grown at different gas pressures on tungsten coated silicon which is pre-seeded by nanodiamond along with heteroepitaxially nucleated diamond nuclei were characterized by Raman scattering, field emission-scanning electron microscopy, and high resolution-transmission electron microscopy.

  15. Synthesis of amino-rich silica-coated magnetic nanoparticles for the efficient capture of DNA for PCR.

    Science.gov (United States)

    Bai, Yalong; Cui, Yan; Paoli, George C; Shi, Chunlei; Wang, Dapeng; Zhou, Min; Zhang, Lida; Shi, Xianming

    2016-09-01

    Magnetic separation has great advantages over traditional bio-separation methods and has become popular in the development of methods for the detection of bacterial pathogens, viruses, and transgenic crops. Functionalization of magnetic nanoparticles is a key factor for efficient capture of the target analytes. In this paper, we report the synthesis of amino-rich silica-coated magnetic nanoparticles using a one-pot method. This type of magnetic nanoparticle has a rough surface and a higher density of amino groups than the nanoparticles prepared by a post-modification method. Furthermore, the results of hydrochloric acid treatment indicated that the magnetic nanoparticles were stably coated. The developed amino-rich silica-coated magnetic nanoparticles were used to directly adsorb DNA. After magnetic separation and blocking, the magnetic nanoparticles and DNA complexes were used directly for the polymerase chain reaction (PCR), without onerous and time-consuming purification and elution steps. The results of real-time quantitative PCR showed that the nanoparticles with higher amino group density resulted in improved DNA capture efficiency. The results suggest that amino-rich silica-coated magnetic nanoparticles are of great potential for efficient bio-separation of DNA prior to detection by PCR. Copyright © 2016. Published by Elsevier B.V.

  16. Dip coating process. Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project. Quarterly report No. 6, March 22, 1977--June 24, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Zook, J.D.; Heaps, J.D.; Maciolek, R.B.; Koepke, B.; Butter, C.D.; Schuldt, S.B.

    1977-06-30

    The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress was made in silicon on ceramic (SOC) solar cell performance. SOC cells having 1 cm/sup 2/ active areas demonstrated measured conversion efficiencies as high as 7.2 percent. Typical open circuit voltages (V/sub oc/) and short circuit current densities (J/sub sc/) were 0.51 volt and 20 mA/cm/sup 2/ respectively. Since the active surface of these solar cells is a highly reflective ''as-grown'' surface, one can expect improvement in J/sub sc/ after an anti-reflection (AR) coating is applied. It is significant that single-crystal comparison cells, also measured without benefit of an AR coating, had efficiencies in the 8.5 percent range with typical V/sub oc/'s and J/sub sc/'s of 0.54 volt and 23 mA/cm/sup 2/, respectively. Therefore, improvement in cell design and junction diffusion techniques should increase the efficiency of both the SOC and single-crystal cells. During this quarter the dip coating facility was inadvertently contaminated, but has since been restored to a purity level exceeding its original state. With this facility, silicon coatings were grown with a single-crystal seed attached to the substrate. Single-crystal silicon was not forthcoming, but the results were nonetheless encouraging. Several of the carbon coating types tried appear promising, including one which has high purity and can be applied uniformly by swab or airbrush.

  17. Electro-rheological properties of montmorillonite particles coated with titania in methyl silicone oil

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xu-ping; XU Ling-li; WANG Qing-liang

    2008-01-01

    Montmorillonite particles coated with titania were synthesized by means of a sol-gel method to use with elec-tro-theological material. The characteristics of these composite particles were studied by X-ray diffraction, scanning electron mi-croscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The electro-rheological (ER) effects were measured after these particles were mixed with methyl-silicon oil by 20% and 30% (weight percent). The experimental results show that these montmorillonite/titania particles exhibit a marked ER effect compared with pure montmorillonite particles under a DC electric field.The highest static yield stress is up to 4.28 kPa, which is an increase of about 3.13 kPa over that of untreated montmorillonite pow-der under the electrical field strength of 3.2 kV/mm at room temperature.

  18. Fabrication and optical property of silicon oxide layer coated semiconductor gallium nitride nanowires.

    Science.gov (United States)

    Zhang, Jun; Zhang, Lide; Jiang, Feihong; Yang, Yongdong; Li, Jianping

    2005-01-13

    Quasi one-dimensional GaN-SiO(2) nanostructures, with a silicon oxide layer coated on semiconductor GaN nanowires, were successfully synthesized through as-synthesized SiO(2) nanoparticles-assisted reaction. The experimental results indicate that the nanostructure consists of single-crystalline wurtzite GaN nanowire core, an amorphous SiO(2) outer shell separated in the radial direction. These quasi one-dimensional nanowires have the diameters of a few tens of nanometers and lengths up to several hundreds of micrometers. The photoluminescence spectrum of the GaN-SiO(2) nanostructures consists of one broad blue-light emission peak at 480 nm and another weak UV emission peak at 345 nm. The novel method, which may results in high yield and high reproducibility, is demonstrated to be a unique technique for producing nanostructures with controlled morphology.

  19. Wettability behaviour of RTV silicone rubber coated on nanostructured aluminium surface

    Energy Technology Data Exchange (ETDEWEB)

    Momen, Gelareh, E-mail: gmomen@uqac.ca [NSERC/Hydro-Quebec/UQAC Industrial Chair on Atmospheric Icing of Power Network Equipment (CIGELE), and Canada Research Chair on Atmospheric Icing Engineering of Power Networks (INGIVRE), Universite du Quebec a Chicoutimi UQAC, Chicoutimi, QC (Canada); Farzaneh, Masoud; Jafari, Reza [NSERC/Hydro-Quebec/UQAC Industrial Chair on Atmospheric Icing of Power Network Equipment (CIGELE), and Canada Research Chair on Atmospheric Icing Engineering of Power Networks (INGIVRE), Universite du Quebec a Chicoutimi UQAC, Chicoutimi, QC (Canada)

    2011-05-15

    A nanostructutered superhydrophobic surface was elaborated by applying an RTV silicone rubber coating on electrochemically processed aluminium substrates. Study of anodisation voltage on surface morphology showed that higher anodising voltage led to larger pore sizes. Scanning electron microscopy image analysis showed bird's nest and beehive structures formed on anodised surfaces at 50 V and 80 V. Water static contact angle on the treated surfaces reached up to 160{sup o} at room temperature. Study of superhydrophobic surfaces at super cooled temperature showed important delayed freezing time for RTV hydrophobic surfaces when compared to non-treated aluminium. However, lower wettability was observed when surface temperature went down from 20 deg. C to -10 deg. C. Also, it was found that the capacitance of superhydrophobic surfaces decreased with increasing anodising voltage.

  20. Characterization of mechanical properties of hydroxyapatite-silicon-multi walled carbon nano tubes composite coatings synthesized by EPD on NiTi alloys for biomedical application.

    Science.gov (United States)

    Khalili, Vida; Khalil-Allafi, Jafar; Sengstock, Christina; Motemani, Yahya; Paulsen, Alexander; Frenzel, Jan; Eggeler, Gunther; Köller, Manfred

    2016-06-01

    Release of Ni(1+) ions from NiTi alloy into tissue environment, biological response on the surface of NiTi and the allergic reaction of atopic people towards Ni are challengeable issues for biomedical application. In this study, composite coatings of hydroxyapatite-silicon multi walled carbon nano-tubes with 20wt% Silicon and 1wt% multi walled carbon nano-tubes of HA were deposited on a NiTi substrate using electrophoretic methods. The SEM images of coated samples exhibit a continuous and compact morphology for hydroxyapatite-silicon and hydroxyapatite-silicon-multi walled carbon nano-tubes coatings. Nano-indentation analysis on different locations of coatings represents the highest elastic modulus (45.8GPa) for HA-Si-MWCNTs which is between the elastic modulus of NiTi substrate (66.5GPa) and bone tissue (≈30GPa). This results in decrease of stress gradient on coating-substrate-bone interfaces during performance. The results of nano-scratch analysis show the highest critical distance of delamination (2.5mm) and normal load before failure (837mN) as well as highest critical contact pressure for hydroxyapatite-silicon-multi walled carbon nano-tubes coating. The cell culture results show that human mesenchymal stem cells are able to adhere and proliferate on the pure hydroxyapatite and composite coatings. The presence of both silicon and multi walled carbon nano-tubes (CS3) in the hydroxyapatite coating induce more adherence of viable human mesenchymal stem cells in contrast to the HA coated samples with only silicon (CS2). These results make hydroxyapatite-silicon-multi walled carbon nano-tubes a promising composite coating for future bone implant application.

  1. The influence of annealing on the electrical and optical properties of silicon-rich silicon nitride films

    Science.gov (United States)

    Czarnacka, Karolina; Komarov, F. F.

    2016-09-01

    In this paper measurements results of electrical and optical properties of SiNx thin layers are presented. Layers were produced by chemical vapor deposition on n-type (100)-oriented silicon substrates. Measurements were performed for samples directly after deposition and for samples annealed in temperature of 1073 K. Resistance Rp, capacity Cp, phase angle shift θ and dielectric loss factor tgδ were the measuring parameters on AC in the frequency range from 50 Hz to 5 MHz as a function of measurement temperature from the range 20 K - 373 K. Based on this, the conductivity σ and the activation energy of conductivity were determined. Photoluminescence spectra were recorded at room temperature in the spectral region of 350 - 800 nm using a He-Cd laser source with λ=325 nm. The influence of annealing on the electrical and optical properties was explained. Current resonance phenomenon and reduction of photoluminescence spectra were observed.

  2. Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Latifi, Afrooz, E-mail: afroozlatifi@yahoo.com [Department of Biomaterials, Biomedical Engineering Faculty, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Imani, Mohammad [Novel Drug Delivery Systems Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran (Iran, Islamic Republic of); Khorasani, Mohammad Taghi [Biomaterials Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/159, Tehran (Iran, Islamic Republic of); Daliri Joupari, Morteza [Animal and Marine Biotechnology Dept., National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Highlights: • Stainless steel 316L was surface modified by plasma surface oxidation (PSO) and silicone rubber (SR) coating. • On the PSO substrates, concentration of oxide species was increased ca. 2.5 times comparing to non-PSO substrates. • The surface wettability was improved to 12.5°, in terms of water contact angle, after PSO. • Adhesion strength of SR coating on the PSO substrates was improved by more than two times comparing to non-PSO ones. • After pull-off test, the fractured area patterns for SR coating were dependent on the type of surface modifications received. - Abstract: Stainless steel 316L is one of the most widely used materials for fabricating of biomedical devices hence, improving its surface properties is still of great interest and challenging in biomaterial sciences. Plasma oxidation, in comparison to the conventional chemical or mechanical methods, is one of the most efficient methods recently used for surface treatment of biomaterials. Here, stainless steel specimens were surface oxidized by radio-frequency plasma irradiation operating at 34 MHz under pure oxygen atmosphere. Surface chemical composition of the samples was significantly changed after plasma oxidation by appearance of the chromium and iron oxides on the plasma-oxidized surface. A wettable surface, possessing high surface energy (83.19 mN m{sup −1}), was observed after plasma oxidation. Upon completion of the surface modification process, silicone rubber was spray coated on the plasma-treated stainless steel surface. Morphology of the silicone rubber coating was investigated by scanning electron microscopy (SEM). A uniform coating was formed on the oxidized surface with no delamination at polymer–metal interface. Pull-off tests showed the lowest adhesion strength of coating to substrate (0.12 MPa) for untreated specimens and the highest (0.89 MPa) for plasma-oxidized ones.

  3. Efficient solar photocatalytic activity of TiO2 coated nano-porous silicon by atomic layer deposition

    Science.gov (United States)

    Sampath, Sridhar; Maydannik, Philipp; Ivanova, Tatiana; Shestakova, Marina; Homola, Tomáš; Bryukvin, Anton; Sillanpää, Mika; Nagumothu, Rameshbabu; Alagan, Viswanathan

    2016-09-01

    In the present study, TiO2 coated nano-porous silicon (TiO2/PS) was prepared by atomic layer deposition (ALD) whereas porous silicon was prepared by stain etching method for efficient solar photocatalytic activity. TiO2/PS was characterized by FESEM, AFM, XRD, XPS and DRS UV-vis spectrophotometer. Absorbance spectrum revealed that TiO2/PS absorbs complete solar light with wave length range of 300 nm-800 nm and most importantly, it absorbs stronger visible light than UV light. The reason for efficient solar light absorption of TiO2/PS is that nanostructured TiO2 layer absorbs UV light and nano-porous silicon layer absorbs visible light which is transparent to TiO2 layer. The amount of visible light absorption of TiO2/PS directly increases with increase of silicon etching time. The effect of silicon etching time of TiO2/PS on solar photocatalytic activity was investigated towards methylene blue dye degradation. Layer by layer solar absorption mechanism was used to explain the enhanced photocatalytic activity of TiO2/PS solar absorber. According to this, the photo-generated electrons of porous silicon will be effectively injected into TiO2 via hetero junction interface which leads to efficient charge separation even though porous silicon is not participating in any redox reactions in direct.

  4. Preparation of silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys using cyclic electrochemical deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Sil [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Jeong, Yong-Hoon [Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Brantley, William A. [Division of Restorative Science and Prosthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2014-12-01

    Silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys, prepared using a cyclic electrochemical deposition method, have been investigated using a variety of surface analytical experimental methods. The silicon-substituted hydroxyapatite (Si-HA) coatings were prepared by electrolytic deposition in electrolytes containing Ca{sup 2+}, PO{sub 4}{sup 3−} and SiO{sub 3}{sup 2−} ions. The deposited layers were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and a wettability test. Phase transformation from (α″ + β) to largely β occurred with increasing Ta content in the Ti –30Nb–xTa alloys, yielding larger grain size. The morphology of the Si-HA coatings was changed by increasing the number of deposition cycles, with the initial plate-like structures changing to mixed rod-like and plate-like shapes, and finally to a rod-like structure. From the ATR-FTIR spectra, Si existed in the form of SiO{sub 4}{sup 4−} groups in Si-HA coating layer. The lowest aqueous contact angles and best wettability were found for the Si-HA coatings prepared with 30 deposition cycles. - Highlights: • Electrochemically deposited Si-HA coatings on Ti –30Nb–xTa alloys were investigated. • The Si-HA coatings were initially precipitated along the martensitic structure. • The morphology of the Si-HA coating changed with the deposition cycles. • Si existed in the form of SiO{sub 4}{sup 4−} groups in the Si-HA coating.

  5. Application of CBD-Zinc Sulfide Film as an Antireflection Coating on Very Large Area Multicrystalline Silicon Solar Cell

    Directory of Open Access Journals (Sweden)

    U. Gangopadhyay

    2007-01-01

    Full Text Available The low-cost chemical bath deposition (CBD technique is used to prepare CBD-ZnS films as antireflective (AR coating for multicrystalline silicon solar cells. The uniformity of CBD-ZnS film on large area of textured multicrystalline silicon surface is the major challenge of CBD technique. In the present work, attempts have been made for the first time to improve the rate of deposition and uniformity of deposited film by controlling film stoichiometry and refractive index and also to minimize reflection loss by proper optimization of molar percentage of different chemical constituents and deposition conditions. Reasonable values of film deposition rate (12.13 Å′/min., good film uniformity (standard deviation <1, and refractive index (2.35 along with a low percentage of average reflection (6-7% on a textured mc-Si surface are achieved with proper optimization of ZnS bath. 12.24% efficiency on large area (125 mm × 125 mm multicrystalline silicon solar cells with CBD-ZnS antireflection coating has been successfully fabricated. The viability of low-cost CBD-ZnS antireflection coating on large area multicrystalline silicon solar cell in the industrial production level is emphasized.

  6. Calcium phosphate/porous silicon biocomposites prepared by cyclic deposition methods: Spin coating vs electrochemical activation

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Montelongo, J., E-mail: jacobo.hernandez@uam.es [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Gallach, D.; Naveas, N.; Torres-Costa, V. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Climent-Font, A. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Centro de Microanálisis de Materiales (CMAM), Universidad Autónoma de Madrid, Madrid 28049 (Spain); García-Ruiz, J.P. [Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 (Spain); Manso-Silvan, M. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2014-01-01

    Porous silicon (PSi) provides an excellent platform for bioengineering applications due to its biocompatibility, biodegradability, and bioresorbability. However, to promote its application as bone engineering scaffold, deposition of calcium phosphate (CaP) ceramics in its hydroxyapatite (HAP) phase is in progress. In that sense, this work focuses on the synthesis of CaP/PSi composites by means of two different techniques for CaP deposition on PSi: Cyclic Spin Coating (CSC) and Cyclic Electrochemical Activation (CEA). Both techniques CSC and CEA consisted on alternate Ca and P deposition steps on PSi. Each technique produced specific morphologies and CaP phases using the same independent Ca and P stem-solutions at neutral pH and at room temperature. The brushite (BRU) phase was favored with the CSC technique and the hydroxyapatite (HAP) phase was better synthesized using the CEA technique. Analyses by elastic backscattering spectroscopy (EBS) on CaP/PSi structures synthesized by CEA supported that, by controlling the CEA parameters, an HAP coating with the required Ca/P atomic ratio of 1.67 can be promoted. Biocompatibility was evaluated by bone-derived progenitor cells, which grew onto CaP/PSi prepared by CSC technique with a long-shaped actin cytoskeleton. The density of adhered cells was higher on CaP/PSi prepared by CEA, where cells presented a normal morphological appearance and active mitosis. These results can be used for the design and optimization of CaP/PSi composites with enhanced biocompatibility for bone-tissue engineering. - Highlights: • Proposed cyclic methods produce specific morphologies and CaP phases in biocomposites. • The brushite phase is favored in the biocomposite produced by Cyclic Spin Coating. • The hydroxyapatite phase is favored in the biocomposite produced by Cyclic Electrochemical Activation. • The Ca/P atomic ratio of hydroxyapatite was validated by elastic backscattering spectroscopy. • Cells grown showed morphological and

  7. Graphene oxide as a p-dopant and an anti-reflection coating layer, in graphene/silicon solar cells

    Science.gov (United States)

    Yavuz, S.; Kuru, C.; Choi, D.; Kargar, A.; Jin, S.; Bandaru, P. R.

    2016-03-01

    It is shown that coating graphene-silicon (Gr/Si) Schottky junction based solar cells with graphene oxide (GO) improves the power conversion efficiency (PCE) of the cells, while demonstrating unprecedented device stability. The PCE has been shown to be increased to 10.6% (at incident radiation of 100 mW cm-2) for the Gr/Si solar cell with an optimal GO coating thickness compared to 3.6% for a bare/uncoated Gr/Si solar cell. The p-doping of graphene by the GO, which also serves as an antireflection coating (ARC) has been shown to be a main contributing factor to the enhanced PCE. A simple spin coating process has been used to apply GO with thickness commensurate with an anti-refection coating (ARC) and indicates the suitability of the developed methodology for large-scale solar cell assembly.It is shown that coating graphene-silicon (Gr/Si) Schottky junction based solar cells with graphene oxide (GO) improves the power conversion efficiency (PCE) of the cells, while demonstrating unprecedented device stability. The PCE has been shown to be increased to 10.6% (at incident radiation of 100 mW cm-2) for the Gr/Si solar cell with an optimal GO coating thickness compared to 3.6% for a bare/uncoated Gr/Si solar cell. The p-doping of graphene by the GO, which also serves as an antireflection coating (ARC) has been shown to be a main contributing factor to the enhanced PCE. A simple spin coating process has been used to apply GO with thickness commensurate with an anti-refection coating (ARC) and indicates the suitability of the developed methodology for large-scale solar cell assembly. Electronic supplementary information (ESI) available: (i) Experimental methods, (ii) optical images of devices with and without graphene oxide (GO), (iii) comparison of the power conversion efficiency (PCE) due to the GO coating and nitric acid doping, (iv) specular and diffuse reflectance measurements, (v) stability data of pristine graphene/silicon (Gr/Si) solar cells. See DOI: 10.1039/c5

  8. Multi-Composite Bioactive Osteogenic Sponges Featuring Mesenchymal Stem Cells, Platelet-Rich Plasma, Nanoporous Silicon Enclosures, and Peptide Amphiphiles for Rapid Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Dongmei Fan

    2011-06-01

    Full Text Available A novel bioactive sponge was created with a composite of type I collagen sponges or porous poly(e-caprolactone (PCL scaffolds, platelet-rich plasma (PRP, BMP2-loaded nanoporous silicon enclosure (NSE microparticles, mineralizing peptide amphiphiles (PA, and mesenchymal stem cells (MSC. Primary MSC from cortical bone (CB  tissue proved to form more and larger colony units, as well as produce more mineral matrix under osteogenic differentiation, than MSC from bone marrow (BM. Coating pre-treatments were optimized for maximum cell adhesion and mineralization, while a PRP-based gel carrier was created to efficiently deliver and retain MSC and  microparticles within a porous scaffold while simultaneously promoting cell recruitment, proliferation, and angiogenesis. Components and composite sponges were evaluated for osteogenic differentiation in vitro. Osteogenic sponges were loaded with MSC, PRP, PA, and NSE and implanted subcutaneously in rats to evaluate the formation of bone tissue and angiogenesis in vivo. It was found that the combination of a collagen sponge with CB MSC, PRP, PA, and the BMP2-releasing NSE formed the most bone and was most vascularized by four weeks compared to analogous composites featuring BM MSC or PCL or lacking PRP, PA, and NSE. This study indicates that CB MSC should be considered as an alternative to marrow as a source of stem cells, while the PRP-PA cell and microparticle delivery system may be utilized for diverse tissue engineering applications.

  9. Synthesis of aluminum-rich coatings on new high-temperature cast austenitic steel CF8C-Plus by a pack cementation process

    Science.gov (United States)

    Hall, Alex Keith

    2011-12-01

    In this research, a pack cementation process is developed for coating the newly developed cast austenitic steel CF8C-Plus. The developed coating process is capable of producing pack particle free coatings on large fatigue test specimens in a horizontal laboratory tube furnace as well as smaller oxidation and creep test samples. Several methods for the production of the pack powder free Al-rich coating are presented and evaluated for samples of both sizes. The developed coating is intended to compete with coatings of a similar quality produced with chemical vapor deposition and slurry coating methods. Additionally, because CF8C-Plus has only recently become available there is currently no available data on the effect of the fabrication of an Al-rich coating on the substrates properties. This research used advanced characterization methods to evaluate the coating surface and cross-sectional features. These methods include scanning electron microscopy, X-ray diffraction, electron probe microanalysis and energy dispersive spectroscopy analysis. This is the first time that this information has been made available to the scientific community. Also, the oxidation performance of the coating will be tested and compared to other coatings developed with CVD and slurry coating methods and the preliminary results of the effect of the coating on the alloys fatigue performance will be presented.

  10. Coating effects on thermal properties of carbon carbon and carbon silicon carbide composites for space thermal protection systems

    Science.gov (United States)

    Albano, M.; Morles, R. B.; Cioeta, F.; Marchetti, M.

    2014-06-01

    Many are the materials for hot structures, but the most promising one are the carbon based composites nowadays. This is because they have good characteristics with a high stability at high temperatures, preserving their mechanical properties. Unfortunately, carbon reacts rapidly with oxygen and the composites are subjected to oxidation degradation. From this point of view CC has to be modified in order to improve its thermal and oxidative resistance. The most common solutions are the use of silicon carbide into the carbon composites matrix (SiC composites) to make the thermal properties increase and the use of coating on the surface in order to protect the composite from the space plasma effects. Here is presented an experimental study on coating effects on these composites. Thermal properties of coated and non coated materials have been studied and the thermal impact on the matrix and surface degradation is analyzed by a SEM analysis.

  11. Wannier-Stark electro-optical effect, quasi-guided and photonic modes in 2D macroporous silicon structures with SiO2 coatings

    Science.gov (United States)

    Karachevtseva, L.; Goltviansky, Yu.; Sapelnikova, O.; Lytvynenko, O.; Stronska, O.; Bo, Wang; Kartel, M.

    2016-12-01

    Opportunities to enhance the properties of structured surfaces were demonstrated on 2D macroporous silicon structures with SiO2 coatings. We investigated the IR light absorption oscillations in macroporous silicon structures with SiO2 coatings 0-800 nm thick. The Wannier-Stark electro-optical effect due to strong electric field on Si-SiO2boundary and an additional electric field of quasi-guided optical modes were taken into account. The photonic modes and band gaps were also considered as peculiarities in absorbance spectra of macroporous silicon structures with a thick SiO2 coating. The photonic modes do not coincide with the quasi-guided modes in the silicon matrix and do not appear in absorption spectra of 2D macroporous silicon structures with surface nanocrystals.

  12. Impact of ALD Coating on Mn-rich Cathode Materials (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, S.

    2013-06-01

    LG Chem Power Inc. (LGCPI) and NREL have collaborated to demonstrate the scalability of the atomic layer deposition (ALD) coating process over the last 6 months, and the benefits of ALD coatings for long-term cycling and calendar life are being quantified. The objectives of this work are two-fold: 1) to evaluate the scalability of the process to coat LGCPI cathodes with alumina using the ALD technique, and 2) to demonstrate improvements in rate capability and life of ALD-coated LGCPI electrodes. NREL received samples of baseline material to be coated from LGCPI. NREL carried out ALD coating of the samples with help from a subcontractor, ALD Nanosolutions. NREL fabricated cells from those samples for quick screening and feedback to ALD Nanosolutions. LGCPI is currently fabricating larger-format cells for further evaluation.

  13. Electromagnetic separation of primary iron-rich phases from aluminum-silicon melt

    Institute of Scientific and Technical Information of China (English)

    李天晓; 许振明; 孙宝德; 疏达; 周尧和

    2003-01-01

    The difference of conductivity between primary iron-rich phases and aluminum melt has been used toseparate them by electromagnetic force (EMF) which is induced by imposing a direct electric current and a steadymagnetic field in molten Al-Si alloy. Theoretical analysis and experiments on self-designed electromagnetic separa-tion indicates that primary needle-like β phases are difficult to separate; while primary a iron-rich phases can be sepa-rated by electromagnetic separation. Primary iron-rich phases have been removed from the melt successfully whenthe molten metal flows horizontally through separation channel. The iron content is reduced from 1.13% to 0.41%.

  14. Dip-coating process. Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project. Quarterly report No. 7

    Energy Technology Data Exchange (ETDEWEB)

    Zook, J.D.; Heaps, J.D.; Maciolek, R.B.; Koepke, B.; Butter, C.D.; Schuldt, S.B.

    1977-12-30

    The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. During the past quarter, significant progress was demonstrated in several areas. Seeded growth of silicon-on-ceramic (SOC) with an EFG ribbon seed was demonstrated. Different types of mullite received from Coors were successfully coated with silicon. A new method of deriving minority carrier diffusion length, L/sub n/, from spectral response measurements was evaluated. ECOMOD cost projections were found to be in good agreement with the interim SAMIS method proposed by JPL. On the less positive side, there was a decrease in cell performance which is believed to be due to an unidentified source of impurities. Also, operation of the new coating system fell behind schedule but is expected to improve in the coming quarter, since construction has now been completed.

  15. Effectiveness of sodium benzoate as a freshwater low toxicity antifoulant when dispersed in solution and entrapped in silicone coatings.

    Science.gov (United States)

    Haque, Haroon; Cutright, Teresa J; Newby, Bi-Min Zhang

    2005-01-01

    The traditional solution for preventing organisms from attaching to submerged surfaces is to apply antifouling coatings or biocides. Based on the varied defence mechanisms exhibited by biofilms, the antifoulant needs to prevent bacterial attachment during the early stages of biofilm formation. The potential of benzoic acid and sodium benzoate (NaB) as antifoulants for deterring freshwater bacterial attachment was evaluated with the antifoulants dispersed in solution or entrapped in silicone coatings. Effectiveness was based on the decrease in microbial attachment, limited toxicity, and minimum alteration of the properties of the coatings. The optimal NaB concentration when dispersed in solution, 700 mg l-1, resulted in a biofilm surface coverage of only 3.34% after four weeks. The model silicone, Sylgard 184, demonstrated a better overall performance than the commercial coating, RTV11. Sylgard 184 containing sodium benzoate had 41-52% less biofilm in comparison to the control Sylgard 184, whereas both the control and NaB-entrapped RTV11 coatings had significant biofilm coverage.

  16. Silicon micro venturi nozzles for cost-efficient spray coating of thin organic P3HT/PCBM layers

    Science.gov (United States)

    Betz, Michael A.; Büchele, Patric; Brünnler, Manfred; Deml, Sonja; Lechner, Alfred

    2017-01-01

    Improvements on spray coating are of particular interest to different fields of technology as it is a scalable deposition method and processing from solutions offer various application possibilities outside of typical facilities. When it comes to the deposition of expensive and film-forming media such as organic semiconductors, consumption and nozzle cleaning issues are of particular importance. We demonstrate the simple steps to design and fabricate micro venturi nozzles for economical spray coating with a consumption as low as 30-50 µl · min-1. For spray coating an active area of 25 cm2 a 2.45-4.01 fold coating efficiency is observed compared to a conventional airbrush nozzle set. The electrical characterization of first diodes sprayed with an active layer thickness of ~750 nm using a single micronozzle at a coating speed of 1.7 cm2 · min-1 reveals a good external quantum efficiency of 72.9% at 532 nm and a dark current of ~7.4 · 10-5 mA · cm-2, both measured at  -2 V. Furthermore, the high resistance of the micronozzles against solvents and most acids is provided through realization in a silicon wafer with silicon dioxide encapsulation, therefore allowing easy and effective cleaning.

  17. Thermal conductivity mapping of pyrolytic carbon and silicon carbide coatings on simulated fuel particles by time-domain thermoreflectance

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Honorato, E. [Materials Science Centre, School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Chiritescu, C. [Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, IL 61801 (United States); Xiao, P. [Materials Science Centre, School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)], E-mail: Ping.xiao@manchester.ac.uk; Cahill, David G. [Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, IL 61801 (United States); Marsh, G.; Abram, T.J. [Nexia Solutions Ltd., Springfields PR4 0XJ (United Kingdom)

    2008-08-15

    Thermal conductivity of pyrolytic carbon and silicon carbide coatings on spherical particles has been mapped using time-domain thermoreflectance. The thermal conductivities measured for pyrolytic carbon ranged between 3.4 and 13.5 W/m K. The effect of porosity, pore-size distribution, anisotropy, in-plane disorder and domain sizes is discussed. A thermal conductivity of 168 W/m K was obtained for SiC. Mapping of the thermal conductivity of coated fuel particles provides useful data for modeling fuel performance during the operation of nuclear reactors.

  18. POLYTETRAFLUOROETHYLENE-RICH POLYPHENLENESULFIDE BLEND TOP COATINGS FOR MITIGATING CORROSION OF CARBON STEEL IN 300 DEGREE CELCIUS BRINE.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA, T.; JUNG, D.

    2006-06-01

    We evaluated usefulness of a coating system consisting of an underlying polyphenylenesulfide (PPS) layer and top polytetrafluoroethylene (PTFE)-blended PPS layer as low friction, water repellent, anti-corrosion barrier film for carbon steel steam separators in geothermal power plants. The experiments were designed to obtain information on kinetic coefficient of friction, surface free energy, hydrothermal oxidation, alteration of molecular structure, thermal stability, and corrosion protection of the coating after immersing the coated carbon steel coupons for up to 35 days in CO{sub 2}-laden brine at 300 C. The superficial layer of the assembled coating was occupied by PTFE self-segregated from PPS during the melt-flowing process of this blend polymer; it conferred an outstanding slipperiness and water repellent properties because of its low friction and surface free energy. However, PTFE underwent hydrothermal oxidation in hot brine, transforming its molecular structure into an alkylated polyfluorocarboxylate salt complex linked to Na. Although such molecular transformation increased the friction and surface free energy, and also impaired the thermal stability of PTFE, the top PTFE-rich PPS layer significantly contributed to preventing the permeation of moisture and corrosive electrolytes through the coating film, so mitigating the corrosion of carbon steel.

  19. Self-cleaning glass coating containing titanium oxide and silicon; Revestimentos autolimpantes para vidros contendo oxido de titanio e silicio

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, A.O. de; Alves, A.K.; Berutti, F.A.; Bergmann, C.P. [Universidade Federal do Rio Grande do Sul (LACER/UFRGS), Porto Alegre, RS (Brazil). Lab. de Materiais Ceramicos

    2009-07-01

    Using the electro spinning technique nano fibers of titanium oxide doped with silicon were synthesized. As precursor materials, titanium propoxide, silicon tetra propoxide and a solution of polyvinylpyrrolidone were used. The non-tissue material obtained was characterized by X-ray diffraction to determine the phase and crystallite size, BET method to determine the surface and SEM to analyze the microstructure of the fibers. After ultrasound dispersion of this material in ethanol, the glass coatings were made by dip-coating methodology. The influence of the removal velocity, the solution composition and the glass surface preparation were evaluated. The film was characterized by the contact angle of a water droplet in its surface. (author)

  20. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes.

    Science.gov (United States)

    Lu, Zhenda; Liu, Nian; Lee, Hyun-Wook; Zhao, Jie; Li, Weiyang; Li, Yuzhang; Cui, Yi

    2015-03-24

    Silicon is widely recognized as one of the most promising anode materials for lithium-ion batteries due to its 10 times higher specific capacity than graphite. Unfortunately, the large volume change of Si materials during their lithiation/delithiation process results in severe pulverization, loss of electrical contact, unstable solid-electrolyte interphase (SEI), and eventual capacity fading. Although there has been tremendous progress to overcome these issues through nanoscale materials design, improved volumetric capacity and reduced cost are still needed for practical application. To address these issues, we design a nonfilling carbon-coated porous silicon microparticle (nC-pSiMP). In this structure, porous silicon microparticles (pSiMPs) consist of many interconnected primary silicon nanoparticles; only the outer surface of the pSiMPs was coated with carbon, leaving the interior pore structures unfilled. Nonfilling carbon coating hinders electrolyte penetration into the nC-pSiMPs, minimizes the electrode-electrolyte contact area, and retains the internal pore space for Si expansion. SEI formation is mostly limited to the outside of the microparticles. As a result, the composite structure demonstrates excellent cycling stability with high reversible specific capacity (∼1500 mAh g(-1), 1000 cycles) at the rate of C/4. The nC-pSiMPs contain accurate void space to accommodate Si expansion while not losing packing density, which allows for a high volumetric capacity (∼1000 mAh cm(-3)). The areal capacity can reach over 3 mAh cm(-2) with the mass loading 2.01 mg cm(-2). Moreover, the production of nC-pSiMP is simple and scalable using a low-cost silicon monoxide microparticle starting material.

  1. Development of hybrid photon detectors with integrated silicon pixel readout for the RICH counters of LHCb

    CERN Document Server

    Alemi, M; Formenti, F; Gys, Thierry; Piedigrossi, D; Puertolas, D; Rosso, E; Snoeys, W; Wyllie, Ken H

    1999-01-01

    We report on the ongoing work towards a hybrid photon detector with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment at the Large Hadron Collider at CERN. The photon detector is based $9 on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a fast, binary readout chip with matching pixel electronics. The $9 performance of a half-scale prototype is presented, together with the developments and tests of a full-scale tube with large active area. Specific requirements for pixel front-end and readout electronics in LHCb are outlined, and $9 recent results obtained from pixel chips applicable to hybrid photon detector design are summarized.

  2. Neutron-activated determination of chlorine, using the /sup 35/Cl(n,p)/sup 35/S reaction as the basis, in thin coatings of silicon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Perezhogin, G.A.

    1988-01-10

    The neutron-activation determination of chlorine in thin coatings of silicon dioxide on silicon has been shown to be possible through the use of the /sup 55/Cl(n, P)/sup 35/S reaction. The detection limit of chlorine is 3 x 10/sup -9/ g (5 x 10/sup 13/ atoms).

  3. Oxidation of hydrogen-passivated silicon surfaces by scanning near-field optical lithography using uncoated and aluminum-coated fiber probes

    DEFF Research Database (Denmark)

    Madsen, Steen; Bozhevolnyi, Sergey I.; Birkelund, Karen

    1997-01-01

    Optically induced oxidation of hydrogen-passivated silicon surfaces using a scanning near-field optical microscope was achieved with both uncoated and aluminum-coated fiber probes. Line scans on amorphous silicon using uncoated fiber probes display a three-peak profile after etching in potassium...

  4. Calcium phosphate/porous silicon biocomposites prepared by cyclic deposition methods: spin coating vs electrochemical activation.

    Science.gov (United States)

    Hernandez-Montelongo, J; Gallach, D; Naveas, N; Torres-Costa, V; Climent-Font, A; García-Ruiz, J P; Manso-Silvan, M

    2014-01-01

    Porous silicon (PSi) provides an excellent platform for bioengineering applications due to its biocompatibility, biodegradability, and bioresorbability. However, to promote its application as bone engineering scaffold, deposition of calcium phosphate (CaP) ceramics in its hydroxyapatite (HAP) phase is in progress. In that sense, this work focuses on the synthesis of CaP/PSi composites by means of two different techniques for CaP deposition on PSi: Cyclic Spin Coating (CSC) and Cyclic Electrochemical Activation (CEA). Both techniques CSC and CEA consisted on alternate Ca and P deposition steps on PSi. Each technique produced specific morphologies and CaP phases using the same independent Ca and P stem-solutions at neutral pH and at room temperature. The brushite (BRU) phase was favored with the CSC technique and the hydroxyapatite (HAP) phase was better synthesized using the CEA technique. Analyses by elastic backscattering spectroscopy (EBS) on CaP/PSi structures synthesized by CEA supported that, by controlling the CEA parameters, an HAP coating with the required Ca/P atomic ratio of 1.67 can be promoted. Biocompatibility was evaluated by bone-derived progenitor cells, which grew onto CaP/PSi prepared by CSC technique with a long-shaped actin cytoskeleton. The density of adhered cells was higher on CaP/PSi prepared by CEA, where cells presented a normal morphological appearance and active mitosis. These results can be used for the design and optimization of CaP/PSi composites with enhanced biocompatibility for bone-tissue engineering.

  5. Excitation mechanism and thermal emission quenching of Tb ions in silicon rich silicon oxide thin films grown by plasma-enhanced chemical vapour deposition—Do we need silicon nanoclusters?

    Energy Technology Data Exchange (ETDEWEB)

    Podhorodecki, A., E-mail: artur.p.podhorodecki@pwr.wroc.pl; Golacki, L. W.; Zatryb, G.; Misiewicz, J. [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Wang, J.; Jadwisienczak, W. [School of EECS, Ohio University, Stocker Center 363, Athens, Ohio 45701 (United States); Fedus, K. [Institute of Physics, Nicholas Copernicus University, Grudziadzka 5/7, 87-100 Torun (Poland); Wojcik, J.; Wilson, P. R. J.; Mascher, P. [Department of Engineering Physics and Centre for Emerging Device Technologies, McMaster University, 1280 Main St. W, Hamilton, Ontario L8S4L7 (Canada)

    2014-04-14

    In this work, we will discuss the excitation and emission properties of Tb ions in a Silicon Rich Silicon Oxide (SRSO) matrix obtained at different technological conditions. By means of electron cyclotron resonance plasma-enhanced chemical vapour deposition, undoped and doped SRSO films have been obtained with different Si content (33, 35, 39, 50 at. %) and were annealed at different temperatures (600, 900, 1100 °C). The samples were characterized optically and structurally using photoluminescence (PL), PL excitation, time resolved PL, absorption, cathodoluminescence, temperature dependent PL, Rutherford backscattering spectrometry, Fourier transform infrared spectroscopy and positron annihilation lifetime spectroscopy. Based on the obtained results, we discuss how the matrix modifications influence excitation and emission properties of Tb ions.

  6. Fe{sub 3}O{sub 4}/carbon coated silicon ternary hybrid composite as supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Ilgeun; Kim, Myeongjin; Kim, Jooheon, E-mail: jooheonkim@cau.ac.kr

    2015-02-15

    Highlights: • Silicon was covered with carbon by thermal vapor deposition. • Carbon layer prevent exposure of silicon to reactive electrolyte. • Fe{sub 3}O{sub 4} contents in the composites optimized for electrochemical performance. • Fe{sub 3}O{sub 4}/carbon coated Si exhibits higher electrochemical performance than raw Si. - Abstract: In this study, Fe{sub 3}O{sub 4}/carbon-coated Si ternary hybrid composites were fabricated. A carbon layer was directly formed on the surface of Si by the thermal vapor deposition. The carbon-coating layer not only prevented the contact between Si and reactive electrolyte but also provided anchoring sites for the deposition of Fe{sub 3}O{sub 4}. Fe{sub 3}O{sub 4} nanoparticles were deposited on the surface of carbon-coated Si by the hydrazine reducing method. The morphology and structure of Fe{sub 3}O{sub 4} and carbon layer were characterized via X-ray diffractometry, field emission scanning electron microscopy, field emission transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analyses. These characterizations indicate that a carbon layer was fully coated on the Si particles, and Fe{sub 3}O{sub 4} particles were homogeneously deposited on the carbon-coated Si particles. The Fe{sub 3}O{sub 4}/carbon-coated Si electrode exhibited enhanced electrochemical performance, attributed to the high conductivity and stability of carbon layer and pseudocapacitive reaction of Fe{sub 3}O{sub 4}. The proposed ternary-hybrid composites may be potentially useful for the fabrication of high-performance electrodes.

  7. Tuning of structural, light emission and wetting properties of nanostructured copper oxide-porous silicon matrix formed on electrochemically etched copper-coated silicon substrates

    Science.gov (United States)

    Naddaf, M.

    2017-01-01

    Matrices of copper oxide-porous silicon nanostructures have been formed by electrochemical etching of copper-coated silicon surfaces in HF-based solution at different etching times (5-15 min). Micro-Raman, X-ray diffraction and X-ray photoelectron spectroscopy results show that the nature of copper oxide in the matrix changes from single-phase copper (I) oxide (Cu2O) to single-phase copper (II) oxide (CuO) on increasing the etching time. This is accompanied with important variation in the content of carbon, carbon hydrides, carbonyl compounds and silicon oxide in the matrix. The matrix formed at the low etching time (5 min) exhibits a single broad "blue" room-temperature photoluminescence (PL) band. On increasing the etching time, the intensity of this band decreases and a much stronger "red" PL band emerges in the PL spectra. The relative intensity of this band with respect to the "blue" band significantly increases on increasing the etching time. The "blue" and "red" PL bands are attributed to Cu2O and porous silicon of the matrix, respectively. In addition, the water contact angle measurements reveal that the hydrophobicity of the matrix surface can be tuned from hydrophobic to superhydrophobic state by controlling the etching time.

  8. CAPRICE98: a balloon-borne magnetic spectrometer equipped with a gas RICH and a silicon calorimeter to study cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Barbiellini, G.; Bartalucci, S.; Bellotti, R.; Bergstroem, D.; Bidoli, V.; Boezio, M.; Bonvicini, V. E-mail: bonvicini@trieste.infn.it; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; Marzo, C. De; Pascale, M.P. De; Finetti, N.; Francke, T.; Grinstein, S.; Hof, M.; Khalchukov, F.; Kremer, J.; Menn, W.; Mitchell, J.W.; Morselli, A.; Ormes, J.F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Simon, M.; Schiavon, P.; Sparvoli, R.; Spillantini, P.; Stochaj, S.J.; Streitmatter, R.E.; Stephens, S.A.; Suffert, M.; Vacchi, A.; Weber, N.; Zampa, N

    2001-04-01

    CAPRICE98 is a superconducting magnetic spectrometer, equipped with a gas RICH and a silicon calorimeter, launched from Ft. Sumner (USA), on the 28th of May 1998, by the WiZard collaboration. For the first time a gas RICH detector flew together with a silicon electromagnetic calorimeter, allowing mass resolved antiprotons, with E>18 GeV, to be detected. The detector configuration was completed by a time of flight for particle identification, and a set of three drift chambers for rigidity measurement. The science objectives are the study of antimatter in cosmic rays and the cosmic ray composition in the atmosphere with special focus on muons.

  9. On-Sky Tests of an A/R Coated Silicon Grism on board NICS@TNG

    CERN Document Server

    Vitali, Fabrizio; Lorenzetti, Dario; Cianci, Elena; Ghinassi, Francesca; Harutyunyan, Avet; Antoniucci, Simone; Riverol, Carlos; Riverol, Luis

    2014-01-01

    We present the results of our project for the design and construction and on-sky test of silicon grisms. The fabrication of such devices is a complex and critical process involving litho-masking, anisotropic etching and direct bonding techniques. After the successful fabrication of the silicon grating, we have optimized the bonding of the grating onto the hypotenuse of a silicon prism to get the final prototype. After some critical phases during the experimentation a silicon grism with 363 grooves/mm and a blaze angle of 14 degrees has been eventually fabricated. The application of an A/R coating on both the surfaces has been the last step: this procedure is critical because of the groove geometry of the diffraction grating, whose performace might be compromised by the coating. Then, the grism was inserted in the filter wheel of the Near Infrared camera NICS, at the focal plane of the National Galileo Telescope (TNG), the 3.5 m Italian facility in the Canary Islands (E). The result of the on-sky tests are giv...

  10. Standalone ethanol micro-reformer integrated on silicon technology for onboard production of hydrogen-rich gas.

    Science.gov (United States)

    Pla, D; Salleras, M; Morata, A; Garbayo, I; Gerbolés, M; Sabaté, N; Divins, N J; Casanovas, A; Llorca, J; Tarancón, A

    2016-08-07

    A novel design of a silicon-based micro-reformer for onboard hydrogen generation from ethanol is presented in this work. The micro-reactor is fully fabricated with mainstream MEMS technology and consists of an active low-thermal-mass structure suspended by an insulating membrane. The suspended structure includes an embedded resistive metal heater and an array of ca. 20k vertically aligned through-silicon micro-channels per square centimetre. Each micro-channel is 500 μm in length and 50 μm in diameter allowing a unique micro-reformer configuration that presents a total surface per projected area of 16 cm(2) cm(-2) and per volume of 320 cm(2) cm(-3). The walls of the micro-channels become the active surface of the micro-reformer when coated with a homogenous thin film of Rh-Pd/CeO2 catalyst. The steam reforming of ethanol under controlled temperature conditions (using the embedded heater) and using the micro-reformer as a standalone device are evaluated. Fuel conversion rates above 94% and hydrogen selectivity values of ca. 70% were obtained when using operation conditions suitable for application in micro-solid oxide fuel cells (micro-SOFCs), i.e. 750 °C and fuel flows of 0.02 mlL min(-1) (enough to feed a one watt power source).

  11. Silicon Vertex Tracker for PHENIX Upgrade at RICH: Capabilities and Detector Technology

    Science.gov (United States)

    Nouicer, R.

    From the wealth of data obtained from the first three years of RHIC operation, the four RHIC experiments, BRAHMS, PHENIX, PHOBOS and STAR, have concluded that a high density partonic matter is formed at central Au+Au collisions at sNN = 200 GeV. The research focus now shifts from initial discovery to a detailed exploration of partonic matter. Particles carrying heavy flavor, i.e. charm or beauty quarks, are powerful tool for study the properties of the hot and dense medium created in high-energy nuclear collisions at RHIC. At the relatively low transverse momentum region, the collective motion of the heavy flavor will be a sensitive signal for the thermalization of light flavors. They also allow to probe the spin structure of the proton in a new and precise way. An upgrade of RHIC (RHIC-II) is intended for the second half of the decade, with a luminosity increase to about 20-40 times the design value of 8 × 10^26 cm-2 s-1 for Au+Au, and 2 × 10^32 cm-2 s-1 for polarized proton beams. The PHENIX collaboration plans to upgrade its experiment to exploit with an enhanced detector new physics then in reach. For this purpose, we are constructing the Silicon Vertex Tracker (VTX). The VTX detector will provide us the tool to measure new physics observables that are not accessible at the present RHIC or available only with very limited accuracy. These include a precise determination of the charm production cross section, transverse momentum spectra at high-pT region for particles carrying beauty quarks as well the detection of recoil jets in direct photon production. The VTX detector consists of four layers of barrel detectors located in the region of pseudorapidity |η| < 1.2 and covers almost 2π azimuthal angle. The pseudorapidity, η, is defined as η = -ln[tan(θ/2)], where θ is the emission angle relative to the beam axis. The inner two silicon barrels consists of silicon pixel sensors and their technology is the ALICE1LHCb sensor-readout hybrid, which was developed

  12. Cobalt-rich alloys electrodeposited on silicon; Filmes de ligas ricas em cobalto eletrodepositado sobre silicio

    Energy Technology Data Exchange (ETDEWEB)

    Spada, E.R.; Dotto, M.E.R.; Sartorelli, M.L. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Departamento de Fisica. Lab. de Sistemas Nanoestruturados; Paula, F.R. de, E-mail: depaula@dfq.feis.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Departamento de Fisica e Quimica

    2014-07-01

    We report the electrodeposition (ED) of cobalt-rich alloy films on n-type Si (100) substrates in aqueous solution. A small amount of copper sulphate in the bath improved the quality of cobalt-rich films. The bath proved to be appropriate for the production of electrodeposited magnetic antidote structures prepared by nanosphere lithography technique. X-ray measurements indicate a mixture of hcp and fcc CoCu structures and strong texture in the (001) hcp and (111) fcc direction. Magnetic behavior was shown to be dependent on the thickness, which directly affects the domain wall pinning and the presence of superparamagnetism. (author)

  13. Analysis of silicon nanocrystals in silicon-rich SiO II synthesized by CO II laser annealing

    Science.gov (United States)

    Lin, Chun-Jung; Lin, Gong-Ru; Chueh, Yu-Lun; Chou, Li-Jen

    2005-11-01

    The localized synthesis of 4.2-5.6 nm-Si nanocrystals (nc-Si) in Si-rich SiO II (SRSO) by CO 2 laser annealing at laser intensity of below ablation-threshold (6 kW/cm2) is demonstrated. Since the SRSO exhibits a high absorption coefficient of up to 0.102 cm -1 at wavelength of 10.6 μm, a direct-writing CO II laser annealing system with focusing spot size of 0.2 mm2 is used to locally anneal the SRSO and precipitate the nc-Si. A thermophysical model reveals that the surface temperature of SRSO ranging from 130 °C to 3350 °C is achieved by varying the laser power densities from 1.5 to 13.5 kW/cm2. The CO II laser-ablation-threshold power density is about 6 kW/cm2, corresponding to the optimized annealing temperature 1285 °C at the ablation threshold. The CO IIlaser annealing is capable of the precise control on power density and spot size, which benefits from the in-situ and localized annealing temperature control of SRSO film, and also prevents from the eternal damage of the other electronic devices nearby the annealing site. The nc-Si dependent photoluminescence (PL) were observed at 806 nm or longer, whereas the laser-ablation damaged SRSO film exhibits significant blue PL at 410 nm due to the oxygen-related structural defects. The refractive index of the lasertreated SRSO film is increasing from 1.57 to 2.31 as the laser intensity increases from 1.5 to 6.0 kW/cm2 which is mainly attributed to the increasing density of nc-Si embedded in SRSO. High resolution transmission electron microscopy (HRTEM) analysis reveals that the average size of nc-Si embedded in SRSO film is about 5.3 nm, which correlates well with the theoretical prediction of a corresponding PL at 806 nm. The HRTEM estimated square density of the nc-Si in SRSO film under the laser intensity of 6 kW/cm2 is about 10 18 cm -3.

  14. Broadband millimeter-wave anti-reflection coatings on silicon using pyramidal sub-wavelength structures

    Science.gov (United States)

    Young, Karl; Wen, Qi; Hanany, Shaul; Imada, Hiroaki; Koch, Jürgen; Matsumura, Tomotake; Suttmann, Oliver; Schütz, Viktor

    2017-06-01

    We used two novel approaches to produce sub-wavelength structure anti-reflection coatings on silicon for millimeter and sub-millimeter wave bands: picosecond laser ablation and dicing with beveled saws. We produced pyramidal structures with both techniques. The diced sample, machined on only one side, had a pitch and a height of 350 μm and 972 μm, respectively. The two laser ablated samples had a pitch of 180 μm and heights of 720 μm and 580 μm; only one of these samples was ablated on both sides. We present measurements of shape and optical performances and comparisons to the optical performance predicted using finite element analysis and rigorous coupled wave analysis. By extending the measured performance of the one-sided diced sample to the two-sided case, we demonstrate a 25% band averaged reflectance of less than 5% over a bandwidth of 97% centered on 170 GHz. Using the two-sided laser ablation sample, we demonstrate a reflectance of less than 5% over a bandwidth of 83% centered on 346 GHz.

  15. The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems.

    Science.gov (United States)

    Sarparanta, Mirkka P; Bimbo, Luis M; Mäkilä, Ermei M; Salonen, Jarno J; Laaksonen, Päivi H; Helariutta, A M Kerttuli; Linder, Markus B; Hirvonen, Jouni T; Laaksonen, Timo J; Santos, Hélder A; Airaksinen, Anu J

    2012-04-01

    Impediments to intestinal absorption, such as poor solubility and instability in the variable conditions of the gastrointestinal (GI) tract plague many of the current drugs restricting their oral bioavailability. Particulate drug delivery systems hold great promise in solving these problems, but their effectiveness might be limited by their often rapid transit through the GI tract. Here we describe a bioadhesive oral drug delivery system based on thermally-hydrocarbonized porous silicon (THCPSi) functionalized with a self-assembled amphiphilic protein coating consisting of a class II hydrophobin (HFBII) from Trichoderma reesei. The HFBII-THCPSi nanoparticles were found to be non-cytotoxic and mucoadhesive in AGS cells, prompting their use in a biodistribution study in rats after oral administration. The passage of HFBII-THCPSi nanoparticles in the rat GI tract was significantly slower than that of uncoated THCPSi, and the nanoparticles were retained in stomach by gastric mucoadhesion up to 3 h after administration. Upon entry to the small intestine, the mucoadhesive properties were lost, resulting in the rapid transit of the nanoparticles through the remainder of the GI tract. The gastroretentive drug delivery system with a dual function presented here is a viable alternative for improving drug bioavailability in the oral route.

  16. Smart Porous Silicon Nanoparticles with Polymeric Coatings for Sequential Combination Therapy.

    Science.gov (United States)

    Xu, Wujun; Thapa, Rinez; Liu, Dongfei; Nissinen, Tuomo; Granroth, Sari; Närvänen, Ale; Suvanto, Mika; Santos, Hélder A; Lehto, Vesa-Pekka

    2015-11-01

    In spite of the advances in drug delivery, the preparation of smart nanocomposites capable of precisely controlled release of multiple drugs for sequential combination therapy is still challenging. Here, a novel drug delivery nanocomposite was prepared by coating porous silicon (PSi) nanoparticles with poly(beta-amino ester) (PAE) and Pluronic F-127, respectively. Two anticancer drugs, doxorubicin (DOX) and paclitaxel (PTX), were separately loaded into the core of PSi and the shell of F127. The nanocomposite displayed enhanced colloidal stability and good cytocompatibility. Moreover, a spatiotemporal drug release was achieved for sequential combination therapy by precisely controlling the release kinetics of the two tested drugs. The release of PTX and DOX occurred in a time-staggered manner; PTX was released much faster and earlier than DOX at pH 7.0. The grafted PAE on the external surface of PSi acted as a pH-responsive nanovalve for the site-specific release of DOX. In vitro cytotoxicity tests demonstrated that the DOX and PTX coloaded nanoparticles exhibited a better synergistic effect than the free drugs in inducing cellular apoptosis. Therefore, the present study demonstrates a promising strategy to enhance the efficiency of combination cancer therapies by precisely controlling the release kinetics of different drugs.

  17. Performance measurements of new silicon carbide coated reflectors for concentrated solar power applications

    Science.gov (United States)

    Belasri, Djawed; Nakamura, Kazuki; Armstrong, Peter; Calvet, Nicolas

    2016-05-01

    The new silicon carbide coated mirrors (SiC-mirrors) developed by Ibiden Co., Ltd. and tested at the Masdar Institute of Science and Technology offer several advantages in concentrated solar power (CSP) structure and operation. The purpose of this paper is to present the results of the reflectance and durability of the SiC-mirrors compared to high quality CSP glass mirrors in conjunction with two different applied cleaning methods. SiC-mirrors are 40 % lighter than high quality CSP glass mirrors, which leads to reduce costs of heliostat, parabolic trough or linear Fresnel structures, including assembly and installation time, lower drive power requirements, and stress during tracking operation. Lab and field tests show the SiC mirrors' reflectance is as high as the high quality CSP glass mirrors. Indeed, after 32 weeks of exposure, the high quality CSP glass mirrors' reflectance has decreased by 19 %, while the SiC mirrors' reflectance has decreased by 20 % when the brushing with water cleaning was applied. Using the brushing without water cleaning, the reflectance has decreased by 13 % and 2 % for the high quality CSP glass mirrors and the SiC-mirrors, respectively.

  18. Characterization of MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces

    Directory of Open Access Journals (Sweden)

    Venkatakrishnan Krishnan

    2011-01-01

    Full Text Available Abstract In this study, MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces under ambient condition were characterized by scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction analysis (XRD, and X-ray photoelectron spectroscopy (XPS. The radiation fluence used was 0.5 J/cm2 at a pulse repetition rate of 25 MHz with 1 ms interaction time. SEM analysis of the irradiated surfaces showed self-assembled intermingled weblike nanofibrous structure in and around the laser-irradiated spots. Further TEM investigation on this nanostructure revealed that the nanofibrous structure is formed due to aggregation of Au-Si/Si nanoparticles. The XRD peaks at 32.2°, 39.7°, and 62.5° were identified as (200, (211, and (321 reflections, respectively, corresponding to gold silicide. In addition, the observed chemical shift of Au 4f and Si 2p lines in XPS spectrum of the irradiated surface illustrated the presence of gold silicide at the irradiated surface. The generation of Si/Au-Si alloy fibrous nanoparticles aggregate is explained by the nucleation and subsequent condensation of vapor in the plasma plume during irradiation and expulsion of molten material due to high plasma pressure.

  19. Durability of a lubricant-infused Electrospray Silicon Rubber surface as an anti-icing coating

    Science.gov (United States)

    Liu, Qi; Yang, Ying; Huang, Meng; Zhou, Yuanxiang; Liu, Yingyan; Liang, Xidong

    2015-08-01

    Slippery liquid-infused porous surfaces (SLIPS) are attracting great interest as anti-icing coatings. However, the most challenging point for SLIPS is their durability. A heptadecafluorodecyl trimethoxysilane-fluorinated hierarchically micro-structured silicone rubber surface was prepared by electrospray method coupled with phase separation which had a contact angle of the lubricant θls(a) = 0°. This study investigated the effects of the surface chemistry, length scale and hierarchy of the surface topography of the underlying substrates on their ability to retain the lubricant during repetitive icing/deicing, water washout and ice-shedding treatments. This study compares the lubricant retention rate, ice formation time and ice adhesion strength. The result demonstrated that SLIPS with a fluorinated hierarchical micro/nano scale substrate maintains the best anti-icing capability. Lubricant in the microscale pores can easily creep up to the surface with nano-scale pores providing stronger capillary forces to hold the lubricant in the pores only if θls(a) = 0° with a rolling hill pattern lubricant surface morphology formed during the loss of lubricant. Such fluorinated hierarchically nano/micro structured substrate will enable the lubricant to completely cover the surface which reduces heterogeneous nucleation and frost propagation velocity.

  20. Role of Silicon Carbide in Phase-Evolution and Oxidation Behaviors of Pulse Electrodeposited Nickel-Tungsten Coating

    Science.gov (United States)

    Sribalaji, M.; Asiq Rahman, O. S.; Arun Kumar, P.; Suresh Babu, K.; Wasekar, Nitin P.; Sundararajan, G.; Keshri, Anup Kumar

    2017-01-01

    Silicon carbide (SiC) was reinforced in the pulse electrodeposited nickel-tungsten (Ni-W) coatings deposited on the steel substrate, and isothermal oxidation test was performed at 1273 K (1000 °C) for 24 hours. Addition of just 2 vol pct of SiC showed 26 pct increase in the relative oxidation resistance of Ni-W coating. The increased oxidation resistance was attributed to the phase evolution (SiO2, Cr2O3, CrSi2, Ni2SiO4, Cr7C3, Cr3C2, and Cr3Si), which suppressed the spallation of the oxide scale in Ni-W-2 vol pct SiC. The presence of Fe2O3 phase in the oxidized Ni-W coating was mainly responsible for the major multiple spallations at the interface and in the bulk, which resulted in the degradation of oxidation resistance.

  1. Preparation and characterization of silicon nitride (Si−N)-coated carbon fibers and their effects on thermal properties in composites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeon-Hye [R& D Division, Korea Institute of Carbon Convergence Technology, Jeonju 561-844 (Korea, Republic of); Nano& Advanced Materials Engineering, Jeonju University, Jeonju 560-759 (Korea, Republic of); Han, Woong [R& D Division, Korea Institute of Carbon Convergence Technology, Jeonju 561-844 (Korea, Republic of); Lee, Hae-seong [Nano& Advanced Materials Engineering, Jeonju University, Jeonju 560-759 (Korea, Republic of); Min, Byung-Gak [Department of Polymer Science & Engineering, Korea National University of Transportation, Chungju 380-702 (Korea, Republic of); Kim, Byung-Joo, E-mail: ap2-kbj@hanmail.net [R& D Division, Korea Institute of Carbon Convergence Technology, Jeonju 561-844 (Korea, Republic of)

    2015-10-15

    Graphical abstract: We report preparation and characterization of silicon nitride (Si−N)-coated carbon fibers and their effects on thermal properties in composites. Thermally composites showed enhanced thermal conductivity increasing from up to 59% by the thermal network. - Highlights: • A new method of Si−N coating on carbon fibers was reported. • Silane layer were successfully converted to Si−N layer on carbon fiber surface. • Si−N formation was confirmed by FT-IR, XPS, and EDX. • Thermal conductivity of Si−N coated CF composites were enhanced to 0.59 W/mK. - Abstract: This study investigates the effect of silicon nitride (Si−N)-coated carbon fibers on the thermal conductivity of carbon-fiber-reinforced epoxy composite. The surface properties of the Si−N-coated carbon fibers (SiNCFs) were observe using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy, and the thermal stability was analyzed using thermogravimetric analysis. SiNCFs were fabricated through the wet thermal treatment of carbon fibers (Step 1: silane finishing of the carbon fibers; Step 2: high-temperature thermal treatment in a N{sub 2}/NH{sub 3} environment). As a result, the Si−N belt was exhibited by SEM. The average thickness of the belt were 450–500 nm. The composition of Si−N was the mixture of Si−N, Si−O, and C−Si−N as confirmed by XPS. Thermal residue of the SiNCFs in air was enhanced from 3% to 50%. Thermal conductivity of the composites increased from 0.35 to 0.59 W/mK after Si−N coating on carbon surfaces.

  2. Silicon-substituted hydroxyapatite coating with Si content on the nanotube-formed Ti–Nb–Zr alloy using electron beam-physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH (United States); Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH (United States)

    2013-11-01

    The purpose of this study was to investigate the electrochemical characteristics of silicon-substituted hydroxyapatite coatings on the nanotube-formed Ti–35Nb–10Zr alloy. The silicon-substituted hydroxyapatite (Si–HA) coatings on the nanotube structure were deposited by electron beam-physical vapor deposition and anodization methods, and biodegradation properties were analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy measurement. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD). The Si–HA layers were deposited with rough features having highly ordered nanotube structures on the titanium alloy substrate. The thickness of the Si–HA coating was less than that of the HA coating. The XRD results confirmed that the Si–HA coating on the nanotube structure consisted of TiO{sub 2} anatase, TiO{sub 2} rutile, hydroxyapatite, and calcium phosphate silicate. The Si–HA coating surface exhibited lower I{sub corr} than the HA coating, and the polarization resistance was increased by substitution of silicon in hydroxyapatite. - Highlights: • Silicon substituted hydroxyapatite (Si–HA) was coated on nanotubular titanium alloy. • The Si–HA coating thickness was less than single hydroxyapatite (HA) coating. • Si–HA coatings consisted of TiO{sub 2}, HA, and Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4}. • Polarization resistance of the coating was increased by Si substitution in HA.

  3. Excellent Passivation and Low Reflectivity Al2O3/TiO2 Bilayer Coatings for n-Wafer Silicon Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. G.; Skarp, J.; Malinen, V.; Li, S.; Choi, S.; Branz, H. M.

    2012-06-01

    A bilayer coating of Al2O3 and TiO2 is used to simultaneously achieve excellent passivation and low reflectivity on p-type silicon. This coating is targeted for achieving high efficiency n-wafer Si solar cells, where both passivation and anti-reflection (AR) are needed at the front-side p-type emitter. It could also be valuable for front-side passivation and AR of rear-emitter and interdigitated back contact p-wafer cells. We achieve high minority carrier lifetimes {approx}1 ms, as well as a nearly 2% decrease in absolute reflectivity, as compared to a standard silicon nitride AR coating.

  4. Electrochemical behavior of organic and inorganic zinc-rich coatings in 3.5% NaCl solution

    Institute of Scientific and Technical Information of China (English)

    谢德明; 王建明; 胡吉明; 张鉴清

    2003-01-01

    Performance comparisons between organic and inorganic zinc-rich paints (ZRPs) were carried out. Electrochemical impedance spectroscopy (EIS) measurements were used to assess the corrosion prevention performance of the ZRP coatings. The results show that during the cathodic protection period the potentials of the epoxy systems are less negative than those of the silicate system. For the zinc-rich ethyl silicate paints, the initial values of the resistance through the binder and the charge transfer resistance associated with zinc dissolution are several orders of magnitude lower than those of the organic zinc paints, while the initial values of the capacitance due to the binder layer between Zn dust and the double layer capacitance for zinc dissolution are several orders of magnitude higher than those of the organic zinc paints. Furthermore, the deterioration with time of capability of the zinc particles in the paint to provide cathodic protection to the steel was interpreted.

  5. Removal of primary iron rich phase from aluminum-silicon melt by centrifugal separation

    Directory of Open Access Journals (Sweden)

    Seong Woo Kim

    2013-03-01

    Full Text Available Recycling is a major consideration in continued aluminum use due to the enormous demand for high quality products. Some impurity elements gradually accumulate through the repetitive reuse of aluminum alloy scrap. Of them, the iron content should be suppressed under the allowed limit. In the present research, a novel separation method was introduced to remove primary iron-rich intermetallic compounds by centrifugation during solidification of Al-Si-Fe alloys. This method does not use the density difference between two phases as in other centrifugal methods, but uses the order of solidification in Al-Si-Fe alloys, because iron promotes the formation of intermetallic compounds with other alloying elements as a primary phase. Two Al-Si-Fe alloys which have different iron contents were chosen as the starting materials. The iron-rich phase could be efficiently removed by centrifuging under a centrifugal force of 40 g. Coarse intermetallic compounds were found in the sample inside the crucible, while rather fine intermetallic compounds were found in the sample outside the crucible. Primary intermetallic compounds were linked to each other via aluminum-rich matrix, and formed like a network. The highest iron removal fraction is 67% and the lowest one is 7% for Al-12Si-1.7Fe alloy. And they are 82% and 18% for Al-12Si-3.4Fe alloy, respectively.

  6. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil

    Science.gov (United States)

    The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and...

  7. Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel-tungsten composite coatings

    Science.gov (United States)

    Singh, Swarnima; Sribalaji, M.; Wasekar, Nitin P.; Joshi, Srikant; Sundararajan, G.; Singh, Raghuvir; Keshri, Anup Kumar

    2016-02-01

    Silicon carbide (SiC) reinforced nickel-tungsten (Ni-W) coatings were successfully fabricated on steel substrate by pulse electrodeposition method (PED) and the amount of SiC was varied as 0 g/l, 2 g/l, and 5 g/l in Ni-W coating. Effect of subsequent addition of SiC on microstructures, phases and on corrosion property of the coating was investigated. Field emission scanning electron microscopy (FE-SEM) image of the surface morphology of the coating showed the transformation from the dome like structure to turtle shell like structure. X-ray diffraction (XRD) of Ni-W-5 g/l SiC showed the disappearance of (220) plane of Ni(W), peak splitting in major peak of Ni(W) and formation of distinct peak of W(Ni) solid solution. Absence of (220) plane, peak splitting and presence of W(Ni) solid solution was explained by the high resolution transmission electron microscopy (HR-TEM) images. Tafel polarization plot was used to study the corrosion property of the coatings in 0.5 M NaCl solution. Ni-W-5 g/l SiC coating was showed higher corrosion resistance (i.e. ∼21% increase in corrosion potential, Ecorr) compared to Ni-W coating. Two simultaneous phenomena have been identified for the enhanced corrosion resistance of Ni-W-5 g/l SiC coating. (a) Presence of crystallographic texture (b) formation of continuous double barrier layer of NiWO4 and SiO2.

  8. Synthesis of silicon carbide coating on diamond by microwave heating of diamond and silicon powder: A heteroepitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Leparoux, S. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland)], E-mail: susanne.leparoux@empa.ch; Diot, C. [Consultant, allee de Mozart 10, F-92300 Chatillon (France); Dubach, A. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Vaucher, S. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland)

    2007-10-15

    When a powder mixture of diamond and silicon is heated by microwaves, heteroepitaxial growth of SiC is observed on the (1 1 1) as well as on the (1 0 0) faces of the diamond. The SiC over-layer was characterized by X-ray diffraction and scanning electron microscopy. High-resolution scanning electron microscopy shows the presence of triangular silicon carbide on the (1 1 1) faces of diamond while prismatic crystals are found on the (1 0 0) faces. The crystal growth seems to be favored in the plane parallel to the face (1 1 1)

  9. Analysis of hardness of nanocrystalline coatings of aluminum-rich Ti1−AlN

    Indian Academy of Sciences (India)

    J Hernández-Torres; L García-González; L Zamora-Peredo; T Hernández-Quiroz; A Sauceda-Carvajal; P J García-Ramírez; N Flores-Ramírez

    2012-10-01

    Titanium aluminum nitride coatings were fabricated by a d.c.magnetron sputtering system from a Ti–Al (60/40wt%) target. Coatings were deposited on steel substrates, at a substrate temperature of 250 °C and a bias voltage of –80 V. The nitrogen flow was varied from 1.5–6 sccm and the Ar flow was kept constant at 20 sccm. The morphology and microstructure of the coatings were analysed by X-ray diffraction and scanning electron microscopy. The results of X-ray diffraction showed the presence of two cubic crystalline phases, TiN and AlN, which were confirmed by X-ray photoelectron spectroscopy. The Vicker hardness was obtained by the effective model of indentation. It was observed that the hardness of the coatings decreases from 22.8–9.5 GPa with an increased nitrogen content from 1.5–4.5 sccm. Subsequently, the hardness increased to 22.1 GPa by increasing nitrogen to 6 sccm. The behavior of hardness with grain size variation is consistent with the Hall-Peth relationship. The high value in the hardness of the coatings is mainly attributed to small grain sizes and the compressive stress present.

  10. Silicon/Organic Hybrid Solar Cells with 16.2% Efficiency and Improved Stability by Formation of Conformal Heterojunction Coating and Moisture-Resistant Capping Layer.

    Science.gov (United States)

    He, Jian; Gao, Pingqi; Yang, Zhenhai; Yu, Jing; Yu, Wei; Zhang, Yu; Sheng, Jiang; Ye, Jichun; Amine, Joseph Chen; Cui, Yi

    2017-02-02

    Silicon/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) heterojunction solar cells with 16.2% efficiency and excellent stability are fabricated on pyramid-textured silicon substrates by applying a water-insoluble ester as capping layer. It shows that conformal coating of PEDOT:PSS on textured silicon can greatly improve the junction quality with the main stability failure routes related to the moisture-induced poly(3,4-ethylenedioxythiophene) aggregations and the tunneling silicon oxide autothickening.

  11. Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel–tungsten composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Swarnima; Sribalaji, M. [Materials Science and Engineering, Indian Institute of Technology Patna, Navin Government Polytechnic Campus, Patliputra Colony, Patna, Bihar 800013 (India); Wasekar, Nitin P.; Joshi, Srikant; Sundararajan, G. [International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI) Hyderabad, Balapur P.O., Hyderabad, Andhra Pradesh 500005 (India); Singh, Raghuvir [CSIR-National Metallurgical Laboratory, Jamshedpur, Jharkhand 831007 (India); Keshri, Anup Kumar, E-mail: anup@iitp.ac.in [Materials Science and Engineering, Indian Institute of Technology Patna, Navin Government Polytechnic Campus, Patliputra Colony, Patna, Bihar 800013 (India)

    2016-02-28

    Graphical abstract: - Highlights: • Pulse electrodeposited Ni–W–SiC coating has been synthesized successfully. • Dome to turtle like structure has been observed on addition of SiC in Ni–W coating. • Formation of W(Ni) solid solution was observed on adding 5 g/l SiC in Ni–W coating. • Corrosion resistance improved for Ni–W–5 g/l SiC coating. • Texture formation and continuous barrier layer enhanced the corrosion resistance. - Abstract: Silicon carbide (SiC) reinforced nickel–tungsten (Ni–W) coatings were successfully fabricated on steel substrate by pulse electrodeposition method (PED) and the amount of SiC was varied as 0 g/l, 2 g/l, and 5 g/l in Ni–W coating. Effect of subsequent addition of SiC on microstructures, phases and on corrosion property of the coating was investigated. Field emission scanning electron microscopy (FE-SEM) image of the surface morphology of the coating showed the transformation from the dome like structure to turtle shell like structure. X-ray diffraction (XRD) of Ni–W–5 g/l SiC showed the disappearance of (220) plane of Ni(W), peak splitting in major peak of Ni(W) and formation of distinct peak of W(Ni) solid solution. Absence of (220) plane, peak splitting and presence of W(Ni) solid solution was explained by the high resolution transmission electron microscopy (HR-TEM) images. Tafel polarization plot was used to study the corrosion property of the coatings in 0.5 M NaCl solution. Ni–W–5 g/l SiC coating was showed higher corrosion resistance (i.e. ∼21% increase in corrosion potential, E{sub corr}) compared to Ni–W coating. Two simultaneous phenomena have been identified for the enhanced corrosion resistance of Ni–W–5 g/l SiC coating. (a) Presence of crystallographic texture (b) formation of continuous double barrier layer of NiWO{sub 4} and SiO{sub 2}.

  12. Silicon nitride and intrinsic amorphous silicon double antireflection coatings for thin-film solar cells on foreign substrates

    Energy Technology Data Exchange (ETDEWEB)

    Li, Da; Kunz, Thomas [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Wolf, Nadine [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Energy Efficiency, Am Galgenberg 87, 97074 Wuerzburg (Germany); Liebig, Jan Philipp [Materials Science and Engineering, Institute I, University of Erlangen-Nuremberg, Martensstr. 5, 91058 Erlangen (Germany); Wittmann, Stephan; Ahmad, Taimoor; Hessmann, Maik T.; Auer, Richard [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Göken, Mathias [Materials Science and Engineering, Institute I, University of Erlangen-Nuremberg, Martensstr. 5, 91058 Erlangen (Germany); Brabec, Christoph J. [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Institute of Materials for Electronics and Energy Technology, University of Erlangen-Nuremberg, Martensstr. 7, 91058 Erlangen (Germany)

    2015-05-29

    Hydrogenated intrinsic amorphous silicon (a-Si:H) was investigated as a surface passivation method for crystalline silicon thin film solar cells on graphite substrates. The results of the experiments, including quantum efficiency and current density-voltage measurements, show improvements in cell performance. This improvement is due to surface passivation by an a-Si:H(i) layer, which increases the open circuit voltage and the fill factor. In comparison with our previous work, we have achieved an increase of 0.6% absolute cell efficiency for a 40 μm thick 4 cm{sup 2} aperture area on the graphite substrate. The optical properties of the SiN{sub x}/a-Si:H(i) stack were studied using spectroscopic ellipsometer techniques. Scanning transmission electron microscopy inside a scanning electron microscope was applied to characterize the cross section of the SiN{sub x}/a-Si:H(i) stack using focus ion beam preparation. - Highlights: • We report a 10.8% efficiency for thin-film silicon solar cell on graphite. • Hydrogenated intrinsic amorphous silicon was applied for surface passivation. • SiN{sub x}/a-Si:H(i) stacks were characterized by spectroscopic ellipsometer techniques. • Cross-section micrograph was obtained by scanning transmission electron microscopy. • Quantum efficiency and J-V measurements show improvements in the cell performance.

  13. Nanostructured Indium Oxide Coated Silicon Nanowire Arrays: A Hybrid Photothermal/Photochemical Approach to Solar Fuels.

    Science.gov (United States)

    Hoch, Laura B; O'Brien, Paul G; Jelle, Abdinoor; Sandhel, Amit; Perovic, Douglas D; Mims, Charles A; Ozin, Geoffrey A

    2016-09-27

    The field of solar fuels seeks to harness abundant solar energy by driving useful molecular transformations. Of particular interest is the photodriven conversion of greenhouse gas CO2 into carbon-based fuels and chemical feedstocks, with the ultimate goal of providing a sustainable alternative to traditional fossil fuels. Nonstoichiometric, hydroxylated indium oxide nanoparticles, denoted In2O3-x(OH)y, have been shown to function as active photocatalysts for CO2 reduction to CO via the reverse water gas shift reaction under simulated solar irradiation. However, the relatively wide band gap (2.9 eV) of indium oxide restricts the portion of the solar irradiance that can be utilized to ∼9%, and the elevated reaction temperatures required (150-190 °C) reduce the overall energy efficiency of the process. Herein we report a hybrid catalyst consisting of a vertically aligned silicon nanowire (SiNW) support evenly coated by In2O3-x(OH)y nanoparticles that utilizes the vast majority of the solar irradiance to simultaneously produce both the photogenerated charge carriers and heat required to reduce CO2 to CO at a rate of 22.0 μmol·gcat(-1)·h(-1). Further, improved light harvesting efficiency of the In2O3-x(OH)y/SiNW films due to minimized reflection losses and enhanced light trapping within the SiNW support results in a ∼6-fold increase in photocatalytic conversion rates over identical In2O3-x(OH)y films prepared on roughened glass substrates. The ability of this In2O3-x(OH)y/SiNW hybrid catalyst to perform the dual function of utilizing both light and heat energy provided by the broad-band solar irradiance to drive CO2 reduction reactions represents a general advance that is applicable to a wide range of catalysts in the field of solar fuels.

  14. Effects of a silicone-coated polyamide net dressing and calcium alginate on the healing of split skin graft donor sites: a prospective randomised trial.

    LENUS (Irish Health Repository)

    O'Donoghue, J M

    2012-02-03

    An open randomised prospectively controlled trial was performed to assess the healing efficacy, slippage rate and degree of discomfort on removal of calcium alginate and a silicone-coated polyamide net dressing on split skin graft donor sites. Sixteen patients were randomised to the calcium alginate group and 14 to the silicone-coated group. The donor sites were assessed at days 7, 10, 14 and up to day 21. The mean time to healing in the calcium alginate group was 8.75 +\\/- 0.78 days (range 7 to 14 days) compared to 12 +\\/- 0.62 days (range 7 to 16 days) for the silicone-coated group (p < 0.01). Although more silicone-coated dressings slipped (5 versus 1), the difference was not statistically significant. Pain during the first dressing change was assessed using a visual analogue pain scale. Although no significant differences were found between the groups, it was necessary to change the dressing protocol in the silicone-coated arm of the trial after entering the first two patients. Overlaid absorbent gauze adhered to the donor site through the fenestrations in the dressing necessitating the placement of paraffin gauze between the experimental dressing and the overlying cotton gauze. There was one infection in the study, occurring in the alginate group. Based on these results we recommend calcium alginate as the dressing of choice for split skin graft donor sites.

  15. Towards scalable binderless electrodes: carbon coated silicon nanofiber paper via Mg reduction of electrospun SiO2 nanofibers.

    Science.gov (United States)

    Favors, Zachary; Bay, Hamed Hosseini; Mutlu, Zafer; Ahmed, Kazi; Ionescu, Robert; Ye, Rachel; Ozkan, Mihrimah; Ozkan, Cengiz S

    2015-02-06

    The need for more energy dense and scalable Li-ion battery electrodes has become increasingly pressing with the ushering in of more powerful portable electronics and electric vehicles (EVs) requiring substantially longer range capabilities. Herein, we report on the first synthesis of nano-silicon paper electrodes synthesized via magnesiothermic reduction of electrospun SiO2 nanofiber paper produced by an in situ acid catalyzed polymerization of tetraethyl orthosilicate (TEOS) in-flight. Free-standing carbon-coated Si nanofiber binderless electrodes produce a capacity of 802 mAh g(-1) after 659 cycles with a Coulombic efficiency of 99.9%, which outperforms conventionally used slurry-prepared graphite anodes by over two times on an active material basis. Silicon nanofiber paper anodes offer a completely binder-free and Cu current collector-free approach to electrode fabrication with a silicon weight percent in excess of 80%. The absence of conductive powder additives, metallic current collectors, and polymer binders in addition to the high weight percent silicon all contribute to significantly increasing capacity at the cell level.

  16. Towards Scalable Binderless Electrodes: Carbon Coated Silicon Nanofiber Paper via Mg Reduction of Electrospun SiO2 Nanofibers

    Science.gov (United States)

    Favors, Zachary; Bay, Hamed Hosseini; Mutlu, Zafer; Ahmed, Kazi; Ionescu, Robert; Ye, Rachel; Ozkan, Mihrimah; Ozkan, Cengiz S.

    2015-02-01

    The need for more energy dense and scalable Li-ion battery electrodes has become increasingly pressing with the ushering in of more powerful portable electronics and electric vehicles (EVs) requiring substantially longer range capabilities. Herein, we report on the first synthesis of nano-silicon paper electrodes synthesized via magnesiothermic reduction of electrospun SiO2 nanofiber paper produced by an in situ acid catalyzed polymerization of tetraethyl orthosilicate (TEOS) in-flight. Free-standing carbon-coated Si nanofiber binderless electrodes produce a capacity of 802 mAh g-1 after 659 cycles with a Coulombic efficiency of 99.9%, which outperforms conventionally used slurry-prepared graphite anodes by over two times on an active material basis. Silicon nanofiber paper anodes offer a completely binder-free and Cu current collector-free approach to electrode fabrication with a silicon weight percent in excess of 80%. The absence of conductive powder additives, metallic current collectors, and polymer binders in addition to the high weight percent silicon all contribute to significantly increasing capacity at the cell level.

  17. Atomic layer deposition TiO{sub 2} coated porous silicon surface: Structural characterization and morphological features

    Energy Technology Data Exchange (ETDEWEB)

    Iatsunskyi, Igor, E-mail: igoyat@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Department of Experimental Physics, Odessa National I.I. Mechnikov University, 42, Pastera str., 65023 Odessa (Ukraine); Jancelewicz, Mariusz; Nowaczyk, Grzegorz [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Kempiński, Mateusz [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poland (Poland); Peplińska, Barbara [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Department of Macromolecular Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland); Jarek, Marcin; Załęski, Karol [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Jurga, Stefan [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Department of Macromolecular Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland); Smyntyna, Valentyn [Department of Experimental Physics, Odessa National I.I. Mechnikov University, 42, Pastera str., 65023 Odessa (Ukraine)

    2015-08-31

    TiO{sub 2} thin films were grown on highly-doped p-Si (100) macro- and mesoporous structures by atomic layer deposition (ALD) using TiCl{sub 4} and deionized water as precursors at 300 °C. The crystalline structure, chemical composition, and morphology of the deposited films and initial silicon nanostructures were investigated by scanning electron microscopy, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy and X-ray diffraction (XRD). The mean size of TiO{sub 2} crystallites was determined by TEM, XRD and Raman spectroscopy. It was shown that the mean crystallite size and the crystallinity of the TiO{sub 2} are influenced dramatically by the morphology of the porous silicon, with the mesoporous silicon resulting in a much finer grain size and amorphous structure than the macroporous silicon having a partially crystal anatase phase. A simple model of the ALD layer growth inside the pores was presented. - Highlights: • The morphology and chemical composition of TiO{sub 2} and porous Si were established. • The approximate size of TiO{sub 2} nanocrystals was estimated. • The model of the atomic layer deposition coating in the porous Si was presented.

  18. Finite-difference time-domain simulations of fabricated black silicon nanostructures: Optimal geometries for an antireflective coating

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Adam [X-FAB Semiconductor Foundries AG, Erfurt (Germany); Technische Universitaet Ilmenau (Germany); Voerckel, Andreas [X-FAB Semiconductor Foundries AG, Erfurt (Germany)

    2010-07-01

    Nano-structured silicon has received a growing and serious amount of interest in industrial technology and university research, particularly in regard to the possibility of such nanostructures in optics, with the primary interest here being black silicon as an anti-reflective coating (ARC) for photodiodes. Current literature now contains a wealth of morphological information to influence structure growth and shape in fluorine-based plasma etching in the presence of oxide-forming or fluorocarbon gas inhibitors. Using the computationally efficient grid-based differential time-domain numerical modeling of the finite-difference time-domain (FDTD) method, approximations to Maxwell's equations are solved to model the optical properties of crystalline black silicon. Multiple geometries, from pillars to more pyramid and needle-like structures, are considered and results are correlated to actual scanning electron microscope (SEM) pictures with corresponding reflection measurements taken in a Cary 5000 UV*VIS spectrophotometer with accompanying integrating (Ulbricht) sphere from 200 nm to 800 nm to evaluate both diffuse and specular reflection from the silicon surface. Optimal geometries are simulated and the consequences for photodiode applications are discussed.

  19. Nearly zero reflectance of nano-pyramids and dual-antireflection coating structure for monocrystalline silicon solar cells.

    Science.gov (United States)

    Chang, Hyo Sik; Jung, Hyun-Chul

    2011-04-01

    The effect of two-step surface treatment on monocrystalline silicon solar cells was investigated. We changed the nanostructure on pyramidal surfaces by wet nano-texturing so that less light is reflected. The two-step nano-texturing process reduces the average reflectance to about 4% in the 300-1100 nm wavelength region. The use of an antireflection coating resulted in an effective reflectance of 1%. We found that the reflectance obtained by wet nano-texturing was lower than that obtained by conventional alkaline texturing. Thus, we can expect a further increase in the efficiency of silicon solar cells with two-step nano-texturing by a wet chemical process.

  20. TiO₂-coated carbon nanotube-silicon solar cells with efficiency of 15

    National Research Council Canada - National Science Library

    Shi, Enzheng; Zhang, Luhui; Li, Zhen; Li, Peixu; Shang, Yuanyuan; Jia, Yi; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai; Zhang, Sen; Cao, Anyuan

    2012-01-01

    Combining carbon nanotubes (CNTs), graphene or conducting polymers with conventional silicon wafers leads to promising solar cell architectures with rapidly improved power conversion efficiency until recently...

  1. MICROSTRUCTURE OF CR2O3 COATINGS ON STEEL AND THE EFFECT OF SILICON

    NARCIS (Netherlands)

    VANDENBURG, M; DEHOSSON, JTM; Burg, M. van den

    This paper concentrates on the microstructural features of steel containing 22 wt.% Cr, coated with Cr2O3 by laser processing. It turned out that after laser coating the Cr2O3 powder has completely transformed to Fe0.3Cr2.7O4 having the tetragonal distorted spinel structure. Dispersed in the coating

  2. MICROSTRUCTURE OF CR2O3 COATINGS ON STEEL AND THE EFFECT OF SILICON

    NARCIS (Netherlands)

    VANDENBURG, M; DEHOSSON, JTM; Burg, M. van den

    1994-01-01

    This paper concentrates on the microstructural features of steel containing 22 wt.% Cr, coated with Cr2O3 by laser processing. It turned out that after laser coating the Cr2O3 powder has completely transformed to Fe0.3Cr2.7O4 having the tetragonal distorted spinel structure. Dispersed in the coating

  3. Trace Metal Associations with Manganese-Rich Surface Coatings of Lead Service Lines

    Science.gov (United States)

    Analysis of lead service line samples from U. S. Environmental Protection Agency’s long-term research program to evaluate control and metal release from domestic drinking water service lines has revealed that Manganese-rich solids also contain Iron and sometimes Aluminum have fre...

  4. Comparative study on microstructure, crystallite size and lattice strain of as-deposited and thermal treatment silver silicon nitride coating on Ti6Al4V alloy

    Science.gov (United States)

    Zalilah, Umi; Mahmoodian, R.

    2017-06-01

    Silver silicon nitride coating were deposited on Ti6Al4V alloy using physical vapor deposition magnetron sputtering technique. Field Emission Spectroscopy (FESEM), Electron Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) were used to characterize as-deposited and after heat treatment of AgSiN coatings in order to understand the morphology, compositions and structure. Meanwhile, in determining the crystallite size and lattice strain, the simplified Williamson-Hall plot method was utilized. The heat treated coated sample shown to reveal granular surface structure, bigger crystallite size and lattice strain as compared to the as-deposited coated sample.

  5. Threshold resistance switching in silicon-rich SiO x thin films

    Science.gov (United States)

    Chen, Da; Huang, Shi-Hua

    2016-11-01

    Si-rich SiO x and amorphous Si clusters embedded in SiO x films were prepared by the radio-frequency magnetron cosputtering method and high-temperature annealing treatment. The threshold resistance switching behavior was achieved from the memory mode by continuous bias sweeping in all films, which was caused by the formation of clusters due to the local overheating under a large electric field. Besides, the I-V characteristics of the threshold switching showed a dependence on the annealing temperature and the SiO x thickness. In particular, formation and rupture of conduction paths is considered to be the switching mechanism for the 39 nm-SiO x film, while for the 78 nm-SiO x film, adjusting of the Schottky barrier height between insulator and semiconductor is more reasonable. This study demonstrates the importance of investigation of both switching modes in resistance random access memory. Project supported by the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University, China (Grant No. KF2015_02), the Open Project Program of National Laboratory for Infrared Physics, Chinese Academy of Sciences (Grant No. M201503), Zhejiang Provincial Science and Technology Key Innovation Team, China (Grant No. 2011R50012), and Zhejiang Provincial Key Laboratory, China (Grant No. 2013E10022).

  6. A comparison of iron oxide-rich joint coatings and rock chips as geochemical sampling media in exploration for disseminated gold deposits

    Science.gov (United States)

    Crone, W.; Larson, L.T.; Carpenter, R.H.; Chao, T.T.; Sanzolone, R.F.

    1984-01-01

    We evaluated the effectiveness of iron oxide-rich fracture coatings as a geochemical sampling medium for disseminated gold deposits, as compared with conventional lithogeochemical methods, for samples from the Pinson mine and Preble prospect in southeastern Humboldt County, Nevada. That disseminated gold mineralization is associated with Hg, As, and Sb is clearly demonstrated in these deposits for both fracture coatings and rock chip samples. However, the relationship is more pronounced for fracture coatings. Fracture coatings at Pinson contain an average of 3.61, 5.13, 14.37, and 3.42 times more Au, As, Sb and Hg, respectively, than adjacent rock samples. At Preble, fracture coatings contain 3.13, 9.72, 9.18, and 1.85 times more Au, As, Sb and Hg, respectively, than do adjacent rock samples. Geochemical anomalies determined from fracture coatings are thus typically more intense than those determined from rock samples for these elements. The sizes of anomalies indicated by fracture coatings are also somewhat larger, but this is less obvious. In both areas, Sb anomalies are more extensive in fracture coatings. At Preble, some Hg and Au anomalies are also more extensive in fracture coatings. In addition to halos formed by the Hg, As and Sb, high values for Au/Ag and Zn/(Fe + Mn) are closely associated with gold mineralization at the Pinson mine. The large enhancement in geochemical response afforded by fracture coatings indicates a definite potential in the search for buried disseminated gold deposits. ?? 1984.

  7. Effects of tin and nickel on growth of hot-dip galvanized coating on high-silicon steel surface%锡、镍对高硅钢表面热浸镀锌层生长的影响

    Institute of Scientific and Technical Information of China (English)

    孔纲; 王世卫; 车淳山; 卢锦堂

    2012-01-01

    研究了Zn-Sn和Zn-Sn-Ni浴中高硅钢(含Si 0.36%)表面镀锌层的生长和微观组织变化,探讨了Sn和Ni抑制高硅钢镀层快速生长的原因.结果表明,含Sn锌浴能抑制高硅钢表面镀锌层的快速生长,抑制效果随锌浴中Sn含量的增加而增强.当锌浴中的Sn含量达5%时,高硅钢镀锌层的生长方式发生了改变,由反应扩散控制变为扩散控制.高硅钢在Zn-Sn或Zn-Sn-Ni浴中镀锌时,镀锌层的ζ/η界面形成了Sn或Sn和Ni富集区,在一定程度上阻滞了Fe-Zn扩散.锌浴中添加微量的Ni能显著减少Sn用量,当锌浴中Ni的添加量为0.06%时,Sn的用量可从3%降到1.5%.%The growth and microstructure changes of hot-dip galvanized coating on the surface of high-silicon (0.36% Si) steel were studied in Zn-Sn and Zn-Sn-Ni baths, respectively. The reason why Sn and Ni in zinc bath can inhibit the rapid growth of coating on high-silicon steel was discussed. The results showed that Sn in zinc bath can decrease the rapid growth of zinc coating on surface of high-silicon steel, and the inhibiting effect is reinforced with increasing Sn content in zinc bath. The growth mechanism of coating changes from reaction diffusion control to diffusion control when the Sn content in zinc bath is up to 5%. The Sn-rich or Sn and Ni-rich zone is formed at the interface of ζ/η in the galvanized coating obtained from Zn-Sn or Zn-Sn-Ni bath, suppressing Fe-Zn interdiffusion to some extent. The amount of Sn added can be remarkably reduced by adding a tiny amount of Ni to zinc bath, which is reduced from 3% to 1.5% by 0.06% Ni addition to the zinc bath.

  8. The Luminescent Properties and Atomic Structures of As-Grown and Annealed Nanostructured Silicon Rich Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    N. D. Espinosa-Torres

    2016-01-01

    Full Text Available Not long ago, we developed a theoretical model to describe a set of chemical reactions that can potentially occur during the process of obtaining Silicon Rich Oxide (SRO films, an off stoichiometry material, notwithstanding the technique used to grow such films. In order to elucidate the physical chemistry properties of such material, we suggested the chemical reactions that occur during the process of growing of SRO films in particular for the case of the Low Pressure Chemical Vapor Deposition (LPCVD technique in the aforementioned model. The present paper represents a step further with respect to the previous (published work, since it is dedicated to the calculation by Density Functional Theory (DFT of the optical and electronic properties of the as-grown and annealed SRO structures theoretically predicted on the basis of the previous work. In this work, we suggest and evaluate either some types of molecules or resulting nanostructures and we predict theoretically, by applying the DFT, the contribution that they may have to the phenomenon of luminescence (PL, which is experimentally measured in SRO films. We evaluated the optical and electronic properties of both the as-grown and the annealed structures.

  9. Joint DoD Demonstration And Validation Of Magnesium-Rich Primer Coating Technology

    Science.gov (United States)

    2012-01-01

    Anodized Preparation (per MIL-A-8625, Type IC) NAWC-AD Procedure: Panels were placed in titanium racks and immersed in Turco 4215 NCLT cleaner at...120 °F for 5 minutes. They were rinsed twice with hot tap water and then immersed in Turco SmutGo NC deoxidizer at ambient temperature for 60...Conversion Coating (CCC) Preparation (per MIL-PRF-81706, Type I) NAWC-AD Procedure: Panels were placed in titanium racks and immersed in Turco 4215 NCLT

  10. Observation of iron-rich coating on lunar grains and a relation to low albedo

    Science.gov (United States)

    Gold, T.; Bilson, E.; Baron, R. L.

    1974-01-01

    The outermost few atomic layers of lunar soil samples were studied by Auger spectroscopy and were found to contain in each case two to three times more iron than the mean bulk composition of the sample. The amount of excess iron is found to be closely correlated with the optical albedo in the manner that would be theoretically expected if the iron provided absorption centers. Crushed lunar rocks of similar mean composition, but lacking the extra iron coating of the soil grains, have a much higher albedo than most lunar soils sampled or observed on the lunar surface.

  11. Deposition of Antimicrobial Copper-Rich Coatings on Polymers by Atmospheric Pressure Jet Plasmas

    Directory of Open Access Journals (Sweden)

    Jana Kredl

    2016-04-01

    Full Text Available Inanimate surfaces serve as a permanent reservoir for infectious microorganisms, which is a growing problem in areas in everyday life. Coating of surfaces with inorganic antimicrobials, such as copper, can contribute to reduce the adherence and growth of microorganisms. The use of a DC operated air plasma jet for the deposition of copper thin films on acrylonitrile butadiene styrene (ABS substrates is reported. ABS is a widespread material used in consumer applications, including hospitals. The influence of gas flow rate and input current on thin film characteristics and its bactericidal effect have been studied. Results from X-ray photoelectron spectroscopy (XPS and atomic force microscopy confirmed the presence of thin copper layers on plasma-exposed ABS and the formation of copper particles with a size in the range from 20 to 100 nm, respectively. The bactericidal properties of the copper-coated surfaces were tested against Staphylococcus aureus. A reduction in growth by 93% compared with the attachment of bacteria on untreated samples was observed for coverage of the surface with 7 at. % copper.

  12. Histological evaluation of capsules formed by silicon implants coated with polyurethane foam and with a textured surface in rats.

    Science.gov (United States)

    Silva, Eduardo Nascimento; Ribas-Filho, Jurandir Marcondes; Czeczko, Nicolau Gregori; Pachnicki, Jan Pawel Andrade; Netto, Mário Rodrigues Montemor; Lipinski, Leandro Cavalcante; Noronha, Lucia de; Colman, Joelmir; Zeni, João Otavio; Carvalho, Caroline Aragão de

    2016-12-01

    To assess the capsules formed by silicone implants coated with polyurethane foam and with a textured surface. Sixty-four Wistar albinus rats were divided into two groups of 32 each using polyurethane foam and textured surface. The capsules around the implants were analyzed for 30, 50, 70 and 90 days. Were analyzed the following parameters: foreign body reaction, granulation tissue, presence of myofibroblasts, neoangiogenesis, presence of synovial metaplasia, capsular thickness, total area and collagen percentage of type I and III, in capsules formed around silicone implants in both groups. The foreign body reaction was only present in the four polyurethane subgroups. The formation of granulation tissue and the presence of myofibroblasts were higher in the four polyurethane subgroups. Regarding to neoangiogenesis and synovial metaplasia, there was no statistical difference between the groups. Polyurethane group presented (all subgroups) a greater capsule thickness, a smaller total area and collagen percentage of type I and a higher percentage area of type III, with statistical difference. The use of polyurethane-coated implants should be stimulated by the long-term results in a more stable capsule and a lower incidence of capsular contracture, despite developing a more intense and delayed inflammatory reaction in relation to implants with textured surface.

  13. Evaluation of 3D-Printed Polycaprolactone Scaffolds Coated with Freeze-Dried Platelet-Rich Plasma for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Junda Li

    2017-07-01

    Full Text Available Three-dimensional printing is one of the most promising techniques for the manufacturing of scaffolds for bone tissue engineering. However, a pure scaffold is limited by its biological properties. Platelet-rich plasma (PRP has been shown to have the potential to improve the osteogenic effect. In this study, we improved the biological properties of scaffolds by coating 3D-printed polycaprolactone (PCL scaffolds with freeze-dried and traditionally prepared PRP, and we evaluated these scaffolds through in vitro and in vivo experiments. In vitro, we evaluated the interaction between dental pulp stem cells (DPSCs and the scaffolds by measuring cell proliferation, alkaline phosphatase (ALP activity, and osteogenic differentiation. The results showed that freeze-dried PRP significantly enhanced ALP activity and the mRNA expression levels of osteogenic genes (ALP, RUNX2 (runt-related gene-2, OCN (osteocalcin, OPN (osteopontin of DPSCs (p < 0.05. In vivo, 5 mm calvarial defects were created, and the PRP-PCL scaffolds were implanted. The data showed that compared with traditional PRP-PCL scaffolds or bare PCL scaffolds, the freeze-dried PRP-PCL scaffolds induced significantly greater bone formation (p < 0.05. All these data suggest that coating 3D-printed PCL scaffolds with freeze-dried PRP can promote greater osteogenic differentiation of DPSCs and induce more bone formation, which may have great potential in future clinical applications.

  14. Influence of Polymer Coatings on the Carrier Life Time in Solar Silicon Crystals

    OpenAIRE

    L.P. Steblenko; A.O. Podolyan; O.O. Korotchenkov; L.M. Yashchenko; S.M. Naumenko; D.V. Kalinichenko; Yu.L. Kobzar; A.M. Kuryliuk; V.M. Kravchenko

    2014-01-01

    Influence of polymer coatings on the photovoltage drop kinetics in solar Si crystals exposed to magnetic field action and X-ray irradiation is studied. The features found in the behavior of the electrophysical parameters suggest slowing down the photovoltage drop in the presence of polymer coatings at the surface of solar Si crystals. These features may be due to the influence of polymer coatings to reduce the concentration of recombination centers in crystals solar-Si.

  15. Influence of Polymer Coatings on the Carrier Life Time in Solar Silicon Crystals

    Directory of Open Access Journals (Sweden)

    L.P. Steblenko

    2014-11-01

    Full Text Available Influence of polymer coatings on the photovoltage drop kinetics in solar Si crystals exposed to magnetic field action and X-ray irradiation is studied. The features found in the behavior of the electrophysical parameters suggest slowing down the photovoltage drop in the presence of polymer coatings at the surface of solar Si crystals. These features may be due to the influence of polymer coatings to reduce the concentration of recombination centers in crystals solar-Si.

  16. Silver hollow optical fibers with acrylic silicone resin coating as buffer layer for sturdy structure

    Science.gov (United States)

    Iwai, Katsumasa; Takaku, Hiroyuki; Miyagi, Mitsunobu; Shi, Yi-Wei; Zhu, Xiao-Song; Matsuura, Yuji

    2016-03-01

    For sturdy silver hollow optical fibers, acrylic silicone resin is newly used as a buffer layer between an inner silver layer and a silica capillary. This acrylic silicone resin film prevents the glass surface from chemical and mechanical micro damages during silver plating process, which deteriorate mechanical strength of the hollow fibers. In addition, it keeps high adhesion of the silver layer with the glass surface. We discuss improvement of mechanical strength of the hollow glass fibers without deterioration of optical properties.

  17. Trade-Offs between Silicon and Phenolic Defenses may Explain Enhanced Performance of Root Herbivores on Phenolic-Rich Plants.

    Science.gov (United States)

    Frew, Adam; Powell, Jeff R; Sallam, Nader; Allsopp, Peter G; Johnson, Scott N

    2016-08-01

    Phenolic compounds play a role in plant defense against herbivores. For some herbivorous insects, particularly root herbivores, host plants with high phenolic concentrations promote insect performance and tissue consumption. This positive relationship between some insects and phenolics, however, could reflect a negative correlation with other plant defenses acting against insects. Silicon is an important element for plant growth and defense, particularly in grasses, as many grass species take up large amounts of silicon. Negative impact of a high silicon diet on insect herbivore performance has been reported aboveground, but is unreported for belowground herbivores. It has been hypothesized that some silicon accumulating plants exhibit a trade-off between carbon-based defense compounds, such as phenolics, and silicon-based defenses. Here, we investigated the impact of silicon concentrations and total phenolic concentrations in sugarcane roots on the performance of the root-feeding greyback canegrub (Dermolepida albohirtum). Canegrub performance was positively correlated with root phenolics, but negatively correlated with root silicon. We found a negative relationship in the roots between total phenolics and silicon concentrations. This suggests the positive impact of phenolic compounds on some insects may be the effect of lower concentrations of silicon compounds in plant tissue. This is the first demonstration of plant silicon negatively affecting a belowground herbivore.

  18. Atomic layer deposited titanium dioxide coatings on KD-II silicon carbide fibers and their characterization

    Science.gov (United States)

    Cao, Shiyi; Wang, Jun; Wang, Hao

    2016-03-01

    To provide oxidation protection and/or to act as an interfacial coating, titanium oxide (TiO2) coatings were deposited on KD-II SiC fibers by employing atomic layer deposition (ALD) technique with tetrakis(dimethylamido)titanium (TDMAT) and water (H2O) as precursors. The average deposition rate was about 0.08 nm per cycle, and the prepared coatings were smooth, uniform and conformal, shielding the fibers entirely. The as-deposited coatings were amorphous regardless of the coating thickness, and changed to anatase and rutile crystal phase after annealing at 600 °C and 1000 °C, respectively. The oxidation measurement suggests that the TiO2 coating enhanced the oxidation resistance of SiC fibers obviously. SiC fibers coated with a 70-nm-thick TiO2 layer retained a relatively high tensile strength of 1.66 GPa even after exposition to air at 1400 °C for 1 h, and thick silica layer was not observed. In contrast, uncoated SiC fibers were oxidized dramatically through the same oxidation treatment, covered with a macro-cracked thick silica film, and the tensile strength was not measurable due to interfilament adhesion. The above results indicate that TiO2 films deposited by ALD are a promising oxidation resistance coating for SiC fibers.

  19. Low-field non-resonant microwave absorption in glass-coated Co-rich microwires

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, Raul; Alvarez, Guillermo [Depto. de Materiales Metalicos y Ceramicos, Universidad Nacional Autonoma de Mexico, Mexico D.F. 04510 (Mexico); Montiel, Herlinda [Depto. de Tecnociencias, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico (Mexico); Zamorano, Rafael [Depto. de Ciencias de Materiales, Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, Mexico D.F. (Mexico)

    2009-04-15

    A study of low-field non-resonant microwave absorption (LFA) at 9.8 GHz, on as-cast amorphous Co-rich CoFeBSi microwires under different measuring geometries is presented. Results confirm that LFA is associated with the magnetization processes from the unmagnetized state (H{sub DC}=0) to the saturated condition, in many aspects similar to Giant Magnetoimpedance (GMI), and clearly different from ferromagnetic resonance (FMR). LFA signal showed large variations in its maximum-minimum separation as a function of the measuring geometry, which is interpreted in terms of the total anisotropy in the process. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. STEM-EELS analysis reveals stable high-density He in nanopores of amorphous silicon coatings deposited by magnetron sputtering.

    Science.gov (United States)

    Schierholz, Roland; Lacroix, Bertrand; Godinho, Vanda; Caballero-Hernández, Jaime; Duchamp, Martial; Fernández, Asunción

    2015-02-20

    A broad interest has been showed recently on the study of nanostructuring of thin films and surfaces obtained by low-energy He plasma treatments and He incorporation via magnetron sputtering. In this paper spatially resolved electron energy-loss spectroscopy in a scanning transmission electron microscope is used to locate and characterize the He state in nanoporous amorphous silicon coatings deposited by magnetron sputtering. A dedicated MATLAB program was developed to quantify the helium density inside individual pores based on the energy position shift or peak intensity of the He K-edge. A good agreement was observed between the high density (∼35-60 at nm(-3)) and pressure (0.3-1.0 GPa) values obtained in nanoscale analysis and the values derived from macroscopic measurements (the composition obtained by proton backscattering spectroscopy coupled to the macroscopic porosity estimated from ellipsometry). This work provides new insights into these novel porous coatings, providing evidence of high-density He located inside the pores and validating the methodology applied here to characterize the formation of pores filled with the helium process gas during deposition. A similar stabilization of condensed He bubbles has been previously demonstrated by high-energy He ion implantation in metals and is newly demonstrated here using a widely employed methodology, magnetron sputtering, for achieving coatings with a high density of homogeneously distributed pores and He storage capacities as high as 21 at%.

  1. Effect of graphene oxide ratio on the cell adhesion and growth behavior on a graphene oxide-coated silicon substrate

    Science.gov (United States)

    Jeong, Jin-Tak; Choi, Mun-Ki; Sim, Yumin; Lim, Jung-Taek; Kim, Gil-Sung; Seong, Maeng-Je; Hyung, Jung-Hwan; Kim, Keun Soo; Umar, Ahmad; Lee, Sang-Kwon

    2016-09-01

    Control of living cells on biocompatible materials or on modified substrates is important for the development of bio-applications, including biosensors and implant biomaterials. The topography and hydrophobicity of substrates highly affect cell adhesion, growth, and cell growth kinetics, which is of great importance in bio-applications. Herein, we investigate the adhesion, growth, and morphology of cultured breast cancer cells on a silicon substrate, on which graphene oxides (GO) was partially formed. By minimizing the size and amount of the GO-containing solution and the further annealing process, GO-coated Si samples were prepared which partially covered the Si substrates. The coverage of GO on Si samples decreases upon annealing. The behaviors of cells cultured on two samples have been observed, i.e. partially GO-coated Si (P-GO) and annealed partially GO-coated Si (Annealed p-GO), with a different coverage of GO. Indeed, the spreading area covered by the cells and the number of cells for a given culture period in the incubator were highly dependent on the hydrophobicity and the presence of oxygenated groups on GO and Si substrates, suggesting hydrophobicity-driven cell growth. Thus, the presented method can be used to control the cell growth via an appropriate surface modification.

  2. Porous Silicon & Titanium Dioxide Coatings Prepared by Atmospheric Pressure Plasma Jet Chemical Vapour Deposition Technique-A Novel Coating Technology for Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    S. Bhatt

    2011-01-01

    Full Text Available Atmospheric Pressure Plasma Jet (APPJ is an alternative for wet processes used to make anti reflection coatings and smooth substrate surface for the PV module. It is also an attractive technique because of it’s high growth rate, low power consumption, lower cost and absence of high cost vacuum systems. This work deals with the deposition of silicon oxide from hexamethyldisiloxane (HMDSO thin films and titanium dioxide from tetraisopropyl ortho titanate using an atmospheric pressure plasma jet (APPJ system in open air conditions. A sinusoidal high voltage with a frequency between 19-23 kHz at power up to 1000 W was applied between two tubular electrodes separated by a dielectric material. The jet, characterized by Tg ~ 600-800 K, was mostly laminar (Re ~ 1200 at the nozzle exit and became partially turbulent along the jet axis (Re ~ 3300. The spatially resolved emission spectra showed OH, N2, N2+ and CN molecular bands and O, H, N, Cu and Cr lines as well as the NO2 chemiluminescence continuum (450-800 nm. Thin films with good uniformity on the substrate were obtained at high deposition rate, between 800 -1000 nm.s-1, and AFM results revealed that coatings are relatively smooth (Ra ~ 2 nm. The FTIR and SEM analyses were better used to monitor the chemical composition and the morphology of the films in function of the different experimental conditions.

  3. Sliding Wear Behavior of Plasma Sprayed Zirconia Coating on Cast Aluminum against Silicon Carbide Ceramic

    Institute of Scientific and Technical Information of China (English)

    Thuong-Hien LE; Young-Hun CHAE; Seock-Sam KIM

    2005-01-01

    The sliding wear behaviors of ZrO2-22 wt pct MgO (MZ) and ZrO2-8 wt pct Y2O3 (YZ) coatings deposited on a cast aluminum alloy with bond layer (NiCrCoAlY) by plasma spray were investigated under dry test conditions at room temperature. Under all load conditions, the wear mechanisms of the MZ and YZ coatings were almost the same.The material transfer and pullout were involved in the wear process of the studied coatings under the test conditions.The wear rate of the MZ coating was less than that of the YZ coating. While increasing the normal load, the wear rates of the MZ and YZ coatings increased. SEM was used to examine the worn surfaces and to elucidate likely wear mechanisms. Energy dispersive X-ray spectroscopy (EDX) analysis of the worn surfaces indicated that material transfer occurred in the direction from the SiC ball to the disk. Fracture toughness had a significant influence on the wear performance of the coatings. It was suggested that the material transfer played an important role in the wear behavior.

  4. Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays

    Science.gov (United States)

    He, Wei; McConnell, George C.; Bellamkonda, Ravi V.

    2006-12-01

    Neural electrodes could significantly enhance the quality of life for patients with sensory and/or motor deficits as well as improve our understanding of brain functions. However, long-term electrical connectivity between neural tissue and recording sites is compromised by the development of astroglial scar around the recording probes. In this study we investigate the effect of a nanoscale laminin (LN) coating on Si-based neural probes on chronic cortical tissue reaction in a rat model. Tissue reaction was evaluated after 1 day, 1 week, and 4 weeks post-implant for coated and uncoated probes using immunohistochemical techniques to evaluate activated microglia/macrophages (ED-1), astrocytes (GFAP) and neurons (NeuN). The coating did not have an observable effect on neuronal density or proximity to the electrode surface. However, the response of microglia/macrophages and astrocytes was altered by the coating. One day post-implant, we observed an ~60% increase in ED-1 expression near LN-coated probe sites compared with control uncoated probe sites. Four weeks post-implant, we observed an ~20% reduction in ED-1 expression along with an ~50% reduction in GFAP expression at coated relative to uncoated probe sites. These results suggest that LN has a stimulatory effect on early microglia activation, accelerating the phagocytic function of these cells. This hypothesis is further supported by the increased mRNA expression of several pro-inflammatory cytokines (TNF-α, IL-1 and IL-6) in cultured microglia on LN-bound Si substrates. LN immunostaining of coated probes immediately after insertion and retrieval demonstrates that the coating integrity is not compromised by the shear force during insertion. We speculate, based on these encouraging results, that LN coating of Si neural probes could potentially improve chronic neural recordings through dispersion of the astroglial scar.

  5. Long-Life Nickel-Rich Layered Oxide Cathodes with a Uniform Li2ZrO3 Surface Coating for Lithium-Ion Batteries.

    Science.gov (United States)

    Song, Bohang; Li, Wangda; Oh, Seung-Min; Manthiram, Arumugam

    2017-03-22

    As nickel-rich layered oxide cathodes start to attract worldwide interest for the next-generation lithium-ion batteries, their long-term cyclability in full cells remains a challenge for electric vehicles. Here we report a long-life Ni-rich layered oxide cathode (LiNi0.7Co0.15Mn0.15O2) with a uniform surface coating of the cathode particles with Li2ZrO3. A pouch-type full cell fabricated with the Li2ZrO3-coated cathode and a graphite anode displays 73.3% capacity retention after 1500 cycles at a C/3 rate. The Li2ZrO3 coating has been optimized by a systematic study with different synthesis approaches, annealing temperatures, and coating amounts. The complex relationship among the coating conditions, uniformity, and morphology of the coating layer and their impacts on the electrochemical properties are discussed in detail.

  6. Optical properties of plasma ion-assisted deposition silicon coatings: application to the manufacture of blocking filters for the near-infrared region.

    Science.gov (United States)

    Bruynooghe, Stephane

    2008-05-01

    I report on the preparation and characterization of optical constants of silicon coatings deposited by an electron beam gun with plasma ion-assisted deposition. With the fabrication of long-wave-pass filters the reliability of the optical constants is assured.

  7. The Influence of Nanofilled Polymer Coatings and Magnetic Field on the Decay Kinetics of Photovoltage in Silicon Crystals Used in Solar Energy

    Directory of Open Access Journals (Sweden)

    L.P. Steblenko

    2015-06-01

    Full Text Available The influence of a weak stationary magnetic field on the kinetics of photovoltage decay in "solar" silicon crystals (solar-Si with nanofilled polymer coatings is studied. The characteristic features of magnetostimulated change of carrier lifetime depending on the concentration and the method of forming the nanofillers in the polymer matrix are established.

  8. Preparation of environment-friendly oxygen-rich silicone rubber membrane%乳液涂敷制备硅橡胶富氧膜

    Institute of Scientific and Technical Information of China (English)

    安坤; 范红玮; 董亚军; 彭跃莲

    2013-01-01

    In this study,silicone rubber/polysulfone (PDMS/PS) composite membranes were prepared; the silicone rubbers included solvent-based hydroxyl silicon rubber and emulsion hydroxyl silicon rubber.The prepared composite membranes were evaluated by the permeation rate and separation factor.The results showed that the permeation rate of solvent-based silicon rubber/polysulfone membrane was 3 ~ 4 times more than that of emulsion silicon rubber/polysulfone membrane,but the latter had a little better separation factor than the former.Under the optimized preparation conditions the membrane had the following performance:the oxygen permeation rate Q(O2) and separation factor a (O2/N2) was 113 GPU and 2.00,respectively.This latex coating method,coating emulsion hydroxyl silicon rubber on the support,was not only environment-friendly,but also safe and economic.%实验制备了聚二甲基硅氧烷/聚砜(PDMS/PS)富氧膜,并考察其富氧性能,分别制备了溶剂型羟基硅橡胶富氧膜和乳液型羟基硅橡胶富氧膜,评价其渗透速率Q和分离系数α(O2/N2),得出了二者在性能上的差异,发现溶剂型富氧膜渗透速率Q(O2)是乳液型富氧膜Q(O2)的3~4倍,而乳液型富氧膜的分离系数α(O2/N2)比溶剂型富氧膜略好,并且以水代替有机溶剂,采用硅橡胶水乳液作为涂敷材料进行乳液涂敷,制备的乳液型富氧膜相对于传统的溶剂型富氧膜,具有环保、安全和经济等特点.该方法制备的富氧膜同时也具有较好的富氧效果,其氧气渗透速率Q(O2)在113 GPU左右,分离系数a(O2/N2)能达到2.0.

  9. Vitre-graf Coating on Mullite. Low Cost Silicon Array Project: Large Area Sillicon Sheet Task

    Science.gov (United States)

    Rossi, R. C.

    1979-01-01

    The processing parameters of the Vitre-Graf coating for optimal performance and economy when applied to mullite and graphite as substrates were presented. A minor effort was also performed on slip-cast fused silica substractes.

  10. 21 CFR 175.390 - Zinc-silicon dioxide matrix coatings.

    Science.gov (United States)

    2010-04-01

    ... water washing. Silica gel Sodium silicate Zinc, as particulate metal (d) The coating in the finished...) (using 20 percent alcohol as the solvent when the type of food contains approximately 20 percent...

  11. Preparation and magnetic properties of Ni–P–La coating by electroless plating on silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yun [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Wang, Jihui, E-mail: jhwang@tju.edu.cn [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Yuan, Jing [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); College of Physics and Electronic Information Engineering, Qinghai University for Nationalities, Xining, Qinghai 810007 (China); Li, Haiqin [College of Physics and Electronic Information Engineering, Qinghai University for Nationalities, Xining, Qinghai 810007 (China)

    2016-02-28

    Graphical abstract: The content of Ni phase, which is the main ferromagnetic phase in Ni–P–La coating, is almost increased linearly with the concentration of La in plating solution. - Highlights: • The La element improves the magnetic properties of Ni–P–La coating. • Magnetism increases but the stability of bath decreases with La content and pH. • Coatings peel off at high temperature (≥80 °C) and magnetism is weak in short time. • The optimum is the La{sub 2}O{sub 3} of 10 mg L{sup −1}, pH of 5.0, temperature of 75 °C and time of 45 min. - Abstract: Ni–P–La coatings were prepared on Si substrate by electroless plating method under different La content, pH value, plating temperature and plating time. The surface morphology, chemical composition, structure and magnetic properties of coatings were observed and determined by scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray diffractometer (XRD) and vibrating sample magnetometer (VSM). The results showed that Ni–P–La coating is smooth and uniform with a cellular morphology grown in columnar manner. With the increase of La content, pH value and plating time, the thickness and saturation magnetization of coating are increased continuously, but the stability of plating bath is decreased greatly with La content and pH value. Under higher plating temperature, the thickness and saturation magnetization of coatings are obviously enhanced. But too high plating temperature is harmful to the plating bath and coating. The optimum plating conditions for Ni–P–La coating is La{sub 2}O{sub 3} addition of 10 mg L{sup −1}, pH value of 5.0, plating temperature of 75 °C and plating time of 45 min. The role of La element is to benefit the deposition of Ni element, promote the formation of Ni phase during the annealing process, and thus improve the magnetic properties of Ni–P–La coating.

  12. Fe3O4/carbon coated silicon ternary hybrid composite as supercapacitor electrodes

    Science.gov (United States)

    Oh, Ilgeun; Kim, Myeongjin; Kim, Jooheon

    2015-02-01

    In this study, Fe3O4/carbon-coated Si ternary hybrid composites were fabricated. A carbon layer was directly formed on the surface of Si by the thermal vapor deposition. The carbon-coating layer not only prevented the contact between Si and reactive electrolyte but also provided anchoring sites for the deposition of Fe3O4. Fe3O4 nanoparticles were deposited on the surface of carbon-coated Si by the hydrazine reducing method. The morphology and structure of Fe3O4 and carbon layer were characterized via X-ray diffractometry, field emission scanning electron microscopy, field emission transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analyses. These characterizations indicate that a carbon layer was fully coated on the Si particles, and Fe3O4 particles were homogeneously deposited on the carbon-coated Si particles. The Fe3O4/carbon-coated Si electrode exhibited enhanced electrochemical performance, attributed to the high conductivity and stability of carbon layer and pseudocapacitive reaction of Fe3O4. The proposed ternary-hybrid composites may be potentially useful for the fabrication of high-performance electrodes.

  13. THE INFLUENCE OF PLASMONIC AND DIELECTRIC INCLUSIONS ON ANTIREFLECTIVE PROPERTIES OF HOMOGENEOUS COATINGS FOR SILICON PHOTOVOLTAIC STRUCTURES

    Directory of Open Access Journals (Sweden)

    K. V. Baryshnikova

    2015-09-01

    Full Text Available Subject of Study. Theoretical analysis of the efficiency for the antireflective coatings based on plasmonic silver (Ag and dielectric silicon (Si nanoparticles is presented. We observe the increase of light absorption in the active layer, which is related to the optical resonant properties of considered nanoparticles. Characteristic property of the studied composite layer is its ability to combine the functions of electric contacts and anti-reflective coating. Method. Numerical calculations were performed in CST Microwave Studio with FDFD method (Finite Difference in Frequency Domain. The optical parameters of materials were extracted from the experimentally measured data available in literature. Geometrical parameters of composite layer – size and location of particles – were varied. Comparison of light absorption efficiency for different coatings on top of the active layer is presented: the homogeneous Indium Tin Oxide (ITO layer, ITO layer with the spherical nanoparticle inclusions on the ITO surface, ITO layer with spherical nanoparticle bulk inclusions. Periodical lattices of particles with sizes of range between 15 and 80 nm were considered. Nanoparticles of this size have dominant dipole response. Main Results. Numerical calculations have shown that nanoparticle inclusions cause significant deformation of the absorption spectra with appearing of resonant pecularities in the wavelength range equal to 300-800 nm. It originates from the nanoparticle resonant features, which are similar to the resonant features of isolated nanoparticles. Absorption in the active layer decreases sharply at the resonant wavelength. Resonant response of nanoparticles placed on the ITO surface differs significally from the isolated ones: the resonant frequency and Q-factor decrease. It was shown that absorption in the active layer decreases by 25 % when the size of Ag and Si particles increases. Ag nanoparticles, placed in ITO layer on top of the active layer

  14. Heterogeneous oligonucleotide-hybridization assay based on hot electron-induced electrochemiluminescence of a rhodamine label at oxide-coated aluminum and silicon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Spehar-Deleze, Anna-Maria [Laboratory of Sensors, Actuators and Microsystems, Institute of Microtechnology, University of Neuchatel, Rue Jaquet-Droz 1, CH-2007 Neuchatel (Switzerland) and Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, Kemistintie 1, FIN-02015 HUT (Finland)]. E-mail: anna-maria.spehar@unine.ch; Suomi, Johanna [Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, Kemistintie 1, FIN-02015 HUT (Finland); Jiang Qinghong [Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, Kemistintie 1, FIN-02015 HUT (Finland); Rooij, Nico de [Laboratory of Sensors, Actuators and Microsystems, Institute of Microtechnology, University of Neuchatel, Rue Jaquet-Droz 1, CH-2007 Neuchatel (Switzerland); Koudelka-Hep, Milena [Laboratory of Sensors, Actuators and Microsystems, Institute of Microtechnology, University of Neuchatel, Rue Jaquet-Droz 1, CH-2007 Neuchatel (Switzerland); Kulmala, Sakari [Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, Kemistintie 1, FIN-02015 HUT (Finland)

    2006-07-28

    This paper describes a heterogeneous oligonucleotide-hybridization assay based on hot electron-induced electrochemiluminescence (HECL) of a rhodamine label. Thin oxide-film coated aluminum and silicon electrodes were modified with an aminosilane layer and derivatized with short, 15-mer oligonucleotides via diisothiocyanate coupling. Target oligonucleotides were conjugated with tetramethylrhodamine (TAMRA) dye at their amino modified 5' end and hybridization was detected using HECL of TAMRA. Preliminary results indicate sensitivity down to picomolar level and low nonspecific adsorption. The sensitivity was better on oxide-coated silicon compared to oxide-coated aluminum electrodes and two-base pair mismatched hybrids were successfully discriminated. The experimental results presented here might be useful for the design of disposable electrochemiluminescent DNA biosensors.

  15. Detection of polydimethylsiloxanes transferred from silicone-coated parchment paper to baked goods using direct analysis in real time mass spectrometry.

    Science.gov (United States)

    Jakob, Andreas; Crawford, Elizabeth A; Gross, Jürgen H

    2016-04-01

    The non-stick properties of parchment papers are achieved by polydimethylsiloxane (PDMS) coatings. During baking, PDMS can thus be extracted from the silicone-coated parchment into the baked goods. Positive-ion direct analysis in real time (DART) mass spectrometry (MS) is highly efficient for the analysis of PDMS. A DART-SVP source was coupled to a quadrupole-time-of-flight mass spectrometer to detect PDMS on the contact surface of baked goods after use of silicone-coated parchment papers. DART spectra from the bottom surface of baked cookies and pizzas exhibited signals because of PDMS ions of the general formula [(C2H6SiO)n  + NH4 ](+) in the m/z 800-1900 range.

  16. Carbon nanotubes film preparation on 3D structured silicon substrates by spray coating technique for application in solar cells

    Science.gov (United States)

    Xiang, Y.; Li, M.; Lin, C.; Liu, P.; Zhang, J.

    2014-11-01

    This paper firstly reports the preparation of carbon nanotubes (CNTs) film on silicon substrate of three-dimensional (3D) inverted pyramid structure (IPS) by spray coating. The effect of different substrate temperatures, spraying times and opening sizes on CNTs sidewall covering properties were investigated. The results show that the CNTs covering ratio of sidewall is much lower than that of flat surface and gradually decrease with depth. 40μm×40μm opening obtained the best sidewall covering by CNTs suspension of 40μg/ml at 120°C after 30min spraying so that the CNTs can reach the bottom of IPS and cover about 68.9% sidewall area. At last, it is demonstrated that the output power of the CNTs film-Si solar cell can be enhanced 5.7 times by this method compared to that of the plane structure.

  17. Low-temperature grown indium oxide nanowire-based antireflection coatings for multi-crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Cian; Chen, Chih-Yao; Chen, I Chen [Institute of Materials Science and Engineering, National Central University, Taoyuan (China); Kuo, Cheng-Wen; Kuan, Ta-Ming; Yu, Cheng-Yeh [TSEC Corporation, Hsinchu (China)

    2016-08-15

    Light harvesting by indium oxide nanowires (InO NWs) as an antireflection layer on multi-crystalline silicon (mc-Si) solar cells has been investigated. The low-temperature growth of InO NWs was performed in electron cyclotron resonance (ECR) plasma with an O{sub 2}-Ar system using indium nanocrystals as seed particles via the self-catalyzed growth mechanism. The size-dependence of antireflection properties of InO NWs was studied. A considerable enhancement in short-circuit current (from 35.39 to 38.33 mA cm{sup -2}) without deterioration of other performance parameters is observed for mc-Si solar cells coated with InO NWs. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Polyethylene glycol-coated blue-emitting silicon dots with improved properties for uses in aqueous and biological environments

    Science.gov (United States)

    Rodríguez Sartori, Damián; Lillo, Cristian R.; Romero, Juan J.; Dell‧Arciprete, María Laura; Miñán, Alejandro; de Mele, Mónica Fernández Lorenzo; Gonzalez, Mónica C.

    2016-11-01

    Grafting of polyethylene glycol (PEG) to ultrasmall photoluminescent silicon dots (SiDs) is expected to improve and expand the applications of these particles to aqueous environments and biological systems. Herein we report a novel one-pot synthesis of robust, highly water compatible PEG-coated SiDs (denoted as PEG-SiDs) of (3.3 ± 0.5) nm size. The nanoparticles’ synthesis is based on the liquid phase oxidation of magnesium silicide using PEG as reaction media and leading to high PEG density grafting. PEG-SiDs enhanced photophysical, photosensitising, and solution properties in aqueous environments are described and compared to those of 2 nm size PEG-coated SiDs with low PEG density grafting (denoted as PEG-NHSiDs) obtained from a multistep synthesis strategy. PEG-SiDs form highly dispersed suspensions in water showing stable photoluminescence and quantum yields of Φ = 0.13 ± 0.04 at 370 nm excitation in air-saturated suspensions. These particles exhibited the capacity of photosensitising the formation of singlet molecular oxygen, not observed for PEG-NHSiDs. PEG robust shielding of the silicon core luminescent properties is further demonstrated in bio-imaging experiments stressing the strong interaction between PEG-SiDs and Staphylococcus aureus smears by observing the photoluminescence of particles. PEG-SiDs were found to be nontoxic to S. aureus cells at concentrations of 100 mg ml-1, though a bacteriostatic effect on S. aureus biofilms was observed upon UV-A irradiation under conditions where light alone has no effect.

  19. Subtask 6.6 - SiAION Coatings for Alkali-Resistant Silicon Nitride. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-25

    The efficiency of a gas turbine can be improved by increasing operating temperature. Construction materials should both meet high strength requirements and exhibit hot alkali corrosion resistance. Structural ceramics based on silicon nitride are promising candidates for high temperature engineering applications because of their high strength and good resistance to corrosion. Their performance varies significantly with the mechanical properties of boundary phases which, in turn, depend on their chemical composition, thickness of the amorphous phase, and the deformation process. To make silicon nitride ceramics tough, SiAlON ceramics were developed with controlled crystallization of the amorphous grain boundary phase. Crystallization of the grain boundary glass improves the high temperature mechanical properties of silicon nitride ceramics. Thus, the knowledge of silicon oxynitride ceramics corrosion behavior in Na{sub 2}SO{sub 4} becomes important for engineers in designing appropriate part for turbines working at high temperatures. So far there has been no report concerning alkali attack on SiAlON ceramics in the presence of SO{sub 2} and chlorine in flue gas. The goal of this project was to investigate alkali corrosion of SiAlON-Y structural ceramics under combustion conditions in the presence of sodium derived components.

  20. Silicon drift detectors with the drift field induced by pureB-coated trenches

    NARCIS (Netherlands)

    Nanver, Lis Karen; Kneževi´c, Tihomir; Suligoj, Tomislav

    2016-01-01

    Junction formation in deep trenches is proposed as a new means of creating a built-in drift field in silicon drift detectors (SDDs). The potential performance of this trenched drift detector (TDD) was investigated analytically and through simulations, and compared to simulations of conventional

  1. Superior Antireflection Coating for a Silicon Cell with a Micronanohybrid Structure

    Directory of Open Access Journals (Sweden)

    Hsi-Chien Liu

    2014-01-01

    Full Text Available The object of this paper is to develop a high antireflection silicon solar cell. A novel two-stage metal-assisted etching (MAE method is proposed for the fabrication of an antireflective layer of a micronanohybrid structure array. The processing time for the etching on an N-type high-resistance (NH silicon wafer can be controlled to around 5 min. The resulting micronanohybrid structure array can achieve an average reflectivity of 1.21% for a light spectrum of 200–1000 nm. A P-N junction on the fabricated micronanohybrid structure array is formed using a low-cost liquid diffusion source. A high antireflection silicon solar cell with an average efficiency of 13.1% can be achieved. Compared with a conventional pyramid structure solar cell, the shorted circuit current of the proposed solar cell is increased by 73%. The major advantage of the two-stage MAE process is that a high antireflective silicon substrate can be fabricated cost-effectively in a relatively short time. The proposed method is feasible for the mass production of low-cost solar cells.

  2. Nanocrystalline ZnO film deposited by ultrasonic spray on textured silicon substrate as an anti-reflection coating layer

    Energy Technology Data Exchange (ETDEWEB)

    Sali, S., E-mail: samira_sali@yahoo.fr [Silicon Technology Development Unit (UDTS), 02 Bd, Frantz FANON, B.P. 140, Algiers (Algeria); Houari Boumediene University (USTHB), Faculty of Physics, Algiers (Algeria); Boumaour, M. [Silicon Technology Development Unit (UDTS), 02 Bd, Frantz FANON, B.P. 140, Algiers (Algeria); Kechouane, M. [Houari Boumediene University (USTHB), Faculty of Physics, Algiers (Algeria); Kermadi, S.; Aitamar, F. [Silicon Technology Development Unit (UDTS), 02 Bd, Frantz FANON, B.P. 140, Algiers (Algeria)

    2012-07-01

    A ZnO thin film was successfully synthesized on glass, flat surface and textured silicon substrates by chemical spray deposition. The textured silicon substrate was carried out using two solutions (NaOH/IPA and Na{sub 2}CO{sub 3}). Textured with Na{sub 2}CO{sub 3} solution, the sample surface exhibits uniform pyramids with an average height of 5 {mu}m. The properties and morphology of ZnO films were investigated. X-ray diffraction (XRD) spectra revealed a preferred orientation of the ZnO nanocrystalline film along the c-axis where the low value of the tensile strain 0.26% was obtained. SEM images show that all films display a granular, polycrystalline morphology. The morphology of the ZnO layers depends dramatically on the substrate used and follows the contours of the pyramids on the substrate surface. The average reflectance of the textured surface was found to be around 13% and it decreases dramatically to 2.57% after deposition of a ZnO antireflection coating. FT-IR peaks arising from the bonding between Zn-O are clearly represented using a silicon textured surface. A very intense photoluminescence (PL) emission peak is observed for ZnO/textured Si, revealing the good quality of the layer. The PL peak at 380.5 nm (UV emission) and the high-intensity PL peak at 427.5 nm are observed and a high luminescence occurs when using a textured Si substrate.

  3. UV anti-reflection coatings for use in silicon detector design

    CERN Document Server

    Hamden, Erika T; Hoenk, Michael E; Blacksberg, Jordana; Dickie, Matthew R; Nikzad, Shouleh; Martin, Christopher D; Schiminovich, David

    2011-01-01

    We report on the development of coatings for a CCD detector optimized for use in a fixed dispersion UV spectrograph. Due to the rapidly changing index of refraction of Si, single layer broadband anti-reflection coatings are not suitable to increase quantum efficiency at all wavelengths of interest. Instead, we describe a creative solution that provides excellent performance over UV wavelengths. We describe progress in the development of a CCD detector with theoretical quantum efficiencies (QE) of greater than 60% at wavelengths from 120 to 300nm. This high efficiency may be reached by coating a backside illuminated, thinned, delta-doped CCD with a series of thin film anti-reflection coatings. The materials tested include MgF2 (optimized for highest performance from 120-150nm), SiO2 (150-180nm), Al2O3(180-240nm), MgO (200-250nm), and HfO2 (240-300nm). A variety of deposition techniques were tested and a selection of coatings which minimized reflectance on a Si test wafer were applied to live devices. We also d...

  4. Tuning the Outward to Inward Swelling in Lithiated Silicon Nanotubes via Surface Oxide Coating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiangwei; Luo, Hao; Liu, Yang; He, Yang; Fan, Feifei; Zhang, Ze; Mao, Scott X.; Wang, Chongmin; Zhu, Ting

    2016-09-14

    The electrochemically-induced mechanical degradation hinders the application of Si anodes in advanced lithium-ion batteries. Hollow structures and surface coatings have been often used to mitigate the degradation of Si-based anodes. However, the structural change and degradation mechanism during lithiation/delithiation of hollow Si structures with coatings remain unclear. Here, we combine in situ TEM experiment and chemomechanical modeling to study the electrochemically induced swelling of amorphous-Si (a-Si) nanotubes with different thicknesses of surface SiOx layers. Surprisingly, we find that no inward expansion occurs at the inner surface during lithiation of a-Si nanotubes with native oxides. In contrast, inward expansion can be induced by increasing the thickness of SiOx on the outer surface. Moreover, both the sandwich lithiation mechanism and two-stage lithiation process in a-Si nanotubes remain unchanged with the increasing thickness of surface coatings. Our chemomechanical modeling reveals the mechanical confinement effects in lithiated a-Si nanotubes with and without SiOx coatings. This work not only provides insights into the degradation of nanotube anodes with surface coatings, but also sheds light onto the optimal design of hollow anodes for high-performance lithium-ion batteries.

  5. Electrical and Optical Characterization of Sputtered Silicon Dioxide, Indium Tin Oxide, and Silicon Dioxide/Indium Tin Oxide Antireflection Coating on Single-Junction GaAs Solar Cells

    Directory of Open Access Journals (Sweden)

    Wen-Jeng Ho

    2017-06-01

    Full Text Available This study characterized the electrical and optical properties of single-junction GaAs solar cells coated with antireflective layers of silicon dioxide (SiO2, indium tin oxide (ITO, and a hybrid layer of SiO2/ITO applied using Radio frequency (RF sputtering. The conductivity and transparency of the ITO film were characterized prior to application on GaAs cells. Reverse saturation-current and ideality factor were used to evaluate the passivation performance of the various coatings on GaAs solar cells. Optical reflectance and external quantum efficiency response were used to evaluate the antireflective performance of the coatings. Photovoltaic current-voltage measurements were used to confirm the efficiency enhancement obtained by the presence of the anti-reflective coatings. The conversion efficiency of the GaAs cells with an ITO antireflective coating (23.52% exceeded that of cells with a SiO2 antireflective coating (21.92%. Due to lower series resistance and higher short-circuit current-density, the carrier collection of the GaAs cell with ITO coating exceeded that of the cell with a SiO2/ITO coating.

  6. Reduction of bacterial adhesion on dental composite resins by silicon-oxygen thin film coatings.

    Science.gov (United States)

    Mandracci, Pietro; Mussano, Federico; Ceruti, Paola; Pirri, Candido F; Carossa, Stefano

    2015-01-29

    Adhesion of bacteria on dental materials can be reduced by modifying the physical and chemical characteristics of their surfaces, either through the application of specific surface treatments or by the deposition of thin film coatings. Since this approach does not rely on the use of drugs or antimicrobial agents embedded in the materials, its duration is not limited by their possible depletion. Moreover it avoids the risks related to possible cytotoxic effects elicited by antibacterial substances released from the surface and diffused in the surrounding tissues. In this work, the adhesion of Streptococcus mutans and Streptococcus mitis was studied on four composite resins, commonly used for manufacturing dental prostheses. The surfaces of dental materials were modified through the deposition of a-SiO(x) thin films by plasma enhanced chemical vapor deposition. The chemical bonding structure of the coatings was analyzed by Fourier-transform infrared spectroscopy. The morphology of the dental materials before and after the coating deposition was assessed by means of optical microscopy and high-resolution mechanical profilometry, while their wettability was investigated by contact angle measurements. The sample roughness was not altered after coating deposition, while a noticeable increase of wettability was detected for all the samples. Also, the adhesion of S. mitis decreased in a statistically significant way on the coated samples, when compared to the uncoated ones, which did not occur for S. mutans. Within the limitations of this study, a-SiO(x) coatings may affect the adhesion of bacteria such as S. mitis, possibly by changing the wettability of the composite resins investigated.

  7. Synthesis of Waterborne Polyurethane Modiifed by Nano-SiO2 Silicone and Properties of the WPU Coated RDX

    Institute of Scientific and Technical Information of China (English)

    Li Yang; Zhao Tianbo; Qu Xiaoling; Ding Hongjing; Li Fengyan

    2015-01-01

    A series of nano silica/silicone modiifed waterborne polyurethane (WPU) have been synthesized from polytet-ramethylene glycol and isophorone diisocyanate, dihydroxymethyl propionic acid and triethylamine, ethylenediamine, trimethylolpropane, nano-SiO2 and the silane coupling agent KH550. The effect of the dosage of nano-SiO2 on the WPU-Si membrane and the coated RDX (cyclotrimethylenetrinitramine) particles have been studied in terms of their surface prop-erties, mechanical properties, and thermal stability. The results showed that with the increase of Si content, the stability of the emulsion reduced gradually. The material with more Si content displayed an increased thermodynamic stability, an increased high temperature resistance, an increased tensile strength and a decreased elongation at break. With the increase of Si content, the surface tension of the material decreased, the bibulous rate reduced, and the contact angle increased gradually, so that the surface tension of the polyurethane and RDX are close to each other which could improve the performance of coating.

  8. Effect of rapid thermal annealing and hydrogen plasma treatment on the microstructure and light-emission of silicon-rich oxide film

    CERN Document Server

    Wang Yong; Chen Chang Yong; Diao Hong Wei; Zhang Shi Bin; Xu Yan Yue; Kong Guang Lin; Liao Xian Bo

    2002-01-01

    Silicon-rich silicon oxide (SRSO) films are prepared by plasma-enhanced chemical vapor deposition method at the substrate temperature of 200 degree C. The effect of rapid thermal annealing and hydrogen plasma treatment on the microstructure and light-emission of SRSO films are investigated in detail using micro-Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectra. It is found that the phase-separation degree of the films decreases with increasing annealing temperature from 300 to 600 degree C, which it increases with increasing annealing temperature from 600 to 900 degree C. The light-emission of the films are enhanced with increasing annealing temperature up to 500 degree C, while it is rapidly reduced when the annealing temperature exceeds 600 degree C. The peak position of the PL spectrum blue shifts by annealing at the temperature of 300 degree C, then it redshifts with further raising annealing temperature. The following hydrogen plasma treatment results i...

  9. Fabrication and Characterization of a Porous Silicon Drug Delivery System with an Initiated Chemical Vapor Deposition Temperature-Responsive Coating.

    Science.gov (United States)

    McInnes, Steven J P; Szili, Endre J; Al-Bataineh, Sameer A; Vasani, Roshan B; Xu, Jingjing; Alf, Mahriah E; Gleason, Karen K; Short, Robert D; Voelcker, Nicolas H

    2016-01-12

    This paper reports on the fabrication of a pSi-based drug delivery system, functionalized with an initiated chemical vapor deposition (iCVD) polymer film, for the sustainable and temperature-dependent delivery of drugs. The devices were prepared by loading biodegradable porous silicon (pSi) with a fluorescent anticancer drug camptothecin (CPT) and coating the surface with temperature-responsive poly(N-isopropylacrylamide-co-diethylene glycol divinyl ether) (pNIPAM-co-DEGDVE) or non-stimulus-responsive poly(aminostyrene) (pAS) via iCVD. CPT released from the uncoated oxidized pSi control with a burst release fashion (∼21 nmol/(cm(2) h)), and this was almost identical at temperatures both above (37 °C) and below (25 °C) the lower critical solution temperature (LCST) of the switchable polymer used, pNIPAM-co-DEGDVE (28.5 °C). In comparison, the burst release rate from the pSi-pNIPAM-co-DEGDVE sample was substantially slower at 6.12 and 9.19 nmol/(cm(2) h) at 25 and 37 °C, respectively. The final amount of CPT released over 16 h was 10% higher at 37 °C compared to 25 °C for pSi coated with pNIPAM-co-DEGDVE (46.29% vs 35.67%), indicating that this material can be used to deliver drugs on-demand at elevated temperatures. pSi coated with pAS also displayed sustainable drug delivery profiles, but these were independent of the release temperature. These data show that sustainable and temperature-responsive delivery systems can be produced by functionalization of pSi with iCVD polymer films. Benefits of the iCVD approach include the application of the iCVD coating after drug loading without causing degradation of the drug commonly caused by exposure to factors such as solvents or high temperatures. Importantly, the iCVD process is applicable to a wide array of surfaces as the process is independent of the surface chemistry and pore size of the nanoporous matrix being coated.

  10. The effects of applying silicon carbide coating on core reactivity of pebble-bed HTR in water ingress accident

    Energy Technology Data Exchange (ETDEWEB)

    Zuhair, S.; Setiadipura, Topan [National Nuclear Energy Agency of Indonesia, Serpong Tagerang Selatan (Indonesia). Center for Nuclear Reactor Technology and Safety; Su' ud, Zaki [Bandung Institute of Technology (Indonesia). Dept. of Physics

    2017-03-15

    Graphite is used as the moderator, fuel barrier material, and core structure in High Temperature Reactors (HTRs). However, despite its good thermal and mechanical properties below the radiation and high temperatures, it cannot avoid corrosion as a consequence of an accident of water/air ingress. Degradation of graphite as a main HTR material and the formation of dangerous CO gas is a serious problem in HTR safety. One of the several steps that can be adopted to avoid or prevent the corrosion of graphite by the water/air ingress is the application of a thin layer of silicon carbide (SiC) on the surface of the fuel element. This study investigates the effect of applying SiC coating on the fuel surfaces of pebble-bed HTR in water ingress accident from the reactivity points of view. A series of reactivity calculations were done with the Monte Carlo transport code MCNPX and continuous energy nuclear data library ENDF/B-VII at temperature of 1200 K. Three options of UO{sub 2}, PuO{sub 2}, and ThO{sub 2}/UO{sub 2} fuel kernel were considered to obtain the inter comparison of the core reactivity of pebble-bed HTR in conditions of water/air ingress accident. The calculation results indicated that the UO{sub 2}-fueled pebble-bed HTR reactivity was slightly reduced and relatively more decreased when the thickness of the SiC coating increased. The reactivity characteristic of ThO{sub 2}/UO{sub 2}-fueled pebble-bed HTR showed a similar trend to that of UO{sub 2}, but did not show reactivity peak caused by water ingress. In contrast with UO{sub 2}- and ThO{sub 2}-fueled pebble-bed HTR, although the reactivity of PuO{sub 2}-fueled pebble-bed HTR was the lowest, its characteristics showed a very high reactivity peak (0.33 Δk/k) and this introduction of positive reactivity is difficult to control. SiC coating on the surface of the plutonium fuel pebble has no significant impact. From the comparison between reactivity characteristics of uranium, thorium and plutonium cores with 0

  11. 镍-磷-碳化硅镀层制备工艺的研究%Study on Technology of Nickel-Phosphorus-Silicon Carbide Particle Coating

    Institute of Scientific and Technical Information of China (English)

    宿辉

    2014-01-01

    为了提高化学复合镀层的性能,采用纳米碳化硅颗粒为增强体制备了镍-磷-碳化硅化学复合镀层,研究了温度、pH、搅拌速率对镍-磷-碳化硅镀层沉积速率的影响,确定了最佳施镀工艺:温度为84益、pH值为4.6、搅拌速度为200r·min-1。%In order to improve the properties of electroless composite coating, the Nickel- Phosphorus-Silicon carbide particle coating electroless composite coating added Silicon carbide particle was prepared and various parameters on the Nickel- Phosphorus-Silicon carbide particle coating were studied systematically. The experimental results show that:temperature, pH stirring speed deposition rate had a greater influence. It was confirmd that the temperature was 84℃, the pH was 4.6, the best stirring rate was 200r/mim-1.

  12. Study of the characteristics of plasma spray sealing aluminum silicon-polyester coatings

    Directory of Open Access Journals (Sweden)

    Mihailo R. Mrdak

    2012-07-01

    Full Text Available This study shows the homologation of the plasma spray parameters of soft abrasive AlSi - Polyester seals so that they can be applied on the TV2 - 117A compressor engines. The research has aimed at substituting existing sealants with a new class of materials in order to increase the sealing effect under the highest levels of pressure and to provide the air flow temperature of 100-125°C through the compressor. The Metco 601NS material and plasma spray technology were applied on the air labyrinth ring as a part of the TV2-117A turbojet engine compressor in order to obtain soft sealing. The deposit parameters were carefully selected in order to obtain coatings with the best characteristics depending on their application.The flow of helium was taken as a basic parameter in the parameter selection procedure. The coating with the best mechanical and structural properties was deposited on the air labyrinth ring to examine the effect of the coating application in an assembly. The microstructures of deposited layers were estimated with a light microscope and a (SEM Scanning Electron Microscope. The microstructural analysis of deposited layers was performed according to the Pratt - Whitney standard. The assessment of the mechanical properties of the coatings was done by examining the macrohardness of the sealing layers with the HR15Y method. The coating bond strength was tested by tensile testing. The effect of the air labyrinth ring sealing was tested inside the TV2-117A engine compressor on the test station for a period of 42 hour.

  13. Tensile test of a silicon microstructure fully coated with submicrometer-thick diamond like carbon film using plasma enhanced chemical vapor deposition method

    Science.gov (United States)

    Zhang, Wenlei; Uesugi, Akio; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2017-06-01

    This paper reports the tensile properties of single-crystal silicon (SCS) microstructures fully coated with sub-micrometer thick diamond like carbon (DLC) film using plasma enhanced chemical vapor deposition (PECVD). To minimize the deformations or damages caused by non-uniform coating of DLC, which has high compression residual stress, released SCS specimens with the dimensions of 120 µm long, 4 µm wide, and 5 µm thick were coated from the top and bottom side simultaneously. The thickness of DLC coating is around 150 nm and three different bias voltages were used for deposition. The tensile strength improved from 13.4 to 53.5% with the increasing of negative bias voltage. In addition, the deviation in strength also reduced significantly compared to bare SCS sample.

  14. Simple down conversion nano-crystal coatings for enhancing Silicon-solar cells efficiency

    Directory of Open Access Journals (Sweden)

    Gur Mittelman

    2016-09-01

    Full Text Available Utilizing self-assembled nano-structured coatings on top of existing solar cells has thepotential to increase the total quantum efficiency of the cell using a simple and cheap process. In ourwork we have exploited the controlled absorption of nano-crystal with different band gaps to realizedown conversion artificial antennas that self-assembled on the device surface. The UV sun light isconverted to the visible light enhancing the solar cell performance in two complementary routes; a.protecting the solar cell and coatings from the UV illumination and therefore reducing the UVradiation damage. b. enhancing the total external quantum efficiency of the cell by one percent. Thisis achieved using a simple cheap process that can be adjusted to many different solar cells.

  15. On the melt infiltration of copper coated silicon carbide with an aluminium alloy

    Science.gov (United States)

    Asthana, R.; Rohatgi, P. K.

    1992-01-01

    Pressure-assisted infiltration of porous compacts of Cu coated and uncoated single crystals of platelet shaped alpha (hexagonal) SiC was used to study infiltration dynamics and particulate wettability with a 2014 Al alloy. The infiltration lengths were measured for a range of experimental variables which included infiltration pressure, infiltration time, and SiC size. A threshold pressure (P(th)) for flow initiation through compacts was identified from an analysis of infiltration data; P(th) decreased while penetration lengths increased with increasing SiC size (more fundamentally, due to changes in interparticle pore size) and with increasing infiltration times. Cu coated SiC led to lower P(th) and 60-80 percent larger penetration lengths compared to uncoated SiC under identical processing conditions.

  16. Improved Treatment of Photothermal Cancer by Coating TiO2 on Porous Silicon.

    Science.gov (United States)

    Na, Kil Ju; Park, Gye-Choon

    2016-02-01

    In present society, the technology in various field has been sharply developed and advanced. In medical technology, especially, photothermal therapy and photodynamic therapy have had limelight for curing cancers and diseases. The study investigates the photothermal therapy that reduces side effects of existing cancer treatment, is applied to only cancer cells, and dose not harm any other normal cells. The photothermal properties of porous silicon for therapy are analyzed in order to destroy cancer cells that are more weak at heat than normal ones. For improving performance of porous silicon, it also analyzes the properties when irradiating the near infrared by heterologously junction TiO2 and TiO2NW, photocatalysts that are very stable and harmless to the environment and the human body, to porous silicon. Each sample of Si, PSi, TiO2/Psi, and TiO2NW/PSi was irradiated with 808 nm near-IR of 300, 500, and 700 mW/cm2 light intensity, where the maximum heating temperature was 43.8, 61.6, 67.9, and 61.9 degrees C at 300 mW/cm2; 54.1, 64.3, 78.8, and 68.9 degrees C at 500 mW/cm2; and 97.3, 102.8, 102.5, and 95 0C at 700 mW/cm2. The time required to reach the maximum temperature was less than 10 min for every case. The results indicate that TiO2/PSi thin film irradiated with a single near-infrared wavelength of 808 nm, which is known to have the best human permeability, offers the potential of being the most successful photothermal cancer therapy agent. It maximizes the photo-thermal characteristics within the shortest time, and minimizes the adverse effects on the human body.

  17. CHROMIZING-ALUMINIZING AND CHROMIZING-SILICONIZING COATING OF A FERRITIC STEEL

    OpenAIRE

    Choquet, P.; Harper, M.; Rapp, R.

    1989-01-01

    Simultaneous deposition of Cr-Al and Cr-Si as diffusion coatings for ferritic steel (Fe-12Cr) substrate have been carried out using the pack cementation method. A computer-assisted thermodynamic study of the equilibrium vapor pressures of volatile halide species formed by the pack components was performed. The simultaneous codeposition of Cr with Al is thermodynamically possible for chloride-activated packs when the activity of Al is about three orders of magnitude lower than the chromium act...

  18. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants

    Energy Technology Data Exchange (ETDEWEB)

    Sutha, S.; Kavitha, K.; Karunakaran, G.; Rajendran, V., E-mail: veerajendran@gmail.com

    2013-10-15

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58–1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant. Highlights: • Hydroxyapatite particles are prepared with various silicon concentration • Prepared composites are blended with chitosan and coated on the implant • Corrosion resistance in simulated body fluid improves its stability • Increase in silicon concentration improves the antibacterial activity • Coated plate exhibit high in-vitro bioactivity in simulated body fluid.

  19. Effect of Addition of Polytetrafluoroethylene (PTFE) and Silicon Carbide (SIC) on Properties of Electroless Nickel AHoy Coatings

    Institute of Scientific and Technical Information of China (English)

    WUYu-cheng; HUXiao-ye; WANGWen.fang; HUANGXin-min

    2004-01-01

    Electroless nickel (copper)-phosphorus-silicon carbide (SiC)-polytetrafluorocthylene(PTFE) composite coatigs were prepared by adding SiC and PTFE into electroless nickel(copper)-phosphorus alloy baths.The effects of addition of SiC and PTFE on depositing rate.microhardness.wear resistance and anti-fiction of the resulted composite coatings were studied.The results indicated that electroless nickel(copper).phosphorus alloy coatings were grealty improved in depositing rate,microhardness,wear resistance and antifriction by co-deposited proper amount of SiC and PTFE.

  20. Fabrication of Optical Multilayer Devices from Porous Silicon Coatings with Closed Porosity by Magnetron Sputtering.

    Science.gov (United States)

    Caballero-Hernández, Jaime; Godinho, Vanda; Lacroix, Bertrand; Jiménez de Haro, Maria C; Jamon, Damien; Fernández, Asunción

    2015-07-01

    The fabrication of single-material photonic-multilayer devices is explored using a new methodology to produce porous silicon layers by magnetron sputtering. Our bottom-up methodology produces highly stable amorphous porous silicon films with a controlled refractive index using magnetron sputtering and incorporating a large amount of deposition gas inside the closed pores. The influence of the substrate bias on the formation of the closed porosity was explored here for the first time when He was used as the deposition gas. We successfully simulated, designed, and characterized Bragg reflectors and an optical microcavity that integrates these porous layers. The sharp interfaces between the dense and porous layers combined with the adequate control of the refractive index and thickness allowed for excellent agreement between the simulation and the experiments. The versatility of the magnetron sputtering technique allowed for the preparation of these structures for a wide range of substrates such as polymers while also taking advantage of the oblique angle deposition to prepare Bragg reflectors with a controlled lateral gradient in the stop band wavelengths.

  1. DEGRADATION OF SM2ZR2O7 THERMAL BARRIER COATING CAUSED BY CALCIUM-MAGNESIUM-ALUMINUM-SILICON OXIDE (CMAS) DEPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Honglong; Sheng, Zhizhi; Tarwater, Emily; Zhang, Xingxing; Dasgupta, Sudip; Fergus, Jeffrey

    2015-03-16

    Rare earth zirconates are promising materials for use as thermal barrier coatings in gas turbine engines. Among the lanthanide zirconate materials, Sm2Zr2O7 with the pyrochlore structure has lower thermal conductivity and better corrosion resistance against calcium-magnesium-aluminum-silicon oxide (CMAS). In this work, after reaction with CMAS, the pyrochlore structure transforms to the cubic fluorite structure and Ca2Sm8(SiO4)6O2 forms in elongated grain.

  2. Anodic Bonding of Transparent Conductive Oxide Coated Silicon Wafer to Glass Substrate for Solar Cell Applications

    Science.gov (United States)

    Yuda, Yohei; Koida, Takashi; Kaneko, Tetsuya; Kondo, Michio

    2013-01-01

    We report on the anodic bonding of Si wafer coated by thin transparent conductive oxide (TCO) with a glass substrate, for the first time. We obtained sufficient bonding strength of as high as 9.5 MPa using a 30-nm-thick indium tin oxide (ITO) layer. We have also found that the ITO sample shows much stronger bonding strength does a sample that with a zinc oxide layer. The bonding mechanism is discussed in terms of the permeation of indium elements into the glass side driven by electric field. Finally we demonstrated a solar cell using this substrate.

  3. Green synthesis of Kocuran-functionalized silver glyconanoparticles for use as antibiofilm coatings on silicone urethral catheters

    Science.gov (United States)

    Ganesh Kumar, C.; Sujitha, Pombala

    2014-08-01

    Microbial infections due to biofilm formation on medical implants are serious complications arising after surgery which can be prevented by using antimicrobial coatings on biomaterial surfaces. We developed a simple, rapid and green chemistry approach for synthesis of silver glyconanoparticles (AgNPs) using Kocuran, an exopolysaccharide produced by Kocuria rosea strain BS-1. Kocuran-capped AgNPs exhibited a characteristic surface plasmon resonance (SPR) peak around 435 nm. They were mono-dispersed, spherical with an average particle size of 12 nm. XRD and SAED studies suggested that AgNPs were crystalline in nature. AgNPs had a zeta potential of -33.9 mV and were anionic charged. They showed colloidal stability at different pH (6 to 10), temperatures (30 °C to 100 °C), in NaCl, NaNO3 and BSA solutions. Kocuran-capped AgNPs exhibited effective antimicrobial activity against Staphylococcus aureus and Escherichia coli and cell death was mainly due to hydroxyl radical induction and depletion of NADH. They also inhibited the biofilm development by S. aureus and E. coli and confocal scanning laser microscopic images revealed the damage of intact cell architecture. In vitro evaluation of Kocuran-capped silver glyconanoparticles on human gingival fibroblasts demonstrated good cell proliferation as compared to commercial AgNPs suggesting that they are biocompatible and non-toxic in nature. This is a first report on Kocuran-functionalized AgNPs exhibiting potential antibacterial and antiadhesive properties for use as antimicrobial coatings against bacterial adhesion and biofilm formation on silicone urethral catheters.

  4. Single-step plasma synthesis of carbon-coated silicon nanoparticles.

    Science.gov (United States)

    Chaukulkar, Rohan P; de Peuter, Koen; Stradins, Paul; Pylypenko, Svitlana; Bell, Jacob P; Yang, Yongan; Agarwal, Sumit

    2014-01-01

    We have developed a novel single-step technique based on nonthermal, radio frequency (rf) plasmas to synthesize sub-10 nm, core-shell, carbon-coated crystalline Si (c-Si) nanoparticles (NPs) for potential application in Li(+) batteries and as fluorescent markers. Hydrogen-terminated c-Si NPs nucleate and grow in a SiH4-containing, low-temperature plasma in the upstream section of a tubular quartz reactor. The c-Si NPs are then transported downstream by gas flow, and are coated with amorphous carbon (a-C) in a second C2H2-containing plasma. X-ray diffraction (XRD), X-ray photoelectron spectroscopy, and in situ attenuated total reflection Fourier transform infrared spectroscopy show that a thin, size determined by Raman spectroscopy, photoluminescence spectroscopy, and XRD analysis. The size of the c-Si NP core, and the corresponding light emission from these NPs, was directly controlled by varying the thickness of the interfacial 3C-SiC layer. This size tunable emission thus also demonstrates the versatility of this technique for synthesizing c-Si NPs for potential applications in light emitting diodes, biological markers, and nanocrystal inks.

  5. Realization of Colored Multicrystalline Silicon Solar Cells with SiO2/SiNx:H Double Layer Antireflection Coatings

    Directory of Open Access Journals (Sweden)

    Minghua Li

    2013-01-01

    Full Text Available We presented a method to use SiO2/SiNx:H double layer antireflection coatings (DARC on acid textures to fabricate colored multicrystalline silicon (mc-Si solar cells. Firstly, we modeled the perceived colors and short-circuit current density (Jsc as a function of SiNx:H thickness for single layer SiNx:H, and as a function of SiO2 thickness for the case of SiO2/SiNx:H (DARC with fixed SiNx:H (refractive index n=2.1 at 633 nm, and thickness = 80 nm. The simulation results show that it is possible to achieve various colors by adjusting the thickness of SiO2 to avoid significant optical losses. Therefore, we carried out the experiments by using electron beam (e-beam evaporation to deposit a layer of SiO2 over the standard SiNx:H for 156×156 mm2 mc-Si solar cells which were fabricated by a conventional process. Semisphere reflectivity over 300 nm to 1100 nm and I-V measurements were performed for grey yellow, purple, deep blue, and green cells. The efficiency of colored SiO2/SiNx:H DARC cells is comparable to that of standard SiNx:H light blue cells, which shows the potential of colored cells in industrial applications.

  6. A Comparison of Silicone-coated Paper Samplers and Polyethylene in Narragansett Bay

    Science.gov (United States)

    Dekany, V.; Lohmann, R.

    2008-12-01

    Accurately measuring dissolved concentrations of persistent organic pollutants (POPs) in surface waters remains a major challenge due to low concentrations, contamination concerns and sampling artifacts, such as sorption to dissolved organic carbon (DOC). Knowing dissolved concentrations of POPs, such as polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs), is key to understanding their fate in the ocean and their accumulation in the food-chain. The affinity of POPs towards hydrophobic matrices can be used to absorb the species of interest from their environment, a method known as passive sampling. As passive sampling devices (PSDs) rely on passive diffusion to accumulate analytes of interest, it is critical to better understand whether and when equilibrium has been achieved during field deployments. Silicone-based paper (41 g/m2 cellulose, 0.45-0.5 g Si/m2/side) and polyethylene samplers (PEs; 25 μm thickness) were compared in Narragansett Bay in July 2008. Samplers were deployed for 2, 4 and 8 days to derive [PAHs] in the water column. The effectiveness of each passive sampler was based on (i) the percent of performance reference compounds (PRCs) remaining in the device, (ii) the sorption capacity of the PSD for POPs, and (iii) successful field deployments in the Narragansett Bay water column. Samplers were analyzed for PAHs and PRCs (d-anthracene, d-benz[a]anthracene, and d-benzo[a]pyrene) by gas chromatography/mass spectrometry. As expected, faster loss rates were observed for lower molecular weight PRCs in both sampler types. The silicone paper samplers displayed faster equilibrium times than the PE samplers. The observed [PAHs] in the passive samplers were corrected for the temperature and salinity of the Bay water. The PRC loss rates were used to correct for non-equilibrium concentrations. Lastly, dissolved [PAHs] were calculated based on published PE-water equilibrium partitioning constants. Dissolved concentrations of PAHs derived

  7. 水性无机富锌涂料施工性的研究%Study on the Contractibility of Water Borne Inorganic Zinc -Rich Coatings

    Institute of Scientific and Technical Information of China (English)

    王秀玲

    2012-01-01

    An environmental friendly product, two -component water borne inorganic zinc -rich coating has been studied in this paper. It is concluded that the workability of construction performance is improved a lot when 10% of sucrose is added,I. E. The curing time of the coating is delayed, which mean this kind of water borne inorganic zinc - rich coating is suitable for rolling and brush painting and can be used in higher temperature without peeling and cracking.%重点研究了环境友好型双组分水性无机富锌涂料,其糖类改性剂加量对涂层耐蚀性及施工性的影响.结果表明:蔗糖加入量在10%左右可以明显改善施工性能,即延缓涂料的固化时间,使水性无机富锌涂料能在较高的温度下施工不起皮、不开裂,适宜刷涂和辊涂等施工方法.

  8. Deposition of multicomponent chromium carbide coatings using a non-conventional source of chromium and silicon with micro-additions of boron

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Ruiz, Jesus Eduardo, E-mail: jesus.gonzalez@biomat.uh.cu [Biomaterials Center, University of Havana (Cuba); Rodriguez Cristo, Alejandro [Mechanical Plants Company, Road of the Sub-Plan, Farm La Cana, Santa Clara, Villa Clara (Cuba); Ramos, Adrian Paz [Department of Chemistry, Universite de Montreal, Quebec (Canada); Quintana Puchol, Rafael [Welding Research Center, Central University Marta Abreu of Las Villas, Villa Clara (Cuba)

    2017-01-15

    The chromium carbide coatings are widely used in the mechanical industry due to its corrosion resistance and mechanical properties. In this work, we evaluated a new source of chromium and silicon with micro-additions of boron on the deposition of multi-component coatings of chromium carbides in W108 steel. The coatings were obtained by the pack cementation method, using a simultaneous deposition at 1000 deg for 4 hours. The coatings were analyzed by X-ray diffraction, X-ray energy dispersive spectroscopy, optical microscopy, microhardness test method and pin-on-disc wear test. It was found that the coatings formed on W108 steel were mainly constituted by (Cr,Fe){sub 23}C{sub 6} , (Cr,Fe){sub 7} C{sub 3} , Cr{sub 5-x}Si{sub 3-x} C{sub x+z}, Cr{sub 3} B{sub 0,44}C{sub 1,4} and (or) Cr{sub 7} BC{sub 4} . The carbide layers showed thicknesses between 14 and 15 μm and maximum values of microhardness between 15.8 and 18.8 GPa. Also, the micro-additions of boron to the mixtures showed statistically significant influence on the thickness, microhardness and abrasive wear resistance of the carbide coatings. (author)

  9. Chlorine-rich plasma polymer coating for the prevention of attachment of pathogenic fungal cells onto materials surfaces

    Science.gov (United States)

    Lamont-Friedrich, Stephanie J.; Michl, Thomas D.; Giles, Carla; Griesser, Hans J.; Coad, Bryan R.

    2016-07-01

    The attachment of pathogenic fungal cells onto materials surfaces, which is often followed by biofilm formation, causes adverse consequences in a wide range of areas. Here we have investigated the ability of thin film coatings from chlorinated molecules to deter fungal colonization of solid materials by contact killing of fungal cells reaching the surface of the coating. Coatings were deposited onto various substrate materials via plasma polymerization, which is a substrate-independent process widely used for industrial coating applications, using 1,1,2-trichloroethane as the process vapour. XPS surface analysis showed that the coatings were characterized by a highly chlorinated hydrocarbon polymer nature, with only a very small amount of oxygen incorporated. The activity of these coatings against human fungal pathogens was quantified using a recently developed, modified yeast assay and excellent antifungal activity was observed against Candida albicans and Candida glabrata. Plasma polymer surface coatings derived from chlorinated hydrocarbon molecules may therefore offer a promising solution to preventing yeast and mould biofilm formation on materials surfaces, for applications such as air conditioners, biomedical devices, food processing equipment, and others.

  10. Platelet-rich plasma and fibrin glue-coated bioactive ceramics enhance growth and differentiation of goat bone marrow-derived stem cells.

    Science.gov (United States)

    Nair, Manitha B; Varma, H K; John, Annie

    2009-07-01

    New biotechnologies such as tissue engineering require functionally active cells within supportive matrices where the physical and chemical stimulus provided by the matrix is indispensable to determine the cellular behavior. This study has investigated the influence of platelet-rich plasma (PRP) and fibrin glue (FG) on the functional activity of goat bone marrow-derived mesenchymal stem cells (gBMSCs) that differentiated into the osteogenic lineage. To achieve this goal, PRP and FG were separately coated on bioactive ceramics like hydroxyapatite (HA) and silica-coated HA (HASi), on which gBMSCs were seeded and induced to differentiate into the osteogenic lineage for 28 days. The cells were then analyzed for viability (lactate dehydrogenase assay: acridine orange and ethidium bromide staining), morphology (scanning electron microscopy), proliferation (picogreen assay), cell cycle assay (propidium iodide staining), and differentiation (alkaline phosphatase [ALP] activity and real-time PCR analysis of ALP, osteocalcin, and osteopontin gene). It has been observed that PRP and FG have appreciably favored the viability, spreading, and proliferation of osteogenic-induced gBMSCs. The osteopontin and osteocalcin expression was significantly enhanced on PRP- and FG-coated HA and HASi, but PRP had effect on neither ALP expression nor ALP activity. The results of this study have depicted that FG-coated ceramics were better than PRP-coated and bare matrices. Among all, the excellent performance was shown by FG coated HASi, which may be attributed to the communal action of the stimulus emanated by Si in HASi and the temporary extracellular matrix provided by FG over HASi. Thus, we can conclude that PRP or FG in combination with bioactive ceramics could possibly enhance the functional activity of cells to a greater extent, promoting the hybrid composite as a promising candidate for bone tissue engineering applications.

  11. Silicon Drift Detectors with the Drift Field Induced by PureB-Coated Trenches

    Directory of Open Access Journals (Sweden)

    Tihomir Knežević

    2016-10-01

    Full Text Available Junction formation in deep trenches is proposed as a new means of creating a built-in drift field in silicon drift detectors (SDDs. The potential performance of this trenched drift detector (TDD was investigated analytically and through simulations, and compared to simulations of conventional bulk-silicon drift detector (BSDD configurations. Although the device was not experimentally realized, the manufacturability of the TDDs is estimated to be good on the basis of previously demonstrated photodiodes and detectors fabricated in PureB technology. The pure boron deposition of this technology allows good trench coverage and is known to provide nm-shallow low-noise p+n diodes that can be used as radiation-hard light-entrance windows. With this type of diode, the TDDs would be suitable for X-ray radiation detection down to 100 eV and up to tens of keV energy levels. In the TDD, the drift region is formed by varying the geometry and position of the trenches while the reverse biasing of all diodes is kept at the same constant voltage. For a given wafer doping, the drift field is lower for the TDD than for a BSDD and it demands a much higher voltage between the anode and cathode, but also has several advantages: it eliminates the possibility of punch-through and no current flows from the inner to outer perimeter of the cathode because a voltage divider is not needed to set the drift field. In addition, the loss of sensitive area at the outer perimeter of the cathode is much smaller. For example, the simulations predict that an optimized TDD geometry with an active-region radius of 3100 µm could have a drift field of 370 V/cm and a photo-sensitive radius that is 500-µm larger than that of a comparable BSDD structure. The PureB diodes on the front and back of the TDD are continuous, which means low dark currents and high stability with respect to leakage currents that otherwise could be caused by radiation damage. The dark current of the 3100-µm TDD

  12. Highly enhanced and temporally stable field emission from MWCNTs grown on aluminum coated silicon substrate

    Directory of Open Access Journals (Sweden)

    M. Sreekanth

    2015-06-01

    Full Text Available In this work, a detailed field emission study of multi-walled carbon nanotubes (MWCNTs grown on Si and Al coated Si substrates is reported. Morphological and microstructural studies of the films show higher entanglement of CNTs in the case of CNT/Si film as compared to CNT/Al/Si film. Raman studies show that the defect mediated peak (D is substantially suppressed as compared to graphitic peak (G resulting in significant reduction in ID/IG value in CNT/Al/Si film. Field emission (FE current density of CNT/Al/Si film (∼25 mA/cm2 is significantly higher as compared to that of CNT/Si film (∼1.6 mA/cm2. A substantial improvement in temporal stability is also observed in CNT/Al/Si film. This enhancement in field emission current is attributed to strong adhesion between substrate and CNTs, low work function, high local field enhancement factor at the CNT tips and less entanglement of CNTs grown on Al/Si. The temporally stable CNT/Al/Si cold cathode can be a potential candidate to replace conventional electron sources in prototype devices.

  13. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants.

    Science.gov (United States)

    Sutha, S; Kavitha, K; Karunakaran, G; Rajendran, V

    2013-10-01

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58-1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant.

  14. Electrochemical performance of Li-rich oxide composite material coated with Li0.75La0.42TiO3 ionic conductor

    Science.gov (United States)

    Yang, Chun-Chen; Liao, Pin-Ci; Wu, Yi-Shiuan; Lue, Shingjiang Jessie

    2017-03-01

    Li-rich (spray-dried (SP)-Li1.2Ni0.2Mn0.60O2) composite materials were prepared via two-step ball-mill and spray dry methods by using LiOH, α-MnO2, β-Ni(OH)2 raw materials. Two raw materials of α-MnO2 nanowires and microsphere β-Ni(OH)2 were synthesized by a hydrothermal process. In addition, Li0.75La0.42TiO3 (LLTO) fast ionic conductor was coated on SP-Li1.2Ni0.2Mn0.60O2 composite via a sol-gel method. The properties of the LLTO-coated SP-Li1.2Ni0.2Mn0.60O2 composites were determined by X-ray diffraction, scanning electron microscopy, micro-Raman, XPS, and the AC impedance method. The discharge capacities of 1 wt.%-LLTO-coated SP-Li1.2Ni0.2Mn0.60O2 composites were 256, 250, 231, 200, 158, and 114 mAh g-1 at rates of 0.1, 0.2, 0.5, 1, 3, and 5C, respectively, in the voltage range 2.0-4.8 V. The 1 wt.%-LLTO-coated Li-rich oxide composite showed the discharge capacities of up to 256 mAh g-1 in the first cycle at 0.1C. After 30 cycles, the discharge capacity of 244 mAh g-1 was obtained, which showed the capacity retention of 95.4%.

  15. Cloning and expression of the Chinese wheat mosaic virus RNA2 coat protein read- through and 19 ku cysteine- rich domains and localization of these proteins

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The 5′-terminal (RTn) and 3′-terminal (RTc) halves of the coat protein readthrough domain and the 19 ku cysteine-rich protein of Chinese wheat mosaic virus (CWMV) were amplified by RT-PCR, cloned and expressed in E. coli. Antisera and monoclonal antibodies against these proteins were prepared by immunising these purified proteins to mice. Detection of RTn, RTc and 19 ku proteins in CWMV infected wheat sap and leaf tissue indicated that the RTn and RTc proteins were distributed on the surface of virus particles whereas the 19 ku protein was in the cytoplasm of the infected wheat cells.

  16. Thermal analysis of silicon carbide coating on a nickel based superalloy substrate and thickness measurement of top layers by lock-in infrared thermography

    Energy Technology Data Exchange (ETDEWEB)

    Ranjit, Shrestha; Kim, Won Tae [Kongju National University, Cheonan (Korea, Republic of)

    2017-04-15

    In this paper, we investigate the capacity of the lock-in infrared thermography technique for the evaluation of non-uniform top layers of a silicon carbide coating with a nickel based superalloy sample. The method utilized a multilayer heat transfer model to analyze the surface temperature response. The modelling of the sample was done in ANSYS. The sample consists of three layers, namely, the metal substrate, bond coat and top coat. A sinusoidal heating at different excitation frequencies was imposed upon the top layer of the sample according to the experimental procedures. The thermal response of the excited surface was recorded, and the phase angle image was computed by Fourier transform using the image processing software, MATLAB and Thermofit Pro. The correlation between the coating thickness and phase angle was established for each excitation frequency. The most appropriate excitation frequency was found to be 0.05 Hz. The method demonstrated potential in the evaluation of coating thickness and it was successfully applied to measure the non-uniform top layers ranging from 0.05 mm to 1 mm with an accuracy of 0.000002 mm to 0.045 mm.

  17. Enhancing the Thermal and Upper Voltage Performance of Ni-Rich Cathode Material by a Homogeneous and Facile Coating Method: Spray-Drying Coating with Nano-Al2O3.

    Science.gov (United States)

    Du, Ke; Xie, Hongbin; Hu, Guorong; Peng, Zhongdong; Cao, Yanbing; Yu, Fan

    2016-07-13

    The electrochemical performance of Ni-rich cathode material at high temperature (>50 °C) and upper voltage operation (>4.3 V) is a challenge for next-generation lithium-ion batteries (LIBs) because of the rapid capacity degradation over cycling. Here we report improved performance of LiNi0.8Co0.15Al0.05O2 materials via a LiAlO2 coating, which was prepared from a Ni0.80Co0.15Al0.05(OH)2 precursor by spray-drying coating with nano-Al2O3. Investigations by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy revealed that an Al2O3 layer is uniformly distributed on the precursor and a LiAlO2 layer on the as-prepared cathode material. Such a coating shell acts as a scavenger to protect the cathode material from attack by HF and serious side reactions, which remarkably enhances the cycle performance at 55 °C and upper operating voltage (4.4 and 4.5 V). In particular, the sample with a 2% Al2O3 coating shows capacity retentions of 90.40%, 85.14%, 87.85%, and 81.1% after 150 cycles at a rate of 1.0C at room temperature, 55 °C, 4.4 V, and 4.5 V, respectively, which are significantly higher than those of the pristine one. This is mainly due to the significant improvement of the structural stability led by the effective coating technique, which could be extended to other cathode materials to obtain LIBs with enhanced safety and excellent cycling stability.

  18. Electrical investigation of TiO2 thin films coated on glass and silicon substrates—effect of UV and visible light illumination

    Science.gov (United States)

    Amirtharajan, Saranya; Jeyaprakash, Pandiarajan; Natarajan, Jeyakumaran; Natarajan, Prithivikumaran

    2016-04-01

    The conducting nature of nanocrystalline TiO2 thin film coated on glass and silicon (Si) substrates was studied in detail. The films were prepared through sol-gel spin-coating method with variation in coating parameters viz, the thickness of the film and the post annealing temperature. The thickness of the films was measured using Stylus profilometer. The resistivity of the film, as a function of film thickness, under the illumination of UV, visible light, and dark conditions was found using the four-probe method. The results show that the resistivity of the film decreases with increase in thickness of the film. The decrease in resistivity of the film is attributed to increase in cross-sectional area and rearrangement and removal of defects. Illumination of the samples under visible and UV light further decreases the resistivity of the film. The electrical resistivity of TiO2 film coated on Si substrate was observed to be lesser than that of the glass substrate.

  19. Seed oils rich in linolenic acid as renewable feedstock for environment-friendly crosslinkers in powder coatings

    NARCIS (Netherlands)

    Overeem, A.; Buisman, G.J.H.; Derksen, J.T.P.; Cuperus, F.P.; Molhoek, L.; Grisnich, W.; Goemans, C.

    1999-01-01

    In the work described, seed oils rich in linolenic acid were used for the synthesis of aliphatic oxiranes. The oils studied were linseed (Linum usitatissimum) oil, Canadian linseed oil and the oil of Lallemantia iberica. The oils contained 54.1, 60.2 and 68.0% of linolenic acid, respectively, and sh

  20. Quinone-rich polydopamine functionalization of yttria stabilized zirconia for apatite biomineralization: The effects of coating temperature

    Science.gov (United States)

    Zain, Norhidayu Muhamad; Hussain, Rafaqat; Abdul Kadir, Mohammed Rafiq

    2015-08-01

    The use of yttria stabilized zirconia (YSZ) as biomedical implants is often offset by its bioinert nature that prevents its osseointegration to occur. Therefore, the functionalization of YSZ surface by polydopamine to facilitate the biomineralization of apatite layer on top of the coated film has incessantly been studied. In this study YSZ discs were first immersed in 2 mg/mL of stirred dopamine solution at coating temperatures between 25 and 80 °C. The specimens were then incubated for 7d in 1.5 SBF. The effect of coating temperature on the properties (chemical compositions and wettability) and the apatite mineralization on top of the generated films was investigated. It was found that at 50 °C, the specimen displayed the highest intensity of Ca 2p peak (1.55 ± 0.42 cps) with Ca/P ratio of 1.67 due to the presence of abundant quinone groups (Cdbnd O). However, the hydrophilicity (40.9 ± 01.7°) was greatly improved at 60 °C accompanied by the highest film thickness of 306 nm. Therefore, it was concluded that the presence of high intensity of quinone groups (Cdbnd O) in polydopamine film at elevated temperature affects the chelation of Ca2+ ions and thus enhance the growth of apatite layer on top of the functionalized YSZ surface.

  1. Improving the oxidation resistance of carbon fibers using silicon oxycarbide coatings%SiOC陶瓷涂层改善炭纤维的抗氧化性能

    Institute of Scientific and Technical Information of China (English)

    夏克东; 吕春祥; 杨禹

    2015-01-01

    以乙烯基改性的硅氧烷作为溶胶凝胶前驱体在炭纤维表面制备出SiOC陶瓷涂层。采用扫描电镜、X-射线衍射、X-射线光电子能谱、拉曼光谱以及热重分析对涂层进行表征。炭纤维的力学性能通过单丝拉伸强度测试研究。结果表明,无定型的SiOC涂层由SiCx O4-x结构单元和自由碳相组成。 SiOC涂层可改善炭纤维的抗氧化性能。涂层脱落与表面裂纹导致纤维拉伸强度降低以及weibull模量增加。与未涂层纤维相比,具有200 nm涂层厚度的炭纤维初始氧化温度可提高150℃,其单丝拉伸强度为2.32 GPa。%Silicon oxycarbide ( SiOC) ceramic was coated on carbon fibers using a vinyl group-modified silicon alkoxide as the sol precursor. The coatings were characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and thermogravimetry. The mechanical properties of the carbon fibers were investigated by single fiber tensile tests. Results showed that the amorphous SiOC coating was composed of SiCx O4-x and a free carbon phase. The oxidation resistance of the carbon fibers was improved by the SiOC coatings. However, debonding of the coatings and surface cracks led to a reduction of tensile strength and an increase of Weibull modulus. The coating with a thickness of 200 nm increased the onset oxidation temperature by about 150℃, but decreased the tensile strength from 3. 18 to 2. 32 GPa.

  2. Research Progress on Antireflection Coating for Silicon Solar Cells%硅太阳能电池减反射膜的研究进展

    Institute of Scientific and Technical Information of China (English)

    王彦青; 王秀峰; 江红涛; 门永

    2012-01-01

    综述了国内外对硅太阳能电池减反射膜的研究进展,包括减反射膜的种类、膜层结构、减反射原理以及减反射膜的制备方法,重点介绍了硅太阳能电池减反射膜的主要制备方法,并对比了各种制备方法的优缺点,指出新型制备技术和新膜系的选取是目前硅太阳能电池减反射膜的研究重点.最后讨论了硅太阳能电池减反射膜存在的问题,并提出进一步发展的方向.%The research progress of antireflection at home and abroad is summarized, including in antireflection materials, the structure of film, principle of antireflective and preparing technology, and the focus is placed on the preparing technology, advantages and disadvantages of each preparation methods is contrasted, new preparing technology and new film system are pointed out. At last, the existing problem of antireflection coating for silicon solar cells are discussed and the development trends of antireflection coating for silicon solar cells are forecasted.

  3. Effect of an Albumin-Coated Mesoporous Silicon Nanoparticle Platform for Paclitaxel Delivery in Human Lung Cancer Cell Line A549

    Directory of Open Access Journals (Sweden)

    Yu Gao

    2016-01-01

    Full Text Available Albumin-coated paclitaxel-mesoporous silicon nanoparticles (APMSN were prepared to improve the anticancer effect in lung cancer by means of regulating the dissolution rate of paclitaxel (PTX. PTX was absorbed into the mesoporous structure of mesoporous silicon nanoparticles (MSN, which was defined as PMSN. PTX was proved to exist in an amorphous state in PMSN, which increased the dissolution rate of PTX. Albumin was coated on the surface of MSN to form AMSN; AMSN and PTX were mixed to form APMSN in order to achieve sustained release of PTX. Then, it was found that APMSN had more significant antiproliferate effects and induced more apoptotic proportion in comparison with PTX in A549 cells. Furthermore, the absorption mechanism of APMSN into A549 cells was investigated. Transmission electron microscopy (TEM and laser scanning confocal microscopy (LSCM showed that APMSN could cross the cell membrane and was taken into the cytoplasm quickly. Taken together, our results demonstrate that AMSN carriers have potential as nanodrug delivery systems in the treatment of lung cancer.

  4. Corrosion resistance and biological activity of TiO2 implant coatings produced in oxygen-rich environments.

    Science.gov (United States)

    Zhang, Rui; Wan, Yi; Ai, Xing; Liu, Zhanqiang; Zhang, Dong

    2017-01-01

    The physical and chemical properties of bio-titanium alloy implant surfaces play an important role in their corrosion resistance and biological activity. New turning and turning-rolling processes are presented, employing an oxygen-rich environment in order to obtain titanium dioxide layers that can both protect implants from corrosion and also promote cell adhesion. The surface topographies, surface roughnesses and chemical compositions of the sample surfaces were obtained using scanning electron microscopy, a white light interferometer, and the Auger electron spectroscopy, respectively. The corrosion resistance of the samples in a simulated body fluid was determined using electrochemical testing. Biological activity on the samples was also analyzed, using a vitro cell culture system. The results show that compared with titanium oxide layers formed using a turning process in air, the thickness of the titanium oxide layers formed using turning and turning-rolling processes in an oxygen-rich environment increased by 4.6 and 7.3 times, respectively. Using an oxygen-rich atmosphere in the rolling process greatly improves the corrosion resistance of the resulting samples in a simulated body fluid. On samples produced using the turning-rolling process, cells spread quickly and exhibited the best adhesion characteristics.

  5. The effect of lance geometry and carbon coating of silicon lances on propidium iodide uptake in lance array nanoinjection of HeLa 229 cells

    Science.gov (United States)

    Sessions, John W.; Lindstrom, Dallin L.; Hanks, Brad W.; Hope, Sandra; Jensen, Brian D.

    2016-04-01

    Connecting technology to biologic discovery is a core focus of non-viral gene therapy biotechnologies. One approach that leverages both the physical and electrical function of microelectromechanical systems (MEMS) in cellular engineering is a technology previously described as lance array nanoinjection (LAN). In brief, LAN consists of a silicon chip measuring 2 cm by 2 cm that has been etched to contain an array of 10 μm tall, solid lances that are spaced every 10 μm in a grid pattern. This array of lances is used to physically penetrate hundreds of thousands of cells simultaneously and to then electrically deliver molecular loads into cells. In this present work, two variables related to the microfabrication of the silicon lances, namely lance geometry and coating, are investigated. The purpose of both experimental variables is to assess these parameters’ effect on propidium iodide (PI), a cell membrane impermeable dye, uptake to injected HeLa 229 cells. For the lance geometry experimentation, three different microfabricated lance geometries were used which include a flat/narrow (FN, 1 μm diameter), flat/wide (FW, 2-2.5 μm diameter), and pointed (P, 1 μm diameter) lance geometries. From these tests, it was shown that the FN lances had a slightly better cell viability rate of 91.73% and that the P lances had the best PI uptake rate of 75.08%. For the lance coating experimentation, two different lances were fabricated, both silicon etched lances with some being carbon coated (CC) in a  <100 nm layer of carbon and the other lances being non-coated (Si). Results from this experiment showed no significant difference between lance types at three different nanoinjection protocols (0V, +1.5V DC, and  +5V Pulsed) for both cell viability and PI uptake rates. One exception to this is the comparison of CC/5V Pul and Si/5V Pul samples, where the CC/5V Pul samples had a cell viability rate 5% higher. Both outcomes were unexpected and reveal how to better

  6. Residue-free plasma etching of polyimide coatings for small pitch vias with improved step coverage

    NARCIS (Netherlands)

    Mimoun, B.A.Z.; Pham, H.T.M.; Henneken, V.; Dekker, R.

    2013-01-01

    The authors have found that patterning polyimide coatings containing organosilane adhesion promoter using pure oxygen plasma resulted in a thin silicon-rich residue layer. They show in this paper that adding small amounts of fluorine-containing gas to the etching gas mixture is necessary in order to

  7. Residue-free plasma etching of polyimide coatings for small pitch vias with improved step coverage

    NARCIS (Netherlands)

    Mimoun, B.A.Z.; Pham, H.T.M.; Henneken, V.; Dekker, R.

    2013-01-01

    The authors have found that patterning polyimide coatings containing organosilane adhesion promoter using pure oxygen plasma resulted in a thin silicon-rich residue layer. They show in this paper that adding small amounts of fluorine-containing gas to the etching gas mixture is necessary in order to

  8. Tailoring the Mechanical Properties of High-Aspect-Ratio Carbon Nanotube Arrays using Amorphous Silicon Carbide Coatings

    NARCIS (Netherlands)

    Poelma, R.H.; Morana, B.; Vollebregt, S.; Schlangen, H.E.J.G.; Van Zeijl, H.W.; Fan, X.; Zhang, G.Q.

    2014-01-01

    The porous nature of carbon nanotube (CNT) arrays allows for the unique opportunity to tailor their mechanical response by the infiltration and deposition of nanoscale conformal coatings. Here, we fabricate novel photo-lithographically defined CNT pillars that are conformally coated with amorphous s

  9. Structure-property relations for silicon nitride matrix composites reinforced with pyrolytic carbon pre-coated Hi-Nicalon fibers

    NARCIS (Netherlands)

    Kooi, B.J.; Hosson, J.Th.M. De; Olivier, C.; Veyret, J.B.

    1999-01-01

    Si3N4 matrix composites reinforced with pyrolytic carbon pre-coated Hi-Nicalon (SiC) fibers, were studied using tensile testing and transmission electron microscopy. Three types of samples were evaluated all with a nominal coating thickness of 200 nm. The composites were densified by hot pressing at

  10. Tailoring the Mechanical Properties of High-Aspect-Ratio Carbon Nanotube Arrays using Amorphous Silicon Carbide Coatings

    NARCIS (Netherlands)

    Poelma, R.H.; Morana, B.; Vollebregt, S.; Schlangen, H.E.J.G.; Van Zeijl, H.W.; Fan, X.; Zhang, G.Q.

    2014-01-01

    The porous nature of carbon nanotube (CNT) arrays allows for the unique opportunity to tailor their mechanical response by the infiltration and deposition of nanoscale conformal coatings. Here, we fabricate novel photo-lithographically defined CNT pillars that are conformally coated with amorphous

  11. Characterization of Fe3Si-based coatings on low silicon steel by pulsed Nd:YAG laser cladding

    Institute of Scientific and Technical Information of China (English)

    Dan-yang Dong; Chang-sheng Liu; Sui-yuan Chen; Bin Zhang

    2009-01-01

    The Fe3Si based coating was produced on the Fe-lSi steel surface by a pulsed Nd:YAG (yttrium aluminum garnet) laser. Its phase constitution and microstructure were characterized by using X-ray diffraction (XRD), optical microscope (OM), and field emission scanning electron microscope (FESEM) with associated energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The hyperfine structure of the coating was studied by Mossbauer spectra (MS) and the magnetic property was also measured at room temperature by a vibrating sample magnetometer (VSM). The obtained coating is pore and crack-free with dense microstructure and high Si content. The metallurgical bonding between the coating and the substrate was realized. The micro-structure of the coating is typical fine dendrites. The major phase was confirmed by XRD and TEM to be the ordering DO3 structured Fe3Si phase. In addition, there were smaller amounts of the Fe5Si3 phase and the T-Fe phase in the coating. Compared with the sub-strate, the laser cladding coating has a lower saturation magnetization and a higher coercive force. The poor magnetic property might be because of rapid solidification microstructure and phase constitution in the coating.

  12. Structure-property relations for silicon nitride matrix composites reinforced with pyrolytic carbon pre-coated Hi-Nicalon fibers

    NARCIS (Netherlands)

    Kooi, B.J.; Hosson, J.Th.M. De; Olivier, C.; Veyret, J.B.

    1999-01-01

    Si3N4 matrix composites reinforced with pyrolytic carbon pre-coated Hi-Nicalon (SiC) fibers, were studied using tensile testing and transmission electron microscopy. Three types of samples were evaluated all with a nominal coating thickness of 200 nm. The composites were densified by hot pressing at

  13. Preparation of silicone elastomer microsphere coated with starch nanocrystal%淀粉纳米晶涂覆的有机硅弹性微球的制备

    Institute of Scientific and Technical Information of China (English)

    钱景茹; 李琛; 杨成

    2015-01-01

    通过酸降解蜡性玉米淀粉制备了淀粉纳米晶。利用淀粉纳米晶乳化稳定乙烯基硅油和含氢硅油混合物形成Pickering乳液,然后通过硅氢加成制备了淀粉纳米晶涂覆的有机硅弹性微球。当淀粉纳米晶浓度为0.1%以上,就可以获得稳定乳液。随淀粉纳米晶浓度从0.1%增加到5.0%,乳液的粒径从70μm减小至17μm。有机硅微球的粒径同乳液粒径相比没有明显变化,涂覆在有机硅微球表面的淀粉纳米晶由聚集的微粒变成连续的层状物。%Starch nanocrystals were prepared by acid hydrolysis of waxy corn starch .It was found starch nanocrystal could stabilize the mixture of methylvinylpolysiloxane and methylhydrogenpolysiloxane .The silicone elastomer microspheres coated with starch nanocrystal were prepared via Pickering emulsion poly -merization .The size of silicone elastomer microsphere decreased with the increasing of starch nanocrystal content.When starch nanocrystal content was above 0.1%, the stable emulsion could be formed .The size of emulsion droplets decreased from 70~17 μm as starch nanocrystal content increased from 0.1%~5 .0%.Compared to the size of emulsion droplets , the size of silicone microsphere had no significant change .The morphology of starch nanocrystal aggregate adsorbed on the silicone microsphere surface be -came from microparticle to layer .

  14. Stability of SiNX/SiNX double stack antireflection coating for single crystalline silicon solar cells

    Science.gov (United States)

    Lee, Youngseok; Gong, Daeyeong; Balaji, Nagarajan; Lee, Youn-Jung; Yi, Junsin

    2012-01-01

    Double stack antireflection coatings have significant advantages over single-layer antireflection coatings due to their broad-range coverage of the solar spectrum. A solar cell with 60-nm/20-nm SiNX:H double stack coatings has 17.8% efficiency, while that with a 80-nm SiNX:H single coating has 17.2% efficiency. The improvement of the efficiency is due to the effect of better passivation and better antireflection of the double stack antireflection coating. It is important that SiNX:H films have strong resistance against stress factors since they are used as antireflective coating for solar cells. However, the tolerance of SiNX:H films to external stresses has never been studied. In this paper, the stability of SiNX:H films prepared by a plasma-enhanced chemical vapor deposition system is studied. The stability tests are conducted using various forms of stress, such as prolonged thermal cycle, humidity, and UV exposure. The heat and damp test was conducted for 100 h, maintaining humidity at 85% and applying thermal cycles of rapidly changing temperatures from -20°C to 85°C over 5 h. UV exposure was conducted for 50 h using a 180-W UV lamp. This confirmed that the double stack antireflection coating is stable against external stress.

  15. Preparation and application of silicone modified polyurethane coating agent%有机硅改性聚氨酯涂层剂的合成及应用

    Institute of Scientific and Technical Information of China (English)

    曲鹏飞; 朱清峰

    2011-01-01

    以甲苯二异氰酸酯TDI、聚醚N220和N330、二羟甲基丙酸DMPA、羟基硅油KF-6001和甲乙酮肟MEKO等为主要原料,合成了有机硅改性封闭型水性聚氨酯.傅里叶变换红外光谱仪(FT-IR)对其测试表明,活泼的异氰酸酯基团已经被封闭,羟基硅油KF-6001已被成功引入到聚氨酯的主链之中;差示扫描量热法(DSC)分析表明,以MEKO为封闭剂的合成产物其解封温度范围为128~149℃,吸热峰值为144℃.因此,确定织物涂层剂的焙烘温度为160℃.与普通水性外加交联型聚氨酯手感剂相比,有机硅改性封闭型水性聚氨酯具有很好的稳定性,作为织物涂层剂,可达到静水压、水洗牢度和手感之间的性能平衡,且具有良好的耐洗性.%The blocked silicone-modified water-borne polyurethane is prepared with toluene diisocyanate (TDI), polypropylene glycol( N220 and N330), dimethylolpropionic acid( DMPA), hydroxyl-terminated silicone ( KF-6001) and methyl ethyl ketoxime (MEKO). The chemical structures are characterized by Fourier transfer-infrared ray (FT-IR) analysis. The results indicate that the active group -NCO has been blocked and polysiloxane segment has been incorporated into polyurethane chain. Differential scanning calorimeter (DSC) reveals that the de-blocking temperature of coating agent ranges from 128 ℃ to 149 ℃, and the endothermic peak is 144℃ with MEKO as the blocking agent, therefore, the appropriate curing temperature is set at 160 ℃ in textile coating. Compared with traditional water-based polyurethane, the blocked silicone-modified polyurethane features better stability. Coated fabric has good performance balance between water pressure resistance, washing fastness and handle.

  16. Experience with the UHV box coater and the evaporation procedure for VUV reflective coatings on the HADES RICH mirror

    CERN Document Server

    Maier-Komor, P; Wieser, J; Ulrich, A

    1999-01-01

    An UHV box coater was set up for the deposition of highly reflective layers in the vacuum ultraviolet (VUV) wavelength range on large-area mirror substrates. The VUV mirrors are needed for the ring imaging Cherenkov (RICH) detector of the high-acceptance di-electron spectrometer (HADES). The complete dry vacuum system is described. The spatial deposition distribution from the evaporation sources was measured. The reflectivity of the Al mirror layer was optimized for the wavelength range of 145-210 nm by varying the thickness of the MgF sub 2 protective layer. The setup for measuring the reflectivity in the VUV range is described and reflectivity data are presented.

  17. Double locked silver-coated silicon nanoparticle/graphene core/shell fiber for high-performance lithium-ion battery anodes

    Science.gov (United States)

    Gu, Minsu; Ko, Seunghee; Yoo, Seungmin; Lee, Eunhee; Min, Sa Hoon; Park, Soojin; Kim, Byeong-Su

    2015-12-01

    We present a fabrication of scalable coaxial core/shell silicon (Si)-graphene fiber prepared by dual-nozzle-induced wet-spinning assembly for high-performance Si anode. Over 50 wt% of Si nanoparticles mixed with graphene oxide suspension can be incorporated in the core with the outstanding dispersibility of unique silver-coated Si nanoparticles in aqueous media. The core fiber is further encapsulated by graphene shell which not only provides conducting pathways, but also alleviates severe volume expansion of Si core. This novel core/shell Si anode with double locked graphene architecture delivers more stable cycle performance and superior rate capability than anodes composed of simple mixture of Si-graphene composites.

  18. Silicon-Based Anode and Method for Manufacturing the Same

    Science.gov (United States)

    Yushin, Gleb Nikolayevich (Inventor); Luzinov, Igor (Inventor); Zdyrko, Bogdan (Inventor); Magasinski, Alexandre (Inventor)

    2017-01-01

    A silicon-based anode comprising silicon, a carbon coating that coats the surface of the silicon, a polyvinyl acid that binds to at least a portion of the silicon, and vinylene carbonate that seals the interface between the silicon and the polyvinyl acid. Because of its properties, polyvinyl acid binders offer improved anode stability, tunable properties, and many other attractive attributes for silicon-based anodes, which enable the anode to withstand silicon cycles of expansion and contraction during charging and discharging.

  19. Proton-conducting beta"-alumina via microwave-assisted synthesis and mechanism of enhanced corrosion prevention of a zinc rich coating with electronic control

    Science.gov (United States)

    Kirby, Brent William

    Proton Conducting beta-alumina via Microwave Assisted Synthesis. The microwave assisted synthesis of proton conducting Mg- and Li-stabilized NH4+/H3O+ beta-alumina from a solution based gel precursor is reported. beta-alumina is a ceramic fast ion conductor containing two-dimensional sheets of mobile cations. Na +-beta-alumina is the most stable at the sintering temperatures (1740°C) reached in a modified microwave oven, and can be ion exchanged to the K+ form and then to the NH4+/H 3O+ form. beta-phase impurity is found to be 20% for Mg-stabilized material and 30-40% for Li-stabilized material. The composition of the proton conducting form produced here is deficient in NH4 + as compared to the target composition (NH4)1.00 (H3O)0.67Mg0.67Al10.33O 17. Average grain conductivity for Li-stabilized material at 150°C is 6.6x10-3 +/- 1.6x10-3 S/cm with 0.29 +/- 0.05 eV activation energy, in agreement with single crystal studies in the literature. Grain boundary conductivity is found to be higher in the Li-stabilized material. A hydrogen bond energy hypothesis is presented to explain these differences. Li-stabilized NH4+/H3O + beta-alumina is demonstrated as a fuel cell electrolyte, producing 28 muA/cm2 of electrical current at 0.5 V. Mechanism of Enhanced Corrosion Prevention of a Zinc Rich Coating with Electronic Control. A corrosion inhibition system consisting of high weight-loading zinc rich coating applied to steel panels is examined. An electronic control unit (ECU) consisting of a battery and a large capacitor in series with the panel is shown to improve corrosion protection upon immersion in 3% NaCl solution. Weekly solution changes to avoid zinc saturation in solution system were necessary to see well differentiated results. The corrosion product, hydrozincite [Zn5(CO3) 2(OH)6] is observed to deposit within the pores of the coating and on the surface as a barrier layer. Simonkolleite [Zn5(OH) 8Cl2·H2O] is found to form in place of the original zinc particles

  20. The effect of novel nitrogen-rich plasma polymer coatings on the phenotypic profile of notochordal cells

    Directory of Open Access Journals (Sweden)

    Wertheimer Michael R

    2007-09-01

    Full Text Available Abstract Background The loss of the notochordal cells from the nucleus pulposus is associated with ageing and disc degeneration. However, understanding the mechanisms responsible for the loss of these cells has been hampered in part due to the difficulty of culturing and maintaining their phenotype. Furthermore, little is known about the influence of the substratum on the molecular markers of notochordal cells. Methods Notochordal cells were isolated from lumbar spine of non-chondrodystrophoid dogs and cultured on N-rich plasma polymer layers, so-called "PPE:N" (N-doped plasma-polymerised ethylene, containing up to 36% [N] surfaces, for 3, 7 or 14 days. Gene expression of vimentin (VIM, pleiotrophin (PTN, matrix Gla protein (MGP, cartilage oligomeric matrix protein (COMP, keratin 18 (KRT 18, aggrecan (AGG, collagen type 1 (COL1A2, collagen type 2 (COL2A1 was analyzed through semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR. Results Notochordal cells were maintained in culture on PPE:N for up to 14 days with no loss in cell viability. Except for VIM, gene expression varied depending on the culture periods and [N] concentration of the substratum. Generally, PPE:N surfaces altered gene expression significantly when cells were cultured for 3 or 7 days. Conclusion The present study has shown that notochordal cells from dogs can attach to and grow on PPE:N surfaces. Analysis of the expression of different genes in these cells cultured on different N-functionalized surfaces indicates that cellular behaviour is gene-specific and time-dependent. Further studies are required to better understand the roles of specific surface functionalities on receptor sites, and their effects on cellular phenotypes.

  1. 纳米ZnO-有机硅复合涂层的抗原子氧剥蚀性能%Anti-atomic oxygen properties of silicone coating modified by nano-ZnO

    Institute of Scientific and Technical Information of China (English)

    王静; 李卫平; 陈贻炽; 朱立群

    2009-01-01

    To improve the anti-atomic oxygen properties of silicone coating, nano-ZnO modified by silane coupling reagent was filled in the silicone resin and nano-ZnO/silicone composite coating on polyimide film was obtained. Polyimide with and without nano-ZnO/silicone coating was exposed to atomic oxygen(AO) in a ground-based AO effect simulation facility. The modified nano-ZnO particles were uniformly distributed within the silicone coating so that micro-cracks occurred during film-forming of the silicone were eliminated effectively. The AO experiment results indicate that polyimide is significantly eroded which is characterized by substantial weight loss and change of surface morphologies; nano-ZnO/silicone coatings exhibit excellent properties for anti-atomic oxygen effects with little variation in weight or morphology. The anti-oxygen properties of the coatings were improved along with the increase of nano-ZnO content.%为了进一步提高有机硅涂层的抗原子氧剥蚀能力,采用经硅烷偶联剂处理的纳米ZnO微粒,在聚酰亚胺薄膜基材表面制备出纳米ZnO-有机硅复合涂层.通过原子氧地面模拟试验,研究了纳米ZnO-有机硅复合涂层的质量损失、表面形貌及化学成分的变化规律.结果表明:经表面处理的纳米ZnO微粒可以均匀分布在有机硅涂层中,有效消除有机硅树脂成膜过程中产生的微裂纹.经过原子氧辐照试验,没有保护涂层的聚酰亚胺基材的质量损失较大,而涂覆纳米ZnO-有机硅复合涂层具有良好的抗原子氧剥蚀性能,其质量损失和微观表面形貌变化很小,并且随着涂层中纳米ZnO含量的增加,其抗原子氧剥蚀的能力进一步增强.

  2. Preparing hydroxyapatite-silicon composite suspensions with homogeneous distribution of multi-walled carbon nano-tubes for electrophoretic coating of NiTi bone implant and their effect on the surface morphology

    Energy Technology Data Exchange (ETDEWEB)

    Khalili, Vida [Research Center for Advanced Materials and Mineral Processing, Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Department of Mechanical Engineering, University of Bonab, P.O.Box: 5551761167, Bonab (Iran, Islamic Republic of); Khalil-Allafi, Jafar, E-mail: allafi@sut.ac.ir [Research Center for Advanced Materials and Mineral Processing, Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Xia, Wei [Institute for Industrial Chemistry, Ruhr-University Bochum, Bochum, 44780 Germany (Germany); Parsa, Alireza B.; Frenzel, Jan; Somsen, Christoph; Eggeler, Gunther [Institute for Materials, Faculty of Mechanical Engineering, Ruhr-University Bochum Bochum, 44801 (Germany)

    2016-03-15

    Graphical abstract: - Highlights: • The stable composite suspensions of hydroxyapatite, silicon and multi-walled carbon nano-tubes was prepared using functionalization of and multi-walled carbon nano-tubes in HNO{sub 3} vapor and triethanolamine as dispersing agent. • The zeta potential of composite suspensions is less than that of hydroxyapatite suspension. • The silicon particles presence in suspension causes to decrease the charge carrier in suspension and current density during electrophoretic deposition. • The orientation of multi-walled carbon nano-tubes to parallel direction of the applied electric field during electrophoretic deposition can facilitate their moving towards the cathode and increase current density. • The more zeta potential of suspension, the lower roughness of coatings during electrophoretic deposition. - Abstract: Preparing a stable suspension is a main step towards the electrophoretically depositing of homogeneous and dense composite coatings on NiTi for its biomedical application. In the present study, different composite suspensions of hydroxyapatite, silicon and multi-walled carbon nano-tubes were prepared using n-butanol and triethanolamine as media and dispersing agent, respectively. Multi-walled carbon nanotubes were first functionalized in the nitric acid vapor for 15 h at 175 °C, and then mixed into suspensions. Thermal desorption spectroscopy profiles indicate the formation of functional groups on multi-walled carbon nano-tubes. An excellent suspension stability can be achieved for different amounts of triethanolamine. The amount of triethanolamine can be increased by adding a second component to a stable hydroxyapatite suspension due to an electrostatic interaction between components in suspension. The stability of composite suspension is less than that of the hydroxyapatite suspension, due to density differences, which under the gravitational force promote the demixing. The scanning electron microscopy images of the

  3. Binding of carbon coated nano-silicon in graphene sheets by wet ball-milling and pyrolysis as high performance anodes for lithium-ion batteries

    Science.gov (United States)

    Sun, Wei; Hu, Renzong; Zhang, Miao; Liu, Jiangwen; Zhu, Min

    2016-06-01

    A novel approach has been developed to prepare silicon@carbon/graphene sheets (Si@C/G) composite with a unique structure, in which carbon coated Si nanoparticles are uniformly dispersed in a matrix of graphene sheets, to enhance the cycleability and electronic conductivity of Si-based anodes for Li-ion batteries. In this study, Si nanoparticles and expanded graphite (EG) are treated by combining high-energy wet ball-milling in sucrose solution with subsequent pyrolysis treatment to produce this Si@C/G composite. To achieve better overall electrochemical performance, the carbon content of the composites is also studied systematically. The as-designed Si30@C40/G30 (Si:C:G = 30:40:30, by weight) composite exhibits a high Li-storage capacity of 1259 mAh g-1 at a current density of 0.2 A g-1 in the first cycle. Further, a stable cycleability with 99.1/88.2% capacity retention from initial reversible charge capacity can be achieved over 100/300 cycles, showing great promise for batteries applications. This good electrochemical performance can be attributed to the uniform coating and binding effect of pyrolytic carbon as well as the network of graphene sheets, which increase the electronic conductivity and Li+ diffusion in the composite, and effectively accommodated the volume change of Si nanoparticles during the Li+ alloying and dealloying processes.

  4. Scalable Production of the Silicon-Tin Yin-Yang Hybrid Structure with Graphene Coating for High Performance Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Jin, Yan; Tan, Yingling; Hu, Xiaozhen; Zhu, Bin; Zheng, Qinghui; Zhang, Zijiao; Zhu, Guoying; Yu, Qian; Jin, Zhong; Zhu, Jia

    2017-05-10

    Alloy anodes possessed of high theoretical capacity show great potential for next-generation advanced lithium-ion battery. Even though huge volume change during lithium insertion and extraction leads to severe problems, such as pulverization and an unstable solid-electrolyte interphase (SEI), various nanostructures including nanoparticles, nanowires, and porous networks can address related challenges to improve electrochemical performance. However, the complex and expensive fabrication process hinders the widespread application of nanostructured alloy anodes, which generate an urgent demand of low-cost and scalable processes to fabricate building blocks with fine controls of size, morphology, and porosity. Here, we demonstrate a scalable and low-cost process to produce a porous yin-yang hybrid composite anode with graphene coating through high energy ball-milling and selective chemical etching. With void space to buffer the expansion, the produced functional electrodes demonstrate stable cycling performance of 910 mAh g(-1) over 600 cycles at a rate of 0.5C for Si-graphene "yin" particles and 750 mAh g(-1) over 300 cycles at 0.2C for Sn-graphene "yang" particles. Therefore, we open up a new approach to fabricate alloy anode materials at low-cost, low-energy consumption, and large scale. This type of porous silicon or tin composite with graphene coating can also potentially play a significant role in thermoelectrics and optoelectronics applications.

  5. The Importance of the KR-Rich Region of the Coat Protein of Ourmia melon virus for Host Specificity, Tissue Tropism, and Interference With Antiviral Defense.

    Science.gov (United States)

    Rossi, Marika; Vallino, Marta; Abbà, Simona; Ciuffo, Marina; Balestrini, Raffaella; Genre, Andrea; Turina, Massimo

    2015-01-01

    The N-terminal region of the Ourmia melon virus (OuMV) coat protein (CP) contains a short lysine/arginine-rich (KR) region. By alanine scanning mutagenesis, we showed that the KR region influences pathogenicity and virulence of OuMV without altering viral particle assembly. A mutant, called OuMV6710, with three basic residue substitutions in the KR region, was impaired in the ability to maintain the initial systemic infection in Nicotiana benthamiana and to infect both cucumber and melon plants systemically. The integrity of this protein region was also crucial for encapsidation of viral genomic RNA; in fact, certain mutations within the KR region partially compromised the RNA encapsidation efficiency of the CP. In Arabidopsis thaliana Col-0, OuMV6710 was impaired in particle accumulation; however, this phenotype was abolished in dcl2/dcl4 and dcl2/dcl3/dcl4 Arabidopsis mutants defective for antiviral silencing. Moreover, in contrast to CPwt, in situ immunolocalization experiments indicated that CP6710 accumulates efficiently in the spongy mesophyll tissue of infected N. benthamiana and A. thaliana leaves but only occasionally infects palisade tissues. These results provided strong evidence of a crucial role for OuMV CP during viral infection and highlighted the relevance of the KR region in determining tissue tropism, host range, pathogenicity, and RNA affinity, which may be all correlated with a possible CP silencing-suppression activity.

  6. Antireflective porous-silicon coatings for multicrystalline solar cells: the effects of chemical etching and rapid thermal processing

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Palma, R.J.; Martinez-Duart, J.M. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Aplicada; Instituto de Ciencia des Materiales de Madrid (CSIC) (Spain); Vazquez, L. [Instituto de Ciencia des Materiales de Madrid (CSIC) (Spain); Schnell, M.; Schaefer, S. [Fraunhofer Institute for Solar Energy Systems, Freiburg (Germany)

    2001-08-01

    In this paper, the emitter of multicrystalline silicon solar cells has been chemically etched in order to form porous silicon (PS) layers, usually known as stain-etched PS, to be used at the same time as a selective emitter and as an effective antireflective layer. The optical behaviour of the solar cells in the 250-850 nm wavelength range (5-1.45 eV range) was determined before and after PS formation, resulting in a notable reduction of reflectance after PS formation and a corresponding increase in cell efficiency. The different morphologies of the silicon emitter and metallic contacts, before and after PS formation were analysed by scanning electron microscopy and atomic force microscopy. Furthermore, the electrical properties of both the emitter region and the contacts were investigated, as well as the most significant solar cell parameters before and after PS formation. Finally, the effect of rapid thermal processing in nitrogen and oxygen atmospheres on both the surface morphology and the optical behaviour of PS was studied. (Author)

  7. Bacterial colonization of polymer brush-coated and pristine silicone rubber implanted in infected pockets in mice

    NARCIS (Netherlands)

    Nejadnik, M.R.; Engelsman, A.F.; Fernandez, I.C.S.; Busscher, H.J.; Norde, W.; Mei, van der H.C.

    2008-01-01

    Curing biomaterial-associated infection (BAI) frequently includes antibiotic treatment, implant removal and re-implantation. However, revision implants are at a greater risk of infection as they may attract bacteria from their infected surroundings. Polymer brush-coatings attract low numbers of bact

  8. The potential of nano-structured silicon oxide type coatings deposited by PACVD for control of aquatic biofouling

    NARCIS (Netherlands)

    Akesso, L.; Pettitt, M.E.; Callow, J.A.; Callow, M.E.; Stallard, J.; Teer, D.; Liu, C.; Wang, S.; Zhao, Q.; D'Souza, F.; Willemsen, P.R.; Donnelly, G.T.; Donik, C.; Kocijan, A.; Jenko, M.; Jones, L.A.; Guinaldo, P.C.

    2009-01-01

    SiOx-like coatings were deposited on glass slides from a hexamethylsiloxane precursor by plasma-assisted CVD (PACVD). Surface energies (23.1-45.7 mJ m-1) were correlated with the degree of surface oxidation and hydrocarbon contents. Tapping mode AFM revealed a range of surface topologies with Ra val

  9. Silicon Carbide Shapes.

    Science.gov (United States)

    Free-standing silicon carbide shapes are produced by passing a properly diluted stream of a reactant gas, for example methyltrichlorosilane, into a...reaction chamber housing a thin walled, hollow graphite body heated to 1300-1500C. After the graphite body is sufficiently coated with silicon carbide , the...graphite body is fired, converting the graphite to gaseous CO2 and CO and leaving a silicon carbide shaped article remaining.

  10. Histological study on acute inflammatory reaction to polyurethane-coated silicone implants in rats Estudo histológico da reação inflamatória aguda ao implante de silicone revestido com poliuretano em ratos

    Directory of Open Access Journals (Sweden)

    Paulo Roberto da Silva Mendes

    2008-02-01

    Full Text Available PURPOSE: Evaluating histologically the silicone peri-implant coated by polyurethane inflammation associated to the use of anti-microbial and bacterial contamination. METHODS: It was used 35 Wistar rats. The animals were divided in seven groups: I - Control; II - implant cavity contamination with10 bacteria/ml; III - implant cavity contamination with 10 bacteria/ml; IV - implant cavity contamination with 10 bacteria/ml; V - identical contamination to group II and implant immersions in anti-microbial solution; VI - identical contamination in group III and implant immersions in the anti-microbial solution; VII - identical contamination of group IV and implant immersions in anti-microbial solution. It was evaluated morphometrically the peri-implant capsules after 30 days of introduction. RESULTS: The factors with more discriminating power were the giants cells of a strange body and the mononuclear. There was no correlation between the bacterial concentrations and the histological alterations. CONCLUSION: 1 The histological standard of the inflammatory reaction around the silicone implant coated with polyurethan is chronic granulomatosis type of a strange body; 2 There isn´t correlation between concentration of Staphylococcus epidermidis and histological changes; 3 The use of anti-microbial solution decreased the mononuclear cell reactions, with the increase of giant cells in a strange body.OBJETIVO: Avaliar, histologicamente, a reação inflamatória aos implantes de silicone revestidos por poliuretano, com contaminação bacteriana, associada ou não ao uso de antimicrobianos. MÉTODOS: Utilizou-se 35 ratos Wistar. Os animais foram divididos em 7 grupos: I- Controle, II- contaminação da cavidade do implante com 10¹ bactérias/ml, III- contaminação da cavidade do implante com 10³ bactérias/ml, IV- contaminação da cavidade do implante com 10(5 bactérias/ml, V- contaminação idêntica ao grupo II e imersão dos implantes em solu

  11. Phenol-formaldehyde intumescent coating composition and coating prepared therefrom

    Science.gov (United States)

    Salyer, Ival O. (Inventor); Fox, Bernard L. (Inventor)

    1986-01-01

    Intumescent coatings which form a thick, uniform, fine celled, low density foam upon exposure to a high intensity heat flux or flame are disclosed, the invention coatings comprise phenolic resin prepolymer containing a blowing agent and a nucleating agent; in the preferred embodiments the coatings also contains a silicone surfactant, the coatings are useful in thermal and fire protection systems.

  12. Tensile Strength and Microstructural Characterization of Uncoated and Coated HPZ Ceramic Fibers

    Science.gov (United States)

    Bansal, Narottam P.; Wheeler, Donald R.; Dickerson, Robert M.

    1996-01-01

    Tensile strengths of as-received HPZ fiber and those surface coated with BN, BN/SiC, and BN/Si3N4 have been determined at room temperature using a two-parameter Weibull distribution. Nominally approx. 0.4 micron BN and 0.2 micron SiC or Si3N4 coatings were deposited on the fibers by chemical vapor deposition using a continuous reactor. The average tensile strength of uncoated HPZ fiber was 2.0 +/- 0.56 GPa (290 +/- 81 ksi) with a Weibull modulus of 4.1. For the BN coated fibers, the average strength and the Weibull modulus increased to 2.39 +/- 0.44 GPa (346 +/- 64 ksi) and 6.5, respectively. The HPZ/BN/SiC fibers showed an average strength of 2.0 +/- 0.32 GPa (290 +/- 47 ksi) and Weibull modulus of 7.3. Average strength of the fibers having a dual BN/Si3N4 surface coating degraded to 1.15 +/- 0.26 GPa (166 +/- 38 ksi) with a Weibull modulus of 5.3. The chemical composition and thickness of the fiber coatings were determined using scanning Auger analysis. Microstructural analysis of the fibers and the coatings was carried out by scanning electron microscopy and transmission electron microscopy. A microporous silica-rich layer approx. 200 nm thick is present on the as-received HPZ fiber surface. The BN coatings on the fibers are amorphous to partly turbostratic and contaminated with carbon and oxygen. Silicon carbide coating was crystalline whereas the silicon nitride coating was amorphous. The silicon carbide and silicon nitride coatings are non-stoichiometric, non-uniform, and granular. Within a fiber tow, the fibers on the outside had thicker and more granular coatings than those on the inside.

  13. Nanopatterning on silicon surface using atomic force microscopy with diamond-like carbon (DLC-coated Si probe

    Directory of Open Access Journals (Sweden)

    Zhou Jingfang

    2011-01-01

    Full Text Available Abstract Atomic force microscope (AFM equipped with diamond-like carbon (DLC-coated Si probe has been used for scratch nanolithography on Si surfaces. The effect of scratch direction, applied tip force, scratch speed, and number of scratches on the size of the scratched geometry has been investigated. The size of the groove differs with scratch direction, which increases with the applied tip force and number of scratches but decreases slightly with scratch speed. Complex nanostructures of arrays of parallel lines and square arrays are further fabricated uniformly and precisely on Si substrates at relatively high scratch speed. DLC-coated Si probe has the potential to be an alternative in AFM-based scratch nanofabrication on hard surfaces.

  14. Development and characterization of silicone/phosphorus modified epoxy materials and their application as anticorrosion and antifouling coatings

    OpenAIRE

    T. Balakrishnan; Alagar, M.; Denchev, Z.; Kumar, S. Ananda

    2006-01-01

    Epoxy resin is chosen for our present study owing to its exceptional combination of properties such as easy processing, high safety, excellent solvent and chemical resistance, toughness, low shrinkage on cure, good electrical, mechanical and corrosion resistance with excellent adhesion to many substrates. This versatility in formulation made epoxy resins widely applied for surface coatings, adhesives, laminates, composites, potting, painting materials, encapsulant for semiconductor and insula...

  15. Gas-driven ultrafast reversible switching of super-hydrophobic adhesion on palladium-coated silicon nanowires.

    Science.gov (United States)

    Seo, Jungmok; Lee, Soonil; Han, Heetak; Jung, Hwae Bong; Hong, Juree; Song, Giyoung; Cho, Suk Man; Park, Cheolmin; Lee, Wooyoung; Lee, Taeyoon

    2013-08-14

    A gas-driven ultrafast adhesion switching of water droplets on palladium-coated Si nanowire arrays is demonstrated. By regulating the gas-ambient between the atmosphere and H2 , the super-hydrophobic adhesion is repeatedly switched between water-repellent and water-adhesive. The capability of modulating the super-hydrophobic adhesion on a super-hydrophobic surface with a non-contact mode could be applicable to novel functional lab-on-a-chip platforms.

  16. Development of Silicon-Coated Superparamagnetic Iron Oxide Nanoparticles for Targeted Molecular Imaging and Hyperthermic Therapy of Prostate Cancer

    Science.gov (United States)

    2016-07-01

    functionalize the Si-coated SPIONs with murine monoclonal antibody 7E11-C5.3, which has been shown to target prostate-specific membrane 4 antigen—present... antibodies and aptamers. We also examined whether surface functionalization negatively affected the hyperpolarization process (and vice versa), as well as...physically characterized (tunneling electron microsopy, dispersive x-ray spectroscopy, electron spin resonance spectroscopy) to show a viable coupling

  17. SiO2 Antireflection Coatings Fabricated by Electron-Beam Evaporation for Black Monocrystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Minghua Li

    2014-01-01

    Full Text Available In this work we prepared double-layer antireflection coatings (DARC by using the SiO2/SiNx:H heterostructure design. SiO2 thin films were deposited by electron-beam evaporation on the conventional solar cell with SiNx:H single-layer antireflection coatings (SARC, while to avoid the coverage of SiO2 on the front side busbars, a steel mask was utilized as the shelter. The thickness of the SiNx:H as bottom layer was fixed at 80 nm, and the varied thicknesses of the SiO2 as top layer were 105 nm and 122 nm. The results show that the SiO2/SiNx:H DARC have a much lower reflectance and higher external quantum efficiency (EQE in short wavelengths compared with the SiNx:H SARC. A higher energy conversion efficiency of 17.80% was obtained for solar cells with SiO2 (105 nm/SiNx:H (80 nm DARC, an absolute conversion efficiency increase of 0.32% compared with the conventional single SiNx:H-coated cells.

  18. Role of nanocrystalline ZnO coating on the stability of porous silicon formed on textured (1 0 0) Si

    Science.gov (United States)

    Verma, Daisy; Sharma, Shailesh N.; Kharkwal, Aneeta; Bhagavannarayana, G.; Kumar, Mahesh; Singh, Shiv Nath; Singh, Parakram Kumar; Mehdib, Syed Sazad; Husain, Mushahid

    2013-11-01

    In this study, a colloid of nanocrystalline ZnO particles prepared by chemical route is sprayed on porous silicon layers. Porosity and thickness of PS layers were estimated by gravimetric analysis. Upon adsorption of ZnO colloids on PS films, oxidation of nanocrystalline Si causes shrinkage of the Si-core due to the breaking of SiSi bonds resulting in a blue-shift in PL spectra. The PL blue-shift can also be related to SiO species or due to defects and the silica networks on which OH groups are absorbed due to ZnO incorporation as also supported by our Fourier transform infrared (FTIR) and X-ray photoelectron (XPS) studies, respectively. From high resolution X-ray diffraction (HRXRD) studies, a better crystalline perfection and considerable reduction in stress/strain values were observed for PS/ZnO layers as compared to virgin PS layers. The changes in the chemical composition at the surface of PS upon adsorption of ZnO colloids as elucidated by FTIR and XPS studies could be responsible for different PL emission and lattice-mismatch characteristics. The improved stability properties of PS are attributed to the strong absorption/adsorption of ZnO into the highly porous vertical layers separating macroscopic domains of nanoporous silicon and the mechanism of light emission from PS/ZnO layers is discussed on the basis of proposed energy band gap diagram.

  19. The Preparation of Waterborne Two Components Polyurethane Coatings for the Silicon Polyurethane Plastic Floor%用于硅PU塑胶地坪的水性双组分聚氨酯涂料的研制

    Institute of Scientific and Technical Information of China (English)

    史立平; 孔志元; 何庆迪; 蔡青青

    2015-01-01

    The second component of waterborne two components polyurethane coatings was prepared by hydroxyl acrylic emulsion and high efficient additives. And the water dispersible isocyanate was as the first component. The prepared coatings had excellent adhesion,chemical resistance and weather resistance when it was painted on the silicon polyurethane plastic substrate,which greatly improved the durability of silicon polyurethane plastic floor.%采用羟基丙烯酸乳液及高效助剂制得水性双组分聚氨酯涂料的乙组分,以水可分散型异氰酸酯为甲组分,制得的双组分涂料在硅PU塑胶基材上具有极佳的附着力、耐化学介质性及耐候性,大大提高了硅PU塑胶地坪的耐久性.

  20. Quality assessment of platelet concentrates prepared by platelet rich plasma-platelet concentrate, buffy coat poor-platelet concentrate (BC-PC and apheresis-PC methods

    Directory of Open Access Journals (Sweden)

    Singh Ravindra

    2009-01-01

    Full Text Available Background: Platelet rich plasma-platelet concentrate (PRP-PC, buffy coat poor-platelet concentrate (BC-PC, and apheresis-PC were prepared and their quality parameters were assessed. Study Design: In this study, the following platelet products were prepared: from random donor platelets (i platelet rich plasma - platelet concentrate (PRP-PC, and (ii buffy coat poor- platelet concentrate (BC-PC and (iii single donor platelets (apheresis-PC by different methods. Their quality was assessed using the following parameters: swirling, volume of the platelet concentrate, platelet count, WBC count and pH. Results: A total of 146 platelet concentrates (64 of PRP-PC, 62 of BC-PC and 20 of apheresis-PC were enrolled in this study. The mean volume of PRP-PC, BC-PC and apheresis-PC was 62.30±22.68 ml, 68.81±22.95 ml and 214.05±9.91 ml and ranged from 22-135 ml, 32-133 ml and 200-251 ml respectively. The mean platelet count of PRP-PC, BC-PC and apheresis-PC was 7.6±2.97 x 1010/unit, 7.3±2.98 x 1010/unit and 4.13±1.32 x 1011/unit and ranged from 3.2-16.2 x 1010/unit, 0.6-16.4 x 1010/unit and 1.22-8.9 x 1011/unit respectively. The mean WBC count in PRP-PC (n = 10, BC-PC (n = 10 and apheresis-PC (n = 6 units was 4.05±0.48 x 107/unit, 2.08±0.39 x 107/unit and 4.8±0.8 x 106/unit and ranged from 3.4 -4.77 x 107/unit, 1.6-2.7 x 107/unit and 3.2 - 5.2 x 106/unit respectively. A total of 26 units were analyzed for pH changes. Out of these units, 10 each were PRP-PC and BC-PC and 6 units were apheresis-PC. Their mean pH was 6.7±0.26 (mean±SD and ranged from 6.5 - 7.0 and no difference was observed among all three types of platelet concentrate. Conclusion: PRP-PC and BC-PC units were comparable in terms of swirling, platelet count per unit and pH. As expected, we found WBC contamination to be less in BC-PC than PRP-PC units. Variation in volume was more in BC-PC than PRP-PC units and this suggests that further standardization is required for preparation of BC

  1. AZ91D镁合金表面不同树脂体系富镁涂层的保护性能%Protection performance of Mg-rich coatings formed by different epoxy resins on AZ91D alloys

    Institute of Scientific and Technical Information of China (English)

    卢向雨; 吴静英; 左禹; 郑传波

    2015-01-01

    采用划叉浸泡实验,电化学交流阻抗(electrochemical impedance spectroscopy,EIS),开路电位(open circuit potential,OCP)及动电位扫描研究了不同类型的环氧树脂对于AZ91D镁合金的表面的富镁涂层的保护性能的影响。结果表明环氧618-593构成的富镁涂层防护性能较差;环氧6101-TY650制备的富镁涂层可明显改善涂层对破损处镁合金基体的保护作用,但涂层本身长期防护性能较差;环氧618-T31构成的富镁涂层对AZ91D镁合金的防护作用较强,适宜制备镁合金表面的富镁涂层。3种环氧涂料中加入镁粉颗粒制备的富镁涂层均可对缺陷处裸露的 AZ91D 镁合金基体提供保护,从而延长漆膜的破坏时间。涂层中的镁粉颗粒被激活后,为镁合金的基体提供了一定程度的阴极保护作用,减缓了镁合金基体的腐蚀。%The influence of different types of epoxy resins on protection performance of magnesium-rich coating for AZ91D alloy was studied with scratch testing, electrochemical impedance spectroscopy (EIS), open circuit potential (OCP) and dynamic potential scanning. The results indicated that Mg-rich coating consisting of epoxy coating 618-593 showed poor protective performance. Magnesium particles in 6101-TY650 epoxy coating could significantly improve the protective effect for magnesium alloy substrate at the coating defects, however, their over the long-term protection performance was poor. Epoxy 618-T31 coating showed strong barrier properties. Then, the Mg-rich primer consisting of epoxy coating 618-T31 had a strong protective effect, indicating that the epoxy coating 618-T31 was suitable for the preparation of Mg-rich coating for AZ91D alloy. For AZ91D alloy, magnesium particles added in three types of epoxy coatings could provide cathodic protection to AZ91D substrate at coatings defects, prolonging the corrosion life of coatings. Meanwhile, magnesium particles were activated to

  2. Solar Hydrogen Production by Amorphous Silicon Photocathodes Coated with a Magnetron Sputter Deposited Mo2C Catalyst.

    Science.gov (United States)

    Morales-Guio, Carlos G; Thorwarth, Kerstin; Niesen, Bjoern; Liardet, Laurent; Patscheider, Jörg; Ballif, Christophe; Hu, Xile

    2015-06-10

    Coupling of Earth-abundant hydrogen evolution catalysts to photoabsorbers is crucial for the production of hydrogen fuel using sunlight. In this work, we demonstrate the use of magnetron sputtering to deposit Mo2C as an efficient hydrogen evolution reaction catalyst onto surface-protected amorphous silicon (a-Si) photoabsorbers. The a-Si/Mo2C photocathode evolves hydrogen under simulated solar illumination in strongly acidic and alkaline electrolytes. Onsets of photocurrents are observed at potentials as positive as 0.85 V vs RHE. Under AM 1.5G (1 sun) illumination, the photocathodes reach current densities of -11.2 mA cm(-2) at the reversible hydrogen potential in 0.1 M H2SO4 and 1.0 M KOH. The high photovoltage and low-cost of the Mo2C/a-Si assembly make it a promising photocathode for solar hydrogen production.

  3. Carbon-Coated Silicon Nanowires on Carbon Fabric as Self-Supported Electrodes for Flexible Lithium-Ion Batteries.

    Science.gov (United States)

    Wang, Xiaolei; Li, Ge; Seo, Min Ho; Lui, Gregory; Hassan, Fathy M; Feng, Kun; Xiao, Xingcheng; Chen, Zhongwei

    2017-03-22

    A novel self-supported electrode with long cycling life and high mass loading was developed based on carbon-coated Si nanowires grown in situ on highly conductive and flexible carbon fabric substrates through a nickel-catalyzed one-pot atmospheric pressure chemical vapor deposition. The high-quality carbon coated Si nanowires resulted in high reversible specific capacity (∼3500 mA h g(-1) at 100 mA g(-1)), while the three-dimensional electrode's unique architecture leads to a significantly improved robustness and a high degree of electrode stability. An exceptionally long cyclability with a capacity retention of ∼66% over 500 cycles at 1.0 A g(-1) was achieved. The controllable high mass loading enables an electrode with extremely high areal capacity of ∼5.0 mA h cm(-2). Such a scalable electrode fabrication technology and the high-performance electrodes hold great promise in future practical applications in high energy density lithium-ion batteries.

  4. IR characterization of hydrogen in crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Stavola, M., E-mail: michael.stavola@Lehigh.ed [Department of Physics, Lehigh University, Bethlehem, PA 18015 (United States); Kleekajai, S.; Wen, L.; Peng, C. [Department of Physics, Lehigh University, Bethlehem, PA 18015 (United States); Yelundur, V.; Rohatgi, A. [School of Electrical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Carnel, L. [REC Wafer AS, NO-3908 Porsgrunn (Norway); Kalejs, J. [American Capital Energy, N. Chelmsford, MA 01863 (United States)

    2009-12-15

    Hydrogen is commonly introduced into silicon solar cells to reduce the deleterious effects of defects and to increase cell efficiency. A process that is widely used by industry to introduce hydrogen is by the post-deposition annealing of a hydrogen-rich SiN{sub x} layer that is used as an anti-reflection coating. A number of questions about this hydrogen introduction process and hydrogen's subsequent interactions with defects have proved difficult to address because of the low concentration of hydrogen that is introduced into the Si bulk. We have used the fundamental knowledge of hydrogenated defects that has been revealed by recent investigations of impurity-H complexes to develop strategies by which hydrogen in silicon can be detected by IR spectroscopy with high sensitivity. The introduction of hydrogen into Si by the post-deposition annealing of a SiN{sub x} coating has been investigated.

  5. 中国古青铜器表面富锡铜鎏镀及鎏焊的工艺探索 第一部分——富锡铜鎏镀在古青铜器中的应用%Technological study on amalgam coating and brazing of tin-rich copper on surface of bronze wares of ancient China—Part Ⅰ.Application of amalgam coating of tin-rich copper in ancient bronze wares

    Institute of Scientific and Technical Information of China (English)

    吴元康; 储荣邦

    2012-01-01

    The ancient bronze wares with Sn-rich copper coatings on their surfaces were introduced based on the archaeological findings in China. The definition and classification of amalgam coating were described. It is pointed out that most ancient bronze wares were treated by amalgam coating of Sn-rich copper, not by hot-dip plating or other processes. The removal of Hg by heating after amalgam coating and the decomposition of Sn7-9Hg in soil lead to the fact that Hg is undetectable on the surface of ancient bronze wares.%根据出土文物的情况,介绍了表面具有富锡铜层的古青铜器.阐述了鎏镀的定义及分类.指出古青铜器大多经过富锡铜鎏镀工艺处理,而不是热浸镀或其他工艺.认为鎏镀后加热驱汞及Sn7-9Hg在土壤环境中分解,是导致古青铜器表面测不出汞的原因.

  6. Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer.

    Science.gov (United States)

    Baek, Seong-Ho; Noh, Bum-Young; Park, Il-Kyu; Kim, Jae Hyun

    2012-01-05

    In this study, we have fabricated and characterized the silicon [Si] wire solar cells with conformal ZnO nanorod antireflection coating [ARC] grown on a Al-doped ZnO [AZO] seed layer. Vertically aligned Si wire arrays were fabricated by electrochemical etching and, the p-n junction was prepared by spin-on dopant diffusion method. Hydrothermal growth of the ZnO nanorods was followed by AZO film deposition on high aspect ratio Si microwire arrays by atomic layer deposition [ALD]. The introduction of an ALD-deposited AZO film on Si wire arrays not only helps to create the ZnO nanorod arrays, but also has a strong impact on the reduction of surface recombination. The reflectance spectra show that ZnO nanorods were used as an efficient ARC to enhance light absorption by multiple scattering. Also, from the current-voltage results, we found that the combination of the AZO film and ZnO nanorods on Si wire solar cells leads to an increased power conversion efficiency by more than 27% compared to the cells without it.

  7. Preparation and application of the sol-gel-derived acrylate/silicone co-polymer coatings for headspace solid-phase microextraction of 2-chloroethyl ethyl sulfide in soil.

    Science.gov (United States)

    Liu, Mingming; Zeng, Zhaorui; Fang, Huaifang

    2005-05-27

    Three types of novel acrylate/silicone co-polymer coatings, including co-poly(methyl acrylate/hydroxy-terminated silicone oil) (MA/OH-TSO), co-poly(methyl methacrylate/OH-TSO) (MMA/OH-TSO) and co-poly(butyl methacrylate/OH-TSO) (BMA/OH-TSO), were prepared for the first time by sol-gel method and cross-linking technology and subsequently applied to headspace solid-phase microextraction (HS-SPME) of 2-chloroethyl ethyl sulfide (CEES), a surrogate of mustard, in soil. The underlying mechanisms of the coating process were discussed and confirmed by IR spectra. The selectivity of the three types of sol-gel-derived acrylate/silicone coated fibers was studied, and the BMA/OH-TSO coated fibers exhibited the highest extraction ability to CEES. The concentration of BMA and OH-TSO in sol solution was optimized, and the BMA/OH-TSO (3:1)-coated fibers possessed the highest extraction efficiency. Compared with commercially available polyacrylate (PA) fiber, the sol-gel-derived BMA/OH-TSO (3:1) fibers showed much higher extraction efficiency to CEES. Therefore, the BMA/OH-TSO (3:1)-coated fibers were chosen for the analysis of CEES in soil matrix. The reproducibility of coating preparation was satisfactory, with the RSD 2.39% within batch and 3.52% between batches, respectively. The coatings proved to be quite stable at high temperature (to 350 degrees C) and in different solvents (organic or inorganic), thus their lifetimes (to 150 times) are longer than conventional fibers. Extraction parameters, such as the volume of water added to the soil, extraction temperature and time, and the ionic strength were optimized. The linearity was from 0.1 to 10 microg/g, the limit of detection (LOD) was 2.7 ng/g, and the RSD was 2.19%. The recovery of CEES was 88.06% in agriculture soil, 92.61% in red clay, and 101.95% in sandy soil, respectively.

  8. Article Including Environmental Barrier Coating System

    Science.gov (United States)

    Lee, Kang N. (Inventor)

    2015-01-01

    An enhanced environmental barrier coating for a silicon containing substrate. The enhanced barrier coating may include a bond coat doped with at least one of an alkali metal oxide and an alkali earth metal oxide. The enhanced barrier coating may include a composite mullite bond coat including BSAS and another distinct second phase oxide applied over said surface.

  9. The Light-Induced Field-Effect Solar Cell Concept - Perovskite Nanoparticle Coating Introduces Polarization Enhancing Silicon Cell Efficiency.

    Science.gov (United States)

    Wang, Yusheng; Xia, Zhouhui; Liu, Lijia; Xu, Weidong; Yuan, Zhongcheng; Zhang, Yupeng; Sirringhaus, Henning; Lifshitz, Yeshayahu; Lee, Shui-Tong; Bao, Qiaoliang; Sun, Baoquan

    2017-03-03

    Solar cell generates electrical energy from light one via pulling excited carrier away under built-in asymmetry. Doped semiconductor with antireflection layer is general strategy to achieve this including crystalline silicon (c-Si) solar cell. However, loss of extra energy beyond band gap and light reflection in particular wavelength range is known to hinder the efficiency of c-Si cell. Here, it is found that part of short wavelength sunlight can be converted into polarization electrical field, which strengthens asymmetry in organic-c-Si heterojunction solar cell through molecule alignment process. The light harvested by organometal trihalide perovskite nanoparticles (NPs) induces molecular alignment on a conducting polymer, which generates positive electrical surface field. Furthermore, a "field-effect solar cell" is successfully developed and implemented by combining perovskite NPs with organic/c-Si heterojunction associating with light-induced molecule alignment, which achieves an efficiency of 14.3%. In comparison, the device with the analogous structure without perovskite NPs only exhibits an efficiency of 12.7%. This finding provides a novel concept to design solar cell by sacrificing part of sunlight to provide "extra" asymmetrical field continuously as to drive photogenerated carrier toward respective contacts under direct sunlight. Moreover, it also points out a method to combine promising perovskite material with c-Si solar cell.

  10. Modification of optical and electrical properties of zinc oxide-coated porous silicon nanostructures induced by swift heavy ion.

    Science.gov (United States)

    Kumar, Yogesh; Herrera-Zaldivar, Manuel; Olive-Méndez, Sion Federico; Singh, Fouran; Mathew, Xavier; Agarwal, Vivechana

    2012-07-02

    Morphological and optical characteristics of radio frequency-sputtered zinc aluminum oxide over porous silicon (PS) substrates were studied before and after irradiating composite films with 130 MeV of nickel ions at different fluences varying from 1 × 1012 to 3 × 1013 ions/cm2. The effect of irradiation on the composite structure was investigated by scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), and cathodoluminescence spectroscopy. Current-voltage characteristics of ZnO-PS heterojunctions were also measured. As compared to the granular crystallites of zinc oxide layer, Al-doped zinc oxide (ZnO) layer showed a flaky structure. The PL spectrum of the pristine composite structure consists of the emission from the ZnO layer as well as the near-infrared emission from the PS substrate. Due to an increase in the number of deep-level defects, possibly oxygen vacancies after swift ion irradiation, PS-Al-doped ZnO nanocomposites formed with high-porosity PS are shown to demonstrate a broadening in the PL emission band, leading to the white light emission. The broadening effect is found to increase with an increase in the ion fluence and porosity. XRD study revealed the relative resistance of the film against the irradiation, i.e., the irradiation of the structure failed to completely amorphize the structure, suggesting its possible application in optoelectronics and sensing applications under harsh radiation conditions.

  11. Electrically-controlled near-field radiative thermal modulator made of graphene-coated silicon carbide plates

    Science.gov (United States)

    Yang, Yue; Wang, Liping

    2017-08-01

    In this work, we propose a hybrid near-field radiative thermal modulator made of two graphene-covered silicon carbide (SiC) plates separated by a nanometer vacuum gap. The near-field photon tunneling between the emitter and receiver is modulated by changing graphene chemical potentials with symmetrically or asymmetrically applied voltage biases. The radiative heat flux calculated from fluctuational electrodynamics significantly varies with graphene chemical potentials due to tunable near-field coupling strength between graphene plasmons across the vacuum gap. Thermal modulation and switching, which are the key functionalities required for a thermal modulator, are theoretically realized and analyzed. Newly introduced quantities of the modulation factor, the sensitivity factor and switching factor are studied quite extensively in a large parameter range for both graphene chemical potential and vacuum gap distance. This opto-electronic device with faster operating mode, which is in principle only limited by electronics and not by the thermal inertia, will facilitate the practical application of active thermal management, thermal circuits, and thermal computing with photon-based near-field thermal transport.

  12. Characterisation and optimisation of PECVD SiNx as an antireflection coating and passivation layer for silicon solar cells

    Directory of Open Access Journals (Sweden)

    Yimao Wan

    2013-03-01

    Full Text Available In this work, we investigate how the film properties of silicon nitride (SiNx depend on its deposition conditions when formed by plasma enhanced chemical vapour deposition (PECVD. The examination is conducted with a Roth & Rau AK400 PECVD reactor, where the varied parameters are deposition temperature, pressure, gas flow ratio, total gas flow, microwave plasma power and radio-frequency bias voltage. The films are evaluated by Fourier transform infrared spectroscopy to determine structural properties, by spectrophotometry to determine optical properties, and by capacitance–voltage and photoconductance measurements to determine electronic properties. After reporting on the dependence of SiNx properties on deposition parameters, we determine the optimized deposition conditions that attain low absorption and low recombination. On the basis of SiNx growth models proposed in the literature and of our experimental results, we discuss how each process parameter affects the deposition rate and chemical bond density. We then focus on the effective surface recombination velocity Seff, which is of primary importance to solar cells. We find that for the SiNx prepared in this work, 1 Seff does not correlate universally with the bulk structural and optical properties such as chemical bond densities and refractive index, and 2 Seff depends primarily on the defect density at the SiNx-Si interface rather than the insulator charge. Finally, employing the optimized deposition condition, we achieve a relatively constant and low Seff,UL on low-resistivity (≤1.1 Ωcm p- and n-type c-Si substrates over a broad range of n = 1.85–4.07. The results of this study demonstrate that the trade-off between optical transmission and surface passivation can be circumvented. Although we focus on photovoltaic applications, this study may be useful for any device for which it is desirable to maximize light transmission and surface passivation.

  13. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    Science.gov (United States)

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-04-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  14. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate.

    Science.gov (United States)

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-01-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  15. Enhanced corrosion resistance and hemocompatibility of biomedical NiTi alloy by atmospheric-pressure plasma polymerized fluorine-rich coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Penghui; Li, Limin [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wang, Wenhao [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Division of Spine Surgery, Department of Orthopaedics and Traumatology, Pokfulam, Hong Kong (China); Jin, Weihong [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Liu, Xiangmei [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062 (China); Yeung, Kelvin W.K. [Division of Spine Surgery, Department of Orthopaedics and Traumatology, Pokfulam, Hong Kong (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2014-04-01

    Highlights: • Fluoropolymer is deposited on NiTi alloy via atmospheric-pressure plasma polymerization. • The corrosion resistance of NiTi alloy in SBF and DMEM is evidently improved. • The adsorption ratio of albumin to fibrinogen is increased on the coated surface. • The reduced platelet adhesion number indicates better in vitro hemocompatibility. - Abstract: To improve the corrosion resistance and hemocompatibility of biomedical NiTi alloy, hydrophobic polymer coatings are deposited by plasma polymerization in the presence of a fluorine-containing precursor using an atmospheric-pressure plasma jet. This process takes place at a low temperature in air and can be used to deposit fluoropolymer films using organic compounds that cannot be achieved by conventional polymerization techniques. The composition and chemical states of the polymer coatings are characterized by fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the coated and bare NiTi samples is assessed and compared by polarization tests and electrochemical impedance spectroscopy (EIS) in physiological solutions including simulated body fluids (SBF) and Dulbecco's Modified Eagle's medium (DMEM). The corrosion resistance of the coated NiTi alloy is evidently improved. Protein adsorption and platelet adhesion tests reveal that the adsorption ratio of albumin to fibrinogen is increased and the number of adherent platelets on the coating is greatly reduced. The plasma polymerized coating renders NiTi better in vitro hemocompatibility and is promising as a protective and hemocompatible coating on cardiovascular implants.

  16. Bond Angles in the Crystalline Silicon/Silicon Nitride Interface

    Science.gov (United States)

    Leonard, Robert H.; Bachlechner, Martina E.

    2006-03-01

    Silicon nitride deposited on a silicon substrate has major applications in both dielectric layers in microelectronics and as antireflection and passivation coatings in photovoltaic applications. Molecular dynamic simulations are performed to investigate the influence of temperature and rate of externally applied strain on the structural and mechanical properties of the silicon/silicon nitride interface. Bond-angles between various atom types in the system are used to find and understand more about the mechanisms leading to the failure of the crystal. Ideally in crystalline silicon nitride, bond angles of 109.5 occur when a silicon atom is at the vertex and 120 angles occur when a nitrogen atom is at the vertex. The comparison of the calculated angles to the ideal values give information on the mechanisms of failure in silicon/silicon nitride system.

  17. Advances in Research on Fluoro-silicon Modified Acrylic Resin and Coating%氟硅改性丙烯酸酯树脂及涂料的研究进展

    Institute of Scientific and Technical Information of China (English)

    张贺; 张连红; 梁红玉; 李彦琦

    2011-01-01

    随着社会的发展和人民生活水平的提高,人们对涂料的要求也越来越高.环保型涂料已日益发展成为各国研究的重点和热点.氟硅改性丙烯酸酯树脂涂料具有良好的保光保色性,附着力强,光亮丰满及优良的耐候性,耐沾污性,疏水疏油性,耐酸耐碱性和抗腐蚀性等优点.因此其具有一定的经济意义和研究价值.介绍了氟硅改性丙烯酸酯树脂的几种制备方法,同时也综述了氟硅改性丙烯酸酯树脂涂料的不同方面应用并对其发展前景进行了展望.%With the raise of living standard and social development, people's requirements in the coatings are getting higher and higher. Environ ment-friendly coatings have become the focus of research in all countries. Fluoro-silicon modified acrylic resin coating has good color and luster re tention, adhesion and glossy properties. It also has excellent weatherability, smudge resistance, hydrophobic and oleophobic performance, acid, alkali and corrosion resistance. Therefore it has certain economic significance and value for study. Several preparation methods of fluoro-silicone modified acrylic resin are introduced. The applications of fluoro-silicone modified acrylic resin in different fields and its development are also summarized.

  18. Silicone-Rubber Stitching Seal

    Science.gov (United States)

    Wang, D. S.

    1985-01-01

    Fabric products protected from raveling by coating threads and filling stitching holes with silicone rubber. Uncored silicone rubber applied to stitching lines with air-pressurized sealant gun. Next, plastic release film placed on coated side, and blanket flipped over so release film lies underneath. Blanket then bagged and adhesive cured under partial vacuum of about 3.5 psi or under pressure. Applications include balloons, parachutes, ultralight aircraft, sails, rescue harnesses, tents, or other fabric products highly stressed in use.

  19. Preparation of high temperature resistant fabrics using low temperature curing organic silicone coating technology%低温固化有机硅耐高温涂层织物的制备

    Institute of Scientific and Technical Information of China (English)

    郑振荣; 张玉双; 王红梅; 赵晓明

    2015-01-01

    In order to decrease the curing temperature and time of organic silicone, epoxy resin was grafted on the silicone resin. The inorganic fillers, such as aluminium, kaoline and white carbon powder, were added into the grafted silicone resin and then coated onto glass fiber fabric. Infrared spectroscopy indicated the sec-hydroxyl groups on the branched chain of the epoxy resin reacted with silicone. 66.2 wt% residual mass at 700 ℃ was obtained by TGA (Thermo Gravimetric Analyzer), which indicated that the grafted silicone was stable at high temperature. The coating fabric was cured at 60 ℃ for 10 min to finish the curing process. The ablation test showed that the heat insulating property of the coating fabric was much higher than that of the original fabric.%为降低有机硅树脂固化的温度和时间,利用环氧树脂对自制有机硅低聚物进行改性,并进一步在改性硅树脂中添加铝粉、高岭土及白炭黑等功能填料制备复合有硅树脂溶液,将其涂覆在玻璃纤维织物表面,最终制备出具有低温固化功能的隔热涂层玻璃纤维织物.结果表明:环氧树脂分子侧链上的仲羟基与有机硅低聚物发生了接枝反应,环氧基团的保留也为涂层过程中实现低温固化提供了条件;改性硅树脂在700℃时的残留质量为66.2%,具有良好的热稳定性;复合有机硅树脂涂层后的织物可在60℃下烘10 min,完成固化过程,烧蚀试验表明涂层后织物的隔热性能显著提高.

  20. 纳米二氧化硅改性有机硅-环氧防腐涂料的合成与性能研究%Preparation and characterization of organic silicon-epoxy anti-corrosive coating modified by nanosilica

    Institute of Scientific and Technical Information of China (English)

    李慧博; 张秀玲

    2011-01-01

    本文利用带羟基的有机硅预聚体与双酚A型环氧树脂反应,制备有机硅-环氧树脂及涂层,并采用纳米SiO2改性有机硅-环氧.采用扫描电镜、硬度、冲击强度、附着力、柔韧性、电化学防腐特性等分析手段,考察了有机硅用量变化、纳米SiO2等对涂膜性能的影响,发现当环氧树脂有机硅用量比为2:1时,有机硅改性环氧涂层综合了有机硅树脂和环氧树脂的优异性能,既有好的附着力,又有好的耐老化性能和防腐特性.在有机硅改性环氧涂层中加入纳米SiO2溶液,原位聚合获得纳米SiO2改性有机硅-环氧涂层.与有机硅改性环氧涂层相比,纳米改性有机硅-环氧涂层具有优异的紫外屏蔽特性和耐老化性能.%The organic silicon- epoxy anti-corrosive coating was prepared by organic silicon performed polymer with hydroxyl and bisphenol A type epoxy resin. The nanosilica was adopted to modify organic silicon-epoxy. The effect of amount of organic silicon and nanosilica to performance of coating was investigated by SEM, hardness, impact strength, adhesion, flexibility and electrochemical anticorrosion. It was found that when the ratio of epoxy resin and organic silicon was 2:1, the organic silicon-epoxy anti-corrosive coating has good adhesion, resistance to aging and anticorrosive. The organic silicon-epoxy anti-corrosive coating modified by nanosilica was synthesized by adding nanosilica solution to organic silicon modified epoxy coating. Compared to organic silicon modified epoxy coating, the organic silicon -epoxy anti -corrosive coating modified by nanosilica has good uvioresistant and resistance to aging.

  1. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.

    2010-06-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  2. Study on photochromic properties of phosphomolybdic acid/silicone coating%磷钼酸/有机硅涂层的光致变色性能研究∗

    Institute of Scientific and Technical Information of China (English)

    代仕梅; 王丹; 季燕青; 高延敏

    2014-01-01

    A photochromic coating was prepared from phosphomolybdic acid as photochromic material and amino silicone resin as film-forming substance,and the photochromic coating could be used in the new field of auto-marking.The photochromism and photochromic stability of the photochromic coating were studied by FT-IR, ESR and UV-Vis spectroscopy.The results show that the photochromic coating undergoes a photoredox reac-tion between phosphomolybdic acid and amino of silicone resin on irradiation with ultraviolet light to form phos-phorus molybdenum blue,accompanied by a color change from yellow to blue,and the color change was irre-versible change.%以磷钼酸为变色材料,氨基有机硅树脂为成膜物质成功制备了光致变色涂层,该光致变色涂层可用于自动划线新领域。并采用 FT-IR、ESR和 UV-Vis 等测试手段对光致变色涂层进行了表征,研究了该光致变色涂料的光致变色性及其稳定性。测试结果表明,该变色涂料由黄色变为蓝色是因为其在紫外光的照射下,磷钼酸与氨基有机硅树脂中的氨基发生光氧化还原反应生成磷钼蓝所致,且该变色为不可逆变色。

  3. 镀膜方单晶组件在并网光伏系统中的研究%Research and analysis of coated quad mono-crystal silicon modules in grid-connected photovoltaic system

    Institute of Scientific and Technical Information of China (English)

    姜猛; 张臻; 牛勇; 郝玉哲; 韩卫华

    2012-01-01

    A coated quad mono-crystal silicon module was comprised of quad mono-crystal silicon solar cells, in order to improve the photovoltaic conversion efficiency, and the outside of the glass was coated with a layer antireflection coating with the method of vapor deposition to reduce reflectivity and increase incidence rate. The modules was connected to a grid-connected photovoltaic system, and their actual generated performance in different conditions were researched, such as different irradiation, the degree of accumulation of dust on the surface of the glass, fingerprints and scratches on the surface of the coating. The results show that the coated quad mono-crystal silicon module has higher photovoltaic conversion efficiency, and it is more obvious in low-irradiation conditions; the dust accumulation may affect the power generation of the modules significantly because of different irradiation conditions; the influence of fingerprints and scratches on the power generation of the modules is little, which can eliminate the concerns from customers.%镀膜方单晶组件采用方形单晶硅电池片,利用气相沉淀方式,在太阳能组件钢化玻璃外表面镀上一层减反射膜,可减少光线反射,增加入射光,即提高光电转换效率.将镀膜方单晶组件接入并网光伏系统中,研究其在不同辐照度、膜表面积灰程度、膜表面手指印、膜表面刮痕等条件下的实际发电性能,并通过模拟仿真验证实验的准确性.结果表明:镀膜方单晶组件具有更高的光电转换效率,且在低辐照条件下更加明显;灰尘对组件发电性能的影响与辐照强度的大小有关;膜表面的手指印、刮痕对组件发电性能影响不大,可消除客户的担忧.

  4. Reaching 200-ps timing resolution in a time-of-flight and depth-of-interaction positron emission tomography detector using phosphor-coated crystals and high-density silicon photomultipliers.

    Science.gov (United States)

    Kwon, Sun Il; Ferri, Alessandro; Gola, Alberto; Berg, Eric; Piemonte, Claudio; Cherry, Simon R; Roncali, Emilie

    2016-10-01

    Current research in the field of positron emission tomography (PET) focuses on improving the sensitivity of the scanner with thicker detectors, extended axial field-of-view, and time-of-flight (TOF) capability. These create the need for depth-of-interaction (DOI) encoding to correct parallax errors. We have proposed a method to encode DOI using phosphor-coated crystals. Our initial work using photomultiplier tubes (PMTs) demonstrated the possibilities of the proposed method, however, a major limitation of PMTs for this application is poor quantum efficiency in yellow light, corresponding to the wavelengths of the converted light by the phosphor coating. In contrast, the red-green-blue-high-density (RGB-HD) silicon photomultipliers (SiPMs) have a high photon detection efficiency across the visible spectrum. Excellent coincidence resolving time (CRT; [Formula: see text]) was obtained by coupling RGB-HD SiPMs and [Formula: see text] lutetium fine silicate crystals coated on a third of one of their lateral sides. Events were classified in three DOI bins ([Formula: see text] width) with an average sensitivity of 83.1%. A CRT of [Formula: see text] combined with robust DOI encoding is a marked improvement in the phosphor-coated approach that we pioneered. For the first time, we read out these crystals with SiPMs and clearly demonstrated the potential of the RGB-HD SiPMs for this TOF-DOI PET detector.

  5. Silicon-on-ceramic process: Silicon sheet growth and device development for the large-area silicon sheet task of the low-cost solar array project

    Science.gov (United States)

    Whitehead, A. B.; Zook, J. D.; Grung, B. L.; Heaps, J. D.; Schmit, F.; Schuldt, S. B.; Chapman, P. W.

    1981-01-01

    The technical feasibility of producing solar cell quality sheet silicon to meet the DOE 1986 cost goal of 70 cents/watt was investigated. The silicon on ceramic approach is to coat a low cost ceramic substrate with large grain polycrystalline silicon by unidirectional solidification of molten silicon. Results and accomplishments are summarized.

  6. 中国古青铜器表面富锡铜鎏镀及鎏焊的工艺探索第二部分——鎏镀的原理及工艺设计%Technological study on amalgam coating and brazing of tin-rich copper on surface of bronze wares of ancient China—Part Ⅱ.Principle and process design of amalgam coating

    Institute of Scientific and Technical Information of China (English)

    吴元康; 储荣邦

    2012-01-01

    The major roles of Cu, Sn, Pd, and Hg in amalgam coating material, the principle of metallurgical reactions between the elements, and the phase transformation involved in the process of removing mercury by heating were described. Three formulations of Sn-rich copper powder for amalgam coating were designed to reproduce antique bronze mirrors. The pretreatment of bronze wares, the preparation of amalgam coating material and its coating method, and the operation procedure of mercury removal by heating were introduced. The reasons why the Sn-rich coatings on ancient bronze wares are produced by amalgam coating of Sn-rich copper were presented.%阐述了鎏镀料中铜、锡、铅、汞的主要作用,以及加热驱汞时各元素之间冶金反应的原理和物相变化.以仿古青铜镜为例,设计了3种鎏镀用富锡铜粉的配方,介绍了青铜件的镀前处理,汞齐涂料配制和涂抹的方法,以及加热驱汞的操作步骤.指出了古青铜器表面富锡镀层为鎏镀富锡铜的依据.

  7. Effective Infiltration of Gel Polymer Electrolyte into Silicon-Coated Vertically Aligned Carbon Nanofibers as Anodes for Solid-State Lithium-Ion Batteries.

    Science.gov (United States)

    Pandey, Gaind P; Klankowski, Steven A; Li, Yonghui; Sun, Xiuzhi Susan; Wu, Judy; Rojeski, Ronald A; Li, Jun

    2015-09-23

    This study demonstrates the full infiltration of gel polymer electrolyte into silicon-coated vertically aligned carbon nanofibers (Si-VACNFs), a high-capacity 3D nanostructured anode, and the electrochemical characterization of its properties as an effective electrolyte/separator for future all-solid-state lithium-ion batteries. Two fabrication methods have been employed to form a stable interface between the gel polymer electrolyte and the Si-VACNF anode. In the first method, the drop-casted gel polymer electrolyte is able to fully infiltrate into the open space between the vertically aligned core-shell nanofibers and encapsulate/stabilize each individual nanofiber in the polymer matrix. The 3D nanostructured Si-VACNF anode shows a very high capacity of 3450 mAh g(-1) at C/10.5 (or 0.36 A g(-1)) rate and 1732 mAh g(-1) at 1C (or 3.8 A g(-1)) rate. In the second method, a preformed gel electrolyte film is sandwiched between an Si-VACNF electrode and a Li foil to form a half-cell. Most of the vertical core-shell nanofibers of the Si-VACNF anode are able to penetrate into the gel polymer film while retaining their structural integrity. The slightly lower capacity of 2800 mAh g(-1) at C/11 rate and ∼1070 mAh g(-1) at C/1.5 (or 2.6 A g(-1)) rate have been obtained, with almost no capacity fade for up to 100 cycles. Electrochemical impedance spectroscopy does not show noticeable changes after 110 cycles, further revealing the stable interface between the gel polymer electrolyte and the Si-VACNFs anode. These results show that the infiltrated flexible gel polymer electrolyte can effectively accommodate the stress/strain of the Si shell due to the large volume expansion/contraction during the charge-discharge processes, which is particularly useful for developing future flexible solid-state lithium-ion batteries incorporating Si-anodes.

  8. Enhanced electrochemical performance of Li-rich layered cathode materials via chemical activation of Li2MnO3 component and formation of spinel/carbon coating layer

    Science.gov (United States)

    Pang, Shengli; Xu, Kaijie; Wang, Yonggang; Shen, Xiangqian; Wang, Wenzhi; Su, Yanjing; Zhu, Meng; Xi, Xiaoming

    2017-10-01

    Li-rich layered oxides are promising cathode materials for advanced Li-ion batteries because of their high specific capacity and operating potential. In this work, the Li-rich layered oxide Li1·2Mn0·54Ni0·13Co0·13O2 (LMNC), is modified via a carbonization-reduction process (yielding the corresponding reduced compound denoted LMNC-R). Compared to the pristine oxide, LMNC-R delivers significantly enhanced initial discharge capacity/columbic efficiency, remarkably improved rate performance with an accelerated Li+ diffusion rate, and significantly increased capacity/voltage retention. The specific energy density and energy retention after 100 cycles increase from 378.2 Wh kg-1 and 47.7% for LMNC to 572.0 Wh kg-1 and 71.3%, respectively, for LMNC-R. The enhancement in the electrochemical performance of LMNC-R can be attributed to the synchronous formation of the oxygen non-stoichiometric Li2MnO3-δ component and to the carbon/spinel double coating layer in the material that resulted from the post-treatment process. Thus, the carbonization-reduction modification process can be used to tailor the structural evolution procedure and to suppress the metal ion dissolution of the Li-rich layered oxide during cycling.

  9. Synthesis and Properties of Polyester/SiO2/Silicone Composite Coating%聚酯/SiO2/有机硅复合涂料的合成与性能

    Institute of Scientific and Technical Information of China (English)

    朱再盛; 涂伟萍; 胡剑青

    2011-01-01

    First, transparent SiO2/silicone resin was prepared by means of the sol-gel method, with tetraethoxysilane and organosiloxane as the raw materials.Then, polyester/SiO2/silicone hardcoat composite films were synthesized on polycarbonate (PC) via the condensation between SiO2/silicone resin and polyester.Finally, the effect of SiO2/silicone resin-to-polyester ratio on the properties of the composite coating was discussed, and the structure and properties of the composite coating were characterized by means of FT-IR, TGA, AFM, SEM, UV spectroscopy and XRD, etc.The results show that the composite with Si-O-C structure is obtained due to the co-condensation between the ethoxy groups in SiO2/silicone resin and the hydroxyl groups in polyester, that the composite coating which is an SiO2/silicone resin mass fraction ranging from 75% to 83% and a storage period of more than ten months, possesses good stability, and that the composite film after the thermal curing, which is smooth and amorphous, improves the transparency of PC sheet, with an adhesion strength to PC sheet of 0 grade and a pencil hardness of 2H.Moreover, it is indicated that the composite film is of excellent thermal stability gradually increasing with the SiO2/silicone resin dosage.%以正硅酸乙酯和有机硅氧烷为原料,采用溶胶-凝胶法合成透明的SiO2/有机硅树脂,然后与聚酯进行缩合反应,在聚碳酸酯(PC)表面上制备硬质的聚酯/SiO2/有机硅复合薄膜.探讨聚酯和SiO2/有机硅树脂配比对复合涂料性能的影响,并采用红外光谱、热重分析、原子力显微镜、扫描电镜、紫外光谱和X射线衍射等方法对复合材料进行表征.结果表明:SiO2/有机硅树脂上的乙氧基与聚酯上的羟基发生了缩合反应,形成Si-O-C结构.当SiO2/有机硅树脂的质量分数控制在75%~83%时,复合涂料具有良好的稳定性,贮存期超过10个月;热固化后复合膜表面平整,呈非晶结构,对PC有一定的

  10. 硅蒸镀法制备硬质碳毡表面SiC涂层组成及微观结构分析%Analysis on microstructure and composition of SiC coated rigid carbon fibre felt prepared by silicon evaporation

    Institute of Scientific and Technical Information of China (English)

    王兵; 施伟; 谭毅; 尤启凡; 李佳艳

    2014-01-01

    SiC coated rigid carbon fibre felt was produced via the direct reaction between silicon vapor and carbon stemming from graphite coating carbon fiber and substrates by silicon evaporation.Successful silicon carbide layer calls for a graphite coating given on the substrate surface by means of a slurry coating technology.The mi-crostructural characterisation including phase structure and components,surface and profile micrograph,micro-hardness of SiC coating were studied by XRD,SEM,EDS and microhardness tester.The influence of evapora-tion time and surface roughness of graphite coating on coating and forming course of SiC coating was investiga-ted.The main results show that onlyβ-SiC exists on coating surface evaporated after three hours and with the increase of evaporation time,density and continuity of coating increase and cracks and holes decrease.The grain size of silicon carbide becomes smaller with low surface roughness of graphite coating as reaction matrix.The microhardness of SiC coating evaporated on high surface roughness of graphite coating was larger.%采用浆料法在硬质碳纤维毡表面制备石墨涂层,利用硅蒸镀使硅蒸汽在石墨涂层、碳纤维、基体碳表面反应生成SiC涂层。利用XRD、SEM及显微硬度计等研究了蒸镀时间对涂层微观结构、晶粒尺寸及显微硬度的影响,并分析了涂层形成过程。研究结果表明,蒸镀时间增加,表面涂层的微裂纹及孔洞减少,逐渐形成连续、致密的SiC涂层;蒸镀时间为3 h,涂层表面仅存在β-SiC;表面粗糙度低的石墨涂层作为硅蒸镀反应基体,生成的SiC晶粒较小;而表面粗糙度高的石墨涂层作为反应基体,表面涂层的显微硬度较大。

  11. PECVD silicon nitride diaphragms for condenser microphones

    NARCIS (Netherlands)

    Scheeper, P.R.; Voorthuyzen, J.A.; Bergveld, P.

    1991-01-01

    The application of plasma-enhanced chemical vapour deposited (PECVD) silicon nitride as a diaphragm material for condenser microphones has been investigated. By means of adjusting the SiH4/NH3 gas-flow composition, silicon-rich silicon nitride films have been obtained with a relatively low tensile s

  12. Silicon and oxygen self-diffusion in stishovite: Implications for stability of SiO2-rich seismic reflectors in the mid-mantle

    Science.gov (United States)

    Xu, Fang; Yamazaki, Daisuke; Sakamoto, Naoya; Sun, Wei; Fei, Hongzhan; Yurimoto, Hisayoshi

    2017-02-01

    Diffusion of Si and O in single crystal stishovite was examined at pressures of 14.0-21.5 GPa and temperatures of 1673-2073 K. Self-diffusion coefficients of Si (DSi) and O (DO) were determined as DSi [m2 /s ] = 2.4 ×10-12 exp ⁡ { - (237 [kJ /mol ] + 6.0 [cm3 /mol ] × P) / RT } and DO [m2 /s ] = 7.2 ×10-11 exp ⁡ { - (263 [kJ /mol ] + 4.8 [cm3 /mol ] × P) / RT }, respectively, where P is pressure (in GPa), T is absolute temperature (in K) and R is the ideal gas constant. It was revealed that diffusion of Si is approximately one order of magnitude slower than that of O and, thus, Si is the rate-controlling element for plastic deformation of stishovite. Si diffusion in stishovite is assessed to be at least three orders of magnitude slower than that in bridgmanite under mid-mantle conditions. Therefore, it is anticipated that highly viscous SiO2-rich components subducted into the lower mantle persist as the seismic reflectors for long term without mixing up with the bridgmanite-dominated surrounding mantle.

  13. Effect of lamellar zinc powders on properties of alcohol-soluble inorganic zinc-rich coating%片状锌粉对醇溶性无机富锌涂层性能的影响

    Institute of Scientific and Technical Information of China (English)

    郑雪娇; 陈玲

    2012-01-01

    The effect of lamellar zinc powder replacing a small amount of spherical zinc powder in alcohol-soluble inorganic zinc-rich coating on coating properties was studied by salt spray test, measurements of polarization curve and open circuit potential (OCP)-time curve, and electrochemical impedance spectroscopy (EIS) at a constant total oil adsorption of pigment and the ratio of pigment volume concentration (PVC) to critical pigment volume concentration (CPVC) being 0.77. It was found that when the mass fraction of lamellar zinc powder is in range of 5% to 30%, both saline and salt spray resistance of the coating is increased initially and then decreased with increasing dosage of lamellar zinc powder and reach their maxima at a replacement ratio of 20%. The coating prepared with 20% lamellar zinc powder has longer protection period as a sacrificial anode, better anodic dissolubility, and lower impedance at low frequency (0.2 Hz) as compared with the coating without partial replacement of spherical zinc powder with lamellar one.%在颜料总吸油量一定、各配方中颜料体积浓度(PVC)与临界颜料体积浓度(CPVC)之比为0.77的条件下,通过盐雾试验、极化曲线、开路电位(OCP)-时间曲线和电化学阻抗谱(EIS)研究了片状锌粉取代醇溶性无机富锌涂料中少量球状锌粉对涂层性能的影响.研究结果表明,在片状锌粉取代比为5% ~ 30%范围内,涂层的耐盐水和耐盐雾腐蚀时间随片状锌粉取代比的增加而先增加后减少,在取代比为20%时达到最大值.与未取代涂层相比,取代比为20%的涂层其牺牲阳极保护时间更长,阳极溶解性能更好,低频(0.2 Hz)阻抗更小.

  14. Effect of Cooling Rate on the Microstructure of Al-Zn Alloys with Addition of Silicon as Nanocomposite

    Directory of Open Access Journals (Sweden)

    S. García-Villarreal

    2013-01-01

    Full Text Available Al-43.5Zn-1.5Si (wt% alloys are widely used as coatings on steel substrates. This kind of coatings is manufactured by hot-dip process, in which Si is added as solid particles or master alloy. The role of Si during formation of the coating is to control the metallurgical reactions between solid steel and liquid Al-Zn-Si alloy initially forming an AlZnFeSi intermetallic layer and next the excess of Si forms intermetallic compounds, which grows over this alloy layer, segregates into the Zn rich interdendritic regions, and solidifies as eutectic reaction product as massive particles with needle like morphology. Therefore, during the experimental procedure is very difficult to control the final morphology and distribution of the silicon phase. The acicular morphology of this phase greatly affects the mechanical properties of the alloy because it acts as stress concentrators. When the coated steel sheet is subjected to bending, the coating presents huge cracks due to the presence of silicon phase. Therefore, the aim of the paper was to propose a new methodology to control the silicon phase through its addition to Al-Zn alloy as nanocomposite and additionally determine the effect of cooling rate (between 10 and 50°Cs−1 on the solidification microstructure and mechanical properties of Al-Zn alloy.

  15. Morphology and Microstructure of NiCoCrAlYRe Coatings after Thermal Aging and Growth of an Al2O3-Rich Oxide Scale

    Directory of Open Access Journals (Sweden)

    Giovanni Di Girolamo

    2014-10-01

    Full Text Available The surface of metal parts operating at high temperature in energy production and aerospace industry is typically exposed to thermal stresses and oxidation phenomena. To this aim, plasma spraying was employed to deposit NiCoCrAlYRe coatings on metal substrates. The effects of early-stage oxidation, at ~1100 °C, on their microstructure were investigated. The partial infiltration of oxygen through some open pores and microcracks embedded in coating microstructure locally assisted the formation of a stable Al2O3 scale at the splat boundary, while the diffusion of Cr and Ni and the following growth of Cr2O3, Ni(Cr,Al2O4 and NiO were restricted to Al depleted isolated areas. At the same time, a continuous, dense and well adherent Al2O3 layer grew on the top-surface, and was somewhere supported by a thin mixed oxide scale mainly composed of Cr2O3 and spinels. Based on these results, the addition of Re to the NiCoCrAlY alloy is able to enhance the oxidation resistance.

  16. Silicon microfabricated beam expander

    Science.gov (United States)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  17. Silicon microfabricated beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A., E-mail: aliman@ppinang.uitm.edu.my; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A. [Faculty of Electrical Engineering, Universiti Teknologi MARA Malaysia, 40450, Shah Alam, Selangor (Malaysia); Ain, M. F. [School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300,Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  18. Preparation for Low Surface Energy/Self-Polishing Silicone Marine Antifouling Coating%有机硅低表面能/自抛光海洋防污涂料的制备

    Institute of Scientific and Technical Information of China (English)

    陈美玲; 冯树涛; 张羽生; 杨莉; 高宏

    2013-01-01

    To prepare the title self-polishing antifouling coatings,a graft copolymerization method was proposed.Through the reaction of epoxy and acrylic acid,an acrylic monomer with hydroxyl groups was prepared,which was then,together with two other acrylic monomer and initiator,grafted with silicone at the preseuce of catalyst to form the silicone epoxy acrylate resin.The effects of epoxy dosage on coating performance and the hydrolysis characteristic of the film was discussed.Sample panels were tested in the real marine water.The results showed that 10% of the epoxy gave the best hydrolysis characteristics in laboratory dynamic simulation experiments with water contactangle 133° and adhesion grade 1.In the meantime,the low surface energy and self-polishing silicone antifouling coatings also provided good antifouling performance in static sea water immersion.%采用接枝共聚的方法,即环氧和丙烯酸反应,环氧开环的同时生成带有羟基的丙烯酸单体,加入引发剂结合另外2种丙烯酸单体,在催化剂的作用下接入有机硅,制得有机硅环氧丙烯酸树脂.讨论了环氧树脂的用量对涂膜性能的影响、涂料的水解特性,并进行了实海挂板实验.结果表明:当环氧的用量为10%时,制备的防污涂料与水的接触角达到133°,附着力1级;有机硅/环氧改性丙烯酸树脂制得的防污涂料在海水中能够稳定地水解,兼具低表面能和自抛光的特性,实海挂板实验结果表明,涂料具有良好的防污性能.

  19. 360-nm Photoluminescence from Silicon Oxide Films Embedded with Silicon Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    YANG Lin-lin; GUO Heng-qun; ZENG You-hua; WANG Qi-ming

    2006-01-01

    Si-rich silicon oxide films were deposited by RF magnetron sputtering onto composite Si/SiO2 targets. After annealed at different temperature, the silicon oxide films embedded with silicon nanocrystals were obtained. The photoluminescence(PL) from the silicon oxide films embedded with silicon nanocrystals was observed at room temperature. The strong peak is at 360nm, its position is independent of the annealing temperature. The origin of the 360-nm PL in the silicon oxide films embedded with silicon nanocrystals was discussed.

  20. Task 6.6 - Sialon Coatings for Alkali-Resistant Silicon Nitride: Semi-annual report, July 1-December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Nowok, J.W.

    1997-12-31

    The efficiency of a gas turbine can be improved by increasing operating temperature. Construction materials should meet both high strength requirements and hot-alkali corrosion resistance. Structural ceramics based on silicon nitride are promising candidates for high temperature engineering applications because of their high strength and good resistance to corrosion. Their performance varies significantly with the mechanical properties of boundary phases which, in turn, depend on their chemical composition, thickness of the amorphous phase, and the deformation process. To make silicon nitride ceramics tough, SiAlON ceramics were developed with controlled crystallization of the amorphous grain boundary phase. Crystallization of the grain boundary glass improves the high temperature mechanical properties of silicon nitride ceramics.

  1. Influence of elastomeric seal plate surface chemistry on interface integrity in biofouling-prone systems: Evaluation of a hydrophobic "easy-release" silicone-epoxy coating for maintaining water seal integrity of a sliding neoprene/steel interface

    Science.gov (United States)

    Andolina, Vincent L.

    The scientific hypothesis of this work is that modulation of the properties of hard materials to exhibit abrasion-reducing and low-energy surfaces will extend the functional lifetimes of elastomeric seals pressed against them in abrasive underwater systems. The initial motivation of this work was to correct a problem noted in the leaking of seals at major hydropower generating facilities subject to fouling by abrasive zebra mussel shells and extensive corrosion. Similar biofouling-influenced problems can develop at seals in medical devices and appliances from regulators in anesthetic machines and SCUBA diving oxygen supply units to autoclave door seals, injection syringe gaskets, medical pumps, drug delivery components, and feeding devices, as well as in food handling equipment like pasteurizers and transfer lines. Maritime and many other heavy industrial seal interfaces could also benefit from this coating system. Little prior work has been done to elucidate the relationship of seal plate surface properties to the friction and wear of elastomeric seals during sliding contacts of these articulating materials, or to examine the secondary influence of mineralized debris within the contacting interfaces. This investigation utilized the seal materials relevant to the hydropower application---neoprene elastomer against carbon steel---with and without the application of a silicone-epoxy coating (WearlonRTM 2020.98) selected for its wear-resistance, hydrophobicity, and "easy-release" capabilities against biological fouling debris present in actual field use. Analytical techniques applied to these materials before and after wear-producing processes included comprehensive Contact Angle measurements for Critical Surface Tension (CA-CST) determination, Scanning Electron Microscopic inspections, together with Energy Dispersive X-ray Spectroscopy (SEM-EDS) and X-Ray Fluorescence (XRF) measurements for determination of surface texture and inorganic composition, Multiple

  2. Silicon carbide reinforced silicon carbide composite

    Science.gov (United States)

    Lau, Sai-Kwing (Inventor); Calandra, Salvatore J. (Inventor); Ohnsorg, Roger W. (Inventor)

    2001-01-01

    This invention relates to a process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.

  3. The Future of Silicon Valley

    Institute of Scientific and Technical Information of China (English)

    Joseph Leu

    2006-01-01

    @@ By the end of 1984, Silicon Valley was going through the down cycle fol lowing the PC boom. A hundred PC companies wanted just 10 percent of the market, wanting to strike it rich, as rich as the Apple IPO (Initial Public Of fering) -the Google celebrity IPO of its day.

  4. Preparation and property of transparent zinc oxide/organic silicone nanocomposite coating%透明氧化锌/有机硅纳米复合涂层的研制及性能

    Institute of Scientific and Technical Information of China (English)

    郑友明; 胡孝勇

    2014-01-01

    The homemade nano-ZnO particles were grafted to the molecular chain of poly(dimethylhydrosiloxane) (PMHS) by chemical modification method. A transparent organic silicone nano-ZnO composite coating for electronic packaging was synthesized with the graft polymer ZnO–PMHS and vinyl-terminated polysiloxane as reactants under catalytic action of Pt. The effect of ZnO content on mechanical and optical properties of the coating was studied. The coating before and after modifying by nano-ZnO was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. It was found that the ZnO nanoparticles are connected to the molecular chain of polymer by chemical grafting. The refractive index of the composite coating is changed by grafting with ZnO nanoparticles. The coating prepared with 0.06wt%nano-ZnO has a transmittance>80%at 640 nm and a shielding efficiency >90% for ultraviolet below 300 nm, showing a five-times ultraviolet aging resistance, 25% higher initial thermal decomposition temperature, and 15%more residue weight as compared with the coating without nano-ZnO. The organic silicon/nano-ZnO composite coating presents excellent thermal resistance and ultraviolet aging resistance, meeting the packaging requirement of electronic products.%采用化学改性方法将自制的纳米ZnO颗粒接枝到含氢聚硅氧烷(PMHS)分子链上,以该接枝聚合物(ZnO-PMHS)和端乙烯基聚硅氧烷为反应物,在铂催化作用下合成了一种可用于电子封装的透明有机硅纳米ZnO复合涂层。研究了纳米ZnO含量对涂层力学性能和光学性能的影响,通过扫描电镜、傅里叶变换红外光谱和热重分析,对纳米ZnO改性前后的涂层进行了表征。研究表明,ZnO 纳米颗粒通过化学接枝连接到聚合物分子链上;ZnO纳米颗粒的接枝反应改变了复合涂层的折光指数,当纳米ZnO含量为0.06%时,复合涂层在640 nm处的透光率达到80

  5. Crack suppression of SiO2 thin film formed by 157 nm F2 laser induced photochemical surface modification of hard silicone coating film on polycarbonate(Conference Presentation)

    Science.gov (United States)

    Nojiri, Hidetoshi; Okoshi, Masayuki

    2017-03-01

    Light-weighting of vehicle is now strongly required for reducing gasoline consumption and CO2 emission. In this study, F2 laser was irradiated to the surface of hard silicone resin, coated by dip coating method onto the film of acrylic resin on a polycarbonate substrate. The surface part of the silicone resin was photo-chemically modified into SiO2. One of two types of aperture mask, 3×3 mm2 and 50×50 μm2, was set on the sample surface. The single pulse fluence was varied from 4 to 14 mJ/cm2, pulse repetition frequency was set to 10 Hz, and irradiation time was changed from 30 to 120 s. N2 gas was induced around the surface of the sample. After modification, SiO2 modified layer was etched by HF 1% diluted solution, and the etched depth was measured by a stylus-type surface profilometer. As a result of experiments, stress in the SiO2 modified layer increased by increasing of F2 laser irradiation time. In case of using aperture mask of 3×3 mm2, cracks were generated only on the irradiated area for longer irradiation time than 60 s. It is considered that the tensile stress in the modified layer exceeded the tensile fracture strength of 48 MPa of typical SiO2. When a mesh mask of 50×50 μm2 aperture was used, no crack generated even for a long irradiation of 200 s. We found, the tensile stress in SiO2 modified film can be reduced remarkably with using smaller aperture size of mesh mask, and it is very effective to prevent cracking.

  6. Photoluminescence of Silicon Nanocrystals in Silicon Oxide

    Directory of Open Access Journals (Sweden)

    L. Ferraioli

    2007-01-01

    Full Text Available Recent results on the photoluminescence properties of silicon nanocrystals embedded in silicon oxide are reviewed and discussed. The attention is focused on Si nanocrystals produced by high-temperature annealing of silicon rich oxide layers deposited by plasma-enhanced chemical vapor deposition. The influence of deposition parameters and layer thickness is analyzed in detail. The nanocrystal size can be roughly controlled by means of Si content and annealing temperature and time. Unfortunately, a technique for independently fine tuning the emission efficiency and the size is still lacking; thus, only middle size nanocrystals have high emission efficiency. Interestingly, the layer thickness affects the nucleation and growth kinetics so changing the luminescence efficiency.

  7. Silicon in beer and brewing.

    Science.gov (United States)

    Casey, Troy R; Bamforth, Charles W

    2010-04-15

    It has been claimed that beer is one of the richest sources of silicon in the diet; however, little is known of the relationship between silicon content and beer style and the manner in which beer is produced. The purpose of this study was to measure silicon in a diversity of beers and ascertain the grist selection and brewing factors that impact the level of silicon obtained in beer. Commercial beers ranged from 6.4 to 56.5 mg L(-1) in silicon. Products derived from a grist of barley tended to contain more silicon than did those from a wheat-based grist, likely because of the high levels of silica in the retained husk layer of barley. Hops contain substantially more silicon than does grain, but quantitatively hops make a much smaller contribution than malt to the production of beer and therefore relatively less silicon in beer derives from them. During brewing the vast majority of the silicon remains with the spent grains; however, aggressive treatment during wort production in the brewhouse leads to increased extraction of silicon into wort and much of this survives into beer. It is confirmed that beer is a very rich source of silicon. (c) 2010 Society of Chemical Industry.

  8. 太阳能多晶硅铸锭用石英坩埚氮化硅涂层的免烧工艺%Unfired Process for Silicon Nitride Coating of Quartz Crucible for Solar Poly-silicon Ingots

    Institute of Scientific and Technical Information of China (English)

    周艳华

    2012-01-01

    An unfired process is introduced for the spraying crucible during the production process for the solar poly- silicon ingots. Namely a little water soluble organic matter is added into the silicon nitride slurry(The water soluble organic matter is adhesive, damp-proof agent, dispersant),and then the silicon nitride powder is forcefully adsorbed on the inner wall of the crucible by the chemical adsorption of organic macromolecule and the physical absorption of silicon nitride. Compared to the traditional process which calcinates the spraying crucible at 1050℃ for 21 hours, this process can shorten production cycle, raise production efficiency and economize production cost.%本文介绍一种太阳能多晶硅片生产过程中,喷涂坩蜗免焙烧的工艺,即在氮化硅浆料中加入少许水溶性有机物(粘结剂、防潮剂、分散剂),通过有机高分子的化学吸附和氮化硅粉的物理吸附作用使氮化硅粉强有力地吸附在坩埚内壁,免去了传统工艺中喷涂坩蜗在坩蜗烧结炉中焙烧21h,焙烧温度为1050℃的工艺。与传统工艺相比,此工艺缩短硅片生产周期,提高生产效率,降低生产成本。

  9. Effects of quaternary ammonium silane coatings on mixed fungal and bacterial biofilms on tracheoesophageal shunt prostheses

    NARCIS (Netherlands)

    Oosterhof, JJH; Buijssen, KJDA; Busscher, HJ; van der Laan, BFAM; van der Mei, HC

    2006-01-01

    Two quaternary ammonium silanes (QAS) were used to coat silicone rubber tracheoesophageal shunt prostheses, yielding a positively charged surface. One QAS coating [(trimethoxysilyl)-propyidimethylocta-decylammonium chloride] was applied through chemical bonding, while the other coating, Biocidal ZF,

  10. Evaluation of chemical and structural properties of germanium-carbon coatings deposited by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, Hossein, E-mail: h.jamali@mut-es.ac.ir; Mozafarinia, Reza; Eshaghi, Akbar

    2015-10-15

    Germanium-carbon coatings were deposited on silicon and glass substrates by plasma enhanced chemical vapor deposition (PECVD) using three different flow ratios of GeH{sub 4} and CH{sub 4} precursors. Elemental analysis, structural evaluation and microscopic investigation of coatings were performed using laser-induced breakdown spectroscopy (LIBS), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), respectively. Based on the results, the coatings exhibited a homogeneous and dense structure free of pores with a very good adhesion to substrate. The structural evaluation revealed that the germanium-carbon coatings were a kind of a Ge-rich composite material containing the amorphous and crystalline germanium and amorphous carbon with the mixture of Ge–Ge, Ge–C, C–C, Ge–H and C–H bonds. The result suggested that the amorphisation of the coatings could be increased with raising CH{sub 4}:GeH{sub 4} flow rate ratio and subsequently increasing C amount incorporated into the coating. - Highlights: • Germanium-carbon coatings were prepared by PECVD technique. • The germanium-carbon coatings were a kind of composite material. • The amorphisation of the coatings were increased with raising CH{sub 4}:GeH{sub 4} flow ratio.

  11. A lithium-ion sulfur battery based on a carbon-coated lithium-sulfide cathode and an electrodeposited silicon-based anode.

    Science.gov (United States)

    Agostini, Marco; Hassoun, Jusef; Liu, Jun; Jeong, Moongook; Nara, Hiroki; Momma, Toshiyuki; Osaka, Tetsuya; Sun, Yang-Kook; Scrosati, Bruno

    2014-07-23

    In this paper, we report a lithium-ion battery employing a lithium sulfide cathode and a silicon-based anode. The high capacity of the silicon anode and the high efficiency and cycling rate of the lithium sulfide cathode allowed optimal full cell balance. We show in fact that the battery operates with a very stable capacity of about 280 mAh g(-1) at an average voltage of 1.4 V. To the best of our knowledge, this battery is one of the rare examples of lithium-metal-free sulfur battery. Considering the high theoretical capacity of the employed electrodes, we believe that the battery here reported may be of potential interest as high-energy, safe, and low-cost power source for electric vehicles.

  12. Anti-stiction coating for microelectromechanical devices

    Science.gov (United States)

    Hankins, Matthew G.; Mayer, Thomas M.; Wheeler, David R.

    2006-05-16

    A method for depositing an anti-stiction coating on a MEMS device comprises reacting the vapor of an amino-functionalized silane precursor with a silicon surface of the MEMS device in a vacuum chamber. The method can further comprise cleaning the silicon surface of the MEMS device to form a clean hydroxylated silicon surface prior to reacting the precursor vapor with the silicon surface. The amino-functionalized silane precursor comprises at least one silicon atom, at least one reactive amino (or imine) pendant, and at least one hydrophobic pendant. The amino-functionalized silane precursor is highly reactive with the silicon surface, thereby eliminating the need for a post-process anneal step and enabling the reaction to occur at low pressure. Such vapor-phase deposition of the amino-functionalized silane coating provides a uniform surface morphology and strong adhesion to the silicon surface.

  13. Silicon on ceramic process. Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    Science.gov (United States)

    Zook, J. D.; Heaps, J. D.; Maciolek, R. B.; Koepke, B. G.; Butter, C. D.; Schuldt, S. B.

    1977-01-01

    The technical and economic feasibility of producing solar-cell-quality sheet silicon was investigated. The sheets were made by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress was made in all areas of the program.

  14. Skylab 3600 groove/mm replica grating with a scandium-silicon multilayer coating and high normal-incidence efficiency at 38-nm wavelength.

    Science.gov (United States)

    Seely, John F; Uspenskii, Yu A; Pershin, Yu P; Kondratenko, V V; Vinogradov, A V

    2002-04-01

    A Sc-Si multilayer coating was applied to a replica of the 3600 groove/mm grating, developed for the SO82A spectroheliograph that flew on the Skylab mission, for the purpose of enhancing the normal-incidence efficiency in the extreme-ultraviolet region. The efficiency, measured at an angle of incidence of 6 degrees with synchrotron radiation, had a maximum value of 7.2% at a wavelength of 38 nm and was a factor of 3 higher than the efficiency of the gold-coated Skylab grating. The measured efficiency of the Sc-Si grating was in good agreement with the efficiency calculated by use of the modified integral method.

  15. Preparation and Properties of Antiflashover Coating with High-Hydrophobic Silicone Rubber%高疏水性硅橡胶防污闪涂料的制备及其性能研究

    Institute of Scientific and Technical Information of China (English)

    赵悦菊; 王国刚; 夏兵; 王建辉; 张金玲

    2012-01-01

    以端羟基聚二甲基硅氧烷、不同粒径的改性二氧化硅粒子、硅烷偶联剂及助剂为原料,采用有机-无机杂化纳米技术,制得具有高疏水性能的室温硫化(RTV)硅橡胶防污闪涂料.采用扫描电镜表征了涂层的表面形貌,用静态接触角测试仪测定了二氧化硅用量对涂层的憎水性及憎水迁移性变化.结果表明,固定纳米级二氧化硅的用量,当微米级二氧化硅用量为10份时,涂层表面形成一定的微米二级粗糙结构,涂层表面接触角为131.5°,具有较高的疏水性能;同时,涂层也具有优良的憎水迁移性.此时,硅橡胶的拉伸强度为2.08MPa,伸长率581%,撕裂强度5.65kN/m,体积电阻率1.38×1015Ω·m,污秽湿工频闪络电压3 kV,阻燃性FV-0级.%A new room temperature vulcanized (RTV) antiflashover coating with high hydrophobic surface was prepared with hydroxyl-terminated polydimethylsiloxane, nano-micro silica with deferent diameters, silane coupling agent and other additives via an organic/inorganic hybrid technology by. The results of the morphology of RTV coating by scanning electron microscope (SEM) , the hydrophobicity property and hydro-phobicity transfer property of RTV coating by static contact angle instrument showed that the coating film exhibited excellent hydrophobic property with a water static contact angle of 131. 5° at a loadings of 10 parts of silica nano-micro particles, due to the formation of nano-micro binary structure. The other properties, such as hydrophobic- migration properties were also investigated. The tensile strength of silicone rubber was 2. 08 MPa, elongation was 581% , tear strength was 5. 65% kN/m, volume resistivity was 1. 38×1015Ω·m and the pollution flashover voltage was 3 kV.

  16. Molybdenum enhanced low-temperature deposition of crystalline silicon nitride

    Science.gov (United States)

    Lowden, Richard A.

    1994-01-01

    A process for chemical vapor deposition of crystalline silicon nitride which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide.

  17. Preparation of Si-modified aluminide coating by CVD process%硅改性铝化物涂层的CVD制备工艺

    Institute of Scientific and Technical Information of China (English)

    刘磊; 杨甫; 吴勇

    2016-01-01

    研究了CVD法制备硅改性铝化物涂层工艺。结果表明,采用先渗硅后渗铝的两步法工艺可在Inconel 718表面获得铝-硅涂层。铝-硅涂层分为明显的两层结构,内层富硅,外层富铝。硅的加入阻碍高温条件下Al原子的内扩散,并促进了试样表面Al2 O3膜的生成。铝-硅涂层具有比单一的铝化物涂层更为优秀的耐高温氧化性能。%CVD process was studied to form Silicon modified aluminide coatings. The results show that Al-Si coatings can be formed on the surface of Inconel 718 nickel-based super alloy by two steps method. The first step is siliconizing and second step is aluminizing. The Al-Si coatings is two layers structure in which the inner layer is Si-rich and outer layer is Al-rich. The addition of Si decreases the internal diffusion rate of Al atoms under high temperature, and promote the formation of Al2 O3 film on the surface. The high temperature oxidation resistance of Al-Si coatings is better than that of single aluminide coatings.

  18. Solid electrolyte coated high voltage layered–layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2

    Energy Technology Data Exchange (ETDEWEB)

    Martha, Surendra K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Nanda, Jagjit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Kim, Yoongu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Unocic, Raymond R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Pannala, Sreekanth [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division; Dudney, Nancy J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division

    2013-03-01

    We find that the electrochemical rate performance and capacity retention of the “layered–layered” lithium rich Li1.2Mn0.525Ni0.175Co0.1O2(Li-rich NMC) material are significantly improved by a nanometer layer coating of a lithium conducting solid electrolyte, lithium phosphorus oxynitride (LiPON). The LiPON layer is deposited on the Li-rich NMC particles by the RF-magnetron sputtering method. The presence of the LiPON layer provides interfacial stability under high current (rate) and voltage cycling conditions and thereby improves the capacity retention over cycle life compared to pristine or uncoated Li-rich NMC. Specifically, the LiPON coated Li-rich NMC composite electrode showed stable reversible capacities of >275 mAh g-1 when cycled to 4.9 V for more than 300 cycles, and showed at least threefold improvements in the rate performance compared to the uncoated electrode compositions. Increasing the LiPON layer thickness beyond a few nanometers leads to capacity fade due to increasing electronic resistance. Lastly, detailed microstructural and electrochemical impedance spectroscopy studies are undertaken to characterize and understand the role of LiPON in improving the interfacial stability and electrochemical activity at the interface.

  19. Characterizations of Tb:Zn2SiO4 films on silicon wafer prepared by sol-gel dip-coating and solid-phase reaction

    Institute of Scientific and Technical Information of China (English)

    Ji Zhen-Guo; Zhao Shi-Chao; Xiang Yin; Song Yong-Liang; Ye Zhi-Zhen

    2004-01-01

    Terbium-doped Zn2SiO4 films were successfully prepared on Si wafers by a simple sol-gel dip-coating and solidphase reaction method of ZnO and SiO2. X-ray diffraction (XRD) and UV-Vis absorption results revealed that films processed below 850℃ were ZnO in wurzite structure, and films processed above 850℃ were Zn2SiO4 in wellimite structure. Photoluminescence measurements of the Tb-doped Zn2SiO4 films showed two strong emission bands at 490and 545nm. The photoluminescence lifetime was 4.6ms.

  20. 复合电刷镀镍-钨-钴-纳米碳化硅及其性能%Electro-brush plating of nickel-tungsten-cobalt-nano silicon carbide composite coating and its properties

    Institute of Scientific and Technical Information of China (English)

    陈大川; 谢光荣; 曾鹏; 李程飞; 许小东

    2016-01-01

    A Ni-W-Co-n-SiC (nano silicon carbide) composite coating was prepared on the surface of 45 steel by electro-brush plating. The bath composition and process conditions are as follows: NiSO4·7H2O 393 g/L, Na2WO4·2H2O 23 g/L, H3BO331 g/L, citric acid 42 g/L, Na2SO46.5 g/L, CoSO4·7H2O 3 g/L, NaF 5 g/L,n-SiC 0-30 g/L, temperature 25-45 °C, pH 1.4-2.4, voltage 5-7 V, moving rate of plating pen 0.8 m/s and time 25 min. The suitable voltage for composite electro-brush plating was determined as 6 V based on the evaluation of appearance using a Ni-W-Co alloy coating as the standard. The effect ofn-SiC content in bath on the structure, microhardness and friction-wear performance of the nanocomposite coating was studied. The results showed that a crack-free Ni-W-Co-n-SiC composite coating with uniformly distributed particles can be obtained from the bath containing 15-25 g/L SiC nanoparticles. With increasingn-SiC content in bath, the crystallization degree, solid solubility of Ni, as well as microhardness and wear resistance of composite coating are increased, while the friction coefficient of the composite coating surface is changed little.%采用电刷镀工艺在45钢表面制备了Ni-W-Co-n-SiC(纳米碳化硅)复合镀层,镀液组成和工艺条件为:NiSO4·7H2O 393 g/L,Na2WO4·2H2O 23 g/L,H3BO331 g/L,柠檬酸42 g/L,Na2SO46.5 g/L,CoSO4·7H2O 3 g/L,NaF 5 g/L,n-SiC 0~30 g/L,温度25~45°C,pH 1.4~2.4,电压5~7 V,镀笔速率0.8 m/s,时间25 min.以Ni-W-Co合金镀层的外观为指标,筛选得到较适合的复合电刷镀电压为6 V.研究了镀液n-SiC含量对镀层的组织结构、显微硬度和摩擦磨损性能的影响.结果表明,镀液中n-SiC含量为15~25 g/L时,可以获得颗粒均匀分布、无微裂纹的Ni-W-Co-n-SiC复合镀层.随镀液中n-SiC含量增大,复合镀层的晶化程度、Ni固溶度和显微硬度均提高,耐磨性改善,但摩擦因数的变化不大.

  1. Optimization of Drilling Parameters for Reducing the Burr Height in Machining the Silicon Carbide Particle (SiCp) Coated with Multi Wall Carbon Nano Tubes (MWCNT) Reinforced in Aluminum Alloy (A 356) Using Meta Modeling Approach

    Science.gov (United States)

    Sangeetha, M.; Prakash, S.

    2017-05-01

    This paper explains the optimization of drilling parameters using meta modeling approach to reduce the burr height while machining Silicon Carbide Particle (SiCp) coated with Multi Wall Carbon Nano Tubes (MWCNT) and reinforced in aluminum alloy (A 356). The specimen is prepared by the combination of sonication and stir casting processes. The volume fraction of MWCNT used is 1.5% and the volume fraction of SiCp is 10%. The combination of input parameters for drilling the holes is designed using Taguchi experimental design technique. The input parameters chosen for drilling operations are spindle speed, feed rate and drill diameter. The ranges of input parameters are listed in Table 1. The tools used for drilling operation are made up of solid carbide drill bit. Meta model is a mathematical and statistical model whose second-order model can be fitted by factorial design. The optimization model can be improved significantly by the second-order model compared to the first-order model. Twenty-seven holes are drilled using vertical machining center in the prepared specimen (A 356/MWCNT coated SiCp). Desirability function shows the optimized values of input parameters to obtain minimum burr height. Meta modeling approach is used to design a model using input parameters and output response burr height. The residuals plot shows the predicted values are closer to the measured values. This plot explains that the Meta model is adequately used to predict the burr height. The optimized values of input parameters for obtaining minimum burr height are the combination of high speed, low feed and low drill diameter. The minimum value of burr height observed in this experiment is 0.002mm and it is obtained in the optimized combination of N3, f1 and d1.

  2. Sol-gel antireflective coating on plastics

    Science.gov (United States)

    Ashley, Carol S.; Reed, Scott T.

    1990-01-01

    An antireflection film made from a reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  3. Correlation between the fine structure of spin-coated PEDOT:PSS and the photovoltaic performance of organic/crystalline-silicon heterojunction solar cells

    Science.gov (United States)

    Funda, Shuji; Ohki, Tatsuya; Liu, Qiming; Hossain, Jaker; Ishimaru, Yoshihiro; Ueno, Keiji; Shirai, Hajime

    2016-07-01

    We investigated the relationship between the fine structure of spin-coated conductive polymer poly(3,4-ethylenedioxythiphene):poly(styrene sulfonate) (PEDOT:PSS) films and the photovoltaic performance of PEDOT:PSS crystalline-Si (PEDOT:PSS/c-Si) heterojunction solar cells. Real-time spectroscopic ellipsometry revealed that there were two different time constants for the formation of the PEDOT:PSS network. Upon removal of the polar solvent, the PEDOT:PSS film became optically anisotropic, indicating a conformational change in the PEDOT and PSS chain. Polarized Fourier transform infrared attenuated total reflection absorption spectroscopy and Raman spectroscopy measurements also indicated that thermal annealing promoted an in-plane π-conjugated Cα = Cβ configuration attributed to a thiophene ring in PEDOT and an out-of-plane configuration of -SO3 groups in the PSS chain with increasing composition ratio of oxidized (benzoid) to neutral (quinoid) PEDOT, Iqui/Iben. The highest power conversion efficiency for the spin-coated PEDOT:PSS/c-Si heterojunction solar cells was 13.3% for Iqui/Iben = 9-10 without employing any light harvesting methods.

  4. Low cost silicon-on-ceramic photovoltaic solar cells

    Science.gov (United States)

    Koepke, B. G.; Heaps, J. D.; Grung, B. L.; Zook, J. D.; Sibold, J. D.; Leipold, M. H.

    1980-01-01

    A technique has been developed for coating low-cost mullite-based refractory substrates with thin layers of solar cell quality silicon. The technique involves first carbonizing one surface of the ceramic and then contacting it with molten silicon. The silicon wets the carbonized surface and, under the proper thermal conditions, solidifies as a large-grained sheet. Solar cells produced from this composite silicon-on-ceramic material have exhibited total area conversion efficiencies of ten percent.

  5. Prospective, multi-center evaluation of a silicon carbide coated cobalt chromium bare metal stent for percutaneous coronary interventions: Two-year results of the ENERGY Registry

    Energy Technology Data Exchange (ETDEWEB)

    Erbel, Raimund, E-mail: erbel@uk-essen.de [Department of Cardiology, University of Duisburg-Essen, Essen (Germany); Eggebrecht, Holger [Cardioangiological Center Bethanien (CCB), Frankfurt (Germany); Roguin, Ariel [Department of Cardiology, Rambam Medical Center, Haifa (Israel); Schroeder, Erwin [Division of Cardiovascular Medicine, Cliniques Universitaires de Mont-Godinne, Yvoir (Belgium); Philipp, Sebastian [Department Internal Medicine/Cardiology, Elbe Klinikum Stade, Stade (Germany); Heitzer, Thomas [Department of Cardiology, Heart Center Dortmund, Dortmund (Germany); Schwacke, Harald [Department of Internal Medicine, Diakonissen-Stiftungs- Krankenhaus Speyer (Germany); Ayzenberg, Oded [The Heart Institute, Kaplan Medical Center, Rehovot (Israel); Serra, Antonio [Servicio de Cardiología, Hospital de la Santa Creu i Sant Pau, Barcelona, España (Spain); Delarche, Nicolas [Cardiology unit, Pau General Hospital, Pau (France); Luchner, Andreas [Department of Internal Medicine/Cardiology, Universitätsklinikum Regensburg (Germany); Slagboom, Ton [Department of Cardiology, Onze Lieve Vrouwe Gasthuis, Amsterdam (Netherlands)

    2014-11-15

    Background: Novel bare metal stents with improved stent design may become a viable alternative to drug-eluting stents in certain patient groups, particularly, when long-term dual antiplatelet therapy should be avoided. Purpose: The ENERGY registry aimed to assess the safety and benefits of a cobalt–chromium thin strut bare metal stent with a passive coating in a large series of patients under real-world conditions. Methods and materials: This prospective registry recruited 1016 patients with 1074 lesions in 48 centers from April to November 2010. The primary endpoint was the rate of major adverse cardiac events (MACEs), a composite of cardiac death, myocardial infarction and clinically driven target lesion revascularization. Results: More than half of the lesions (61.0%) were type A/B1 lesions, mean lesion length was 14.5 ± 6.5 mm and mean reference vessel diameter 3.2 ± 0.5 mm. MACE rates at 6, 12 and 24 months were 4.9%, 8.1% and 9.4%, target lesion revascularization rates 2.8%, 4.9% and 5.4% and definite stent thrombosis rates 0.5%, 0.6% and 0.6%. Subgroups showed significant differences in baseline and procedural characteristics which did not translate into significantly different clinical outcomes. Specifically, MACE rates at 24 months were 13.5% in diabetics, 8.6% in small stents and 9.6% in acute coronary syndrome patients. Conclusion: The population of ENERGY reflects real-world conditions with bare metal stents being mainly used in simple lesions. In this setting, percutaneous coronary intervention using a cobalt–chromium thin strut bare metal stent with a passive coating showed very good results up to 24 months. (ClinicalTrials.gov:NCT01056120) Summary for annotated table of contents: The ENERGY international registry evaluated the safety and benefits of a cobalt–chromium thin strut bare metal stent with passive coating in 1016 patients under real-world conditions until 2 years. Results were encouraging with a low composite rate of cardiac death

  6. Comparison of the performance of cop-coated and pt-coated radial junction n+p-silicon microwire-array photocathodes for the sunlight-driven reduction of water to H2(g)

    DEFF Research Database (Denmark)

    Roske, Christopher W.; Popczun, Eric J.; Seger, Brian

    2015-01-01

    of continuous operation and produced an open-circuit photovoltage (Voc) of 0.48 V, a light-limited photocurrent density (Jph) of 17 mA cm-2, a fill factor (ff) of 0.24, and an ideal regenerative cell efficiency (ηIRC) of 1.9% under simulated 1 Sun illumination. Pt-coated (0.5 mg cm-2) n+p-Si MW......-array photocathodes produced Voc = 0.44 V, Jph = 14 mA cm-2, ff = 0.46, and η = 2.9% under identical conditions. Thus, the MW geometry allows the fabrication of photocathodes entirely comprised of earth-abundant materials that exhibit performance comparable to that of devices that contain Pt....

  7. RuO2 thin films deposited by spin coating on silicon substrates: pH-dependence of the microstructure and catalytic properties.

    Science.gov (United States)

    Nowakowski, P; Kopia, A; Villain, S; Fremy, M-A; Kusinski, J; Gavarri, J-R

    2010-03-01

    RuO(2) thin films have been deposited on Si substrates by spin coating with precursor solutions having a pH varying between 1.4 and 4. X-ray diffraction and transmission electron microscopy analyses are used to determine correlations between the solution pH and the film microstructure. As the pH varies, the RuO(2) crystal sizes reach a minimum value then increase; the porosity increases at the substrate/film interface with formation of large cavities. The catalytic activity of these RuO(2) layers in the presence of flowing air-methane is analysed by Fourier transform infrared spectroscopy of the conversion of CH(4) into CO(2). The increasing porosity seems to improve the catalytic conversion rate of methane. Electrical impedance spectroscopy analyses show that the conductivity strongly depends on the thin-film microstructure and porosity.

  8. Simple Approach to Superamphiphobic Overhanging Silicon Nanostructures

    DEFF Research Database (Denmark)

    Kumar, Rajendra; Mogensen, Klaus Bo; Bøggild, Peter

    2010-01-01

    Superhydrophobic silicon nanostructures were fabricated by anisotropic etching of silicon coated with a thin hydrophobic layer. At certain etch parameters, overhanging nanostructures form at the apexes of the rod-shaped tips, This leads to superoleophobic behavior for several oily liquids...... with contact angles up to 152 degrees and roll-off angle down to 8 degrees. Such nonlithographic nanoscale overhanging Structures can also be added to silicon nanograss by deposition of a thin SiO2 layer, which equips the silicon rods with 100-300 nm sized overhanging Structures. This is a simple, fast...

  9. Fluorine Based Superhydrophobic Coatings

    Directory of Open Access Journals (Sweden)

    Jean-Denis Brassard

    2012-05-01

    Full Text Available Superhydrophobic coatings, inspired by nature, are an emerging technology. These water repellent coatings can be used as solutions for corrosion, biofouling and even water and air drag reduction applications. In this work, synthesis of monodispersive silica nanoparticles of ~120 nm diameter has been realized via Stöber process and further functionalized using fluoroalkylsilane (FAS-17 molecules to incorporate the fluorinated groups with the silica nanoparticles in an ethanolic solution. The synthesized fluorinated silica nanoparticles have been spin coated on flat aluminum alloy, silicon and glass substrates. Functionalization of silica nanoparticles with fluorinated groups has been confirmed by Fourier Transform Infrared spectroscopy (FTIR by showing the presence of C-F and Si-O-Si bonds. The water contact angles and surface roughness increase with the number of spin-coated thin films layers. The critical size of ~119 nm renders aluminum surface superhydrophobic with three layers of coating using as-prepared nanoparticle suspended solution. On the other hand, seven layers are required for a 50 vol.% diluted solution to achieve superhydrophobicity. In both the cases, water contact angles were more than 150°, contact angle hysteresis was less than 2° having a critical roughness value of ~0.700 µm. The fluorinated silica nanoparticle coated surfaces are also transparent and can be used as paint additives to obtain transparent coatings.

  10. Three-dimensional architecture of lithium-anodes made from graphite fibers coated with thin-films of silicon oxycarbide: Design, performance and manufacturability

    Science.gov (United States)

    Saleh, Ibrahim; Raj, Rishi

    2016-04-01

    Silicon oxycarbide (SiCO) is an amorphous molecular network of Sisbnd Csbnd O tetrahedra anchored to graphene-like carbon. The graphene forms a three dimensional cellular network with a domain size of ∼5 nm. Therefore nanometer thick films of SiCO grown on graphite may be expected to have unusual behavior. We grow these films on a bed of commercially available graphite fibers that serve the dual function of a current collector. The electrochemical behavior of the composite is measured as a function of the thickness of the SiCO films. Thick films approach the typical behavior of bulk SiCO (which has three times the capacity of graphite, but suffers from poor first cycle efficiency). However, films, approximately 100 nm thick, show high first cycle efficiency as well as high capacity. The composite performs better than the prediction from the rule-of-mixtures, which further substantiates the unusual behavior of the thin-film architecture. The Raman spectra of these thin films also differ from bulk SiCO. The development of thin graphite fibers, with a high surface to volume ratio that have the same capacity as the current graphite-powder technology, coupled with manufacturing of these thin-films by a liquid-polymer precursor based process, can propel these results toward commercialization.