WorldWideScience

Sample records for rhythmic ventral root

  1. Ultrastructural changes of compressed lumbar ventral nerve roots following decompression

    International Nuclear Information System (INIS)

    El-Barrany, Wagih G.; Hamdy, Raid M.; Al-Hayani, Abdulmonem A.; Jalalah, Sawsan M.; Al-Sayyad, Mohammad J.

    2006-01-01

    To study whether there will be permanent lumbar nerve rot scanning or degeneration secondary to continuous compression followed by decompression on the nerve roots, which can account for postlaminectomy leg weakness or back pain. The study was performed at the Department of Anatomy, Faulty of Medicine, king Abdulaziz University, Jeddah, Kingdom of Saudi Arabia during 2003-2005. Twenty-six adult male New Zealand rabbits were used in the present study. The ventral roots of the left fourth lumbar nerve were clamped for 2 weeks then decompression was allowed by removal of the clips. The left ventral roots of the fourth lumbar nerve were excised for electron microscopic study. One week after nerve root decompression, the ventral root peripheral to the site of compression showed signs of Wallerian degeneration together with signs of regeneration. Schwann cells and myelinated nerve fibers showed severe degenerative changes. Two weeks after decompression, the endoneurium of the ventral root showed extensive edema with an increase in the regenerating myelinated and unmyentilated nerve fibers, and fibroblasts proliferation. Three weeks after decompression, the endoneurium showed an increase in the regenerating myelinated and unmyelinated nerve fibers with diminution of the endoneurial edema, and number of macrophages and an increase in collagen fibrils. Five and 6 weeks after decompression, the endoneurium showed marked diminution of the edema, macrophages, mast cells and fibroblasts. The enoneurium was filed of myelinated and unmyelinated nerve fibers and collagen fibrils. Decompression of the compressed roots of a spinal nerve is followed by regeneration of the nerve fibers and nerve and nerve recovery without endoneurial scarring. (author)

  2. Rhythmic activity of feline dorsal and ventral spinocerebellar tract neurons during fictive motor actions

    DEFF Research Database (Denmark)

    Fedirchuk, Brent; Stecina, Katinka; Kristensen, Kasper Kyhl

    2013-01-01

    (without phasic afferent feedback). In this study, we compared the activity of DSCT and VSCT neurons during fictive rhythmic motor behaviors. We used decerebrate cat preparations in which fictive motor tasks can be evoked while the animal is paralyzed and there is no rhythmic sensory input from hindlimb......Neurons of the dorsal spinocerebellar tracts (DSCT) have been described to be rhythmically active during walking on a treadmill in decerebrate cats, but this activity ceased following deafferentation of the hindlimb. This observation supported the hypothesis that DSCT neurons primarily relay...

  3. DORSAL ROOT REGENERATION INTO TRANSPLANTS OF DORSAL OR VENTRAL HALF OF EMBRYONIC SPINAL CORD

    OpenAIRE

    Ohta, Tohru; Itoh, Yasunobu; Tessler, Alan; Mizoi, Kazuo

    2009-01-01

    Adult cut dorsal root axons regenerate into the transplants of embryonic spinal cord (ESC) and form functional synapses within the transplants. It is unknown whether the growth is specific to transplants of dorsal half of ESC, a normal target of most dorsal root axons, or whether it is due to properties shared by transplants of ventral half of ESC. We used calcitonin gene-related peptide (CGRP) immunohistochemistry to label to the subpopulations of regenerated adult dorsal root axons, quantit...

  4. Identification of dorsal root synaptic terminals on monkey ventral horn cells by electron microscopic autoradiography

    International Nuclear Information System (INIS)

    Ralston, H.J.; Ralston, D.D.

    1979-01-01

    The projection of dorsal root fibres to the motor nucleus of the macaque monkey spinal cord has been examined utilizing light and electron microscopic autoradiography. Light microscopy demonstrates a very sparse labelling of primary afferent fibres in the ventral horn. Silver grains overlying radioactive sources are frequently clustered into small groups, often adjacent to dendritic profiles. Under the electron microscope, myelinated axons and a few large synaptic profiles containing rounded synaptic vesicles were overlain by numerous silver grains. These labelled profiles made synaptic contact with dendrites 1 - 3 micrometers in diameter. The labelled profiles did not contact cell bodies or large proximal dendrites of ventral horn neutrons. Frequently, small synaptic profiles containing flattened vesicles were presynaptic to the large labelled terminals and it is suggested that these axoaxonal synapses may mediate presynaptic inhibition of the primary afferent fibres. The relationship of the present findings to previously published physiological and anatomical studies is discussed. (author)

  5. Observations at the CNS-PNS border of ventral roots connected to a neuroma

    Directory of Open Access Journals (Sweden)

    Sten Remahl

    2010-10-01

    Full Text Available Previous studies have shown that numerous sprouts originating from a neuroma, after nerve injury in neonatal animals, can invade spinal nerve roots. In this study the border between the central and peripheral nervous system (CNS-PNS border of ventral roots in kittens was examined with both light and electron microscopy after early postnatal sciatic nerve resection. A transient ingrowth of substance P positive axons was observed into the CNS, but no spouts remained 6 weeks after the injury. Using serial sections and electron microscopy it was possible to identify small bundles of unmyelinated axons that penetrated from the root fascicles for a short distance into the CNS. These axons ended blindly, sometimes with a growth cone-like terminal swelling filled with vesicles. The axon bundles were accompanied by p75 positive cells in both the root fascicles and the pia mater, but not in the CNS. It may thus be suggested that neurotrophin presenting p75 positive cells could facilitate axonal growth into the pia mater and that the lack of such cells in the CNS compartment might contribute to the failure of growth into the CNS. A maldevelopment of myelin sheaths at the CNS-PNS border of motor axons was observed and it seems possible that this could have consequences for the propagation of action potential across this region after neonatal nerve injury.

  6. [EFFECTIVENESS OF ADVANCED SKIN FLAP AND V-SHAPED VENTRAL INCISION ALONG THE ROOT OF PENILE SHAFT FOR CONCEALED PENIS].

    Science.gov (United States)

    Lin, Junshan; Li, Dumiao; Zhang, Jianxing; Wu, Qiang; Xu, Yali; Lin, Li

    2015-09-01

    To investigate effectiveness of advanced skin flap and V-shaped ventral incision along the root of penile shaft for concealed penis in children. Between July 2007 and January 2015, 121 boys with concealed penis were treated with advanced skin flap and V-shaped ventral incision along the root of penile shaft. The age varied from 18 months to 13 years (mean, 7.2 years). Repair was based on a vertical incision in median raphe, complete degloving of penis and tacking its base to the dermis of the skin. Advanced skin flap and a V-shaped ventral incision along the root of penile shaft were used to cover the penile shaft. The operation time ranged from 60 to 100 minutes (mean, 75 minutes). Disruption of wound occurred in 1 case, and was cured after dressing change; and primary healing of incision was obtained in the others. The follow-up period ranged from 3 months to 7 years (median, 24 months). All patients achieved good to excellent cosmetic results with a low incidence of complications. The results were satisfactory in exposure of penis and prepuce appearance. No obvious scar was observed. The penis had similar appearance to that after prepuce circumcision. A combination of advanced skin flap and V-shaped ventral incision along the root of penile shaft is a simple, safe, and effective procedure for concealed penis with a similar appearance result to the prepuce circumcision.

  7. Motor Recovery and Synaptic Preservation after Ventral Root Avulsion and Repair with a Fibrin Sealant Derived from Snake Venom

    Science.gov (United States)

    Barbizan, Roberta; Castro, Mateus V.; Rodrigues, Antônio C.; Barraviera, Benedito; Ferreira, Rui S.; Oliveira, Alexandre L. R.

    2013-01-01

    Background Ventral root avulsion is an experimental model of proximal axonal injury at the central/peripheral nervous system interface that results in paralysis and poor clinical outcome after restorative surgery. Root reimplantation may decrease neuronal degeneration in such cases. We describe the use of a snake venom-derived fibrin sealant during surgical reconnection of avulsed roots at the spinal cord surface. The present work investigates the effects of this fibrin sealant on functional recovery, neuronal survival, synaptic plasticity, and glial reaction in the spinal motoneuron microenvironment after ventral root reimplantation. Methodology/Principal Findings Female Lewis rats (7 weeks old) were subjected to VRA and root replantation. The animals were divided into two groups: 1) avulsion only and 2) replanted roots with fibrin sealant derived from snake venom. Post-surgical motor performance was evaluated using the CatWalk system twice a week for 12 weeks. The rats were sacrificed 12 weeks after surgery, and their lumbar intumescences were processed for motoneuron counting and immunohistochemistry (GFAP, Iba-1 and synaptophysin antisera). Array based qRT-PCR was used to evaluate gene regulation of several neurotrophic factors and receptors as well as inflammatory related molecules. The results indicated that the root reimplantation with fibrin sealant enhanced motor recovery, preserved the synaptic covering of the motoneurons and improved neuronal survival. The replanted group did not show significant changes in microglial response compared to VRA-only. However, the astroglial reaction was significantly reduced in this group. Conclusions/Significance In conclusion, the present data suggest that the repair of avulsed roots with snake venom fibrin glue at the exact point of detachment results in neuroprotection and preservation of the synaptic network at the microenvironment of the lesioned motoneurons. Also such procedure reduced the astroglial reaction and

  8. Motor recovery and synaptic preservation after ventral root avulsion and repair with a fibrin sealant derived from snake venom.

    Directory of Open Access Journals (Sweden)

    Roberta Barbizan

    Full Text Available BACKGROUND: Ventral root avulsion is an experimental model of proximal axonal injury at the central/peripheral nervous system interface that results in paralysis and poor clinical outcome after restorative surgery. Root reimplantation may decrease neuronal degeneration in such cases. We describe the use of a snake venom-derived fibrin sealant during surgical reconnection of avulsed roots at the spinal cord surface. The present work investigates the effects of this fibrin sealant on functional recovery, neuronal survival, synaptic plasticity, and glial reaction in the spinal motoneuron microenvironment after ventral root reimplantation. METHODOLOGY/PRINCIPAL FINDINGS: Female Lewis rats (7 weeks old were subjected to VRA and root replantation. The animals were divided into two groups: 1 avulsion only and 2 replanted roots with fibrin sealant derived from snake venom. Post-surgical motor performance was evaluated using the CatWalk system twice a week for 12 weeks. The rats were sacrificed 12 weeks after surgery, and their lumbar intumescences were processed for motoneuron counting and immunohistochemistry (GFAP, Iba-1 and synaptophysin antisera. Array based qRT-PCR was used to evaluate gene regulation of several neurotrophic factors and receptors as well as inflammatory related molecules. The results indicated that the root reimplantation with fibrin sealant enhanced motor recovery, preserved the synaptic covering of the motoneurons and improved neuronal survival. The replanted group did not show significant changes in microglial response compared to VRA-only. However, the astroglial reaction was significantly reduced in this group. CONCLUSIONS/SIGNIFICANCE: In conclusion, the present data suggest that the repair of avulsed roots with snake venom fibrin glue at the exact point of detachment results in neuroprotection and preservation of the synaptic network at the microenvironment of the lesioned motoneurons. Also such procedure reduced the

  9. Plasticity of Select Primary Afferent Projections to the Dorsal Horn after a Lumbosacral Ventral Root Avulsion Injury and Root Replantation in Rats

    Directory of Open Access Journals (Sweden)

    Allison J. Bigbee

    2017-07-01

    Full Text Available Injuries to the conus medullaris and cauda equina portions of the spinal cord result in neurological impairments, including paralysis, autonomic dysfunction, and pain. In experimental studies, earlier investigations have shown that a lumbosacral ventral root avulsion (VRA injury results in allodynia, which may be ameliorated by surgical replantation of the avulsed ventral roots. Here, we investigated the long-term effects of an L6 + S1 VRA injury on the plasticity of three populations of afferent projections to the dorsal horn in rats. At 8 weeks after a unilateral L6 + S1 VRA injury, quantitative morphological studies of the adjacent L5 dorsal horn showed reduced immunoreactivity (IR for the vesicular glutamate transporter, VGLUT1 and isolectin B4 (IB4 binding, whereas IR for calcitonin gene-related peptide (CGRP was unchanged. The IR for VGLUT1 and CGRP as well as IB4 binding was at control levels in the L5 dorsal horn at 8 weeks following an acute surgical replantation of the avulsed L6 + S1 ventral roots. Quantitative morphological studies of the L5 dorsal root ganglia (DRGs showed unchanged neuronal numbers for both the VRA and replanted series compared to shams. The portions of L5 DRG neurons expressing IR for VGLUT1 and CGRP, and IB4 binding were also the same between the VRA, replanted, and sham-operated groups. We conclude that the L5 dorsal horn shows selective plasticity for VGLUT1 and IB4 primary afferent projections after an L6 + S1 VRA injury and surgical repair.

  10. Rhythmical changes of a level nitric oxide (NO in roots etiolated seedlings of pea (Pisum sativum L. and influence of exogenous calcium

    Directory of Open Access Journals (Sweden)

    A.K. Glyan’ko

    2014-12-01

    Full Text Available Studied time dynamics (during 60 mines a level oxide nitric (NO in cross cuts of roots 2 – day etiolated seedlings of pea sowing (Pisum sativum L. by use of fluorescent probe DAF-2DA and a fluorescent microscope depending on action exogenous calcium (Ca2+. During an exposition of seedlings on water, solution CaCl2 are shown fluctuation in level NO in roots – his increase and decrease that testifies to the certain rhythm in generation NO. Exogenous factors (Ca2+ change time dynamics of level NO in comparison with variant “water”. Ca2+chelate EGTA removes action exogenous calcium on rhythmical change of a level NO in roots. Results are discussed in aspect of close interference of signaling systems and molecules (Ca2+, NO, Н2О2.

  11. Selective plasticity of primary afferent innervation to the dorsal horn and autonomic nuclei following lumbosacral ventral root avulsion and reimplantation in long term studies.

    Science.gov (United States)

    Wu, Lisa; Wu, Jun; Chang, Huiyi H; Havton, Leif A

    2012-02-01

    Previous studies involving injuries to the nerves of the cauda equina and the conus medullaris have shown that lumbosacral ventral root avulsion in rat models results in denervation and dysfunction of the lower urinary tract, retrograde and progressive cell death of the axotomized motor and parasympathetic neurons, as well as the emergence of neuropathic pain. Root reimplantation has also been shown to ameliorate several of these responses, but experiments thus far have been limited to studying the effects of lesion and reimplantation local to the lumbosacral region. Here, we have expanded the region of investigation after lumbosacral ventral root avulsion and reimplantation to include the thoracolumbar sympathetic region of the spinal cord. Using a retrograde tracer injected into the major pelvic ganglion, we were able to define the levels of the spinal cord that contain sympathetic preganglionic neurons innervating the lower urinary tract. We have conducted studies on the effects of the lumbosacral ventral root avulsion and reimplantation models on the afferent innervation of the dorsal horn and autonomic nuclei at both thoracolumbar and lumbosacral levels through immunohistochemistry for the markers calcitonin gene-related peptide (CGRP) and vesicular glutamate transporter 1 (VGLUT1). Surprisingly, our experiments reveal a selective and significant decrease of CGRP-positive innervation in the dorsal horn at thoracolumbar levels that is partially restored with root reimplantation. However, no similar changes were detected at the lumbosacral levels despite the injury and repair targeting efferent neurons, and being performed at the lumbosacral levels. Despite the changes evident in the thoracolumbar dorsal horn, we find no changes in afferent innervation of the autonomic nuclei at either sympathetic or parasympathetic segmental levels by CGRP or VGLUT1. We conclude that even remote, efferent root injuries and repair procedures can have an effect on remote and non

  12. Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis).

    Science.gov (United States)

    Böser, S; Dournon, C; Gualandris-Parisot, L; Horn, E

    2008-03-01

    During early periods of life, modifications of the gravitational environment affect the development of sensory, neuronal and motor systems. The vestibular system exerts significant effects on motor networks that control eye and body posture as well as swimming. The objective of the present study was to study whether altered gravity (AG) affects vestibuloocular and spinal motor systems in a correlated manner. During the French Soyuz taxi flight Andromède to the International Space Station ISS (launch: October 21, 2001; landing: October 31, 2001) Xenopus laevis embryos were exposed for 10 days to microgravity (microg). In addition, a similar experiment with 3g-hypergravity (3g) was performed in the laboratory. At onset of AG, embryos had reached developmental stages 24 to 27. After exposure to AG, each tadpole was tested for its roll-induced vestibuloocular reflex (rVOR) and 3 hours later it was tested for the neuronal activity recorded from the ventral roots (VR) during fictive swimming. During the post-AG recording periods tadpoles had reached developmental stages 45 to 47. It was observed that microgravity affected VR activity during fictive swimming and rVOR. In particular, VR activity changes included a significant decrease of the rostrocaudal delay and a significant increase of episode duration. The rVOR-amplitude was transiently depressed. Hypergravity was less effective on the locomotor pattern; occurring effects on fictive swimming were the opposite of microg effects. As after microgravity, the rVOR was depressed after 3g-exposure. All modifications of the rVOR and VR-activity recovered to normal levels within 4 to 7 days after termination of AG. Significant correlations between the rVOR amplitude and VR activity of respective tadpoles during the recording period have been observed in both tadpoles with or without AG experience. The data are consistent with the assumptions that during this period of life which is characterized by a progressive development

  13. Rhythmic interaction in VR

    DEFF Research Database (Denmark)

    Erkut, Cumhur

    2017-01-01

    Cinematic virtual reality is a new and relatively unexplored area in academia. While research in guiding the spectator's attention in this new medium has been conducted for some time, a focus on editing in conjunction with spectator orientation is only currently emerging. In this paper, we consid...... in rhythm perception, and complement it with applications in traditional editing. Through the notion of multimodal listening we provide guidelines that can be used in rhythmic and sonic interaction design in VR....

  14. Rhythmic complexity and predictive coding

    DEFF Research Database (Denmark)

    Vuust, Peter; Witek, Maria A G

    2014-01-01

    Musical rhythm, consisting of apparently abstract intervals of accented temporal events,has a remarkable capacity to move our minds and bodies. How does the cognitive systemenable our experiences of rhythmically complex music? In this paper, we describe somecommon forms of rhythmic complexity...

  15. Drumming with dopamine neurons : Resonance and synchronization in the Ventral Tegmental Area

    NARCIS (Netherlands)

    van der Velden, L.J.J.

    2018-01-01

    The ventral tegmental area (VTA) is a dopaminergic nucleus in the midbrain with the propensity to exhibit spontaneous intrinsic rhythmic activity in the 1-5 Hz frequency range (ex vivo). Here, we combine in-vitro simultaneous action potential recording from a 60 channel multi-electro-array with

  16. Ventral hernia repair

    Science.gov (United States)

    ... incarcerated) in the hernia and become impossible to push back in. This is usually painful. The blood supply ... you are lying down or that you cannot push back in. Risks The risks of ventral hernia repair ...

  17. Torakal Ventral Cord Herniation

    Directory of Open Access Journals (Sweden)

    Sermin Tok

    2015-11-01

    Full Text Available  Ventral cord herniation is a rare cause of focal myelopathy due to herniation of the thoracic cord through a dural defect.It is also known by a variety of other terms such as spontaneous thoracic cord herniation or idiopathic spinal cord herniation.The key feature is focal distortion and rotation of the cord with no CSF seen between it and the ventral theca.

  18. Evidence for Multiple Rhythmic Skills.

    Directory of Open Access Journals (Sweden)

    Adam Tierney

    Full Text Available Rhythms, or patterns in time, play a vital role in both speech and music. Proficiency in a number of rhythm skills has been linked to language ability, suggesting that certain rhythmic processes in music and language rely on overlapping resources. However, a lack of understanding about how rhythm skills relate to each other has impeded progress in understanding how language relies on rhythm processing. In particular, it is unknown whether all rhythm skills are linked together, forming a single broad rhythmic competence, or whether there are multiple dissociable rhythm skills. We hypothesized that beat tapping and rhythm memory/sequencing form two separate clusters of rhythm skills. This hypothesis was tested with a battery of two beat tapping and two rhythm memory tests. Here we show that tapping to a metronome and the ability to adjust to a changing tempo while tapping to a metronome are related skills. The ability to remember rhythms and to drum along to repeating rhythmic sequences are also related. However, we found no relationship between beat tapping skills and rhythm memory skills. Thus, beat tapping and rhythm memory are dissociable rhythmic aptitudes. This discovery may inform future research disambiguating how distinct rhythm competencies track with specific language functions.

  19. Evidence for Multiple Rhythmic Skills

    Science.gov (United States)

    Tierney, Adam; Kraus, Nina

    2015-01-01

    Rhythms, or patterns in time, play a vital role in both speech and music. Proficiency in a number of rhythm skills has been linked to language ability, suggesting that certain rhythmic processes in music and language rely on overlapping resources. However, a lack of understanding about how rhythm skills relate to each other has impeded progress in understanding how language relies on rhythm processing. In particular, it is unknown whether all rhythm skills are linked together, forming a single broad rhythmic competence, or whether there are multiple dissociable rhythm skills. We hypothesized that beat tapping and rhythm memory/sequencing form two separate clusters of rhythm skills. This hypothesis was tested with a battery of two beat tapping and two rhythm memory tests. Here we show that tapping to a metronome and the ability to adjust to a changing tempo while tapping to a metronome are related skills. The ability to remember rhythms and to drum along to repeating rhythmic sequences are also related. However, we found no relationship between beat tapping skills and rhythm memory skills. Thus, beat tapping and rhythm memory are dissociable rhythmic aptitudes. This discovery may inform future research disambiguating how distinct rhythm competencies track with specific language functions. PMID:26376489

  20. Neural correlates of rhythmic expectancy

    Directory of Open Access Journals (Sweden)

    Theodore P. Zanto

    2006-01-01

    Full Text Available Temporal expectancy is thought to play a fundamental role in the perception of rhythm. This review summarizes recent studies that investigated rhythmic expectancy by recording neuroelectric activity with high temporal resolution during the presentation of rhythmic patterns. Prior event-related brain potential (ERP studies have uncovered auditory evoked responses that reflect detection of onsets, offsets, sustains,and abrupt changes in acoustic properties such as frequency, intensity, and spectrum, in addition to indexing higher-order processes such as auditory sensory memory and the violation of expectancy. In our studies of rhythmic expectancy, we measured emitted responses - a type of ERP that occurs when an expected event is omitted from a regular series of stimulus events - in simple rhythms with temporal structures typical of music. Our observations suggest that middle-latency gamma band (20-60 Hz activity (GBA plays an essential role in auditory rhythm processing. Evoked (phase-locked GBA occurs in the presence of physically presented auditory events and reflects the degree of accent. Induced (non-phase-locked GBA reflects temporally precise expectancies for strongly and weakly accented events in sound patterns. Thus far, these findings support theories of rhythm perception that posit temporal expectancies generated by active neural processes.

  1. Classifying Written Texts Through Rhythmic Features

    NARCIS (Netherlands)

    Balint, Mihaela; Dascalu, Mihai; Trausan-Matu, Stefan

    2016-01-01

    Rhythm analysis of written texts focuses on literary analysis and it mainly considers poetry. In this paper we investigate the relevance of rhythmic features for categorizing texts in prosaic form pertaining to different genres. Our contribution is threefold. First, we define a set of rhythmic

  2. Spatiotemporal dynamics of rhythmic spinal interneurons measured with two-photon calcium imaging and coherence analysis.

    Science.gov (United States)

    Kwan, Alex C; Dietz, Shelby B; Zhong, Guisheng; Harris-Warrick, Ronald M; Webb, Watt W

    2010-12-01

    In rhythmic neural circuits, a neuron often fires action potentials with a constant phase to the rhythm, a timing relationship that can be functionally significant. To characterize these phase preferences in a large-scale, cell type-specific manner, we adapted multitaper coherence analysis for two-photon calcium imaging. Analysis of simulated data showed that coherence is a simple and robust measure of rhythmicity for calcium imaging data. When applied to the neonatal mouse hindlimb spinal locomotor network, the phase relationships between peak activity of >1,000 ventral spinal interneurons and motor output were characterized. Most interneurons showed rhythmic activity that was coherent and in phase with the ipsilateral motor output during fictive locomotion. The phase distributions of two genetically identified classes of interneurons were distinct from the ensemble population and from each other. There was no obvious spatial clustering of interneurons with similar phase preferences. Together, these results suggest that cell type, not neighboring neuron activity, is a better indicator of an interneuron's response during fictive locomotion. The ability to measure the phase preferences of many neurons with cell type and spatial information should be widely applicable for studying other rhythmic neural circuits.

  3. Conjoined lumbosacral nerve roots

    International Nuclear Information System (INIS)

    Kyoshima, Kazumitsu; Nishiura, Iwao; Koyama, Tsunemaro

    1986-01-01

    Several kinds of the lumbosacral nerve root anomalies have already been recognized, and the conjoined nerve roots is the most common among them. It does not make symptoms by itself, but if there is a causation of neural entrapment, for example, disc herniation, lateral recessus stenosis, spondylolisthesis, etc., so called ''biradicular syndrome'' should occur. Anomalies of the lumbosacral nerve roots, if not properly recognized, may lead to injury of these nerves during operation of the lumbar spine. Recently, the chance of finding these anomalous roots has been increased more and more with the use of metrizamide myelography and metrizamide CT, because of the improvement of the opacification of nerve roots. We describe the findings of the anomalous roots as revealed by these two methods. They demonstrate two nerve roots running parallel and the asymmetrical wide root sleeve. Under such circumstances, it is important to distinguish the anomalous roots from the normal ventral and dorsal roots. (author)

  4. Rhythmic entrainment source separation: Optimizing analyses of neural responses to rhythmic sensory stimulation

    OpenAIRE

    Cohen, M.S.; Gulbinaite, R.

    2017-01-01

    Steady-state evoked potentials (SSEPs) are rhythmic brain responses to rhythmic sensory stimulation, and are often used to study perceptual and attentional processes. We present a data analysis method for maximizing the signal-to-noise ratio of the narrow-band steady-state response in the frequency and time-frequency domains. The method, termed rhythmic entrainment source separation (RESS), is based on denoising source separation approaches that take advantage of the simultaneous but differen...

  5. Large Ventral Hernia

    Directory of Open Access Journals (Sweden)

    Meryl Abrams, MD

    2018-04-01

    Full Text Available History of present illness: A 46-year-old female presented to the emergency department (ED with diffuse abdominal pain and three days of poor oral intake associated with non-bilious, non-bloody vomiting. Initial vital signs consisted of a mild resting tachycardia of 111 with a temperature of 38.0 degrees Celsius (°C. On examination, the patient had a large pannus extending to the knees, which contained a hernia. She was tender in this region on examination. Laboratory values included normal serum chemistries and mild leukocytosis of 12.2. The patient reports that her abdomen had been enlarging over the previous 8 years but had not been painful until 3 days prior to presentation. The patient had no associated fever, chills, diarrhea, constipation, chest pain or shortness of breath. Significant findings: Computed tomography (CT scan with intravenous (IV contrast of the abdomen and pelvis demonstrated a large pannus containing a ventral hernia with abdominal contents extending below the knees (white circle, elongation of mesenteric vessels to accommodate abdominal contents outside of the abdomen (white arrow and air fluid levels (white arrow indicating a small bowel obstruction. Discussion: Hernias are a common chief complaint seen in the emergency department. The estimated lifetime risk of a spontaneous abdominal hernia is 5%.1 The most common type of hernia is inguinal while the next most common type of hernia is femoral, which are more common in women.1 Ventral hernias can be epigastric, incisional, or primary abdominal. An asymptomatic, reducible hernia can be followed up as outpatient with a general surgeon for elective repair.2 Hernias become problematic when they are either incarcerated or strangulated. A hernia is incarcerated when the hernia is irreducible and strangulated when its blood supply is compromised. A complicated hernia, especially strangulated, can have a mortality of greater than 50%.1 It is key to perform a thorough history

  6. Rhythmic entrainment source separation: Optimizing analyses of neural responses to rhythmic sensory stimulation

    NARCIS (Netherlands)

    Cohen, M.S.; Gulbinaite, R.

    2017-01-01

    Steady-state evoked potentials (SSEPs) are rhythmic brain responses to rhythmic sensory stimulation, and are often used to study perceptual and attentional processes. We present a data analysis method for maximizing the signal-to-noise ratio of the narrow-band steady-state response in the frequency

  7. Effects of Rhythmic and Melodic Alterations and Selected Musical Experiences on Rhythmic Processing.

    Science.gov (United States)

    Sink, Patricia E.

    1984-01-01

    Study showed that music listening habits and preferences and instrument training may affect ways an individual processes the multiple dimensions of rhythm. Apparent alterations in tempo, duration and pitch characteristics, rhythmic and melodic phrase patterning, and monotony may serve as organizers of rhythmic processing. (Author/RM)

  8. Rhythmic patterning in Malaysian and Singapore English.

    Science.gov (United States)

    Tan, Rachel Siew Kuang; Low, Ee-Ling

    2014-06-01

    Previous work on the rhythm of Malaysian English has been based on impressionistic observations. This paper utilizes acoustic analysis to measure the rhythmic patterns of Malaysian English. Recordings of the read speech and spontaneous speech of 10 Malaysian English speakers were analyzed and compared with recordings of an equivalent sample of Singaporean English speakers. Analysis was done using two rhythmic indexes, the PVI and VarcoV. It was found that although the rhythm of read speech of the Singaporean speakers was syllable-based as described by previous studies, the rhythm of the Malaysian speakers was even more syllable-based. Analysis of the syllables in specific utterances showed that Malaysian speakers did not reduce vowels as much as Singaporean speakers in cases of syllables in utterances. Results of the spontaneous speech confirmed the findings for the read speech; that is, the same rhythmic patterning was found which normally triggers vowel reductions.

  9. [Role of rhythmicity in infant development].

    Science.gov (United States)

    Ciccone, A

    2015-09-01

    This article deals with rhythm in the experiences of infants, focusing in particular on the function of rhythmicity in the baby's sense of being and its continuity. Infants are inevitably subjected to experiences of discontinuity. These experiences are necessary to development, but they expose the child to chaotic experiences when a basic rhythmicity is not ensured. The rhythmicity of childcare experiences gives the illusion of permanence and enables anticipation. This nourishes the basic feeling of security and supports the development of thought. Interactive and intersubjective exchanges must be rhythmic and must be in keeping with the rhythm of the baby, who needs to withdraw regularly from the interaction to internalize the experience of the exchange. Without this retreat, the interaction is over-stimulating and prevents internalization. Object presence/ absence must also be rhythmic, to enable the infant to keep the object alive inside him/ herself. Observation of babies has demonstrated their ability to manage experiences of discontinuity: they are able to sustain a continuous link via their gaze, look for clues indicating the presence of a lost object, search for support in sensations, and fabricate rhythmicity to remain open to the self and the world. The author gives some examples of infant observations that provide evidence of these capacities. One observation shows how a baby defends itself against a discontinuity by actively maintaining a link via his/her gaze. Another example shows an infant holding on to "hard sensations" in order to stay away from "soft" ones, which represent the fragility of the separation experience. This example pertains to a seven-month-old's prelanguage and "prosodic tonicity". The author takes this opportunity to propose the notion of "psychic bisensuality" to describe these two sensation poles, which must be harmoniously articulated to guarantee an inner sense of security. Such repairs of discontinuity are only possible if the

  10. Reward Expectancy Strengthens CA1 Theta and Beta Band Synchronization and Hippocampal-Ventral Striatal Coupling.

    Science.gov (United States)

    Lansink, Carien S; Meijer, Guido T; Lankelma, Jan V; Vinck, Martin A; Jackson, Jadin C; Pennartz, Cyriel M A

    2016-10-12

    The use of information from the hippocampal memory system in motivated behavior depends on its communication with the ventral striatum. When an animal encounters cues that signal subsequent reward, its reward expectancy is raised. It is unknown, however, how this process affects hippocampal dynamics and their influence on target structures, such as ventral striatum. We show that, in rats, reward-predictive cues result in enhanced hippocampal theta and beta band rhythmic activity during subsequent action, compared with uncued goal-directed navigation. The beta band component, also labeled theta's harmonic, involves selective hippocampal CA1 cell groups showing frequency doubling of firing periodicity relative to theta rhythmicity and it partitions the theta cycle into segments showing clear versus poor spike timing organization. We found that theta phase precession occurred over a wider range than previously reported. This was apparent from spikes emitted near the peak of the theta cycle exhibiting large "phase precessing jumps" relative to spikes in foregoing cycles. Neither this phenomenon nor the regular manifestation of theta phase precession was affected by reward expectancy. Ventral striatal neuronal firing phase-locked not only to hippocampal theta, but also to beta band activity. Both hippocampus and ventral striatum showed increased synchronization between neuronal firing and local field potential activity during cued compared with uncued goal approaches. These results suggest that cue-triggered reward expectancy intensifies hippocampal output to target structures, such as the ventral striatum, by which the hippocampus may gain prioritized access to systems modulating motivated behaviors. Here we show that temporally discrete cues raising reward expectancy enhance both theta and beta band activity in the hippocampus once goal-directed navigation has been initiated. These rhythmic activities are associated with increased synchronization of neuronal firing

  11. A multiresolution model of rhythmic expectancy

    NARCIS (Netherlands)

    Smith, L.M.; Honing, H.; Miyazaki, K.; Hiraga, Y.; Adachi, M.; Nakajima, Y.; Tsuzaki, M.

    2008-01-01

    We describe a computational model of rhythmic cognition that predicts expected onset times. A dynamic representation of musical rhythm, the multiresolution analysis using the continuous wavelet transform is used. This representation decomposes the temporal structure of a musical rhythm into time

  12. Rhythmic Patterns in Ragtime and Jazz

    NARCIS (Netherlands)

    Odekerken, Daphne; Volk, A.; Koops, Hendrik Vincent

    2017-01-01

    This paper presents a corpus-based study on rhythmic patterns in ragtime and jazz. Ragtime and jazz are related genres, but there are open questions on what specifies the two genres. Earlier studies revealed that variations of a particular syncopation pattern, referred to as 121, are among the most

  13. Rhythmic walking interaction with auditory feedback

    DEFF Research Database (Denmark)

    Maculewicz, Justyna; Jylhä, Antti; Serafin, Stefania

    2015-01-01

    We present an interactive auditory display for walking with sinusoidal tones or ecological, physically-based synthetic walking sounds. The feedback is either step-based or rhythmic, with constant or adaptive tempo. In a tempo-following experiment, we investigate different interaction modes...

  14. Source localization of rhythmic ictal EEG activity

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Lantz, Göran; Rosenzweig, Ivana

    2013-01-01

    Although precise identification of the seizure-onset zone is an essential element of presurgical evaluation, source localization of ictal electroencephalography (EEG) signals has received little attention. The aim of our study was to estimate the accuracy of source localization of rhythmic ictal...... EEG activity using a distributed source model....

  15. Rhythmic Characteristics of Colloquial and Formal Tamil

    Science.gov (United States)

    Keane, Elinor

    2006-01-01

    Application of recently developed rhythmic measures to passages of read speech in colloquial and formal Tamil revealed some significant differences between the two varieties, which are in diglossic distribution. Both were also distinguished from a set of control data from British English speakers reading an equivalent passage. The findings have…

  16. The evolution of locomotor rhythmicity in tetrapods.

    Science.gov (United States)

    Ross, Callum F; Blob, Richard W; Carrier, David R; Daley, Monica A; Deban, Stephen M; Demes, Brigitte; Gripper, Janaya L; Iriarte-Diaz, Jose; Kilbourne, Brandon M; Landberg, Tobias; Polk, John D; Schilling, Nadja; Vanhooydonck, Bieke

    2013-04-01

    Differences in rhythmicity (relative variance in cycle period) among mammal, fish, and lizard feeding systems have been hypothesized to be associated with differences in their sensorimotor control systems. We tested this hypothesis by examining whether the locomotion of tachymetabolic tetrapods (birds and mammals) is more rhythmic than that of bradymetabolic tetrapods (lizards, alligators, turtles, salamanders). Species averages of intraindividual coefficients of variation in cycle period were compared while controlling for gait and substrate. Variance in locomotor cycle periods is significantly lower in tachymetabolic than in bradymetabolic animals for datasets that include treadmill locomotion, non-treadmill locomotion, or both. When phylogenetic relationships are taken into account the pooled analyses remain significant, whereas the non-treadmill and the treadmill analyses become nonsignificant. The co-occurrence of relatively high rhythmicity in both feeding and locomotor systems of tachymetabolic tetrapods suggests that the anatomical substrate of rhythmicity is in the motor control system, not in the musculoskeletal components. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  17. Versatility of the ventral approach in bulbar urethroplasty using dorsal, ventral or dorsal plus ventral oral grafts

    OpenAIRE

    Palminteri, Enzo; Berdondini, Elisa; Fusco, Ferdinando; Nunzio, Cosimo De; Giannitsas, Kostas; Shokeir, Ahmed A.

    2012-01-01

    Objectives To investigate the versatility of the ventral urethrotomy approach in bulbar reconstruction with buccal mucosa (BM) grafts placed on the dorsal, ventral or dorsal plus ventral urethral surface. Patients and methods Between 1999 and 2008, 216 patients with bulbar strictures underwent BM graft urethroplasty using the ventral-sagittal urethrotomy approach. Of these patients, 32 (14.8%; mean stricture 3.2?cm, range 1.5?5) had a dorsal graft urethroplasty (DGU), 121 (56%; mean stricture...

  18. Versatility of the ventral approach in bulbar urethroplasty using dorsal, ventral or dorsal plus ventral oral grafts.

    Science.gov (United States)

    Palminteri, Enzo; Berdondini, Elisa; Fusco, Ferdinando; De Nunzio, Cosimo; Giannitsas, Kostas; Shokeir, Ahmed A

    2012-06-01

    To investigate the versatility of the ventral urethrotomy approach in bulbar reconstruction with buccal mucosa (BM) grafts placed on the dorsal, ventral or dorsal plus ventral urethral surface. Between 1999 and 2008, 216 patients with bulbar strictures underwent BM graft urethroplasty using the ventral-sagittal urethrotomy approach. Of these patients, 32 (14.8%; mean stricture 3.2 cm, range 1.5-5) had a dorsal graft urethroplasty (DGU), 121 (56%; mean stricture 3.7, range 1.5-8) a ventral graft urethroplasty (VGU), and 63 (29.2%; mean stricture 3.4, range 1.5-10) a dorsal plus ventral graft urethroplasty (DVGU). The strictured urethra was opened by a ventral-sagittal urethrotomy and BM graft was inserted dorsally or ventrally or dorsal plus ventral to augment the urethral plate. The median follow-up was 37 months. The overall 5-year actuarial success rate was 91.4%. The 5-year actuarial success rates were 87.8%, 95.5% and 86.3% for the DGU, VGU and DVGU, respectively. There were no statistically significant differences among the three groups. Success rates decreased significantly only with a stricture length of >4 cm. In BM graft bulbar urethroplasties the ventral urethrotomy access is simple and versatile, allowing an intraoperative choice of dorsal, ventral or combined dorsal and ventral grafting, with comparable success rates.

  19. The Danish ventral hernia database

    DEFF Research Database (Denmark)

    Helgstrand, Frederik; Jorgensen, Lars Nannestad

    2016-01-01

    Aim: The Danish Ventral Hernia Database (DVHD) provides national surveillance of current surgical practice and clinical postoperative outcomes. The intention is to reduce postoperative morbidity and hernia recurrence, evaluate new treatment strategies, and facilitate nationwide implementation of ...... of operations and is an excellent tool for observing changes over time, including adjustment of several confounders. This national database registry has impacted on clinical practice in Denmark and led to a high number of scientific publications in recent years.......Aim: The Danish Ventral Hernia Database (DVHD) provides national surveillance of current surgical practice and clinical postoperative outcomes. The intention is to reduce postoperative morbidity and hernia recurrence, evaluate new treatment strategies, and facilitate nationwide implementation...... to the surgical repair are recorded. Data registration is mandatory. Data may be merged with other Danish health registries and information from patient questionnaires or clinical examinations. Descriptive data: More than 37,000 operations have been registered. Data have demonstrated high agreement with patient...

  20. Primate beta oscillations and rhythmic behaviors.

    Science.gov (United States)

    Merchant, Hugo; Bartolo, Ramón

    2018-03-01

    The study of non-human primates in complex behaviors such as rhythm perception and entrainment is critical to understand the neurophysiological basis of human cognition. Next to reviewing the role of beta oscillations in human beat perception, here we discuss the role of primate putaminal oscillatory activity in the control of rhythmic movements that are guided by a sensory metronome or internally gated. The analysis of the local field potentials of the behaving macaques showed that gamma-oscillations reflect local computations associated with stimulus processing of the metronome, whereas beta-activity involves the entrainment of large putaminal circuits, probably in conjunction with other elements of cortico-basal ganglia-thalamo-cortical circuit, during internally driven rhythmic tapping. Thus, this review emphasizes the need of parametric neurophysiological observations in non-human primates that display a well-controlled behavior during high-level cognitive processes.

  1. Ventral pallidum roles in reward and motivation.

    Science.gov (United States)

    Smith, Kyle S; Tindell, Amy J; Aldridge, J Wayne; Berridge, Kent C

    2009-01-23

    In recent years the ventral pallidum has become a focus of great research interest as a mechanism of reward and incentive motivation. As a major output for limbic signals, the ventral pallidum was once associated primarily with motor functions rather than regarded as a reward structure in its own right. However, ample evidence now suggests that ventral pallidum function is a major mechanism of reward in the brain. We review data indicating that (1) an intact ventral pallidum is necessary for normal reward and motivation, (2) stimulated activation of ventral pallidum is sufficient to cause reward and motivation enhancements, and (3) activation patterns in ventral pallidum neurons specifically encode reward and motivation signals via phasic bursts of excitation to incentive and hedonic stimuli. We conclude that the ventral pallidum may serve as an important 'limbic final common pathway' for mesocorticolimbic processing of many rewards.

  2. Distinguishing rhythmic from non-rhythmic brain activity during rest in healthy neurocognitive aging.

    Science.gov (United States)

    Caplan, Jeremy B; Bottomley, Monica; Kang, Pardeep; Dixon, Roger A

    2015-05-15

    Rhythmic brain activity at low frequencies (healthy neurocognitive aging are mixed. Here we address two reasons conventional spectral analyses may have led to inconsistent results. First, spectral-power measures are compared to a baseline condition; when resting activity is the signal of interest, it is unclear what the baseline should be. Second, conventional methods do not clearly differentiate power due to rhythmic versus non-rhythmic activity. The Better OSCillation detection method (BOSC; Caplan et al., 2001; Whitten et al., 2011) avoids these problems by using the signal's own spectral characteristics as a reference to detect elevations in power lasting a few cycles. We recorded electroencephalographic (EEG) signal during rest, alternating eyes open and closed, in healthy younger (18-25 years) and older (60-74 years) participants. Topographic plots suggested the conventional and BOSC analyses measured different sources of activity, particularly at frequencies, like delta (1-4Hz), at which rhythms are sporadic; topographies were more similar in the 8-12Hz alpha band. There was little theta-band activity meeting the BOSC method's criteria, suggesting prior findings of theta power in healthy aging may reflect non-rhythmic signal. In contrast, delta oscillations were present at higher levels than theta in both age groups. In summary, applying strict and standardized criteria for rhythmicity, slow rhythms appear present in the resting brain at delta and alpha, but not theta frequencies, and appear unchanged in healthy aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Decoding magnetoencephalographic rhythmic activity using spectrospatial information.

    Science.gov (United States)

    Kauppi, Jukka-Pekka; Parkkonen, Lauri; Hari, Riitta; Hyvärinen, Aapo

    2013-12-01

    We propose a new data-driven decoding method called Spectral Linear Discriminant Analysis (Spectral LDA) for the analysis of magnetoencephalography (MEG). The method allows investigation of changes in rhythmic neural activity as a result of different stimuli and tasks. The introduced classification model only assumes that each "brain state" can be characterized as a combination of neural sources, each of which shows rhythmic activity at one or several frequency bands. Furthermore, the model allows the oscillation frequencies to be different for each such state. We present decoding results from 9 subjects in a four-category classification problem defined by an experiment involving randomly alternating epochs of auditory, visual and tactile stimuli interspersed with rest periods. The performance of Spectral LDA was very competitive compared with four alternative classifiers based on different assumptions concerning the organization of rhythmic brain activity. In addition, the spectral and spatial patterns extracted automatically on the basis of trained classifiers showed that Spectral LDA offers a novel and interesting way of analyzing spectrospatial oscillatory neural activity across the brain. All the presented classification methods and visualization tools are freely available as a Matlab toolbox. © 2013.

  4. Group Rhythmic Synchrony and Attention in Children

    Directory of Open Access Journals (Sweden)

    Alexander K Khalil

    2013-09-01

    Full Text Available Synchrony, or the coordinated processing of time, is an often-overlooked yet critical context for human interaction. This study tests the relationship between the ability to synchronize rhythmically in a group setting with the ability to attend in 102 elementary schoolchildren. Impairments in temporal processing have frequently been shown to exist in clinical populations with learning disorders, particularly those with Attention Deficit Hyperactivity Disorder (ADHD. Based on this evidence, we hypothesized that the ability to synchronize rhythmically in a group setting—an instance of the type of temporal processing necessary for successful interaction and learning—would be correlated with the ability to attend across the continuum of the population. A music class is an ideal setting for the study of interpersonal timing. In order to measure synchrony in this context, we constructed instruments that allowed the recording and measurement of individual rhythmic performance. The SWAN teacher questionnaire was used as a measurement of attentional behavior. We find that the ability to synchronize with others in a group music class can predict a child’s attentional behavior.

  5. Spontaneous movement tempo is influenced by observation of rhythmical actions.

    Science.gov (United States)

    Bove, Marco; Tacchino, Andrea; Pelosin, Elisa; Moisello, Clara; Abbruzzese, Giovanni; Ghilardi, M Felice

    2009-09-28

    Observation of people performing movements facilitates motor planning, execution and memory formation. Tempo, a crucial aspect involved in the execution of rhythmic movements, is normally perceived and learned through auditory channels. In this work, we ascertained whether: first, the frequency of self-paced finger movements (SPMs), which in normal subjects is around 2 Hz, is modified by prior observation of movements performed at either 1 or 3 Hz; second, such changes are lasting; third, there is an effect of time interval between observation and performance. We finally determined the effect of providing explicit information about the upcoming motor task. Seventy-two normal subjects (12 groups) performed a simple finger sequence at different intervals after observation of videos of either landscapes or finger opposition movements. Both with and without information about the upcoming task, observation influenced the tempo of SPMs and led to memory formation. With knowledge of the upcoming task, such changes occurred at all observation-execution intervals, while without instructions, changes took place only when SPMs were performed immediately after observation. Compared to explicit instructions, the absence of instructions produced tempo's changes that more closely resembled the observed rhythms. We conclude that learning requires a prompt comparison between visual and sensorimotor representations of movements; moreover, learning with explicit instructions is more efficient, as activity in both the dorsal and ventral streams might be potentiated by the chatecholaminergic attentional systems that promote long-term potentiation. These results provide the bases for novel neurorehabilitation strategies in terms of temporal re-organization of movement.

  6. Ventral impressions on the hypopharynx

    International Nuclear Information System (INIS)

    Daschner, H.; Hannig, C.

    1991-01-01

    Two impressions can be seen on the ventral aspect of the hypopharynx and upper oesophagus; on static images it is difficult to differentiate these from small tumours. In order to evaluate this region more accurately, we have examined 150 patients by means of rapid rate cinematography. In 52.6% we found a constant irregular or convex impression formed by the cricoid; in the other cases this was not seen or was quite minimal. In 93% a sub-cricoid impression could be demonstrated which was due to lax mucosa. Characteristically this showed a variable appearance during the passage of a bolus. Only the cricoid impression was associated with dysphagia. (orig.) [de

  7. Music Games: Potential Application and Considerations for Rhythmic Training

    OpenAIRE

    Valentin Bégel; Valentin Bégel; Ines Di Loreto; Antoine Seilles; Simone Dalla Bella; Simone Dalla Bella; Simone Dalla Bella; Simone Dalla Bella

    2017-01-01

    Rhythmic skills are natural and widespread in the general population. The majority can track the beat of music and move along with it. These abilities are meaningful from a cognitive standpoint given their tight links with prominent motor and cognitive functions such as language and memory. When rhythmic skills are challenged by brain damage or neurodevelopmental disorders, remediation strategies based on rhythm can be considered. For example, rhythmic training can be used to improve motor pe...

  8. Rhythmic Extended Kalman Filter for Gait Rehabilitation Motion Estimation and Segmentation.

    Science.gov (United States)

    Joukov, Vladimir; Bonnet, Vincent; Karg, Michelle; Venture, Gentiane; Kulic, Dana

    2018-02-01

    This paper proposes a method to enable the use of non-intrusive, small, wearable, and wireless sensors to estimate the pose of the lower body during gait and other periodic motions and to extract objective performance measures useful for physiotherapy. The Rhythmic Extended Kalman Filter (Rhythmic-EKF) algorithm is developed to estimate the pose, learn an individualized model of periodic movement over time, and use the learned model to improve pose estimation. The proposed approach learns a canonical dynamical system model of the movement during online observation, which is used to accurately model the acceleration during pose estimation. The canonical dynamical system models the motion as a periodic signal. The estimated phase and frequency of the motion also allow the proposed approach to segment the motion into repetitions and extract useful features, such as gait symmetry, step length, and mean joint movement and variance. The algorithm is shown to outperform the extended Kalman filter in simulation, on healthy participant data, and stroke patient data. For the healthy participant marching dataset, the Rhythmic-EKF improves joint acceleration and velocity estimates over regular EKF by 40% and 37%, respectively, estimates joint angles with 2.4° root mean squared error, and segments the motion into repetitions with 96% accuracy.

  9. Effects of task complexity on rhythmic reproduction performance in adults.

    Science.gov (United States)

    Iannarilli, Flora; Vannozzi, Giuseppe; Iosa, Marco; Pesce, Caterina; Capranica, Laura

    2013-02-01

    The aim of the present study was to investigate the effect of task complexity on the capability to reproduce rhythmic patterns. Sedentary musically illiterate individuals (age: 34.8±4.2 yrs; M±SD) were administered a rhythmic test including three rhythmic patterns to be reproduced by means of finger-tapping, foot-tapping and walking. For the quantification of subjects' ability in the reproduction of rhythmic patterns, qualitative and quantitative parameters were submitted to analysis. A stereophotogrammetric system was used to reconstruct and evaluate individual performances. The findings indicated a good internal stability of the rhythmic reproduction, suggesting that the present experimental design is suitable to discriminate the participants' rhythmic ability. Qualitative aspects of rhythmic reproduction (i.e., speed of execution and temporal ratios between events) varied as a function of the perceptual-motor requirements of the rhythmic reproduction task, with larger reproduction deviations in the walking task. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. The development of rhythmic preferences by Dutch-learning infants

    NARCIS (Netherlands)

    Keij, B.M.; Kager, R.W.J.

    2016-01-01

    In this chapter the early acquisition of word stress is discussed. This study is aimed at examining rhythmic preferences for either strong-weak or weak-strong stress patterns of Dutch-learning infants between 4 and 8 months of age. It is complementary to previous rhythmic preference studies

  11. The development of rhythmic preferences by Dutch-learning infants

    NARCIS (Netherlands)

    Keij, B.M.|info:eu-repo/dai/nl/374786097; Kager, R.W.J.|info:eu-repo/dai/nl/072294124

    In this chapter the early acquisition of word stress is discussed. This study is aimed at examining rhythmic preferences for either strong-weak or weak-strong stress patterns of Dutch-learning infants between 4 and 8 months of age. It is complementary to previous rhythmic preference studies

  12. Decoding emotional valence from electroencephalographic rhythmic activity.

    Science.gov (United States)

    Celikkanat, Hande; Moriya, Hiroki; Ogawa, Takeshi; Kauppi, Jukka-Pekka; Kawanabe, Motoaki; Hyvarinen, Aapo

    2017-07-01

    We attempt to decode emotional valence from electroencephalographic rhythmic activity in a naturalistic setting. We employ a data-driven method developed in a previous study, Spectral Linear Discriminant Analysis, to discover the relationships between the classification task and independent neuronal sources, optimally utilizing multiple frequency bands. A detailed investigation of the classifier provides insight into the neuronal sources related with emotional valence, and the individual differences of the subjects in processing emotions. Our findings show: (1) sources whose locations are similar across subjects are consistently involved in emotional responses, with the involvement of parietal sources being especially significant, and (2) even though the locations of the involved neuronal sources are consistent, subjects can display highly varying degrees of valence-related EEG activity in the sources.

  13. Rhythmic walking interactions with auditory feedback

    DEFF Research Database (Denmark)

    Jylhä, Antti; Serafin, Stefania; Erkut, Cumhur

    2012-01-01

    of interactions based on varying the temporal characteristics of the output, using the sound of human walking as the input. The system either provides a direct synthesis of a walking sound based on the detected amplitude envelope of the user's footstep sounds, or provides a continuous synthetic walking sound...... as a stimulus for the walking human, either with a fixed tempo or a tempo adapting to the human gait. In a pilot experiment, the different interaction modes are studied with respect to their effect on the walking tempo and the experience of the subjects. The results tentatively outline different user profiles......Walking is a natural rhythmic activity that has become of interest as a means of interacting with software systems such as computer games. Therefore, designing multimodal walking interactions calls for further examination. This exploratory study presents a system capable of different kinds...

  14. Rhythmic entrainment source separation: Optimizing analyses of neural responses to rhythmic sensory stimulation.

    Science.gov (United States)

    Cohen, Michael X; Gulbinaite, Rasa

    2017-02-15

    Steady-state evoked potentials (SSEPs) are rhythmic brain responses to rhythmic sensory stimulation, and are often used to study perceptual and attentional processes. We present a data analysis method for maximizing the signal-to-noise ratio of the narrow-band steady-state response in the frequency and time-frequency domains. The method, termed rhythmic entrainment source separation (RESS), is based on denoising source separation approaches that take advantage of the simultaneous but differential projection of neural activity to multiple electrodes or sensors. Our approach is a combination and extension of existing multivariate source separation methods. We demonstrate that RESS performs well on both simulated and empirical data, and outperforms conventional SSEP analysis methods based on selecting electrodes with the strongest SSEP response, as well as several other linear spatial filters. We also discuss the potential confound of overfitting, whereby the filter captures noise in absence of a signal. Matlab scripts are available to replicate and extend our simulations and methods. We conclude with some practical advice for optimizing SSEP data analyses and interpreting the results. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Proteomic identification of rhythmic proteins in rice seedlings.

    Science.gov (United States)

    Hwang, Heeyoun; Cho, Man-Ho; Hahn, Bum-Soo; Lim, Hyemin; Kwon, Yong-Kook; Hahn, Tae-Ryong; Bhoo, Seong Hee

    2011-04-01

    Many aspects of plant metabolism that are involved in plant growth and development are influenced by light-regulated diurnal rhythms as well as endogenous clock-regulated circadian rhythms. To identify the rhythmic proteins in rice, periodically grown (12h light/12h dark cycle) seedlings were harvested for three days at six-hour intervals. Continuous dark-adapted plants were also harvested for two days. Among approximately 3000 reproducible protein spots on each gel, proteomic analysis ascertained 354 spots (~12%) as light-regulated rhythmic proteins, in which 53 spots showed prolonged rhythm under continuous dark conditions. Of these 354 ascertained rhythmic protein spots, 74 diurnal spots and 10 prolonged rhythmic spots under continuous dark were identified by MALDI-TOF MS analysis. The rhythmic proteins were functionally classified into photosynthesis, central metabolism, protein synthesis, nitrogen metabolism, stress resistance, signal transduction and unknown. Comparative analysis of our proteomic data with the public microarray database (the Plant DIURNAL Project) and RT-PCR analysis of rhythmic proteins showed differences in rhythmic expression phases between mRNA and protein, suggesting that the clock-regulated proteins in rice are modulated by not only transcriptional but also post-transcriptional, translational, and/or post-translational processes. 2011 Elsevier B.V. All rights reserved.

  16. Situational influences on rhythmicity in speech, music, and their interaction.

    Science.gov (United States)

    Hawkins, Sarah

    2014-12-19

    Brain processes underlying the production and perception of rhythm indicate considerable flexibility in how physical signals are interpreted. This paper explores how that flexibility might play out in rhythmicity in speech and music. There is much in common across the two domains, but there are also significant differences. Interpretations are explored that reconcile some of the differences, particularly with respect to how functional properties modify the rhythmicity of speech, within limits imposed by its structural constraints. Functional and structural differences mean that music is typically more rhythmic than speech, and that speech will be more rhythmic when the emotions are more strongly engaged, or intended to be engaged. The influence of rhythmicity on attention is acknowledged, and it is suggested that local increases in rhythmicity occur at times when attention is required to coordinate joint action, whether in talking or music-making. Evidence is presented which suggests that while these short phases of heightened rhythmical behaviour are crucial to the success of transitions in communicative interaction, their modality is immaterial: they all function to enhance precise temporal prediction and hence tightly coordinated joint action. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Music Games: Potential Application and Considerations for Rhythmic Training.

    Science.gov (United States)

    Bégel, Valentin; Di Loreto, Ines; Seilles, Antoine; Dalla Bella, Simone

    2017-01-01

    Rhythmic skills are natural and widespread in the general population. The majority can track the beat of music and move along with it. These abilities are meaningful from a cognitive standpoint given their tight links with prominent motor and cognitive functions such as language and memory. When rhythmic skills are challenged by brain damage or neurodevelopmental disorders, remediation strategies based on rhythm can be considered. For example, rhythmic training can be used to improve motor performance (e.g., gait) as well as cognitive and language skills. Here, we review the games readily available in the market and assess whether they are well-suited for rhythmic training. Games that train rhythm skills may serve as useful tools for retraining motor and cognitive functions in patients with motor or neurodevelopmental disorders (e.g., Parkinson's disease, dyslexia, or ADHD). Our criteria were the peripheral used to capture and record the response, the type of response and the output measure. None of the existing games provides sufficient temporal precision in stimulus presentation and/or data acquisition. In addition, games do not train selectively rhythmic skills. Hence, the available music games, in their present form, are not satisfying for training rhythmic skills. Yet, some features such as the device used, the interface or the game scenario provide good indications for devising efficient training protocols. Guidelines are provided for devising serious music games targeting rhythmic training in the future.

  18. Music Games: Potential Application and Considerations for Rhythmic Training

    Directory of Open Access Journals (Sweden)

    Valentin Bégel

    2017-05-01

    Full Text Available Rhythmic skills are natural and widespread in the general population. The majority can track the beat of music and move along with it. These abilities are meaningful from a cognitive standpoint given their tight links with prominent motor and cognitive functions such as language and memory. When rhythmic skills are challenged by brain damage or neurodevelopmental disorders, remediation strategies based on rhythm can be considered. For example, rhythmic training can be used to improve motor performance (e.g., gait as well as cognitive and language skills. Here, we review the games readily available in the market and assess whether they are well-suited for rhythmic training. Games that train rhythm skills may serve as useful tools for retraining motor and cognitive functions in patients with motor or neurodevelopmental disorders (e.g., Parkinson’s disease, dyslexia, or ADHD. Our criteria were the peripheral used to capture and record the response, the type of response and the output measure. None of the existing games provides sufficient temporal precision in stimulus presentation and/or data acquisition. In addition, games do not train selectively rhythmic skills. Hence, the available music games, in their present form, are not satisfying for training rhythmic skills. Yet, some features such as the device used, the interface or the game scenario provide good indications for devising efficient training protocols. Guidelines are provided for devising serious music games targeting rhythmic training in the future.

  19. Situational influences on rhythmicity in speech, music, and their interaction

    Science.gov (United States)

    Hawkins, Sarah

    2014-01-01

    Brain processes underlying the production and perception of rhythm indicate considerable flexibility in how physical signals are interpreted. This paper explores how that flexibility might play out in rhythmicity in speech and music. There is much in common across the two domains, but there are also significant differences. Interpretations are explored that reconcile some of the differences, particularly with respect to how functional properties modify the rhythmicity of speech, within limits imposed by its structural constraints. Functional and structural differences mean that music is typically more rhythmic than speech, and that speech will be more rhythmic when the emotions are more strongly engaged, or intended to be engaged. The influence of rhythmicity on attention is acknowledged, and it is suggested that local increases in rhythmicity occur at times when attention is required to coordinate joint action, whether in talking or music-making. Evidence is presented which suggests that while these short phases of heightened rhythmical behaviour are crucial to the success of transitions in communicative interaction, their modality is immaterial: they all function to enhance precise temporal prediction and hence tightly coordinated joint action. PMID:25385776

  20. Danish music education and the 'rhythmic music' concept

    DEFF Research Database (Denmark)

    Pedersen, Peder Kaj

    2014-01-01

    ' was avoided and the Danish phrase 'rytmisk musik' (rhythmic music) was created to emphasize the educational and pedagogical content. The aim was also to prevent the prejudicious idea associated with jazz, especially by opponents. The article intends to evaluate the situation of 'rhythmic music' in the context......The article reflects on Danish music education and the concept of 'rhythmic music'. It highligths the so-called "jazz-oratorio", a unique genre, created by the composer Bernhard Christensen (1906-2004) and the librettist Sven Møller Kristensen (1909-91). The article shows that the term 'jazz...... of Danish music education....

  1. Daily rhythmicity of body temperature in the dog.

    Science.gov (United States)

    Refinetti, R; Piccione, G

    2003-08-01

    Research over the past 50 years has demonstrated the existence of circadian or daily rhythmicity in the body core temperature of a large number of mammalian species. However, previous studies have failed to identify daily rhythmicity of body temperature in dogs. We report here the successful recording of daily rhythms of rectal temperature in female Beagle dogs. The low robustness of the rhythms (41% of maximal robustness) and the small range of excursion (0.5 degrees C) are probably responsible for previous failures in detecting rhythmicity in dogs.

  2. Primary ventral or groin hernia in pregnancy

    DEFF Research Database (Denmark)

    Oma, E; Bay-Nielsen, M; Jensen, K K

    2017-01-01

    BACKGROUND: Prevalence, management, and risk of emergency operation for primary ventral or groin hernia in pregnancy are unknown. The objective of this study was to estimate the prevalences of primary ventral or groin hernia in pregnancy and the potential risks for elective and emergency repair...... was conducted to identify patients registered with a primary ventral or groin hernia in pregnancy. Follow-up was conducted by review of medical record notes within the Capital Region of Denmark supplemented with structured telephone interviews on indication. RESULTS: In total, 20,714 pregnant women were...... included in the study cohort. Seventeen (0.08%) and 25 (0.12%) women were registered with a primary ventral and groin hernia, respectively. None underwent elective or emergency repair in pregnancy, and all had uncomplicated childbirth. In 10 women, the groin bulge disappeared spontaneously after delivery...

  3. Vomeronasal inputs to the rodent ventral striatum.

    Science.gov (United States)

    Ubeda-Bañon, I; Novejarque, A; Mohedano-Moriano, A; Pro-Sistiaga, P; Insausti, R; Martinez-Garcia, F; Lanuza, E; Martinez-Marcos, A

    2008-03-18

    Vertebrates sense chemical signals through the olfactory and vomeronasal systems. In squamate reptiles, which possess the largest vomeronasal system of all vertebrates, the accessory olfactory bulb projects to the nucleus sphericus, which in turn projects to a portion of the ventral striatum known as olfactostriatum. Characteristically, the olfactostriatum is innervated by neuropeptide Y, tyrosine hydroxylase and serotonin immunoreactive fibers. In this study, the possibility that a structure similar to the reptilian olfactostriatum might be present in the mammalian brain has been investigated. Injections of dextran-amines have been aimed at the posteromedial cortical amygdaloid nucleus (the putative mammalian homologue of the reptilian nucleus sphericus) of rats and mice. The resulting anterograde labeling includes the olfactory tubercle, the islands of Calleja and sparse terminal fields in the shell of the nucleus accumbens and ventral pallidum. This projection has been confirmed by injections of retrograde tracers into the ventral striato-pallidum that render retrograde labeling in the posteromedial cortical amygdaloid nucleus. The analysis of the distribution of neuropeptide Y, tyrosine hydroxylase, serotonin and substance P in the ventral striato-pallidum of rats, and the anterograde tracing of the vomeronasal amygdaloid input in the same material confirm that, similar to reptiles, the ventral striatum of mammals includes a specialized vomeronasal structure (olfactory tubercle and islands of Calleja) displaying dense neuropeptide Y-, tyrosine hydroxylase- and serotonin-immunoreactive innervations. The possibility that parts of the accumbens shell and/or ventral pallidum could be included in the mammalian olfactostriatum cannot be discarded.

  4. Differences between the sexes in technical mastery of rhythmic gymnastics.

    Science.gov (United States)

    Bozanic, Ana; Miletic, Durdica

    2011-02-01

    The aims of this study were to determine possible differences between the sexes in specific rhythmic gymnastics techniques, and to examine the influence of various aspects of technique on rhythmic composition performance. Seventy-five students aged 21 ± 2 years (45 males, 30 female) undertook four test sessions to determine: coefficients of asymmetry, stability, versatility, and the two rhythmic compositions (without apparatus and with rope). An independent-sample t-test revealed sex-based differences in technique acquisition: stability for ball (P rhythmic composition without apparatus (P analysis revealed that the variables for assessing stability (beta = 0.44; P rhythmic composition performance of females, and the variables for assessing asymmetry (beta = -0.38; P rhythmic composition performance of males. The results suggest that female students dominate in body skill technique, while male students have the advantage with apparatus. There was a lack of an expressive aesthetic component in performance for males. The need for ambidexterity should be considered in the planning of training programmes.

  5. Root rots

    Science.gov (United States)

    Kathryn Robbins; Philip M. Wargo

    1989-01-01

    Root rots of central hardwoods are diseases caused by fungi that infect and decay woody roots and sometimes also invade the butt portion of the tree. By killing and decaying roots, root rotting fungi reduce growth, decrease tree vigor, and cause windthrow and death. The most common root diseases of central hardwoods are Armillaria root rot, lnonotus root rot, and...

  6. 'Rhythmic Music' in Danish Music Education

    DEFF Research Database (Denmark)

    Pedersen, Peder Kaj

    In Danish state schools from elementary to upper secondary school music is part of curricula at all levels. It is widely accepted that both individuals and culture benefit from art subjects, creative activities etc. This type of motivation was sufficient support for maintaining music as a subject...... and to avoid what was associated with jazz, especially by its opponents. This paper aims at taking stock of the situation in Danish music education during the last decade and at specifying the situation of ‘rhythmic music’ within this context....... at all levels of the educational system from around 1960 to around 2000. This tradition dates back to the 1920s, when the first Social Democratic government in Danish history (1924-26), with Nina Bang as minister of education (probably the first female minister worldwide), in the field of music made...... genre of music, and in Denmark this interest manifested itself in attempts to integrate jazz in the musical education of the youth. A unique genre, the so-called ‘jazz oratorios’, was created by the composer Bernhard Christensen (1906-2004) and the librettist Sven Møller Kristensen (1909- 91...

  7. Imaging findings in patients with ventral dural defects and herniation of neural tissue

    International Nuclear Information System (INIS)

    Baur, A.; Staebler, A.; Reiser, M.; Psenner, K.; Hamburger, C.

    1997-01-01

    The aim of this paper is to describe clinical and imaging findings in three patients with ventral dural defects and herniation of the spinal cord or cauda equina. The literature is reviewed and the clinical, radiological and operative findings are compared. Three patients with ventral dural defects of different etiologies are presented. One patient gave a longstanding history of ankylosing spondylitis, the second patient presents 37 years after spinal trauma, and the third patient presents with spontaneous spinal cord herniation. All patients had typically slowly progressive neurological symptoms with multiple hospitalizations until diagnosis was made. Characteristic findings in postmyelographic CT included a ventral or ventrolateral displacement with deformation of the spinal cord or the cauda equina. Sagittal MRI showed this abrupt and localized anterior deviation of the spinal cord or the cauda equina to the posterior portions of a vertebral body with or without a bony vertebral defect optimally. Additionally, due to the ventral displacement of the spinal cord, the dorsal subarachnoid space was relatively enlarged without evidence of an arachnoid cyst, in all patients. Magnetic resonance imaging and postmyelographic CT can diagnose ventral dural defects with spinal cord herniation or nerve root entrapment. Dural defects must be considered in the presence of neurological symptoms in cases of longstanding ankylosing spondylitis, late sequelae of fractures of vertebral bodies, and without history of spinal trauma or surgery. (orig.). With 3 figs

  8. Rhythmic crowd bobbing on a grandstand simulator

    Science.gov (United States)

    Comer, A. J.; Blakeborough, A.; Williams, M. S.

    2013-01-01

    It is widely accepted that concerted human activity such as bouncing or bobbing can excite cantilever grandstands. Crowd coordination can be unwitting and may be exacerbated by structural motion caused by resonant structural response. This is an area of uncertainty in the design and analysis of modern grandstands. This paper presents experimental measurement and analysis of rhythmic crowd bobbing loads obtained from tests on a grandstand simulator with two distinct support conditions; (a) rigid, and; (b) flexible. It was found that significant structural vibration at the bobbing frequency did not increase the effective bobbing load. Structural motion at the bobbing frequency caused a reduction in the dynamic load factor (DLF) at the frequency of the second harmonic while those at the first and third harmonics were unaffected. Two plausible reasons for this are: (a) the bobbing group were unable to supply significant energy to the system at the frequency of the second harmonic; (b) the bobbing group altered their bobbing style to reduce the response of the grandstand simulator. It was deduced that the bobbing group did not absorb energy from the dynamic system. Furthermore, dynamic load factors for groups of test subjects bobbing on a rigid structure were typically greater than those of synthesised groups derived from individuals bobbing alone, possibly due to group effects such as audio and visual stimuli from neighbouring test subjects. Last, the vibration levels experienced by the test subjects appear to be below levels likely to cause discomfort. This is to be expected as the test subjects were themselves controlling the magnitude and duration of vibration for the bobbing tests considered.

  9. Judging the judges' performance in rhythmic gymnastics.

    Science.gov (United States)

    Flessas, Konstantinos; Mylonas, Dimitris; Panagiotaropoulou, Georgia; Tsopani, Despina; Korda, Alexandrea; Siettos, Constantinos; Di Cagno, Alessandra; Evdokimidis, Ioannis; Smyrnis, Nikolaos

    2015-03-01

    Rhythmic gymnastics (RG) is an aesthetic event balancing between art and sport that also has a performance rating system (Code of Points) given by the International Gymnastics Federation. It is one of the sports in which competition results greatly depend on the judges' evaluation. In the current study, we explored the judges' performance in a five-gymnast ensemble routine. An expert-novice paradigm (10 international-level, 10 national-level, and 10 novice-level judges) was implemented under a fully simulated procedure of judgment in a five-gymnast ensemble routine of RG using two videos of routines performed by the Greek national team of RG. Simultaneous recordings of two-dimensional eye movements were taken during the judgment procedure to assess the percentage of time spent by each judge viewing the videos and fixation performance of each judge when an error in gymnast performance had occurred. All judge level groups had very modest performance of error recognition on gymnasts' routines, and the best international judges reported approximately 40% of true errors. Novice judges spent significantly more time viewing the videos compared with national and international judges and spent significantly more time fixating detected errors than the other two groups. National judges were the only group that made efficient use of fixation to detect errors. The fact that international-level judges outperformed both other groups, while not relying on visual fixation to detect errors, suggests that these experienced judges probably make use of other cognitive strategies, increasing their overall error detection efficiency, which was, however, still far below optimum.

  10. Feedback Signal from Motoneurons Influences a Rhythmic Pattern Generator.

    Science.gov (United States)

    Rotstein, Horacio G; Schneider, Elisa; Szczupak, Lidia

    2017-09-20

    Motoneurons are not mere output units of neuronal circuits that control motor behavior but participate in pattern generation. Research on the circuit that controls the crawling motor behavior in leeches indicated that motoneurons participate as modulators of this rhythmic motor pattern. Crawling results from successive bouts of elongation and contraction of the whole leech body. In the isolated segmental ganglia, dopamine can induce a rhythmic antiphasic activity of the motoneurons that control contraction (DE-3 motoneurons) and elongation (CV motoneurons). The study was performed in isolated ganglia where manipulation of the activity of specific motoneurons was performed in the course of fictive crawling ( crawling ). In this study, the membrane potential of CV was manipulated while crawling was monitored through the rhythmic activity of DE-3. Matching behavioral observations that show that elongation dominates the rhythmic pattern, the electrophysiological activity of CV motoneurons dominates the cycle. Brief excitation of CV motoneurons during crawling episodes resets the rhythmic activity of DE-3, indicating that CV feeds back to the rhythmic pattern generator. CV hyperpolarization accelerated the rhythm to an extent that depended on the magnitude of the cycle period, suggesting that CV exerted a positive feedback on the unit(s) of the pattern generator that controls the elongation phase. A simple computational model was implemented to test the consequences of such feedback. The simulations indicate that the duty cycle of CV depended on the strength of the positive feedback between CV and the pattern generator circuit. SIGNIFICANCE STATEMENT Rhythmic movements of animals are controlled by neuronal networks that have been conceived as hierarchical structures. At the basis of this hierarchy, we find the motoneurons, few neurons at the top control global aspects of the behavior (e.g., onset, duration); and within these two ends, specific neuronal circuits control

  11. RHYTHMIC MUSIC PEDAGOGY: A SCANDINAVIAN APPROACH TO MUSIC EDUCATION

    Directory of Open Access Journals (Sweden)

    Hauge Torunn Bakken

    2012-06-01

    Full Text Available Rhythmic music pedagogy is a relatively new Scandinavian approach to classroom music education that offers a variety of methods and strategies for teaching and learning music, especially within the performance of improvised and rhythmic music. This article is based on two earlier projects published in Norwegian, in which the concept of rytmisk musikkpedagogikk (or “rhythmic music pedagogy” as well as its applications and implications were thoroughly described. This research confirms that rhythmic music pedagogy may be an effective strategy for learning music in general, but most especially for learning skills associated with ensemble musicianship and playing by ear. In a multicultural and fluid society in which there are tendencies toward passivity and fragmentation, it may be more important than ever to maintain the idea of music as a collaborative creative process that extends across borders; in this context, rhythmic music pedagogy can play a central role in children’s social development. As a social medium, ensemble playing requires the participant to decentralize socially, since the perspectives of the other participants are necessary for a successful performance. The activity’s general potential for re-structuring social settings and moving boundaries in a positive way should not be underestimated.

  12. Predictive coding of music--brain responses to rhythmic incongruity.

    Science.gov (United States)

    Vuust, Peter; Ostergaard, Leif; Pallesen, Karen Johanne; Bailey, Christopher; Roepstorff, Andreas

    2009-01-01

    During the last decades, models of music processing in the brain have mainly discussed the specificity of brain modules involved in processing different musical components. We argue that predictive coding offers an explanatory framework for functional integration in musical processing. Further, we provide empirical evidence for such a network in the analysis of event-related MEG-components to rhythmic incongruence in the context of strong metric anticipation. This is seen in a mismatch negativity (MMNm) and a subsequent P3am component, which have the properties of an error term and a subsequent evaluation in a predictive coding framework. There were both quantitative and qualitative differences in the evoked responses in expert jazz musicians compared with rhythmically unskilled non-musicians. We propose that these differences trace a functional adaptation and/or a genetic pre-disposition in experts which allows for a more precise rhythmic prediction.

  13. Simple neural substrate predicts complex rhythmic structure in duetting birds

    Science.gov (United States)

    Amador, Ana; Trevisan, M. A.; Mindlin, G. B.

    2005-09-01

    Horneros (Furnarius Rufus) are South American birds well known for their oven-looking nests and their ability to sing in couples. Previous work has analyzed the rhythmic organization of the duets, unveiling a mathematical structure behind the songs. In this work we analyze in detail an extended database of duets. The rhythms of the songs are compatible with the dynamics presented by a wide class of dynamical systems: forced excitable systems. Compatible with this nonlinear rule, we build a biologically inspired model for how the neural and the anatomical elements may interact to produce the observed rhythmic patterns. This model allows us to synthesize songs presenting the acoustic and rhythmic features observed in real songs. We also make testable predictions in order to support our hypothesis.

  14. Transcriptome analysis in oak uncovers a strong impact of endogenous rhythmic growth on the interaction with plant-parasitic nematodes.

    Science.gov (United States)

    Maboreke, Hazel R; Feldhahn, Lasse; Bönn, Markus; Tarkka, Mika T; Buscot, Francois; Herrmann, Sylvie; Menzel, Ralph; Ruess, Liliane

    2016-08-12

    Pedunculate oak (Quercus robur L.), an important forest tree in temperate ecosystems, displays an endogenous rhythmic growth pattern, characterized by alternating shoot and root growth flushes paralleled by oscillations in carbon allocation to below- and aboveground tissues. However, these common plant traits so far have largely been neglected as a determining factor for the outcome of plant biotic interactions. This study investigates the response of oak to migratory root-parasitic nematodes in relation to rhythmic growth, and how this plant-nematode interaction is modulated by an ectomycorrhizal symbiont. Oaks roots were inoculated with the nematode Pratylenchus penetrans solely and in combination with the fungus Piloderma croceum, and the systemic impact on oak plants was assessed by RNA transcriptomic profiles in leaves. The response of oaks to the plant-parasitic nematode was strongest during shoot flush, with a 16-fold increase in the number of differentially expressed genes as compared to root flush. Multi-layered defence mechanisms were induced at shoot flush, comprising upregulation of reactive oxygen species formation, hormone signalling (e.g. jasmonic acid synthesis), and proteins involved in the shikimate pathway. In contrast during root flush production of glycerolipids involved in signalling cascades was repressed, suggesting that P. penetrans actively suppressed host defence. With the presence of the mycorrhizal symbiont, the gene expression pattern was vice versa with a distinctly stronger effect of P. penetrans at root flush, including attenuated defence, cell and carbon metabolism, likely a response to the enhanced carbon sink strength in roots induced by the presence of both, nematode and fungus. Meanwhile at shoot flush, when nutrients are retained in aboveground tissue, oak defence reactions, such as altered photosynthesis and sugar pathways, diminished. The results highlight that gene response patterns of plants to biotic interactions, both

  15. Rhythm and amplitude of rhythmic masticatory muscle activity during sleep in bruxers - comparison with gum chewing.

    Science.gov (United States)

    Matsuda, Shinpei; Yamaguchi, Taihiko; Mikami, Saki; Okada, Kazuki; Gotouda, Akihito; Sano, Kazuo

    2016-07-01

    The aim of this study was to elucidate characteristics of rhythmic masticatory muscle activity (RMMA) during sleep by comparing masseteric EMG (electromyogram) activities of RMMA with gum chewing. The parts of five or more consecutive phasic bursts in RMMA of 23 bruxers were analyzed. Wilcoxon signed-rank test for matched pairs and Spearman's correlation coefficient by the rank test were used for statistical analysis. Root mean square value of RMMA phasic burst was smaller than that during gum chewing, but correlates to that of gum chewing. The cycle of RMMA was longer than that of gum chewing due to the longer burst duration of RMMA, and variation in the cycles of RMMA was wider. These findings suggest that the longer but smaller EMG burst in comparison with gum chewing is one of the characteristics of RMMA. The relation between size of RMMA phasic bursts and gum chewing is also suggested.

  16. Time-frequency analysis of human motion during rhythmic exercises.

    Science.gov (United States)

    Omkar, S N; Vyas, Khushi; Vikranth, H N

    2011-01-01

    Biomechanical signals due to human movements during exercise are represented in time-frequency domain using Wigner Distribution Function (WDF). Analysis based on WDF reveals instantaneous spectral and power changes during a rhythmic exercise. Investigations were carried out on 11 healthy subjects who performed 5 cycles of sun salutation, with a body-mounted Inertial Measurement Unit (IMU) as a motion sensor. Variance of Instantaneous Frequency (I.F) and Instantaneous Power (I.P) for performance analysis of the subject is estimated using one-way ANOVA model. Results reveal that joint Time-Frequency analysis of biomechanical signals during motion facilitates a better understanding of grace and consistency during rhythmic exercise.

  17. Rhythmic Effects of Syntax Processing in Music and Language.

    Science.gov (United States)

    Jung, Harim; Sontag, Samuel; Park, YeBin S; Loui, Psyche

    2015-01-01

    Music and language are human cognitive and neural functions that share many structural similarities. Past theories posit a sharing of neural resources between syntax processing in music and language (Patel, 2003), and a dynamic attention network that governs general temporal processing (Large and Jones, 1999). Both make predictions about music and language processing over time. Experiment 1 of this study investigates the relationship between rhythmic expectancy and musical and linguistic syntax in a reading time paradigm. Stimuli (adapted from Slevc et al., 2009) were sentences broken down into segments; each sentence segment was paired with a musical chord and presented at a fixed inter-onset interval. Linguistic syntax violations appeared in a garden-path design. During the critical region of the garden-path sentence, i.e., the particular segment in which the syntactic unexpectedness was processed, expectancy violations for language, music, and rhythm were each independently manipulated: musical expectation was manipulated by presenting out-of-key chords and rhythmic expectancy was manipulated by perturbing the fixed inter-onset interval such that the sentence segments and musical chords appeared either early or late. Reading times were recorded for each sentence segment and compared for linguistic, musical, and rhythmic expectancy. Results showed main effects of rhythmic expectancy and linguistic syntax expectancy on reading time. There was also an effect of rhythm on the interaction between musical and linguistic syntax: effects of violations in musical and linguistic syntax showed significant interaction only during rhythmically expected trials. To test the effects of our experimental design on rhythmic and linguistic expectancies, independently of musical syntax, Experiment 2 used the same experimental paradigm, but the musical factor was eliminated-linguistic stimuli were simply presented silently, and rhythmic expectancy was manipulated at the critical

  18. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression

    OpenAIRE

    Kojima, Shihoko; Sher-Chen, Elaine L.; Green, Carla B.

    2012-01-01

    Green and colleagues perform a global analysis of circadian-controlled poly(A) tails and identify hundreds of mRNAs that display dynamic rhythmic polyadenylation states. They identify three distinct classes of mRNAs with rhythmic poly(A) tails. Interestingly, class III mRNAs are controlled not by transcription, but by rhythmic cytoplasmic polyadenylation, and are regulated by the components of the cytoplasmic polyadenylation machinery, CPEB2 in particular, which are themselves rhythmically ex...

  19. Rhythmic Engagement with Music in Early Childhood: A Replication and Extension

    Science.gov (United States)

    Ilari, Beatriz

    2015-01-01

    The purpose of this study was to replicate and extend previous findings on spontaneous movement and rhythmic engagement with music in infancy. Using the identical stimuli and procedures from the original study, I investigated spontaneous rhythmic movements in response to music, infant-directed speech, and contrasting rhythmic patterns in 30…

  20. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor

    NARCIS (Netherlands)

    Buijink, A. W. G.; Broersma, M.; van der Stouwe, A. M. M.; van Wingen, G. A.; Groot, P. F. C.; Speelman, J. D.; Maurits, N. M.; van Rootselaar, A. F.

    Introduction: Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of

  1. Body composition and cardiac dimensions in elite rhythmic gymnasts.

    Science.gov (United States)

    Galetta, F; Franzoni, F; D'alessandro, C; Piazza, M; Tocchini, L; Fallahi, P; Antonelli, A; Cupisti, F; Santoro, G

    2015-09-01

    Rhythmic gymnasts are often believed to be a population at risk of malnutrition because of their tendency to keep a low weight and a lean appearance for better athletic performance, and because they start intensive training at a very young age. The purpose of this study was to evaluate in adolescent elite gymnasts the effects of physical activity on body composition and cardiac morphology and function. Sixteen national level rhythmic gymnasts and 16 control adolescent female underwent anthropometric measurements, bioelectric impedance and echocardiography to assess body composition and cardiac morphology and function. As compared to controls, gymnasts had lower body mass index (16.9±1.1 vs. 18.7±1.0, Panalysis showed a lower percentage of body fat in the gymnasts, together with a higher percentage of fat-free mass. Echocardiographic findings indicate that elite rhythmic gymnastics present left ventricular remodeling as training-induced cardiac adaptation. Intensive training, dietary attitude and evident leanness of rhythmic gymnasts are not associated with cardiac abnormalities, as it is the case of pathological leanness.

  2. Relationships between early literacy and nonlinguistic rhythmic processes in kindergarteners.

    Science.gov (United States)

    Ozernov-Palchik, Ola; Wolf, Maryanne; Patel, Aniruddh D

    2018-03-01

    A growing number of studies report links between nonlinguistic rhythmic abilities and certain linguistic abilities, particularly phonological skills. The current study investigated the relationship between nonlinguistic rhythmic processing, phonological abilities, and early literacy abilities in kindergarteners. A distinctive aspect of the current work was the exploration of whether processing of different types of rhythmic patterns is differentially related to kindergarteners' phonological and reading-related abilities. Specifically, we examined the processing of metrical versus nonmetrical rhythmic patterns, that is, patterns capable of being subdivided into equal temporal intervals or not (Povel & Essens, 1985). This is an important comparison because most music involves metrical sequences, in which rhythm often has an underlying temporal grid of isochronous units. In contrast, nonmetrical sequences are arguably more typical to speech rhythm, which is temporally structured but does not involve an underlying grid of equal temporal units. A rhythm discrimination app with metrical and nonmetrical patterns was administered to 74 kindergarteners in conjunction with cognitive and preliteracy measures. Findings support a relationship among rhythm perception, phonological awareness, and letter-sound knowledge (an essential precursor of reading). A mediation analysis revealed that the association between rhythm perception and letter-sound knowledge is mediated through phonological awareness. Furthermore, metrical perception accounted for unique variance in letter-sound knowledge above all other language and cognitive measures. These results point to a unique role for temporal regularity processing in the association between musical rhythm and literacy in young children. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor

    NARCIS (Netherlands)

    Buijink, A. W. G.; Broersma, M.; van der Stouwe, A. M. M.; van Wingen, G. A.; Groot, P. F. C.; Speelman, J. D.; Maurits, N. M.; van Rootselaar, A. F.

    2015-01-01

    Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of cerebellar

  4. The Acoustic Reality of the Kachruvian Circles: A Rhythmic Perspective

    Science.gov (United States)

    Low, Ee Ling

    2010-01-01

    This paper investigates whether the rhythmic properties of varieties of English found in each of the concentric circles of Kachru's model can, in any way, be elucidated by the "Three Circles" model. A measurement and comparison of the rhythm of three varieties of English: British English (from the Inner Circle), Singapore English (from…

  5. Modeling discrete and rhythmic movements through motor primitives: a review.

    Science.gov (United States)

    Degallier, Sarah; Ijspeert, Auke

    2010-10-01

    Rhythmic and discrete movements are frequently considered separately in motor control, probably because different techniques are commonly used to study and model them. Yet the increasing interest in finding a comprehensive model for movement generation requires bridging the different perspectives arising from the study of those two types of movements. In this article, we consider discrete and rhythmic movements within the framework of motor primitives, i.e., of modular generation of movements. In this way we hope to gain an insight into the functional relationships between discrete and rhythmic movements and thus into a suitable representation for both of them. Within this framework we can define four possible categories of modeling for discrete and rhythmic movements depending on the required command signals and on the spinal processes involved in the generation of the movements. These categories are first discussed in terms of biological concepts such as force fields and central pattern generators and then illustrated by several mathematical models based on dynamical system theory. A discussion on the plausibility of theses models concludes the work.

  6. Corpus-Based Rhythmic Pattern Analysis of Ragtime Syncopation

    NARCIS (Netherlands)

    Koops, Hendrik Vincent; Volk, A.; de Haas, W.B.

    2015-01-01

    This paper presents a corpus-based study on rhythmic patterns in the RAG-collection of approximately 11.000 symbolically encoded ragtime pieces. While characteristic musical features that define ragtime as a genre have been debated since its inception, musicologists argue that specific syncopation

  7. Rhythmic regularity revisited : Is beat induction indeed pre-attentive?

    NARCIS (Netherlands)

    Bouwer, F.; Honing, H.; Cambouropoulos, E.; Tsougras, C.; Mavromatis, P.; Pastiadis, K.

    2012-01-01

    When listening to musical rhythm, regularity in time is often perceived in the form of a beat or pulse. External rhythmic events can give rise to the perception of a beat, through a process known as beat induction. In addition, internal processes, like long-term memory, working memory and automatic

  8. Attentional loads associated with interlimb interactions underlying rhythmic bimanual coordination.

    NARCIS (Netherlands)

    Ridderikhoff, A.; Peper, C.E.; Beek, P.J.

    2008-01-01

    Studies of rhythmic bimanual coordination under dual-task conditions revealed (1) a dependence of secondary task performance on the stability of coordinative tasks, in that secondary task performance was better during in-phase than antiphase coordination, and (2) a shift in the mean relative phasing

  9. Transitions between discrete and rhythmic primitives in a unimanual task

    Science.gov (United States)

    Sternad, Dagmar; Marino, Hamal; Charles, Steven K.; Duarte, Marcos; Dipietro, Laura; Hogan, Neville

    2013-01-01

    Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements in order to “stress” the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: starting at 2 s, the metronome intervals decreased by 36 ms per cycle to 200 ms, stayed at 200 ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models. PMID:23888139

  10. Transitions between Discrete and Rhythmic Primitives in a Unimanual Task

    Directory of Open Access Journals (Sweden)

    Dagmar eSternad

    2013-07-01

    Full Text Available Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements, in order to stress the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: Starting at 2s the metronome intervals decreased by 36ms per cycle to 200ms, stayed at 200ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models.

  11. The problem of the quality of judging in rhythmic gymnastics

    Directory of Open Access Journals (Sweden)

    V.V. Perederij

    2013-03-01

    Full Text Available The aim of the study is to develop a classification of factors influencing the quality of judging in rhythmic gymnastics. As a result of consolidation of theoretical information and practical experience was a list of the factors that negatively affect the behavior of judges in gymnastics, which were divided into two groups: the objective and non-objective (subjective. Objective factors include intense competition schedule, fatigue, especially memory, attention, competition rules, to the subjective: the ratio of judges to their gymnast (team or to the opposing team, the lack of interest in the performance, composition of the judging panel, the influence of authority and popularity sportswomen dependence on its management. Respondents were unanimous in that independent professional judges are needed in a rhythmic gymnastics. It is set that 64% respondent mark the presence of pressure on judges from the side of competitors.

  12. Body Temperature Cycles Control Rhythmic Alternative Splicing in Mammals.

    Science.gov (United States)

    Preußner, Marco; Goldammer, Gesine; Neumann, Alexander; Haltenhof, Tom; Rautenstrauch, Pia; Müller-McNicoll, Michaela; Heyd, Florian

    2017-08-03

    The core body temperature of all mammals oscillates with the time of the day. However, direct molecular consequences of small, physiological changes in body temperature remain largely elusive. Here we show that body temperature cycles drive rhythmic SR protein phosphorylation to control an alternative splicing (AS) program. A temperature change of 1°C is sufficient to induce a concerted splicing switch in a large group of functionally related genes, rendering this splicing-based thermometer much more sensitive than previously described temperature-sensing mechanisms. AS of two exons in the 5' UTR of the TATA-box binding protein (Tbp) highlights the general impact of this mechanism, as it results in rhythmic TBP protein levels with implications for global gene expression in vivo. Together our data establish body temperature-driven AS as a core clock-independent oscillator in mammalian peripheral clocks. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Understanding Epileptiform After-Discharges as Rhythmic Oscillatory Transients.

    Science.gov (United States)

    Baier, Gerold; Taylor, Peter N; Wang, Yujiang

    2017-01-01

    Electro-cortical activity in patients with epilepsy may show abnormal rhythmic transients in response to stimulation. Even when using the same stimulation parameters in the same patient, wide variability in the duration of transient response has been reported. These transients have long been considered important for the mapping of the excitability levels in the epileptic brain but their dynamic mechanism is still not well understood. To investigate the occurrence of abnormal transients dynamically, we use a thalamo-cortical neural population model of epileptic spike-wave activity and study the interaction between slow and fast subsystems. In a reduced version of the thalamo-cortical model, slow wave oscillations arise from a fold of cycles (FoC) bifurcation. This marks the onset of a region of bistability between a high amplitude oscillatory rhythm and the background state. In vicinity of the bistability in parameter space, the model has excitable dynamics, showing prolonged rhythmic transients in response to suprathreshold pulse stimulation. We analyse the state space geometry of the bistable and excitable states, and find that the rhythmic transient arises when the impending FoC bifurcation deforms the state space and creates an area of locally reduced attraction to the fixed point. This area essentially allows trajectories to dwell there before escaping to the stable steady state, thus creating rhythmic transients. In the full thalamo-cortical model, we find a similar FoC bifurcation structure. Based on the analysis, we propose an explanation of why stimulation induced epileptiform activity may vary between trials, and predict how the variability could be related to ongoing oscillatory background activity. We compare our dynamic mechanism with other mechanisms (such as a slow parameter change) to generate excitable transients, and we discuss the proposed excitability mechanism in the context of stimulation responses in the epileptic cortex.

  14. The Edit Distance as a Measure of Perceived Rhythmic Similarity

    Directory of Open Access Journals (Sweden)

    Olaf Post

    2012-07-01

    Full Text Available The ‘edit distance’ (or ‘Levenshtein distance’ measure of distance between two data sets is defined as the minimum number of editing operations – insertions, deletions, and substitutions – that are required to transform one data set to the other (Orpen and Huron, 1992. This measure of distance has been applied frequently and successfully in music information retrieval, but rarely in predicting human perception of distance. In this study, we investigate the effectiveness of the edit distance as a predictor of perceived rhythmic dissimilarity under simple rhythmic alterations. Approaching rhythms as a set of pulses that are either onsets or silences, we study two types of alterations. The first experiment is designed to test the model’s accuracy for rhythms that are relatively similar; whether rhythmic variations with the same edit distance to a source rhythm are also perceived as relatively similar by human subjects. In addition, we observe whether the salience of an edit operation is affected by its metric placement in the rhythm. Instead of using a rhythm that regularly subdivides a 4/4 meter, our source rhythm is a syncopated 16-pulse rhythm, the son. Results show a high correlation between the predictions by the edit distance model and human similarity judgments (r = 0.87; a higher correlation than for the well-known generative theory of tonal music (r = 0.64. In the second experiment, we seek to assess the accuracy of the edit distance model in predicting relatively dissimilar rhythms. The stimuli used are random permutations of the son’s inter-onset intervals: 3-3-4-2-4. The results again indicate that the edit distance correlates well with the perceived rhythmic dissimilarity judgments of the subjects (r = 0.76. To gain insight in the relationships between the individual rhythms, the results are also presented by means of graphic phylogenetic trees.

  15. Dorsal and ventral streams across sensory modalities

    Institute of Scientific and Technical Information of China (English)

    Anna Sedda; Federica Scarpina

    2012-01-01

    In this review,we describe the current models of dorsal and ventral streams in vision,audition and touch.Available theories take their first steps from the model of Milner and Goodale,which was developed to explain how human actions can be efficiently carried out using visual information.Since then,similar concepts have also been applied to other sensory modalities.We propose that advances in the knowledge of brain functioning can be achieved through models explaining action and perception patterns independently from sensory modalities.

  16. Somatotype of top-level serbian rhythmic gymnasts.

    Science.gov (United States)

    Purenović-Ivanović, Tijana; Popović, Ružena

    2014-03-27

    Body size and build influence performance in many sports, especially in those belonging to the group of female aesthetic sports (rhythmic gymnastics, artistic gymnastics, and figure skating). These sports pose high specific demands upon the functional, energy, motor and psychological capacities of athletes, but also upon the size, body build and composition of the performers, particularly of the top-level female athletes. The study of the top athletes (rhythmic gymnasts, in this case) may provide valuable information on the morphological requirements for achieving success in this sport. Therefore, the main objective of this research was to analyze the somatotype of 40 Serbian top-level rhythmic gymnasts, aged 13.04±2.79, and to form the five age group categories. The anthropometric variables included body height, body mass, the selected diameters, girths and skinfolds, and the Heath-Carter anthropometric somatotype. All of the anthropometric data were collected according to International Biological Programme, and then processed in the Somatotype 1.2. The applied analysis of variance indicated an increase in endomorphic component with age. The obtained results show that the balanced ectomorph is a dominant somatotype, being similar for all of the athletes that took part in the research (3.54-3.24-4.5). These results are in line with the ones obtained in previous studies.

  17. Circadian remodeling of neuronal circuits involved in rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    María Paz Fernández

    2008-03-01

    Full Text Available Clock output pathways are central to convey timing information from the circadian clock to a diversity of physiological systems, ranging from cell-autonomous processes to behavior. While the molecular mechanisms that generate and sustain rhythmicity at the cellular level are well understood, it is unclear how this information is further structured to control specific behavioral outputs. Rhythmic release of pigment dispersing factor (PDF has been proposed to propagate the time of day information from core pacemaker cells to downstream targets underlying rhythmic locomotor activity. Indeed, such circadian changes in PDF intensity represent the only known mechanism through which the PDF circuit could communicate with its output. Here we describe a novel circadian phenomenon involving extensive remodeling in the axonal terminals of the PDF circuit, which display higher complexity during the day and significantly lower complexity at nighttime, both under daily cycles and constant conditions. In support to its circadian nature, cycling is lost in bona fide clockless mutants. We propose this clock-controlled structural plasticity as a candidate mechanism contributing to the transmission of the information downstream of pacemaker cells.

  18. Rhythmic abilities and musical training in Parkinson's disease: do they help?

    Science.gov (United States)

    Cochen De Cock, V; Dotov, D G; Ihalainen, P; Bégel, V; Galtier, F; Lebrun, C; Picot, M C; Driss, V; Landragin, N; Geny, C; Bardy, B; Dalla Bella, S

    2018-01-01

    Rhythmic auditory cues can immediately improve gait in Parkinson's disease. However, this effect varies considerably across patients. The factors associated with this individual variability are not known to date. Patients' rhythmic abilities and musicality (e.g., perceptual and singing abilities, emotional response to music, and musical training) may foster a positive response to rhythmic cues. To examine this hypothesis, we measured gait at baseline and with rhythmic cues in 39 non-demented patients with Parkinson's disease and 39 matched healthy controls. Cognition, rhythmic abilities and general musicality were assessed. A response to cueing was qualified as positive when the stimulation led to a clinically meaningful increase in gait speed. We observed that patients with positive response to cueing ( n  = 17) were more musically trained, aligned more often their steps to the rhythmic cues while walking, and showed better music perception as well as poorer cognitive flexibility than patients with non-positive response ( n  = 22). Gait performance with rhythmic cues worsened in six patients. We concluded that rhythmic and musical skills, which can be modulated by musical training, may increase beneficial effects of rhythmic auditory cueing in Parkinson's disease. Screening patients in terms of musical/rhythmic abilities and musical training may allow teasing apart patients who are likely to benefit from cueing from those who may worsen their performance due to the stimulation.

  19. Root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  20. Rhythmic EEG patterns in extremely preterm infants: Classification and association with brain injury and outcome.

    Science.gov (United States)

    Weeke, Lauren C; van Ooijen, Inge M; Groenendaal, Floris; van Huffelen, Alexander C; van Haastert, Ingrid C; van Stam, Carolien; Benders, Manon J; Toet, Mona C; Hellström-Westas, Lena; de Vries, Linda S

    2017-12-01

    Classify rhythmic EEG patterns in extremely preterm infants and relate these to brain injury and outcome. Retrospective analysis of 77 infants born Rhythmic patterns were observed in 62.3% (ictal 1.3%, PEDs 44%, other waveforms 86.3%) with multiple patterns in 36.4%. Ictal discharges were only observed in one and excluded from further analyses. The EEG location of the other waveforms (pRhythmic waveforms related to head position are likely artefacts. Rhythmic EEG patterns may have a different significance in extremely preterm infants. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  1. The Effect of Haptic Guidance on Learning a Hybrid Rhythmic-Discrete Motor Task.

    Science.gov (United States)

    Marchal-Crespo, Laura; Bannwart, Mathias; Riener, Robert; Vallery, Heike

    2015-01-01

    Bouncing a ball with a racket is a hybrid rhythmic-discrete motor task, combining continuous rhythmic racket movements with discrete impact events. Rhythmicity is exceptionally important in motor learning, because it underlies fundamental movements such as walking. Studies suggested that rhythmic and discrete movements are governed by different control mechanisms at different levels of the Central Nervous System. The aim of this study is to evaluate the effect of fixed/fading haptic guidance on learning to bounce a ball to a desired apex in virtual reality with varying gravity. Changing gravity changes dominance of rhythmic versus discrete control: The higher the value of gravity, the more rhythmic the task; lower values reduce the bouncing frequency and increase dwell times, eventually leading to a repetitive discrete task that requires initiation and termination, resembling target-oriented reaching. Although motor learning in the ball-bouncing task with varying gravity has been studied, the effect of haptic guidance on learning such a hybrid rhythmic-discrete motor task has not been addressed. We performed an experiment with thirty healthy subjects and found that the most effective training condition depended on the degree of rhythmicity: Haptic guidance seems to hamper learning of continuous rhythmic tasks, but it seems to promote learning for repetitive tasks that resemble discrete movements.

  2. Individualization of music-based rhythmic auditory cueing in Parkinson's disease.

    Science.gov (United States)

    Bella, Simone Dalla; Dotov, Dobromir; Bardy, Benoît; de Cock, Valérie Cochen

    2018-06-04

    Gait dysfunctions in Parkinson's disease can be partly relieved by rhythmic auditory cueing. This consists in asking patients to walk with a rhythmic auditory stimulus such as a metronome or music. The effect on gait is visible immediately in terms of increased speed and stride length. Moreover, training programs based on rhythmic cueing can have long-term benefits. The effect of rhythmic cueing, however, varies from one patient to the other. Patients' response to the stimulation may depend on rhythmic abilities, often deteriorating with the disease. Relatively spared abilities to track the beat favor a positive response to rhythmic cueing. On the other hand, most patients with poor rhythmic abilities either do not respond to the cues or experience gait worsening when walking with cues. An individualized approach to rhythmic auditory cueing with music is proposed to cope with this variability in patients' response. This approach calls for using assistive mobile technologies capable of delivering cues that adapt in real time to patients' gait kinematics, thus affording step synchronization to the beat. Individualized rhythmic cueing can provide a safe and cost-effective alternative to standard cueing that patients may want to use in their everyday lives. © 2018 New York Academy of Sciences.

  3. Circadian rhythms in the pineal organ persist in zebrafish larvae that lack ventral brain

    Directory of Open Access Journals (Sweden)

    Goldstein-Kral Lauren

    2011-01-01

    Full Text Available Abstract Background The mammalian suprachiasmatic nucleus (SCN, located in the ventral hypothalamus, is a major regulator of circadian rhythms in mammals and birds. However, the role of the SCN in lower vertebrates remains poorly understood. Zebrafish cyclops (cyc mutants lack ventral brain, including the region that gives rise to the SCN. We have used cyc embryos to define the function of the zebrafish SCN in regulating circadian rhythms in the developing pineal organ. The pineal organ is the major source of the circadian hormone melatonin, which regulates rhythms such as daily rest/activity cycles. Mammalian pineal rhythms are controlled almost exclusively by the SCN. In zebrafish and many other lower vertebrates, the pineal has an endogenous clock that is responsible in part for cyclic melatonin biosynthesis and gene expression. Results We find that pineal rhythms are present in cyc mutants despite the absence of an SCN. The arginine vasopressin-like protein (Avpl, formerly called Vasotocin is a peptide hormone expressed in and around the SCN. We find avpl mRNA is absent in cyc mutants, supporting previous work suggesting the SCN is missing. In contrast, expression of the putative circadian clock genes, cryptochrome 1b (cry1b and cryptochrome 3 (cry3, in the brain of the developing fish is unaltered. Expression of two pineal rhythmic genes, exo-rhodopsin (exorh and serotonin-N-acetyltransferase (aanat2, involved in photoreception and melatonin synthesis, respectively, is also similar between cyc embryos and their wildtype (WT siblings. The timing of the peaks and troughs of expression are the same, although the amplitude of expression is slightly decreased in the mutants. Cyclic gene expression persists for two days in cyc embryos transferred to constant light or constant dark, suggesting a circadian clock is driving the rhythms. However, the amplitude of rhythms in cyc mutants kept in constant conditions decreased more quickly than in their

  4. The appreciation of artistic aspects of the Code of Points in rhythmic gymnastics: an analysis of the last three decades

    Directory of Open Access Journals (Sweden)

    Eliana de TOLEDO

    2016-03-01

    Full Text Available Abstract In pursuit of promoting the artistic aspects, the current Rhythmic Gymnastics Code of Points (RGCP has been submeted significant changes that motivated this research, documentary and historical in character, which aimed to analyze the last eight Olympic cycles of RGCP. The research method used in this study is documentary and characterized by the information found in documents (RGCP that had not received any scientific treatment. From the analysis of different RGCP cycles, we found artistic aspects, and their connection with RG technical requirements. We observed that the RG has distinct stages (technical aspects, flexibility etc. While retaining its artistic roots (from Dance and Rhythm, in pursuit of sportivization and systematization of the sport, the first stage was characterized by a search for the sportivization and standardization of the modality based on the inclusion of new body elements in the RGCP . The second stage confirms our previous hypothesis, that in the last RGCP the artistic component had undergone few changes. We noticed, in an overview, that at the present time the current RGCP brings back the relationship between RG and its origins, influenced by Aesthetic Gymnastics (Swedish, Rhythmic and Dance. Condition observed once the current Code of Points (2013-2016 marks the story of sports, by two aspects: the permissiveness of routines with singing wich has not allowed since since the creation the RGCP and significant changes to the appreciation of the routines’ artistic aspects.

  5. The issue of ventral versus dorsal approach in bulbar urethral ...

    African Journals Online (AJOL)

    E. Palminteri

    From surgical point of view, the Barbagli Dorsal Grafting by Dor- sal approach [8] gives a good support for the graft; Barbagli stated that his technique offers a wider augmentation than ventral or dorsal grafting using the ventral approach. The good spongiosum covering seems reduce the risk of fistula; in reality there is a ...

  6. Development of the ventral body wall in the human embryo

    NARCIS (Netherlands)

    Mekonen, Hayelom K.; Hikspoors, Jill P. J. M.; Mommen, Greet; Köhler, S. Eleonore; Lamers, Wouter H.

    2015-01-01

    Migratory failure of somitic cells is the commonest explanation for ventral body wall defects. However, the embryo increases ~ 25-fold in volume in the period that the ventral body wall forms, so that differential growth may, instead, account for the observed changes in topography. Human embryos

  7. Rate control and quality assurance during rhythmic force tracking.

    Science.gov (United States)

    Huang, Cheng-Ya; Su, Jyong-Huei; Hwang, Ing-Shiou

    2014-02-01

    Movement characteristics can be coded in the single neurons or in the summed activity of neural populations. However, whether neural oscillations are conditional to the frequency demand and task quality of rhythmic force regulation is still unclear. This study was undertaken to investigate EEG dynamics and behavior correlates during force-tracking at different target rates. Fourteen healthy volunteers conducted load-varying isometric abduction of the index finger by coupling the force output to sinusoidal targets at 0.5 Hz, 1.0 Hz, and 2.0 Hz. Our results showed that frequency demand significantly affected EEG delta oscillation (1-4 Hz) in the C3, CP3, CPz, and CP4 electrodes, with the greatest delta power and lowest delta peak around 1.5 Hz for slower tracking at 0.5 Hz. Those who had superior tracking congruency also manifested enhanced alpha oscillation (8-12 Hz). Alpha rhythms of the skilled performers during slow tracking spread through the whole target cycle, except for the phase of direction changes. However, the alpha rhythms centered at the mid phase of a target cycle with increasing target rate. In conclusion, our findings clearly suggest two advanced roles of cortical oscillation in rhythmic force regulation. Rate-dependent delta oscillation involves a paradigm shift in force control under different time scales. Phasic organization of alpha rhythms during rhythmic force tracking is related to behavioral success underlying the selective use of bimodal controls (feedback and feedforward processes) and the timing of attentional focus on the target's peak velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. YOUNG LEARNERS’ RHYTHMIC AND INTONATION SKILLS THROUGH DRAMA

    Directory of Open Access Journals (Sweden)

    Olena Beskorsa

    2016-11-01

    Full Text Available The article is devoted to the problem of implementing drama techniques into the process of developing young learners’ rhythmic and intonation skills. The main task of learning the foreign language is using it as a mean of pupils’ communication in oral and written forms. The author proves that drama techniques integrate successfully all types of speech activities. It is specified that this method transfers the focus from teaching grammatically correct speech to training clear and effective communication. The author emphasizes on that sentence stress and speed of speech has the greatest influence on the rhythm. The application of these drama techniques are thought to increase primary school pupils’ level of motivation to master the language skills perfectly, it provides a positive psychological climate in English classes. The teachers’ role has a tendency to minimizing. They act as facilitators. In author’s opinion if they do impose the authority implementing drama activities into the classroom, the educational value of drama techniques will be never gained. It is also disclosed that rhythmic and intonation skills shouldn’t be formed spontaneously, the process of their development has to be conducted in certain stages (presentation and production to make pupils’ speech fluent and pronunciation clear, introducing the exercises based on drama techniques. At the stage of presentation the following exercises have the most methodological value: speed dictations, dictogloss, asking questions to practise recognizing word boundaries, matching phrases to stress patterns, marking stresses and weak forms, authentic listening. At production stage they suggest using exercises like play reading and play production. The following pieces of drama texts are recommended to be applied for teaching primary school children: jazz chants, poems, scripted plays and simple scenes from different movie genres. It is also proved that drama techniques and

  9. Sexual arousal and rhythmic synchronization: A possible effect of vasopressin

    DEFF Research Database (Denmark)

    Miani, Alessandro

    2016-01-01

    Music is ubiquitous. Yet, its biological relevance is still an ongoing debate. Supporting the view that music had an ancestral role in courtship displays, a pilot study presented here provides preliminary evidence on the link between music and sexual selection. The underlying hypothesis is based...... by vasopressin and its genes. Hence, to test this hypothesis, a rhythmic synchronization task was employed here on one male subject during sexual arousal. Results revealed a significant effect of sexual arousal on rhythm synchronization. This is the first report that empirically supports the hypothesis...

  10. Champagne experiences various rhythmical bubbling regimes in a flute.

    Science.gov (United States)

    Liger-Belair, Gérard; Tufaile, Alberto; Jeandet, Philippe; Sartorelli, José-Carlos

    2006-09-20

    Bubble trains are seen rising gracefully from a few points on the glass wall (called nucleation sites) whenever champagne is poured into a glass. As time passes during the gas-discharging process, the careful observation of some given bubble columns reveals that the interbubble distance may change suddenly, thus revealing different rhythmical bubbling regimes. Here, it is reported that the transitions between the different bubbling regimes of some nucleation sites during gas discharging is a process which may be ruled by a strong interaction between tiny gas pockets trapped inside the nucleation site and/or also by an interaction between the tiny bubbles just blown from the nucleation site.

  11. Roots & Hollers

    OpenAIRE

    Kollman, Patrick L; Gorman, Thomas A

    2011-01-01

    Roots & Hollers, 2011 A documentary by Thomas Gorman & Patrick Kollman Master’s Project Abstract: Roots & Hollers uncovers the wild American ginseng trade, revealing a unique intersection between Asia and rural America. Legendary in Asia for its healing powers, ginseng helps sustain the livelihoods of thousands in Appalachia. A single root can sell for thousands of dollars at auction. Shot on-location in the mountains of Kentucky and West Virginia, this student doc...

  12. Judging in Rhythmic Gymnastics at Different Levels of Performance.

    Science.gov (United States)

    Leandro, Catarina; Ávila-Carvalho, Lurdes; Sierra-Palmeiro, Elena; Bobo-Arce, Marta

    2017-12-01

    This study aimed to analyse the quality of difficulty judging in rhythmic gymnastics, at different levels of performance. The sample consisted of 1152 difficulty scores concerning 288 individual routines, performed in the World Championships in 2013. The data were analysed using the mean absolute judge deviation from the final difficulty score, a Cronbach's alpha coefficient and intra-class correlations, for consistency and reliability assessment. For validity assessment, mean deviations of judges' difficulty scores, the Kendall's coefficient of concordance W and ANOVA eta-squared values were calculated. Overall, the results in terms of consistency (Cronbach's alpha mostly above 0.90) and reliability (intra-class correlations for single and average measures above 0.70 and 0.90, respectively) were satisfactory, in the first and third parts of the ranking on all apparatus. The medium level gymnasts, those in the second part of the ranking, had inferior reliability indices and highest score dispersion. In this part, the minimum of corrected item-total correlation of individual judges was 0.55, with most values well below, and the matrix for between-judge correlations identified remarkable inferior correlations. These findings suggest that the quality of difficulty judging in rhythmic gymnastics may be compromised at certain levels of performance. In future, special attention should be paid to the judging analysis of the medium level gymnasts, as well as the Code of Points applicability at this level.

  13. Rhythmic Density Affects Listeners' Emotional Response to Microtiming

    Directory of Open Access Journals (Sweden)

    Olivier Senn

    2017-10-01

    – Study A investigates the effect of fixed time displacements within and between the parts played by different musicians. Listeners (n = 160 reacted negatively to irregularities within the drum track, but the mutual displacement of bass vs. drums did not have an effect.– Study B develops three metrics to calculate the average microtiming magnitude in a musical excerpt. The experiment showed that listeners' (n = 160 emotional responses to expert performance microtiming aligned with each other across styles, when microtiming magnitude was adjusted for rhythmic density. This indicates that rhythmic density is a unifying moderator for listeners' emotional response to microtiming in swing and funk.– Study C used the data from both experiments in order to compare the effect of fixed microtiming displacements (from Study A with scaled versions of the originally performed microtiming patterns (from Study B. It showed that fixed snare drum displacements irritated expert listeners more than the more flexible deviations occurring in the original performances. This provides some evidence that listeners' emotional response to microtiming deviations not only depends on the magnitude of the deviations, but also on the kind and origin of the microtiming patterns (fixed lab displacements vs. flexible performance microtiming.

  14. Rhythmic changes in synapse numbers in Drosophila melanogaster motor terminals.

    Directory of Open Access Journals (Sweden)

    Santiago Ruiz

    Full Text Available Previous studies have shown that the morphology of the neuromuscular junction of the flight motor neuron MN5 in Drosophila melanogaster undergoes daily rhythmical changes, with smaller synaptic boutons during the night, when the fly is resting, than during the day, when the fly is active. With electron microscopy and laser confocal microscopy, we searched for a rhythmic change in synapse numbers in this neuron, both under light:darkness (LD cycles and constant darkness (DD. We expected the number of synapses to increase during the morning, when the fly has an intense phase of locomotion activity under LD and DD. Surprisingly, only our DD data were consistent with this hypothesis. In LD, we found more synapses at midnight than at midday. We propose that under LD conditions, there is a daily rhythm of formation of new synapses in the dark phase, when the fly is resting, and disassembly over the light phase, when the fly is active. Several parameters appeared to be light dependent, since they were affected differently under LD or DD. The great majority of boutons containing synapses had only one and very few had either two or more, with a 70∶25∶5 ratio (one, two and three or more synapses in LD and 75∶20∶5 in DD. Given the maintenance of this proportion even when both bouton and synapse numbers changed with time, we suggest that there is a homeostatic mechanism regulating synapse distribution among MN5 boutons.

  15. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor.

    Science.gov (United States)

    Buijink, A W G; Broersma, M; van der Stouwe, A M M; van Wingen, G A; Groot, P F C; Speelman, J D; Maurits, N M; van Rootselaar, A F

    2015-04-01

    Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of cerebellar output in essential tremor during rhythmic finger tapping employing functional MRI. Thirty-one propranolol-sensitive essential tremor patients with upper limb tremor and 29 healthy controls were measured. T2*-weighted EPI sequences were acquired. The task consisted of alternating rest and finger tapping blocks. A whole-brain and region-of-interest analysis was performed, the latter focusing on the cerebellar cortex, dentate nucleus and inferior olive nucleus. Activations were also related to tremor severity. In patients, dentate activation correlated positively with tremor severity as measured by the tremor rating scale part A. Patients had reduced activation in widespread cerebellar cortical regions, and additionally in the inferior olive nucleus, and parietal and frontal cortex, compared to controls. The increase in dentate activation with tremor severity supports involvement of the dentate nucleus in essential tremor. Cortical and cerebellar changes during a motor timing task in essential tremor might point to widespread changes in cerebellar output in essential tremor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Rhythmic Haptic Stimuli Improve Short-Term Attention.

    Science.gov (United States)

    Zhang, Shusheng; Wang, Dangxiao; Afzal, Naqash; Zhang, Yuru; Wu, Ruilin

    2016-01-01

    Brainwave entrainment using rhythmic visual and/or auditory stimulation has shown its efficacy in modulating neural activities and cognitive ability. In the presented study, we aim to investigate whether rhythmic haptic stimulation could enhance short-term attention. An experiment with sensorimotor rhythm (SMR) increasing protocol was performed in which participants were presented sinusoidal vibrotactile stimulus of 15 Hz on their palm. Test of Variables of Attention (T.O.V.A.) was performed before and after the stimulating session. Electroencephalograph (EEG) was recorded across the stimulating session and the two attention test sessions. SMR band power manifested a significant increase after stimulation. Results of T.O.V.A. tests indicated an improvement in the attention of participants who had received the stimulation compared to the control group who had not received the stimulation. The D prime score of T.O.V.A. reveals that participants performed better in perceptual sensitivity and sustaining attention level compared to their baseline performance before the stimulating session. These findings highlight the potential value of using haptics-based brainwave entrainment for cognitive training.

  17. Now you hear it: a predictive coding model for understanding rhythmic incongruity

    DEFF Research Database (Denmark)

    Vuust, Peter; Dietz, Martin; Witek, Maria

    2018-01-01

    Rhythmic incongruity in the form of syncopation is a prominent feature of many contemporary musical styles. Syncopations afford incongruity between rhythmic patterns and the meter, giving rise to mental models of differently accented isochronous beats. Syncopations occur either in isolation or as...

  18. The development of rhythmic abilities among of secondary school age pupils

    Directory of Open Access Journals (Sweden)

    Chaskina O. V.

    2016-07-01

    Full Text Available this article is aimed to examine the system of development of rhythmic abilities. It is also studied and analyzed systems of development of rhythmicity of Jacques Dalcroze, V.A. Griner. The definition of the concept «rhythm» is revealed.

  19. Strength Recovery Following Rhythmic or Sustained Exercise as a Function of Time.

    Science.gov (United States)

    Kearney, Jay T.

    The relative rates of strength recovery subsequent to bouts of rhythmic or sustained isometric exercise were investigated. The 72 undergraduates who served as subjects were tested seven times within the framework of a repeated measures design. Each testing session involved two bouts of either rhythmic or sustained isometric exercise separated by a…

  20. Visual cortex responses reflect temporal structure of continuous quasi-rhythmic sensory stimulation.

    Science.gov (United States)

    Keitel, Christian; Thut, Gregor; Gross, Joachim

    2017-02-01

    Neural processing of dynamic continuous visual input, and cognitive influences thereon, are frequently studied in paradigms employing strictly rhythmic stimulation. However, the temporal structure of natural stimuli is hardly ever fully rhythmic but possesses certain spectral bandwidths (e.g. lip movements in speech, gestures). Examining periodic brain responses elicited by strictly rhythmic stimulation might thus represent ideal, yet isolated cases. Here, we tested how the visual system reflects quasi-rhythmic stimulation with frequencies continuously varying within ranges of classical theta (4-7Hz), alpha (8-13Hz) and beta bands (14-20Hz) using EEG. Our findings substantiate a systematic and sustained neural phase-locking to stimulation in all three frequency ranges. Further, we found that allocation of spatial attention enhances EEG-stimulus locking to theta- and alpha-band stimulation. Our results bridge recent findings regarding phase locking ("entrainment") to quasi-rhythmic visual input and "frequency-tagging" experiments employing strictly rhythmic stimulation. We propose that sustained EEG-stimulus locking can be considered as a continuous neural signature of processing dynamic sensory input in early visual cortices. Accordingly, EEG-stimulus locking serves to trace the temporal evolution of rhythmic as well as quasi-rhythmic visual input and is subject to attentional bias. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Root patterning

    NARCIS (Netherlands)

    Scheres, Ben; Laskowski, Marta

    2016-01-01

    The mechanisms that pattern lateral root primordial are essential for the elaboration of root system architecture, a trait of key importance for future crop breeding. But which are most important: periodic or local cues? In this issue of Journal of Experimental Botany (pages 1411-1420), Kircher

  2. Time-varying spectral analysis revealing differential effects of sevoflurane anaesthesia: non-rhythmic-to-rhythmic ratio.

    Science.gov (United States)

    Lin, Y-T; Wu, H-T; Tsao, J; Yien, H-W; Hseu, S-S

    2014-02-01

    Heart rate variability (HRV) may reflect various physiological dynamics. In particular, variation of R-R peak interval (RRI) of electrocardiography appears regularly oscillatory in deeper levels of anaesthesia and less regular in lighter levels of anaesthesia. We proposed a new index, non-rhythmic-to-rhythmic ratio (NRR), to quantify this feature and investigated its potential to estimate depth of anaesthesia. Thirty-one female patients were enrolled in this prospective study. The oscillatory pattern transition of RRI was visualised by the time-varying power spectrum and quantified by NRR. The prediction of anaesthetic events, including skin incision, first reaction of motor movement during emergence period, loss of consciousness (LOC) and return of consciousness (ROC) by NRR were evaluated by serial prediction probability (PK ) analysis; the ability to predict the decrease of effect-site sevoflurane concentration was also evaluated. The results were compared with Bispectral Index (BIS). NRR well-predicted first reaction (PK  > 0.90) 30 s ahead, earlier than BIS and significantly better than HRV indices. NRR well-correlated with sevoflurane concentration, although its correlation was inferior to BIS, while HRV indices had no such correlation. BIS indicated LOC and ROC best. Our findings suggest that NRR provides complementary information to BIS regarding the differential effects of anaesthetics on the brain, especially the subcortical motor activity. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  3. Establishment and initial experiences from the Danish Ventral Hernia Database

    DEFF Research Database (Denmark)

    Helgstrand, F; Rosenberg, J; Bay-Nielsen, M

    2010-01-01

    , use of mesh or no mesh, type of suture material, and placement of the mesh. A total of 5,629 elective and 661 acute ventral hernia repairs were registered. After the first 2 years the registration rate was 70%. CONCLUSION: The first national ventral hernia database has been established. Preliminary...... of the Danish Ventral Hernia Database (DVHD). Furthermore, the first 2-year data from 2007 to 2008 are presented. METHODS: Registrations were based on surgeons' web registrations and validated by cross checking with data from the Danish National Patient Register. RESULTS: The DVHD was established in June 2006...... and is based on prospective online web-registration of perioperative data, and individualised tracking of follow up data. During the first 2 years (2007-2008) data showed a large variation in almost all aspects of ventral hernia repair regarding surgical technique, use of open versus laparoscopic technique...

  4. Dopamine release in ventral striatum of pathological gamblers losing money

    DEFF Research Database (Denmark)

    Linnet, J; Peterson, E; Doudet, D J

    2010-01-01

    Linnet J, Peterson E, Doudet DJ, Gjedde A, Møller A. Dopamine release in ventral striatum of pathological gamblers losing money. Objective: To investigate dopaminergic neurotransmission in relation to monetary reward and punishment in pathological gambling. Pathological gamblers (PG) often continue...... gambling despite losses, known as 'chasing one's losses'. We therefore hypothesized that losing money would be associated with increased dopamine release in the ventral striatum of PG compared with healthy controls (HC). Method: We used Positron Emission Tomography (PET) with [(11)C]raclopride to measure...... dopamine release in the ventral striatum of 16 PG and 15 HC playing the Iowa Gambling Task (IGT). Results: PG who lost money had significantly increased dopamine release in the left ventral striatum compared with HC. PG and HC who won money did not differ in dopamine release. Conclusion: Our findings...

  5. Amphioxus mouth after dorso-ventral inversion.

    Science.gov (United States)

    Kaji, Takao; Reimer, James D; Morov, Arseniy R; Kuratani, Shigeru; Yasui, Kinya

    2016-01-01

    Deuterostomes (animals with 'secondary mouths') are generally accepted to develop the mouth independently of the blastopore. However, it remains largely unknown whether mouths are homologous among all deuterostome groups. Unlike other bilaterians, in amphioxus the mouth initially opens on the left lateral side. This peculiar morphology has not been fully explained in the evolutionary developmental context. We studied the developmental process of the amphioxus mouth to understand whether amphioxus acquired a new mouth, and if so, how it is related to or differs from mouths in other deuterostomes. The left first somite in amphioxus produces a coelomic vesicle between the epidermis and pharynx that plays a crucial role in the mouth opening. The vesicle develops in association with the amphioxus-specific Hatschek nephridium, and first opens into the pharynx and then into the exterior as a mouth. This asymmetrical development of the anterior-most somites depends on the Nodal-Pitx signaling unit, and the perturbation of laterality-determining Nodal signaling led to the disappearance of the vesicle, producing a symmetric pair of anterior-most somites that resulted in larvae lacking orobranchial structures. The vesicle expressed bmp2/4, as seen in ambulacrarian coelomic pore-canals, and the mouth did not open when Bmp2/4 signaling was blocked. We conclude that the amphioxus mouth, which uniquely involves a mesodermal coelomic vesicle, shares its evolutionary origins with the ambulacrarian coelomic pore-canal. Our observations suggest that there are at least three types of mouths in deuterostomes, and that the new acquisition of chordate mouths was likely related to the dorso-ventral inversion that occurred in the last common ancestor of chordates.

  6. Theta oscillations locked to intended actions rhythmically modulate perception.

    Science.gov (United States)

    Tomassini, Alice; Ambrogioni, Luca; Medendorp, W Pieter; Maris, Eric

    2017-07-07

    Ongoing brain oscillations are known to influence perception, and to be reset by exogenous stimulations. Voluntary action is also accompanied by prominent rhythmic activity, and recent behavioral evidence suggests that this might be coupled with perception. Here, we reveal the neurophysiological underpinnings of this sensorimotor coupling in humans. We link the trial-by-trial dynamics of EEG oscillatory activity during movement preparation to the corresponding dynamics in perception, for two unrelated visual and motor tasks. The phase of theta oscillations (~4 Hz) predicts perceptual performance, even >1 s before movement. Moreover, theta oscillations are phase-locked to the onset of the movement. Remarkably, the alignment of theta phase and its perceptual relevance unfold with similar non-monotonic profiles, suggesting their relatedness. The present work shows that perception and movement initiation are automatically synchronized since the early stages of motor planning through neuronal oscillatory activity in the theta range.

  7. Influence of Tempo and Rhythmic Unit in Musical Emotion Regulation.

    Science.gov (United States)

    Fernández-Sotos, Alicia; Fernández-Caballero, Antonio; Latorre, José M

    2016-01-01

    This article is based on the assumption of musical power to change the listener's mood. The paper studies the outcome of two experiments on the regulation of emotional states in a series of participants who listen to different auditions. The present research focuses on note value, an important musical cue related to rhythm. The influence of two concepts linked to note value is analyzed separately and discussed together. The two musical cues under investigation are tempo and rhythmic unit. The participants are asked to label music fragments by using opposite meaningful words belonging to four semantic scales, namely "Tension" (ranging from Relaxing to Stressing), "Expressiveness" (Expressionless to Expressive), "Amusement" (Boring to Amusing) and "Attractiveness" (Pleasant to Unpleasant). The participants also have to indicate how much they feel certain basic emotions while listening to each music excerpt. The rated emotions are "Happiness," "Surprise," and "Sadness." This study makes it possible to draw some interesting conclusions about the associations between note value and emotions.

  8. Rhythmic Degradation Explains and Unifies Circadian Transcriptome and Proteome Data

    Directory of Open Access Journals (Sweden)

    Sarah Lück

    2014-10-01

    Full Text Available The rich mammalian cellular circadian output affects thousands of genes in many cell types and has been the subject of genome-wide transcriptome and proteome studies. The results have been enigmatic because transcript peak abundances do not always follow the peaks of gene-expression activity in time. We posited that circadian degradation of mRNAs and proteins plays a pivotal role in setting their peak times. To establish guiding principles, we derived a theoretical framework that fully describes the amplitudes and phases of biomolecules with circadian half-lives. We were able to explain the circadian transcriptome and proteome studies with the same unifying theory, including cases in which transcripts or proteins appeared before the onset of increased production rates. Furthermore, we estimate that 30% of the circadian transcripts in mouse liver and Drosophila heads are affected by rhythmic posttranscriptional regulation.

  9. Root resorption

    DEFF Research Database (Denmark)

    Kjaer, Inger

    2014-01-01

    Introduction: This paper summarizes the different conditions, which have a well-known influence on the resorption of tooth roots, exemplified by trauma and orthodontic treatment. The concept of the paper is to summarize and explain symptoms and signs of importance for avoiding resorption during...... orthodontic treatment. The Hypothesis: The hypothesis in this paper is that three different tissue layers covering the root in the so-called periroot sheet can explain signs and symptoms of importance for avoiding root resorption during orthodontic treatment. These different tissue layers are; outermost...... processes provoked by trauma and orthodontic pressure. Inflammatory reactions are followed by resorptive processes in the periroot sheet and along the root surface. Evaluation of the Hypothesis: Different morphologies in the dentition are signs of abnormal epithelium or an abnormal mesodermal layer. It has...

  10. Reduced activation in ventral striatum and ventral tegmental area during probabilistic decision-making in schizophrenia.

    Science.gov (United States)

    Rausch, Franziska; Mier, Daniela; Eifler, Sarah; Esslinger, Christine; Schilling, Claudia; Schirmbeck, Frederike; Englisch, Susanne; Meyer-Lindenberg, Andreas; Kirsch, Peter; Zink, Mathias

    2014-07-01

    Patients with schizophrenia suffer from deficits in monitoring and controlling their own thoughts. Within these so-called metacognitive impairments, alterations in probabilistic reasoning might be one cognitive phenomenon disposing to delusions. However, so far little is known about alterations in associated brain functionality. A previously established task for functional magnetic resonance imaging (fMRI), which requires a probabilistic decision after a variable amount of stimuli, was applied to 23 schizophrenia patients and 28 healthy controls matched for age, gender and educational levels. We compared activation patterns during decision-making under conditions of certainty versus uncertainty and evaluated the process of final decision-making in ventral striatum (VS) and ventral tegmental area (VTA). We replicated a pre-described extended cortical activation pattern during probabilistic reasoning. During final decision-making, activations in several fronto- and parietocortical areas, as well as in VS and VTA became apparent. In both of these regions schizophrenia patients showed a significantly reduced activation. These results further define the network underlying probabilistic decision-making. The observed hypo-activation in regions commonly associated with dopaminergic neurotransmission fits into current concepts of disrupted prediction error signaling in schizophrenia and suggests functional links to reward anticipation. Forthcoming studies with patients at risk for psychosis and drug-naive first episode patients are necessary to elucidate the development of these findings over time and the interplay with associated clinical symptoms. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Effect of Rhythmic Auditory Stimulation on Hemiplegic Gait Patterns.

    Science.gov (United States)

    Shin, Yoon-Kyum; Chong, Hyun Ju; Kim, Soo Ji; Cho, Sung-Rae

    2015-11-01

    The purpose of our study was to investigate the effect of gait training with rhythmic auditory stimulation (RAS) on both kinematic and temporospatial gait patterns in patients with hemiplegia. Eighteen hemiplegic patients diagnosed with either cerebral palsy or stroke participated in this study. All participants underwent the 4-week gait training with RAS. The treatment was performed for 30 minutes per each session, three sessions per week. RAS was provided with rhythmic beats using a chord progression on a keyboard. Kinematic and temporospatial data were collected and analyzed using a three-dimensional motion analysis system. Gait training with RAS significantly improved both proximal and distal joint kinematic patterns in hip adduction, knee flexion, and ankle plantar flexion, enhancing the gait deviation index (GDI) as well as ameliorating temporal asymmetry of the stance and swing phases in patients with hemiplegia. Stroke patients with previous walking experience demonstrated significant kinematic improvement in knee flexion in mid-swing and ankle dorsiflexion in terminal stance. Among stroke patients, subacute patients showed a significantly increased GDI score compared with chronic patients. In addition, household ambulators showed a significant effect on reducing anterior tilt of the pelvis with an enhanced GDI score, while community ambulators significantly increased knee flexion in mid-swing phase and ankle dorsiflexion in terminal stance phase. Gait training with RAS has beneficial effects on both kinematic and temporospatial patterns in patients with hemiplegia, providing not only clinical implications of locomotor rehabilitation with goal-oriented external feedback using RAS but also differential effects according to ambulatory function.

  12. Rhythmic diel pattern of gene expression in juvenile maize leaf.

    Directory of Open Access Journals (Sweden)

    Maciej Jończyk

    Full Text Available BACKGROUND: Numerous biochemical and physiological parameters of living organisms follow a circadian rhythm. Although such rhythmic behavior is particularly pronounced in plants, which are strictly dependent on the daily photoperiod, data on the molecular aspects of the diurnal cycle in plants is scarce and mostly concerns the model species Arabidopsis thaliana. Here we studied the leaf transcriptome in seedlings of maize, an important C4 crop only distantly related to A. thaliana, throughout a cycle of 10 h darkness and 14 h light to look for rhythmic patterns of gene expression. RESULTS: Using DNA microarrays comprising ca. 43,000 maize-specific probes we found that ca. 12% of all genes showed clear-cut diel rhythms of expression. Cluster analysis identified 35 groups containing from four to ca. 1,000 genes, each comprising genes of similar expression patterns. Perhaps unexpectedly, the most pronounced and most common (concerning the highest number of genes expression maxima were observed towards and during the dark phase. Using Gene Ontology classification several meaningful functional associations were found among genes showing similar diel expression patterns, including massive induction of expression of genes related to gene expression, translation, protein modification and folding at dusk and night. Additionally, we found a clear-cut tendency among genes belonging to individual clusters to share defined transcription factor-binding sequences. CONCLUSIONS: Co-expressed genes belonging to individual clusters are likely to be regulated by common mechanisms. The nocturnal phase of the diurnal cycle involves gross induction of fundamental biochemical processes and should be studied more thoroughly than was appreciated in most earlier physiological studies. Although some general mechanisms responsible for the diel regulation of gene expression might be shared among plants, details of the diurnal regulation of gene expression seem to differ

  13. Megascale rhythmic shoreline forms on a beach with multiple bars

    Directory of Open Access Journals (Sweden)

    Zbigniew Pruszak

    2008-06-01

    Full Text Available The study, carried out in 2003 and 2006 at the Lubiatowo Coastal ResearchStation (Poland, located on the non-tidal southern Baltic coast(tidal range < 0.06 m, focused on larger rhythmic forms (mega-cusps withwavelengths in the interval 500 m > Lc > 20 m. Statistical analyses of detailed shoreline configurations were performed mostly with the Discrete Wavelet Transformmethod (DWT. The beach is composed of fine sand with grain diameter D50 ≈ 0.22 mm, which produces 4 longshore sandbars and a gently sloping seabed with β = 0.015. The analysis confirms the key role of bars in hydro- and morphodynamic surf zone processes.The hypothesis was therefore set up that, in a surf zone with multiple bars, the bars and mega-scale shoreline rhythmic forms form one integrated physical system; experimental evidence to substantiate this hypothesis was also sought.In such a system not only do self-regulation processes include swash zone phenomena, they also incorporate processes in offshore surf zone locations.The longshore dimensions of large cusps are thus related to the distances between periodically active large bed forms (bars. The spatial dimension of bar system activity (number of active bars depends, at a given time scale, on the associated hydrodynamic conditions. It was assumed that such a time scale could include either the development and duration of a storm, or a period of stable, yet distinct waves, capable of remodelling the beach configuration.The indentation to wavelength ratio of mega-cusps for the studied non-tidal dissipative environment may be one order of magnitude greater than for mesotidal, reflective beaches.

  14. Mechanisms of circadian rhythmicity of carbon tetrachloride hepatotoxicity.

    Science.gov (United States)

    Bruckner, James V; Ramanathan, Raghupathy; Lee, K Monica; Muralidhara, Srinivasa

    2002-01-01

    The toxicity of carbon tetrachloride (CCl(4)) and certain other chemicals varies over a 24-h period. Because the metabolism of some drugs follows a diurnal rhythm, it was decided to investigate whether the hepatic metabolic activation of CCl(4) was rhythmic and coincided in time with maximum susceptibility to CCl(4) hepatotoxicity. A related objective was to test the hypothesis that abstinence from food during the sleep cycle results in lipolysis and formation of acetone, which participates in induction of liver microsomal cytochrome P450IIE1 (CYP2E1), resulting in a diurnal increase in CCl(4) metabolic activation and acute liver injury. Groups of fed and fasted male Sprague-Dawley rats were given a single oral dose of 800 mg of CCl(4)/kg at 2- to 4-h intervals over a 24-h period. Serum enzyme activities, measured 24 h post dosing as indices of acute liver injury, exhibited distinct maxima in both fed and fasted animals dosed with CCl(4) near the beginning of their dark/active cycle. Blood acetone, hepatic CYP2E1 activity, and covalent binding of (14)CCl(4)/metabolites to hepatic microsomal proteins in untreated rats fed ad libitum followed circadian rhythms similar to that of susceptibility to CCl(4). Parallel fluctuations of greater amplitude were seen in rats fasted for 24 h. Hepatic glutathione levels were lowest at the time of greatest susceptibility to CCl(4). Acetone dose-response experiments showed high correlations between blood acetone levels, CYP2E1 induction, and CCl(4)-induced liver injury. Pretreatment with diallyl sulfide suppressed CYP2E1 and abolished the circadian rhythmicity of susceptibility to CCl(4). These findings provide additional support for acetone's physiological role in CYP2E1 induction and for CYP2E1's role in modulating CCl(4) chronotoxicity in rats.

  15. Different corticospinal control between discrete and rhythmic movement of the ankle.

    Science.gov (United States)

    Goto, Yumeno; Jono, Yasutomo; Hatanaka, Ryota; Nomura, Yoshifumi; Tani, Keisuke; Chujo, Yuta; Hiraoka, Koichi

    2014-01-01

    We investigated differences in corticospinal and spinal control between discrete and rhythmic ankle movements. Motor evoked potentials (MEPs) in the tibialis anterior and soleus muscles and soleus H-reflex were elicited in the middle of the plantar flexion phase during discrete ankle movement or in the initial or later cycles of rhythmic ankle movement. The H-reflex was evoked at an intensity eliciting a small M-wave and MEPs were elicited at an intensity of 1.2 times the motor threshold of the soleus MEPs. Only trials in which background EMG level, ankle angle, and ankle velocity were similar among the movement conditions were included for data analysis. In addition, only trials with a similar M-wave were included for data analysis in the experiment evoking H-reflexes. Results showed that H reflex and MEP amplitudes in the soleus muscle during discrete movement were not significantly different from those during rhythmic movement. MEP amplitude in the tibialis anterior muscle during the later cycles of rhythmic movement was significantly larger than that during the initial cycle of the rhythmic movement or during discrete movement. Higher corticospinal excitability in the tibialis anterior muscle during the later cycles of rhythmic movement may reflect changes in corticospinal control from the initial cycle to the later cycles of rhythmic movement.

  16. Rhythmic expression of DEC2 protein in vitro and in vivo.

    Science.gov (United States)

    Sato, Fuyuki; Muragaki, Yasuteru; Kawamoto, Takeshi; Fujimoto, Katsumi; Kato, Yukio; Zhang, Yanping

    2016-06-01

    Basic helix-loop-helix (bHLH) transcription factor DEC2 (bHLHE41/Sharp1) is one of the clock genes that show a circadian rhythm in various tissues. DEC2 regulates differentiation, sleep length, tumor cell invasion and apoptosis. Although studies have been conducted on the rhythmic expression of DEC2 mRNA in various tissues, the precise molecular mechanism of DEC2 expression is poorly understood. In the present study, we examined whether DEC2 protein had a rhythmic expression. Western blot analysis for DEC2 protein revealed a rhythmic expression in mouse liver, lung and muscle and in MCF-7 and U2OS cells. In addition, AMP-activated protein kinase (AMPK) activity (phosphorylation of AMPK) in mouse embryonic fibroblasts (MEFs) exhibited a rhythmic expression under the condition of medium change or glucose-depleted medium. However, the rhythmic expression of DEC2 in MEF gradually decreased in time under these conditions. The medium change affected the levels of DEC2 protein and phosphorylation of AMPK. In addition, the levels of DEC2 protein showed a rhythmic expression in vivo and in MCF-7 and U2OS cells. The results showed that the phosphorylation of AMPK immunoreactivity was strongly detected in the liver and lung of DEC2 knockout mice compared with that of wild-type mice. These results may provide new insights into rhythmic expression and the regulation between DEC2 protein and AMPK activity.

  17. Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson's disease.

    Science.gov (United States)

    te Woerd, Erik S; Oostenveld, Robert; Bloem, Bastiaan R; de Lange, Floris P; Praamstra, Peter

    2015-01-01

    The basal ganglia play an important role in beat perception and patients with Parkinson's disease (PD) are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this question with magnetoencephalography recordings during a choice response task with rhythmic and non-rhythmic modes of stimulus presentation. Analyses focused on (i) entrainment of slow oscillations, (ii) the depth of beta power modulation, and (iii) whether a gain in modulation depth of beta power, due to rhythmicity, is of predictive or reactive nature. The results show weaker phase synchronisation of slow oscillations and a relative shift from predictive to reactive movement-related beta suppression in PD. Nonetheless, rhythmic stimulus presentation increased beta modulation depth to the same extent in patients and controls. Critically, this gain selectively increased the predictive and not reactive movement-related beta power suppression. Operation of a predictive mechanism, induced by rhythmic stimulation, was corroborated by a sensory gating effect in the sensorimotor cortex. The predictive mode of cue utilisation points to facilitation of basal ganglia-premotor interactions, contrasting with the popular view that rhythmic stimulation confers a special advantage in PD, based on recruitment of alternative pathways.

  18. Financial implications of ventral hernia repair: a hospital cost analysis.

    Science.gov (United States)

    Reynolds, Drew; Davenport, Daniel L; Korosec, Ryan L; Roth, J Scott

    2013-01-01

    Complicated ventral hernias are often referred to tertiary care centers. Hospital costs associated with these repairs include direct costs (mesh materials, supplies, and nonsurgeon labor costs) and indirect costs (facility fees, equipment depreciation, and unallocated labor). Operative supplies represent a significant component of direct costs, especially in an era of proprietary synthetic meshes and biologic grafts. We aim to evaluate the cost-effectiveness of complex abdominal wall hernia repair at a tertiary care referral facility. Cost data on all consecutive open ventral hernia repairs (CPT codes 49560, 49561, 49565, and 49566) performed between 1 July 2008 and 31 May 2011 were analyzed. Cases were analyzed based upon hospital status (inpatient vs. outpatient) and whether the hernia repair was a primary or secondary procedure. We examined median net revenue, direct costs, contribution margin, indirect costs, and net profit/loss. Among primary hernia repairs, cost data were further analyzed based upon mesh utilization (no mesh, synthetic, or biologic). Four-hundred and fifteen patients underwent ventral hernia repair (353 inpatients and 62 outpatients); 173 inpatients underwent ventral hernia repair as the primary procedure; 180 inpatients underwent hernia repair as a secondary procedure. Median net revenue ($17,310 vs. 10,360, p costs for cases performed without mesh were $5,432; median direct costs for those using synthetic and biologic mesh were $7,590 and 16,970, respectively (p financial loss was $8,370. Outpatient ventral hernia repairs, with and without synthetic mesh, resulted in median net losses of $1,560 and 230, respectively. Ventral hernia repair is associated with overall financial losses. Inpatient synthetic mesh repairs are essentially budget neutral. Outpatient and inpatient repairs without mesh result in net financial losses. Inpatient biologic mesh repairs result in a negative contribution margin and striking net financial losses. Cost

  19. Anatomy of Respiratory Rhythmic Systems in Brain Stem and Cerebellum of the Carp

    NARCIS (Netherlands)

    Jüch, P.J.W.; Luiten, P.G.M.

    1981-01-01

    The afferent and efferent connections of two respiratory rhythmic loci in the dorsal mesencephalic tegmentum were studied by retrograde and anterograde transport of horseradish peroxidase. The injection areas were determined with extracellular activity recording using HRP filled glass micropipettes,

  20. The Performance of Bach: Study of Rhythmic Timing by Skilled Musicians.

    Science.gov (United States)

    Johnson, Christopher M.

    1999-01-01

    Analyzes 15 performances of "Bach's Suite Number 3 for Violoncello solo, Bourree Number 1" and determines what patterns of rhythmic variation (rubato) were used by soloists. Indicates that the soloists demonstrated four identifiable and similar trends in the performances. (CMK)

  1. Slowed EEG rhythmicity in patients with chronic pancreatitis: evidence of abnormal cerebral pain processing?

    DEFF Research Database (Denmark)

    Olesen, Søren Schou; Hansen, Tine Maria; Gravesen, Carina

    2011-01-01

    Intractable pain usually dominates the clinical presentation of chronic pancreatitis (CP). Slowing of electroencephalogram (EEG) rhythmicity has been associated with abnormal cortical pain processing in other chronic pain disorders. The aim of this study was to investigate the spectral distribution...

  2. Artistic versus rhythmic gymnastics: effects on bone and muscle mass in young girls.

    Science.gov (United States)

    Vicente-Rodriguez, G; Dorado, C; Ara, I; Perez-Gomez, J; Olmedillas, H; Delgado-Guerra, S; Calbet, J A L

    2007-05-01

    We compared 35 prepubertal girls, 9 artistic gymnasts and 13 rhythmic gymnasts with 13 nonphysically active controls to study the effect of gymnastics on bone and muscle mass. Lean mass, bone mineral content and areal density were measured by dual energy X-ray absorptiometry, and physical fitness was also assessed. The artistic gymnasts showed a delay in pubertal development compared to the other groups (partistic gymnasts had a 16 and 17 % higher aerobic power and anaerobic capacity, while the rhythmic group had a 14 % higher anaerobic capacity than the controls, respectively (all partistic gymnasts had higher lean mass (partistic and the rhythmic gymnasts (partistic group compared to the other groups. Lean mass strongly correlated with bone mineral content (r=0.84, partistic gymnastic participation is associated with delayed pubertal development, enhanced physical fitness, muscle mass, and bone density in prepubertal girls, eliciting a higher osteogenic stimulus than rhythmic gymnastic.

  3. Genome-wide profiling of 24 hr diel rhythmicity in the water flea, Daphnia pulex: network analysis reveals rhythmic gene expression and enhances functional gene annotation.

    Science.gov (United States)

    Rund, Samuel S C; Yoo, Boyoung; Alam, Camille; Green, Taryn; Stephens, Melissa T; Zeng, Erliang; George, Gary F; Sheppard, Aaron D; Duffield, Giles E; Milenković, Tijana; Pfrender, Michael E

    2016-08-18

    Marine and freshwater zooplankton exhibit daily rhythmic patterns of behavior and physiology which may be regulated directly by the light:dark (LD) cycle and/or a molecular circadian clock. One of the best-studied zooplankton taxa, the freshwater crustacean Daphnia, has a 24 h diel vertical migration (DVM) behavior whereby the organism travels up and down through the water column daily. DVM plays a critical role in resource tracking and the behavioral avoidance of predators and damaging ultraviolet radiation. However, there is little information at the transcriptional level linking the expression patterns of genes to the rhythmic physiology/behavior of Daphnia. Here we analyzed genome-wide temporal transcriptional patterns from Daphnia pulex collected over a 44 h time period under a 12:12 LD cycle (diel) conditions using a cosine-fitting algorithm. We used a comprehensive network modeling and analysis approach to identify novel co-regulated rhythmic genes that have similar network topological properties and functional annotations as rhythmic genes identified by the cosine-fitting analyses. Furthermore, we used the network approach to predict with high accuracy novel gene-function associations, thus enhancing current functional annotations available for genes in this ecologically relevant model species. Our results reveal that genes in many functional groupings exhibit 24 h rhythms in their expression patterns under diel conditions. We highlight the rhythmic expression of immunity, oxidative detoxification, and sensory process genes. We discuss differences in the chronobiology of D. pulex from other well-characterized terrestrial arthropods. This research adds to a growing body of literature suggesting the genetic mechanisms governing rhythmicity in crustaceans may be divergent from other arthropod lineages including insects. Lastly, these results highlight the power of using a network analysis approach to identify differential gene expression and provide novel

  4. The role of human ventral visual cortex in motion perception

    Science.gov (United States)

    Saygin, Ayse P.; Lorenzi, Lauren J.; Egan, Ryan; Rees, Geraint; Behrmann, Marlene

    2013-01-01

    Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral ‘form’ (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion. PMID:23983030

  5. Rhythmic speech and stuttering reduction in a syllable-timed language.

    Science.gov (United States)

    Law, Thomas; Packman, Ann; Onslow, Mark; To, Carol K-S; Tong, Michael C-F; Lee, Kathy Y-S

    2018-06-06

    Speaking rhythmically, also known as syllable-timed speech (STS), has been known for centuries to be a fluency-inducing condition for people who stutter. Cantonese is a tonal syllable-timed language and it has been shown that, of all languages, Cantonese is the most rhythmic (Mok, 2009). However, it is not known if STS reduces stuttering in Cantonese as it does in English. This is the first study to investigate the effects of STS on stuttering in a syllable-timed language. Nineteen native Cantonese-speaking adults who stutter were engaged in conversational tasks in Cantonese under two conditions: one in their usual speaking style and one using STS. The speakers' percentage syllables stuttered (%SS) and speech rhythmicity were rated. The rhythmicity ratings were used to estimate the extent to which speakers were using STS in the syllable-timed condition. Results revealed a statistically significant reduction in %SS in the STS condition; however, this reduction was not as large as in previous studies in other languages and the amount of stuttering reduction varied across speakers. The rhythmicity ratings showed that some speakers were perceived to be speaking more rhythmically than others and that the perceived rhythmicity correlated positively with reductions in stuttering. The findings were unexpected, as it was anticipated that speakers of a highly rhythmic language such as Cantonese would find STS easy to use and that the consequent reductions in stuttering would be great, even greater perhaps than in a stress-timed language such as English. The theoretical and clinical implications of the findings are discussed.

  6. Root (Botany)

    Science.gov (United States)

    Robert R. Ziemer

    1981-01-01

    Plant roots can contribute significantly to the stability of steep slopes. They can anchor through the soil mass into fractures in bedrock, can cross zones of weakness to more stable soil, and can provide interlocking long fibrous binders within a weak soil mass. In deep soil, anchoring to bedrock becomes negligible, and lateral reinforcement predominates

  7. Sympathetic network drive during water deprivation does not increase respiratory or cardiac rhythmic sympathetic nerve activity.

    Science.gov (United States)

    Holbein, Walter W; Toney, Glenn M

    2013-06-15

    Effects of water deprivation on rhythmic bursting of sympathetic nerve activity (SNA) were investigated in anesthetized, bilaterally vagotomized, euhydrated (control) and 48-h water-deprived (WD) rats (n = 8/group). Control and WD rats had similar baseline values of mean arterial pressure, heart rate, end-tidal CO2, and central respiratory drive. Although integrated splanchnic SNA (sSNA) was greater in WD rats than controls (P analysis of respiratory rhythmic bursting of sSNA revealed that inspiratory rhythmic burst amplitude was actually smaller (P analysis revealed that water deprivation had no effect on either the amplitude or periodicity of the cardiac rhythmic oscillation of sSNA. Collectively, these data indicate that the increase of sSNA produced by water deprivation is not attributable to either increased respiratory or cardiac rhythmic burst discharge. Thus the sympathetic network response to acute water deprivation appears to differ from that of chronic sympathoexcitation in neurogenic forms of arterial hypertension, where increased respiratory rhythmic bursting of SNA and baroreflex adaptations have been reported.

  8. Jazz drummers recruit language-specific areas for the processing of rhythmic structure.

    Science.gov (United States)

    Herdener, Marcus; Humbel, Thierry; Esposito, Fabrizio; Habermeyer, Benedikt; Cattapan-Ludewig, Katja; Seifritz, Erich

    2014-03-01

    Rhythm is a central characteristic of music and speech, the most important domains of human communication using acoustic signals. Here, we investigated how rhythmical patterns in music are processed in the human brain, and, in addition, evaluated the impact of musical training on rhythm processing. Using fMRI, we found that deviations from a rule-based regular rhythmic structure activated the left planum temporale together with Broca's area and its right-hemispheric homolog across subjects, that is, a network also crucially involved in the processing of harmonic structure in music and the syntactic analysis of language. Comparing the BOLD responses to rhythmic variations between professional jazz drummers and musical laypersons, we found that only highly trained rhythmic experts show additional activity in left-hemispheric supramarginal gyrus, a higher-order region involved in processing of linguistic syntax. This suggests an additional functional recruitment of brain areas usually dedicated to complex linguistic syntax processing for the analysis of rhythmical patterns only in professional jazz drummers, who are especially trained to use rhythmical cues for communication.

  9. Rhythmic Cognition in Humans and Animals: Distinguishing Meter and Pulse Perception

    Directory of Open Access Journals (Sweden)

    W Tecumseh eFitch

    2013-10-01

    Full Text Available This paper outlines a cognitive and comparative perspective on human rhythmic cognition that emphasizes a key distinction between pulse perception and meter perception. Pulse perception involves the extraction of a regular pulse or 'tactus' from a stream of events. Meter perception involves grouping of events into hierarchical trees with differing levels of 'strength', or perceptual prominence. I argue that metrically-structured rhythms are required to either perform or move appropriately to music (e.g. to dance. Rhythms, from this metrical perspective, constitute 'trees in time'. Rhythmic syntax represents a neglected form of musical syntax, and warrants more thorough neuroscientific investigation. The recent literature on animal entrainment clearly demonstrates the capacity to extract the pulse from rhythmic music, and to entrain periodic movements to this pulse, in several parrot species and a California sea lion, and a more limited ability to do so in one chimpanzee. However, the ability of these or other species to infer hierarchical rhythmic trees remains, for the most part, unexplored (with some apparent negative results from macaques. The results from this new animal comparative research, combined with new methods to explore rhythmic cognition neurally, provide exciting new routes for understanding not just rhythmic cognition, but hierarchical cognition more generally, from a biological and neural perspective.

  10. Automated Root Tracking with "Root System Analyzer"

    Science.gov (United States)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  11. Neural entrainment to the rhythmic structure of music.

    Science.gov (United States)

    Tierney, Adam; Kraus, Nina

    2015-02-01

    The neural resonance theory of musical meter explains musical beat tracking as the result of entrainment of neural oscillations to the beat frequency and its higher harmonics. This theory has gained empirical support from experiments using simple, abstract stimuli. However, to date there has been no empirical evidence for a role of neural entrainment in the perception of the beat of ecologically valid music. Here we presented participants with a single pop song with a superimposed bassoon sound. This stimulus was either lined up with the beat of the music or shifted away from the beat by 25% of the average interbeat interval. Both conditions elicited a neural response at the beat frequency. However, although the on-the-beat condition elicited a clear response at the first harmonic of the beat, this frequency was absent in the neural response to the off-the-beat condition. These results support a role for neural entrainment in tracking the metrical structure of real music and show that neural meter tracking can be disrupted by the presentation of contradictory rhythmic cues.

  12. Familiarity with music increases walking speed in rhythmic auditory cuing.

    Science.gov (United States)

    Leow, Li-Ann; Rinchon, Cricia; Grahn, Jessica

    2015-03-01

    Rhythmic auditory stimulation (RAS) is a gait rehabilitation method in which patients synchronize footsteps to a metronome or musical beats. Although RAS with music can ameliorate gait abnormalities, outcomes vary, possibly because music properties, such as groove or familiarity, differ across interventions. To optimize future interventions, we assessed how initially familiar and unfamiliar low-groove and high-groove music affected synchronization accuracy and gait in healthy individuals. We also experimentally increased music familiarity using repeated exposure to initially unfamiliar songs. Overall, familiar music elicited faster stride velocity and less variable strides, as well as better synchronization performance (matching of step tempo to beat tempo). High-groove music, as reported previously, led to faster stride velocity than low-groove music. We propose two mechanisms for familiarity's effects. First, familiarity with the beat structure reduces cognitive demands of synchronizing, leading to better synchronization performance and faster, less variable gait. Second, familiarity might have elicited faster gait by increasing enjoyment of the music, as enjoyment was higher after repeated exposure to initially low-enjoyment songs. Future studies are necessary to dissociate the contribution of these mechanisms to the observed RAS effects of familiar music on gait. © 2015 New York Academy of Sciences.

  13. Human V4 and ventral occipital retinotopic maps

    Science.gov (United States)

    Winawer, Jonathan; Witthoft, Nathan

    2016-01-01

    The ventral surface of the human occipital lobe contains multiple retinotopic maps. The most posterior of these maps is considered a potential homolog of macaque V4, and referred to as human V4 (‘hV4’). The location of the hV4 map, its retinotopic organization, its role in visual encoding, and the cortical areas it borders have been the subject of considerable investigation and debate over the last 25 years. We review the history of this map and adjacent maps in ventral occipital cortex, and consider the different hypotheses for how these ventral occipital maps are organized. Advances in neuroimaging, computational modeling, and characterization of the nearby anatomical landmarks and functional brain areas have improved our understanding of where human V4 is and what kind of visual representations it contains. PMID:26241699

  14. Crossmodal recruitment of the ventral visual stream in congenital blindness

    DEFF Research Database (Denmark)

    Ptito, Maurice; Matteau, Isabelle; Zhi Wang, Arthur

    2012-01-01

    We used functional MRI (fMRI) to test the hypothesis that blind subjects recruit the ventral visual stream during nonhaptic tactile-form recognition. Congenitally blind and blindfolded sighted control subjects were scanned after they had been trained during four consecutive days to perform......, inferotemporal (IT), cortex, lateral occipital tactile vision area (LOtv), and fusiform gyrus. Control subjects activated area LOtv and precuneus but not cuneus, IT and fusiform gyrus. These results indicate that congenitally blind subjects recruit key regions in the ventral visual pathway during nonhaptic...

  15. Differentiation of Mouse Embryonic Stem Cells into Ventral Foregut Precursors

    DEFF Research Database (Denmark)

    Rothová, Michaela; Hölzenspies, Jurriaan J; Livigni, Alessandra

    2016-01-01

    Anterior definitive endoderm (ADE), the ventral foregut precursor, is both an important embryonic signaling center and a unique multipotent precursor of liver, pancreas, and other organs. Here, a method is described for the differentiation of mouse embryonic stem cells (mESCs) to definitive...... endoderm with pronounced anterior character. ADE-containing cultures can be produced in vitro by suspension (embryoid body) culture or in a serum-free adherent monolayer culture. ESC-derived ADE cells are committed to endodermal fates and can undergo further differentiation in vitro towards ventral foregut...

  16. Variations in ventral root axon morphology and locomotor behavior components across different inbred strains of mice

    NARCIS (Netherlands)

    de Mooij-van Malsen, J. G.; Yu, K. L.; Veldman, H.; Oppelaar, H; van den Berg, L. H.; Olivier, B.; Kas, M. J. H.

    2009-01-01

    Locomotion is a complex behavior affected by many different brain- and spinal cord systems, as well as by variations in the peripheral nervous system. Recently, we found increased gene expression for EphA4, a gene intricately involved in motor neuron development, between high-active parental strain

  17. Electroacupuncture improves gait locomotion, H-reflex and ventral root potentials of spinal compression injured rats.

    Science.gov (United States)

    Escobar-Corona, Carlos; Torres-Castillo, Sergio; Rodríguez-Torres, Erika Elizabeth; Segura-Alegría, Bertha; Jiménez-Estrada, Ismael; Quiroz-González, Salvador

    2017-05-01

    This study explored the effect of electroacupuncture stimulation (EA) on alterations in the Hoffman reflex (H-reflex) response and gait locomotion provoked by spinal cord injury (SCI) in the rat. A compression lesion of the spinal cord was evoked by insufflating a Fogarty balloon located in the epidural space at the T8-9 spinal level of adult Wistar male rats (200-250 gr; n=60). In different groups of SCI rats, EA (frequencies: 2, 50 and 100Hz) was applied simultaneously to Huantiao (GB30), Yinmen (BL37), Jizhong (GV6) and Zhiyang (GV9) acupoints from the third post-injury day until the experimental session. At 1, 2, 3 and 4 post-injury weeks, the BBB scores of the SCI group of rats treated with EA at 50Hz showed a gradual but greater enhancement of locomotor activity than the other groups of rats. Unrestrained gait kinematic analysis of SCI rats treated with EA-50Hz stimulation showed a significant improvement in stride duration, length and speed (p<0.05), whereas a discrete recovery of gait locomotion was observed in the other groups of animals. After four post-injury weeks, the H-reflex amplitude and H-reflex/M wave amplitude ratio obtained in SCI rats had a noticeable enhancement (217%) compared to sham rats (n=10). Meanwhile, SCI rats treated with EA at 50Hz manifested a decreased facilitation of the H-reflex amplitude and H/M amplitude ratio (154%) and a reduced frequency-dependent amplitude depression of the H-reflex (66%). In addition, 50 Hz-EA treatment induced a recovery of the presynaptic depression of the Gs-VRP evoked by PBSt conditioning stimulation in the SCI rat (63.2±8.1%; n=9). In concordance with the latter, it could be suggested that 50 Hz-EA stimulation reduced the hyper-excitability of motoneurons and provokes a partial improvement of the locomotive performance and H reflex responses by a possible recovery of presynaptic mechanisms in the spinal cord of experimentally injured rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Comparison between treadmill training with rhythmic auditory stimulation and ground walking with rhythmic auditory stimulation on gait ability in chronic stroke patients: A pilot study.

    Science.gov (United States)

    Park, Jin; Park, So-yeon; Kim, Yong-wook; Woo, Youngkeun

    2015-01-01

    Generally, treadmill training is very effective intervention, and rhythmic auditory stimulation is designed to feedback during gait training in stroke patients. The purpose of this study was to compare the gait abilities in chronic stroke patients following either treadmill walking training with rhythmic auditory stimulation (TRAS) or over ground walking training with rhythmic auditory stimulation (ORAS). Nineteen subjects were divided into two groups: a TRAS group (9 subjects) and an ORAS group (10 subjects). Temporal and spatial gait parameters and motor recovery ability were measured before and after the training period. Gait ability was measured by the Biodex Gait trainer treadmill system, Timed up and go test (TUG), 6 meter walking distance (6MWD) and Functional gait assessment (FGA). After the training periods, the TRAS group showed a significant improvement in walking speed, step cycle, step length of the unaffected limb, coefficient of variation, 6MWD, and, FGA when compared to the ORAS group (p <  0.05). Treadmill walking training during the rhythmic auditory stimulation may be useful for rehabilitation of patients with chronic stroke.

  19. Different types of theta rhythmicity are induced by social and fearful stimuli in a network associated with social memory.

    Science.gov (United States)

    Tendler, Alex; Wagner, Shlomo

    2015-02-16

    Rhythmic activity in the theta range is thought to promote neuronal communication between brain regions. In this study, we performed chronic telemetric recordings in socially behaving rats to monitor electrophysiological activity in limbic brain regions linked to social behavior. Social encounters were associated with increased rhythmicity in the high theta range (7-10 Hz) that was proportional to the stimulus degree of novelty. This modulation of theta rhythmicity, which was specific for social stimuli, appeared to reflect a brain-state of social arousal. In contrast, the same network responded to a fearful stimulus by enhancement of rhythmicity in the low theta range (3-7 Hz). Moreover, theta rhythmicity showed different pattern of coherence between the distinct brain regions in response to social and fearful stimuli. We suggest that the two types of stimuli induce distinct arousal states that elicit different patterns of theta rhythmicity, which cause the same brain areas to communicate in different modes.

  20. Rhythmic Auditory Cueing in Motor Rehabilitation for Stroke Patients: Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Yoo, Ga Eul; Kim, Soo Ji

    2016-01-01

    Given the increasing evidence demonstrating the effects of rhythmic auditory cueing for motor rehabilitation of stroke patients, this synthesized analysis is needed in order to improve rehabilitative practice and maximize clinical effectiveness. This study aimed to systematically analyze the literature on rhythmic auditory cueing for motor rehabilitation of stroke patients by highlighting the outcome variables, type of cueing, and stage of stroke. A systematic review with meta-analysis of randomized controlled or clinically controlled trials was conducted. Electronic databases and music therapy journals were searched for studies including stroke, the use of rhythmic auditory cueing, and motor outcomes, such as gait and upper-extremity function. A total of 10 studies (RCT or CCT) with 356 individuals were included for meta-analysis. There were large effect sizes (Hedges's g = 0.984 for walking velocity; Hedges's g = 0.840 for cadence; Hedges's g = 0.760 for stride length; and Hedges's g = 0.456 for Fugl-Meyer test scores) in the use of rhythmic auditory cueing. Additional subgroup analysis demonstrated that although the type of rhythmic cueing and stage of stroke did not lead to statistically substantial group differences, the effect sizes and heterogeneity values in each subgroup implied possible differences in treatment effect. This study corroborates the beneficial effects of rhythmic auditory cueing, supporting its expanded application to broadened areas of rehabilitation for stroke patients. Also, it suggests the future investigation of the differential outcomes depending on how rhythmic auditory cueing is provided in terms of type and intensity implemented. © the American Music Therapy Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson’s disease

    OpenAIRE

    te Woerd, Erik S.; Oostenveld, Robert; Bloem, Bastiaan R.; de Lange, Floris P.; Praamstra, Peter

    2015-01-01

    The basal ganglia play an important role in beat perception and patients with Parkinson's disease (PD) are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this question with magnetoencephalography recordings during a choice response task with rhythmic and non-rhythmic modes of stimulus presentation. Analyses focused on (i) entrainment of slow oscillations, (ii) ...

  2. Language dominance shapes non-linguistic rhythmic grouping in bilinguals.

    Science.gov (United States)

    Molnar, Monika; Carreiras, Manuel; Gervain, Judit

    2016-07-01

    To what degree non-linguistic auditory rhythm perception is governed by universal biases (e.g., Iambic-Trochaic Law; Hayes, 1995) or shaped by native language experience is debated. It has been proposed that rhythmic regularities in spoken language, such as phrasal prosody affect the grouping abilities of monolinguals (e.g., Iversen, Patel, & Ohgushi, 2008). Here, we assessed the non-linguistic tone grouping biases of Spanish monolinguals, and three groups of Basque-Spanish bilinguals with different levels of Basque experience. It is usually assumed in the literature that Basque and Spanish have different phrasal prosodies and even linguistic rhythms. To confirm this, first, we quantified Basque and Spanish phrasal prosody (Experiment 1a) and duration patterns used in the classification of languages into rhythm classes (Experiment 1b). The acoustic measurements revealed that regularities in phrasal prosody systematically differ across Basque and Spanish; by contrast, the rhythms of the two languages are only minimally dissimilar. In Experiment 2, participants' non-linguistic rhythm preferences were assessed in response to non-linguistic tones alternating in either intensity (Intensity condition) or in duration (Duration condition). In the Intensity condition, all groups showed a trochaic grouping bias, as predicted by the Iambic-Trochaic Law. In the Duration Condition the Spanish monolingual and the most Basque-dominant bilingual group exhibited opposite grouping preferences in line with the phrasal prosodies of their native/dominant languages, trochaic in Basque, iambic in Spanish. The two other bilingual groups showed no significant biases, however. Overall, results indicate that duration-based grouping mechanisms are biased toward the phrasal prosody of the native and dominant language; also, the presence of an L2 in the environment interacts with the auditory biases. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Precise temperature compensation of phase in a rhythmic motor pattern.

    Directory of Open Access Journals (Sweden)

    Lamont S Tang

    2010-08-01

    Full Text Available Most animal species are cold-blooded, and their neuronal circuits must maintain function despite environmental temperature fluctuations. The central pattern generating circuits that produce rhythmic motor patterns depend on the orderly activation of circuit neurons. We describe the effects of temperature on the pyloric rhythm of the stomatogastric ganglion of the crab, Cancer borealis. The pyloric rhythm is a triphasic motor pattern in which the Pyloric Dilator (PD, Lateral Pyloric (LP, and Pyloric (PY neurons fire in a repeating sequence. While the frequency of the pyloric rhythm increased about 4-fold (Q(10 approximately 2.3 as the temperature was shifted from 7 degrees C to 23 degrees C, the phase relationships of the PD, LP, and PY neurons showed almost perfect temperature compensation. The Q(10's of the input conductance, synaptic currents, transient outward current (I(A, and the hyperpolarization-activated inward current (I(h, all of which help determine the phase of LP neuron activity, ranged from 1.8 to 4. We studied the effects of temperature in >1,000 computational models (with different sets of maximal conductances of a bursting neuron and the LP neuron. Many bursting models failed to monotonically increase in frequency as temperature increased. Temperature compensation of LP neuron phase was facilitated when model neurons' currents had Q(10's close to 2. Together, these data indicate that although diverse sets of maximal conductances may be found in identified neurons across animals, there may be strong evolutionary pressure to restrict the Q(10's of the processes that contribute to temperature compensation of neuronal circuits.

  4. Distributed Attention Is Implemented through Theta-Rhythmic Gamma Modulation.

    Science.gov (United States)

    Landau, Ayelet Nina; Schreyer, Helene Marianne; van Pelt, Stan; Fries, Pascal

    2015-08-31

    When subjects monitor a single location, visual target detection depends on the pre-target phase of an ∼8 Hz brain rhythm. When multiple locations are monitored, performance decrements suggest a division of the 8 Hz rhythm over the number of locations, indicating that different locations are sequentially sampled. Indeed, when subjects monitor two locations, performance benefits alternate at a 4 Hz rhythm. These performance alternations were revealed after a reset of attention to one location. Although resets are common and important events for attention, it is unknown whether, in the absence of resets, ongoing attention samples stimuli in alternation. Here, we examined whether spatially specific attentional sampling can be revealed by ongoing pre-target brain rhythms. Visually induced gamma-band activity plays a role in spatial attention. Therefore, we hypothesized that performance on two simultaneously monitored stimuli can be predicted by a 4 Hz modulation of gamma-band activity. Brain rhythms were assessed with magnetoencephalography (MEG) while subjects monitored bilateral grating stimuli for a unilateral target event. The corresponding contralateral gamma-band responses were subtracted from each other to isolate spatially selective, target-related fluctuations. The resulting lateralized gamma-band activity (LGA) showed opposite pre-target 4 Hz phases for detected versus missed targets. The 4 Hz phase of pre-target LGA accounted for a 14.5% modulation in performance. These findings suggest that spatial attention is a theta-rhythmic sampling process that is continuously ongoing, with each sampling cycle being implemented through gamma-band synchrony. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Temporal coherence of phenological and climatic rhythmicity in Beijing

    Science.gov (United States)

    Chen, Xiaoqiu; Zhang, Weiqi; Ren, Shilong; Lang, Weiguang; Liang, Boyi; Liu, Guohua

    2017-10-01

    Using woody plant phenological data in the Beijing Botanical Garden from 1979 to 2013, we revealed three levels of phenology rhythms and examined their coherence with temperature rhythms. First, the sequential and correlative rhythm shows that occurrence dates of various phenological events obey a certain time sequence within a year and synchronously advance or postpone among years. The positive correlation between spring phenophase dates is much stronger than that between autumn phenophase dates and attenuates as the time interval between two spring phenophases increases. This phenological rhythm can be explained by positive correlation between above 0 °C mean temperatures corresponding to different phenophase dates. Second, the circannual rhythm indicates that recurrence interval of a phenophase in the same species in two adjacent years is about 365 days, which can be explained by the 365-day recurrence interval in the first and last dates of threshold temperatures. Moreover, an earlier phenophase date in the current year may lead to a later phenophase date in the next year through extending recurrence interval. Thus, the plant phenology sequential and correlative rhythm and circannual rhythm are interacted, which mirrors the interaction between seasonal variation and annual periodicity of temperature. Finally, the multi-year rhythm implies that phenophase dates display quasi-periodicity more than 1 year. The same 12-year periodicity in phenophase and threshold temperature dates confirmed temperature controls of the phenology multi-year rhythm. Our findings provide new perspectives for examining phenological response to climate change and developing comprehensive phenology models considering temporal coherence of phenological and climatic rhythmicity.

  6. Aversive counterconditioning attenuates reward signalling in the ventral striatum

    Directory of Open Access Journals (Sweden)

    Anne Marije Kaag

    2016-08-01

    Full Text Available Appetitive conditioning refers to the process of learning cue-reward associations and is mediated by the mesocorticolimbic system. Appetitive conditioned responses are difficult to extinguish, especially for highly salient rewards such as food and drugs. We investigate whether aversive counterconditioning can alter reward reinstatement in the ventral striatum in healthy volunteers using functional Magnetic Resonance Imaging (fMRI. In the initial conditioning phase, two different stimuli were reinforced with a monetary reward. In the subsequent counterconditioning phase, one of these stimuli was paired with an aversive shock to the wrist. In the following extinction phase, none of the stimuli were reinforced. In the final reinstatement phase, reward was reinstated by informing the participants that the monetary gain could be doubled. Our fMRI data revealed that reward signalling in the ventral striatum and ventral tegmental area following reinstatement was smaller for the stimulus that was counterconditioned with an electrical shock, compared to the non-counterconditioned stimulus. A functional connectivity analysis showed that aversive counterconditioning strengthened striatal connectivity with the hippocampus and insula. These results suggest that reward signalling in the ventral striatum can be attenuated through aversive counterconditioning, possibly by concurrent retrieval of the aversive association through enhanced connectivity with hippocampus and insula.

  7. Crossmodal Recruitment of the Ventral Visual Stream in Congenital Blindness

    Directory of Open Access Journals (Sweden)

    Maurice Ptito

    2012-01-01

    Full Text Available We used functional MRI (fMRI to test the hypothesis that blind subjects recruit the ventral visual stream during nonhaptic tactile-form recognition. Congenitally blind and blindfolded sighted control subjects were scanned after they had been trained during four consecutive days to perform a tactile-form recognition task with the tongue display unit (TDU. Both groups learned the task at the same rate. In line with our hypothesis, the fMRI data showed that during nonhaptic shape recognition, blind subjects activated large portions of the ventral visual stream, including the cuneus, precuneus, inferotemporal (IT, cortex, lateral occipital tactile vision area (LOtv, and fusiform gyrus. Control subjects activated area LOtv and precuneus but not cuneus, IT and fusiform gyrus. These results indicate that congenitally blind subjects recruit key regions in the ventral visual pathway during nonhaptic tactile shape discrimination. The activation of LOtv by nonhaptic tactile shape processing in blind and sighted subjects adds further support to the notion that this area subserves an abstract or supramodal representation of shape. Together with our previous findings, our data suggest that the segregation of the efferent projections of the primary visual cortex into a dorsal and ventral visual stream is preserved in individuals blind from birth.

  8. Pain and convalescence following laparoscopic ventral hernia repair

    DEFF Research Database (Denmark)

    Eriksen, Jens Ravn

    Severe pain is usual after laparoscopic ventral hernia repair (LVHR). Mesh fixation with titanium tacks may play a key role in the development of acute and chronic pain and alternative fixation methods should therefore be investigated. This PhD thesis was based on three studies and aimed too: 1) ...

  9. Radiographic identification of the equine ventral conchal bulla.

    Science.gov (United States)

    Finnegan, C M; Townsend, N B; Barnett, T P; Barakzai, S Z

    Involvement of the ventral conchal sinus (VCS) is an important diagnostic and prognostic feature in cases of the equine sinus disease. The authors aimed to ascertain if the caudo-dorsal extension of the VCS, the ventral conchal bulla (VCB) is identifiable on plain radiographs of cadaver skulls without sinus disease. Bilateral frontonasal sinus flaps were made in 10 equine cadaver skulls. Plain lateral, lateral oblique and dorso-ventral radiographs were then obtained followed by the same views taken with stainless steel wire outlining the caudal border of the VCB. Plain radiographs were randomised and blindly evaluated by two observers who marked where they believed the VCB to be positioned. This was then correlated with the true position of the VCB using radiographs with wires in place. The ease of identification of the VCB was classified as 'easy' or 'difficult'. The VCB was correctly identified in 70 per cent of lateral radiographs, but only 45 per cent of lateral oblique radiographs and 17 per cent of dorso-ventral radiographs. If a clinician was confident that he or she could identify the VCB, they were usually correct. Conversely if the clinician judged VCB identification as 'difficult', they usually identified it incorrectly. In the authors' clinical experience, the VCB of horses with sinusitis involving this compartment is more radiologically evident than in clinically normal horses. Knowledge of the normal radiographic anatomy of this structure should aid clinicians in identifying horses with sinusitis affecting the VCS.

  10. Opposing Amygdala and Ventral Striatum Connectivity during Emotion Identification

    Science.gov (United States)

    Satterthwaite, Theodore D.; Wolf, Daniel H.; Pinkham, Amy E.; Ruparel, Kosha; Elliott, Mark A.; Valdez, Jeffrey N.; Overton, Eve; Seubert, Janina; Gur, Raquel E.; Gur, Ruben C.; Loughead, James

    2011-01-01

    Lesion and electrophysiological studies in animals provide evidence of opposing functions for subcortical nuclei such as the amygdala and ventral striatum, but the implications of these findings for emotion identification in humans remain poorly described. Here we report a high-resolution fMRI study in a sample of 39 healthy subjects who performed…

  11. Pelvic ventral hernia repair in a pygopagus conjoint twin | Bhullar ...

    African Journals Online (AJOL)

    Pelvic ventral hernia repair in a surviving conjoint twin with multiple congenital anomalies that make surgery a challenge. Conjoint twins are a rare. The incidence is reported to be in the range of 1/50 000 to 1/100 000 live births. Of the conjoint twins, 40% are stillborn and an additional one-third die within 24 h of birth.

  12. Locally Finite Root Supersystems

    OpenAIRE

    Yousofzadeh, Malihe

    2013-01-01

    We introduce the notion of locally finite root supersystems as a generalization of both locally finite root systems and generalized root systems. We classify irreducible locally finite root supersystems.

  13. Maternal control of the Drosophila dorsal–ventral body axis

    Science.gov (United States)

    Stein, David S.; Stevens, Leslie M.

    2016-01-01

    The pathway that generates the dorsal–ventral (DV) axis of the Drosophila embryo has been the subject of intense investigation over the previous three decades. The initial asymmetric signal originates during oogenesis by the movement of the oocyte nucleus to an anterior corner of the oocyte, which establishes DV polarity within the follicle through signaling between Gurken, the Drosophila Transforming Growth Factor (TGF)-α homologue secreted from the oocyte, and the Drosophila Epidermal Growth Factor Receptor (EGFR) that is expressed by the follicular epithelium cells that envelop the oocyte. Follicle cells that are not exposed to Gurken follow a ventral fate and express Pipe, a sulfotransferase that enzymatically modifies components of the inner vitelline membrane layer of the eggshell, thereby transferring DV spatial information from the follicle to the egg. These ventrally sulfated eggshell proteins comprise a localized cue that directs the ventrally restricted formation of the active Spätzle ligand within the perivitelline space between the eggshell and the embryonic membrane. Spätzle activates Toll, a transmembrane receptor in the embryonic membrane. Transmission of the Toll signal into the embryo leads to the formation of a ventral-to-dorsal gradient of the transcription factor Dorsal within the nuclei of the syncytial blastoderm stage embryo. Dorsal controls the spatially specific expression of a large constellation of zygotic target genes, the Dorsal gene regulatory network, along the embryonic DV circumference. This article reviews classic studies and integrates them with the details of more recent work that has advanced our understanding of the complex pathway that establishes Drosophila embryo DV polarity. PMID:25124754

  14. Processing Rhythmic Pattern during Chinese Sentence Reading: An Eye Movement Study.

    Science.gov (United States)

    Luo, Yingyi; Duan, Yunyan; Zhou, Xiaolin

    2015-01-01

    Prosodic constraints play a fundamental role during both spoken sentence comprehension and silent reading. In Chinese, the rhythmic pattern of the verb-object (V-O) combination has been found to rapidly affect the semantic access/integration process during sentence reading (Luo and Zhou, 2010). Rhythmic pattern refers to the combination of words with different syllabic lengths, with certain combinations disallowed (e.g., [2 + 1]; numbers standing for the number of syllables of the verb and the noun respectively) and certain combinations preferred (e.g., [1 + 1] or [2 + 2]). This constraint extends to the situation in which the combination is used to modify other words. A V-O phrase could modify a noun by simply preceding it, forming a V-O-N compound; when the verb is disyllabic, however, the word order has to be O-V-N and the object is preferred to be disyllabic. In this study, we investigated how the reader processes the rhythmic pattern and word order information by recording the reader's eye-movements. We created four types of sentences by crossing rhythmic pattern and word order in compounding. The compound, embedding a disyllabic verb, could be in the correct O-V-N or the incorrect V-O-N order; the object could be disyllabic or monosyllabic. We found that the reader spent more time and made more regressions on and after the compounds when either type of anomaly was detected during the first pass reading. However, during re-reading (after all the words in the sentence have been viewed), less regressive eye movements were found for the anomalous rhythmic pattern, relative to the correct pattern; moreover, only the abnormal rhythmic pattern, not the violated word order, influenced the regressive eye movements. These results suggest that while the processing of rhythmic pattern and word order information occurs rapidly during the initial reading of the sentence, the process of recovering from the rhythmic pattern anomaly may ease the reanalysis processing at the

  15. Processing rhythmic pattern during Chinese sentence reading: An eye movement study

    Directory of Open Access Journals (Sweden)

    Yingyi eLuo

    2015-12-01

    Full Text Available Prosodic constraints play a fundamental role during both spoken sentence comprehension and silent reading. In Chinese, the rhythmic pattern of the verb-object (V-O combination has been found to rapidly affect the semantic access/integration process during sentence reading (Luo and Zhou, 2010. Rhythmic pattern refers to the combination of words with different syllabic lengths, with certain combinations disallowed (e.g., [2+1]; numbers standing for the number of syllables of the verb and the noun respectively and certain combinations preferred (e.g., [1+1] or [2+2]. This constraint extends to the situation in which the combination is used to modify other words. A V-O phrase could modify a noun by simply preceding it, forming a V-O-N compound; when the verb is disyllabic, however, the word order has to be O-V-N and the object is preferred to be disyllabic. In this study, we investigated how the reader processes the rhythmic pattern and word order information by recording the reader’s eye-movements. We created four types of sentences by crossing rhythmic pattern and word order in compounding. The compound, embedding a disyllabic verb, could be in the correct O-V-N or the incorrect V-O-N order; the object could be disyllabic or monosyllabic. We found that the reader spent more time and made more regressions on and after the compounds when either type of anomaly was detected during the first pass reading. However, during re-reading (after all the words in the sentence have been viewed, less regressive eye movements were found for the anomalous rhythmic pattern, relative to the correct pattern; moreover, only the abnormal rhythmic pattern, not the violated word order, influenced the regressive eye movements. These results suggest that while the processing of rhythmic pattern and word order information occurs rapidly during the initial reading of the sentence, the process of recovering from the rhythmic pattern anomaly may ease the reanalysis

  16. Interactive rhythmic auditory stimulation reinstates natural 1/f timing in gait of Parkinson's patients.

    Directory of Open Access Journals (Sweden)

    Michael J Hove

    Full Text Available Parkinson's disease (PD and basal ganglia dysfunction impair movement timing, which leads to gait instability and falls. Parkinsonian gait consists of random, disconnected stride times--rather than the 1/f structure observed in healthy gait--and this randomness of stride times (low fractal scaling predicts falling. Walking with fixed-tempo Rhythmic Auditory Stimulation (RAS can improve many aspects of gait timing; however, it lowers fractal scaling (away from healthy 1/f structure and requires attention. Here we show that interactive rhythmic auditory stimulation reestablishes healthy gait dynamics in PD patients. In the experiment, PD patients and healthy participants walked with a no auditory stimulation, b fixed-tempo RAS, and c interactive rhythmic auditory stimulation. The interactive system used foot sensors and nonlinear oscillators to track and mutually entrain with the human's step timing. Patients consistently synchronized with the interactive system, their fractal scaling returned to levels of healthy participants, and their gait felt more stable to them. Patients and healthy participants rarely synchronized with fixed-tempo RAS, and when they did synchronize their fractal scaling declined from healthy 1/f levels. Five minutes after removing the interactive rhythmic stimulation, the PD patients' gait retained high fractal scaling, suggesting that the interaction stabilized the internal rhythm generating system and reintegrated timing networks. The experiment demonstrates that complex interaction is important in the (reemergence of 1/f structure in human behavior and that interactive rhythmic auditory stimulation is a promising therapeutic tool for improving gait of PD patients.

  17. Movement sonification: Effects on motor learning beyond rhythmic adjustments

    Directory of Open Access Journals (Sweden)

    Alfred Oliver Effenberg

    2016-05-01

    learn a closed motor skill (technique acquisition of indoor rowing. One group was treated with visual information and two groups with audiovisual information (sonification vs. natural sounds. For all three groups learning became evident and remained stable. Participants treated with additional movement sonification showed better performance compared to both other groups. Results indicate that movement sonification enhances motor learning of a complex gross motor skill – even exceeding usually expected acoustic rhythmical effects on motor learning.

  18. Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments.

    Science.gov (United States)

    Effenberg, Alfred O; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz

    2016-01-01

    motor skill (technique acquisition of indoor rowing). One group was treated with visual information and two groups with audiovisual information (sonification vs. natural sounds). For all three groups learning became evident and remained stable. Participants treated with additional movement sonification showed better performance compared to both other groups. Results indicate that movement sonification enhances motor learning of a complex gross motor skill-even exceeding usually expected acoustic rhythmic effects on motor learning.

  19. Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments

    Science.gov (United States)

    Effenberg, Alfred O.; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz

    2016-01-01

    motor skill (technique acquisition of indoor rowing). One group was treated with visual information and two groups with audiovisual information (sonification vs. natural sounds). For all three groups learning became evident and remained stable. Participants treated with additional movement sonification showed better performance compared to both other groups. Results indicate that movement sonification enhances motor learning of a complex gross motor skill—even exceeding usually expected acoustic rhythmic effects on motor learning. PMID:27303255

  20. Enhanced musical rhythmic perception in Turkish early and late learners of German

    Directory of Open Access Journals (Sweden)

    Maria Paula eRoncaglia-Denissen

    2013-09-01

    Full Text Available As language rhythm relies partly on general acoustic properties, such as intensity and duration, mastering two languages with distinct rhythmic properties (i.e., stress position may enhance musical rhythm perception. We investigated whether second language (L2 competence affects musical rhythm aptitude in Turkish early (TELG and late learners (TLLG of German in comparison to German monolingual speakers (GMC. To account for inter-individual differences, we measured participants’ short-term and working memory capacity, melodic aptitude, and time they spent listening to music. Both L2 speaker groups perceived rhythmic variations significantly better than monolinguals. No differences were found between early and late learners’ performances. Our findings suggest that mastering two languages with different rhythmic properties enhances musical rhythm perception, providing further evidence of cognitive share between language and music.

  1. Rhythmic ganglion cell activity in bleached and blind adult mouse retinas.

    Science.gov (United States)

    Menzler, Jacob; Channappa, Lakshmi; Zeck, Guenther

    2014-01-01

    In retinitis pigmentosa--a degenerative disease which often leads to incurable blindness--the loss of photoreceptors deprives the retina from a continuous excitatory input, the so-called dark current. In rodent models of this disease this deprivation leads to oscillatory electrical activity in the remaining circuitry, which is reflected in the rhythmic spiking of retinal ganglion cells (RGCs). It remained unclear, however, if the rhythmic RGC activity is attributed to circuit alterations occurring during photoreceptor degeneration or if rhythmic activity is an intrinsic property of healthy retinal circuitry which is masked by the photoreceptor's dark current. Here we tested these hypotheses by inducing and analysing oscillatory activity in adult healthy (C57/Bl6) and blind mouse retinas (rd10 and rd1). Rhythmic RGC activity in healthy retinas was detected upon partial photoreceptor bleaching using an extracellular high-density multi-transistor-array. The mean fundamental spiking frequency in bleached retinas was 4.3 Hz; close to the RGC rhythm detected in blind rd10 mouse retinas (6.5 Hz). Crosscorrelation analysis of neighbouring wild-type and rd10 RGCs (separation distance rhythmic RGC spiking in these retinas is driven by a network of presynaptic neurons. The inhibition of glutamatergic ganglion cell input or the inhibition of gap junctional coupling abolished the rhythmic pattern. In rd10 and rd1 retinas the presynaptic network leads to local field potentials, whereas in bleached retinas additional pharmacological disinhibition is required to achieve detectable field potentials. Our results demonstrate that photoreceptor bleaching unmasks oscillatory activity in healthy retinas which shares many features with the functional phenotype detected in rd10 retinas. The quantitative physiological differences advance the understanding of the degeneration process and may guide future rescue strategies.

  2. Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval.

    Science.gov (United States)

    Sumbre, Germán; Muto, Akira; Baier, Herwig; Poo, Mu-ming

    2008-11-06

    The ability to process temporal information is fundamental to sensory perception, cognitive processing and motor behaviour of all living organisms, from amoebae to humans. Neural circuit mechanisms based on neuronal and synaptic properties have been shown to process temporal information over the range of tens of microseconds to hundreds of milliseconds. How neural circuits process temporal information in the range of seconds to minutes is much less understood. Studies of working memory in monkeys and rats have shown that neurons in the prefrontal cortex, the parietal cortex and the thalamus exhibit ramping activities that linearly correlate with the lapse of time until the end of a specific time interval of several seconds that the animal is trained to memorize. Many organisms can also memorize the time interval of rhythmic sensory stimuli in the timescale of seconds and can coordinate motor behaviour accordingly, for example, by keeping the rhythm after exposure to the beat of music. Here we report a form of rhythmic activity among specific neuronal ensembles in the zebrafish optic tectum, which retains the memory of the time interval (in the order of seconds) of repetitive sensory stimuli for a duration of up to approximately 20 s. After repetitive visual conditioning stimulation (CS) of zebrafish larvae, we observed rhythmic post-CS activities among specific tectal neuronal ensembles, with a regular interval that closely matched the CS. Visuomotor behaviour of the zebrafish larvae also showed regular post-CS repetitions at the entrained time interval that correlated with rhythmic neuronal ensemble activities in the tectum. Thus, rhythmic activities among specific neuronal ensembles may act as an adjustable 'metronome' for time intervals in the order of seconds, and serve as a mechanism for the short-term perceptual memory of rhythmic sensory experience.

  3. Different corticospinal control between discrete and rhythmic movement of the ankle

    OpenAIRE

    Goto, Yumeno; Jono, Yasutomo; Hatanaka, Ryota; Nomura, Yoshifumi; Tani, Keisuke; Chujo, Yuta; Hiraoka, Koichi

    2014-01-01

    We investigated differences in corticospinal and spinal control between discrete and rhythmic ankle movements. Motor evoked potentials (MEPs) in the tibialis anterior and soleus muscles and soleus H-reflex were elicited in the middle of the plantar flexion phase during discrete ankle movement or in the initial or later cycles of rhythmic ankle movement. The H-reflex was evoked at an intensity eliciting a small M-wave and MEPs were elicited at an intensity of 1.2 times the motor threshold of t...

  4. The inhibiting effects of Urtica dioica root extracts on experimentally induced prostatic hyperplasia in the mouse.

    Science.gov (United States)

    Lichius, J J; Muth, C

    1997-08-01

    Extracts of stinging nettle roots (Urtica dioica L. Urticaceae) are used in the treatment of benign prostatic hyperplasia (BPH). We established a BPH-model by directly implanting an urogenital sinus (UGS) into the ventral prostate gland of an adult mouse. Five differently prepared stinging nettle root extracts were tested in this model. The 20% methanolic extract was the most effective with a 51.4% inhibition of induced growth.

  5. A Rhythmic Musical Intervention for Poor Readers: A Comparison of Efficacy with a Letter-Based Intervention

    Science.gov (United States)

    Bhide, Adeetee; Power, Alan; Goswami, Usha

    2013-01-01

    There is growing evidence that children with reading difficulties show impaired auditory rhythm perception and impairments in musical beat perception tasks. Rhythmic musical interventions with poorer readers may thus improve rhythmic entrainment and consequently improve reading and phonological skills. Here we compare the effects of a musical…

  6. Pain and convalescence following laparoscopic ventral hernia repair

    DEFF Research Database (Denmark)

    Eriksen, Jens Ravn

    2011-01-01

    Severe pain is usual after laparoscopic ventral hernia repair (LVHR). Mesh fixation with titanium tacks may play a key role in the development of acute and chronic pain and alternative fixation methods should therefore be investigated. This PhD thesis was based on three studies and aimed too: 1...... abdominal wall. A mechanical peel test was performed for each tissue sample. The secondary outcome parameters were grade and strength of adhesions to the mesh, shrinkage and displacement/folding of the mesh and histological parameters. All nine pigs survived without complications until sacrifice. No meshes...... satisfaction. This issue must have first priority in future ventral hernia repair research. It is now documented, that the simple application of fibrin glue instead of titanium tacks for mesh fixation in LVHR of defects

  7. Pain and convalescence following laparoscopic ventral hernia repair

    DEFF Research Database (Denmark)

    Eriksen, Jens Ravn

    Severe pain is usual after laparoscopic ventral hernia repair (LVHR). Mesh fixation with titanium tacks may play a key role in the development of acute and chronic pain and alternative fixation methods should therefore be investigated. This PhD thesis was based on three studies and aimed too: 1...... abdominal wall. A mechanical peel test was performed for each tissue sample. The secondary outcome parameters were grade and strength of adhesions to the mesh, shrinkage and displacement/folding of the mesh and histological parameters. All nine pigs survived without complications until sacrifice. No meshes...... satisfaction. This issue must have first priority in future ventral hernia repair research. It is now documented, that the simple application of fibrin glue instead of titanium tacks for mesh fixation in LVHR of defects

  8. The inhibiting effects of components of stinging nettle roots on experimentally induced prostatic hyperplasia in mice.

    Science.gov (United States)

    Lichius, J J; Renneberg, H; Blaschek, W; Aumüller, G; Muth, C

    1999-10-01

    Direct implanting of fetal urogenital sinus (UGS) tissue into the ventral prostate gland of adult mice led to a 4-fold weight increase of the manipulated prostatic lobe. The induced growth could be reduced by the polysaccharide fraction (POLY-M) of the 20% methanolic extract of stinging nettle roots by 33.8%.

  9. Dorsal and ventral changes of the occipital vertebrae

    International Nuclear Information System (INIS)

    Banki, Z.

    1981-01-01

    Based on his own observation and on the literature, the author discusses various types of calcification in the occipital-cervical region, beginning with those situated dorsally and followed by ventral forms. An attempt is made to classify these changes, depending on their morphology and situation, from an embryological point of view. The pro-atlantal and ante pro-atlanto origin of the occipital vertebrae is discussed. Differentiation depends on appearances. (orig.) [de

  10. Mesh versus non-mesh repair of ventral abdominal hernias

    International Nuclear Information System (INIS)

    Jawaid, M.A.; Talpur, A.H.

    2008-01-01

    To investigate the relative effectiveness of mesh and suture repair of ventral abdominal hernias in terms of clinical outcome, quality of life and rate of recurrence in both the techniques. This is a retrospective descriptive analysis of 236 patients with mesh and non-mesh repair of primary ventral hernias performed between January 2000 to December 2004 at Surgery Department, Liaquat University of Medical and Health Sciences, Jamshoro. The record sheets of the patients were analyzed and data retrieved to compare the results of both techniques for short-term and long-term results. The data retrieved is statistically analyzed on SPSS version 11. There were 43 (18.22%) males and 193 (81.77%) females with a mean age of 51.79 years and a range of 59 (81-22). Para-umbilical hernia was the commonest of ventral hernia and accounted for 49.8% (n=118) of the total study population followed by incisional hernia comprising 24% (n=57) of the total number. There was a significant difference in the recurrent rate at 3 years interval with 23/101 (22.77%) recurrences in suture-repaired subjects compared to 10/135 (7.40%) in mesh repair group. Chronic pain lasting up to 1-2 years was noted in 14 patients with suture repair. Wound infection is comparatively more common (8.14%) in mesh group. The other variables such as operative and postoperative complications, total hospital stay and quality of life is also discussed. Mesh repair of ventral hernia is much superior to non-mesh suture repair in terms of recurrence and overall outcome. (author)

  11. Binocular depth processing in the ventral visual pathway.

    Science.gov (United States)

    Verhoef, Bram-Ernst; Vogels, Rufin; Janssen, Peter

    2016-06-19

    One of the most powerful forms of depth perception capitalizes on the small relative displacements, or binocular disparities, in the images projected onto each eye. The brain employs these disparities to facilitate various computations, including sensori-motor transformations (reaching, grasping), scene segmentation and object recognition. In accordance with these different functions, disparity activates a large number of regions in the brain of both humans and monkeys. Here, we review how disparity processing evolves along different regions of the ventral visual pathway of macaques, emphasizing research based on both correlational and causal techniques. We will discuss the progression in the ventral pathway from a basic absolute disparity representation to a more complex three-dimensional shape code. We will show that, in the course of this evolution, the underlying neuronal activity becomes progressively more bound to the global perceptual experience. We argue that these observations most probably extend beyond disparity processing per se, and pertain to object processing in the ventral pathway in general. We conclude by posing some important unresolved questions whose answers may significantly advance the field, and broaden its scope.This article is part of the themed issue 'Vision in our three-dimensional world'. © 2016 The Author(s).

  12. Polyester composite versus PTFE in laparoscopic ventral hernia repair.

    Science.gov (United States)

    Colon, Modesto J; Telem, Dana A; Chin, Edward; Weber, Kaare; Divino, Celia M; Nguyen, Scott Q

    2011-01-01

    Both polyester composite (POC) and polytetrafluoroethylene (PTFE) mesh are commonly used for laparoscopic ventral hernia repair. However, sparse information exists comparing perioperative and long-term outcome by mesh repair. A prospective database was utilized to identify 116 consecutive patients who underwent laparoscopic ventral hernia repair at The Mount Sinai Hospital from 2004-2009. Patients were grouped by type of mesh used, PTFE versus POC, and retrospectively compared. Follow-up at a mean of 12 months was achieved by telephone interview and office visit. Of the 116 patients, 66 underwent ventral hernia repair with PTFE and 50 with POC mesh. Patients were well matched by patient demographics. No difference in mean body mass index (BMI) was demonstrated between the PTFE and POC group (31.8 vs. 32.5, respectively; P=NS). Operative time was significantly longer in the PTFE group (136 vs.106 minutes, PPTFE group and none in the POC group (P NS). No other major complications occurred in the immediate postoperative period (30 days). At a mean follow-up of 12 months, no significant difference was demonstrated between the PTFE and POC groups in hernia recurrence (3% vs. 2%), wound complications (1% vs. 0%), mesh infection, requiring removal (3% vs. 0%), bowel obstruction (3% vs. 2%), or persistent pain or discomfort (28% vs. 32%), respectively (P=NS). Our study demonstrated no significant association between types of mesh used and postoperative complications. In the 12-month follow-up, no differences were noted in hernia recurrence.

  13. Using an Artificial Neural Bypass to Restore Cortical Control of Rhythmic Movements in a Human with Quadriplegia

    Science.gov (United States)

    Sharma, Gaurav; Friedenberg, David A.; Annetta, Nicholas; Glenn, Bradley; Bockbrader, Marcie; Majstorovic, Connor; Domas, Stephanie; Mysiw, W. Jerry; Rezai, Ali; Bouton, Chad

    2016-09-01

    Neuroprosthetic technology has been used to restore cortical control of discrete (non-rhythmic) hand movements in a paralyzed person. However, cortical control of rhythmic movements which originate in the brain but are coordinated by Central Pattern Generator (CPG) neural networks in the spinal cord has not been demonstrated previously. Here we show a demonstration of an artificial neural bypass technology that decodes cortical activity and emulates spinal cord CPG function allowing volitional rhythmic hand movement. The technology uses a combination of signals recorded from the brain, machine-learning algorithms to decode the signals, a numerical model of CPG network, and a neuromuscular electrical stimulation system to evoke rhythmic movements. Using the neural bypass, a quadriplegic participant was able to initiate, sustain, and switch between rhythmic and discrete finger movements, using his thoughts alone. These results have implications in advancing neuroprosthetic technology to restore complex movements in people living with paralysis.

  14. Radiation-induced nerve root degeneration and hypertrophic neuropathy in the lumbosacral spinal cord of rats: The relation with changes in aging rats

    International Nuclear Information System (INIS)

    Kogel, A.J. van der

    1977-01-01

    Three-month-old WAG Rij rats were irradiated with 300 kV X-rays on the lumbar region of the spinal column with doses below the level for causing paralysis due to radiation radiculomyelopathy. 8-9 months after irradiation. degeneration of predominantly the ventral nerve roots of the cauda equina was observed. Three stages were distinguishable: I) Demyelination and proliferation of Schwann cells: II) Local swelling of ventral nerve roots, with concentric layers of Schwann cells resembling hypertrophic neuropathy: III) Malignant Schwannoma, invading roots and spinal cord. It is concluded that the degenerative and proliferative lesions represent a continuous series of stages of slowly progressive lesions. The ventral nerve root degeneration (Ist stage) is similar to that observed in aging, unirradiated rats, normally developing at the age of 18-20 months. (orig.) [de

  15. Seedling root targets

    Science.gov (United States)

    Diane L. Haase

    2011-01-01

    Roots are critical to seedling performance after outplanting. Although root quality is not as quick and simple to measure as shoot quality, target root characteristics should be included in any seedling quality assessment program. This paper provides a brief review of root characteristics most commonly targeted for operational seedling production. These are: root mass...

  16. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system.

    Science.gov (United States)

    Thaut, Michael H; McIntosh, Gerald C; Hoemberg, Volker

    2014-01-01

    Entrainment is defined by a temporal locking process in which one system's motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy.

  17. The Beat Goes on: Rhythmic Modulation of Cortical Potentials by Imagined Tapping

    Science.gov (United States)

    Osman, Allen; Albert, Robert; Ridderinkhof, K. Richard; Band, Guido; van der Molen, Maurits

    2006-01-01

    A frequency analysis was used to tag cortical activity from imagined rhythmic movements. Participants synchronized overt and imagined taps with brief visual stimuli presented at a constant rate, alternating between left and right index fingers. Brain potentials were recorded from across the scalp and topographic maps made of their power at the…

  18. Differential maturation of rhythmic clock gene expression during early development in medaka (Oryzias latipes).

    Science.gov (United States)

    Cuesta, Ines H; Lahiri, Kajori; Lopez-Olmeda, Jose Fernando; Loosli, Felix; Foulkes, Nicholas S; Vallone, Daniela

    2014-05-01

    One key challenge for the field of chronobiology is to identify how circadian clock function emerges during early embryonic development. Teleosts such as the zebrafish are ideal models for studying circadian clock ontogeny since the entire process of development occurs ex utero in an optically transparent chorion. Medaka (Oryzias latipes) represents another powerful fish model for exploring early clock function with, like the zebrafish, many tools available for detailed genetic analysis. However, to date there have been no reports documenting circadian clock gene expression during medaka development. Here we have characterized the expression of key clock genes in various developmental stages and in adult tissues of medaka. As previously reported for other fish, light dark cycles are required for the emergence of clock gene expression rhythms in this species. While rhythmic expression of per and cry genes is detected very early during development and seems to be light driven, rhythmic clock and bmal expression appears much later around hatching time. Furthermore, the maturation of clock function seems to correlate with the appearance of rhythmic expression of these positive elements of the clock feedback loop. By accelerating development through elevated temperatures or by artificially removing the chorion, we show an earlier onset of rhythmicity in clock and bmal expression. Thus, differential maturation of key elements of the medaka clock mechanism depends on the developmental stage and the presence of the chorion.

  19. Separating bathymetric data representing multiscale rhythmic bed forms : a geostatistical and spectral method compared

    NARCIS (Netherlands)

    van Dijk, Thaiënne A.G.P.; Lindenbergh, Roderik C.; Egberts, Paul J.P.

    2008-01-01

    The superimposition of rhythmic bed forms of different spatial scales is a common and natural phenomenon on sandy seabeds. The dynamics of such seabeds may interfere with different offshore activities and are therefore of interest to both scientists and offshore developers. State-of-the-art echo

  20. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver.

    Science.gov (United States)

    Mauvoisin, Daniel; Wang, Jingkui; Jouffe, Céline; Martin, Eva; Atger, Florian; Waridel, Patrice; Quadroni, Manfredo; Gachon, Frédéric; Naef, Felix

    2014-01-07

    Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light-dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors.

  1. An analysis of rhythmic ratios in scores of various kinds of music

    NARCIS (Netherlands)

    Sadakata, M.; Desain, P.W.M.; Honing, H.J.; Lipscomb, S.D.; Ashley, R.; Gjerdignen, R.O.; Webster, P.

    2004-01-01

    The aim of this study is to investigate our daily experience of rhythm. The frequency of occurrence of rhythmic patterns consisting of two intervals was counted in different music corpora. Only subdivisions of metrical units were considered. A very large corpus of diverse kinds of music (western

  2. Differential processing of melodic, rhythmic and simple tone deviations in musicians--an MEG study.

    Science.gov (United States)

    Lappe, Claudia; Lappe, Markus; Pantev, Christo

    2016-01-01

    Rhythm and melody are two basic characteristics of music. Performing musicians have to pay attention to both, and avoid errors in either aspect of their performance. To investigate the neural processes involved in detecting melodic and rhythmic errors from auditory input we tested musicians on both kinds of deviations in a mismatch negativity (MMN) design. We found that MMN responses to a rhythmic deviation occurred at shorter latencies than MMN responses to a melodic deviation. Beamformer source analysis showed that the melodic deviation activated superior temporal, inferior frontal and superior frontal areas whereas the activation pattern of the rhythmic deviation focused more strongly on inferior and superior parietal areas, in addition to superior temporal cortex. Activation in the supplementary motor area occurred for both types of deviations. We also recorded responses to similar pitch and tempo deviations in a simple, non-musical repetitive tone pattern. In this case, there was no latency difference between the MMNs and cortical activation was smaller and mostly limited to auditory cortex. The results suggest that prediction and error detection of musical stimuli in trained musicians involve a broad cortical network and that rhythmic and melodic errors are processed in partially different cortical streams. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Muscle metabolism from near infrared spectroscopy during rhythmic handgrip in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Pott, F; Madsen, P

    1998-01-01

    The rate of metabolism in forearm flexor muscles (MO2) was derived from near-infrared spectroscopy (NIRS-O2) during ischaemia at rest rhythmic handgrip at 15% and 30% of maximal voluntary contraction (MVC), post-exercise muscle ischaemia (PEMI), and recovery in seven subjects. The MO2 was compared...

  4. Inter-limb coupling in bimanual rhythmic coordination in Parkinson's disease

    NARCIS (Netherlands)

    Verheul, M.H.G.; Geuze, RH

    2004-01-01

    Recently, it has been shown that rhythmic inter-limb coordination is disturbed in patients with Parkinson's disease (PD). The present study aims to investigate whether this coordination deficit is primarily the result of an impaired coupling, related to hypoactivation of the supplementary motor area

  5. Rhythmic EEG patterns in extremely preterm infants : Classification and association with brain injury and outcome

    NARCIS (Netherlands)

    Weeke, Lauren C; van Ooijen, Inge M; Groenendaal, Floris; van Huffelen, Alexander C.; van Haastert, Ingrid C; van Stam, Carolien; Benders, Manon J; Toet, Mona C; Hellström-Westas, Lena; de Vries, Linda S

    2017-01-01

    OBJECTIVE: Classify rhythmic EEG patterns in extremely preterm infants and relate these to brain injury and outcome. METHODS: Retrospective analysis of 77 infants born <28 weeks gestational age (GA) who had a 2-channel EEG during the first 72 h after birth. Patterns detected by the BrainZ seizure

  6. Functional magnetic resonance imaging study comparing rhythmic finger tapping in children and adults.

    Science.gov (United States)

    De Guio, François; Jacobson, Sandra W; Molteno, Christopher D; Jacobson, Joseph L; Meintjes, Ernesta M

    2012-02-01

    This study compared brain activation during unpaced rhythmic finger tapping in 12-year-old children with that of adults. Subjects pressed a button at a pace initially indicated by a metronome (12 consecutive tones), and then continued for 16 seconds of unpaced tapping to provide an assessment of their ability to maintain a steady rhythm. These analyses focused on the superior vermis of the cerebellum, which is known to play a key role in timing. Twelve adults and 12 children performed this rhythmic finger tapping task in a 3 T scanner. Whole-brain analyses were performed in Brain Voyager, with a random-effects analysis of variance using a general linear model. A dedicated cerebellar atlas was used to localize cerebellar activations. As in adults, unpaced rhythmic finger tapping in children demonstrated activations in the primary motor cortex, premotor cortex, and cerebellum. However, overall activation was different, in that adults demonstrated much more deactivation in response to the task, particularly in the occipital and frontal cortices. The other main differences involved the additional recruitment of motor and premotor areas in children compared with adults, and increased activity in the vermal region of the cerebellum. These findings suggest that the timing component of the unpaced rhythmic finger tapping task is less efficient and automatic in children, who need to recruit the superior vermis more intensively to maintain the rhythm, although they performed somewhat more poorly than adults. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Towards a Rhythmanalysis of Debt Dressage: Education as Rhythmic Resistance in Everyday Indebted Life

    Science.gov (United States)

    Wozniak, Jason Thomas

    2017-01-01

    Debt shapes subjectivity by rhythmically training indebted subjects. Stated slightly differently, there exists a debt dressage that produces indebted subjectivity. One of the principle aims of this article is to introduce rhythm into the debt analysis debates. Building on Henri Lefebvre's book "Rhythmanalysis: Space, Time and Everyday…

  8. The Relationship between Reduplicated Babble Onset and Laterality Biases in Infant Rhythmic Arm Movements

    Science.gov (United States)

    Iverson, Jana M.; Hall, Amanda J.; Nickel, Lindsay; Wozniak, Robert H.

    2007-01-01

    This study examined changes in rhythmic arm shaking and laterality biases in infants observed longitudinally at three points: just prior to, at, and just following reduplicated babble onset. Infants (ranging in age from 4 to 9 months at babble onset) were videotaped at home as they played with two visually identical audible and silent rattles…

  9. Some phonetic experiments on : Double stress and rhythmic variation in R.P. English

    NARCIS (Netherlands)

    Heuven, van V.J.J.P.

    1974-01-01

    This thesis examines the phonetic nature of so-called double-stressed words in English (also called equal- stressed or even-stressed), and the susceptibility of these words to rhythmic adjustment (stress clash avoidance). An acoustic analysis of stress correlates was made of disyllabic words

  10. Auditory Processing Interventions and Developmental Dyslexia: A Comparison of Phonemic and Rhythmic Approaches

    Science.gov (United States)

    Thomson, Jennifer M.; Leong, Victoria; Goswami, Usha

    2013-01-01

    The purpose of this study was to compare the efficacy of two auditory processing interventions for developmental dyslexia, one based on rhythm and one based on phonetic training. Thirty-three children with dyslexia participated and were assigned to one of three groups (a) a novel rhythmic processing intervention designed to highlight auditory…

  11. Alpha-Band Rhythms in Visual Task Performance: Phase-Locking by Rhythmic Sensory Stimulation

    Science.gov (United States)

    de Graaf, Tom A.; Gross, Joachim; Paterson, Gavin; Rusch, Tessa; Sack, Alexander T.; Thut, Gregor

    2013-01-01

    Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8–12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles. PMID:23555873

  12. Effects of Musicality on the Perception of Rhythmic Structure in Speech

    Directory of Open Access Journals (Sweden)

    Natalie Boll-Avetisyan

    2017-04-01

    Full Text Available Language and music share many rhythmic properties, such as variations in intensity and duration leading to repeating patterns. Perception of rhythmic properties may rely on cognitive networks that are shared between the two domains. If so, then variability in speech rhythm perception may relate to individual differences in musicality. To examine this possibility, the present study focuses on rhythmic grouping, which is assumed to be guided by a domain-general principle, the Iambic/Trochaic law, stating that sounds alternating in intensity are grouped as strong-weak, and sounds alternating in duration are grouped as weak-strong. German listeners completed a grouping task: They heard streams of syllables alternating in intensity, duration, or neither, and had to indicate whether they perceived a strong-weak or weak-strong pattern. Moreover, their music perception abilities were measured, and they filled out a questionnaire reporting their productive musical experience. Results showed that better musical rhythm perception ability was associated with more consistent rhythmic grouping of speech, while melody perception ability and productive musical experience were not. This suggests shared cognitive procedures in the perception of rhythm in music and speech. Also, the results highlight the relevance of considering individual differences in musicality when aiming to explain variability in prosody perception.

  13. Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson's disease

    NARCIS (Netherlands)

    Woerd, E.S. te; Oostenveld, R.; Bloem, B.R.; Lange, F.P. de; Praamstra, P.

    2015-01-01

    The basal ganglia play an important role in beat perception and patients with Parkinson's disease (PD) are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this

  14. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system

    Science.gov (United States)

    Thaut, Michael H.; McIntosh, Gerald C.; Hoemberg, Volker

    2015-01-01

    Entrainment is defined by a temporal locking process in which one system’s motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy. PMID:25774137

  15. Enhanced musical rhythmic perception in Turkish early and late learners of German

    NARCIS (Netherlands)

    Roncaglia-Denissen, M.P.; Schmidt-Kassow, M.; Heine, A.; Vuust, P.; Kotz, S.A.

    2013-01-01

    As language rhythm relies partly on general acoustic properties, such as intensity and duration, mastering two languages with distinct rhythmic properties (i.e., stress position) may enhance musical rhythm perception. We investigated whether competence in a second language (L2) with different

  16. Neurobiological Foundations of Neurologic Music Therapy: Rhythmic Entrainment and the Motor System

    Directory of Open Access Journals (Sweden)

    Michael eThaut

    2015-02-01

    Full Text Available AbstractEntrainment is defined by a temporal locking process in which one system’s motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks and biological systems (e.g. fire flies. However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al, 1999. Physiological, kinematic and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of Neurologic Music Therapy.

  17. Speak on time! Effects of a musical rhythmic training on children with hearing loss.

    Science.gov (United States)

    Hidalgo, Céline; Falk, Simone; Schön, Daniele

    2017-08-01

    This study investigates temporal adaptation in speech interaction in children with normal hearing and in children with cochlear implants (CIs) and/or hearing aids (HAs). We also address the question of whether musical rhythmic training can improve these skills in children with hearing loss (HL). Children named pictures presented on the screen in alternation with a virtual partner. Alternation rate (fast or slow) and the temporal predictability (match vs mismatch of stress occurrences) were manipulated. One group of children with normal hearing (NH) and one with HL were tested. The latter group was tested twice: once after 30 min of speech therapy and once after 30 min of musical rhythmic training. Both groups of children (NH and with HL) can adjust their speech production to the rate of alternation of the virtual partner. Moreover, while children with normal hearing benefit from the temporal regularity of stress occurrences, children with HL become sensitive to this manipulation only after rhythmic training. Rhythmic training may help children with HL to structure the temporal flow of their verbal interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Rhythmic Rituals and Emergent Listening: Intra-Activity, Sonic Sounds and Digital Composing with Young Children

    Science.gov (United States)

    Wargo, Jon M.

    2017-01-01

    (Re)Entering data from a networked collaborative project exploring how sound operates as a mechanism for attuning towards cultural difference and community literacies, this article examines one primary grade classroom's participation to investigate the rhythmic rituals of 'emergent listening' in early childhood literacy. Thinking with sound…

  19. Gender Differences in Musical Aptitude, Rhythmic Ability and Motor Performance in Preschool Children

    Science.gov (United States)

    Pollatou, Elisana; Karadimou, Konstantina; Gerodimos, Vasilios

    2005-01-01

    Most of the preschool curricula involve integrated movement activities that combine music, rhythm and locomotor skills. The purpose of the current study was to examine whether there are any differences between boys and girls at the age of five concerning their musical aptitude, rhythmic ability and performance in gross motor skills. Ninety-five…

  20. Association of Periodic and Rhythmic Electroencephalographic Patterns With Seizures in Critically Ill Patients.

    Science.gov (United States)

    Rodriguez Ruiz, Andres; Vlachy, Jan; Lee, Jong Woo; Gilmore, Emily J; Ayer, Turgay; Haider, Hiba Arif; Gaspard, Nicolas; Ehrenberg, J Andrew; Tolchin, Benjamin; Fantaneanu, Tadeu A; Fernandez, Andres; Hirsch, Lawrence J; LaRoche, Suzette

    2017-02-01

    Periodic and rhythmic electroencephalographic patterns have been associated with risk of seizures in critically ill patients. However, specific features that confer higher seizure risk remain unclear. To analyze the association of distinct characteristics of periodic and rhythmic patterns with seizures. We reviewed electroencephalographic recordings from 4772 critically ill adults in 3 academic medical centers from February 2013 to September 2015 and performed a multivariate analysis to determine features associated with seizures. Continuous electroencephalography. Association of periodic and rhythmic patterns and specific characteristics, such as pattern frequency (hertz), Plus modifier, prevalence, and stimulation-induced patterns, and the risk for seizures. Of the 4772 patients included in our study, 2868 were men and 1904 were women. Lateralized periodic discharges (LPDs) had the highest association with seizures regardless of frequency and the association was greater when the Plus modifier was present (58%; odds ratio [OR], 2.00, P rhythmic delta activity (LRDA) were associated with seizures in a frequency-dependent manner (1.5-2 Hz: GPDs, 24%,OR, 2.31, P = .02; LRDA, 24%, OR, 1.79, P = .05; ≥ 2 Hz: GPDs, 32%, OR, 3.30, P rhythmic delta activity compared with no periodic or rhythmic pattern (13%, OR, 1.18, P = .26). Higher prevalence of LPDs and GPDs also conferred increased seizure risk (37% frequent vs 45% abundant/continuous, OR, 1.64, P = .03 for difference; 8% rare/occasional vs 15% frequent, OR, 2.71, P = .03, vs 23% abundant/continuous, OR, 1.95, P = .04). Patterns associated with stimulation did not show an additional risk for seizures from the underlying pattern risk (P > .10). In this study, LPDs, LRDA, and GPDs were associated with seizures while generalized rhythmic delta activity was not. Lateralized periodic discharges were associated with seizures at all frequencies with and without Plus modifier, but LRDA and GPDs were associated with

  1. A multicenter prospective study of patients undergoing open ventral hernia repair with intraperitoneal positioning using the monofilament polyester composite ventral patch

    DEFF Research Database (Denmark)

    Berrevoet, Frederik; Doerhoff, Carl; Muysoms, Filip

    2017-01-01

    PURPOSE: This study assessed the recurrence rate and other safety and efficacy parameters following ventral hernia repair with a polyester composite prosthesis (Parietex™ Composite Ventral Patch [PCO-VP]). PATIENTS AND METHODS: A single-arm, multicenter prospective study of 126 patients undergoing...

  2. Musical instruments of Brazilian capoeira: Historical roots, symbolism, and use

    Science.gov (United States)

    Ilari, Beatriz

    2002-11-01

    This paper describes the historical roots, symbolism, and uses of musical instruments in capoeira. A martial art form of Afro-Brazilian origin, capoeira is rhythmically performed to music in a roda (i.e., circle). Capoeira is at times defined as a martial art form disguised as dance because it is rooted in the struggles of African slaves. Elements of music, dance, fight, and ritual are part of this unique martial art form, which has two main styles: Angola and Regional. Capoeira styles are important as they determine rhythmic patterns, chant, movement, and musical instrumentation in a roda. The leading instrument in all capoeira styles is the berimbau. The instrument dictates the rhythm and movement of capoeira players in a roda (Ilari, 2001). Made out of a wooden stick, a wire, and a gourd and played with a stick and a coin, the berimbau is considered a sacred instrument due to its association with the cry of the slaves. Other instruments used in capoeira are pandeiros, agogo bells, reco-recos, and atabaques. A discussion regarding the use of these instruments within the context of capoeira will be presented at the conference. The incorporation of these instruments into contemporary Brazilian music will also be considered.

  3. Rhythmic Firing of Pedunculopontine Tegmental Nucleus Neurons in Monkeys during Eye Movement Task.

    Directory of Open Access Journals (Sweden)

    Ken-Ichi Okada

    Full Text Available The pedunculopontine tegmental nucleus (PPTN has been thought to be involved in the control of behavioral state. Projections to the entire thalamus and reciprocal connections with the basal ganglia nuclei suggest a potential role for the PPTN in the control of various rhythmic behaviors, including waking/sleeping and locomotion. Recently, rhythmic activity in the local field potentials was recorded from the PPTN of patients with Parkinson's disease who were treated with levodopa, suggesting that rhythmic firing is a feature of the functioning PPTN and might change with the behaving conditions even within waking. However, it remains unclear whether and how single PPTN neurons exhibit rhythmic firing patterns during various behaving conditions, including executing conditioned eye movement behaviors, seeking reward, or during resting. We previously recorded from PPTN neurons in healthy monkeys during visually guided saccade tasks and reported task-related changes in firing rate, and in this paper, we reanalyzed these data and focused on their firing patterns. A population of PPTN neurons demonstrated a regular firing pattern in that the coefficient of variation of interspike intervals was lower than what would be expected of theoretical random and irregular spike trains. Furthermore, a group of PPTN neurons exhibited a clear periodic single spike firing that changed with the context of the behavioral task. Many of these neurons exhibited a periodic firing pattern during highly active conditions, either the fixation condition during the saccade task or the free-viewing condition during the intertrial interval. We speculate that these task context-related changes in rhythmic firing of PPTN neurons might regulate the monkey's attentional and vigilance state to perform the task.

  4. Rhesus monkeys (Macaca mulatta) detect rhythmic groups in music, but not the beat.

    Science.gov (United States)

    Honing, Henkjan; Merchant, Hugo; Háden, Gábor P; Prado, Luis; Bartolo, Ramón

    2012-01-01

    It was recently shown that rhythmic entrainment, long considered a human-specific mechanism, can be demonstrated in a selected group of bird species, and, somewhat surprisingly, not in more closely related species such as nonhuman primates. This observation supports the vocal learning hypothesis that suggests rhythmic entrainment to be a by-product of the vocal learning mechanisms that are shared by several bird and mammal species, including humans, but that are only weakly developed, or missing entirely, in nonhuman primates. To test this hypothesis we measured auditory event-related potentials (ERPs) in two rhesus monkeys (Macaca mulatta), probing a well-documented component in humans, the mismatch negativity (MMN) to study rhythmic expectation. We demonstrate for the first time in rhesus monkeys that, in response to infrequent deviants in pitch that were presented in a continuous sound stream using an oddball paradigm, a comparable ERP component can be detected with negative deflections in early latencies (Experiment 1). Subsequently we tested whether rhesus monkeys can detect gaps (omissions at random positions in the sound stream; Experiment 2) and, using more complex stimuli, also the beat (omissions at the first position of a musical unit, i.e. the 'downbeat'; Experiment 3). In contrast to what has been shown in human adults and newborns (using identical stimuli and experimental paradigm), the results suggest that rhesus monkeys are not able to detect the beat in music. These findings are in support of the hypothesis that beat induction (the cognitive mechanism that supports the perception of a regular pulse from a varying rhythm) is species-specific and absent in nonhuman primates. In addition, the findings support the auditory timing dissociation hypothesis, with rhesus monkeys being sensitive to rhythmic grouping (detecting the start of a rhythmic group), but not to the induced beat (detecting a regularity from a varying rhythm).

  5. Rhesus monkeys (Macaca mulatta detect rhythmic groups in music, but not the beat.

    Directory of Open Access Journals (Sweden)

    Henkjan Honing

    Full Text Available It was recently shown that rhythmic entrainment, long considered a human-specific mechanism, can be demonstrated in a selected group of bird species, and, somewhat surprisingly, not in more closely related species such as nonhuman primates. This observation supports the vocal learning hypothesis that suggests rhythmic entrainment to be a by-product of the vocal learning mechanisms that are shared by several bird and mammal species, including humans, but that are only weakly developed, or missing entirely, in nonhuman primates. To test this hypothesis we measured auditory event-related potentials (ERPs in two rhesus monkeys (Macaca mulatta, probing a well-documented component in humans, the mismatch negativity (MMN to study rhythmic expectation. We demonstrate for the first time in rhesus monkeys that, in response to infrequent deviants in pitch that were presented in a continuous sound stream using an oddball paradigm, a comparable ERP component can be detected with negative deflections in early latencies (Experiment 1. Subsequently we tested whether rhesus monkeys can detect gaps (omissions at random positions in the sound stream; Experiment 2 and, using more complex stimuli, also the beat (omissions at the first position of a musical unit, i.e. the 'downbeat'; Experiment 3. In contrast to what has been shown in human adults and newborns (using identical stimuli and experimental paradigm, the results suggest that rhesus monkeys are not able to detect the beat in music. These findings are in support of the hypothesis that beat induction (the cognitive mechanism that supports the perception of a regular pulse from a varying rhythm is species-specific and absent in nonhuman primates. In addition, the findings support the auditory timing dissociation hypothesis, with rhesus monkeys being sensitive to rhythmic grouping (detecting the start of a rhythmic group, but not to the induced beat (detecting a regularity from a varying rhythm.

  6. Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Erik S. te Woerd

    2015-01-01

    Full Text Available The basal ganglia play an important role in beat perception and patients with Parkinson’s disease (PD are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this question with magnetoencephalography recordings during a choice response task with rhythmic and non-rhythmic modes of stimulus presentation. Analyses focused on (i entrainment of slow oscillations, (ii the depth of beta power modulation, and (iii whether a gain in modulation depth of beta power, due to rhythmicity, is of predictive or reactive nature. The results show weaker phase synchronisation of slow oscillations and a relative shift from predictive to reactive movement-related beta suppression in PD. Nonetheless, rhythmic stimulus presentation increased beta modulation depth to the same extent in patients and controls. Critically, this gain selectively increased the predictive and not reactive movement-related beta power suppression. Operation of a predictive mechanism, induced by rhythmic stimulation, was corroborated by a sensory gating effect in the sensorimotor cortex. The predictive mode of cue utilisation points to facilitation of basal ganglia-premotor interactions, contrasting with the popular view that rhythmic stimulation confers a special advantage in PD, based on recruitment of alternative pathways.

  7. Ventral hernia repair with poly-4-hydroxybutyrate mesh.

    Science.gov (United States)

    Plymale, Margaret A; Davenport, Daniel L; Dugan, Adam; Zachem, Amanda; Roth, John Scott

    2018-04-01

    Biomaterial research has made available a biologically derived fully resorbable poly-4-hydroxybutyrate (P4HB) mesh for use in ventral and incisional hernia repair (VIHR). This study evaluates outcomes of patients undergoing VIHR with P4HB mesh. An IRB-approved prospective pilot study was conducted to assess clinical and quality of life (QOL) outcomes for patients undergoing VIHR with P4HB mesh. Perioperative characteristics were defined. Clinical outcomes, employment status, QOL using 12-item short form survey (SF-12), and pain assessments were followed for 24 months postoperatively. 31 patients underwent VIHR with bioresorbable mesh via a Rives-Stoppa approach with retrorectus mesh placement. The median patient age was 52 years, median body mass index was 33 kg/m 2 , and just over half of the patients were female. Surgical site occurrences occurred in 19% of patients, most of which were seroma. Hernia recurrence rate was 0% (median follow-up = 414 days). Patients had significantly improved QOL at 24 months compared to baseline for SF-12 physical component summary and role emotional (p < 0.05). Ventral hernia repair with P4HB bioresorbable mesh results in favorable outcomes. Early hernia recurrence was not identified among the patient cohort. Quality of life improvements were noted at 24 months versus baseline for this cohort of patients with bioresorbable mesh. Use of P4HB mesh for ventral hernia repair was found to be feasible in this patient population. (ClinicalTrials.gov Identifier: NCT01863030).

  8. Study on the rhythmic variation of plasma cortisol levels in patients with essential hypertension (EH) and coronary heart disease (CHD)

    International Nuclear Information System (INIS)

    Zhu Mei; Wu Guo; Li Ying

    2007-01-01

    Objective: To study the rhythmic fluctuation of plasma cortisol levels in patients with EH and CHD. Methods: Plasma cortisol levels were determined with RIA at 8Am, 4Pm and midnight in 61 patients with EH, 46 patients with CHD and 36 controls. Results: The normal rhythmic fluctuation pattern of plasma cortisol levels was retained in the EH and CHD patients. However, the levels were all significantly higher in the patients than those in the controls, especially in the midnight specimens. Conclusion: Marked elevated plasma cortisol levels were observed in patients with EH and CHD, with the normal rhythmic fluctuation pattern retained. (authors)

  9. Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda.

    Science.gov (United States)

    Yang, Jie; Ortega-Hernández, Javier; Butterfield, Nicholas J; Liu, Yu; Boyan, George S; Hou, Jin-Bo; Lan, Tian; Zhang, Xi-Guang

    2016-03-15

    Panarthropods are typified by disparate grades of neurological organization reflecting a complex evolutionary history. The fossil record offers a unique opportunity to reconstruct early character evolution of the nervous system via exceptional preservation in extinct representatives. Here we describe the neurological architecture of the ventral nerve cord (VNC) in the upper-stem group euarthropod Chengjiangocaris kunmingensis from the early Cambrian Xiaoshiba Lagerstätte (South China). The VNC of C. kunmingensis comprises a homonymous series of condensed ganglia that extend throughout the body, each associated with a pair of biramous limbs. Submillimetric preservation reveals numerous segmental and intersegmental nerve roots emerging from both sides of the VNC, which correspond topologically to the peripheral nerves of extant Priapulida and Onychophora. The fuxianhuiid VNC indicates that ancestral neurological features of Ecdysozoa persisted into derived members of stem-group Euarthropoda but were later lost in crown-group representatives. These findings illuminate the VNC ground pattern in Panarthropoda and suggest the independent secondary loss of cycloneuralian-like neurological characters in Tardigrada and Euarthropoda.

  10. ROOT Reference Documentation

    CERN Document Server

    Fuakye, Eric Gyabeng

    2017-01-01

    A ROOT Reference Documentation has been implemented to generate all the lists of libraries needed for each ROOT class. Doxygen has no option to generate or add the lists of libraries for each ROOT class. Therefore shell scripting and a basic C++ program was employed to import the lists of libraries needed by each ROOT class.

  11. Nationwide analysis of prolonged hospital stay and readmission after elective ventral hernia repair

    DEFF Research Database (Denmark)

    Helgstrand, Frederik; Rosenberg, Jacob; Kehlet, Henrik

    2011-01-01

    Early outcome after elective ventral hernia repair is unsatisfactory, but detailed analyses are lacking. The aim of this study was to describe the aetiology of prolonged hospital stay (LOS), readmission and death <30 days after elective ventral hernia repair.......Early outcome after elective ventral hernia repair is unsatisfactory, but detailed analyses are lacking. The aim of this study was to describe the aetiology of prolonged hospital stay (LOS), readmission and death

  12. Islet-1 is required for ventral neuron survival in Xenopus

    International Nuclear Information System (INIS)

    Shi, Yu; Zhao, Shuhua; Li, Jiejing; Mao, Bingyu

    2009-01-01

    Islet-1 is a LIM domain transcription factor involved in several processes of embryonic development. Xenopus Islet-1 (Xisl-1) has been shown to be crucial for proper heart development. Here we show that Xisl-1 and Xisl-2 are differentially expressed in the nervous system in Xenopus embryos. Knock-down of Xisl-1 by specific morpholino leads to severe developmental defects, including eye and heart failure. Staining with the neuronal markers N-tubulin and Xisl-1 itself reveals that the motor neurons and a group of ventral interneurons are lost in the Xisl-1 morphants. Terminal dUTP nick-end labeling (TUNEL) analysis shows that Xisl-1 morpholino injection induces extensive apoptosis in the ventral neural plate, which can be largely inhibited by the apoptosis inhibitor M50054. We also find that over-expression of Xisl-1 is able to promote cell proliferation and induce Xstat3 expression in the injected side, suggesting a potential role for Xisl-1 in the regulation of cell proliferation in co-operation with the Jak-Stat pathway.

  13. Effective Connectivity between Ventral Occipito-Temporal and Ventral Inferior Frontal Cortex during Lexico-Semantic Processing. A Dynamic Causal Modeling Study

    Directory of Open Access Journals (Sweden)

    Marcela Perrone-Bertolotti

    2017-06-01

    Full Text Available It has been suggested that dorsal and ventral pathways support distinct aspects of language processing. Yet, the full extent of their involvement and their inter-regional connectivity in visual word recognition is still unknown. Studies suggest that they might reflect the dual-route model of reading, with the dorsal pathway more involved in grapho-phonological conversion during phonological tasks, and the ventral pathway performing lexico-semantic access during semantic tasks. Furthermore, this subdivision is also suggested at the level of the inferior frontal cortex, involving ventral and dorsal parts for lexico-semantic and phonological processing, respectively. In the present study, we assessed inter-regional brain connectivity and task-induced modulations of brain activity during a phoneme detection and semantic categorization tasks, using fMRI in healthy subject. We used a dynamic causal modeling approach to assess inter-regional connectivity and task demand modulation within the dorsal and ventral pathways, including the following network components: the ventral occipito-temporal cortex (vOTC; dorsal and ventral, the superior temporal gyrus (STG; dorsal, the dorsal inferior frontal gyrus (dIFG; dorsal, and the ventral IFG (vIFG; ventral. We report three distinct inter-regional interactions supporting orthographic information transfer from vOTC to other language regions (vOTC -> STG, vOTC -> vIFG and vOTC -> dIFG regardless of task demands. Moreover, we found that (a during semantic processing (direct ventral pathway the vOTC -> vIFG connection strength specifically increased and (b a lack of modulation of the vOTC -> dIFG connection strength by the task that could suggest a more general involvement of the dorsal pathway during visual word recognition. Results are discussed in terms of anatomo-functional connectivity of visual word recognition network.

  14. Root canal irrigants

    OpenAIRE

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are...

  15. Improvement of technical training of sportswomen in rhythmic gymnastics by means of acrobatics at the stage of preliminary basic preparation

    Directory of Open Access Journals (Sweden)

    Petro Kyzim

    2016-10-01

    Full Text Available Purpose: to prove experimentally the technique of improvement of technical training of sportswomen in rhythmic gymnastics by means of acrobatics at the stage of preliminary basic preparation. Material & Methods: the following methods of the research were used: analysis and synthesis of references, pedagogical observations, pedagogical testing, pedagogical experiment, method of expert assessment (qualimetry, methods of mathematical statistics. Results: the level of technical skill of performance of pre-acrobatic elements by sportswomen of rhythmic gymnastics before carrying out the pedagogical experiment is determined. The dynamics of indicators of the level of technical preparedness of sportswomen of rhythmic gymnastics is defined. Conclusions: it is established that additional resources of acrobatics influence significantly the level of technical preparedness of sportswomen of rhythmic gymnastics at the stage of preliminary basic preparation.

  16. Low amplitude rhythmic contraction frequency in human detrusor strips correlates with phasic intravesical pressure waves.

    Science.gov (United States)

    Colhoun, Andrew F; Speich, John E; Cooley, Lauren F; Bell, Eugene D; Barbee, R Wayne; Guruli, Georgi; Ratz, Paul H; Klausner, Adam P

    2017-08-01

    Low amplitude rhythmic contractions (LARC) occur in detrusor smooth muscle and may play a role in storage disorders such as overactive bladder and detrusor overactivity. The purpose of this study was to determine whether LARC frequencies identified in vitro from strips of human urinary bladder tissue correlate with in vivo LARC frequencies, visualized as phasic intravesical pressure (p ves ) waves during urodynamics (UD). After IRB approval, fresh strips of human urinary bladder were obtained from patients. LARC was recorded with tissue strips at low tension (rhythmic frequency similar to the in vitro LARC frequency quantified in human urinary bladder tissue strips. Further refinements of this technique may help identify subsets of individuals with LARC-mediated storage disorders.

  17. Analysis of rhythmic variance - ANORVA. A new simple method for detecting rhythms in biological time series

    Directory of Open Access Journals (Sweden)

    Peter Celec

    2004-01-01

    Full Text Available Cyclic variations of variables are ubiquitous in biomedical science. A number of methods for detecting rhythms have been developed, but they are often difficult to interpret. A simple procedure for detecting cyclic variations in biological time series and quantification of their probability is presented here. Analysis of rhythmic variance (ANORVA is based on the premise that the variance in groups of data from rhythmic variables is low when a time distance of one period exists between the data entries. A detailed stepwise calculation is presented including data entry and preparation, variance calculating, and difference testing. An example for the application of the procedure is provided, and a real dataset of the number of papers published per day in January 2003 using selected keywords is compared to randomized datasets. Randomized datasets show no cyclic variations. The number of papers published daily, however, shows a clear and significant (p<0.03 circaseptan (period of 7 days rhythm, probably of social origin

  18. Rhythmic synchronization tapping to an audio–visual metronome in budgerigars

    Science.gov (United States)

    Hasegawa, Ai; Okanoya, Kazuo; Hasegawa, Toshikazu; Seki, Yoshimasa

    2011-01-01

    In all ages and countries, music and dance have constituted a central part in human culture and communication. Recently, vocal-learning animals such as parrots and elephants have been found to share rhythmic ability with humans. Thus, we investigated the rhythmic synchronization of budgerigars, a vocal-mimicking parrot species, under controlled conditions and a systematically designed experimental paradigm as a first step in understanding the evolution of musical entrainment. We trained eight budgerigars to perform isochronous tapping tasks in which they pecked a key to the rhythm of audio–visual metronome-like stimuli. The budgerigars showed evidence of entrainment to external stimuli over a wide range of tempos. They seemed to be inherently inclined to tap at fast tempos, which have a similar time scale to the rhythm of budgerigars' natural vocalizations. We suggest that vocal learning might have contributed to their performance, which resembled that of humans. PMID:22355637

  19. Rhythmic synchronization tapping to an audio-visual metronome in budgerigars.

    Science.gov (United States)

    Hasegawa, Ai; Okanoya, Kazuo; Hasegawa, Toshikazu; Seki, Yoshimasa

    2011-01-01

    In all ages and countries, music and dance have constituted a central part in human culture and communication. Recently, vocal-learning animals such as parrots and elephants have been found to share rhythmic ability with humans. Thus, we investigated the rhythmic synchronization of budgerigars, a vocal-mimicking parrot species, under controlled conditions and a systematically designed experimental paradigm as a first step in understanding the evolution of musical entrainment. We trained eight budgerigars to perform isochronous tapping tasks in which they pecked a key to the rhythm of audio-visual metronome-like stimuli. The budgerigars showed evidence of entrainment to external stimuli over a wide range of tempos. They seemed to be inherently inclined to tap at fast tempos, which have a similar time scale to the rhythm of budgerigars' natural vocalizations. We suggest that vocal learning might have contributed to their performance, which resembled that of humans.

  20. Internal ribosomal entry site-mediated translation is important for rhythmic PERIOD1 expression.

    Directory of Open Access Journals (Sweden)

    Kyung-Ha Lee

    Full Text Available The mouse PERIOD1 (mPER1 plays an important role in the maintenance of circadian rhythm. Translation of mPer1 is directed by both a cap-dependent process and cap-independent translation mediated by an internal ribosomal entry site (IRES in the 5' untranslated region (UTR. Here, we compared mPer1 IRES activity with other cellular IRESs. We also found critical region in mPer1 5'UTR for heterogeneous nuclear ribonucleoprotein Q (HNRNPQ binding. Deletion of HNRNPQ binding region markedly decreased IRES activity and disrupted rhythmicity. A mathematical model also suggests that rhythmic IRES-dependent translation is a key process in mPER1 oscillation. The IRES-mediated translation of mPer1 will help define the post-transcriptional regulation of the core clock genes.

  1. Tempo discrimination of musical patterns: effects due to pitch and rhythmic structure.

    Science.gov (United States)

    Boltz, M G

    1998-11-01

    The purpose of this research was to investigate a set of factors that may influence the perceived rate of an auditory event. In a paired-comparison task, subjects were presented with a set of music-like patterns that differed in their relative number of contour changes and in the magnitude of pitch skips (Experiment 1) as well as in the compatibility of rhythmic accent structure with the arrangement of pitch relations (Experiment 2) Results indicated that, relative to their standard referents, comparison melodies were judged to unfold more slowly when they displayed more changes in pitch direction, greater pitch distances, and an incompatible rhythmic accent structure. These findings are suggested to stem from an imputed velocity hypothesis, in which people overgeneralize certain invariant relations that typically occur between melodic and temporal accent structure within Western music.

  2. Rhythmicity and plasticity of digestive physiology in a euryhaline teleost fish, permit (Trachinotus falcatus)

    DEFF Research Database (Denmark)

    Lazado, Carlo Cabacang; Pedersen, Per Bovbjerg; Nguyen, Huy Quang

    2017-01-01

    Digestive physiology is considered to be under circadian control, but there is little evidence in teleost fish. The present study explored the rhythmicity and plasticity to feeding schedules of enzymatic digestion in a candidate aquaculture fish, the permit (Trachinotus falcatus). The first...... experiment identified the rhythms of digestive factors throughout the light-dark (LD) cycle. Gastric luminal pH and pepsin activity showed significant daily variation albeit not rhythmic. These dynamic changes were likewise observed in several digestive enzymes, in which the activities of intestinal protease......, chymotrypsin and lipase exhibited significant daily rhythms. In the second experiment, the existence of feed anticipatory activity in the digestive factors was investigated by subjecting the fish to either periodic or random feeding. Anticipatory gastric acidification prior to feeding was identified...

  3. Relations between female students' personality traits and reported handicaps to rhythmic gymnastics performance.

    Science.gov (United States)

    Ferrand, Claude; Champely, Stephane; Brunel, Philippe C

    2005-04-01

    The present study evaluated the relative contributions of Self-esteem, Trait anxiety, and Public Self-consciousness to self-handicapping on a sex-typed task, within a specific academic sport context. Prior to the competitive examination used to recruit French Physical Education Teachers, female sport students (N = 74) were asked to list and rate on a 7-point scale handicaps which could be disruptive to their Rhythmic Gymnastics performance. Self-esteem did not account for significant variance in any category of handicaps. Trait Anxiety was negatively related to handicaps related to Rhythmic Gymnastics and to Social and Work Commitments. Public Self-consciousness was significantly related to endorsement of Friends and Family Commitments handicaps. These results were discussed in relation to the literature.

  4. Facial Muscle Coordination in Monkeys During Rhythmic Facial Expressions and Ingestive Movements

    Science.gov (United States)

    Shepherd, Stephen V.; Lanzilotto, Marco; Ghazanfar, Asif A.

    2012-01-01

    Evolutionary hypotheses regarding the origins of communication signals generally, and primate orofacial communication signals in particular, suggest that these signals derive by ritualization of noncommunicative behaviors, notably including ingestive behaviors such as chewing and nursing. These theories are appealing in part because of the prominent periodicities in both types of behavior. Despite their intuitive appeal, however, there are little or no data with which to evaluate these theories because the coordination of muscles innervated by the facial nucleus has not been carefully compared between communicative and ingestive movements. Such data are especially crucial for reconciling neurophysiological assumptions regarding facial motor control in communication and ingestion. We here address this gap by contrasting the coordination of facial muscles during different types of rhythmic orofacial behavior in macaque monkeys, finding that the perioral muscles innervated by the facial nucleus are rhythmically coordinated during lipsmacks and that this coordination appears distinct from that observed during ingestion. PMID:22553017

  5. A Bootstrap Based Measure Robust to the Choice of Normalization Methods for Detecting Rhythmic Features in High Dimensional Data.

    Science.gov (United States)

    Larriba, Yolanda; Rueda, Cristina; Fernández, Miguel A; Peddada, Shyamal D

    2018-01-01

    Motivation: Gene-expression data obtained from high throughput technologies are subject to various sources of noise and accordingly the raw data are pre-processed before formally analyzed. Normalization of the data is a key pre-processing step, since it removes systematic variations across arrays. There are numerous normalization methods available in the literature. Based on our experience, in the context of oscillatory systems, such as cell-cycle, circadian clock, etc., the choice of the normalization method may substantially impact the determination of a gene to be rhythmic. Thus rhythmicity of a gene can purely be an artifact of how the data were normalized. Since the determination of rhythmic genes is an important component of modern toxicological and pharmacological studies, it is important to determine truly rhythmic genes that are robust to the choice of a normalization method. Results: In this paper we introduce a rhythmicity measure and a bootstrap methodology to detect rhythmic genes in an oscillatory system. Although the proposed methodology can be used for any high-throughput gene expression data, in this paper we illustrate the proposed methodology using several publicly available circadian clock microarray gene-expression datasets. We demonstrate that the choice of normalization method has very little effect on the proposed methodology. Specifically, for any pair of normalization methods considered in this paper, the resulting values of the rhythmicity measure are highly correlated. Thus it suggests that the proposed measure is robust to the choice of a normalization method. Consequently, the rhythmicity of a gene is potentially not a mere artifact of the normalization method used. Lastly, as demonstrated in the paper, the proposed bootstrap methodology can also be used for simulating data for genes participating in an oscillatory system using a reference dataset. Availability: A user friendly code implemented in R language can be downloaded from http://www.eio.uva.es/~miguel/robustdetectionprocedure.html.

  6. Classification of rhythmic locomotor patterns in electromyographic signals using fuzzy sets

    Directory of Open Access Journals (Sweden)

    Thrasher Timothy A

    2011-12-01

    Full Text Available Abstract Background Locomotor control is accomplished by a complex integration of neural mechanisms including a central pattern generator, spinal reflexes and supraspinal control centres. Patterns of muscle activation during walking exhibit an underlying structure in which groups of muscles seem to activate in united bursts. Presented here is a statistical approach for analyzing Surface Electromyography (SEMG data with the goal of classifying rhythmic "burst" patterns that are consistent with a central pattern generator model of locomotor control. Methods A fuzzy model of rhythmic locomotor patterns was optimized and evaluated using SEMG data from a convenience sample of four able-bodied individuals. As well, two subjects with pathological gait participated: one with Parkinson's Disease, and one with incomplete spinal cord injury. Subjects walked overground and on a treadmill while SEMG was recorded from major muscles of the lower extremities. The model was fit to half of the recorded data using non-linear optimization and validated against the other half of the data. The coefficient of determination, R2, was used to interpret the model's goodness of fit. Results Using four fuzzy burst patterns, the model was able to explain approximately 70-83% of the variance in muscle activation during treadmill gait and 74% during overground gait. When five burst functions were used, one function was found to be redundant. The model explained 81-83% of the variance in the Parkinsonian gait, and only 46-59% of the variance in spinal cord injured gait. Conclusions The analytical approach proposed in this article is a novel way to interpret multichannel SEMG signals by reducing the data into basic rhythmic patterns. This can help us better understand the role of rhythmic patterns in locomotor control.

  7. PKA controls calcium influx into motor neurons during a rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    Han Wang

    Full Text Available Cyclic adenosine monophosphate (cAMP has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels.

  8. The properties and interrelationships of various force-time parameters during maximal repeated rhythmic grip.

    Science.gov (United States)

    Nakada, Masakatsu; Demura, Shinichi; Yamaji, Shunsuke

    2007-01-01

    The purpose of this study was to examine the properties and interrelationships of various force-time parameters including the inflection point for the rate of decline in force during a maximal repeated rhythmic grip. Fifteen healthy males (age M=21.5, SD=2.1 yr, height M=172.4, SD=5.7 cm, body mass M=68.2, SD=9.2 kg) participated in this study. Subjects performed a maximal repeated rhythmic grip with maximal effort with a target frequency of 30 grip.min(-1) for 6 min. The force value decreased linearly and markedly until about 70% of maximal strength for about 55 s after the onset of a maximal repeated rhythmic grip, and then decreased moderately. Because all parameters showed fair or good correlations between 3 min and 6 min, they are considered to be able to sufficiently evaluate muscle endurance for 3 min instead of 6 min. However, there were significant differences between 3 min and 6 min in the integrated area, the final force, the rate of the decrement constant (k) fitting the force decreasing data to y=ae(-kx)+b and the force of maximal difference between the force and a straight line from peak force to the final force. Their parameters may vary generally by the length of a steady state, namely, a measurement time. The final force value before finishing and the rate of the decrement constant (k) reflect the latter phase during a maximal repeated rhythmic grip. Although many parameters show relatively high mutual relationships, the rate constant (k) shows relatively low correlations with other parameters. We inferred that decreasing the time until 80% of maximal strength and the amount of the decrement force for the first 1 min reflect a linear decrease in the initial phase.

  9. PKA Controls Calcium Influx into Motor Neurons during a Rhythmic Behavior

    Science.gov (United States)

    Wang, Han; Sieburth, Derek

    2013-01-01

    Cyclic adenosine monophosphate (cAMP) has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine) rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR) signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels. PMID:24086161

  10. The impact of the perception of rhythmic music on self-paced oscillatory movements.

    Science.gov (United States)

    Peckel, Mathieu; Pozzo, Thierry; Bigand, Emmanuel

    2014-01-01

    Inspired by theories of perception-action coupling and embodied music cognition, we investigated how rhythmic music perception impacts self-paced oscillatory movements. In a pilot study, we examined the kinematic parameters of self-paced oscillatory movements, walking and finger tapping using optical motion capture. In accordance with biomechanical constraints accounts of motion, we found that movements followed a hierarchical organization depending on the proximal/distal characteristic of the limb used. Based on these findings, we were interested in knowing how and when the perception of rhythmic music could resonate with the motor system in the context of these constrained oscillatory movements. In order to test this, we conducted an experiment where participants performed four different effector-specific movements (lower leg, whole arm and forearm oscillation and finger tapping) while rhythmic music was playing in the background. Musical stimuli consisted of computer-generated MIDI musical pieces with a 4/4 metrical structure. The musical tempo of each song increased from 60 BPM to 120 BPM by 6 BPM increments. A specific tempo was maintained for 20 s before a 2 s transition to the higher tempo. The task of the participant was to maintain a comfortable pace for the four movements (self-paced) while not paying attention to the music. No instruction on whether to synchronize with the music was given. Results showed that participants were distinctively influenced by the background music depending on the movement used with the tapping task being consistently the most influenced. Furthermore, eight strategies put in place by participants to cope with the task were unveiled. Despite not instructed to do so, participants also occasionally synchronized with music. Results are discussed in terms of the link between perception and action (i.e., motor/perceptual resonance). In general, our results give support to the notion that rhythmic music is processed in a motoric

  11. Interactions of Circadian Rhythmicity, Stress and Orexigenic Neuropeptide Systems: Implications for Food Intake Control

    OpenAIRE

    Blasiak, Anna; Gundlach, Andrew L.; Hess, Grzegorz; Lewandowski, Marian H.

    2017-01-01

    Many physiological processes fluctuate throughout the day/night and daily fluctuations are observed in brain and peripheral levels of several hormones, neuropeptides and transmitters. In turn, mediators under the “control” of the “master biological clock” reciprocally influence its function. Dysregulation in the rhythmicity of hormone release as well as hormone receptor sensitivity and availability in different tissues, is a common risk-factor for multiple clinical conditions, including psych...

  12. The impact of the perception of rhythmic music on oscillatory self-paced movements

    Directory of Open Access Journals (Sweden)

    Mathieu ePeckel

    2014-09-01

    Full Text Available Inspired by theories of perception-action coupling and embodied music cognition, we investigated how rhythmic music perception impacts self-paced oscillatory movements. In a pilot study, we examined the kinematic parameters of self-paced oscillatory movements, walking and finger tapping using optical motion capture. In accordance with biomechanical constraints accounts of motion, we found that movements followed a hierarchical organization depending on the proximal/distal characteristic of the limb used. Based on these findings, we were interested in knowing how and when the perception of rhythmic music could resonate with the motor system in the context of these constrained oscillatory movements. In order to test this, we conducted an experiment where participants performed four different effector-specific movements (lower leg, whole arm and forearm oscillation and finger tapping while rhythmic music was playing in the background. Musical stimuli consisted of computer-generated MIDI musical pieces with a 4/4 metrical structure. The musical tempo of each song increased from 60 BPM to 120 BPM by 6 BPM increments. A specific tempo was maintained for 20s before a 2s transition to the higher tempo. The task of the participant was to maintain a comfortable pace for the four movements (self-paced while not paying attention to the music. No instruction on whether to synchronize with the music was given. Results showed that participants were distinctively influenced by the background music depending on the movement used with the tapping task being consistently the most influenced. Furthermore, eight strategies put in place by participants to cope with task were unveiled. Despite not instructed to do so, participants also occasionally synchronized with music. Results are discussed in terms of the link between perception and action (i.e. motor/perceptual resonance. In general, our results give support to the notion that rhythmic music is processed in a

  13. Rhythmic complexity and predictive coding: a novel approach to modeling rhythm and meter perception in music

    Science.gov (United States)

    Vuust, Peter; Witek, Maria A. G.

    2014-01-01

    Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has a remarkable capacity to move our minds and bodies. How does the cognitive system enable our experiences of rhythmically complex music? In this paper, we describe some common forms of rhythmic complexity in music and propose the theory of predictive coding (PC) as a framework for understanding how rhythm and rhythmic complexity are processed in the brain. We also consider why we feel so compelled by rhythmic tension in music. First, we consider theories of rhythm and meter perception, which provide hierarchical and computational approaches to modeling. Second, we present the theory of PC, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain’s Bayesian minimization of the error between the input to the brain and the brain’s prior expectations. Third, we develop a PC model of musical rhythm, in which rhythm perception is conceptualized as an interaction between what is heard (“rhythm”) and the brain’s anticipatory structuring of music (“meter”). Finally, we review empirical studies of the neural and behavioral effects of syncopation, polyrhythm and groove, and propose how these studies can be seen as special cases of the PC theory. We argue that musical rhythm exploits the brain’s general principles of prediction and propose that pleasure and desire for sensorimotor synchronization from musical rhythm may be a result of such mechanisms. PMID:25324813

  14. Rhythmic complexity and predictive coding: A novel approach to modeling rhythm and meter perception in music

    Directory of Open Access Journals (Sweden)

    Peter eVuust

    2014-10-01

    Full Text Available Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has a remarkable capacity to move our minds and bodies. How does the cognitive system enable our experiences of rhythmically complex music? In this paper, we describe some common forms of rhythmic complexity in music and propose the theory of predictive coding as a framework for understanding how rhythm and rhythmic complexity are processed in the brain. We also consider why we feel so compelled by rhythmic tension in music. First, we consider theories of rhythm and meter perception, which provide hierarchical and computational approaches to modeling. Second, we present the theory of predictive coding, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain’s Bayesian minimization of the error between the input to the brain and the brain’s prior expectations. Third, we develop a predictive coding model of musical rhythm, in which rhythm perception is conceptualized as an interaction between what is heard (‘rhythm’ and the brain’s anticipatory structuring of music (‘meter’. Finally, we review empirical studies of the neural and behavioral effects of syncopation, polyrhythm and groove, and propose how these studies can be seen as special cases of the predictive coding theory. We argue that musical rhythm exploits the brain’s general principles of prediction and propose that pleasure and desire for sensorimotor synchronization from musical rhythm may be a result of such mechanisms.

  15. MEG time-frequency analyses for pre- and post-surgical evaluation of patients with epileptic rhythmic fast activity.

    Science.gov (United States)

    Sueda, Keitaro; Takeuchi, Fumiya; Shiraishi, Hideaki; Nakane, Shingo; Asahina, Naoko; Kohsaka, Shinobu; Nakama, Hideyuki; Otsuki, Taisuke; Sawamura, Yutaka; Saitoh, Shinji

    2010-02-01

    To evaluate the effectiveness of surgery for epilepsy, we analyzed rhythmic fast activity by magnetoencephalography (MEG) before and after surgery using time-frequency analysis. To assess reliability, the results obtained by pre-surgical MEG and intraoperative electrocorticography were compared. Four children with symptomatic localization-related epilepsy caused by circumscribed cortical lesion were examined in the present study using 204-channel helmet-shaped MEG with a sampling rate of 600Hz. One patient had dysembryoplastic neuroepithelial tumor (DNT) and three patients had focal cortical dysplasia (FCD). Aberrant areas were superimposed, to reconstruct 3D MRI images, and illustrated as moving images. In three patients, short-time Fourier transform (STFT) analyses of MEG showed rhythmic activities just above the lesion with FCD and in the vicinity of DNT. In one patient with FCD in the medial temporal lobe, rhythmic activity appeared in the ipsilateral frontal lobe and temporal lateral aspect. These findings correlate well with the results obtained by intraoperative electrocorticography. After the surgery, three patients were relieved of their seizures, and the area of rhythmic MEG activity disappeared or become smaller. One patient had residual rhythmic MEG activity, and she suffered from seizure relapse. Time-frequency analyses using STFT successfully depicted MEG rhythmic fast activity, and would provide valuable information for pre- and post-surgical evaluations to define surgical strategies for patients with epilepsy.

  16. Intensive gait training with rhythmic auditory stimulation in individuals with chronic hemiparetic stroke: a pilot randomized controlled study.

    Science.gov (United States)

    Cha, Yuri; Kim, Young; Hwang, Sujin; Chung, Yijung

    2014-01-01

    Motor relearning protocols should involve task-oriented movement, focused attention, and repetition of desired movements. To investigate the effect of intensive gait training with rhythmic auditory stimulation on postural control and gait performance in individuals with chronic hemiparetic stroke. Twenty patients with chronic hemiparetic stroke participated in this study. Subjects in the Rhythmic auditory stimulation training group (10 subjects) underwent intensive gait training with rhythmic auditory stimulation for a period of 6 weeks (30 min/day, five days/week), while those in the control group (10 subjects) underwent intensive gait training for the same duration. Two clinical measures, Berg balance scale and stroke specific quality of life scale, and a 2-demensional gait analysis system, were used as outcome measure. To provide rhythmic auditory stimulation during gait training, the MIDI Cuebase musical instrument digital interface program and a KM Player version 3.3 was utilized for this study. Intensive gait training with rhythmic auditory stimulation resulted in significant improvement in scores on the Berg balance scale, gait velocity, cadence, stride length and double support period in affected side, and stroke specific quality of life scale compared with the control group after training. Findings of this study suggest that intensive gait training with rhythmic auditory stimulation improves balance and gait performance as well as quality of life, in individuals with chronic hemiparetic stroke.

  17. Comparison of rhythmic masticatory muscle activity during non-rapid eye movement sleep in guinea pigs and humans.

    Science.gov (United States)

    Kato, Takafumi; Toyota, Risa; Haraki, Shingo; Yano, Hiroyuki; Higashiyama, Makoto; Ueno, Yoshio; Yano, Hiroshi; Sato, Fumihiko; Yatani, Hirofumi; Yoshida, Atsushi

    2017-09-27

    Rhythmic masticatory muscle activity can be a normal variant of oromotor activity, which can be exaggerated in patients with sleep bruxism. However, few studies have tested the possibility in naturally sleeping animals to study the neurophysiological mechanisms of rhythmic masticatory muscle activity. This study aimed to investigate the similarity of cortical, cardiac and electromyographic manifestations of rhythmic masticatory muscle activity occurring during non-rapid eye movement sleep between guinea pigs and human subjects. Polysomnographic recordings were made in 30 freely moving guinea pigs and in eight healthy human subjects. Burst cycle length, duration and activity of rhythmic masticatory muscle activity were compared with those for chewing. The time between R-waves in the electrocardiogram (RR interval) and electroencephalogram power spectrum were calculated to assess time-course changes in cardiac and cortical activities in relation to rhythmic masticatory muscle activity. In animals, in comparison with chewing, rhythmic masticatory muscle activity had a lower burst activity, longer burst duration and longer cycle length (P motor activation in comparison to human subjects. © 2017 European Sleep Research Society.

  18. Sequentially allocated clinical trial of rhythmic stabilization exercises and TENS in women with chronic low back pain.

    Science.gov (United States)

    Kofotolis, Nikolaos D; Vlachopoulos, Symeon P; Kellis, Eleftherios

    2008-02-01

    To examine the effectiveness of rhythmic stabilization exercises and transcutaneous electrical nerve stimulation (TENS) and their combination in treating women with chronic low back pain. Sequentially allocated, single-blinded and controlled study, with a two-month follow-up. The data were collected in a patient rehabilitation setting. A total of 92 women (34-46 years old) with chronic low back pain were studied. Sequential allocation was undertaken into four groups: ;rhythmic stabilization' (n=23), ;rhythmic stabilization - TENS' (n=23), TENS (n=23), and a placebo group (n = 23). Each programme lasted for four weeks. All outcome measures were assessed prior to, immediately after, four weeks and eight weeks post intervention. Data were obtained on functional disability, pain intensity, trunk extension range of motion, dynamic endurance of trunk flexion and static endurance of trunk extension. A total of 88 patients provided two-month follow-up data. The ;rhythmic stabilization' and the ;rhythmic stabilization - TENS' groups displayed statistically significant (Ppain intensity (ranging from 21.2 to 42.8%), trunk extension range of motion (ranging from 6.5 to 25.5%), dynamic endurance of trunk flexion and static endurance of trunk extension (ranging from 13.5 to 74.3%) compared with the remaining groups. The rhythmic stabilization programmes resulted in more gains in women with chronic low back pain regarding the present outcome variables compared with the other groups; therefore, its application in female chronic low back pain patients aged 34-46 years is recommended.

  19. Effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis.

    Science.gov (United States)

    Shahraki, M; Sohrabi, M; Taheri Torbati, H R; Nikkhah, K; NaeimiKia, M

    2017-01-01

    Purpose: This study aimed to examine the effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis. Subjects and Methods: In this study, 18 subjects, comprising 4 males and 14 females with Multiple Sclerosis with expanded disability status scale of 3 to 6 were chosen. Subjects were selected by available and targeted sampling and were randomly divided into two experimental (n = 9) and control (n = 9) groups. Exercises were gait with rhythmic auditory stimulation by a metronome device, in addition to gait without stimulation for the experimental and control groups, respectively. Training was carried out for 3 weeks, with 30 min duration for each session 3 times a week. Stride length, stride time, double support time, cadence and gait speed were measured by motion analysis device. Results: There was a significant difference between stride length, stride time, double support time, cadence and gait speed in the experimental group, before and after the training. Furthermore, there was a significant difference between the experimental and control groups in the enhancement of stride length, stride time, cadence and gait speed in favor of the experimental group. While this difference was not significant for double support time. Conclusion: The results of this study showed that rhythmic auditory stimulation is an effective rehabilitation method to improve gait kinematic parameters in patients with multiple sclerosis.

  20. Analysis of amplitude-phase disturbances of Wolf's numbers rhythmic structure

    International Nuclear Information System (INIS)

    Vojchishin, K.S.

    1978-01-01

    Statistical analysis of Wolf's number rhythmic structure has been carried out. Wolf's number time series is considered as a stochastic signal with irregular disturbances of rhythmic structure appearing because of random variability of single cycle parameters. A method and an algorythm for transforming the signal, to reduce all quasi-eleven-year cycles of mean-monthly Wolf's numbers to a signal mean duration, to find out and to eliminate rhythmic phase disturbances, are proposed. An estimate of the accuracy of the procedure is given. The results of calculations (on the mean duration range of cycles) of estimates of their mathematical expectation, dispersion and correlation function depending on time and its shift are given. The conclusion that Wolf's number time series may be treated as a sequence of stochastic cycles with randomly varying amplitude, duration and phase is grounded. A possibility for reducing the forecast of smoothed mean-monthly Wolf's numbers for one or more cycles ahead to the forecast of only three abovementioned parameters is pointed out

  1. A method for discrimination of noise and EMG signal regions recorded during rhythmic behaviors.

    Science.gov (United States)

    Ying, Rex; Wall, Christine E

    2016-12-08

    Analyses of muscular activity during rhythmic behaviors provide critical data for biomechanical studies. Electrical potentials measured from muscles using electromyography (EMG) require discrimination of noise regions as the first step in analysis. An experienced analyst can accurately identify the onset and offset of EMG but this process takes hours to analyze a short (10-15s) record of rhythmic EMG bursts. Existing computational techniques reduce this time but have limitations. These include a universal threshold for delimiting noise regions (i.e., a single signal value for identifying the EMG signal onset and offset), pre-processing using wide time intervals that dampen sensitivity for EMG signal characteristics, poor performance when a low frequency component (e.g., DC offset) is present, and high computational complexity leading to lack of time efficiency. We present a new statistical method and MATLAB script (EMG-Extractor) that includes an adaptive algorithm to discriminate noise regions from EMG that avoids these limitations and allows for multi-channel datasets to be processed. We evaluate the EMG-Extractor with EMG data on mammalian jaw-adductor muscles during mastication, a rhythmic behavior typified by low amplitude onsets/offsets and complex signal pattern. The EMG-Extractor consistently and accurately distinguishes noise from EMG in a manner similar to that of an experienced analyst. It outputs the raw EMG signal region in a form ready for further analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effect of rhythmic auditory stimulation on gait in Parkinsonian patients with and without freezing of gait.

    Directory of Open Access Journals (Sweden)

    Pablo Arias

    Full Text Available Freezing of gait (FOG in Parkinson's disease (PD rises in prevalence when the effect of medications decays. It is known that auditory rhythmic stimulation improves gait in patients without FOG (PD-FOG, but its putative effect on patients with FOG (PD+FOG at the end of dose has not been evaluated yet. This work evaluates the effect of auditory rhythmic stimulation on PD+FOG at the end of dose. 10 PD+FOG and 9 PD-FOG patients both at the end of dose periods, and 10 healthy controls were asked to perform several walking tasks. Tasks were performed in the presence and absence of auditory sensory stimulation. All PD+FOG suffered FOG during the task. The presence of auditory rhythmic stimulation (10% above preferred walking cadence led PD+FOG to significantly reduce FOG. Velocity and cadence were increased, and turn time reduced in all groups. We conclude that auditory stimulation at the frequency proposed may be useful to avoid freezing episodes in PD+FOG.

  3. Rhythm, movement, and autism: Using rhythmic rehabilitation research as a model for autism

    Directory of Open Access Journals (Sweden)

    A. Blythe eLaGasse

    2013-03-01

    Full Text Available Recently, there has been increased focus on movement and sensory abnormalities in autism spectrum disorders (ASD. This has come from research demonstrating cortical and cerebellar difference in autism, with suggestion of early cerebellar dysfunction. As evidence for an extended profile of ASD grows, there are vast implications for treatment and therapy for individuals with autism. Persons with autism are often provided behavioral or cognitive strategies for navigating their environment; however, these strategies do not consider differences in motor functioning. One accommodation that has not yet been explored in the literature is the use of auditory rhythmic cueing to improve motor functioning in ASD. The purpose of this paper is to illustrate the potential impact of auditory rhythmic cueing for motor functioning in persons with ASD. To this effect, we review research on rhythm in motor rehabilitation, draw parallels to motor dysfunction in ASD, and propose a rationale for how rhythmic input can improve sensorimotor functioning, thereby allowing individuals with autism to demonstrate their full cognitive, behavioral, social, and communicative potential.

  4. A tapping device for recording and quantitative characterization of rhythmic/auditory sequences.

    Science.gov (United States)

    Piazza, Caterina; Cesareo, Ambra; Caccia, Martina; Reni, Gianluigi; Lorusso, Maria L

    2017-07-01

    The processing of auditory stimuli is essential for the correct perception of language and deficits in this ability are often related to the presence or development of language disorders. The motor imitation (e.g. tapping or beating) of rhythmic sequences can be a very sensitive correlate of deficits in auditory processing. Thus, the study of the tapping performance, with the investigation of both temporal and intensity information, might be very useful. The present work is aimed at the development and preliminary testing of a tapping device to be used for the imitation and/or the production of rhythmic sequences, allowing the recording of both tapping duration and intensity. The device is essentially made up of a Force Sensing Resistor and an Arduino UNO board. It was validated using different sampling frequencies (f s ) in a group of 10 young healthy adults investigating its efficacy in terms of touch and intensity detection by means of two testing procedures. Results demonstrated a good performance of the device when programmed with fs equal to 50 and 100Hz. Moreover, both temporal and intensity parameters were extracted, thus supporting the potential use of the device for the analysis of the imitation or production of rhythmic sequences. This work represents a first step for the development of a useful, low cost tool to support the diagnosis, training and rehabilitation of language disorders.

  5. Synthesis of asymmetric movement trajectories in timed rhythmic behaviour by means of frequency modulation.

    Science.gov (United States)

    Waadeland, Carl Haakon

    2017-01-01

    Results from different empirical investigations on gestural aspects of timed rhythmic movements indicate that the production of asymmetric movement trajectories is a feature that seems to be a common characteristic of various performances of repetitive rhythmic patterns. The behavioural or neural origin of these asymmetrical trajectories is, however, not identified. In the present study we outline a theoretical model that is capable of producing syntheses of asymmetric movement trajectories documented in empirical investigations by Balasubramaniam et al. (2004). Characteristic qualities of the extension/flexion profiles in the observed asymmetric trajectories are reproduced, and we conduct an experiment similar to Balasubramaniam et al. (2004) to show that the empirically documented movement trajectories and our modelled approximations share the same spectral components. The model is based on an application of frequency modulated movements, and a theoretical interpretation offered by the model is to view paced rhythmic movements as a result of an unpaced movement being "stretched" and "compressed", caused by the presence of a metronome. We discuss our model construction within the framework of event-based and emergent timing, and argue that a change between these timing modes might be reflected by the strength of the modulation in our model. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Model of rhythmic ball bouncing using a visually controlled neural oscillator.

    Science.gov (United States)

    Avrin, Guillaume; Siegler, Isabelle A; Makarov, Maria; Rodriguez-Ayerbe, Pedro

    2017-10-01

    The present paper investigates the sensory-driven modulations of central pattern generator dynamics that can be expected to reproduce human behavior during rhythmic hybrid tasks. We propose a theoretical model of human sensorimotor behavior able to account for the observed data from the ball-bouncing task. The novel control architecture is composed of a Matsuoka neural oscillator coupled with the environment through visual sensory feedback. The architecture's ability to reproduce human-like performance during the ball-bouncing task in the presence of perturbations is quantified by comparison of simulated and recorded trials. The results suggest that human visual control of the task is achieved online. The adaptive behavior is made possible by a parametric and state control of the limit cycle emerging from the interaction of the rhythmic pattern generator, the musculoskeletal system, and the environment. NEW & NOTEWORTHY The study demonstrates that a behavioral model based on a neural oscillator controlled by visual information is able to accurately reproduce human modulations in a motor action with respect to sensory information during the rhythmic ball-bouncing task. The model attractor dynamics emerging from the interaction between the neuromusculoskeletal system and the environment met task requirements, environmental constraints, and human behavioral choices without relying on movement planning and explicit internal models of the environment. Copyright © 2017 the American Physiological Society.

  7. Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus.

    Science.gov (United States)

    Besing, Rachel C; Paul, Jodi R; Hablitz, Lauren M; Rogers, Courtney O; Johnson, Russell L; Young, Martin E; Gamble, Karen L

    2015-04-01

    The suprachiasmatic nucleus (SCN) drives and synchronizes daily rhythms at the cellular level via transcriptional-translational feedback loops comprising clock genes such as Bmal1 and Period (Per). Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, phosphorylates at least 5 core clock proteins and shows diurnal variation in phosphorylation state (inactivation) of the GSK3β isoform. Whether phosphorylation of the other primary isoform (GSK3α) varies across the subjective day-night cycle is unknown. The purpose of this study was to determine if the endogenous rhythm of GSK3 (α and β) phosphorylation is critical for rhythmic BMAL1 expression and normal amplitude and periodicity of the molecular clock in the SCN. Significant circadian rhythmicity of phosphorylated GSK3 (α and β) was observed in the SCN from wild-type mice housed in constant darkness for 2 weeks. Importantly, chronic activation of both GSK3 isoforms impaired rhythmicity of the GSK3 target BMAL1. Furthermore, chronic pharmacological inhibition of GSK3 with 20 µM CHIR-99021 enhanced the amplitude and shortened the period of PER2::luciferase rhythms in organotypic SCN slice cultures. These results support the model that GSK3 activity status is regulated by the circadian clock and that GSK3 feeds back to regulate the molecular clock amplitude in the SCN. © 2015 The Author(s).

  8. Joint Rhythmic Movement Increases 4-Year-Old Children's Prosocial Sharing and Fairness Toward Peers.

    Science.gov (United States)

    Rabinowitch, Tal-Chen; Meltzoff, Andrew N

    2017-01-01

    The allocation of resources to a peer partner is a prosocial act that is of fundamental importance. Joint rhythmic movement, such as occurs during musical interaction, can induce positive social experiences, which may play a role in developing and enhancing young children's prosocial skills. Here, we investigated whether joint rhythmic movement, free of musical context, increases 4-year-olds' sharing and sense of fairness in a resource allocation task involving peers. We developed a precise procedure for administering joint synchronous experience, joint asynchronous experience, and a baseline control involving no treatment. Then we tested how participants allocated resources between self and peer. We found an increase in the generous allocation of resources to peers following both synchronous and asynchronous movement compared to no treatment. At a more theoretical level, this result is considered in relation to previous work testing other aspects of child prosociality, for example, peer cooperation, which can be distinguished from judgments of fairness in resource allocation tasks. We draw a conceptual distinction between two types of prosocial behavior: resource allocation (an other-directed individual behavior) and cooperation (a goal-directed collaborative endeavor). Our results highlight how rhythmic interactions, which are prominent in joint musical engagements and synchronized activity, influence prosocial behavior between preschool peers.

  9. Shared rhythmic subcortical GABAergic input to the entorhinal cortex and presubiculum.

    Science.gov (United States)

    Viney, Tim James; Salib, Minas; Joshi, Abhilasha; Unal, Gunes; Berry, Naomi; Somogyi, Peter

    2018-04-05

    Rhythmic theta frequency (~5-12 Hz) oscillations coordinate neuronal synchrony and higher frequency oscillations across the cortex. Spatial navigation and context-dependent episodic memories are represented in several interconnected regions including the hippocampal and entorhinal cortices, but the cellular mechanisms for their dynamic coupling remain to be defined. Using monosynaptically-restricted retrograde viral tracing in mice, we identified a subcortical GABAergic input from the medial septum that terminated in the entorhinal cortex, with collaterals innervating the dorsal presubiculum. Extracellularly recording and labeling GABAergic entorhinal-projecting neurons in awake behaving mice show that these subcortical neurons, named orchid cells, fire in long rhythmic bursts during immobility and locomotion. Orchid cells discharge near the peak of hippocampal and entorhinal theta oscillations, couple to entorhinal gamma oscillations, and target subpopulations of extra-hippocampal GABAergic interneurons. Thus, orchid cells are a specialized source of rhythmic subcortical GABAergic modulation of 'upstream' and 'downstream' cortico-cortical circuits involved in mnemonic functions. © 2018, Viney et al.

  10. Differential effects of rhythmic auditory stimulation and neurodevelopmental treatment/Bobath on gait patterns in adults with cerebral palsy: a randomized controlled trial.

    Science.gov (United States)

    Kim, Soo Ji; Kwak, Eunmi E; Park, Eun Sook; Cho, Sung-Rae

    2012-10-01

    To investigate the effects of rhythmic auditory stimulation (RAS) on gait patterns in comparison with changes after neurodevelopmental treatment (NDT/Bobath) in adults with cerebral palsy. A repeated-measures analysis between the pretreatment and posttreatment tests and a comparison study between groups. Human gait analysis laboratory. Twenty-eight cerebral palsy patients with bilateral spasticity participated in this study. The subjects were randomly allocated to either neurodevelopmental treatment (n = 13) or rhythmic auditory stimulation (n = 15). Gait training with rhythmic auditory stimulation or neurodevelopmental treatment was performed three sessions per week for three weeks. Temporal and kinematic data were analysed before and after the intervention. Rhythmic auditory stimulation was provided using a combination of a metronome beat set to the individual's cadence and rhythmic cueing from a live keyboard, while neurodevelopmental treatment was implemented following the traditional method. Temporal data, kinematic parameters and gait deviation index as a measure of overall gait pathology were assessed. Temporal gait measures revealed that rhythmic auditory stimulation significantly increased cadence, walking velocity, stride length, and step length (P rhythmic auditory stimulation (P rhythmic auditory stimulation (P rhythmic auditory stimulation showed aggravated maximal internal rotation in the transverse plane (P rhythmic auditory stimulation or neurodevelopmental treatment elicited differential effects on gait patterns in adults with cerebral palsy.

  11. Amygdala and ventral striatum make distinct contributions to reinforcement learning

    Science.gov (United States)

    Costa, Vincent D.; Monte, Olga Dal; Lucas, Daniel R.; Murray, Elisabeth A.; Averbeck, Bruno B.

    2016-01-01

    Summary Reinforcement learning (RL) theories posit that dopaminergic signals are integrated within the striatum to associate choices with outcomes. Often overlooked is that the amygdala also receives dopaminergic input and is involved in Pavlovian processes that influence choice behavior. To determine the relative contributions of the ventral striatum (VS) and amygdala to appetitive RL we tested rhesus macaques with VS or amygdala lesions on deterministic and stochastic versions of a two-arm bandit reversal learning task. When learning was characterized with a RL model relative to controls, amygdala lesions caused general decreases in learning from positive feedback and choice consistency. By comparison, VS lesions only affected learning in the stochastic task. Moreover, the VS lesions hastened the monkeys’ choice reaction times, which emphasized a speed-accuracy tradeoff that accounted for errors in deterministic learning. These results update standard accounts of RL by emphasizing distinct contributions of the amygdala and VS to RL. PMID:27720488

  12. Ventral striatal activity links adversity and reward processing in children.

    Science.gov (United States)

    Kamkar, Niki H; Lewis, Daniel J; van den Bos, Wouter; Morton, J Bruce

    2017-08-01

    Adversity impacts many aspects of psychological and physical development including reward-based learning and decision-making. Mechanisms relating adversity and reward processing in children, however, remain unclear. Here, we show that adversity is associated with potentiated learning from positive outcomes and impulsive decision-making, but unrelated to learning from negative outcomes. We then show via functional magnetic resonance imaging that the link between adversity and reward processing is partially mediated by differences in ventral striatal response to rewards. The findings suggest that early-life adversity is associated with alterations in the brain's sensitivity to rewards accounting, in part, for the link between adversity and altered reward processing in children. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. The ventral premammillary nucleus links leptin action and reproduction

    Directory of Open Access Journals (Sweden)

    Jose eDonato

    2011-10-01

    Full Text Available The amount of body fat and the energy balance are important factors that influence the timing of puberty and the normal reproductive function. Leptin is a key hormone that conveys to the central nervous system information about the individual energy reserve and modulates the hypothalamus-pituitary-gonad axis. Recent findings suggest that the ventral premammillary nucleus (PMV mediates the effects of leptin as a permissive factor for the onset of puberty and the coordinated secretion of luteinizing hormone during conditions of negative energy balance. Thus, in this review we will summarize the existing literature about the potential role played by PMV neurons in the regulation of the hypothalamus-pituitary-gonad axis.

  14. Ventral striatal activity links adversity and reward processing in children

    Directory of Open Access Journals (Sweden)

    Niki H. Kamkar

    2017-08-01

    Full Text Available Adversity impacts many aspects of psychological and physical development including reward-based learning and decision-making. Mechanisms relating adversity and reward processing in children, however, remain unclear. Here, we show that adversity is associated with potentiated learning from positive outcomes and impulsive decision-making, but unrelated to learning from negative outcomes. We then show via functional magnetic resonance imaging that the link between adversity and reward processing is partially mediated by differences in ventral striatal response to rewards. The findings suggest that early-life adversity is associated with alterations in the brain’s sensitivity to rewards accounting, in part, for the link between adversity and altered reward processing in children.

  15. Art for reward's sake: visual art recruits the ventral striatum.

    Science.gov (United States)

    Lacey, Simon; Hagtvedt, Henrik; Patrick, Vanessa M; Anderson, Amy; Stilla, Randall; Deshpande, Gopikrishna; Hu, Xiaoping; Sato, João R; Reddy, Srinivas; Sathian, K

    2011-03-01

    A recent study showed that people evaluate products more positively when they are physically associated with art images than similar non-art images. Neuroimaging studies of visual art have investigated artistic style and esthetic preference but not brain responses attributable specifically to the artistic status of images. Here we tested the hypothesis that the artistic status of images engages reward circuitry, using event-related functional magnetic resonance imaging (fMRI) during viewing of art and non-art images matched for content. Subjects made animacy judgments in response to each image. Relative to non-art images, art images activated, on both subject- and item-wise analyses, reward-related regions: the ventral striatum, hypothalamus and orbitofrontal cortex. Neither response times nor ratings of familiarity or esthetic preference for art images correlated significantly with activity that was selective for art images, suggesting that these variables were not responsible for the art-selective activations. Investigation of effective connectivity, using time-varying, wavelet-based, correlation-purged Granger causality analyses, further showed that the ventral striatum was driven by visual cortical regions when viewing art images but not non-art images, and was not driven by regions that correlated with esthetic preference for either art or non-art images. These findings are consistent with our hypothesis, leading us to propose that the appeal of visual art involves activation of reward circuitry based on artistic status alone and independently of its hedonic value. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Oral, intestinal, and skin bacteria in ventral hernia mesh implants

    Directory of Open Access Journals (Sweden)

    Odd Langbach

    2016-07-01

    Full Text Available Background: In ventral hernia surgery, mesh implants are used to reduce recurrence. Infection after mesh implantation can be a problem and rates around 6–10% have been reported. Bacterial colonization of mesh implants in patients without clinical signs of infection has not been thoroughly investigated. Molecular techniques have proven effective in demonstrating bacterial diversity in various environments and are able to identify bacteria on a gene-specific level. Objective: The purpose of this study was to detect bacterial biofilm in mesh implants, analyze its bacterial diversity, and look for possible resemblance with bacterial biofilm from the periodontal pocket. Methods: Thirty patients referred to our hospital for recurrence after former ventral hernia mesh repair, were examined for periodontitis in advance of new surgical hernia repair. Oral examination included periapical radiographs, periodontal probing, and subgingival plaque collection. A piece of mesh (1×1 cm from the abdominal wall was harvested during the new surgical hernia repair and analyzed for bacteria by PCR and 16S rRNA gene sequencing. From patients with positive PCR mesh samples, subgingival plaque samples were analyzed with the same techniques. Results: A great variety of taxa were detected in 20 (66.7% mesh samples, including typical oral commensals and periodontopathogens, enterics, and skin bacteria. Mesh and periodontal bacteria were further analyzed for similarity in 16S rRNA gene sequences. In 17 sequences, the level of resemblance between mesh and subgingival bacterial colonization was 98–100% suggesting, but not proving, a transfer of oral bacteria to the mesh. Conclusion: The results show great bacterial diversity on mesh implants from the anterior abdominal wall including oral commensals and periodontopathogens. Mesh can be reached by bacteria in several ways including hematogenous spread from an oral site. However, other sites such as gut and skin may also

  17. Suture, synthetic, or biologic in contaminated ventral hernia repair.

    Science.gov (United States)

    Bondre, Ioana L; Holihan, Julie L; Askenasy, Erik P; Greenberg, Jacob A; Keith, Jerrod N; Martindale, Robert G; Roth, J Scott; Liang, Mike K

    2016-02-01

    Data are lacking to support the choice between suture, synthetic mesh, or biologic matrix in contaminated ventral hernia repair (VHR). We hypothesize that in contaminated VHR, suture repair is associated with the lowest rate of surgical site infection (SSI). A multicenter database of all open VHR performed at from 2010-2011 was reviewed. All patients with follow-up of 1 mo and longer were included. The primary outcome was SSI as defined by the Centers for Disease Control and Prevention. The secondary outcome was hernia recurrence (assessed clinically or radiographically). Multivariate analysis (stepwise regression for SSI and Cox proportional hazard model for recurrence) was performed. A total of 761 VHR were reviewed for a median (range) follow-up of 15 (1-50) mo: there were 291(38%) suture, 303 (40%) low-density and/or mid-density synthetic mesh, and 167(22%) biologic matrix repair. On univariate analysis, there were differences in the three groups including ethnicity, ASA, body mass index, institution, diabetes, primary versus incisional hernia, wound class, hernia size, prior VHR, fascial release, skin flaps, and acute repair. The unadjusted outcomes for SSI (15.1%; 17.8%; 21.0%; P = 0.280) and recurrence (17.8%; 13.5%; 21.5%; P = 0.074) were not statistically different between groups. On multivariate analysis, biologic matrix was associated with a nonsignificant reduction in both SSI and recurrences, whereas synthetic mesh associated with fewer recurrences compared to suture (hazard ratio = 0.60; P = 0.015) and nonsignificant increase in SSI. Interval estimates favored biologic matrix repair in contaminated VHR; however, these results were not statistically significant. In the absence of higher level evidence, surgeons should carefully balance risk, cost, and benefits in managing contaminated ventral hernia repair. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Co-ordinated growth between aerial and root systems in young apple plants issued from in vitro culture.

    Science.gov (United States)

    Costes, E; García-Villanueva, E; Jourdan, C; Regnard, J L; Guédon, Y

    2006-01-01

    In several species exhibiting a rhythmic aerial growth, the existence of an alternation between root and shoot growth has been demonstrated. The present study aims to investigate the respective involvement of the emergence of new organs and their elongation in relation to this phenomenon and its possible genotypic variation in young apple plants. Two apple varieties, X6407 (recently named 'Ariane') and X3305 ('Chantecler' x 'Baujade'), were compared. Five plants per variety, issued from in vitro culture, were observed in minirhizotrons over 4 months. For each plant, root emergence and growth were observed twice per week. Growth rates were calculated for all roots with more than two segments and the branching density was calculated on primary roots. On the aerial part, the number of leaves, leaf area and total shoot length were observed weekly. No significant difference was observed between varieties in any of the final characteristics of aerial growth. Increase in leaf area and shoot length exhibited a 3-week rhythm in X3305 while a weaker signal was observed in Ariane. The primary root growth rate was homogeneous between the plants and likewise between the varieties, while their branching density differed significantly. Secondary roots emerged rhythmically, with a 3-week and a 2-week rhythm, respectively, in X3305 and 'Ariane'. Despite a high intra-variety variability, significant differences were observed between varieties in the secondary root life span and mean length. A synchronism between leaf emergence and primary root growth was highlighted in both varieties, while an opposition phase was observed between leaf area increments and secondary root emergence in X3305 only. A biological model of dynamics that summarizes the interactions between processes and includes the assumption of a feedback effect of lateral root emergence on leaf emergence is proposed.

  19. Age-Related Changes in Bimanual Instrument Playing with Rhythmic Cueing

    Directory of Open Access Journals (Sweden)

    Soo Ji Kim

    2017-09-01

    Full Text Available Deficits in bimanual coordination of older adults have been demonstrated to significantly limit their functioning in daily life. As a bimanual sensorimotor task, instrument playing has great potential for motor and cognitive training in advanced age. While the process of matching a person’s repetitive movements to auditory rhythmic cueing during instrument playing was documented to involve motor and attentional control, investigation into whether the level of cognitive functioning influences the ability to rhythmically coordinate movement to an external beat in older populations is relatively limited. Therefore, the current study aimed to examine how timing accuracy during bimanual instrument playing with rhythmic cueing differed depending on the degree of participants’ cognitive aging. Twenty one young adults, 20 healthy older adults, and 17 older adults with mild dementia participated in this study. Each participant tapped an electronic drum in time to the rhythmic cueing provided using both hands simultaneously and in alternation. During bimanual instrument playing with rhythmic cueing, mean and variability of synchronization errors were measured and compared across the groups and the tempo of cueing during each type of tapping task. Correlations of such timing parameters with cognitive measures were also analyzed. The results showed that the group factor resulted in significant differences in the synchronization errors-related parameters. During bimanual tapping tasks, cognitive decline resulted in differences in synchronization errors between younger adults and older adults with mild dimentia. Also, in terms of variability of synchronization errors, younger adults showed significant differences in maintaining timing performance from older adults with and without mild dementia, which may be attributed to decreased processing time for bimanual coordination due to aging. Significant correlations were observed between variability of

  20. Functional Dissociations within the Ventral Object Processing Pathway: Cognitive Modules or a Hierarchical Continuum?

    Science.gov (United States)

    Cowell, Rosemary A.; Bussey, Timothy J.; Saksida, Lisa M.

    2010-01-01

    We examined the organization and function of the ventral object processing pathway. The prevailing theoretical approach in this field holds that the ventral object processing stream has a modular organization, in which visual perception is carried out in posterior regions and visual memory is carried out, independently, in the anterior temporal…

  1. Prey selection of a captive Oystercatcher Haematopus ostralegus hammering Mussels Mytilus edulis from the ventral side

    NARCIS (Netherlands)

    Ens, Bruno J.; Alting, D

    1996-01-01

    We studied prey choice of a captive Oystercatcher:hat hammered Mussels from the ventral side. The results replicate previous findings that ventral hammerers select Mussels of intermediate size, select against thick-shelled Mussels, abandon an increasing proportion of Mussels with increasing size and

  2. Hippocampal projections to the ventral striatum: from spatial memory to motivated behavior

    NARCIS (Netherlands)

    van der Meer, M.M.A; Ito, R.; Lansink, C.S.; Pennartz, C.M.A.; Derdikman, D.; Knierim, J.J.

    2014-01-01

    Multiple regions of the hippocampal formation project to the ventral striatum, a central node in brain circuits that subserve aspects of motivation. These projections emphasize information flow from the ventral (temporal) pole of the hippocampus and interact with converging projections and

  3. Environmental enrichment increases transcriptional and epigenetic differentiation between mouse dorsal and ventral dentate gyrus.

    Science.gov (United States)

    Zhang, Tie-Yuan; Keown, Christopher L; Wen, Xianglan; Li, Junhao; Vousden, Dulcie A; Anacker, Christoph; Bhattacharyya, Urvashi; Ryan, Richard; Diorio, Josie; O'Toole, Nicholas; Lerch, Jason P; Mukamel, Eran A; Meaney, Michael J

    2018-01-19

    Early life experience influences stress reactivity and mental health through effects on cognitive-emotional functions that are, in part, linked to gene expression in the dorsal and ventral hippocampus. The hippocampal dentate gyrus (DG) is a major site for experience-dependent plasticity associated with sustained transcriptional alterations, potentially mediated by epigenetic modifications. Here, we report comprehensive DNA methylome, hydroxymethylome and transcriptome data sets from mouse dorsal and ventral DG. We find genome-wide transcriptional and methylation differences between dorsal and ventral DG, including at key developmental transcriptional factors. Peripubertal environmental enrichment increases hippocampal volume and enhances dorsal DG-specific differences in gene expression. Enrichment also enhances dorsal-ventral differences in DNA methylation, including at binding sites of the transcription factor NeuroD1, a regulator of adult neurogenesis. These results indicate a dorsal-ventral asymmetry in transcription and methylation that parallels well-known functional and anatomical differences, and that may be enhanced by environmental enrichment.

  4. Why rooting fails

    OpenAIRE

    Creutz, Michael

    2007-01-01

    I explore the origins of the unphysical predictions from rooted staggered fermion algorithms. Before rooting, the exact chiral symmetry of staggered fermions is a flavored symmetry among the four "tastes." The rooting procedure averages over tastes of different chiralities. This averaging forbids the appearance of the correct 't Hooft vertex for the target theory.

  5. The role of the ventral dentate gyrus in olfactory pattern separation.

    Science.gov (United States)

    Weeden, Christy S S; Hu, Nathan J; Ho, Liana U N; Kesner, Raymond P

    2014-05-01

    Dorsoventral lesion studies of the hippocampus have indicated that the dorsal axis of the hippocampus is important for spatial processing and the ventral axis of the hippocampus is important for olfactory learning and memory and anxiety. There is some evidence to suggest that the ventral CA3 and ventral CA1 conduct parallel processes for pattern completion and temporal processing, respectively. Studies have indicated that the dorsal dentate gyrus (DG) is importantly involved in processes reflecting underlying pattern separation activity for spatial information. However, the ventral DG is less understood. The current study investigated the less-understood role of the ventral DG in olfactory pattern separation. A series of odor stimuli that varied on only one level, number of carbon chains (methyl groups), was used in a matching-to-sample paradigm in order to investigate ventral DG involvement in working memory for similar and less similar odors. Rats with ventral DG lesions were impaired at delays of 60 sec, but not at delays of 15 sec. A memory-based pattern separation effect was observed performance was poorest with only one carbon chain separation between trial odors and was highest for trials with four separations. The present study indicates that the ventral DG plays an important role in olfactory learning and memory processes for highly similar odors. The results also indicate a role for the ventral DG in pattern separation for odor information, which may have further implications for parallel processing across the dorsoventral axis for the DG in spatial (dorsal) and olfactory (ventral) pattern separation. Copyright © 2014 Wiley Periodicals, Inc.

  6. Rooting gene trees without outgroups: EP rooting.

    Science.gov (United States)

    Sinsheimer, Janet S; Little, Roderick J A; Lake, James A

    2012-01-01

    Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important questions in evolution require knowing both the topologies and the roots of trees. However, general algorithms for calculating rooted trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP) (Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 4:167-181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301-316; Nguyen T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60-76), we explicitly enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene and genomic sequences. These new EP linear rooting invariants allow one to determine rooted trees, even in the complete absence of outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny (Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489-493; Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763-766) may be rooted directly from sequences, even when they are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255-260).

  7. Dual Coding of Frequency Modulation in the Ventral Cochlear Nucleus.

    Science.gov (United States)

    Paraouty, Nihaad; Stasiak, Arkadiusz; Lorenzi, Christian; Varnet, Léo; Winter, Ian M

    2018-04-25

    Frequency modulation (FM) is a common acoustic feature of natural sounds and is known to play a role in robust sound source recognition. Auditory neurons show precise stimulus-synchronized discharge patterns that may be used for the representation of low-rate FM. However, it remains unclear whether this representation is based on synchronization to slow temporal envelope (ENV) cues resulting from cochlear filtering or phase locking to faster temporal fine structure (TFS) cues. To investigate the plausibility of those encoding schemes, single units of the ventral cochlear nucleus of guinea pigs of either sex were recorded in response to sine FM tones centered at the unit's best frequency (BF). The results show that, in contrast to high-BF units, for modulation depths within the receptive field, low-BF units (modulation depths extending beyond the receptive field, the discharge patterns follow the ENV and fluctuate at the modulation rate. The receptive field proved to be a good predictor of the ENV responses for most primary-like and chopper units. The current in vivo data also reveal a high level of diversity in responses across unit types. TFS cues are mainly conveyed by low-frequency and primary-like units and ENV cues by chopper and onset units. The diversity of responses exhibited by cochlear nucleus neurons provides a neural basis for a dual-coding scheme of FM in the brainstem based on both ENV and TFS cues. SIGNIFICANCE STATEMENT Natural sounds, including speech, convey informative temporal modulations in frequency. Understanding how the auditory system represents those frequency modulations (FM) has important implications as robust sound source recognition depends crucially on the reception of low-rate FM cues. Here, we recorded 115 single-unit responses from the ventral cochlear nucleus in response to FM and provide the first physiological evidence of a dual-coding mechanism of FM via synchronization to temporal envelope cues and phase locking to temporal

  8. Rhythmic and melodic deviations in musical sequences recruit different cortical areas for mismatch detection.

    Science.gov (United States)

    Lappe, Claudia; Steinsträter, Olaf; Pantev, Christo

    2013-01-01

    The mismatch negativity (MMN), an event-related potential (ERP) representing the violation of an acoustic regularity, is considered as a pre-attentive change detection mechanism at the sensory level on the one hand and as a prediction error signal on the other hand, suggesting that bottom-up as well as top-down processes are involved in its generation. Rhythmic and melodic deviations within a musical sequence elicit a MMN in musically trained subjects, indicating that acquired musical expertise leads to better discrimination accuracy of musical material and better predictions about upcoming musical events. Expectation violations to musical material could therefore recruit neural generators that reflect top-down processes that are based on musical knowledge. We describe the neural generators of the musical MMN for rhythmic and melodic material after a short-term sensorimotor-auditory (SA) training. We compare the localization of musical MMN data from two previous MEG studies by applying beamformer analysis. One study focused on the melodic harmonic progression whereas the other study focused on rhythmic progression. The MMN to melodic deviations revealed significant right hemispheric neural activation in the superior temporal gyrus (STG), inferior frontal cortex (IFC), and the superior frontal (SFG) and orbitofrontal (OFG) gyri. IFC and SFG activation was also observed in the left hemisphere. In contrast, beamformer analysis of the data from the rhythm study revealed bilateral activation within the vicinity of auditory cortices and in the inferior parietal lobule (IPL), an area that has recently been implied in temporal processing. We conclude that different cortical networks are activated in the analysis of the temporal and the melodic content of musical material, and discuss these networks in the context of the dual-pathway model of auditory processing.

  9. The relative contribution of physical fitness to the technical execution score in youth rhythmic gymnastics.

    Science.gov (United States)

    Donti, Olyvia; Bogdanis, Gregory C; Kritikou, Maria; Donti, Anastasia; Theodorakou, Kalliopi

    2016-06-01

    This study examined the association between physical fitness and a technical execution score in rhythmic gymnasts varying in the performance level. Forty-six young rhythmic gymnasts (age: 9.9 ±1.3 years) were divided into two groups (qualifiers, n=24 and non-qualifiers, n=22) based on the results of the National Championships. Gymnasts underwent a series of physical fitness tests and technical execution was evaluated in a routine without apparatus. There were significant differences between qualifiers and non-qualifiers in the technical execution score (p=0.01, d=1.0), shoulder flexion (p=0.01, d=0.8), straight leg raise (p=0.004, d=0.9), sideways leg extension (p=0.002, d=0.9) and body fat (p=.021, d=0.7), but no differences were found in muscular endurance and jumping performance. The technical execution score for the non-qualifiers was significantly correlated with shoulder extension (r=0.423, panalysis revealed that sideways leg extension, body fat, and push ups accounted for a large part (62.9%) of the variance in the technical execution score for the non-qualifiers, while for the qualifiers, only 37.3% of the variance in the technical execution score was accounted for by sideways leg extension and spine flexibility. In conclusion, flexibility and body composition can effectively discriminate between qualifiers and non-qualifiers in youth rhythmic gymnastics. At the lower level of performance (non-qualifiers), physical fitness seems to have a greater effect on the technical execution score.

  10. Daily rhythmicity of clock gene transcripts in atlantic cod fast skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Carlo C Lazado

    Full Text Available The classical notion of a centralized clock that governs circadian rhythmicity has been challenged with the discovery of peripheral oscillators that enable organisms to cope with daily changes in their environment. The present study aimed to identify the molecular clock components in Atlantic cod (Gadus morhua and to investigate their daily gene expression in fast skeletal muscle. Atlantic cod clock genes were closely related to their orthologs in teleosts and tetrapods. Synteny was conserved to varying degrees in the majority of the 18 clock genes examined. In particular, aryl hydrocarbon receptor nuclear translocator-like 2 (arntl2, RAR-related orphan receptor A (rora and timeless (tim displayed high degrees of conservation. Expression profiling during the early ontogenesis revealed that some transcripts were maternally transferred, namely arntl2, cryptochrome 1b and 2 (cry1b and cry2, and period 2a and 2b (per2a and per2b. Most clock genes were ubiquitously expressed in various tissues, suggesting the possible existence of multiple peripheral clock systems in Atlantic cod. In particular, they were all detected in fast skeletal muscle, with the exception of neuronal PAS (Per-Arnt-Single-minded domain-containing protein (npas1 and rora. Rhythmicity analysis revealed 8 clock genes with daily rhythmic expression, namely arntl2, circadian locomotor output cycles kaput (clock, npas2, cry2, cry3 per2a, nuclear receptor subfamily 1, group D, member 1 (nr1d1, and nr1d2a. Transcript levels of the myogenic genes myogenic factor 5 (myf5 and muscleblind-like 1 (mbnl1 strongly correlated with clock gene expression. This is the first study to unravel the molecular components of peripheral clocks in Atlantic cod. Taken together, our data suggest that the putative clock system in fast skeletal muscle of Atlantic cod has regulatory implications on muscle physiology, particularly in the expression of genes related to myogenesis.

  11. Source localization of rhythmic ictal EEG activity: a study of diagnostic accuracy following STARD criteria.

    Science.gov (United States)

    Beniczky, Sándor; Lantz, Göran; Rosenzweig, Ivana; Åkeson, Per; Pedersen, Birthe; Pinborg, Lars H; Ziebell, Morten; Jespersen, Bo; Fuglsang-Frederiksen, Anders

    2013-10-01

    Although precise identification of the seizure-onset zone is an essential element of presurgical evaluation, source localization of ictal electroencephalography (EEG) signals has received little attention. The aim of our study was to estimate the accuracy of source localization of rhythmic ictal EEG activity using a distributed source model. Source localization of rhythmic ictal scalp EEG activity was performed in 42 consecutive cases fulfilling inclusion criteria. The study was designed according to recommendations for studies on diagnostic accuracy (STARD). The initial ictal EEG signals were selected using a standardized method, based on frequency analysis and voltage distribution of the ictal activity. A distributed source model-local autoregressive average (LAURA)-was used for the source localization. Sensitivity, specificity, and measurement of agreement (kappa) were determined based on the reference standard-the consensus conclusion of the multidisciplinary epilepsy surgery team. Predictive values were calculated from the surgical outcome of the operated patients. To estimate the clinical value of the ictal source analysis, we compared the likelihood ratios of concordant and discordant results. Source localization was performed blinded to the clinical data, and before the surgical decision. Reference standard was available for 33 patients. The ictal source localization had a sensitivity of 70% and a specificity of 76%. The mean measurement of agreement (kappa) was 0.61, corresponding to substantial agreement (95% confidence interval (CI) 0.38-0.84). Twenty patients underwent resective surgery. The positive predictive value (PPV) for seizure freedom was 92% and the negative predictive value (NPV) was 43%. The likelihood ratio was nine times higher for the concordant results, as compared with the discordant ones. Source localization of rhythmic ictal activity using a distributed source model (LAURA) for the ictal EEG signals selected with a standardized method

  12. Effect of rhythmic auditory cueing on gait in people with Alzheimer disease.

    Science.gov (United States)

    Wittwer, Joanne E; Webster, Kate E; Hill, Keith

    2013-04-01

    To determine whether rhythmic music and metronome cues alter spatiotemporal gait measures and gait variability in people with Alzheimer disease (AD). A repeated-measures study requiring participants to walk under different cueing conditions. University movement laboratory. Of the people (N=46) who met study criteria (a diagnosis of probable AD and ability to walk 100m) at routine medical review, 30 (16 men; mean age ± SD, 80±6y; revised Addenbrooke's Cognitive Examination range, 26-79) volunteered to participate. Participants walked 4 times over an electronic walkway synchronizing to (1) rhythmic music and (2) a metronome set at individual mean baseline comfortable speed cadence. Gait spatiotemporal measures and gait variability (coefficient of variation [CV]). Data from individual walks under each condition were combined. A 1-way repeated-measures analysis of variance was used to compare uncued baseline, cued, and retest measures. Gait velocity decreased with both music and metronome cues compared with baseline (baseline, 110.5cm/s; music, 103.4cm/s; metronome, 105.4cm/s), primarily because of significant decreases in stride length (baseline, 120.9cm; music, 112.5cm; metronome, 114.8cm) with both cue types. This was coupled with increased stride length variability compared with baseline (baseline CV, 3.4%; music CV, 4.3%; metronome CV, 4.5%) with both cue types. These changes did not persist at (uncued) retest. Temporal variability was unchanged. Rhythmic auditory cueing at comfortable speed tempo produced deleterious effects on gait in a single session in this group with AD. The deterioration in spatial gait parameters may result from impaired executive function associated with AD. Further research should investigate whether these instantaneous cue effects are altered with more practice or with learning methods tailored to people with cognitive impairment. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights

  13. Synthesis of high-complexity rhythmic signals for closed-loop electrical neuromodulation.

    Science.gov (United States)

    Zalay, Osbert C; Bardakjian, Berj L

    2013-06-01

    We propose an approach to synthesizing high-complexity rhythmic signals for closed-loop electrical neuromodulation using cognitive rhythm generator (CRG) networks, wherein the CRG is a hybrid oscillator comprised of (1) a bank of neuronal modes, (2) a ring device (clock), and (3) a static output nonlinearity (mapper). Networks of coupled CRGs have been previously implemented to simulate the electrical activity of biological neural networks, including in silico models of epilepsy, producing outputs of similar waveform and complexity to the biological system. This has enabled CRG network models to be used as platforms for testing seizure control strategies. Presently, we take the application one step further, envisioning therapeutic CRG networks as rhythmic signal generators creating neuromimetic signals for stimulation purposes, motivated by recent research indicating that stimulus complexity and waveform characteristics influence neuromodulation efficacy. To demonstrate this concept, an epileptiform CRG network generating spontaneous seizure-like events (SLEs) was coupled to a therapeutic CRG network, forming a closed-loop neuromodulation system. SLEs are associated with low-complexity dynamics and high phase coherence in the network. The tuned therapeutic network generated a high-complexity, multi-banded rhythmic stimulation signal with prominent theta and gamma-frequency power that suppressed SLEs and increased dynamic complexity in the epileptiform network, as measured by a relative increase in the maximum Lyapunov exponent and decrease in phase coherence. CRG-based neuromodulation outperformed both low and high-frequency periodic pulse stimulation, suggesting that neuromodulation using complex, biomimetic signals may provide an improvement over conventional electrical stimulation techniques for treating neurological disorders such as epilepsy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The relative contribution of physical fitness to the technical execution score in youth rhythmic gymnastics

    Directory of Open Access Journals (Sweden)

    Donti Olyvia

    2016-06-01

    Full Text Available This study examined the association between physical fitness and a technical execution score in rhythmic gymnasts varying in the performance level. Forty-six young rhythmic gymnasts (age: 9.9 ±1.3 years were divided into two groups (qualifiers, n=24 and non-qualifiers, n=22 based on the results of the National Championships. Gymnasts underwent a series of physical fitness tests and technical execution was evaluated in a routine without apparatus. There were significant differences between qualifiers and non-qualifiers in the technical execution score (p=0.01, d=1.0, shoulder flexion (p=0.01, d=0.8, straight leg raise (p=0.004, d=0.9, sideways leg extension (p=0.002, d=0.9 and body fat (p=.021, d=0.7, but no differences were found in muscular endurance and jumping performance. The technical execution score for the non-qualifiers was significantly correlated with shoulder extension (r=0.423, p<0.05, sideways leg extension (r=0.687, p<0.01, push ups (r=0.437, p<0.05 and body fat (r=0.642, p<0.01, while there was only one significant correlation with sideways leg extension (r=0.467, p<0.05 for the qualifiers. Multiple regression analysis revealed that sideways leg extension, body fat, and push ups accounted for a large part (62.9% of the variance in the technical execution score for the non-qualifiers, while for the qualifiers, only 37.3% of the variance in the technical execution score was accounted for by sideways leg extension and spine flexibility. In conclusion, flexibility and body composition can effectively discriminate between qualifiers and non-qualifiers in youth rhythmic gymnastics. At the lower level of performance (non-qualifiers, physical fitness seems to have a greater effect on the technical execution score.

  15. Neural entrainment to rhythmically-presented auditory, visual and audio-visual speech in children

    Directory of Open Access Journals (Sweden)

    Alan James Power

    2012-07-01

    Full Text Available Auditory cortical oscillations have been proposed to play an important role in speech perception. It is suggested that the brain may take temporal ‘samples’ of information from the speech stream at different rates, phase-resetting ongoing oscillations so that they are aligned with similar frequency bands in the input (‘phase locking’. Information from these frequency bands is then bound together for speech perception. To date, there are no explorations of neural phase-locking and entrainment to speech input in children. However, it is clear from studies of language acquisition that infants use both visual speech information and auditory speech information in learning. In order to study neural entrainment to speech in typically-developing children, we use a rhythmic entrainment paradigm (underlying 2 Hz or delta rate based on repetition of the syllable ba, presented in either the auditory modality alone, the visual modality alone, or as auditory-visual speech (via a talking head. To ensure attention to the task, children aged 13 years were asked to press a button as fast as possible when the ba stimulus violated the rhythm for each stream type. Rhythmic violation depended on delaying the occurrence of a ba in the isochronous stream. Neural entrainment was demonstrated for all stream types, and individual differences in standardized measures of language processing were related to auditory entrainment at the theta rate. Further, there was significant modulation of the preferred phase of auditory entrainment in the theta band when visual speech cues were present, indicating cross-modal phase resetting. The rhythmic entrainment paradigm developed here offers a method for exploring individual differences in oscillatory phase locking during development. In particular, a method for assessing neural entrainment and cross-modal phase resetting would be useful for exploring developmental learning difficulties thought to involve temporal sampling

  16. Entrainment of Breast Cell Lines Results in Rhythmic Fluctuations of MicroRNAs

    Directory of Open Access Journals (Sweden)

    Rafael Chacolla-Huaringa

    2017-07-01

    Full Text Available Circadian rhythms are essential for temporal (~24 h regulation of molecular processes in diverse species. Dysregulation of circadian gene expression has been implicated in the pathogenesis of various disorders, including hypertension, diabetes, depression, and cancer. Recently, microRNAs (miRNAs have been identified as critical modulators of gene expression post-transcriptionally, and perhaps involved in circadian clock architecture or their output functions. The aim of the present study is to explore the temporal expression of miRNAs among entrained breast cell lines. For this purpose, we evaluated the temporal (28 h expression of 2006 miRNAs in MCF-10A, MCF-7, and MDA-MB-231 cells using microarrays after serum shock entrainment. We noted hundreds of miRNAs that exhibit rhythmic fluctuations in each breast cell line, and some of them across two or three cell lines. Afterwards, we validated the rhythmic profiles exhibited by miR-141-5p, miR-1225-5p, miR-17-5p, miR-222-5p, miR-769-3p, and miR-548ay-3p in the above cell lines, as well as in ZR-7530 and HCC-1954 using RT-qPCR. Our results show that serum shock entrainment in breast cells lines induces rhythmic fluctuations of distinct sets of miRNAs, which have the potential to be related to endogenous circadian clock, but extensive investigation is required to elucidate that connection.

  17. Rhythmic and melodic deviations in musical sequences recruit different cortical areas for mismatch detection

    Directory of Open Access Journals (Sweden)

    Claudia eLappe

    2013-06-01

    Full Text Available The mismatch negativity (MMN, an event-related potential (ERP representing the violation of an acoustic regularity, is considered as a pre-attentive change detection mechanism at the sensory level on the one hand and as a prediction error signal on the other hand, suggesting that bottom-up as well as top-down processes are involved in its generation. Rhythmic and melodic deviations within a musical sequence elicit a mismatch negativity in musically trained subjects, indicating that acquired musical expertise leads to better discrimination accuracy of musical material and better predictions about upcoming musical events. Expectation violations to musical material could therefore recruit neural generators that reflect top-down processes that are based on musical knowledge.We describe the neural generators of the musical MMN for rhythmic and melodic material after a short-term sensorimotor-auditory training. We compare the localization of musical MMN data from two previous MEG studies by applying beamformer analysis. One study focused on the melodic harmonic progression whereas the other study focused on rhythmic progression. The MMN to melodic deviations revealed significant right hemispheric neural activation in the superior temporal gyrus (STG, inferior frontal cortex (IFC, and the superior frontal (SFG and orbitofrontal (OFG gyri. IFC and SFG activation was also observed in the left hemisphere. In contrast, beamformer analysis of the data from the rhythm study revealed bilatral activation within the vicinity of auditory cortices and in the inferior parietal lobule, an area that has recently been implied in temporal processing. We conclude that different cortical networks are activated in the analysis of the temporal and the melodic content of musical material, and discuss these networks in the context of the the dual-pathway model of auditory processing.

  18. BK channels regulate spontaneous action potential rhythmicity in the suprachiasmatic nucleus.

    Directory of Open Access Journals (Sweden)

    Jack Kent

    Full Text Available BACKGROUND: Circadian ( approximately 24 hr rhythms are generated by the central pacemaker localized to the suprachiasmatic nucleus (SCN of the hypothalamus. Although the basis for intrinsic rhythmicity is generally understood to rely on transcription factors encoded by "clock genes", less is known about the daily regulation of SCN neuronal activity patterns that communicate a circadian time signal to downstream behaviors and physiological systems. Action potentials in the SCN are necessary for the circadian timing of behavior, and individual SCN neurons modulate their spontaneous firing rate (SFR over the daily cycle, suggesting that the circadian patterning of neuronal activity is necessary for normal behavioral rhythm expression. The BK K(+ channel plays an important role in suppressing spontaneous firing at night in SCN neurons. Deletion of the Kcnma1 gene, encoding the BK channel, causes degradation of circadian behavioral and physiological rhythms. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that loss of robust behavioral rhythmicity in Kcnma1(-/- mice is due to the disruption of SFR rhythms in the SCN, we used multi-electrode arrays to record extracellular action potentials from acute wild-type (WT and Kcnma1(-/- slices. Patterns of activity in the SCN were tracked simultaneously for up to 3 days, and the phase, period, and synchronization of SFR rhythms were examined. Loss of BK channels increased arrhythmicity but also altered the amplitude and period of rhythmic activity. Unexpectedly, Kcnma1(-/- SCNs showed increased variability in the timing of the daily SFR peak. CONCLUSIONS/SIGNIFICANCE: These results suggest that BK channels regulate multiple aspects of the circadian patterning of neuronal activity in the SCN. In addition, these data illustrate the characteristics of a disrupted SCN rhythm downstream of clock gene-mediated timekeeping and its relationship to behavioral rhythms.

  19. The ventralizing activity of Radar, a maternally expressed bone morphogenetic protein, reveals complex bone morphogenetic protein interactions controlling dorso-ventral patterning in zebrafish.

    Science.gov (United States)

    Goutel, C; Kishimoto, Y; Schulte-Merker, S; Rosa, F

    2000-12-01

    In Xenopus and zebrafish, BMP2, 4 and 7 have been implicated, after the onset of zygotic expression, in inducing and maintaining ventro-lateral cell fate during early development. We provide evidence here that a maternally expressed bone morphogenetic protein (BMP), Radar, may control early ventral specification in zebrafish. We show that Radar ventralizes zebrafish embryos and induces the early expression of bmp2b and bmp4. The analysis of Radar overexpression in both swirl/bmp2b mutants and embryos expressing truncated BMP receptors shows that Radar-induced ventralization is dependent on functional BMP2/4 pathways, and may initially rely on an Alk6-related signaling pathway. Finally, we show that while radar-injected swirl embryos still exhibit a strongly dorsalized phenotype, the overexpression of Radar into swirl/bmp2b mutant embryos restores ventral marker expression, including bmp4 expression. Our results suggest that a complex regulation of different BMP pathways controls dorso-ventral (DV) patterning from early cleavage stages until somitogenesis.

  20. Single-minded and the evolution of the ventral midline in arthropods.

    Science.gov (United States)

    Linne, Viktoria; Eriksson, Bo Joakim; Stollewerk, Angelika

    2012-04-01

    In insects and crustaceans, ventral midline cells are present that subdivide the CNS into bilateral symmetric halves. In both arthropod groups unpaired midline neurons and glial cells have been identified that contribute to the embryonic patterning mechanisms. In the fruitfly Drosophila melanogaster, for example, the midline cells are involved in neural cell fate specification along the dorso-ventral axis but also in axonal pathfinding and organisation of the axonal scaffold. Both in insects and malacostracan crustaceans, the bHLH-PAS transcription factor single-minded is the master regulator of ventral midline development and homology has been suggested for individual midline precursors in these groups. The conserved arrangement of the axonal scaffold as well as the regular pattern of neural precursors in all euarthropod groups raises the question whether the ventral midline system is conserved in this phylum. In the remaining euarthropod groups, the chelicerates and myriapods, a single-minded homologue has been identified in the spider Achaearanea tepidariorum (chelicerate), however, the gene is not expressed in the ventral midline but in the median area of the ventral neuroectoderm. Here we show that At-sim is not required for ventral midline development. Furthermore, we identify sim homologues in representatives of arthropods that have not yet been analysed: the myriapod Strigamia maritima and a representative of an outgroup to the euarthropods, the onychophoran Euperipatoides kanangrensis. We compare the expression patterns to the A. tepidariorum sim homologue expression and furthermore analyse the nature of the arthropod midline cells. Our data suggest that in arthropods unpaired midline precursors evolved from the bilateral median domain of the ventral neuroectoderm in the last common ancestor of Mandibulata (insects, crustaceans, myriapods). We hypothesize that sim was expressed in this domain and recruited to ventral midline development. Subsequently, sim

  1. A Fate Map of the Murine Pancreas Buds Reveals a Multipotent Ventral Foregut Organ Progenitor

    Science.gov (United States)

    Angelo, Jesse R.; Guerrero-Zayas, Mara-Isel; Tremblay, Kimberly D.

    2012-01-01

    The definitive endoderm is the embryonic germ layer that gives rise to the budding endodermal organs including the thyroid, lung, liver and pancreas as well as the remainder of the gut tube. DiI fate mapping and whole embryo culture were used to determine the endodermal origin of the 9.5 days post coitum (dpc) dorsal and ventral pancreas buds. Our results demonstrate that the progenitors of each bud occupy distinct endodermal territories. Dorsal bud progenitors are located in the medial endoderm overlying somites 2–4 between the 2 and 11 somite stage (SS). The endoderm forming the ventral pancreas bud is found in 2 distinct regions. One territory originates from the left and right lateral endoderm caudal to the anterior intestinal portal by the 6 SS and the second domain is derived from the ventral midline of the endoderm lip (VMEL). Unlike the laterally located ventral foregut progenitors, the VMEL population harbors a multipotent progenitor that contributes to the thyroid bud, the rostral cap of the liver bud, ventral midline of the liver bud and the midline of the ventral pancreas bud in a temporally restricted manner. This data suggests that the midline of the 9.5 dpc thyroid, liver and ventral pancreas buds originates from the same progenitor population, demonstrating a developmental link between all three ventral foregut buds. Taken together, these data define the location of the dorsal and ventral pancreas progenitors in the prespecified endodermal sheet and should lead to insights into the inductive events required for pancreas specification. PMID:22815796

  2. The influence of oxytocin on interpersonal rhythmic synchronization and social bonding

    DEFF Research Database (Denmark)

    Gebauer, Line; Witek, Maria; Hansen, Niels Chr.

    oxytocin. In this study we investigated the role of oxytocin on interpersonal rhythmic synchronization, and its relation to pro-social effects, using an interactive finger tapping setup. Pairs of two tapped together, and both participants in each pair received either oxytocin or a non-active placebo...... as nasal spray. Our preliminary analyses showed trends in which intranasally administered oxytocin improved interpersonal synchronization. In this poster we present the full data set and analysis of the effect of oxytocin on interpersonal synchronization and social bonding....

  3. Non-linear changes in rhythmic variability of European art music: Quantitative support for historical musicology

    DEFF Research Database (Denmark)

    Hansen, Niels Chr.; Sadakata, Makiko; Pearce, Marcus

    It is a long-held belief in historical musicology that the prosody of composers’ native languages is reflected in the rhythmic and melodic properties of their music. Applying the normalised Pairwise Variability Index (nPVI) to speech alongside musical scores, research has established quantitative...... music up until the mid-19th century, after which French music diverged into an Austro-German school and a French nationalist school. In sum, using musical nPVI analysis, we provide quantitative support for music-historical descriptions of an Italian-dominated Baroque (composer birth years: 1600...

  4. Ground Reaction Forces Generated During Rhythmical Squats as a Dynamic Loads of the Structure

    Science.gov (United States)

    Pantak, Marek

    2017-10-01

    Dynamic forces generated by moving persons can lead to excessive vibration of the long span, slender and lightweight structure such as floors, stairs, stadium stands and footbridges. These dynamic forces are generated during walking, running, jumping and rhythmical body swaying in vertical or horizontal direction etc. In the paper the mathematical models of the Ground Reaction Forces (GRFs) generated during squats have been presented. Elaborated models was compared to the GRFs measured during laboratory tests carried out by author in wide range of frequency using force platform. Moreover, the GRFs models were evaluated during dynamic numerical analyses and dynamic field tests of the exemplary structure (steel footbridge).

  5. Seroma in ventral incisional herniorrhaphy: incidence, predictors and outcome.

    Science.gov (United States)

    Kaafarani, Haytham M A; Hur, Kwan; Hirter, Angie; Kim, Lawrence T; Thomas, Anthony; Berger, David H; Reda, Domenic; Itani, Kamal M F

    2009-11-01

    Factors leading to seroma following ventral incisional herniorrhaphy (VIH) are poorly understood. Between 2004 and 2006, patients were prospectively randomized at 4 Veterans Affairs hospitals to undergo laparoscopic or open VIH. Patients who developed seromas within 8 weeks postoperatively were compared with those who did not. Multivariate analyses were performed to identify predictors of seroma. Of 145 patients who underwent VIH, 24 (16.6%) developed seromas. Patients who underwent open VIH had more seromas than those who underwent laparoscopic VIH (23.3% vs 6.8%, P = .011). Seroma patients had hernias that were never spontaneously reducible (0% vs 21%, P = .015), had more abdominal incisions preoperatively (mean, 2.4 vs 1.8; P = .037), and were less likely to have drain catheters placed than those without seromas (30.0% vs 63.1%, P = .011). In multivariate analyses, open VIH predicted seroma (odds ratio, 5.5; 95% confidence interval, 1.6-18.8), as well as the specific hospital at which the procedure was performed. Spontaneous resolution occurred in 71% of seromas; 29% required aspiration. Procedural characteristics and hernia characteristics rather than patient comorbidities predicted seroma in VIH.

  6. Cognitive Neurostimulation: Learning to Volitionally Sustain Ventral Tegmental Area Activation.

    Science.gov (United States)

    MacInnes, Jeff J; Dickerson, Kathryn C; Chen, Nan-Kuei; Adcock, R Alison

    2016-03-16

    Activation of the ventral tegmental area (VTA) and mesolimbic networks is essential to motivation, performance, and learning. Humans routinely attempt to motivate themselves, with unclear efficacy or impact on VTA networks. Using fMRI, we found untrained participants' motivational strategies failed to consistently activate VTA. After real-time VTA neurofeedback training, however, participants volitionally induced VTA activation without external aids, relative to baseline, Pre-test, and control groups. VTA self-activation was accompanied by increased mesolimbic network connectivity. Among two comparison groups (no neurofeedback, false neurofeedback) and an alternate neurofeedback group (nucleus accumbens), none sustained activation in target regions of interest nor increased VTA functional connectivity. The results comprise two novel demonstrations: learning and generalization after VTA neurofeedback training and the ability to sustain VTA activation without external reward or reward cues. These findings suggest theoretical alignment of ideas about motivation and midbrain physiology and the potential for generalizable interventions to improve performance and learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Ventral tegmental area GABA neurons and opiate motivation

    Science.gov (United States)

    Vargas-Perez, Hector; Mabey, Jennifer K.; Shin, Samuel I.; Steffensen, Scott C.; van der Kooy, Derek

    2013-01-01

    Rational Past research has demonstrated that when an animal changes from a previously drug-naive to an opiate-dependent and withdrawn state, morphine’s motivational effects are switched from a tegmental pedunculopontine nucleus (TPP)-dependent to a dopamine-dependent pathway. Interestingly, a corresponding change is observed in ventral tegmental area (VTA) GABAA receptors, which change from mediating hyperpolarization of VTA GABA neurons to mediating depolarization. Objectives The present study investigated whether pharmacological manipulation of VTA GABAA receptor activity could directly influence the mechanisms underlying opiate motivation. Results Using an unbiased place conditioning procedure, we demonstrated that in Wistar rats, intra-VTA administration of furosemide, a Cl− cotransporter inhibitor, was able to promote a switch in the mechanisms underlying morphine’s motivational properties, one which is normally observed only after chronic opiate exposure. This behavioral switch was prevented by intra-VTA administration of acetazolamide, an inhibitor of the bicarbonate ion-producing carbonic anhydrase enzyme. Electrophysiological recordings of mouse VTA showed that furosemide reduced the sensitivity of VTA GABA neurons to inhibition by the GABAA receptor agonist muscimol, instead increasing the firing rate of a significant subset of these GABA neurons. Conclusion Our results suggest that the carbonic anhydrase enzyme may constitute part of a common VTA GABA neuron-based biological pathway responsible for controlling the mechanisms underlying opiate motivation, supporting the hypothesis that VTA GABAA receptor hyperpolarization or depolarization is responsible for selecting TPP- or dopamine-dependent motivational outputs, respectively. PMID:23392354

  8. Contingency learning in human fear conditioning involves the ventral striatum.

    Science.gov (United States)

    Klucken, Tim; Tabbert, Katharina; Schweckendiek, Jan; Merz, Christian Josef; Kagerer, Sabine; Vaitl, Dieter; Stark, Rudolf

    2009-11-01

    The ability to detect and learn contingencies between fearful stimuli and their predictive cues is an important capacity to cope with the environment. Contingency awareness refers to the ability to verbalize the relationships between conditioned and unconditioned stimuli. Although there is a heated debate about the influence of contingency awareness on conditioned fear responses, neural correlates behind the formation process of contingency awareness have gained only little attention in human fear conditioning. Recent animal studies indicate that the ventral striatum (VS) could be involved in this process, but in human studies the VS is mostly associated with positive emotions. To examine this question, we reanalyzed four recently published classical fear conditioning studies (n = 117) with respect to the VS at three distinct levels of contingency awareness: subjects, who did not learn the contingencies (unaware), subjects, who learned the contingencies during the experiment (learned aware) and subjects, who were informed about the contingencies in advance (instructed aware). The results showed significantly increased activations in the left and right VS in learned aware compared to unaware subjects. Interestingly, this activation pattern was only found in learned but not in instructed aware subjects. We assume that the VS is not involved when contingency awareness does not develop during conditioning or when contingency awareness is unambiguously induced already prior to conditioning. VS involvement seems to be important for the transition from a contingency unaware to a contingency aware state. Implications for fear conditioning models as well as for the contingency awareness debate are discussed.

  9. Surfing a spike wave down the ventral stream.

    Science.gov (United States)

    VanRullen, Rufin; Thorpe, Simon J

    2002-10-01

    Numerous theories of neural processing, often motivated by experimental observations, have explored the computational properties of neural codes based on the absolute or relative timing of spikes in spike trains. Spiking neuron models and theories however, as well as their experimental counterparts, have generally been limited to the simulation or observation of isolated neurons, isolated spike trains, or reduced neural populations. Such theories would therefore seem inappropriate to capture the properties of a neural code relying on temporal spike patterns distributed across large neuronal populations. Here we report a range of computer simulations and theoretical considerations that were designed to explore the possibilities of one such code and its relevance for visual processing. In a unified framework where the relation between stimulus saliency and spike relative timing plays the central role, we describe how the ventral stream of the visual system could process natural input scenes and extract meaningful information, both rapidly and reliably. The first wave of spikes generated in the retina in response to a visual stimulation carries information explicitly in its spatio-temporal structure: the most salient information is represented by the first spikes over the population. This spike wave, propagating through a hierarchy of visual areas, is regenerated at each processing stage, where its temporal structure can be modified by (i). the selectivity of the cortical neurons, (ii). lateral interactions and (iii). top-down attentional influences from higher order cortical areas. The resulting model could account for the remarkable efficiency and rapidity of processing observed in the primate visual system.

  10. Multiplexed Neurochemical Signaling by Neurons of the Ventral Tegmental Area

    Science.gov (United States)

    Barker, David J.; Root, David H.; Zhang, Shiliang; Morales, Marisela

    2016-01-01

    The ventral tegmental area (VTA) is an evolutionarily conserved structure that has roles in reward-seeking, safety-seeking, learning, motivation, and neuropsychiatric disorders such as addiction and depression. The involvement of the VTA in these various behaviors and disorders is paralleled by its diverse signaling mechanisms. Here we review recent advances in our understanding of neuronal diversity in the VTA with a focus on cell phenotypes that participate in ‘multiplexed’ neurotransmission involving distinct signaling mechanisms. First, we describe the cellular diversity within the VTA, including neurons capable of transmitting dopamine, glutamate or GABA as well as neurons capable of multiplexing combinations of these neurotransmitters. Next, we describe the complex synaptic architecture used by VTA neurons in order to accommodate the transmission of multiple transmitters. We specifically cover recent findings showing that VTA multiplexed neurotransmission may be mediated by either the segregation of dopamine and glutamate into distinct microdomains within a single axon or by the integration of glutamate and GABA into a single axon terminal. In addition, we discuss our current understanding of the functional role that these multiplexed signaling pathways have in the lateral habenula and the nucleus accumbens. Finally, we consider the putative roles of VTA multiplexed neurotransmission in synaptic plasticity and discuss how changes in VTA multiplexed neurons may relate to various psychopathologies including drug addiction and depression. PMID:26763116

  11. Genetic association among root morphology, root quality and root yield in ashwagandha (Withania somnifera)

    OpenAIRE

    Kumar Ramesh R.; Reddy Anjaneya Prasanna L.; Subbaiah Chinna J.; Kumar Niranjana A.; Prasad Nagendra H.N.; Bhukya Balakishan

    2011-01-01

    Ashwagandha (Withania somnifera) is a dryland medicinal crop and roots are used as valuable drug in traditional systems of medicine. Morphological variants (morphotypes) and the parental populations were evaluated for root - morphometric, quality and yield traits to study genetic association among them. Root morphometric traits (root length, root diameter, number of secondary roots/ plant) and crude fiber content exhibited strong association among them and ...

  12. Endoscopic root canal treatment.

    Science.gov (United States)

    Moshonov, Joshua; Michaeli, Eli; Nahlieli, Oded

    2009-10-01

    To describe an innovative endoscopic technique for root canal treatment. Root canal treatment was performed on 12 patients (15 teeth), using a newly developed endoscope (Sialotechnology), which combines an endoscope, irrigation, and a surgical microinstrument channel. Endoscopic root canal treatment of all 15 teeth was successful with complete resolution of all symptoms (6-month follow-up). The novel endoscope used in this study accurately identified all microstructures and simplified root canal treatment. The endoscope may be considered for use not only for preoperative observation and diagnosis but also for active endodontic treatment.

  13. RUNTIME DICTIONARIES FOR ROOT

    CERN Document Server

    Wind, David Kofoed

    2013-01-01

    ROOT is the LHC physicists' common tool for data analysis; almost all data is stored using ROOT's I/O system. This system benefits from a custom description of types (a so-called dictionary) that is optimised for the I/O. Until now, the dictionary cannot be provided at run-time; it needs to be prepared in a separate prerequisite step. This project will move the generation of the dictionary to run-time, making use of ROOT 6's new just-in-time compiler. It allows a more dynamic and natural access to ROOT's I/O features especially for user code.

  14. Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis.

    Science.gov (United States)

    Ghai, Shashank; Ghai, Ishan; Schmitz, Gerd; Effenberg, Alfred O

    2018-01-11

    The use of rhythmic auditory cueing to enhance gait performance in parkinsonian patients' is an emerging area of interest. Different theories and underlying neurophysiological mechanisms have been suggested for ascertaining the enhancement in motor performance. However, a consensus as to its effects based on characteristics of effective stimuli, and training dosage is still not reached. A systematic review and meta-analysis was carried out to analyze the effects of different auditory feedbacks on gait and postural performance in patients affected by Parkinson's disease. Systematic identification of published literature was performed adhering to PRISMA guidelines, from inception until May 2017, on online databases; Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE and PROQUEST. Of 4204 records, 50 studies, involving 1892 participants met our inclusion criteria. The analysis revealed an overall positive effect on gait velocity, stride length, and a negative effect on cadence with application of auditory cueing. Neurophysiological mechanisms, training dosage, effects of higher information processing constraints, and use of cueing as an adjunct with medications are thoroughly discussed. This present review bridges the gaps in literature by suggesting application of rhythmic auditory cueing in conventional rehabilitation approaches to enhance motor performance and quality of life in the parkinsonian community.

  15. Changes in gait patterns induced by rhythmic auditory stimulation for adolescents with acquired brain injury.

    Science.gov (United States)

    Kim, Soo Ji; Shin, Yoon-Kyum; Yoo, Ga Eul; Chong, Hyun Ju; Cho, Sung-Rae

    2016-12-01

    The effects of rhythmic auditory stimulation (RAS) on gait in adolescents with acquired brain injury (ABI) were investigated. A total of 14 adolescents with ABI were initially recruited, and 12 were included in the final analysis (n = 6 each). They were randomly assigned to the experimental (RAS) or the control (conventional gait training) groups. The experimental group received gait training with RAS three times a week for 4 weeks. For both groups, spatiotemporal parameters and kinematic data, such as dynamic motions of joints on three-dimensional planes during a gait cycle and the range of motion in each joint, were collected. Significant group differences in pre-post changes were observed in cadence, walking velocity, and step time, indicating that there were greater improvements in those parameters in the RAS group compared with the control group. Significant increases in hip and knee motions in the sagittal plane were also observed in the RAS group. The changes in kinematic data significantly differed between groups, particularly from terminal stance to mid-swing phase. An increase of both spatiotemporal parameters and corresponding kinematic changes of hip and knee joints after RAS protocol indicates that the use of rhythmic cueing may change gait patterns in adolescents with ABI. © 2016 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  16. Electrophysiology of Hypothalamic Magnocellular Neurons In vitro: A Rhythmic Drive in Organotypic Cultures and Acute Slices.

    Science.gov (United States)

    Israel, Jean-Marc; Oliet, Stéphane H; Ciofi, Philippe

    2016-01-01

    Hypothalamic neurohormones are released in a pulsatile manner. The mechanisms of this pulsatility remain poorly understood and several hypotheses are available, depending upon the neuroendocrine system considered. Among these systems, hypothalamo-neurohypophyseal magnocellular neurons have been early-considered models, as they typically display an electrical activity consisting of bursts of action potentials that is optimal for the release of boluses of the neurohormones oxytocin and vasopressin. The cellular mechanisms underlying this bursting behavior have been studied in vitro, using either acute slices of the adult hypothalamus, or organotypic cultures of neonatal hypothalamic tissue. We have recently proposed, from experiments in organotypic cultures, that specific central pattern generator networks, upstream of magnocellular neurons, determine their bursting activity. Here, we have tested whether a similar hypothesis can be derived from in vitro experiments in acute slices of the adult hypothalamus. To this aim we have screened our electrophysiological recordings of the magnocellular neurons, previously obtained from acute slices, with an analysis of autocorrelation of action potentials to detect a rhythmic drive as we recently did for organotypic cultures. This confirmed that the bursting behavior of magnocellular neurons is governed by central pattern generator networks whose rhythmic drive, and thus probably integrity, is however less satisfactorily preserved in the acute slices from adult brains.

  17. Electrophysiology of hypothalamic magnocellular neurons in vitro: a rhythmic drive in organotypic cultures and acute slices

    Directory of Open Access Journals (Sweden)

    Jean-Marc eIsrael

    2016-03-01

    Full Text Available Hypothalamic neurohormones are released in a pulsatile manner. The mechanisms of this pulsatility remain poorly understood and several hypotheses are available, depending upon the neuroendocrine system considered. Among these systems, hypothalamo-neurohypophyseal magnocellular neurons have been early-considered models, as they typically display an electrical activity consisting of bursts of action potentials that is optimal for the release of boluses of the neurohormones oxytocin and vasopressin. The cellular mechanisms underlying this bursting behavior have been studied in vitro, using either acute slices of the adult hypothalamus, or organotypic cultures of neonatal hypothalamic tissue. We have recently proposed, from experiments in organotypic cultures, that specific central pattern generator networks, upstream of magnocellular neurons, determine their bursting activity. Here, we have tested whether a similar hypothesis can be derived from in vitro experiments in acute slices of the adult hypothalamus. To this aim we have screened our electrophysiological recordings of the magnocellular neurons, previously obtained from acute slices, with an analysis of autocorrelation of action potentials to detect a rhythmic drive as we recently did for organotypic cultures. This confirmed that the bursting behavior of magnocellular neurons is governed by central pattern generator networks whose rhythmic drive, and thus probably integrity, is however less satisfactorily preserved in the acute slices from adult brains.

  18. Aberrant rhythmic expression of cryptochrome2 regulates the radiosensitivity of rat gliomas.

    Science.gov (United States)

    Fan, Wang; Caiyan, Li; Ling, Zhu; Jiayun, Zhao

    2017-09-29

    In this study, we investigated the role of the clock regulatory protein cryptochrome 2 (Cry2) in determining the radiosensitivity of C6 glioma cells in a rat model. We observed that Cry2 mRNA and protein levels showed aberrant rhythmic periodicity of 8 h in glioma tissues, compared to 24 h in normal brain tissue. Cry2 mRNA and protein levels did not respond to irradiation in normal tissues, but both were increased at the ZT4 (low Cry2) and ZT8 (high Cry2) time points in gliomas. Immunohistochemical staining of PCNA and TUNEL assays demonstrated that high Cry2 expression in glioma tissues was associated with increased cell proliferation and decreased apoptosis. Western blot analysis showed that glioma cell fate was independent of p53, but was probably dependent on p73, which was more highly expressed at ZT4 (low Cry2) than at ZT8 (high Cry2). Levels of both p53 and p73 were unaffected by irradiation in normal brain tissues. These findings suggest aberrant rhythmic expression of Cry2 influence on radiosensitivity in rat gliomas.

  19. What is orgasm? A model of sexual trance and climax via rhythmic entrainment

    Science.gov (United States)

    Safron, Adam

    2016-01-01

    Orgasm is one of the most intense pleasures attainable to an organism, yet its underlying mechanisms remain poorly understood. On the basis of existing literatures, this article introduces a novel mechanistic model of sexual stimulation and orgasm. In doing so, it characterizes the neurophenomenology of sexual trance and climax, describes parallels in dynamics between orgasms and seizures, speculates on possible evolutionary origins of sex differences in orgasmic responding, and proposes avenues for future experimentation. Here, a model is introduced wherein sexual stimulation induces entrainment of coupling mechanical and neuronal oscillatory systems, thus creating synchronized functional networks within which multiple positive feedback processes intersect synergistically to contribute to sexual experience. These processes generate states of deepening sensory absorption and trance, potentially culminating in climax if critical thresholds are surpassed. The centrality of rhythmic stimulation (and its modulation by salience) for surpassing these thresholds suggests ways in which differential orgasmic responding between individuals—or with different partners—may serve as a mechanism for ensuring adaptive mate choice. Because the production of rhythmic stimulation combines honest indicators of fitness with cues relating to potential for investment, differential orgasmic response may serve to influence the probability of continued sexual encounters with specific mates. PMID:27799079

  20. Predictive rhythmic tapping to isochronous and tempo changing metronomes in the nonhuman primate.

    Science.gov (United States)

    Gámez, Jorge; Yc, Karyna; Ayala, Yaneri A; Dotov, Dobromir; Prado, Luis; Merchant, Hugo

    2018-04-30

    Beat entrainment is the ability to entrain one's movements to a perceived periodic stimulus, such as a metronome or a pulse in music. Humans have a capacity to predictively respond to a periodic pulse and to dynamically adjust their movement timing to match the varying music tempos. Previous studies have shown that monkeys share some of the human capabilities for rhythmic entrainment, such as tapping regularly at the period of isochronous stimuli. However, it is still unknown whether monkeys can predictively entrain to dynamic tempo changes like humans. To address this question, we trained monkeys in three tapping tasks and compared their rhythmic entrainment abilities with those of humans. We found that, when immediate feedback about the timing of each movement is provided, monkeys can predictively entrain to an isochronous beat, generating tapping movements in anticipation of the metronome pulse. This ability also generalized to a novel untrained tempo. Notably, macaques can modify their tapping tempo by predicting the beat changes of accelerating and decelerating visual metronomes in a manner similar to humans. Our findings support the notion that nonhuman primates share with humans the ability of temporal anticipation during tapping to isochronous and smoothly changing sequences of stimuli. © 2018 New York Academy of Sciences.

  1. DNA Replication Is Required for Circadian Clock Function by Regulating Rhythmic Nucleosome Composition.

    Science.gov (United States)

    Liu, Xiao; Dang, Yunkun; Matsu-Ura, Toru; He, Yubo; He, Qun; Hong, Christian I; Liu, Yi

    2017-07-20

    Although the coupling between circadian and cell cycles allows circadian clocks to gate cell division and DNA replication in many organisms, circadian clocks were thought to function independently of cell cycle. Here, we show that DNA replication is required for circadian clock function in Neurospora. Genetic and pharmacological inhibition of DNA replication abolished both overt and molecular rhythmicities by repressing frequency (frq) gene transcription. DNA replication is essential for the rhythmic changes of nucleosome composition at the frq promoter. The FACT complex, known to be involved in histone disassembly/reassembly, is required for clock function and is recruited to the frq promoter in a replication-dependent manner to promote replacement of histone H2A.Z by H2A. Finally, deletion of H2A.Z uncoupled the dependence of the circadian clock on DNA replication. Together, these results establish circadian clock and cell cycle as interdependent coupled oscillators and identify DNA replication as a critical process in the circadian mechanism. Published by Elsevier Inc.

  2. Rehabilitation of Aphasia: application of the Melodic-Rhythmic Therapy to the Italian Language

    Directory of Open Access Journals (Sweden)

    Maria Daniela eCortese

    2015-09-01

    Full Text Available Aphasia is a complex disorder, frequent after stroke (~38%, with a detailed pathophysiological characterization. Proper approaches are mandatory to devise an efficient rehabilitative strategy, in order to address the everyday life and professional disability. Several rehabilitative procedures are based on psycholinguistic, cognitive, psychosocial or pragmatic approaches, among these with neurobehavioral ratio, the Melodic Intonation Therapy (MIT .Van Eeckhout’s adaptation to the French language (Melodic-Rhythmic Therapy: MRT has implemented the training strategy by adding a rhythmic structure reproducing the French prosody.Purposes of this study were to adapt the MRT rehabilitation procedures to the Italian language and to verify its efficacy in a group of 6 chronic patients (5 males with severe non-fluent aphasia and without specific aphasic treatments at least from 9 months. The patients were treated 4 days a week for 16 weeks, with sessions of 30-40 min. They were assessed 6 months after the end of the treatment (follow-up. The patients showed a significant improvement at the Aachener Aphasie Test in different fields of spontaneous speech, with superimposable results at the follow-up. Albeit preliminary, these findings support the use of MRT in the rehabilitation after stroke. Specifically, MRT seems to benefit from its stronger structure than the available stimulation-facilitation procedures and allows a better quantification of the rehabilitation efficacy.

  3. Interactions of Circadian Rhythmicity, Stress and Orexigenic Neuropeptide Systems: Implications for Food Intake Control.

    Science.gov (United States)

    Blasiak, Anna; Gundlach, Andrew L; Hess, Grzegorz; Lewandowski, Marian H

    2017-01-01

    Many physiological processes fluctuate throughout the day/night and daily fluctuations are observed in brain and peripheral levels of several hormones, neuropeptides and transmitters. In turn, mediators under the "control" of the "master biological clock" reciprocally influence its function. Dysregulation in the rhythmicity of hormone release as well as hormone receptor sensitivity and availability in different tissues, is a common risk-factor for multiple clinical conditions, including psychiatric and metabolic disorders. At the same time circadian rhythms remain in a strong, reciprocal interaction with the hypothalamic-pituitary-adrenal (HPA) axis. Recent findings point to a role of circadian disturbances and excessive stress in the development of obesity and related food consumption and metabolism abnormalities, which constitute a major health problem worldwide. Appetite, food intake and energy balance are under the influence of several brain neuropeptides, including the orexigenic agouti-related peptide, neuropeptide Y, orexin, melanin-concentrating hormone and relaxin-3. Importantly, orexigenic neuropeptide neurons remain under the control of the circadian timing system and are highly sensitive to various stressors, therefore the potential neuronal mechanisms through which disturbances in the daily rhythmicity and stress-related mediator levels contribute to food intake abnormalities rely on reciprocal interactions between these elements.

  4. Electrophysiological Study of Algorithmically Processed Metric/Rhythmic Variations in Language and Music

    Directory of Open Access Journals (Sweden)

    Magne Cyrille

    2007-01-01

    Full Text Available This work is the result of an interdisciplinary collaboration between scientists from the fields of audio signal processing, phonetics and cognitive neuroscience aiming at studying the perception of modifications in meter, rhythm, semantics and harmony in language and music. A special time-stretching algorithm was developed to work with natural speech. In the language part, French sentences ending with tri-syllabic congruous or incongruous words, metrically modified or not, were made. In the music part, short melodies made of triplets, rhythmically and/or harmonically modified, were built. These stimuli were presented to a group of listeners that were asked to focus their attention either on meter/rhythm or semantics/harmony and to judge whether or not the sentences/melodies were acceptable. Language ERP analyses indicate that semantically incongruous words are processed independently of the subject's attention thus arguing for automatic semantic processing. In addition, metric incongruities seem to influence semantic processing. Music ERP analyses show that rhythmic incongruities are processed independently of attention, revealing automatic processing of rhythm in music.

  5. Electrophysiological Study of Algorithmically Processed Metric/Rhythmic Variations in Language and Music

    Directory of Open Access Journals (Sweden)

    Richard Kronland-Martinet

    2007-12-01

    Full Text Available This work is the result of an interdisciplinary collaboration between scientists from the fields of audio signal processing, phonetics and cognitive neuroscience aiming at studying the perception of modifications in meter, rhythm, semantics and harmony in language and music. A special time-stretching algorithm was developed to work with natural speech. In the language part, French sentences ending with tri-syllabic congruous or incongruous words, metrically modified or not, were made. In the music part, short melodies made of triplets, rhythmically and/or harmonically modified, were built. These stimuli were presented to a group of listeners that were asked to focus their attention either on meter/rhythm or semantics/harmony and to judge whether or not the sentences/melodies were acceptable. Language ERP analyses indicate that semantically incongruous words are processed independently of the subject's attention thus arguing for automatic semantic processing. In addition, metric incongruities seem to influence semantic processing. Music ERP analyses show that rhythmic incongruities are processed independently of attention, revealing automatic processing of rhythm in music.

  6. Study on Quality Indicator System of Rhythmic Gymnasts in Analytic Hierarchy Process

    Science.gov (United States)

    Luo, Lin

    2017-08-01

    The rhythmic gymnastics (RG) is a sport item with the direct aim of winning as well as a good ornamental value. The scientific selection by the rhythmic gymnasts is necessary for the success, and also the beginning for the scientific training of the gymnasts in their special training stage. According to RG characteristics and the physical characteristics of the gymnasts, also in combination with the investigations & interviews to the coaches who have years of training experience in RG, the experts & scholars on RG study & teaching in universities, and by referring to relevant documents, this paper established the quality indicator system in analytic hierarchy process (AHP). We summarized and selected several indicators obviously influencing the RG training and divided them into the three types of factors: physical factors, flexibility & strength factors, and speed & dexterity factors, according to which 12 specific indicators, their weights and comprehensive evaluation coefficients. Based on these indicators, we established the quality indicator system of the gymnasts, and developed corresponding software system, providing scientific theoretical basis & practical application basis for the selection & evaluation of the gymnasts.

  7. New perspectives concerning feedback influences on cardiorespiratory control during rhythmic exercise and on exercise performance.

    Science.gov (United States)

    Dempsey, Jerome A

    2012-09-01

    The cardioaccelerator and ventilatory responses to rhythmic exercise in the human are commonly viewed as being mediated predominantly via feedforward 'central command' mechanisms, with contributions from locomotor muscle afferents to the sympathetically mediated pressor response. We have assessed the relative contributions of three types of feedback afferents on the cardiorespiratory response to voluntary, rhythmic exercise by inhibiting their normal 'tonic' activity in healthy animals and humans and in chronic heart failure. Transient inhibition of the carotid chemoreceptors during moderate intensity exercise reduced muscle sympathetic nerve activity (MSNA) and increased limb vascular conductance and blood flow; and reducing the normal level of respiratory muscle work during heavier intensity exercise increased limb vascular conductance and blood flow. These cardiorespiratory effects were prevented via ganglionic blockade and were enhanced in chronic heart failure and in hypoxia. Blockade of μ opioid sensitive locomotor muscle afferents, with preservation of central motor output via intrathecal fentanyl: (a) reduced the mean arterial blood pressure (MAP), heart rate and ventilatory responses to all steady state exercise intensities; and (b) during sustained high intensity exercise, reduced O(2) transport, increased central motor output and end-exercise muscle fatigue and reduced endurance performance. We propose that these three afferent reflexes - probably acting in concert with feedforward central command - contribute significantly to preserving O(2) transport to locomotor and to respiratory muscles during exercise. Locomotor muscle afferents also appear to provide feedback concerning the metabolic state of the muscle to influence central motor output, thereby limiting peripheral fatigue development.

  8. Rhythmic Behavior Is Controlled by the SRm160 Splicing Factor in Drosophila melanogaster.

    Science.gov (United States)

    Beckwith, Esteban J; Hernando, Carlos E; Polcowñuk, Sofía; Bertolin, Agustina P; Mancini, Estefania; Ceriani, M Fernanda; Yanovsky, Marcelo J

    2017-10-01

    Circadian clocks organize the metabolism, physiology, and behavior of organisms throughout the day-night cycle by controlling daily rhythms in gene expression at the transcriptional and post-transcriptional levels. While many transcription factors underlying circadian oscillations are known, the splicing factors that modulate these rhythms remain largely unexplored. A genome-wide assessment of the alterations of gene expression in a null mutant of the alternative splicing regulator SR-related matrix protein of 160 kDa (SRm160) revealed the extent to which alternative splicing impacts on behavior-related genes. We show that SRm160 affects gene expression in pacemaker neurons of the Drosophila brain to ensure proper oscillations of the molecular clock. A reduced level of SRm160 in adult pacemaker neurons impairs circadian rhythms in locomotor behavior, and this phenotype is caused, at least in part, by a marked reduction in period ( per ) levels. Moreover, rhythmic accumulation of the neuropeptide PIGMENT DISPERSING FACTOR in the dorsal projections of these neurons is abolished after SRm160 depletion. The lack of rhythmicity in SRm160-downregulated flies is reversed by a fully spliced per construct, but not by an extra copy of the endogenous locus, showing that SRm160 positively regulates per levels in a splicing-dependent manner. Our findings highlight the significant effect of alternative splicing on the nervous system and particularly on brain function in an in vivo model. Copyright © 2017 by the Genetics Society of America.

  9. Muscle Coactivation during Stability Exercises in Rhythmic Gymnastics: A Two-Case Study

    Directory of Open Access Journals (Sweden)

    Alicja Rutkowska-Kucharska

    2018-01-01

    Full Text Available Balance exercises in rhythmic gymnastics are performed on tiptoes, which causes overload of foot joints. This study aimed to evaluate the engagement of muscles stabilizing ankle and knee joints in balance exercises and determine exercises which may lead to ankle and knee joint injuries. It was hypothesized that long-term training has an influence on balance control and efficient use of muscles in their stabilizing function. Two rhythmic gymnasts (8 and 21 years old performed balances on tiptoes (side split with hand support, ring with hand support and on a flat foot (back split without hand support exercise. Surface electromyography, ground reaction forces, and kinematic parameters of movement were measured. The measuring systems applied were synchronized with the BTS SMART system. The results show the necessity to limit balance exercises on tiptoes in children because gastrocnemius medialis (GM and gastrocnemius lateralis (GL activity significantly exceeds their activity. Ankle joint stabilizing activity of GM and GL muscles in the younger gymnast was more important than in the older one. Performing this exercise, the younger gymnast distributed load on the anterior side of the foot while the older one did so on its posterior. Gymnastics coaches should be advised to exclude ring with hand support exercise from the training of young gymnasts.

  10. Synchronisation hubs in the visual cortex may arise from strong rhythmic inhibition during gamma oscillations.

    Science.gov (United States)

    Folias, Stefanos E; Yu, Shan; Snyder, Abigail; Nikolić, Danko; Rubin, Jonathan E

    2013-09-01

    Neurons in the visual cortex exhibit heterogeneity in feature selectivity and the tendency to generate action potentials synchronously with other nearby neurons. By examining visual responses from cat area 17 we found that, during gamma oscillations, there was a positive correlation between each unit's sharpness of orientation tuning, strength of oscillations, and propensity towards synchronisation with other units. Using a computational model, we demonstrated that heterogeneity in the strength of rhythmic inhibitory inputs can account for the correlations between these three properties. Neurons subject to strong inhibition tend to oscillate strongly in response to both optimal and suboptimal stimuli and synchronise promiscuously with other neurons, even if they have different orientation preferences. Moreover, these strongly inhibited neurons can exhibit sharp orientation selectivity provided that the inhibition they receive is broadly tuned relative to their excitatory inputs. These results predict that the strength and orientation tuning of synaptic inhibition are heterogeneous across area 17 neurons, which could have important implications for these neurons' sensory processing capabilities. Furthermore, although our experimental recordings were conducted in the visual cortex, our model and simulation results can apply more generally to any brain region with analogous neuron types in which heterogeneity in the strength of rhythmic inhibition can arise during gamma oscillations. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Chronic treatment with epidermal growth factor induces growth of the rat ventral prostate

    DEFF Research Database (Denmark)

    Tørring, N; Jensen, L V; Wen, J G

    2001-01-01

    of the prostate epithelium, the stroma and the lumen following EGF treatment, in a pattern resembling physiological growth of the ventral prostate. A significant correlation (r = 0.78, p testosterone...

  12. 'Batman excision' of ventral skin in hypospadias repair, clue to aesthetic repair (point of technique).

    Science.gov (United States)

    Hoebeke, P B; De Kuyper, P; Van Laecke, E

    2002-11-01

    In the hypospadiac penis the ventral skin is poorly developed, while dorsal skin is redundant. The classical Byars' flaps are a way to use the excess dorsal skin to cover the penile shaft. The appearance after Byars' flaps however is not natural. We use a more natural looking skin allocation with superior aesthetic results. The clue in this reconstruction is an inverted triangle shaped excision of ventral skin expanding over the edges of the hooded prepuce (which makes it look like Batman). After excision of the ventral skin it is possible to close the penile skin in the midline, thus mimicking the natural raphe. In case of preputial reconstruction the excised ventral skin makes the prepuce look more natural. The trend of further refining aesthetic appearance of the hypospadiac penis often neglects the penile skin reconstruction. A technique is presented by which the total penile appearances after surgery ameliorates due to better skin reconstruction.

  13. Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream.

    Science.gov (United States)

    Güçlü, Umut; van Gerven, Marcel A J

    2015-07-08

    Converging evidence suggests that the primate ventral visual pathway encodes increasingly complex stimulus features in downstream areas. We quantitatively show that there indeed exists an explicit gradient for feature complexity in the ventral pathway of the human brain. This was achieved by mapping thousands of stimulus features of increasing complexity across the cortical sheet using a deep neural network. Our approach also revealed a fine-grained functional specialization of downstream areas of the ventral stream. Furthermore, it allowed decoding of representations from human brain activity at an unsurpassed degree of accuracy, confirming the quality of the developed approach. Stimulus features that successfully explained neural responses indicate that population receptive fields were explicitly tuned for object categorization. This provides strong support for the hypothesis that object categorization is a guiding principle in the functional organization of the primate ventral stream. Copyright © 2015 the authors 0270-6474/15/3510005-10$15.00/0.

  14. The ventral visual pathway: an expanded neural framework for the processing of object quality.

    Science.gov (United States)

    Kravitz, Dwight J; Saleem, Kadharbatcha S; Baker, Chris I; Ungerleider, Leslie G; Mishkin, Mortimer

    2013-01-01

    Since the original characterization of the ventral visual pathway, our knowledge of its neuroanatomy, functional properties, and extrinsic targets has grown considerably. Here we synthesize this recent evidence and propose that the ventral pathway is best understood as a recurrent occipitotemporal network containing neural representations of object quality both utilized and constrained by at least six distinct cortical and subcortical systems. Each system serves its own specialized behavioral, cognitive, or affective function, collectively providing the raison d'être for the ventral visual pathway. This expanded framework contrasts with the depiction of the ventral visual pathway as a largely serial staged hierarchy culminating in singular object representations and more parsimoniously incorporates attentional, contextual, and feedback effects. Published by Elsevier Ltd.

  15. High-grade hemorrhoids requiring surgical treatment are common after laparoscopic ventral mesh rectopexy

    NARCIS (Netherlands)

    van Iersel, J. J.; Formijne Jonkers, H. A.; Verheijen, P. M.; Draaisma, W. A.; Consten, E. C J; Broeders, I. A M J

    2016-01-01

    Purpose: To describe patients developing grade III and IV hemorrhoids requiring surgery after laparoscopic ventral mesh rectopexy (LVMR) and to explore the relationship between developing such hemorrhoids and recurrence of rectal prolapse after LVMR. Methods: All consecutive patients receiving LVMR

  16. Functional organization and visual representations in human ventral lateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Annie Wai Yiu Chan

    2013-07-01

    Full Text Available Recent neuroimaging studies in both human and non-human primates have identified face selective activation in the ventral lateral prefrontal cortex even in the absence of working memory demands. Further, research has suggested that this face-selective response is largely driven by the presence of the eyes. However, the nature and origin of visual category responses in the ventral lateral prefrontal cortex remain unclear. Further, in a broader sense, how do these findings relate to our current understandings of lateral prefrontal cortex? What do these findings tell us about the underlying function and organization principles of the ventral lateral prefrontal cortex? What is the future direction for investigating visual representations in this cortex? This review focuses on the function, topography, and circuitry of the ventral lateral prefrontal cortex to enhance our understanding of the evolution and development of this cortex.

  17. Differentiation of PC12 Cells Results in Enhanced VIP Expression and Prolonged Rhythmic Expression of Clock Genes

    DEFF Research Database (Denmark)

    Pretzmann, C.P.; Fahrenkrug, J.; Georg, B.

    2008-01-01

    To examine for circadian rhythmicity, the messenger RNA (mRNA) amount of the clock genes Per1 and Per2 was measured in undifferentiated and nerve-growth-factor-differentiated PC12 cells harvested every fourth hour. Serum shock was needed to induce circadian oscillations, which in undifferentiated...... PC12 cultures lasted only one 24-h period, while in differentiated cultures, the rhythms continued for at least 3 days. Thus, neuronal differentiation provided PC12 cells the ability to maintain rhythmicity for an extended period. Both vasoactive intestinal polypeptide (VIP) and its receptor VPAC(2...

  18. Reciprocal links between metabolic and ionic events in islet cells. Their relevance to the rhythmics of insulin release.

    Science.gov (United States)

    Malaisse, W J

    1998-02-01

    The notion of reciprocal links between metabolic and ionic events in islet cells and the rhythmics of insulin release is based on (i) the rhythmic pattern of hormonal release from isolated perfused rat pancreas, which supports the concept of an intrapancreatic pacemaker; (ii) the assumption that this phasic pattern is due to the integration of secretory activity in distinct functional units, e.g. distinct islets; and (iii) the fact that reciprocal coupling between metabolic and ionic events is operative in the secretory sequence.

  19. Photodynamic damage of glial cells in crayfish ventral nerve cord

    Science.gov (United States)

    Kolosov, M. S.; Duz, E.; Uzdensky, A. B.

    2011-03-01

    Photodynamic therapy (PDT) is a promising method for treatment of brain tumors, the most of which are of glial origin. In the present work we studied PDT-mediated injury of glial cells in nerve tissue, specifically, in abdominal connectives in the crayfish ventral nerve cord. The preparation was photosensitized with alumophthalocyanine Photosens and irradiated 30 min with the diode laser (670 nm, 0.1 or 0.15 W/cm2). After following incubation in the darkness during 1- 10 hours it was fluorochromed with Hoechst 33342 and propidium iodide to reveal nuclei of living, necrotic and apoptotic cells. The chain-like location of the glial nuclei allowed visualization of those enveloping giant axons and blood vessels. The level of glial necrosis in control preparations was about 2-5 %. Apoptosis was not observed in control preparations. PDT significantly increased necrosis of glial cells to 52 or 67 % just after irradiation with 0.1 or 0.15 W/cm2, respectively. Apoptosis of glial cells was observed only at 10 hours after light exposure. Upper layers of the glial envelope of the connectives were injured stronger comparing to deep ones: the level of glial necrosis decreased from 100 to 30 % upon moving from the connective surface to the plane of the giant axon inside the connective. Survival of glial cells was also high in the vicinity of blood vessels. One can suggest that giant axons and blood vessels protect neighboring glial cells from photodynamic damage. The mechanism of such protective action remains to be elucidated.

  20. Context Dependent Effects of Ventral Tegmental Area Inactivation on Spatial Working Memory

    OpenAIRE

    Martig, Adria K.; Jones, Graham L.; Smith, Kelsey E.; Mizumori, Sheri J.Y.

    2009-01-01

    Rats were tested on a hippocampus dependent win-shift working memory task in familiar or novel environments after receiving bilateral ventral tegmental area infusions of baclofen. Baclofen infusion disrupted working memory performance in both familiar and novel environments. In addition, baclofen infusion selectively disrupted short-term working memory in the novel environment. This experiment confirms selective ventral tegmental area support of accurate performance during a context dependent...

  1. Preputial reconstruction and tubularized incised plate urethroplasty in proximal hypospadias with ventral penile curvature

    OpenAIRE

    Bhat, Amilal; Gandhi, Ajay; Saxena, Gajendra; Choudhary, Gautam Ram

    2010-01-01

    Aims : Objective of this study was to assess the feasibility and results of preputial reconstruction and tubularized incised plate urethroplasty (TIP) in patients of proximal hypospadias with ventral penile curvature. Materials and Methods : Twenty-seven patients of proximal hypospadias who underwent preputioplasty with TIP were evaluated retrospectively. Ventral curvature was corrected by mobilization of the urethral plate with the corpus spongiosum and the proximal urethra; dorsal plica...

  2. Novel structural components of the ventral disc and lateral crest in Giardia intestinalis.

    Directory of Open Access Journals (Sweden)

    Kari D Hagen

    2011-12-01

    Full Text Available Giardia intestinalis is a ubiquitous parasitic protist that is the causative agent of giardiasis, one of the most common protozoan diarrheal diseases in the world. Giardia trophozoites attach to the intestinal epithelium using a specialized and elaborate microtubule structure, the ventral disc. Surrounding the ventral disc is a less characterized putatively contractile structure, the lateral crest, which forms a continuous perimeter seal with the substrate. A better understanding of ventral disc and lateral crest structure, conformational dynamics, and biogenesis is critical for understanding the mechanism of giardial attachment to the host. To determine the components comprising the ventral disc and lateral crest, we used shotgun proteomics to identify proteins in a preparation of isolated ventral discs. Candidate disc-associated proteins, or DAPs, were GFP-tagged using a ligation-independent high-throughput cloning method. Based on disc localization, we identified eighteen novel DAPs, which more than doubles the number of known disc-associated proteins. Ten of the novel DAPs are associated with the lateral crest or outer edge of the disc, and are the first confirmed components of this structure. Using Fluorescence Recovery After Photobleaching (FRAP with representative novel DAP::GFP strains we found that the newly identified DAPs tested did not recover after photobleaching and are therefore structural components of the ventral disc or lateral crest. Functional analyses of the novel DAPs will be central toward understanding the mechanism of ventral disc-mediated attachment and the mechanism of disc biogenesis during cell division. Since attachment of Giardia to the intestine via the ventral disc is essential for pathogenesis, it is possible that some proteins comprising the disc could be potential drug targets if their loss or disruption interfered with disc biogenesis or function, preventing attachment.

  3. Slits Are Chemorepellents Endogenous to Hypothalamus and Steer Thalamocortical Axons into Ventral Telencephalon

    OpenAIRE

    Braisted, Janet E.; Ringstedt, Thomas; O'Leary, Dennis D. M.

    2009-01-01

    Thalamocortical axons (TCAs) originate in dorsal thalamus, extend ventrally along the lateral thalamic surface, and as they approach hypothalamus make a lateral turn into ventral telencephalon. In vitro studies show that hypothalamus releases a chemorepellent for TCAs, and analyses of knockout mice indicate that Slit chemorepellents and their receptor Robo2 influence TCA pathfinding. We show that Slit chemorepellents are the hypothalamic chemorepellent and act through Robos to steer TCAs into...

  4. Ventral striatum activity when watching preferred pornographic pictures is correlated with symptoms of Internet pornography addiction.

    Science.gov (United States)

    Brand, Matthias; Snagowski, Jan; Laier, Christian; Maderwald, Stefan

    2016-04-01

    One type of Internet addiction is excessive pornography consumption, also referred to as cybersex or Internet pornography addiction. Neuroimaging studies found ventral striatum activity when participants watched explicit sexual stimuli compared to non-explicit sexual/erotic material. We now hypothesized that the ventral striatum should respond to preferred pornographic compared to non-preferred pornographic pictures and that the ventral striatum activity in this contrast should be correlated with subjective symptoms of Internet pornography addiction. We studied 19 heterosexual male participants with a picture paradigm including preferred and non-preferred pornographic materials. Subjects had to evaluate each picture with respect to arousal, unpleasantness, and closeness to ideal. Pictures from the preferred category were rated as more arousing, less unpleasant, and closer to ideal. Ventral striatum response was stronger for the preferred condition compared to non-preferred pictures. Ventral striatum activity in this contrast was correlated with the self-reported symptoms of Internet pornography addiction. The subjective symptom severity was also the only significant predictor in a regression analysis with ventral striatum response as dependent variable and subjective symptoms of Internet pornography addiction, general sexual excitability, hypersexual behavior, depression, interpersonal sensitivity, and sexual behavior in the last days as predictors. The results support the role for the ventral striatum in processing reward anticipation and gratification linked to subjectively preferred pornographic material. Mechanisms for reward anticipation in ventral striatum may contribute to a neural explanation of why individuals with certain preferences and sexual fantasies are at-risk for losing their control over Internet pornography consumption. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Mapping a lateralisation gradient within the ventral stream for auditory speech perception

    OpenAIRE

    Karsten eSpecht

    2013-01-01

    Recent models on speech perception propose a dual stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend towards the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus...

  6. Mapping a lateralization gradient within the ventral stream for auditory speech perception

    OpenAIRE

    Specht, Karsten

    2013-01-01

    Recent models on speech perception propose a dual-stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend toward the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus....

  7. Correction of distal hypospadias: ventral adaption of the prepuce and meatal advancement.

    Science.gov (United States)

    Persson-Jünemann, C; Seemann, O; Köhrmann, K U; Potempa, D; Jünemann, K P; Alken, P

    1993-01-01

    In distal hypospadias without chordee, surgical correction has a purely cosmetic character. In contrast to standard techniques focusing on meatal position, parents often regard the redundant dorsal prepuce and its missing ventral fusion as the essential constituent of this malformation. The operative technique, presented in detail, emphasizes on foreskin reconstruction. The ventral adaption of the prepuce (VAP procedure) results in a penis with normal appearance. Complications presented reveal the importance of proper patient selection.

  8. Ventral aspect of the visual form pathway is not critical for the perception of biological motion

    Science.gov (United States)

    Gilaie-Dotan, Sharon; Saygin, Ayse Pinar; Lorenzi, Lauren J.; Rees, Geraint; Behrmann, Marlene

    2015-01-01

    Identifying the movements of those around us is fundamental for many daily activities, such as recognizing actions, detecting predators, and interacting with others socially. A key question concerns the neurobiological substrates underlying biological motion perception. Although the ventral “form” visual cortex is standardly activated by biologically moving stimuli, whether these activations are functionally critical for biological motion perception or are epiphenomenal remains unknown. To address this question, we examined whether focal damage to regions of the ventral visual cortex, resulting in significant deficits in form perception, adversely affects biological motion perception. Six patients with damage to the ventral cortex were tested with sensitive point-light display paradigms. All patients were able to recognize unmasked point-light displays and their perceptual thresholds were not significantly different from those of three different control groups, one of which comprised brain-damaged patients with spared ventral cortex (n > 50). Importantly, these six patients performed significantly better than patients with damage to regions critical for biological motion perception. To assess the necessary contribution of different regions in the ventral pathway to biological motion perception, we complement the behavioral findings with a fine-grained comparison between the lesion location and extent, and the cortical regions standardly implicated in biological motion processing. This analysis revealed that the ventral aspects of the form pathway (e.g., fusiform regions, ventral extrastriate body area) are not critical for biological motion perception. We hypothesize that the role of these ventral regions is to provide enhanced multiview/posture representations of the moving person rather than to represent biological motion perception per se. PMID:25583504

  9. Modified semitendinosus muscle transposition to repair ventral perineal hernia in 14 dogs.

    Science.gov (United States)

    Morello, E; Martano, M; Zabarino, S; Piras, L A; Nicoli, S; Bussadori, R; Buracco, P

    2015-06-01

    To describe a modified technique of semitendinosus muscle transposition for the repair of ventral perineal hernia. Retrospective review of case records of dogs with ventral perineal hernia that were treated by transposing the medial half of the longitudinally split semitendinosus muscle of one limb. The transposition of the internal obturator muscle was used when uni- or bilateral rectal sacculation was also present in addition to ventral perineal hernia; colopexy and vas deferens pexy were also performed. Fourteen dogs were included. In addition to ventral perineal hernia, unilateral and bilateral perineal hernia was also present in five and six of the dogs, respectively. The mean follow-up time was 890 days. Ventral perineal hernia was successfully managed by the modified semitendinosus muscle transposition with minor complications in all the dogs included in the study. Despite the small number of dogs included, the unilateral transposition of the medial half of the longitudinally split semitendinosus muscle consistently supported the ventral rectal enlargement in perineal hernia without obvious adverse effects. © 2015 British Small Animal Veterinary Association.

  10. 2. Rhythmical Creativity in Duple and Triple Meter of Students of Early-School Education in the Light of Their Stabilised Musical Aptitudes and Rhythm Readiness to Improvise

    Directory of Open Access Journals (Sweden)

    Kołodziejski Maciej

    2018-03-01

    Full Text Available The article presents the results of (author's own research on the students of earlyschool education imitation and the rhythmical improvisation in the light of their stabilised musical aptitudes measured with Edwin E. Gordon's AMMA test and also Edwin E. Gordon's readiness to rhythm improvisation readiness record (RIRR. In the first part of the research the students imitated some rhythmical patterns diversified in terms of difficulty in duple and triple meter and the subsequent part concerned guiding the oral rhythmical dialogue (on the BAH syllable by the teacher with the application of various rhythmical motives in different metres. The students' both imitative and improvising performances were rated by three competent judges. What was undertaken was searching for the relations between musical aptitudes, improvisation readiness and the pupils' rhythmical imitation and improvisation abilities.

  11. Irrational Square Roots

    Science.gov (United States)

    Misiurewicz, Michal

    2013-01-01

    If students are presented the standard proof of irrationality of [square root]2, can they generalize it to a proof of the irrationality of "[square root]p", "p" a prime if, instead of considering divisibility by "p", they cling to the notions of even and odd used in the standard proof?

  12. Chromatic roots and hamiltonian paths

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2000-01-01

    We present a new connection between colorings and hamiltonian paths: If the chromatic polynomial of a graph has a noninteger root less than or equal to t(n) = 2/3 + 1/3 (3)root (26 + 6 root (33)) + 1/3 (3)root (26 - 6 root (33)) = 1.29559.... then the graph has no hamiltonian path. This result...

  13. Prediction of rhythmic and periodic EEG patterns and seizures on continuous EEG with early epileptiform discharges.

    Science.gov (United States)

    Koren, J; Herta, J; Draschtak, S; Pötzl, G; Pirker, S; Fürbass, F; Hartmann, M; Kluge, T; Baumgartner, C

    2015-08-01

    Continuous EEG (cEEG) is necessary to document nonconvulsive seizures (NCS), nonconvulsive status epilepticus (NCSE), as well as rhythmic and periodic EEG patterns of 'ictal-interictal uncertainty' (RPPIIU) including periodic discharges, rhythmic delta activity, and spike-and-wave complexes in neurological intensive care patients. However, cEEG is associated with significant recording and analysis efforts. Therefore, predictors from short-term routine EEG with a reasonably high yield are urgently needed in order to select patients for evaluation with cEEG. The aim of this study was to assess the prognostic significance of early epileptiform discharges (i.e., within the first 30 min of EEG recording) on the following: (1) incidence of ictal EEG patterns and RPPIIU on subsequent cEEG, (2) occurrence of acute convulsive seizures during the ICU stay, and (3) functional outcome after 6 months of follow-up. We conducted a separate analysis of the first 30 min and the remaining segments of prospective cEEG recordings according to the ACNS Standardized Critical Care EEG Terminology as well as NCS criteria and review of clinical data of 32 neurological critical care patients. In 17 patients with epileptiform discharges within the first 30 min of EEG (group 1), electrographic seizures were observed in 23.5% (n = 4), rhythmic or periodic EEG patterns of 'ictal-interictal uncertainty' in 64.7% (n = 11), and neither electrographic seizures nor RPPIIU in 11.8% (n = 2). In 15 patients with no epileptiform discharges in the first 30 min of EEG (group 2), no electrographic seizures were recorded on subsequent cEEG, RPPIIU were seen in 26.7% (n = 4), and neither electrographic seizures nor RPPIIU in 73.3% (n = 11). The incidence of EEG patterns on cEEG was significantly different between the two groups (p = 0.008). Patients with early epileptiform discharges developed acute seizures more frequently than patients without early epileptiform discharges (p = 0.009). Finally, functional

  14. Feasibility of external rhythmic cueing with the Google Glass for improving gait in people with Parkinson’s disease

    NARCIS (Netherlands)

    Zhao, Yan; Nonnekes, Johan Hendrik; Storcken, Erik J.M.; Janssen, Sabine; van Wegen, Erwin E.H.; Bloem, Bastiaan R.; Dorresteijn, Lucille D.A.; van Vugt, Jeroen P.P.; Heida, Tjitske; van Wezel, Richard Jack Anton

    New mobile technologies like smartglasses can deliver external cues that may improve gait in people with Parkinson’s disease in their natural environment. However, the potential of these devices must first be assessed in controlled experiments. Therefore, we evaluated rhythmic visual and auditory

  15. The Development of Rhythm at the Age of 6-11 Years: Non-Pitch Rhythmic Improvisation

    Science.gov (United States)

    Paananen, Pirkko

    2006-01-01

    In the statistical and transcriptional analyses reported in this exploratory study, original rhythms of 6-11-year-old children (N=36) were examined. The hypotheses were based on a new model of musical development, and tested empirically using non-pitch rhythmic improvisation in a MIDI-environment. Several representational types were found in…

  16. Where Is the Beat? The Neural Correlates of Lexical Stress and Rhythmical Well-formedness in Auditory Story Comprehension.

    Science.gov (United States)

    Kandylaki, Katerina D; Henrich, Karen; Nagels, Arne; Kircher, Tilo; Domahs, Ulrike; Schlesewsky, Matthias; Bornkessel-Schlesewsky, Ina; Wiese, Richard

    2017-07-01

    While listening to continuous speech, humans process beat information to correctly identify word boundaries. The beats of language are stress patterns that are created by combining lexical (word-specific) stress patterns and the rhythm of a specific language. Sometimes, the lexical stress pattern needs to be altered to obey the rhythm of the language. This study investigated the interplay of lexical stress patterns and rhythmical well-formedness in natural speech with fMRI. Previous electrophysiological studies on cases in which a regular lexical stress pattern may be altered to obtain rhythmical well-formedness showed that even subtle rhythmic deviations are detected by the brain if attention is directed toward prosody. Here, we present a new approach to this phenomenon by having participants listen to contextually rich stories in the absence of a task targeting the manipulation. For the interaction of lexical stress and rhythmical well-formedness, we found one suprathreshold cluster localized between the cerebellum and the brain stem. For the main effect of lexical stress, we found higher BOLD responses to the retained lexical stress pattern in the bilateral SMA, bilateral postcentral gyrus, bilateral middle fontal gyrus, bilateral inferior and right superior parietal lobule, and right precuneus. These results support the view that lexical stress is processed as part of a sensorimotor network of speech comprehension. Moreover, our results connect beat processing in language to domain-independent timing perception.

  17. Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson’s disease

    NARCIS (Netherlands)

    Woerd, E.S. te; Oostenveld, R.; Bloem, B.R.; Lange, F.P. de; Praamstra, P.

    2015-01-01

    The basal ganglia play an important role in beat perception and patients with Parkinson’s disease (PD) are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this

  18. Activity of Renshaw cells during locomotor-like rhythmic activity in the isolated spinal cord of neonatal mice

    DEFF Research Database (Denmark)

    Nishimaru, Hiroshi; Restrepo, Carlos E.; Kiehn, Ole

    2006-01-01

    % of the recorded RCs fired in-phase with the ipsilateral L2 flexor-related rhythm, whereas the rest fired in the extensor phase. Each population of RCs fired throughout the corresponding locomotor phase. All RCs received both excitatory and inhibitory synaptic inputs during the locomotor-like rhythmic activity...

  19. Feasibility of external rhythmic cueing with the Google Glass for improving gait in people with Parkinson's disease

    NARCIS (Netherlands)

    Zhao, Y; Nonnekes, J.H.; Storcken, E.J.; Janssen, S.; Wegen, E. van; Bloem, B.R.; Dorresteijn, L.D.A.; Vugt, J.P.P. van; Heida, T.; Wezel, R.J.A. van

    2016-01-01

    New mobile technologies like smartglasses can deliver external cues that may improve gait in people with Parkinson's disease in their natural environment. However, the potential of these devices must first be assessed in controlled experiments. Therefore, we evaluated rhythmic visual and auditory

  20. Feasibility of external rhythmic cueing with the Google Glass for improving gait in people with Parkinson’s disease

    NARCIS (Netherlands)

    Zhao, Yan; Nonnekes, Jorik; Storcken, Erik J M; Janssen, Sabine; van Wegen, Erwin E H; Bloem, Bastiaan R.; Dorresteijn, Lucille D A; van Vugt, Jeroen P P; Heida, Tjitske; van Wezel, Richard J A

    2016-01-01

    New mobile technologies like smartglasses can deliver external cues that may improve gait in people with Parkinson’s disease in their natural environment. However, the potential of these devices must first be assessed in controlled experiments. Therefore, we evaluated rhythmic visual and auditory

  1. Krüppel-like factor 15: Regulator of BCAA metabolism and circadian protein rhythmicity.

    Science.gov (United States)

    Fan, Liyan; Hsieh, Paishiun N; Sweet, David R; Jain, Mukesh K

    2018-04-01

    Regulation of nutrient intake, utilization, and storage exhibits a circadian rhythmicity that allows organisms to anticipate and adequately respond to changes in the environment across day/night cycles. The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are important modulators of metabolism and metabolic health - for example, their catabolism yields carbon substrates for gluconeogenesis during periods of fasting. Krüppel-like factor 15 (KLF15) has recently emerged as a critical transcriptional regulator of BCAA metabolism, and the absence of this transcription factor contributes to severe pathologies such as Duchenne muscular dystrophy and heart failure. This review highlights KLF15's role as a central regulator of BCAA metabolism during periods of fasting, throughout day/night cycles, and in experimental models of muscle disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A critical review of rhythmic recitation of Charakasamhita as per Chhanda Shastra.

    Science.gov (United States)

    Panja, Asit

    2013-04-01

    Charakasamhita is one of the most important life lines of Ayurvedic classical knowledge. This supreme text of "science of life" has been composed nearly about 3000 years ago and before the well-established era of documentation. It is composed in the then language, style, and method. The ancient scholars of Ayurveda have presented it in such a way that all three kinds of pupil can get the matter easily. Nearly two thirds of the compendium is shaped in verse form according to rules and regulations of Chhandashastra of classical Sanskrit literature to retain in memory for a long time. With the advent of time this classical practice of recitation has been gradually losing its popularity and as a result the proper Ayurvedic learning cannot be completely possible in the current era. This review consists of methods of rhythmic recitation of all verses of Charakasamhita with notations and classical analysis.

  3. Neuromuscular-skeletal origins of predominant patterns of coordination in rhythmic two-joint arm movement.

    Science.gov (United States)

    de Rugy, Aymar; Riek, Stephan; Carson, Richard G

    2006-01-01

    The authors tested for predominant patterns of coordination in the combination of rhythmic flexion-extension (FE) and supination- (SP) at the elbow-joint complex. Participants (N=10) spontaneously established in-phase (supination synchronized with flexion) and antiphase (pronation synchronized with flexion) patterns. In addition, the authors used a motorized robot arm to generate involuntary SP movements with different phase relations with respect to voluntary FE. The involuntarily induced in-phase pattern was accentuated and was more consistent than other patterns. The result provides evidence that the predominance of the in-phase pattern originates in the influence of neuromuscular-skeletal constraints rather than in a preference dictated by perceptual-cognitive factors implicated in voluntary control. Neuromuscular-skeletal constraints involved in the predominance of the in-phase and the antiphase patterns are discussed.

  4. Eating disorders, energy intake, training volume, and menstrual function in high-level modern rhythmic gymnasts.

    Science.gov (United States)

    Sundgot-Borgen, J

    1996-06-01

    This study examined clinical and subclinical eating disorders (EDs) in young Norwegian modern rhythmic gymnasts. Subjects were 12 members of the national team, age 13-20 years, and individually matched nonathletic controls. All subjects participated in a structured clinical interview for EDs, medical examination, and dietary analysis. Two of the gymnasts met the DSM-III-R criteria for anorexia nervosa, and 2 met the criteria for anorexia athletica (a subclinical ED). All the gymnasts were dieting in spite of the fact that they were all extremely lean. The avoidance of maturity, menstrual irregularities, energy deficit, high training volume, and high frequency of injuries were common features among the gymnasts. Ther is a need to learn more about risk factors and the etiology of EDs in different sports. Coaches, parents, and athletes need more information about principles of proper nutrition and methods to achieve ideal body composition for optional health and athletic performance.

  5. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Steve A. [Univ. of Southern California, Los Angeles, CA (United States)

    2017-10-20

    Objectives: Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass Brachypodium distachyon also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation. Description: The project is divided in three main parts: 1) Performing time-lapse imaging and growth measurement in B. distachyon and S. bicolor to determine growth rate dynamic during the day/night cycle. Identifying growth-associated genes whose expression patterns follow the observed growth dynamics using deep sequencing technology, 2) identifying regulators of these genes by screening for DNA-binding proteins interacting with the growth-associated gene promoters identified in Aim 1. Screens will be performed using a validated yeast-one hybrid strategy paired with a specifically designed B. distachyon and S. bicolor transcription factor libraries (1000 clones each), and 3) Selecting 50 potential growth regulators from the screen for downstream characterization. The selection will be made by using a sytems biology approach by calculating the connectivity between growth rate, rhythmic gene expression profiles and TF expression profile and determine which TF is likely part of a hub

  6. Acquisition of speech rhythm in a second language by learners with rhythmically different native languages.

    Science.gov (United States)

    Ordin, Mikhail; Polyanskaya, Leona

    2015-08-01

    The development of speech rhythm in second language (L2) acquisition was investigated. Speech rhythm was defined as durational variability that can be captured by the interval-based rhythm metrics. These metrics were used to examine the differences in durational variability between proficiency levels in L2 English spoken by French and German learners. The results reveal that durational variability increased as L2 acquisition progressed in both groups of learners. This indicates that speech rhythm in L2 English develops from more syllable-timed toward more stress-timed patterns irrespective of whether the native language of the learner is rhythmically similar to or different from the target language. Although both groups showed similar development of speech rhythm in L2 acquisition, there were also differences: German learners achieved a degree of durational variability typical of the target language, while French learners exhibited lower variability than native British speakers, even at an advanced proficiency level.

  7. MCA Vmean and the arterial lactate-to-pyruvate ratio correlate during rhythmic handgrip

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Plomgaard, Peter; Krogh-Madsen, Rikke

    2006-01-01

    /P ratio at two plasma lactate levels. MCA Vmean was determined by ultrasound Doppler sonography at rest, during 10 min of rhythmic handgrip exercise at approximately 65% of maximal voluntary contraction force, and during 20 min of recovery in seven healthy male volunteers during control...... and a approximately 15 mmol/l hyperglycemic clamp. Cerebral arteriovenous differences for metabolites were obtained by brachial artery and retrograde jugular venous catheterization. Control resting arterial lactate was 0.78 +/- 0.09 mmol/l (mean +/- SE) and pyruvate 55.7 +/- 12.0 micromol/l (L/P ratio 16.4 +/- 1......Regulation of cerebral blood flow during physiological activation including exercise remains unknown but may be related to the arterial lactate-to-pyruvate (L/P) ratio. We evaluated whether an exercise-induced increase in middle cerebral artery mean velocity (MCA Vmean) relates to the arterial L...

  8. Self-Generated Auditory Feedback as a Cue to Support Rhythmic Motor Stability

    Directory of Open Access Journals (Sweden)

    Gopher Daniel

    2011-12-01

    Full Text Available A goal of the SKILLS project is to develop Virtual Reality (VR-based training simulators for different application domains, one of which is juggling. Within this context the value of multimodal VR environments for skill acquisition is investigated. In this study, we investigated whether it was necessary to render the sounds of virtual balls hitting virtual hands within the juggling training simulator. First, we recorded sounds at the jugglers’ ears and found the sound of ball hitting hands to be audible. Second, we asked 24 jugglers to juggle under normal conditions (Audible or while listening to pink noise intended to mask the juggling sounds (Inaudible. We found that although the jugglers themselves reported no difference in their juggling across these two conditions, external juggling experts rated rhythmic stability worse in the Inaudible condition than in the Audible condition. This result suggests that auditory information should be rendered in the VR juggling training simulator.

  9. Goal orientations and sport motivation, differences between the athletes of competitive and non-competitive rhythmic gymnastics.

    Science.gov (United States)

    Koumpoula, M; Tsopani, D; Flessas, K; Chairopoulou, C

    2011-09-01

    The present study examines the sport motivation and the goal orientations in the competitive and non-competitive structure of rhythmic gymnastics. Participation of individuals in one or the other structure of the sport differs in line with the goals they want to achieve and possibly also with respect to the factors that impulse them to take part in one or the other. The purpose of this study is to examine how individuals who participate in different structures of the sport of rhythmic gymnastics differentiate with regard to the type of motivation (intrinsic, extrinsic, amotivation) and goal orientations. The study involved 98 young female rhythmic gymnastics athletes (aged 14 years and up), out of which 40 were athletes of competitive clubs or members of national teams, and 58 were athletes of non-competitive clubs. For the evaluation of motivation and goal orientations the following tools were used: the Sport Motivation Scale (SMS) and the Task and Ego Orientation in Sport Questionnaire (TEOSQ). Descriptive and inductive statistical data analysis was conducted. The results showed that the athletes of the non-competitive structure presented higher levels of introjected regulation (extrinsic motivation), amotivation and lower levels of ego orientation (PRhythmic gymnastics athletes' (regardless of the structure of the sport) presented high level in task orientation while the high levels of task orientation is positively associated with high levels of intrinsic motivation regardless of the levels of ego orientation. The intrinsic motivation of athletes participating in rhythmic gymnastics runs at high levels. The amotivation of rhythmic gymnastics athletes' is a phenomenon which is also presented in the the non-competitive sport structure. It is important that the two different structures of sports be determined with accurate criteria.

  10. Effect of rhythmic auditory cueing on gait in cerebral palsy: a systematic review and meta-analysis.

    Science.gov (United States)

    Ghai, Shashank; Ghai, Ishan; Effenberg, Alfred O

    2018-01-01

    Auditory entrainment can influence gait performance in movement disorders. The entrainment can incite neurophysiological and musculoskeletal changes to enhance motor execution. However, a consensus as to its effects based on gait in people with cerebral palsy is still warranted. A systematic review and meta-analysis were carried out to analyze the effects of rhythmic auditory cueing on spatiotemporal and kinematic parameters of gait in people with cerebral palsy. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses and American Academy for Cerebral Palsy and Developmental Medicine guidelines, from inception until July 2017, on online databases: Web of Science, PEDro, EBSCO, Medline, Cochrane, Embase and ProQuest. Kinematic and spatiotemporal gait parameters were evaluated in a meta-analysis across studies. Of 547 records, nine studies involving 227 participants (108 children/119 adults) met our inclusion criteria. The qualitative review suggested beneficial effects of rhythmic auditory cueing on gait performance among all included studies. The meta-analysis revealed beneficial effects of rhythmic auditory cueing on gait dynamic index (Hedge's g =0.9), gait velocity (1.1), cadence (0.3), and stride length (0.5). This review for the first time suggests a converging evidence toward application of rhythmic auditory cueing to enhance gait performance and stability in people with cerebral palsy. This article details underlying neurophysiological mechanisms and use of cueing as an efficient home-based intervention. It bridges gaps in the literature, and suggests translational approaches on how rhythmic auditory cueing can be incorporated in rehabilitation approaches to enhance gait performance in people with cerebral palsy.

  11. Effect of rhythmic auditory cueing on gait in cerebral palsy: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Ghai S

    2017-12-01

    Full Text Available Shashank Ghai,1 Ishan Ghai,2 Alfred O. Effenberg1 1Institute for Sports Science, Leibniz University Hannover, Hannover, Germany; 2School of Life Sciences, Jacobs University, Bremen, Germany Abstract: Auditory entrainment can influence gait performance in movement disorders. The entrainment can incite neurophysiological and musculoskeletal changes to enhance motor execution. However, a consensus as to its effects based on gait in people with cerebral palsy is still warranted. A systematic review and meta-analysis were carried out to analyze the effects of rhythmic auditory cueing on spatiotemporal and kinematic parameters of gait in people with cerebral palsy. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses and American Academy for Cerebral Palsy and Developmental Medicine guidelines, from inception until July 2017, on online databases: Web of Science, PEDro, EBSCO, Medline, Cochrane, Embase and ProQuest. Kinematic and spatiotemporal gait parameters were evaluated in a meta-analysis across studies. Of 547 records, nine studies involving 227 participants (108 children/119 adults met our inclusion criteria. The qualitative review suggested beneficial effects of rhythmic auditory cueing on gait performance among all included studies. The meta-analysis revealed beneficial effects of rhythmic auditory cueing on gait dynamic index (Hedge’s g=0.9, gait velocity (1.1, cadence (0.3, and stride length (0.5. This review for the first time suggests a converging evidence toward application of rhythmic auditory cueing to enhance gait performance and stability in people with cerebral palsy. This article details underlying neurophysiological mechanisms and use of cueing as an efficient home-based intervention. It bridges gaps in the literature, and suggests translational approaches on how rhythmic auditory cueing can be incorporated in rehabilitation approaches to

  12. Effectiveness of the teaching of perceptual-motor practices and rhythmic movement on motor development in children with intellectual disability

    Directory of Open Access Journals (Sweden)

    Behrouz Ghorban Zadeh

    2015-10-01

    Full Text Available Objective: Fundamental motor skills are the foundation of special skills. The purpose of this study was to study the effectiveness of the teaching of perceptual-motor practices and rhythmic movement on motor development in children with intellectual disability. Materials & Methods: In this quasi-excremental study, 30 children aged 7 to 10 years old were selected through random cluster sampling method from elementary schools in Tabriz city. They were homogenized in two experimental groups (perceptual-motor practices and rhythmic movement and one control group based on their age and IQ. Programs were held in 9 weeks, two sessions per week, and each session was 45 minutes. Before beginning the training and at the end of the last session, pre-test and post-test were conducted. In order to assess motor development TGMD-2 test was used, and to analyze data covariance and bonferroni postdoc test were used. Results: The results showed that both perceptual-motor practices and rhythmic movement groups performed better in locomotors and object control skills than the control group (P&le 0.05 and there was no significant difference between these two groups  (P&ge0.05Perceptual-motor skills training group had a greater impact on the development of control object skills than rhythmic movement group. Program rhythmic movement group had a greater impact on the development of object control skills than the control group. Conclusion: According to the results, educational programs which are used can be as an appropriate experiencing motion for children. These programs can be used at schools to to provide suitable program and the opportunity for training and developing motor skills.

  13. Nonlinear dynamics of human locomotion: effects of rhythmic auditory cueing on local dynamic stability

    Directory of Open Access Journals (Sweden)

    Philippe eTerrier

    2013-09-01

    Full Text Available It has been observed that times series of gait parameters (stride length (SL, stride time (ST and stride speed (SS, exhibit long-term persistence and fractal-like properties. Synchronizing steps with rhythmic auditory stimuli modifies the persistent fluctuation pattern to anti-persistence. Another nonlinear method estimates the degree of resilience of gait control to small perturbations, i.e. the local dynamic stability (LDS. The method makes use of the maximal Lyapunov exponent, which estimates how fast a nonlinear system embedded in a reconstructed state space (attractor diverges after an infinitesimal perturbation. We propose to use an instrumented treadmill to simultaneously measure basic gait parameters (time series of SL, ST and SS from which the statistical persistence among consecutive strides can be assessed, and the trajectory of the center of pressure (from which the LDS can be estimated. In 20 healthy participants, the response to rhythmic auditory cueing (RAC of LDS and of statistical persistence (assessed with detrended fluctuation analysis (DFA was compared. By analyzing the divergence curves, we observed that long-term LDS (computed as the reverse of the average logarithmic rate of divergence between the 4th and the 10th strides downstream from nearest neighbors in the reconstructed attractor was strongly enhanced (relative change +47%. That is likely the indication of a more dampened dynamics. The change in short-term LDS (divergence over one step was smaller (+3%. DFA results (scaling exponents confirmed an anti-persistent pattern in ST, SL and SS. Long-term LDS (but not short-term LDS and scaling exponents exhibited a significant correlation between them (r=0.7. Both phenomena probably result from the more conscious/voluntary gait control that is required by RAC. We suggest that LDS and statistical persistence should be used to evaluate the efficiency of cueing therapy in patients with neurological gait disorders.

  14. Relationship Between Dietary Factors and Bodily Iron Status Among Japanese Collegiate Elite Female Rhythmic Gymnasts.

    Science.gov (United States)

    Kokubo, Yuki; Yokoyama, Yuri; Kisara, Kumiko; Ohira, Yoshiko; Sunami, Ayaka; Yoshizaki, Takahiro; Tada, Yuki; Ishizaki, Sakuko; Hida, Azumi; Kawano, Yukari

    2016-04-01

    This cross-sectional study explored the prevalence of iron deficiency (ID) and associations between dietary factors and incidence of ID in female rhythmic gymnasts during preseason periods. Participants were 60 elite collegiate rhythmic gymnasts (18.1 ± 0.3 years [M ± SD]) who were recruited every August over the course of 8 years. Participants were divided into 2 groups according to the presence or absence of ID. Presence of ID was defined either by ferritin less than 12 μg/L or percentage of transferrin saturation less than 16%. Anthropometric and hematologic data, as well as dietary intake, which was estimated via a semiquantitative food frequency questionnaire, were compared. ID was noted in 48.3% of participants. No significant group-dependent differences were observed in physical characteristics, red blood cell counts, hemoglobin, hematocrit, haptoglobin, or erythropoietin concentrations. The ID group had a significantly lower total iron-binding capacity; serum-free iron; percentage of transferrin saturation; ferritin; and intake of protein, fat, zinc, vitamin B2, vitamin B6, beans, and eggs but not iron or vitamin C. The recommended dietary allowance for intake of protein, iron, zinc, and various vitamins was not met by 30%, 90%, 70%, and 22%-87% of all participants, respectively. Multiple logistic analysis showed that protein intake was significantly associated with the incidence of ID (odds ratio = 0.814, 95% confidence interval [0.669, 0.990], p = .039). Participants in the preseason's weight-loss periods showed a tendency toward insufficient nutrient intake and were at a high risk for ID, particularly because of lower protein intake.

  15. Low-Frequency Components in Rat Pial Arteriolar Rhythmic Diameter Changes.

    Science.gov (United States)

    Lapi, Dominga; Mastantuono, Teresa; Di Maro, Martina; Varanini, Maurizio; Colantuoni, Antonio

    2017-01-01

    This study aimed to analyze the frequency components present in spontaneous rhythmic diameter changes in rat pial arterioles. Pial microcirculation was visualized by fluorescence microscopy. Rhythmic luminal variations were evaluated via computer-assisted methods. Spectral analysis was carried out on 30-min recordings under baseline conditions and after administration of acetylcholine (Ach), papaverine (Pap), Nω-nitro-L-arginine (L-NNA) prior to Ach, indomethacin (INDO), INDO prior to Ach, charybdotoxin and apamin, and charybdotoxin and apamin prior to Ach. Under baseline conditions all arteriolar orders showed 3 frequency components in the ranges of 0.0095-0.02, 0.02-0.06, and 0.06-0.2 Hz, another 2 in the ranges of 0.2-2.0 and 2.5-4.5 Hz, and another ultra-low-frequency component in the range of 0.001-0.0095 Hz. Ach caused a significant increase in the spectral density of the frequency components in the range of 0.001-0.2 Hz. Pap was able to slightly increase spectral density in the ranges of 0.001-0.0095 and 0.0095-0.02 Hz. L-NNA mainly attenuated arteriolar responses to Ach. INDO prior to Ach did not affect the endothelial response to Ach. Charybdotoxin and apamin, suggested as endothelium-derived hyperpolarizing factor inhibitors, reduced spectral density in the range of 0.001-0.0095 Hz before and after Ach administration. In conclusion, regulation of the blood flow distribution is due to several mechanisms, one of which is affected by charibdotoxin and apamin, modulating the vascular tone. © 2017 S. Karger AG, Basel.

  16. Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse

    Directory of Open Access Journals (Sweden)

    Green Carla B

    2001-05-01

    Full Text Available Abstract Background Nocturnin was originally identified by differential display as a circadian clock regulated gene with high expression at night in photoreceptors of the African clawed frog, Xenopus laevis. Although encoding a novel protein, the nocturnin cDNA had strong sequence similarity with a C-terminal domain of the yeast transcription factor CCR4, and with mouse and human ESTs. Since its original identification others have cloned mouse and human homologues of nocturnin/CCR4, and we have cloned a full-length cDNA from mouse retina, along with partial cDNAs from human, cow and chicken. The goal of this study was to determine the temporal pattern of nocturnin mRNA expression in multiple tissues of the mouse. Results cDNA sequence analysis revealed a high degree of conservation among vertebrate nocturnin/CCR4 homologues along with a possible homologue in Drosophila. Northern analysis of mRNA in C3H/He and C57/Bl6 mice revealed that the mNoc gene is expressed in a broad range of tissues, with greatest abundance in liver, kidney and testis. mNoc is also expressed in multiple brain regions including suprachiasmatic nucleus and pineal gland. Furthermore, mNoc exhibits circadian rhythmicity of mRNA abundance with peak levels at the time of light offset in the retina, spleen, heart, kidney and liver. Conclusion The widespread expression and rhythmicity of mNoc mRNA parallels the widespread expression of other circadian clock genes in mammalian tissues, and suggests that nocturnin plays an important role in clock function or as a circadian clock effector.

  17. Storminess-related rhythmic ridge patterns on the coasts of Estonia

    Directory of Open Access Journals (Sweden)

    Ülo Suursaar

    2017-11-01

    Full Text Available Buried or elevated coastal ridges may serve as archives of past variations in sea level and climate conditions. Sometimes such ridges or coastal scarps appear in patterns, particularly on uplifting coasts with adequate sediment supply. Along the seacoasts of Estonia, where relative-to-geoid postglacial uplift can vary between 1.7 and 3.4 mm/yr, at least 27 areas with rhythmic geomorphic patterns have been identified from LiDAR images and elevation data. Such patterns were mainly found on faster emerging and well-exposed, tideless coasts. These are mostly located at heights between 1 and 21 m above sea level, the formation of which corresponds to a period of up to 7500 years. Up to approximately 150 individual ridges were counted on some cross-shore sections. Ten of these ridge patterns that formed less than 4500 years ago were chosen for detailed characterization and analysis in search of possible forcing mechanisms. Among these more closely studied cases, the mean ridge spacing varied between 19 and 28 m. Using land uplift rates from the late Holocene period, the timespans of the corresponding cross sections were calculated. The average temporal periodicity of the ridges was between 23 and 39 years with a gross mean value of 31 years. Considering the regular nature of the ridges, they mostly do not reflect single extreme events, but rather a decadal-scale periodicity in storminess in the region of the Baltic Sea. Although a contribution from some kind of self-organization process is possible, the rhythmicity in ancient coastal ridge patterns is likely linked to quasi-periodic 25−40-year variability, which can be traced to Estonian long-term sea level records and wave hindcasts, as well as in regional storminess data and the North Atlantic Oscillation index.

  18. Content congruency and its interplay with temporal synchrony modulate integration between rhythmic audiovisual streams

    Directory of Open Access Journals (Sweden)

    Yi-Huang eSu

    2014-12-01

    Full Text Available Both lower-level stimulus factors (e.g., temporal proximity and higher-level cognitive factors (e.g., content congruency are known to influence multisensory integration. The former can direct attention in a converging manner, and the latter can indicate whether information from the two modalities belongs together. The present research investigated whether and how these two factors interacted in the perception of rhythmic, audiovisual streams derived from a human movement scenario. Congruency here was based on sensorimotor correspondence pertaining to rhythm perception. Participants attended to bimodal stimuli consisting of a humanlike figure moving regularly to a sequence of auditory beat, and detected a possible auditory temporal deviant. The figure moved either downwards (congruently or upwards (incongruently to the downbeat, while in both situations the movement was either synchronous with the beat, or lagging behind it. Greater cross-modal binding was expected to hinder deviant detection. Results revealed poorer detection for congruent than for incongruent streams, suggesting stronger integration in the former. False alarms increased in asynchronous stimuli only for congruent streams, indicating greater tendency for deviant report due to visual capture of asynchronous auditory events. In addition, a greater increase in perceived synchrony was associated with a greater reduction in false alarms for congruent streams, while the pattern was reversed for incongruent ones. These results demonstrate that content congruency as a top-down factor not only promotes integration, but also modulates bottom-up effects of synchrony. Results are also discussed regarding how theories of integration and attentional entrainment may be combined in the context of rhythmic multisensory stimuli.

  19. Content congruency and its interplay with temporal synchrony modulate integration between rhythmic audiovisual streams.

    Science.gov (United States)

    Su, Yi-Huang

    2014-01-01

    Both lower-level stimulus factors (e.g., temporal proximity) and higher-level cognitive factors (e.g., content congruency) are known to influence multisensory integration. The former can direct attention in a converging manner, and the latter can indicate whether information from the two modalities belongs together. The present research investigated whether and how these two factors interacted in the perception of rhythmic, audiovisual (AV) streams derived from a human movement scenario. Congruency here was based on sensorimotor correspondence pertaining to rhythm perception. Participants attended to bimodal stimuli consisting of a humanlike figure moving regularly to a sequence of auditory beat, and detected a possible auditory temporal deviant. The figure moved either downwards (congruently) or upwards (incongruently) to the downbeat, while in both situations the movement was either synchronous with the beat, or lagging behind it. Greater cross-modal binding was expected to hinder deviant detection. Results revealed poorer detection for congruent than for incongruent streams, suggesting stronger integration in the former. False alarms increased in asynchronous stimuli only for congruent streams, indicating greater tendency for deviant report due to visual capture of asynchronous auditory events. In addition, a greater increase in perceived synchrony was associated with a greater reduction in false alarms for congruent streams, while the pattern was reversed for incongruent ones. These results demonstrate that content congruency as a top-down factor not only promotes integration, but also modulates bottom-up effects of synchrony. Results are also discussed regarding how theories of integration and attentional entrainment may be combined in the context of rhythmic multisensory stimuli.

  20. Obesity Disrupts the Rhythmic Profiles of Maternal and Fetal Progesterone in Rat Pregnancy.

    Science.gov (United States)

    Crew, Rachael C; Mark, Peter J; Clarke, Michael W; Waddell, Brendan J

    2016-09-01

    Maternal obesity increases the risk of abnormal fetal growth, but the underlying mechanisms remain unclear. Because steroid hormones regulate fetal growth, and both pregnancy and obesity markedly alter circadian biology, we hypothesized that maternal obesity disrupts the normal rhythmic profiles of steroid hormones in rat pregnancy. Obesity was established by cafeteria (CAF) feeding for 8 wk prior to mating and throughout pregnancy. Control (CON) animals had ad libitum access to chow. Daily profiles of plasma corticosterone, 11-dehydrocorticosterone, progesterone, and testosterone were measured at Days 15 and 21 of gestation (term = 23 days) in maternal (both days) and fetal (Day 21) plasma. CAF mothers exhibited increased adiposity relative to CON and showed fetal and placental growth restriction. There was no change, however, in total fetal or placental mass due to slightly larger litter sizes in CAF. Nocturnal declines in progesterone were observed in maternal (39% lower) and fetal (45% lower) plasma in CON animals, but these were absent in CAF animals. CAF mothers were hyperlipidemic at both days of gestation, but this effect was isolated to the dark period at Day 21. CAF maternal testosterone was slightly lower at Day 15 (8%) but increased above CON by Day 21 (16%). Despite elevated maternal testosterone, male fetal testosterone was suppressed by obesity on Day 21. Neither maternal nor fetal glucocorticoid profiles were affected by obesity. In conclusion, obesity disrupts rhythmic profiles of maternal and fetal progesterone, preventing the normal nocturnal decline. Obesity subtly changed testosterone profiles but did not alter maternal and fetal glucocorticoids. © 2016 by the Society for the Study of Reproduction, Inc.

  1. Advantages of melodic over rhythmic movement sonification in bimanual motor skill learning.

    Science.gov (United States)

    Dyer, J F; Stapleton, P; Rodger, M W M

    2017-10-01

    An important question for skill acquisition is whether and how augmented feedback can be designed to improve the learning of complex skills. Auditory information triggered by learners' actions, movement sonification, can enhance learning of a complex bimanual coordination skill, specifically polyrhythmic bimanual shape tracing. However, it is not clear whether the coordination of polyrhythmic sequenced movements is enhanced by auditory-specified timing information alone or whether more complex sound mappings, such as melodic sonification, are necessary. Furthermore, while short-term retention of bimanual coordination performance has been shown with movement sonification training, longer term retention has yet to be demonstrated. In the present experiment, participants learned to trace a diamond shape with one hand while simultaneously tracing a triangle with the other to produce a sequenced 4:3 polyrhythmic timing pattern. Two groups of participants received real-time auditory feedback during training: melodic sonification (individual movements triggered a separate note of a melody) and rhythmic sonification (each movement triggered a percussive sound), while a third control group received no augmented feedback. Task acquisition and performance in immediate retention were superior in the melodic sonification group as compared to the rhythmic sonification and control group. In a 24-h retention phase, a decline in performance in the melodic sonification group was reversed by brief playback of the target pattern melody. These results show that melodic sonification of movement can provide advantages over augmented feedback which only provides timing information by better structuring the sequencing of timed actions, and also allow recovery of complex target patterns of movement after training. These findings have important implications for understanding the role of augmented perceptual information in skill learning, as well as its application to real-world training or

  2. Meta-analysis of Drosophila circadian microarray studies identifies a novel set of rhythmically expressed genes.

    Directory of Open Access Journals (Sweden)

    Kevin P Keegan

    2007-11-01

    Full Text Available Five independent groups have reported microarray studies that identify dozens of rhythmically expressed genes in the fruit fly Drosophila melanogaster. Limited overlap among the lists of discovered genes makes it difficult to determine which, if any, exhibit truly rhythmic patterns of expression. We reanalyzed data from all five reports and found two sources for the observed discrepancies, the use of different expression pattern detection algorithms and underlying variation among the datasets. To improve upon the methods originally employed, we developed a new analysis that involves compilation of all existing data, application of identical transformation and standardization procedures followed by ANOVA-based statistical prescreening, and three separate classes of post hoc analysis: cross-correlation to various cycling waveforms, autocorrelation, and a previously described fast Fourier transform-based technique. Permutation-based statistical tests were used to derive significance measures for all post hoc tests. We find application of our method, most significantly the ANOVA prescreening procedure, significantly reduces the false discovery rate relative to that observed among the results of the original five reports while maintaining desirable statistical power. We identify a set of 81 cycling transcripts previously found in one or more of the original reports as well as a novel set of 133 transcripts not found in any of the original studies. We introduce a novel analysis method that compensates for variability observed among the original five Drosophila circadian array reports. Based on the statistical fidelity of our meta-analysis results, and the results of our initial validation experiments (quantitative RT-PCR, we predict many of our newly found genes to be bona fide cyclers, and suggest that they may lead to new insights into the pathways through which clock mechanisms regulate behavioral rhythms.

  3. State-of-the-art transforaminal percutaneous endoscopic lumbar surgery under local anesthesia: Discectomy, foraminoplasty, and ventral facetectomy.

    Science.gov (United States)

    Sairyo, Koichi; Chikawa, Takashi; Nagamachi, Akihiro

    2018-03-01

    Transforaminal (TF) percutaneous endoscopic surgery for the lumbar spine under the local anesthesia was initiated in 2003 in Japan. Since it requires only an 8-mm skin incision and damage of the paravertebral muscles would be minimum, it would be the least invasive spinal surgery at present. At the beginning, the technique was used for discectomy; thus, the procedure was called PELD (percutaneous endoscopic lumbar discectomy). TF approach can be done under the local anesthesia, there are great benefits. During the surgery patients would be in awake and aware condition; thus, severe nerve root damage can be avoided. Furthermore, the procedure is possible for the elderly patients with poor general condition, which does not allow the general anesthesia. Historically, the technique was first applied for the herniated nucleus pulposus. Then, foraminoplasty, which is the enlargement surgery of the narrow foramen, became possible thanks to the development of the high speed drill. It was called the percutaneous endoscopic lumbar foraminoplasty (PELF). More recently, this technique was applied to decompress the lateral recess stenosis, and the technique was named percutaneous endoscopic ventral facetectomy (PEVF). In this review article, we explain in detail the development of the surgical technique of with time with showing our typical cases. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  4. Ventral inlay buccal mucosal graft urethroplasty: a novel surgical technique for the management of urethral stricture disease.

    Science.gov (United States)

    Kovell, Robert Caleb; Terlecki, Ryan Patrick

    2015-02-01

    To describe the novel technique of ventral inlay substitution urethroplasty for the management of male anterior urethral stricture disease. A 58-year-old gentleman with multifocal bulbar stricture disease measuring 7 cm in length was treated using a ventral inlay substitution urethroplasty. A dorsal urethrotomy was created, and the ventral urethral plated was incised. The edges of the urethral plate were mobilized without violation of the ventral corpus spongiosum. A buccal mucosa graft was harvested and affixed as a ventral inlay to augment the caliber of the urethra. The dorsal urethrotomy was closed over a foley catheter. No intraoperative or postoperative complications occurred. Postoperative imaging demonstrated a widely patent urethra. After three years of follow-up, the patient continues to do well with no voiding complaints and low postvoid residuals. Ventral inlay substitution urethroplasty appears to be a safe and feasible technique for the management of bulbar urethral strictures.

  5. Grass Rooting the System

    Science.gov (United States)

    Perlman, Janice E.

    1976-01-01

    Suggests a taxonomy of the grass roots movement and gives a general descriptive over view of the 60 groups studied with respect to origin, constituency, size, funding, issues, and ideology. (Author/AM)

  6. Rooting an Android Device

    Science.gov (United States)

    2015-09-01

    1. Overview The purpose of this document is to demonstrate how to gain administrative privileges on an Android device. The term “rooting” is...is applicable for the Samsung Galaxy S3 as well as many other Android devices, but there are several steps involved in rooting an Android device (as...root access has been granted. 4. Conclusion This document serves as a tutorial on how to grant user administrative privilege to an Android device by

  7. Cocaine exposure shifts the balance of associative encoding from ventral to dorsolateral striatum

    Directory of Open Access Journals (Sweden)

    Yuji Takahashi

    2007-12-01

    Full Text Available Both dorsal and ventral striatum are implicated in the "habitization" of behavior that occurs in addiction. Here we examined the effect of cocaine exposure on associative encoding in these two regions. Neural activity was recorded during go/no-go discrimination learning and reversal. Activity in ventral striatum developed and reversed rapidly, tracking the valence of the predicted outcome, whereas activity in dorsolateral striatum developed and reversed more slowly, tracking discriminative responding. This difference is consistent with the putative roles of these two areas in promoting habit-like behavior. Dorsolateral striatum has been directly implicated in habit or stimulus response learning, whereas ventral striatum appears to be involved indirectly by allowing cues associated with reward to exert a general motivational influence on responding. Interestingly cocaine exposure did not uniformly enhance processing across both regions. Instead cocaine reduced the degree and flexibility of cue-evoked firing in ventral striatum while marginally enhanced cue-selective firing in dorsolateral striatum. Thus cocaine exposure causes regionally specific effects on neural processing in striatum; these effects may promote the habitization of behavior by shifting control from ventral to dorsolateral regions.

  8. Requirement of Xmsx-1 in the BMP-triggered ventralization of Xenopus embryos.

    Science.gov (United States)

    Yamamoto, T S; Takagi, C; Ueno, N

    2000-03-01

    Signaling triggered by polypeptide growth factors leads to the activation of their target genes. Several homeobox genes are known to be induced in response to polypeptide growth factors in early Xenopus development. In particular, Xmsx-1, an amphibian homologue of vertebrate Msx-1, is well characterized as a target gene of bone morphogenetic protein (BMP). Here, using a dominant-negative form of Xmsx-1 (VP-Xmsx-1), which is a fusion protein made with the virus-derived VP16 activation domain, we have examined whether Xmsx-1 activity is required in the endogenous ventralizing pathway. VP-Xmsx-1 induced a secondary body axis, complete with muscle and neural tissues, when overexpressed in ventral blastomeres, suggesting that Xmsx-1 activity is necessary for both mesoderm and ectoderm to be ventralized. We have also examined the epistatic relationship between Xmsx-1 and another ventralizing homeobox protein, Xvent-1, and show that Xmsx-1 is likely to be acting upstream of Xvent-1. We propose that Xmsx-1 is required in the BMP-stimulated ventralization pathway that involves the downstream activation of Xvent-1.

  9. Craniocervical junction abnormalities with atlantoaxial subluxation caused by ventral subluxation of C2 in a dog

    Directory of Open Access Journals (Sweden)

    Harumichi Itoh

    2017-03-01

    Full Text Available Craniocervical junction abnormalities with atlantoaxial subluxation caused by ventral subluxation of C2 were diagnosed in a 6-month-old female Pomeranian with tetraplegia as a clinical sign. Lateral survey radiography of the neck with flexion revealed atlantoaxial subluxation with ventral subluxation of C2. Computed tomography revealed absence of dens and atlanto-occipital overlapping. Magnetic resonance imaging showed compression of the spinal cord and indentation of caudal cerebellum. The diagnosis was Chiari-like malformation, atlantoaxial subluxation with ventral displacement of C2, atlanto-occipital overlapping, and syringomyelia. The dog underwent foramen magnum decompression, dorsal laminectomy of C1, and ventral fixation of the atlantoaxial joint. Soon after the operation, voluntary movements of the legs were recovered. Finally, the dog could stand and walk without assistance. The dog had complicated malformations at the craniocervical junction but foramen magnum decompression and dorsal laminectomy for Chiari-like malformation, and ventral fixation for atlantoaxial subluxation resulted in an excellent clinical outcome.

  10. Opposing dorsal/ventral stream dynamics during figure-ground segregation.

    Science.gov (United States)

    Wokke, Martijn E; Scholte, H Steven; Lamme, Victor A F

    2014-02-01

    The visual system has been commonly subdivided into two segregated visual processing streams: The dorsal pathway processes mainly spatial information, and the ventral pathway specializes in object perception. Recent findings, however, indicate that different forms of interaction (cross-talk) exist between the dorsal and the ventral stream. Here, we used TMS and concurrent EEG recordings to explore these interactions between the dorsal and ventral stream during figure-ground segregation. In two separate experiments, we used repetitive TMS and single-pulse TMS to disrupt processing in the dorsal (V5/HMT⁺) and the ventral (lateral occipital area) stream during a motion-defined figure discrimination task. We presented stimuli that made it possible to differentiate between relatively low-level (figure boundary detection) from higher-level (surface segregation) processing steps during figure-ground segregation. Results show that disruption of V5/HMT⁺ impaired performance related to surface segregation; this effect was mainly found when V5/HMT⁺ was perturbed in an early time window (100 msec) after stimulus presentation. Surprisingly, disruption of the lateral occipital area resulted in increased performance scores and enhanced neural correlates of surface segregation. This facilitatory effect was also mainly found in an early time window (100 msec) after stimulus presentation. These results suggest a "push-pull" interaction in which dorsal and ventral extrastriate areas are being recruited or inhibited depending on stimulus category and task demands.

  11. Sizzled controls dorso-ventral polarity by repressing cleavage of the Chordin protein.

    Science.gov (United States)

    Muraoka, Osamu; Shimizu, Takashi; Yabe, Taijiro; Nojima, Hideaki; Bae, Young-Ki; Hashimoto, Hisashi; Hibi, Masahiko

    2006-04-01

    The Bone morphogenetic protein (Bmp) signalling gradient has a major function in the formation of the dorso-ventral axis. The zebrafish ventralized mutant, ogon, encodes Secreted Frizzled (Sizzled). sizzled is ventrally expressed in a Bmp-dependent manner and is required for the suppression of Bmp signalling on the ventral side of zebrafish embryos. However, it remains unclear how Sizzled inhibits Bmp signalling and controls ventro-lateral cell fate. We found that Sizzled stabilizes Chordin, a Bmp antagonist, by binding and inhibiting the Tolloid-family metalloproteinase, Bmp1a, which cleaves and inactivates Chordin. The cysteine-rich domain of Sizzled is required for inhibition of Bmp1a activity. Loss of both Bmp1a and Tolloid-like1 (Tll1; another Tolloid-family metalloproteinase) function leads to a complete suppression and reversal of the ogon mutant phenotype. These results indicate that Sizzled represses the activities of Tolloid-family proteins, thereby creating the Chordin-Bmp activity gradient along the dorso-ventral axis. Here, we describe a previously unrecognized role for a secreted Frizzled-related protein.

  12. Gastric dilatation volvulus: a retrospective study of 203 dogs with ventral midline gastropexy.

    Science.gov (United States)

    Ullmann, B; Seehaus, N; Hungerbühler, S; Meyer-Lindenberg, A

    2016-01-01

    To evaluate the recurrence rate of gastric dilatation volvulus and the incidence of complications in subsequent coeliotomies following ventral midline gastropexy. The medical records of dogs treated for gastric dilatation volvulus by ventral midline gastropexy were retrospectively reviewed. Owners were contacted and invited to complete a questionnaire and to return to the clinic for ultrasonographic and radiographic follow-up. The questionnaire was completed by 203 owners 2 to 123 months postoperatively, 24 of whom attended the follow-up examination. Of the 203 dogs, 13 (6 · 4%) underwent subsequent ventral midline coeliotomy and none developed complications related to the gastropexy site. In 23 of the 24 re-evaluated dogs, the stomach was closely associated with the abdominal on radiography and/or ultrasound. The recurrence rate for clinical signs of gastric dilatation or gastric dilatation volvulus after ventral midline gastropexy was 6 · 4%. This study shows that the recurrence of gastric dilatation volvulus after ventral midline gastropexy is low and adhesion of the stomach to the abdominal wall is persistent in almost all dogs that were re-examined. The gastropexy site did not appear to interfere with subsequent coeliotomy. © 2015 British Small Animal Veterinary Association.

  13. Risk-Assessment Score and Patient Optimization as Cost Predictors for Ventral Hernia Repair.

    Science.gov (United States)

    Saleh, Sherif; Plymale, Margaret A; Davenport, Daniel L; Roth, John Scott

    2018-04-01

    Ventral hernia repair (VHR) is associated with complications that significantly increase healthcare costs. This study explores the associations between hospital costs for VHR and surgical complication risk-assessment scores, need for cardiac or pulmonary evaluation, and smoking or obesity counseling. An IRB-approved retrospective study of patients having undergone open VHR over 3 years was performed. Ventral Hernia Risk Score (VHRS) for surgical site occurrence and surgical site infection, and the Ventral Hernia Working Group grade were calculated for each case. Also recorded were preoperative cardiology or pulmonary evaluations, smoking cessation and weight reduction counseling, and patient goal achievement. Hospital costs were obtained from the cost accounting system for the VHR hospitalization stratified by major clinical cost drivers. Univariate regression analyses were used to compare the predictive power of the risk scores. Multivariable analysis was performed to develop a cost prediction model. The mean cost of index VHR hospitalization was $20,700. Total and operating room costs correlated with increasing CDC wound class, VHRS surgical site infection score, VHRS surgical site occurrence score, American Society of Anesthesiologists class, and Ventral Hernia Working Group (all p variance in costs (p optimization significantly reduced direct and operating room costs (p < 0.05). Cardiac evaluation was associated with increased costs. Ventral hernia repair hospital costs are more accurately predicted by CDC wound class than VHR risk scores. A straightforward 6-factor model predicted most cost variation for VHR. Copyright © 2018 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Use of Sine Shaped High-Frequency Rhythmic Visual Stimuli Patterns for SSVEP Response Analysis and Fatigue Rate Evaluation in Normal Subjects.

    Science.gov (United States)

    Keihani, Ahmadreza; Shirzhiyan, Zahra; Farahi, Morteza; Shamsi, Elham; Mahnam, Amin; Makkiabadi, Bahador; Haidari, Mohsen R; Jafari, Amir H

    2018-01-01

    Background: Recent EEG-SSVEP signal based BCI studies have used high frequency square pulse visual stimuli to reduce subjective fatigue. However, the effect of total harmonic distortion (THD) has not been considered. Compared to CRT and LCD monitors, LED screen displays high-frequency wave with better refresh rate. In this study, we present high frequency sine wave simple and rhythmic patterns with low THD rate by LED to analyze SSVEP responses and evaluate subjective fatigue in normal subjects. Materials and Methods: We used patterns of 3-sequence high-frequency sine waves (25, 30, and 35 Hz) to design our visual stimuli. Nine stimuli patterns, 3 simple (repetition of each of above 3 frequencies e.g., P25-25-25) and 6 rhythmic (all of the frequencies in 6 different sequences e.g., P25-30-35) were chosen. A hardware setup with low THD rate ( 90% for CCA and LASSO (for TWs > 1 s). High frequency rhythmic patterns group with low THD rate showed higher accuracy rate (99.24%) than simple patterns group (98.48%). Repeated measure ANOVA showed significant difference between rhythmic pattern features ( P rhythmic [3.85 ± 2.13] compared to the simple patterns group [3.96 ± 2.21], ( P = 0.63). Rhythmic group had lower within group VAS variation (min = P25-30-35 [2.90 ± 2.45], max = P35-25-30 [4.81 ± 2.65]) as well as least individual pattern VAS (P25-30-35). Discussion and Conclusion: Overall, rhythmic and simple pattern groups had higher and similar accuracy rates. Rhythmic stimuli patterns showed insignificantly lower fatigue rate than simple patterns. We conclude that both rhythmic and simple visual high frequency sine wave stimuli require further research for human subject SSVEP-BCI studies.

  15. effects of different concentrations of auxins on rooting and root

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: The effect of auxins and their different concentrations on rooting and root ... primary root length and the longest primary root was recorded with the ... ceuticals, lubricants, foods, electrical insulators, .... stem cuttings of jojoba treated with IBA and NAA, .... increasing cell division and enlargement at each.

  16. Transcriptome differentiation along the dorso-ventral axis in laser-captured microdissected rat hippocampal granular cell layer

    DEFF Research Database (Denmark)

    Christensen, T.; Bisgaard, C.F.; Nielsen, Henrik Bjørn

    2010-01-01

    Several findings suggest a functional and anatomical differentiation along the dorso-ventral axis of the hippocampus. Lesion studies in rats have indicated that the dorsal hippocampus preferentially plays a role in spatial learning and memory, while the ventral hippocampus is involved in anxiety...... and ventral granular cell layer with a false discovery rate below 5% and with a relative change in gene expression level of 20% or more. From this pool of genes 45 genes were more than two-fold regulated, 13 genes being dorsally enriched and 32 genes being ventrally enriched. Moreover, cluster analysis based...

  17. Concurrent TMS-fMRI Reveals Interactions between Dorsal and Ventral Attentional Systems

    DEFF Research Database (Denmark)

    Leitao, Joana; Thielscher, Axel; Tuennerhoff, Johannes

    2015-01-01

    interactively in this process. This fMRI study used concurrent transcranial magnetic stimulation (TMS) as a causal perturbation approach to investigate the interactions between dorsal and ventral attentional systems and sensory processing areas. In a sustained spatial attention paradigm, human participants......Adaptive behavior relies on combining bottom-up sensory inputs with top-down control signals to guide responses in line with current goals and task demands. Over the past decade, accumulating evidence has suggested that the dorsal and ventral frontoparietal attentional systems are recruited......-TMS relative to Sham-TMS increased activation in the parietal cortex regardless of sensory stimulation, confirming the neural effectiveness of TMS stimulation. Visual targets increased activations in the anterior insula, a component of the ventral attentional system responsible for salience detection...

  18. Radiographic and ultrasonographic characteristics of ventral abdominal hernia in pigeons (Columba livia).

    Science.gov (United States)

    Amer, Mohammed S; Hassan, Elham A; Torad, Faisal A

    2018-02-20

    Five female egg-laying pigeons presented with painless, reducible, ventral abdominal swellings located between the keel and the pubis, or close to the cloaca. Based on clinical, radiographic, and ultrasonographic examination, these pigeons were diagnosed with ventral abdominal hernia requiring surgical interference. Reduction was successfully performed under general anesthesia. Radiographic and ultrasonographic examinations were beneficial for confirming the diagnosis and visualizing the hernial content for surgical planning. Lateral radiographs were more helpful than ventrodorsal radiographs for identification of the hernial content and its continuation with the abdominal muscles. Ultrasonographic examination offered a non-invasive diagnostic tool that allowed for the differentiation of hernia from other abdominal swellings. In addition, it played a beneficial role in identification of the hernial content and follow up after surgical interference. In conclusion, radiographic and ultrasonographic examinations were beneficial in the diagnosis, surgical planning, and follow up after surgical interference of ventral abdominal hernia in pigeons.

  19. Correlation between early surgical complications and readmission rate after ventral hernia repair

    DEFF Research Database (Denmark)

    Kokotovic, D; Sjølander, H; Gögenur, I

    2017-01-01

    PURPOSE: Postoperative surgical complications arising from ventral hernia repair have been assessed by a variety of outcome measures. The objective of this study was to correlate the Clavien Dindo Classification (CDC) graded complications with the 30-day readmission rate as early outcome measures...... in ventral hernia repair. Secondarily, we wanted to investigate whether the risk factors for Clavien Dindo class ≥1 and 30-day readmission were comparable. METHODS: Single-centre retrospective study including all patients (≥18 years) who underwent ventral hernia repair between January 1, 2009 and September 1......). There was a significant association between a complication graded by the CDC ≥1 and 30-day readmission for both incisional and umbilical/epigastric hernia repair (p readmission. Recurrent...

  20. Orbitofrontal lesions eliminate signalling of biological significance in cue-responsive ventral striatal neurons.

    Science.gov (United States)

    Cooch, Nisha K; Stalnaker, Thomas A; Wied, Heather M; Bali-Chaudhary, Sheena; McDannald, Michael A; Liu, Tzu-Lan; Schoenbaum, Geoffrey

    2015-05-21

    The ventral striatum has long been proposed as an integrator of biologically significant associative information to drive actions. Although inputs from the amygdala and hippocampus have been much studied, the role of prominent inputs from orbitofrontal cortex (OFC) are less well understood. Here, we recorded single-unit activity from ventral striatum core in rats with sham or ipsilateral neurotoxic lesions of lateral OFC, as they performed an odour-guided spatial choice task. Consistent with prior reports, we found that spiking activity recorded in sham rats during cue sampling was related to both reward magnitude and reward identity, with higher firing rates observed for cues that predicted more reward. Lesioned rats also showed differential activity to the cues, but this activity was unbiased towards larger rewards. These data support a role for OFC in shaping activity in the ventral striatum to represent the biological significance of associative information in the environment.

  1. Lateralization and gender differences in the dopaminergic response to unpredictable reward in the human ventral striatum.

    Science.gov (United States)

    Martin-Soelch, Chantal; Szczepanik, Joanna; Nugent, Allison; Barhaghi, Krystle; Rallis, Denise; Herscovitch, Peter; Carson, Richard E; Drevets, Wayne C

    2011-05-01

    Electrophysiological studies have shown that mesostriatal dopamine (DA) neurons increase activity in response to unpredicted rewards. With respect to other functions of the mesostriatal dopaminergic system, dopamine's actions show prominent laterality effects. Whether changes in DA transmission elicited by rewards also are lateralized, however, has not been investigated. Using [¹¹C]raclopride-PET to assess the striatal DA response to unpredictable monetary rewards, we hypothesized that such rewards would induce an asymmetric reduction in [¹¹C]raclopride binding in the ventral striatum, reflecting lateralization of endogenous dopamine release. In 24 healthy volunteers, differences in the regional D₂/₃ receptor binding potential (ΔBP) between an unpredictable reward condition and a sensorimotor control condition were measured using the bolus-plus-constant-infusion [¹¹C]raclopride method. During the reward condition subjects randomly received monetary awards while performing a 'slot-machine' task. The ΔBP between conditions was assessed in striatal regions-of-interest and compared between left and right sides. We found a significant condition × lateralization interaction in the ventral striatum. A significant reduction in binding potential (BP(ND) ) in the reward condition vs. the control condition was found only in the right ventral striatum, and the ΔBP was greater in the right than the left ventral striatum. Unexpectedly, these laterality effects appeared to be partly accounted for by gender differences, as our data showed a significant bilateral BP(ND) reduction in women while in men the reduction reached significance only in the right ventral striatum. These data suggest that DA release in response to unpredictable reward is lateralized in the human ventral striatum, particularly in males. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  2. The "Green" Root Beer Laboratory

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2010-01-01

    No, your students will not be drinking green root beer for St. Patrick's Day--this "green" root beer laboratory promotes environmental awareness in the science classroom, and provides a venue for some very sound science content! While many science classrooms incorporate root beer-brewing activities, the root beer lab presented in this article has…

  3. Radiographic appearance of the middle ear after ventral bulla osteotomy in five dogs with otitis media

    International Nuclear Information System (INIS)

    Holt, D.E.; Walker, L.

    1997-01-01

    Radiographs of the middle ear were made in five dogs 60 to 78 months after ventral bulla osteotomy was performed to treat otitis media. The clinical results of surgery were considered satisfactory in four dogs and unsatisfactory in one. In 4 dogs with satisfactory results, radiographs demonstrated complete reformation of the bulla in 3 operated middle ears (3 dogs), with partial bulla reformation in the three middle ears (3 dogs). Radiographs in one dog with unsatisfactory results showed complete bulla reformation with no increase in lumen opacity. The proliferative bony response obliterating the middle ear previously reported in normal dogs after ventral bulla osteotomy was not seen in any of these patients

  4. Ultrasonographic evaluation of the healing of ventral midline abdominal incisions in the horse.

    Science.gov (United States)

    Wilson, D A; Badertscher, R R; Boero, M J; Baker, G J; Foreman, J H

    1989-06-01

    Ultrasonography was used to evaluate the ventral midline incisions of 21 ponies following exploratory laparotomy. The incisions were evaluated before surgery and at weekly intervals from one to seven weeks after surgery. Both 5.0 and 7.5 MHz linear array and 7.5 MHz sector transducers were used for the evaluations. The incisional complications observed were drainage, oedema, suture sinus formation, suture abscess, superficial dehiscence and incisional hernia. Ultrasonographic imaging of the ventral midline incision was an easy, reliable and objective method for detecting and monitoring the progression of incisional complications in a non-invasive manner.

  5. Cephalad-renal ectopia: Bilateral subdiaphragmatic kidneys in a patient of omphalocele with ventral hernia

    Directory of Open Access Journals (Sweden)

    Jitendra Parmar

    2016-04-01

    Full Text Available Renal ectopia is a rare congenital anomaly. Thoracic ectopic kidney was being considered as rarest, however no case of bilateral subdiaphragmatic kidneys in omphalocele patients presented with ventral hernia has been reported yet, as per our best of knowledge. This is a report of a 5- year-old male patient who presented with ventral hernia after omphalocele. A thorough examination, laboratory, and radiological investigations including ultrasonography, plain abdominal x-ray, intravenous urogram, and computerized tomography revealed bilateral subdiaphragmatic ectopic kidneys with azygos continuation of inferior vena cava, retro-aortic left renal vein and spina bifida

  6. Step-to-step variability in treadmill walking: influence of rhythmic auditory cueing.

    Directory of Open Access Journals (Sweden)

    Philippe Terrier

    Full Text Available While walking, human beings continuously adjust step length (SpL, step time (SpT, step speed (SpS = SpL/SpT and step width (SpW by integrating both feedforward and feedback mechanisms. These motor control processes result in correlations of gait parameters between consecutive strides (statistical persistence. Constraining gait with a speed cue (treadmill and/or a rhythmic auditory cue (metronome, modifies the statistical persistence to anti-persistence. The objective was to analyze whether the combined effect of treadmill and rhythmic auditory cueing (RAC modified not only statistical persistence, but also fluctuation magnitude (standard deviation, SD, and stationarity of SpL, SpT, SpS and SpW. Twenty healthy subjects performed 6 × 5 min. walking tests at various imposed speeds on a treadmill instrumented with foot-pressure sensors. Freely-chosen walking cadences were assessed during the first three trials, and then imposed accordingly in the last trials with a metronome. Fluctuation magnitude (SD of SpT, SpL, SpS and SpW was assessed, as well as NonStationarity Index (NSI, which estimates the dispersion of local means in the times series (SD of 20 local means over 10 steps. No effect of RAC on fluctuation magnitude (SD was observed. SpW was not modified by RAC, what is likely the evidence that lateral foot placement is separately regulated. Stationarity (NSI was modified by RAC in the same manner as persistent pattern: Treadmill induced low NSI in the time series of SpS, and high NSI in SpT and SpL. On the contrary, SpT, SpL and SpS exhibited low NSI under RAC condition. We used relatively short sample of consecutive strides (100 as compared to the usual number of strides required to analyze fluctuation dynamics (200 to 1000 strides. Therefore, the responsiveness of stationarity measure (NSI to cued walking opens the perspective to perform short walking tests that would be adapted to patients with a reduced gait perimeter.

  7. EEG Oscillations Are Modulated in Different Behavior-Related Networks during Rhythmic Finger Movements.

    Science.gov (United States)

    Seeber, Martin; Scherer, Reinhold; Müller-Putz, Gernot R

    2016-11-16

    Sequencing and timing of body movements are essential to perform motoric tasks. In this study, we investigate the temporal relation between cortical oscillations and human motor behavior (i.e., rhythmic finger movements). High-density EEG recordings were used for source imaging based on individual anatomy. We separated sustained and movement phase-related EEG source amplitudes based on the actual finger movements recorded by a data glove. Sustained amplitude modulations in the contralateral hand area show decrease for α (10-12 Hz) and β (18-24 Hz), but increase for high γ (60-80 Hz) frequencies during the entire movement period. Additionally, we found movement phase-related amplitudes, which resembled the flexion and extension sequence of the fingers. Especially for faster movement cadences, movement phase-related amplitudes included high β (24-30 Hz) frequencies in prefrontal areas. Interestingly, the spectral profiles and source patterns of movement phase-related amplitudes differed from sustained activities, suggesting that they represent different frequency-specific large-scale networks. First, networks were signified by the sustained element, which statically modulate their synchrony levels during continuous movements. These networks may upregulate neuronal excitability in brain regions specific to the limb, in this study the right hand area. Second, movement phase-related networks, which modulate their synchrony in relation to the movement sequence. We suggest that these frequency-specific networks are associated with distinct functions, including top-down control, sensorimotor prediction, and integration. The separation of different large-scale networks, we applied in this work, improves the interpretation of EEG sources in relation to human motor behavior. EEG recordings provide high temporal resolution suitable to relate cortical oscillations to actual movements. Investigating EEG sources during rhythmic finger movements, we distinguish sustained from

  8. Rhymes in the development of rhythmic and speaking skills of preschool and early school age

    Directory of Open Access Journals (Sweden)

    Bjelobrk-Babić Ozrenka

    2017-01-01

    Full Text Available The paper discusses the concept, definition and classification of nursery rhymes, and how they are processed. Rhymes are 'short children's songs that serve to counting children at play, which at the same time can be very suitable for developing a sense of rhythm' (Pedagogical Lexicon, 1996, pp. 56. There are several types of nursery rhymes and their classification according to different criteria. They can be classified according to form and content, as well as whether their authors are children or adults. The criterion of understanding classifies them into rhymes rational sense, irrational - meaningless, and rhymes with a partial sense (see examples of rhymes at Milenkovic & Dragojevic, 2009. According to an embodiment - the musical component rhymes are classified in the speaking which develops a sense of rhythm and sung, whose melodic movement of the highest in the fourth volume. Treatment begins with teaching nursery rhymes by ear, then the symbols represents the rhythm of nursery rhymes (phases with the adoption rhymes see at: Milenkovic & Dragojevic, 2009. In addition to this term in the literature can be found other names for the same name forms: counting, beads, classifying. There are many advantages that rhymes processing brings: the development of speech and speech creativity, encourage foreign language learning, developing communication skills, emotional and social maturation, encouraging cultural‚ awareness, developing ethical and moral values, exploring the contents of nature and society. In selecting the nursery rhymes, it is necessary to pay attention to mental and physical development of children and to adjust the selected rhymes to their age. The paper presents the characteristics of rhythmic development and speaking skills of preschool and early school age. To this end are designed examples rhythmic rhymes and pointed to the need for interdisciplinary nature of the teaching subjects, and the correlation of teaching Serbian

  9. INFLUENCE OF COMPETITIVE EXPERIENCE ON STATIC POSTURAL BALANCE IN A GROUP OF RHYTHMIC GYMNASTICS OF HIGH LEVEL

    Directory of Open Access Journals (Sweden)

    Isabella Scursatone

    2015-05-01

    Full Text Available Rhythmic gymnastics is the unique female sport which includes aspects of both artistic gymnastics and dance and is characterized by the use of small apparatuses (e.g., rope, clubs, ribbon, hoop and ball. Many studies compared the balance ability of athletes from different sports, underlying that gymnasts tended to have the best balance ability (Hrysomallis, 2011; Bressel, Yonker, Kras & Heath, 2007. No literature analysed the influence of  the competitive experience of rhytmic gymnasts on the static postural balance.Objective: The purpose of the study is to evaluate the influence of years of competitive experience, hours of physical training and competition level on static postural balance in elite rhythmic gymnastics female athletes.  

  10. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD......) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity...... within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared...

  11. Role of motor-evoked potential monitoring in conjunction with temporary clipping of spinal nerve roots in posterior thoracic spine tumor surgery.

    Science.gov (United States)

    Eleraky, Mohammed A; Setzer, Matthias; Papanastassiou, Ioannis D; Baaj, Ali A; Tran, Nam D; Katsares, Kiesha M; Vrionis, Frank D

    2010-05-01

    The vascular supply of the thoracic spinal cord depends on the thoracolumbar segmental arteries. Because of the small size and ventral course of these arteries in relation to the dorsal root ganglion and ventral root, they cannot be reliably identified during surgery by anatomic or morphologic criteria. Sacrificing them will most likely result in paraplegia. The goal of this study was to evaluate a novel method of intraoperative testing of a nerve root's contribution to the blood supply of the thoracic spinal cord. This is a clinical retrospective study of 49 patients diagnosed with thoracic spine tumors. Temporary nerve root clipping combined with motor-evoked potential (MEP) and somatosensory-evoked potential (SSEP) monitoring was performed; additionally, postoperative clinical evaluation was done and reported in all cases. All cases were monitored by SSEP and MEPs. The nerve root to be sacrificed was temporarily clipped using standard aneurysm clips, and SSEP/MEP were assessed before and after clipping. Four nerve roots were sacrificed in four cases, three nerve roots in eight cases, and two nerve roots in 22 cases. Nerve roots were sacrificed bilaterally in 12 cases. Most patients (47/49) had no changes in MEP/SSEP and had no neurological deficit postoperatively. One case of a spinal sarcoma demonstrated changes in MEP after temporary clipping of the left T11 nerve root. The nerve was not sacrificed, and the patient was neurologically intact after surgery. In another case of a sarcoma, MEPs changed in the lower limbs after ligation of left T9 nerve root. It was felt that it was a global event because of anesthesia. Postoperatively, the patient had complete paraplegia but recovered almost completely after 6 months. Temporary nerve root clipping combined with MEP and SSEP monitoring may enhance the impact of neuromonitoring in the intraoperative management of patients with thoracic spine tumors and favorably influence neurological outcome. Copyright 2010 Elsevier

  12. Recovery of rhythmic activity in a central pattern generator: analysis of the role of neuromodulator and activity-dependent mechanisms.

    Science.gov (United States)

    Zhang, Yili; Golowasch, Jorge

    2011-11-01

    The pyloric network of decapods crustaceans can undergo dramatic rhythmic activity changes. Under normal conditions the network generates low frequency rhythmic activity that depends obligatorily on the presence of neuromodulatory input from the central nervous system. When this input is removed (decentralization) the rhythmic activity ceases. In the continued absence of this input, periodic activity resumes after a few hours in the form of episodic bursting across the entire network that later turns into stable rhythmic activity that is nearly indistinguishable from control (recovery). It has been proposed that an activity-dependent modification of ionic conductance levels in the pyloric pacemaker neuron drives the process of recovery of activity. Previous modeling attempts have captured some aspects of the temporal changes observed experimentally, but key features could not be reproduced. Here we examined a model in which slow activity-dependent regulation of ionic conductances and slower neuromodulator-dependent regulation of intracellular Ca(2+) concentration reproduce all the temporal features of this recovery. Key aspects of these two regulatory mechanisms are their independence and their different kinetics. We also examined the role of variability (noise) in the activity-dependent regulation pathway and observe that it can help to reduce unrealistic constraints that were otherwise required on the neuromodulator-dependent pathway. We conclude that small variations in intracellular Ca(2+) concentration, a Ca(2+) uptake regulation mechanism that is directly targeted by neuromodulator-activated signaling pathways, and variability in the Ca(2+) concentration sensing signaling pathway can account for the observed changes in neuronal activity. Our conclusions are all amenable to experimental analysis.

  13. Playing-related musculoskeletal disorders among icelandic music students: differences between students playing classical vs rhythmic music.

    Science.gov (United States)

    Arnason, Kári; Arnason, Arni; Briem, Kristín

    2014-06-01

    Most research studies investigating the prevalence of musculoskeletal disorders affecting musicians and music students have focused on classical music, while less is known about their prevalence in other music genres. The purpose of this study was to document cumulative and point prevalence of playing-related musculoskeletal disorders (PRMD) among music students in Iceland and, specifically, to identify differences between those studying classical vs rhythmic music. We hypothesized that students of classical music would report more frequent and more severe musculoskeletal disorders than students involved in rhythmic music, as classical instruments and composition typically require more demanding, sustained postures during practice and performance. A total of 74 students from two classical music schools (schools A and B) and 1 rhythmic school (school C) participated in the study by answering a questionnaire assessing PRMDs. The results showed that 62% of participants had, at some point in their musical career, suffered a PRMD. The cumulative prevalence was highest in music school A (71.4%) and lowest in music school C (38.9%). A statistically significant difference was identified between the cumulative prevalence of PRMD from schools A and B combined compared to music school C (p=0.019). Over 40% of participants reported a "current PRMD," and a significant difference was identified between the three schools (p=0.011), with the highest point prevalence being registered in music school A (66.6%) and the lowest in music school C (22.2%). The prevalence of PRMDs among Icelandic music students was high. The difference found between students who play classical vs rhythmic music may be explained by different demands of the instruments and composition on playing posture.

  14. Context-dependent neural activation: internally and externally guided rhythmic lower limb movement in individuals with and without neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Madeleine Eve Hackney

    2015-12-01

    Full Text Available Parkinson’s Disease (PD is a neurodegenerative disorder that has received considerable attention in allopathic medicine over the past decades. However, it is clear that, to date, pharmacological and surgical interventions do not fully address symptoms of PD and patients’ quality of life. As both an alternative therapy and as an adjuvant to conventional approaches, several types of rhythmic movement (e.g., movement strategies, dance, tandem biking, tai chi have shown improvements to motor symptoms, lower limb control and postural stability in people with PD (Amano, Nocera, Vallabhajosula, Juncos, Gregor, Waddell et al., 2013; Earhart, 2009; M. E. Hackney & Earhart, 2008; Kadivar, Corcos, Foto, & Hondzinski, 2011; Morris, Iansek, & Kirkwood, 2009; Ridgel, Vitek, & Alberts, 2009. However, while these programs are increasing in number, still little is known about the neural mechanisms underlying motor improvements attained with such interventions. Studying limb motor control under task specific contexts can help determine the mechanisms of rehabilitation effectiveness. Both internally guided (IG and externally guided (EG movement strategies have evidence to support their use in rehabilitative programs. However, there appears to be a degree of differentiation in the neural substrates involved in IG versus EG designs. Because of the potential task specific benefits of rhythmic training within a rehabilitative context, this report will consider the use of IG and EG movement strategies, and observations produced by functional magnetic resonance imaging (fMRI and other imaging techniques. This review will present findings from lower limb imaging studies, under IG and EG conditions for populations with and without movement disorders. We will discuss how these studies might inform movement disorders rehabilitation (in the form of rhythmic, music-based movement training and highlight research gaps. We believe better understanding of lower limb neural

  15. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Anita, E-mail: anita.balakrishnan@doctors.org.uk [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); School of Clinical Sciences, Division of Gastroenterology, University of Liverpool, Liverpool L69 3GE (United Kingdom); Stearns, Adam T. [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 2JD (United Kingdom); Park, Peter J. [Department of Medicine, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Harvard Medical School, Center for Biomedical Informatics, Boston, MA 02115 (United States); Dreyfuss, Jonathan M. [Department of Medicine, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Ashley, Stanley W. [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); Rhoads, David B. [Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); Pediatric Endocrine Unit, MassGeneral Hospital for Children, Boston, MA 02114 (United States); Tavakkolizadeh, Ali, E-mail: atavakkoli@partners.org [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States)

    2010-12-10

    Background and aims: The intestine exhibits profound diurnal rhythms in function and morphology, in part due to changes in enterocyte proliferation. The regulatory mechanisms behind these rhythms remain largely unknown. We hypothesized that microRNAs are involved in mediating these rhythms, and studied the role of microRNAs specifically in modulating intestinal proliferation. Methods: Diurnal rhythmicity of microRNAs in rat jejunum was analyzed by microarrays and validated by qPCR. Temporal expression of diurnally rhythmic mir-16 was further quantified in intestinal crypts, villi, and smooth muscle using laser capture microdissection and qPCR. Morphological changes in rat jejunum were assessed by histology and proliferation by immunostaining for bromodeoxyuridine. In IEC-6 cells stably overexpressing mir-16, proliferation was assessed by cell counting and MTS assay, cell cycle progression and apoptosis by flow cytometry, and cell cycle gene expression by qPCR and immunoblotting. Results: mir-16 peaked 6 hours after light onset (HALO 6) with diurnal changes restricted to crypts. Crypt depth and villus height peaked at HALO 13-14 in antiphase to mir-16. Overexpression of mir-16 in IEC-6 cells suppressed specific G1/S regulators (cyclins D1-3, cyclin E1 and cyclin-dependent kinase 6) and produced G1 arrest. Protein expression of these genes exhibited diurnal rhythmicity in rat jejunum, peaking between HALO 11 and 17 in antiphase to mir-16. Conclusions: This is the first report of circadian rhythmicity of specific microRNAs in rat jejunum. Our data provide a link between anti-proliferative mir-16 and the intestinal proliferation rhythm and point to mir-16 as an important regulator of proliferation in jejunal crypts. This function may be essential to match proliferation and absorptive capacity with nutrient availability.

  16. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts

    International Nuclear Information System (INIS)

    Balakrishnan, Anita; Stearns, Adam T.; Park, Peter J.; Dreyfuss, Jonathan M.; Ashley, Stanley W.; Rhoads, David B.; Tavakkolizadeh, Ali

    2010-01-01

    Background and aims: The intestine exhibits profound diurnal rhythms in function and morphology, in part due to changes in enterocyte proliferation. The regulatory mechanisms behind these rhythms remain largely unknown. We hypothesized that microRNAs are involved in mediating these rhythms, and studied the role of microRNAs specifically in modulating intestinal proliferation. Methods: Diurnal rhythmicity of microRNAs in rat jejunum was analyzed by microarrays and validated by qPCR. Temporal expression of diurnally rhythmic mir-16 was further quantified in intestinal crypts, villi, and smooth muscle using laser capture microdissection and qPCR. Morphological changes in rat jejunum were assessed by histology and proliferation by immunostaining for bromodeoxyuridine. In IEC-6 cells stably overexpressing mir-16, proliferation was assessed by cell counting and MTS assay, cell cycle progression and apoptosis by flow cytometry, and cell cycle gene expression by qPCR and immunoblotting. Results: mir-16 peaked 6 hours after light onset (HALO 6) with diurnal changes restricted to crypts. Crypt depth and villus height peaked at HALO 13-14 in antiphase to mir-16. Overexpression of mir-16 in IEC-6 cells suppressed specific G1/S regulators (cyclins D1-3, cyclin E1 and cyclin-dependent kinase 6) and produced G1 arrest. Protein expression of these genes exhibited diurnal rhythmicity in rat jejunum, peaking between HALO 11 and 17 in antiphase to mir-16. Conclusions: This is the first report of circadian rhythmicity of specific microRNAs in rat jejunum. Our data provide a link between anti-proliferative mir-16 and the intestinal proliferation rhythm and point to mir-16 as an important regulator of proliferation in jejunal crypts. This function may be essential to match proliferation and absorptive capacity with nutrient availability.

  17. A little elastic for a better performance: kinesiotaping of the motor effector modulates neural mechanisms for rhythmic movements.

    Science.gov (United States)

    Bravi, Riccardo; Quarta, Eros; Cohen, Erez J; Gottard, Anna; Minciacchi, Diego

    2014-01-01

    A rhythmic motor performance is brought about by an integration of timing information with movements. Investigations on the millisecond time scale distinguish two forms of time control, event-based timing and emergent timing. While event-based timing asserts the existence of a central internal timekeeper for the control of repetitive movements, the emergent timing perspective claims that timing emerges from dynamic control of nontemporal movements parameters. We have recently demonstrated that the precision of an isochronous performance, defined as performance of repeated movements having a uniform duration, was insensible to auditory stimuli of various characteristics (Bravi et al., 2014). Such finding has led us to investigate whether the application of an elastic therapeutic tape (Kinesio® Tex taping; KTT) used for treating athletic injuries and a variety of physical disorders, is able to reduce the timing variability of repetitive rhythmic movement. Young healthy subjects, tested with and without KTT, have participated in sessions in which sets of repeated isochronous wrist's flexion-extensions (IWFEs) were performed under various auditory conditions and during their recall. Kinematics was recorded and temporal parameters were extracted and analyzed. Our results show that the application of KTT decreases the variability of rhythmic movements by a 2-fold effect: on the one hand KTT provides extra proprioceptive information activating cutaneous mechanoreceptors, on the other KTT biases toward the emergent timing thus modulating the processes for rhythmic movements. Therefore, KTT appears able to render movements less audio dependent by relieving, at least partially, the central structures from time control and making available more resources for an augmented performance.

  18. A little elastic for a better performance: kinesiotaping of the motor effector modulates neural mechanisms for rhythmic movements

    Directory of Open Access Journals (Sweden)

    Riccardo eBravi

    2014-09-01

    Full Text Available A rhythmic motor performance is brought about by an integration of timing information with movements. Investigations on the millisecond time scale distinguish two forms of time control, event-based timing and emergent timing. While event-based timing asserts the existence of a central internal timekeeper for the control of repetitive movements, the emergent timing perspective claims that timing emerges from dynamic control of nontemporal movements parameters. We have recently demonstrated that the precision of an isochronous performance, defined as performance of repeated movements having a uniform duration, was insensible to auditory stimuli of various characteristics (Bravi et al., 2014. Such finding has led us to investigate whether the application of an elastic therapeutic tape (Kinesio® Tex taping; KTT used for treating athletic injuries and a variety of physical disorders, is able to reduce the timing variability of repetitive rhythmic movement. Young healthy subjects, tested with and without KTT, have participated in sessions in which sets of repeated isochronous wrist's flexion-extensions (IWFEs were performed under various auditory conditions and during their recall. Kinematics was recorded and temporal parameters were extracted and analyzed. Our results show that the application of KTT decreases the variability of rhythmic movements by a twofold effect: on the one hand KTT provides extra proprioceptive information activating cutaneous mechanoreceptors, on the other KTT biases toward the emergent timing thus modulating the processes for rhythmic movements. Therefore, KTT appears able to render movements less audio dependent by relieving, at least partially, the central structures from time control and making available more resources for an augmented performance.

  19. Independent effects of bottom-up temporal expectancy and top-down spatial attention. An audiovisual study using rhythmic cueing.

    Directory of Open Access Journals (Sweden)

    Alexander eJones

    2015-01-01

    Full Text Available Selective attention to a spatial location has shown enhance perception and facilitate behaviour for events at attended locations. However, selection relies not only on where but also when an event occurs. Recently, interest has turned to how intrinsic neural oscillations in the brain entrain to rhythms in our environment, and, stimuli appearing in or out of synch with a rhythm have shown to modulate perception and performance. Temporal expectations created by rhythms and spatial attention are two processes which have independently shown to affect stimulus processing but it remains largely unknown how, and if, they interact. In four separate tasks, this study investigated the effects of voluntary spatial attention and bottom-up temporal expectations created by rhythms in both unimodal and crossmodal conditions. In each task the participant used an informative cue, either colour or pitch, to direct their covert spatial attention to the left or right, and respond as quickly as possible to a target. The lateralized target (visual or auditory was then presented at the attended or unattended side. Importantly, although not task relevant, the cue was a rhythm of either flashes or beeps. The target was presented in or out of sync (early or late with the rhythmic cue. The results showed participants were faster responding to spatially attended compared to unattended targets in all tasks. Moreover, there was an effect of rhythmic cueing upon response times in both unimodal and crossmodal conditions. Responses were faster to targets presented in sync with the rhythm compared to when they appeared too early in both crossmodal tasks. That is, rhythmic stimuli in one modality influenced the temporal expectancy in the other modality, suggesting temporal expectancies created by rhythms are crossmodal. Interestingly, there was no interaction between top-down spatial attention and rhythmic cueing in any task suggesting these two processes largely influenced

  20. Reduced activation in the ventral striatum during probabilistic decision-making in patients in an at-risk mental state

    NARCIS (Netherlands)

    Rausch, Franziska; Mier, Daniela; Eifler, Sarah; Fenske, Sabrina; Schirmbeck, Frederike; Englisch, Susanne; Schilling, Claudia; Meyer-Lindenberg, Andreas; Kirsch, Peter; Zink, Mathias

    2015-01-01

    Patients with schizophrenia display metacognitive impairments, such as hasty decision-making during probabilistic reasoning - the "jumping to conclusion" bias (JTC). Our recent fMRI study revealed reduced activations in the right ventral striatum (VS) and the ventral tegmental area (VTA) to be

  1. Perturbed rhythmic activation of signaling pathways in mice deficient for Sterol Carrier Protein 2-dependent diurnal lipid transport and metabolism.

    Science.gov (United States)

    Jouffe, Céline; Gobet, Cédric; Martin, Eva; Métairon, Sylviane; Morin-Rivron, Delphine; Masoodi, Mojgan; Gachon, Frédéric

    2016-04-21

    Through evolution, most of the living species have acquired a time keeping system to anticipate daily changes caused by the rotation of the Earth. In all of the systems this pacemaker is based on a molecular transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a period close to 24 hours. Recent evidences suggest that post-transcriptional regulations activated mostly by systemic cues play a fundamental role in the process, fine tuning the time keeping system and linking it to animal physiology. Among these signals, we consider the role of lipid transport and metabolism regulated by SCP2. Mice harboring a deletion of the Scp2 locus present a modulated diurnal accumulation of lipids in the liver and a perturbed activation of several signaling pathways including PPARα, SREBP, LRH-1, TORC1 and its upstream regulators. This defect in signaling pathways activation feedbacks upon the clock by lengthening the circadian period of animals through post-translational regulation of core clock regulators, showing that rhythmic lipid transport is a major player in the establishment of rhythmic mRNA and protein expression landscape.

  2. Rhythmic auditory cueing to improve walking in patients with neurological conditions other than Parkinson's disease--what is the evidence?

    Science.gov (United States)

    Wittwer, Joanne E; Webster, Kate E; Hill, Keith

    2013-01-01

    To investigate whether synchronising over-ground walking to rhythmic auditory cues improves temporal and spatial gait measures in adults with neurological clinical conditions other than Parkinson's disease. A search was performed in June 2011 using the computerised databases AGELINE, AMED, AMI, CINAHL, Current Contents, EMBASE, MEDLINE, PsycINFO and PUBMED, and extended using hand-searching of relevant journals and article reference lists. Methodological quality was independently assessed by two reviewers. A best evidence synthesis was applied to rate levels of evidence. Fourteen studies, four of which were randomized controlled trials (RCTs), met the inclusion criteria. Patient groups included those with stroke (six studies); Huntington's disease and spinal cord injury (two studies each); traumatic brain injury, dementia, multiple sclerosis and normal pressure hydrocephalus (one study each). The best evidence synthesis found moderate evidence of improved velocity and stride length of people with stroke following gait training with rhythmic music. Insufficient evidence was found for other included neurological disorders due to low study numbers and poor methodological quality of some studies. Synchronising walking to rhythmic auditory cues can result in short-term improvement in gait measures of people with stroke. Further high quality studies are needed before recommendations for clinical practice can be made.

  3. Non-equilibrium thermodynamical description of rhythmic motion patterns of active systems: a canonical-dissipative approach.

    Science.gov (United States)

    Dotov, D G; Kim, S; Frank, T D

    2015-02-01

    We derive explicit expressions for the non-equilibrium thermodynamical variables of a canonical-dissipative limit cycle oscillator describing rhythmic motion patterns of active systems. These variables are statistical entropy, non-equilibrium internal energy, and non-equilibrium free energy. In particular, the expression for the non-equilibrium free energy is derived as a function of a suitable control parameter. The control parameter determines the Hopf bifurcation point of the deterministic active system and describes the effective pumping of the oscillator. In analogy to the equilibrium free energy of the Landau theory, it is shown that the non-equilibrium free energy decays as a function of the control parameter. In doing so, a similarity between certain equilibrium and non-equilibrium phase transitions is pointed out. Data from an experiment on human rhythmic movements is presented. Estimates for pumping intensity as well as the thermodynamical variables are reported. It is shown that in the experiment the non-equilibrium free energy decayed when pumping intensity was increased, which is consistent with the theory. Moreover, pumping intensities close to zero could be observed at relatively slow intended rhythmic movements. In view of the Hopf bifurcation underlying the limit cycle oscillator model, this observation suggests that the intended limit cycle movements were actually more similar to trajectories of a randomly perturbed stable focus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Joint Rhythmic Movement Increases 4-Year-Old Children’s Prosocial Sharing and Fairness Toward Peers

    Directory of Open Access Journals (Sweden)

    Tal-Chen Rabinowitch

    2017-06-01

    Full Text Available The allocation of resources to a peer partner is a prosocial act that is of fundamental importance. Joint rhythmic movement, such as occurs during musical interaction, can induce positive social experiences, which may play a role in developing and enhancing young children’s prosocial skills. Here, we investigated whether joint rhythmic movement, free of musical context, increases 4-year-olds’ sharing and sense of fairness in a resource allocation task involving peers. We developed a precise procedure for administering joint synchronous experience, joint asynchronous experience, and a baseline control involving no treatment. Then we tested how participants allocated resources between self and peer. We found an increase in the generous allocation of resources to peers following both synchronous and asynchronous movement compared to no treatment. At a more theoretical level, this result is considered in relation to previous work testing other aspects of child prosociality, for example, peer cooperation, which can be distinguished from judgments of fairness in resource allocation tasks. We draw a conceptual distinction between two types of prosocial behavior: resource allocation (an other-directed individual behavior and cooperation (a goal-directed collaborative endeavor. Our results highlight how rhythmic interactions, which are prominent in joint musical engagements and synchronized activity, influence prosocial behavior between preschool peers.

  5. Ventral Tegmental Area and Substantia Nigra Neural Correlates of Spatial Learning

    Science.gov (United States)

    Martig, Adria K.; Mizumori, Sheri J. Y.

    2011-01-01

    The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) may provide modulatory signals that, respectively, influence hippocampal (HPC)- and striatal-dependent memory. Electrophysiological studies investigating neural correlates of learning and memory of dopamine (DA) neurons during classical conditioning tasks have found DA…

  6. FETAL PORCINE VENTRAL MESENCEPHALON GRAFTS - DISSECTION PROCEDURE AND CELLULAR CHARACTERIZATION IN CULTURE

    NARCIS (Netherlands)

    VANROON, WMC; COPRAY, JCVM; HOGENESCH, RI; KEMA, [No Value; MEYER, EM; MOLENAAR, G; LUGARD, C; STAAL, MJ; GO, KG

    The objective of this study was to develop an optimal dissection procedure for fetal porcine ventral mesencephalon (VM) grafts and to characterize the cellular composition of such an explant, in particular with respect to the dopaminergic and GABAergic components. We have used a monolayer cell

  7. Blindness alters the microstructure of the ventral but not the dorsal visual stream.

    Science.gov (United States)

    Reislev, Nina L; Kupers, Ron; Siebner, Hartwig R; Ptito, Maurice; Dyrby, Tim B

    2016-07-01

    Visual deprivation from birth leads to reorganisation of the brain through cross-modal plasticity. Although there is a general agreement that the primary afferent visual pathways are altered in congenitally blind individuals, our knowledge about microstructural changes within the higher-order visual streams, and how this is affected by onset of blindness, remains scant. We used diffusion tensor imaging and tractography to investigate microstructural features in the dorsal (superior longitudinal fasciculus) and ventral (inferior longitudinal and inferior fronto-occipital fasciculi) visual pathways in 12 congenitally blind, 15 late blind and 15 normal sighted controls. We also studied six prematurely born individuals with normal vision to control for the effects of prematurity on brain connectivity. Our data revealed a reduction in fractional anisotropy in the ventral but not the dorsal visual stream for both congenitally and late blind individuals. Prematurely born individuals, with normal vision, did not differ from normal sighted controls, born at term. Our data suggest that although the visual streams are structurally developing without normal visual input from the eyes, blindness selectively affects the microstructure of the ventral visual stream regardless of the time of onset. We suggest that the decreased fractional anisotropy of the ventral stream in the two groups of blind subjects is the combined result of both degenerative and cross-modal compensatory processes, affecting normal white matter development.

  8. Laparoscopic ventral rectopexy for external rectal prolapse improves constipation and avoids de novo constipation.

    Science.gov (United States)

    Boons, P; Collinson, R; Cunningham, C; Lindsey, I

    2010-06-01

    Abdominal rectopexy is ideal for otherwise healthy patients with rectal prolapse because of low recurrence, yet after posterior rectopexy, half of the patients complain of severe constipation. Resection mitigates this dysfunction but risks a pelvic anastomosis. The novel nerve-sparing ventral rectopexy appears to avoid postero-lateral rectal dissection denervation and thus postoperative constipation. We aimed to evaluate our functional results with laparoscopic ventral rectopexy. Consecutive rectal prolapse patients undergoing laparoscopic ventral rectopexy were prospectively assessed (Wexner Constipation and Faecal Incontinence Severity Index scores) pre-, 3 months postoperatively, and late (> 12 months). Sixty-five consecutive patients with external rectal prolapse (median age 72 years, 34% > 80 years, median follow up 19 months) underwent laparoscopic ventral rectopexy. There was one recurrence (2%) and one conversion. Morbidity (17%) and mortality (0%) were low. Median operating time was 140 min and median length of stay 2 days. At 3 months, constipation was improved in 72% and mildly induced in 2% (median pre-and postoperative Wexner scores 9 vs 4, P constipation and incontinence (P constipation and avoidance of de novo constipation appear superior to historical functional results of posterior rectopexy. A laparoscopic approach allows low morbidity and short hospital stay, even in those patients over 80 years of age in whom a perineal approach is usually preferred for safety.

  9. Fetal porcine ventral mesencephalon graft. Determination of the optimal gestational age for implantation in Parkinsonian patients

    NARCIS (Netherlands)

    HogenEsch, RI; Koopmans, J; Copray, JCVM; van Roon, WMC; Kema, [No Value; Molenaar, G; Go, KG; Staal, MJ

    Human fetal ventral mesencephalon tissue has been used as dopaminergic striatal implants in Parkinsonian patients, so far with variable effects. Fetuses from animals that breed in large litters, e.g., pigs, have been considered as alternative donors of dopaminergic tissue. The optimal gestational

  10. Cryopreservation of porcine fetal ventral mesencephalic tissue for intrastriatal transplantation in Parkinson's disease

    NARCIS (Netherlands)

    Koopmans, J.; Hogenesch, I.; Copray, S.; Middel, B.; van Dijk, H.; Go, K-G.; Staal, M.

    2001-01-01

    In this study we examined the efficacy of cryopreserving porcine fetal mesencephalic tissue. After microscopical dissection of the ventral mesencephalon (VM) from E28 pig fetuses, the collection of explants was randomly divided into two equal parts. One part was directly prepared as cell suspension.

  11. Cell cycle regulator E2F4 is essential for the development of the ventral telencephalon.

    Science.gov (United States)

    Ruzhynsky, Vladimir A; McClellan, Kelly A; Vanderluit, Jacqueline L; Jeong, Yongsu; Furimsky, Marosh; Park, David S; Epstein, Douglas J; Wallace, Valerie A; Slack, Ruth S

    2007-05-30

    Early forebrain development is characterized by extensive proliferation of neural precursors coupled with complex structural transformations; however, little is known regarding the mechanisms by which these processes are integrated. Here, we show that deficiency of the cell cycle regulatory protein, E2F4, results in the loss of ventral telencephalic structures and impaired self-renewal of neural precursor cells. The mechanism underlying aberrant ventral patterning lies in a dramatic loss of Sonic hedgehog (Shh) expression specifically in this region. The E2F4-deficient phenotype can be recapitulated by interbreeding mice heterozygous for E2F4 with those lacking one allele of Shh, suggesting a genetic interaction between these pathways. Treatment of E2F4-deficient cells with a Hh agonist rescues stem cell self-renewal and cells expressing the homeodomain proteins that specify the ventral telencephalic structures. Finally, we show that E2F4 deficiency results in impaired activity of Shh forebrain-specific enhancers. In conclusion, these studies establish a novel requirement for the cell cycle regulatory protein, E2F4, in the development of the ventral telencephalon.

  12. Opposing dorsal/ventral stream dynamics during figure-ground segregation

    NARCIS (Netherlands)

    Wokke, M.E.; Scholte, H.S.; Lamme, V.A.F.

    2014-01-01

    The visual system has been commonly subdivided into two segregated visual processing streams: The dorsal pathway processes mainly spatial information, and the ventral pathway specializes in object perception. Recent findings, however, indicate that different forms of interaction (cross-talk) exist

  13. GENE ARRAY ANALYSIS OF THE VENTRAL PROSTATE IN RATS EXPOSED TO EITHER VINCLOZOLIN OR PROCYMIDONE

    Science.gov (United States)

    GENE ARRAY ANALYSIS OF THE VENTRAL PROSTATE IN RATS EXPOSED TO EITHER VINCLOZOLIN OR PROCYMIDONE. MB Rosen, VS Wilson, JE Schmid, and LE Gray Jr. US EPA, ORD, NHEERL, RTP, NC.Vinclozolin (Vi) and procymidone (Pr) are antiandrogenic fungicides. While changes in gene expr...

  14. Ventral striatum and amygdala activity as convergence sites for early adversity and conduct disorder

    NARCIS (Netherlands)

    Holz, N.E.; Boecker-Schlier, R.; Buchmann, A.F.; Blomeyer, D.; Jennen-Steinmetz, C.; Baumeister, S.; Plichta, M.M.; Cattrell, A.; Schumann, G.; Esser, G.; Schmidt, M.; Buitelaar, J.K.; Meyer-Lindenberg, A.; Banaschewski, T.; Brandeis, D.; Laucht, M.

    2017-01-01

    Childhood family adversity (CFA) increases the risk for conduct disorder (CD) and has been associated with alterations in regions of affective processing like ventral striatum (VS) and amygdala. However, no study so far has demonstrated neural converging effects of CFA and CD in the same sample. At

  15. Watchful waiting as a treatment strategy for patients with a ventral hernia appears to be safe

    DEFF Research Database (Denmark)

    Kokotovic, D; Sjølander, H; Gögenur, I

    2016-01-01

    PURPOSE: Due to risks of postoperative morbidity and recurrence some patients with a ventral hernia are not offered surgical repair. There is limited data on the rate and consequences of a watchful waiting (WW) strategy for these patients. The objective of this cohort study was to analyse outcome...

  16. Inclusions of amyotrophic lateral sclerosis-linked superoxide dismutase in ventral horns, liver, and kidney

    DEFF Research Database (Denmark)

    Jonsson, P.A.; Bergemalm, D.; Andersen, P.M.

    2008-01-01

    Mutant superoxide dismutases type 1 (SOD1s) cause amyotrophic lateral sclerosis by an unidentified toxic property. In a patient carrying the G127X truncation mutation, minute amounts of SOD1 were found in ventral horns using a mutant-specific antibody. Still, both absolute levels and ratios versus...

  17. Genetic analysis of Hedgehog signaling in ventral body wall development and the onset of omphalocele formation

    NARCIS (Netherlands)

    Matsumaru, D.; Haraguchi, R.; Miyagawa, S.; Motoyama, J.; Nakagata, N.; Meijlink, F.; Yamada, G.

    2011-01-01

    BACKGROUND: An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In

  18. Visualization of nitric oxide production in the earthworm ventral nerve cord.

    Science.gov (United States)

    Kitamura, Y; Naganoma, Y; Horita, H; Tsuji, N; Shimizu, R; Ogawa, H; Oka, K

    2001-06-01

    Distribution of nitric oxide (NO)-producible neurons in the ventral nerve cord (VNC) of the earthworm was investigated by nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry. Some neurons (20-30 microm in diameter) were intensely stained and were localized in areas between the 1st and 2nd lateral nerves in the ventral side of VNC. In contrast, no neurons including giant fibers were stained in the dorsal side. Endogenous NO production from VNC was visualized using a fluorescent dye, diaminofluorescein-2 diacethyl (DAF-2 DA). When VNC was incubated in a saline, a relative high level of NO was produced from the ventral side, especially from NADPH-d-positive neurons. Under high-K+ stimulation, NO was also detected in the giant fibers in the dorsal side of VNC. Our results suggest that the earthworm VNC constantly and relative highly produces NO as a neuromodulator, and that NO produced from the ventral side sometimes reaches and affects the giant fibers. In conclusion, we successfully visualized NO in the earthworm VNC by clarifying both the distribution of NO-producible neurons and the endogenous NO production.

  19. The ventral stream offers more affordance and the dorsal stream more memory than believed

    NARCIS (Netherlands)

    Postma, Albert; van der Lubbe, Robert Henricus Johannes; Zuidhoek, Sander

    2002-01-01

    Opposed to Norman's proposal, processing of affordance is likely to occur not solely in the dorsal stream but also in the ventral stream. Moreover, the dorsal stream might do more than just serve an important role in motor actions. It supports egocentric location coding as well. As such, it would

  20. Feasibility and outcome after laparoscopic ventral hernia repair using Proceed mesh

    DEFF Research Database (Denmark)

    Rosenberg, J.; Burcharth, J.

    2008-01-01

    laparoscopic ventral hernia repair using the Proceed mesh secured with tackers with a double crown technique. Patients were discharged according to standard discharge criteria, and follow-up was performed with a search in the national patient database and with manual search in the patients' files. RESULTS: Our...

  1. Morphine withdrawal enhances constitutive μ-opioid receptor activity in the ventral tegmental area

    NARCIS (Netherlands)

    Meye, F.J.; van Zessen, R.; Smidt, M.P.; Adan, R.A.H.; Ramakers, G.M.J.

    2012-01-01

    μ-opioid receptors (MORs) in the ventral tegmental area (VTA) are pivotally involved in addictive behavior. While MORs are typically activated by opioids, they can also become constitutively active in the absence of any agonist. In the current study, we present evidence that MOR constitutive

  2. Reduced amygdala and ventral striatal activity to happy faces in PTSD is associated with emotional numbing.

    Directory of Open Access Journals (Sweden)

    Kim L Felmingham

    Full Text Available There has been a growing recognition of the importance of reward processing in PTSD, yet little is known of the underlying neural networks. This study tested the predictions that (1 individuals with PTSD would display reduced responses to happy facial expressions in ventral striatal reward networks, and (2 that this reduction would be associated with emotional numbing symptoms. 23 treatment-seeking patients with Posttraumatic Stress Disorder were recruited from the treatment clinic at the Centre for Traumatic Stress Studies, Westmead Hospital, and 20 trauma-exposed controls were recruited from a community sample. We examined functional magnetic resonance imaging responses during the presentation of happy and neutral facial expressions in a passive viewing task. PTSD participants rated happy facial expression as less intense than trauma-exposed controls. Relative to controls, PTSD participants revealed lower activation to happy (-neutral faces in ventral striatum and and a trend for reduced activation in left amygdala. A significant negative correlation was found between emotional numbing symptoms in PTSD and right ventral striatal regions after controlling for depression, anxiety and PTSD severity. This study provides initial evidence that individuals with PTSD have lower reactivity to happy facial expressions, and that lower activation in ventral striatal-limbic reward networks may be associated with symptoms of emotional numbing.

  3. Characterization of organotypic ventral mesencephalic cultures from embryonic mice and protection against MPP toxicity by GDNF

    DEFF Research Database (Denmark)

    Jakobsen, B; Gramsbergen, J B; Møller Dall, A

    2005-01-01

    We characterized organotypic ventral mesencephalic (VM) cultures derived from embryonic day 12 (E12) mice (CBL57/bL6) in terms of number of dopaminergic neurons, cell soma size and dopamine production in relation to time in vitro and tested the effects of 1-methyl-4-phenylpyridinium (MPP(+)) and ...

  4. Early White-Matter Abnormalities of the Ventral Frontostriatal Pathway in Fragile X Syndrome

    Science.gov (United States)

    Haas, Brian W.; Barnea-Goraly, Naama; Lightbody, Amy A.; Patnaik, Swetapadma S.; Hoeft, Fumiko; Hazlett, Heather; Piven, Joseph; Reiss, Allan L.

    2009-01-01

    Aim: Fragile X syndrome is associated with cognitive deficits in inhibitory control and with abnormal neuronal morphology and development. Method: In this study, we used a diffusion tensor imaging (DTI) tractography approach to reconstruct white-matter fibers in the ventral frontostriatal pathway in young males with fragile X syndrome (n = 17;…

  5. Timescales and Mechanisms of Sigh-Like Bursting and Spiking in Models of Rhythmic Respiratory Neurons.

    Science.gov (United States)

    Wang, Yangyang; Rubin, Jonathan E

    2017-12-01

    Neural networks generate a variety of rhythmic activity patterns, often involving different timescales. One example arises in the respiratory network in the pre-Bötzinger complex of the mammalian brainstem, which can generate the eupneic rhythm associated with normal respiration as well as recurrent low-frequency, large-amplitude bursts associated with sighing. Two competing hypotheses have been proposed to explain sigh generation: the recruitment of a neuronal population distinct from the eupneic rhythm-generating subpopulation or the reconfiguration of activity within a single population. Here, we consider two recent computational models, one of which represents each of the hypotheses. We use methods of dynamical systems theory, such as fast-slow decomposition, averaging, and bifurcation analysis, to understand the multiple-timescale mechanisms underlying sigh generation in each model. In the course of our analysis, we discover that a third timescale is required to generate sighs in both models. Furthermore, we identify the similarities of the underlying mechanisms in the two models and the aspects in which they differ.

  6. Speech rhythm analysis with decomposition of the amplitude envelope: characterizing rhythmic patterns within and across languages.

    Science.gov (United States)

    Tilsen, Sam; Arvaniti, Amalia

    2013-07-01

    This study presents a method for analyzing speech rhythm using empirical mode decomposition of the speech amplitude envelope, which allows for extraction and quantification of syllabic- and supra-syllabic time-scale components of the envelope. The method of empirical mode decomposition of a vocalic energy amplitude envelope is illustrated in detail, and several types of rhythm metrics derived from this method are presented. Spontaneous speech extracted from the Buckeye Corpus is used to assess the effect of utterance length on metrics, and it is shown how metrics representing variability in the supra-syllabic time-scale components of the envelope can be used to identify stretches of speech with targeted rhythmic characteristics. Furthermore, the envelope-based metrics are used to characterize cross-linguistic differences in speech rhythm in the UC San Diego Speech Lab corpus of English, German, Greek, Italian, Korean, and Spanish speech elicited in read sentences, read passages, and spontaneous speech. The envelope-based metrics exhibit significant effects of language and elicitation method that argue for a nuanced view of cross-linguistic rhythm patterns.

  7. Retained primitive reflexes: Perceptions of parents who have used Rhythmic Movement Training with their children.

    Science.gov (United States)

    Grigg, Tessa M; Fox-Turnbull, Wendy; Culpan, Ian

    2018-01-01

    This article reports on a qualitative phenomenological research project that investigated the use of Rhythmic Movement Training (RMT) as an intervention for retained primitive reflexes. Participants were from seven families who each had a child between the ages of 7 years and 12 years. Through semi-structured interviews, parents described their reasons for seeking additional help with their child's development issues. They talked about finding RMT, using RMT within their family routine and their views on the costs and the benefits they experienced, both financial and time. While there has been a small amount of research into movement programmes targeting retained primitive reflexes, to date there appears to have been no studies completed on RMT. The data collected described searches for help, the stress and frustrations associated with the search and the range of interventions these parents tried. The families in this research found that RMT was easy to use within their daily routine and that it was a cost-effective, low-impact intervention. The families noticed a range of benefits for children who had completed the movements. The findings provide encouraging evidence to proceed with further study that will investigate the academic, social and emotional development of children using RMT.

  8. Measuring Coupling of Rhythmical Time Series Using Cross Sample Entropy and Cross Recurrence Quantification Analysis

    Directory of Open Access Journals (Sweden)

    John McCamley

    2017-01-01

    Full Text Available The aim of this investigation was to compare and contrast the use of cross sample entropy (xSE and cross recurrence quantification analysis (cRQA measures for the assessment of coupling of rhythmical patterns. Measures were assessed using simulated signals with regular, chaotic, and random fluctuations in frequency, amplitude, and a combination of both. Biological data were studied as models of normal and abnormal locomotor-respiratory coupling. Nine signal types were generated for seven frequency ratios. Fifteen patients with COPD (abnormal coupling and twenty-one healthy controls (normal coupling walked on a treadmill at three speeds while breathing and walking were recorded. xSE and the cRQA measures of percent determinism, maximum line, mean line, and entropy were quantified for both the simulated and experimental data. In the simulated data, xSE, percent determinism, and entropy were influenced by the frequency manipulation. The 1 : 1 frequency ratio was different than other frequency ratios for almost all measures and/or manipulations. The patients with COPD used a 2 : 3 ratio more often and xSE, percent determinism, maximum line, mean line, and cRQA entropy were able to discriminate between the groups. Analysis of the effects of walking speed indicated that all measures were able to discriminate between speeds.

  9. Improving Reading Skills in Students with Dyslexia: The Efficacy of a Rhythmic Training

    Directory of Open Access Journals (Sweden)

    Alessandro eAntonietti

    2015-10-01

    Full Text Available The core deficit underlying developmental dyslexia (DD has been identified in difficulties in dynamic and rapidly changing auditory information processing, which contribute to the development of impaired phonological representations for words. It has been argued that enhancing basic musical rhythm perception skills in children with DD may have a positive effect on reading abilities because music and language share common mechanisms and thus transfer effects from the former to the latter are expected to occur. A computer-assisted training, called Rhythmic Reading Training (RRT, was designed in which reading exercises are combined with rhythm background. Fourteen junior high school students with DD took part to 9 biweekly individual sessions of 30 minutes in which RRT was implemented. Reading improvements after the intervention period were compared with ones of a matched control group of 14 students with DD who received no intervention. Results indicated that RRT had a positive effect on both reading speed and accuracy, and significant effects were found on short pseudo-words reading speed, long pseudo-words reading speed, high frequency long words reading accuracy, and text reading accuracy. No difference in rhythm perception between the intervention and control group were found. Findings suggest that rhythm facilitates the development of reading skill because of the temporal structure it imposes to word decoding.

  10. Mechanisms underlying rhythmic locomotion: body–fluid interaction in undulatory swimming

    Science.gov (United States)

    Chen, J.; Friesen, W. O.; Iwasaki, T.

    2011-01-01

    Swimming of fish and other animals results from interactions of rhythmic body movements with the surrounding fluid. This paper develops a model for the body–fluid interaction in undulatory swimming of leeches, where the body is represented by a chain of rigid links and the hydrodynamic force model is based on resistive and reactive force theories. The drag and added-mass coefficients for the fluid force model were determined from experimental data of kinematic variables during intact swimming, measured through video recording and image processing. Parameter optimizations to minimize errors in simulated model behaviors revealed that the resistive force is dominant, and a simple static function of relative velocity captures the essence of hydrodynamic forces acting on the body. The model thus developed, together with the experimental kinematic data, allows us to investigate temporal and spatial (along the body) distributions of muscle actuation, body curvature, hydrodynamic thrust and drag, muscle power supply and energy dissipation into the fluid. We have found that: (1) thrust is generated continuously along the body with increasing magnitude toward the tail, (2) drag is nearly constant along the body, (3) muscle actuation waves travel two or three times faster than the body curvature waves and (4) energy for swimming is supplied primarily by the mid-body muscles, transmitted through the body in the form of elastic energy, and dissipated into the water near the tail. PMID:21270304

  11. Influence of patterned topographic features on the formation of cardiac cell clusters and their rhythmic activities

    International Nuclear Information System (INIS)

    Wang, L; Liu, L; Magome, N; Agladze, K; Chen, Y

    2013-01-01

    In conventional primary cultures, cardiac cells prepared from a newborn rat undergo spontaneous formation of cell clusters after several days. These cell clusters may be non-homogeneously distributed on a flat surface and show irregular beating which can be recorded by calcium ion imaging. In order to improve the cell cluster homogeneity and the beating regularity, patterned topographic features were used to guide the cellular growth and the cell layer formation. On the substrate with an array of broadly spaced cross features made of photoresist, cells grew on the places that were not occupied by the crosses and thus formed a cell layer with interconnected cell clusters. Accordingly, spatially coordinated regular beating could be recorded over the whole patterned area. In contrast, when cultured on the substrate with broadly spaced but inter-connected cross features, the cardiac cell layer showed beatings which were neither coordinated in space nor regular in time. Finally, when cultured on the substrate with narrowly spaced features, the cell beating became spatially coordinated but still remained irregular. Our results suggest a way to improve the rhythmic property of cultured cardiac cell layers which might be useful for further investigations. (paper)

  12. Analysis of the influence of plyometric training in improving the performance of athletes in rhythmic gymnastics

    Directory of Open Access Journals (Sweden)

    Barbara Raquel Agostini

    2017-11-01

    Full Text Available Rhythmic gymnastics (RG athletes need high-performance training since a high degree of precision is required in their exercises. Plyometric training (PT has been used to improve athletes' neuromuscular function, explosive performance and strength in competition. The object of this study was to assess the efficiency of PT in improving the performance of RG athletes in the juvenile and adult categories over 12 months, by incorporating PT into two training macrocycles. Thirty athletes were selected; they were divided randomly into a control group (CG and an experimental group (EG of 15 athletes each. Two 6-month training macrocycles were drawn up for the EG in which they maintained normal training with the addition of PT. The CG maintained its normal training. Three tests were used for the assessment: vertical jump, horizontal jump and agility, assessed at 5 different moments. After 12 months it was observed an improvement in test performance in both groups, with a more significant improvement in the EG when compared to the CG. The addition of PT to normal training improved the performance of athletes by developing greater power in the lower limbs, increasing their capacity in vertical jump, horizontal jump and agility.

  13. Promoting artistic quality in rhythmic gymnastics: a didactic analysis from high performance to school practice

    Directory of Open Access Journals (Sweden)

    Monique LOQUET

    2016-03-01

    Full Text Available Abstract In France, the curricula for physical education (PE place gymnastic activities in a set of competences named “Achieving a corporal performance for artistic and acrobatic aims”, alongside dance and circus arts. What place does Artistic occupy in gymnastic activities? Is an aesthetic gesture sufficient to be considered as part of an artistic activity? Defining the term «Artistic» is difficult in the field of sports, as descriptions usually come from the technique/Artistic dichotomy. Our analysis focuses on rhythmic gymnastics (RG, which is precisely seen as emblematic of this technique/Artistic division: on the one hand, technical rigor, prescriptions and rules; on the other hand, grace, creation and self-expression. We believe such compartmentalized categories are too schematic to define gymnasts’ and students’ activities, so we will examine their articulation points. We first present an overview of RG as a school practice in ordinary forms of teaching, then an historical analysis of RG as a sports practice, to highlight the unbridgeable gap between both school and sports practices, regarding technique/Artistic connections. We then propose three significant points of articulation (called games closely combining technical requirements and artistic commitment. We consider that the variation of the three games played in GR (creating, making beautiful, representing is the product of historical dynamics of this sport we call artistic. Finally, on this basis, we propose a learning game for novice students promoting the artistic quality of RG practice.

  14. Pedagogical Conditions for Coordination Development in Girls of Primary School Age through Rhythmic Gymnastics

    Directory of Open Access Journals (Sweden)

    С. І. Марченко

    2015-06-01

    Full Text Available The research objective is to experimentally verify the effectiveness of the use of rhythmic gymnastics means that have been systematized to develop coordination abilities in girls of primary school age. Research methods: method of theoretical analysis and generalization of literary sources, method of control studies, pedagogical experiment, methods of mathematical statistics. Research results. The coordination readiness level evaluation demonstrated that at the beginning of the pedagogical experiment the level of the majority of the second-grade girls was low (22.85%, below average (39.97%, and average (11.42%; that of the third-grade girls was below average (57.1%, average (34.26%; and that of the fourth-grade — below average (29.3%, and average (62.06%. After the pedagogical experiment the number of the second-, third- and fourth-grade girls with the low level decreased by 19%, 13.4%, 10.4% in the experimental groups and by 16.3%, 11.8%, 9.8% in the control groups respectively; the number of the girls with the below-average level decreased by 14.7%, 32.7%, 23.1% in the experimental groups and by 12.4%, 21%, 19.1% in the control groups. The positive changes in the level of coordination abilities occurred both in the control and the experimental groups, with the results improved in favor of the experimental groups.

  15. The speed of progress in the apparatus handling technique in rhythmic gymnastics

    Directory of Open Access Journals (Sweden)

    Moskovljević Lidija

    2013-01-01

    Full Text Available Specificity of rhythmic gymnastics as a sport and as a teaching device are apparatus routines. Considering lack of researches, the aim of our study was to determine ages of maturity when the development in apparatus routines performance is greater. Development in essential rope, hoop and ball routine performance was examined two times per year, through four years experimental period. The evaluation is carried out three-member RG-expert committee on a scale of 1 to 10. A total of twenty-seven competitors, examined at ages seven to fourteen, participate in this study. Based on data, we can notice that speed of progress in apparatus handling technique was not equal during observing maturity period. There was not significant development in most of examined routines between seven to nine years of ages. Significant development in this period has been achieved only in two rope routines (Vij1 i Vij2R and one ball routine to (Lop2R. From eleven to twelve years of ages, significant development has been achieved for most of routines, except basic running with rope (Vij1 and hoop routine performed with weaker arm (Obr2L. At 12 to 13 years of ages, development of routines performance has not been statistically significant.

  16. When kinesthetic information is neglected in learning a Novel bimanual rhythmic coordination.

    Science.gov (United States)

    Zhu, Qin; Mirich, Todd; Huang, Shaochen; Snapp-Childs, Winona; Bingham, Geoffrey P

    2017-08-01

    Many studies have shown that rhythmic interlimb coordination involves perception of the coupled limb movements, and different sensory modalities can be used. Using visual displays to inform the coupled bimanual movement, novel bimanual coordination patterns can be learned with practice. A recent study showed that similar learning occurred without vision when a coach provided manual guidance during practice. The information provided via the two different modalities may be same (amodal) or different (modality specific). If it is different, then learning with both is a dual task, and one source of information might be used in preference to the other in performing the task when both are available. In the current study, participants learned a novel 90° bimanual coordination pattern without or with visual information in addition to kinesthesis. In posttest, all participants were tested without and with visual information in addition to kinesthesis. When tested with visual information, all participants exhibited performance that was significantly improved by practice. When tested without visual information, participants who practiced using only kinesthetic information showed improvement, but those who practiced with visual information in addition showed remarkably less improvement. The results indicate that (1) the information is not amodal, (2) use of a single type of information was preferred, and (3) the preferred information was visual. We also hypothesized that older participants might be more likely to acquire dual task performance given their greater experience of the two sensory modes in combination, but results were replicated with both 20- and 50-year-olds.

  17. The effect of stereotype threat on performance of a rhythmic motor skill.

    Science.gov (United States)

    Huber, Meghan E; Seitchik, Allison E; Brown, Adam J; Sternad, Dagmar; Harkins, Stephen G

    2015-04-01

    Many studies using cognitive tasks have found that stereotype threat, or concern about confirming a negative stereotype about one's group, debilitates performance. The few studies that documented similar effects on sensorimotor performance have used only relatively coarse measures to quantify performance. This study tested the effect of stereotype threat on a rhythmic ball bouncing task, where previous analyses of the task dynamics afforded more detailed quantification of the effect of threat on motor control. In this task, novices hit the ball with positive racket acceleration, indicative of unstable performance. With practice, they learn to stabilize error by changing their ball-racket impact from positive to negative acceleration. Results showed that for novices, stereotype threat potentiated hitting the ball with positive racket acceleration, leading to poorer performance of stigmatized females. However, when the threat manipulation was delivered after having acquired some skill, reflected by negative racket acceleration, the stigmatized females performed better. These findings are consistent with the mere effort account that argues that stereotype threat potentiates the most likely response on the given task. The study also demonstrates the value of identifying the control mechanisms through which stereotype threat has its effects on outcome measures. (c) 2015 APA, all rights reserved.

  18. Effect of rhythmic auditory stimulation on gait performance in children with spastic cerebral palsy.

    Science.gov (United States)

    Kwak, Eunmi Emily

    2007-01-01

    The purpose of this study was to use Rhythmic Auditory Stimulation (RAS) for children with spastic cerebral palsy (CP) in a clinical setting in order to determine its effectiveness in gait training for ambulation. RAS has been shown to improve gait performance in patients with significant gait deficits. All 25 participants (6 to 20 years old) had spastic CP and were ambulatory, but needed to stabilize and gain more coordinated movement. Participants were placed in three groups: the control group, the therapist-guided training (TGT) group, and the self-guided training (SGT) group. The TGT group showed a statistically significant difference in stride length, velocity, and symmetry. The analysis of the results in SGT group suggests that the self-guided training might not be as effective as therapist-guided depending on motivation level. The results of this study support three conclusions: (a) RAS does influence gait performance of people with CP; (b) individual characteristics, such as cognitive functioning, support of parents, and physical ability play an important role in designing a training application, the effectiveness of RAS, and expected benefits from the training; and (c) velocity and stride length can be improved by enhancing balance, trajectory, and kinematic stability without increasing cadence.

  19. Dyslexic children fail to comply with the rhythmic constraints of handwriting.

    Science.gov (United States)

    Pagliarini, Elena; Guasti, Maria Teresa; Toneatto, Carlo; Granocchio, Elisa; Riva, Federica; Sarti, Daniela; Molteni, Bruna; Stucchi, Natale

    2015-08-01

    In this study, we sought to demonstrate that deficits in a specific motor activity, handwriting, are associated to Developmental Dyslexia. The linguistic and writing performance of children with Developmental Dyslexia, with and without handwriting problems (dysgraphia), were compared to that of children with Typical Development. The quantitative kinematic variables of handwriting were collected by means of a digitizing tablet. The results showed that all children with Developmental Dyslexia wrote more slowly than those with Typical Development. Contrary to typically developing children, they also varied more in the time taken to write the individual letters of a word and failed to comply with the principles of isochrony and homothety. Moreover, a series of correlations was found among reading, language measures and writing measures suggesting that the two abilities may be linked. We propose that the link between handwriting and reading/language deficits is mediated by rhythm, as both reading (which is grounded on language) and handwriting are ruled by principles of rhythmic organization. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Circadian clocks, rhythmic synaptic plasticity and the sleep-wake cycle in zebrafish.

    Science.gov (United States)

    Elbaz, Idan; Foulkes, Nicholas S; Gothilf, Yoav; Appelbaum, Lior

    2013-01-01

    The circadian clock and homeostatic processes are fundamental mechanisms that regulate sleep. Surprisingly, despite decades of research, we still do not know why we sleep. Intriguing hypotheses suggest that sleep regulates synaptic plasticity and consequently has a beneficial role in learning and memory. However, direct evidence is still limited and the molecular regulatory mechanisms remain unclear. The zebrafish provides a powerful vertebrate model system that enables simple genetic manipulation, imaging of neuronal circuits and synapses in living animals, and the monitoring of behavioral performance during day and night. Thus, the zebrafish has become an attractive model to study circadian and homeostatic processes that regulate sleep. Zebrafish clock- and sleep-related genes have been cloned, neuronal circuits that exhibit circadian rhythms of activity and synaptic plasticity have been studied, and rhythmic behavioral outputs have been characterized. Integration of this data could lead to a better understanding of sleep regulation. Here, we review the progress of circadian clock and sleep studies in zebrafish with special emphasis on the genetic and neuroendocrine mechanisms that regulate rhythms of melatonin secretion, structural synaptic plasticity, locomotor activity and sleep.

  1. Circadian clocks, rhythmic synaptic plasticity and the sleep-wake cycle in zebrafish

    Directory of Open Access Journals (Sweden)

    Idan eElbaz

    2013-02-01

    Full Text Available The circadian clock and homeostatic processes are fundamental mechanisms that regulate sleep. Surprisingly, despite decades of research, we still do not know why we sleep. Intriguing hypotheses suggest that sleep regulates synaptic plasticity and consequently has a beneficial role in learning and memory. However, direct evidence is still limited and the molecular regulatory mechanisms remain unclear. The zebrafish provides a powerful vertebrate model system that enables simple genetic manipulation, imaging of neuronal circuits and synapses in living animals, and the monitoring of behavioral performance during day and night. Thus, the zebrafish has become an attractive model to study circadian and homeostatic processes that regulate sleep. Zebrafish clock- and sleep-related genes have been cloned, neuronal circuits that exhibit circadian rhythms of activity and synaptic plasticity have been studied, and rhythmic behavioral outputs have been characterized. Integration of this data could lead to a better understanding of sleep regulation. Here, we review the progress of circadian clock and sleep studies in zebrafish with special emphasis on the genetic and neuroendocrine mechanisms that regulate rhythms of melatonin secretion, structural synaptic plasticity, locomotor activity and sleep.

  2. Blood-gene expression reveals reduced circadian rhythmicity in individuals resistant to sleep deprivation.

    Science.gov (United States)

    Arnardottir, Erna S; Nikonova, Elena V; Shockley, Keith R; Podtelezhnikov, Alexei A; Anafi, Ron C; Tanis, Keith Q; Maislin, Greg; Stone, David J; Renger, John J; Winrow, Christopher J; Pack, Allan I

    2014-10-01

    To address whether changes in gene expression in blood cells with sleep loss are different in individuals resistant and sensitive to sleep deprivation. Blood draws every 4 h during a 3-day study: 24-h normal baseline, 38 h of continuous wakefulness and subsequent recovery sleep, for a total of 19 time-points per subject, with every 2-h psychomotor vigilance task (PVT) assessment when awake. Sleep laboratory. Fourteen subjects who were previously identified as behaviorally resistant (n = 7) or sensitive (n = 7) to sleep deprivation by PVT. Thirty-eight hours of continuous wakefulness. We found 4,481 unique genes with a significant 24-h diurnal rhythm during a normal sleep-wake cycle in blood (false discovery rate [FDR] sleep. After accounting for circadian effects, two genes (SREBF1 and CPT1A, both involved in lipid metabolism) exhibited small, but significant, linear changes in expression with the duration of sleep deprivation (FDR sleep deprivation was a reduction in the amplitude of the diurnal rhythm of expression of normally cycling probe sets. This reduction was noticeably higher in behaviorally resistant subjects than sensitive subjects, at any given P value. Furthermore, blood cell type enrichment analysis showed that the expression pattern difference between sensitive and resistant subjects is mainly found in cells of myeloid origin, such as monocytes. Individual differences in behavioral effects of sleep deprivation are associated with differences in diurnal amplitude of gene expression for genes that show circadian rhythmicity. © 2014 Associated Professional Sleep Societies, LLC.

  3. Temporal modification in cardiac rhythmicity of Nephrops norvegicus (Crustacea: Decapoda in relation to trawl capture stress

    Directory of Open Access Journals (Sweden)

    Jacopo Aguzzi

    2005-09-01

    Full Text Available The effects of trawling on cardiac rhythmicity of Nephrops norvegicus (L. are still mostly unknown. Ultradian rhythms reported in previous studies may result from trawling capture stress, thus disappearing following acclimatisation to laboratory conditions. To test this hypothesis, 34 time series of cardiac activity data recorded in constant darkness were studied by Fourier analysis. Spectral decomposition of time series was obtained by defining the fundamental or circadian harmonic (CH in 24-h together with 9 submultiples of this period. The power content (PC of each harmonic was estimated in data segments of 24-h duration (days, giving graphic matrices of PC values over consecutive days. Values of PC for 9 submultiples were summed and studied in a block named ultradian band (UB. The modification in the PC of the CH and of the UB was evaluated during laboratory acclimatisation. A significant increase in the PC of the circadian harmonic component (CH over consecutive days of testing was observed. These findings suggest that, rather than being a product of dim light environmental fluctuations experienced by the animals from the deep waters of the continental slope, ultradian periodicity could well be caused by the stress of capture.

  4. The Neural Representation of Goal-Directed Actions and Outcomes in the Ventral Striatum's Olfactory Tubercle

    Science.gov (United States)

    Gadziola, Marie A.

    2016-01-01

    The ventral striatum is critical for evaluating reward information and the initiation of goal-directed behaviors. The many cellular, afferent, and efferent similarities between the ventral striatum's nucleus accumbens and olfactory tubercle (OT) suggests the distributed involvement of neurons within the ventral striatopallidal complex in motivated behaviors. Although the nucleus accumbens has an established role in representing goal-directed actions and their outcomes, it is not known whether this function is localized within the nucleus accumbens or distributed also within the OT. Answering such a fundamental question will expand our understanding of the neural mechanisms underlying motivated behaviors. Here we address whether the OT encodes natural reinforcers and serves as a substrate for motivational information processing. In recordings from mice engaged in a novel water-motivated instrumental task, we report that OT neurons modulate their firing rate during initiation and progression of the instrumental licking behavior, with some activity being internally generated and preceding the first lick. We further found that as motivational drive decreases throughout a session, the activity of OT neurons is enhanced earlier relative to the behavioral action. Additionally, OT neurons discriminate the types and magnitudes of fluid reinforcers. Together, these data suggest that the processing of reward information and the orchestration of goal-directed behaviors is a global principle of the ventral striatum and have important implications for understanding the neural systems subserving addiction and mood disorders. SIGNIFICANCE STATEMENT Goal-directed behaviors are widespread among animals and underlie complex behaviors ranging from food intake, social behavior, and even pathological conditions, such as gambling and drug addiction. The ventral striatum is a neural system critical for evaluating reward information and the initiation of goal-directed behaviors. Here we

  5. "Roots": Medium and Message.

    Science.gov (United States)

    Kinnamon, Keneth

    A national telephone survey indicated that audiences rated the television production of "Roots" positively in terms of the following: realistic portrayal of the people and the times; relevance for contemporary race relations; perceived emotional effect; and increased understanding of the psychology of black people. However, a comparison…

  6. Armillaria Root Disease

    Science.gov (United States)

    R.E. Williams; C.G. III Shaw; P.M. Wargo; W.H. Sites

    1986-01-01

    Armillaria root disease is found throughout temperate and tropical regions of the world. In the continental United States, the disease has been reported in nearly every State. Hosts include hundreds of species of trees, shrubs, vines, and forbs growing in forests, along roadsides, and in cultivated areas. The disease is caused by fungi, which live as parasites on...

  7. computer-aided root aided root aided root aided root-locus

    African Journals Online (AJOL)

    User

    m, stability, transient response, root-locus, iteration he means by which any a machine, mechanism or d or altered in accordance. Introduction of feedback has the advantages of f system performance to in system parameters, ponse and minimizing the ignals. However, feedback of components, increases ain and introduces ...

  8. (Lamiaceae) root extracts

    African Journals Online (AJOL)

    Purpose: To evaluate the larvicidal, nematicidal, antifeedant, and antifungal effects of 10 solvent extracts of Mentha spicata root. Methods: Ten solvent extracts were investigated for their total flavonoid and phenolic content and screened for larvicidal, nematicidal, antifeedant, and antifungal activities. The total phenolic ...

  9. Synchronous high-resolution phenotyping of leaf and root growth in Nicotiana tabacum over 24-h periods with GROWMAP-plant

    Directory of Open Access Journals (Sweden)

    Ruts Tom

    2013-01-01

    Full Text Available Abstract Background Root growth is highly responsive to temporal changes in the environment. On the contrary, diel (24 h leaf expansion in dicot plants is governed by endogenous control and therefore its temporal pattern does not strictly follow diel changes in the environment. Nevertheless, root and shoot are connected with each other through resource partitioning and changing environments for one organ could affect growth of the other organ, and hence overall plant growth. Results We developed a new technique, GROWMAP-plant, to monitor growth processes synchronously in leaf and root of the same plant with a high resolution over the diel period. This allowed us to quantify treatment effects on the growth rates of the treated and non-treated organ and the possible interaction between them. We subjected the root system of Nicotiana tabacum seedlings to three different conditions: constant darkness at 22°C (control, constant darkness at 10°C (root cooling, and 12 h/12 h light–dark cycles at 22°C (root illumination. In all treatments the shoot was kept under the same 12 h/12 h light–dark cycles at 22°C. Root growth rates were found to be constant when the root-zone environment was kept constant, although the root cooling treatment significantly reduced root growth. Root velocity was decreased after light-on and light-off events of the root illumination treatment, resulting in diel root growth rhythmicity. Despite these changes in root growth, leaf growth was not affected substantially by the root-zone treatments, persistently showing up to three times higher nocturnal growth than diurnal growth. Conclusion GROWMAP-plant allows detailed synchronous growth phenotyping of leaf and root in the same plant. Root growth was very responsive to the root cooling and root illumination, while these treatments altered neither relative growth rate nor diel growth pattern in the seedling leaf. Our results that were obtained simultaneously in growing

  10. Representation of Gravity-Aligned Scene Structure in Ventral Pathway Visual Cortex.

    Science.gov (United States)

    Vaziri, Siavash; Connor, Charles E

    2016-03-21

    The ventral visual pathway in humans and non-human primates is known to represent object information, including shape and identity [1]. Here, we show the ventral pathway also represents scene structure aligned with the gravitational reference frame in which objects move and interact. We analyzed shape tuning of recently described macaque monkey ventral pathway neurons that prefer scene-like stimuli to objects [2]. Individual neurons did not respond to a single shape class, but to a variety of scene elements that are typically aligned with gravity: large planes in the orientation range of ground surfaces under natural viewing conditions, planes in the orientation range of ceilings, and extended convex and concave edges in the orientation range of wall/floor/ceiling junctions. For a given neuron, these elements tended to share a common alignment in eye-centered coordinates. Thus, each neuron integrated information about multiple gravity-aligned structures as they would be seen from a specific eye and head orientation. This eclectic coding strategy provides only ambiguous information about individual structures but explicit information about the environmental reference frame and the orientation of gravity in egocentric coordinates. In the ventral pathway, this could support perceiving and/or predicting physical events involving objects subject to gravity, recognizing object attributes like animacy based on movement not caused by gravity, and/or stabilizing perception of the world against changes in head orientation [3-5]. Our results, like the recent discovery of object weight representation [6], imply that the ventral pathway is involved not just in recognition, but also in physical understanding of objects and scenes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Differential activation of amygdala, dorsal and ventral hippocampus following an exposure to a reminder ofunderwater trauma

    Directory of Open Access Journals (Sweden)

    Gilad eRitov

    2014-01-01

    Full Text Available Recollection of emotional memories is attributed in part to the activation of the amygdala and the hippocampus. Recent hypothesis suggest a pivotal role for the ventral hippocampus in traumatic stress processing and emotional memory retrieval. Persistent re-experiencing and intrusive recollections are core symptoms in acute and posttraumatic stress disorders (ASD; PTSD. Such intrusive recollections are often triggered by reminders associated with the trauma.We examined the impact of exposure to a trauma reminder (under water trauma on the activation of the basolateral amygdala (BLA, dorsal and ventral hippocampus. Rats were exposed to underwater trauma and 24 hours later were re-exposed to the context of the trauma. Phosphorylation of the extracellular signal-regulated kinase (ERK was used as a marker for level of activation of these regions. Significant increase in ERK activation was found in the ventral hippocampus and BLA. Such pattern of activation was not found in animals exposed only to the trauma or in animals exposed only to the trauma reminder. Additionally, the dissociative pattern of activation of the ventral hippocampus sub-regions positively correlated with the activation of the BLA.Our findings suggest a specific pattern of neural activation during recollection of a trauma reminder, with a unique contribution of the ventral hippocampus. Measured 24 hrs after the exposure to the traumatic experience, the current findings relate to relatively early stages of traumatic memory consolidation. Understanding the neural mechanisms underlying these initial stages may contribute to developing intervention strategies that could reduce the risk of eventually developing PTSD.

  12. Expression and Function of Xmsx-2B in Dorso-Ventral Axis Formation in Gastrula Embryos.

    Science.gov (United States)

    Onitsuka, I; Takeda, M; Maéno, M

    2000-11-01

    Msx is a homeodomain-containing transcriptional factor that plays an essential role in pattern formation in vertebrata and invertebrata embryos. In Xenopus laevis, two msx genes have been identified (Xmsx-1 and Xmsx-2). In the present study, we attempted to elucidate the expression and function of Xmsx-2B (formerly designated as Xhox7.1') in early embryogenesis. Whole mount in situ hybridization analyses showed that the expression pattern of Xmsx-2B at gastrula and neurula stages was very similar to that of Xmsx-1: the transcript of Xmsx-2B was observed in ventral and lateral sides of the embryo. At the tailbud stage, however, the expression pattern of Xmsx-2B in neural tissues was distinct from that of Xmsx-1. An RNA injection experiment revealed that, like BMP-4, Xmsx-2B has a strong ventralizing activity. In the Xmsx-2B -injected embryos, differentiation of axial structures such as the notochord, muscle, and neural tissue was completely suppressed, whereas alpha-globin mRNA, a blood cell marker, was highly expressed. Simultaneous injection of Xmsx-1 and Xmsx-2B RNAs showed that they function in an additive manner. It was also shown that coinjection of Xmsx-2B with a dominant-negative BMP-4 receptor (tBR), which can induce formation of secondary axis when injected alone in ventral blastomeres, suppressed secondary axis formation. Furthermore, Xmsx-2B also suppressed secondary axis formation, which was induced by a dominant-negative form of Xmsx-1 (VP16/msx-1). Therefore, like Xmsx-1, Xmsx-2B is a downstream nuclear factor of the BMP-4-derived ventralizing signal, and these two factors probably share the same target molecules. In conclusion, Xmsx-1 and Xmsx-2B function in dorso-ventral axis formation in early Xenopus laevis development.

  13. Ventral Slit Scrotal Flap: A New Outpatient Surgical Option for Reconstruction of Adult Buried Penis Syndrome.

    Science.gov (United States)

    Westerman, Mary E; Tausch, Timothy J; Zhao, Lee C; Siegel, Jordan A; Starke, Nathan; Klein, Alexandra K; Morey, Allen F

    2015-06-01

    We present a novel technique using ventral slit with scrotal skin flaps (VSSF) for the reconstruction of adult buried penis without skin grafting. An initial ventral slit is made in the phimotic ring, and the penis is exposed. To cover the defect in the ventral shaft skin, local flaps are created by making a ventral midline scrotal incision with horizontal relaxing incisions. The scrotal flaps are rotated to resurface the ventral shaft. Clinical data analyzed included preoperative diagnoses, length of stay, blood loss, and operative outcomes. Complications were also recorded. Fifteen consecutive patients with a penis trapped due to lichen sclerosus (LS) or phimosis underwent repair with VSSF. Each was treated in the outpatient setting with no perioperative complications. Mean age was 51 years (range, 26-75 years), and mean body mass index was 42.6 kg/m(2) (range, 29.8-53.9 kg/m(2)). The majority of patients (13 of 15, 87%) had a pathologic diagnosis of LS. Mean estimated blood loss was 57 cc (range, 25-200 cc), mean operative time was 83 minutes (range, 35-145 minutes), and all patients were discharged on the day of surgery. The majority of patients (11 of 15, 73.3%) remain satisfied with their results and have required no further intervention. Recurrences in 3 of 15 (20.0%) were due to LS, panniculus migration, and concealment by edematous groin tissue; 2 of these patients underwent subsequent successful skin grafting. VSSF is a versatile, safe, and effective reconstructive option in appropriately selected patients with buried penis, which enables reconstruction of penile shaft skin defects without requiring complex skin grafting. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Genetic Analysis of Hedgehog Signaling in Ventral Body Wall Development and the Onset of Omphalocele Formation

    Science.gov (United States)

    Matsumaru, Daisuke; Haraguchi, Ryuma; Miyagawa, Shinichi; Motoyama, Jun; Nakagata, Naomi; Meijlink, Frits; Yamada, Gen

    2011-01-01

    Background An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In spite of its clinical importance, the etiology of omphalocele formation is still controversial. Hedgehog (Hh) signaling is one of the essential growth factor signaling pathways involved in the formation of the limbs and urogenital system. However, the relationship between Hh signaling and ventral body wall formation remains unclear. Methodology/Principal Findings To gain insight into the roles of Hh signaling in ventral body wall formation and its malformation, we analyzed phenotypes of mouse mutants of Sonic hedgehog (Shh), GLI-Kruppel family member 3 (Gli3) and Aristaless-like homeobox 4 (Alx4). Introduction of additional Alx4Lst mutations into the Gli3Xt/Xt background resulted in various degrees of severe omphalocele and pubic diastasis. In addition, loss of a single Shh allele restored the omphalocele and pubic symphysis of Gli3Xt/+; Alx4Lst/Lst embryos. We also observed ectopic Hh activity in the ventral body wall region of Gli3Xt/Xt embryos. Moreover, tamoxifen-inducible gain-of-function experiments to induce ectopic Hh signaling revealed Hh signal dose-dependent formation of omphaloceles. Conclusions/Significance We suggest that one of the possible causes of omphalocele and pubic diastasis is ectopically-induced Hh signaling. To our knowledge, this would be the first demonstration of the involvement of Hh signaling in ventral body wall malformation and the genetic rescue of omphalocele phenotypes. PMID:21283718

  15. Genetic analysis of Hedgehog signaling in ventral body wall development and the onset of omphalocele formation.

    Directory of Open Access Journals (Sweden)

    Daisuke Matsumaru

    2011-01-01

    Full Text Available An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In spite of its clinical importance, the etiology of omphalocele formation is still controversial. Hedgehog (Hh signaling is one of the essential growth factor signaling pathways involved in the formation of the limbs and urogenital system. However, the relationship between Hh signaling and ventral body wall formation remains unclear.To gain insight into the roles of Hh signaling in ventral body wall formation and its malformation, we analyzed phenotypes of mouse mutants of Sonic hedgehog (Shh, GLI-Kruppel family member 3 (Gli3 and Aristaless-like homeobox 4 (Alx4. Introduction of additional Alx4(Lst mutations into the Gli3(Xt/Xt background resulted in various degrees of severe omphalocele and pubic diastasis. In addition, loss of a single Shh allele restored the omphalocele and pubic symphysis of Gli3(Xt/+; Alx4(Lst/Lst embryos. We also observed ectopic Hh activity in the ventral body wall region of Gli3(Xt/Xt embryos. Moreover, tamoxifen-inducible gain-of-function experiments to induce ectopic Hh signaling revealed Hh signal dose-dependent formation of omphaloceles.We suggest that one of the possible causes of omphalocele and pubic diastasis is ectopically-induced Hh signaling. To our knowledge, this would be the first demonstration of the involvement of Hh signaling in ventral body wall malformation and the genetic rescue of omphalocele phenotypes.

  16. Interaction of Instrumental and Goal-Directed Learning Modulates Prediction Error Representations in the Ventral Striatum.

    Science.gov (United States)

    Guo, Rong; Böhmer, Wendelin; Hebart, Martin; Chien, Samson; Sommer, Tobias; Obermayer, Klaus; Gläscher, Jan

    2016-12-14

    Goal-directed and instrumental learning are both important controllers of human behavior. Learning about which stimulus event occurs in the environment and the reward associated with them allows humans to seek out the most valuable stimulus and move through the environment in a goal-directed manner. Stimulus-response associations are characteristic of instrumental learning, whereas response-outcome associations are the hallmark of goal-directed learning. Here we provide behavioral, computational, and neuroimaging results from a novel task in which stimulus-response and response-outcome associations are learned simultaneously but dominate behavior at different stages of the experiment. We found that prediction error representations in the ventral striatum depend on which type of learning dominates. Furthermore, the amygdala tracks the time-dependent weighting of stimulus-response versus response-outcome learning. Our findings suggest that the goal-directed and instrumental controllers dynamically engage the ventral striatum in representing prediction errors whenever one of them is dominating choice behavior. Converging evidence in human neuroimaging studies has shown that the reward prediction errors are correlated with activity in the ventral striatum. Our results demonstrate that this region is simultaneously correlated with a stimulus prediction error. Furthermore, the learning system that is currently dominating behavioral choice dynamically engages the ventral striatum for computing its prediction errors. This demonstrates that the prediction error representations are highly dynamic and influenced by various experimental context. This finding points to a general role of the ventral striatum in detecting expectancy violations and encoding error signals regardless of the specific nature of the reinforcer itself. Copyright © 2016 the authors 0270-6474/16/3612650-11$15.00/0.

  17. Hindlimb spasticity after unilateral motor cortex lesion in rats is reduced by contralateral nerve root transfer.

    Science.gov (United States)

    Zong, Haiyang; Ma, Fenfen; Zhang, Laiyin; Lu, Huiping; Gong, Jingru; Cai, Min; Lin, Haodong; Zhu, Yizhun; Hou, Chunlin

    2016-12-01

    Lower extremity spasticity is a common sequela among patients with acquired brain injury. The optimum treatment remains controversial. The aim of our study was to test the feasibility and effectiveness of contralateral nerve root transfer in reducing post stroke spasticity of the affected hindlimb muscles in rats. In our study, we for the first time created a novel animal hindlimb spastic hemiplegia model in rats with photothrombotic lesion of unilateral motor cortex and we established a novel surgical procedure in reducing motor cortex lesion-induced hindlimb spastic hemiplegia in rats. Thirty six rats were randomized into three groups. In group A, rats received sham operation. In group B, rats underwent unilateral hindlimb motor cortex lesion. In group C, rats underwent unilateral hindlimb cortex lesion followed by contralateral L4 ventral root transfer to L5 ventral root of the affected side. Footprint analysis, Hoffmann reflex (H-reflex), cholera toxin subunit B (CTB) retrograde tracing of gastrocnemius muscle (GM) motoneurons and immunofluorescent staining of vesicle glutamate transporter 1 (VGLUT1) on CTB-labelled motoneurons were used to assess spasticity of the affected hindlimb. Sixteen weeks postoperatively, toe spread and stride length recovered significantly in group C compared with group B (Pmotor cortex lesion-induced hindlimb spasticity in rats. Our data indicated that this could be an alternative treatment for unilateral lower extremity spasticity after brain injury. Therefore, contralateral neurotization may exert a potential therapeutic candidate to improve the function of lower extremity in patients with spastic hemiplegia. © 2016 The Author(s).

  18. Introduction to the ROOT System

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Introduction to the ROOT data handling system. ROOT is used in some for or another by all LHC experiments and will be used by all for final data analysis. The introduction gives an overview of the system. Prerequisite knowledge: C++

  19. Variation in root wood anatomy

    NARCIS (Netherlands)

    Cutler, D.F.

    1976-01-01

    Variability in the anatomy of root wood of selected specimens particularly Fraxinus excelsior L. and Acer pseudoplatanus L. in the Kew reference microscope slide collection is discussed in relation to generalised statements in the literature on root wood anatomy.

  20. Rooted in Movement

    DEFF Research Database (Denmark)

    The result of the synergy between four doctoral projects and an advanced MA-level course on Bronze Age Europe, this integrated assemblage of articles represents a variety of different subjects united by a single theme: movement. Ranging from theoretical discussion of the various responses to and ...... period of European prehistory. In so doing, the text not only addresses transmission and reception, but also the conceptualization of mobility within a world which was literally Rooted in Movement....

  1. Aquaporins and root water uptake

    Science.gov (United States)

    Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological res...

  2. Expressing Parallelism with ROOT

    Energy Technology Data Exchange (ETDEWEB)

    Piparo, D. [CERN; Tejedor, E. [CERN; Guiraud, E. [CERN; Ganis, G. [CERN; Mato, P. [CERN; Moneta, L. [CERN; Valls Pla, X. [CERN; Canal, P. [Fermilab

    2017-11-22

    The need for processing the ever-increasing amount of data generated by the LHC experiments in a more efficient way has motivated ROOT to further develop its support for parallelism. Such support is being tackled both for shared-memory and distributed-memory environments. The incarnations of the aforementioned parallelism are multi-threading, multi-processing and cluster-wide executions. In the area of multi-threading, we discuss the new implicit parallelism and related interfaces, as well as the new building blocks to safely operate with ROOT objects in a multi-threaded environment. Regarding multi-processing, we review the new MultiProc framework, comparing it with similar tools (e.g. multiprocessing module in Python). Finally, as an alternative to PROOF for cluster-wide executions, we introduce the efforts on integrating ROOT with state-of-the-art distributed data processing technologies like Spark, both in terms of programming model and runtime design (with EOS as one of the main components). For all the levels of parallelism, we discuss, based on real-life examples and measurements, how our proposals can increase the productivity of scientists.

  3. Expressing Parallelism with ROOT

    Science.gov (United States)

    Piparo, D.; Tejedor, E.; Guiraud, E.; Ganis, G.; Mato, P.; Moneta, L.; Valls Pla, X.; Canal, P.

    2017-10-01

    The need for processing the ever-increasing amount of data generated by the LHC experiments in a more efficient way has motivated ROOT to further develop its support for parallelism. Such support is being tackled both for shared-memory and distributed-memory environments. The incarnations of the aforementioned parallelism are multi-threading, multi-processing and cluster-wide executions. In the area of multi-threading, we discuss the new implicit parallelism and related interfaces, as well as the new building blocks to safely operate with ROOT objects in a multi-threaded environment. Regarding multi-processing, we review the new MultiProc framework, comparing it with similar tools (e.g. multiprocessing module in Python). Finally, as an alternative to PROOF for cluster-wide executions, we introduce the efforts on integrating ROOT with state-of-the-art distributed data processing technologies like Spark, both in terms of programming model and runtime design (with EOS as one of the main components). For all the levels of parallelism, we discuss, based on real-life examples and measurements, how our proposals can increase the productivity of scientists.

  4. Biomimetic collagen/elastin meshes for ventral hernia repair in a rat model.

    Science.gov (United States)

    Minardi, Silvia; Taraballi, Francesca; Wang, Xin; Cabrera, Fernando J; Van Eps, Jeffrey L; Robbins, Andrew B; Sandri, Monica; Moreno, Michael R; Weiner, Bradley K; Tasciotti, Ennio

    2017-03-01

    Ventral hernia repair remains a major clinical need. Herein, we formulated a type I collagen/elastin crosslinked blend (CollE) for the fabrication of biomimetic meshes for ventral hernia repair. To evaluate the effect of architecture on the performance of the implants, CollE was formulated both as flat sheets (CollE Sheets) and porous scaffolds (CollE Scaffolds). The morphology, hydrophylicity and in vitro degradation were assessed by SEM, water contact angle and differential scanning calorimetry, respectively. The stiffness of the meshes was determined using a constant stretch rate uniaxial tensile test, and compared to that of native tissue. CollE Sheets and Scaffolds were tested in vitro with human bone marrow-derived mesenchymal stem cells (h-BM-MSC), and finally implanted in a rat ventral hernia model. Neovascularization and tissue regeneration within the implants was evaluated at 6weeks, by histology, immunofluorescence, and q-PCR. It was found that CollE Sheets and Scaffolds were not only biomechanically sturdy enough to provide immediate repair of the hernia defect, but also promoted tissue restoration in only 6weeks. In fact, the presence of elastin enhanced the neovascularization in both sheets and scaffolds. Overall, CollE Scaffolds displayed mechanical properties more closely resembling those of native tissue, and induced higher gene expression of the entire marker genes tested, associated with de novo matrix deposition, angiogenesis, adipogenesis and skeletal muscles, compared to CollE Sheets. Altogether, this data suggests that the improved mechanical properties and bioactivity of CollE Sheets and Scaffolds make them valuable candidates for applications of ventral hernia repair. Due to the elevated annual number of ventral hernia repair in the US, the lack of successful grafts, the design of innovative biomimetic meshes has become a prime focus in tissue engineering, to promote the repair of the abdominal wall, avoid recurrence. Our meshes (Coll

  5. Differences between Dorsal and Ventral Striatum in the Sensitivity of Tonically Active Neurons to Rewarding Events

    Directory of Open Access Journals (Sweden)

    Kevin Marche

    2017-07-01

    Full Text Available Within the striatum, cholinergic interneurons, electrophysiologically identified as tonically active neurons (TANs, represent a relatively homogeneous group in terms of their functional properties. They display typical pause in tonic firing in response to rewarding events which are of crucial importance for reinforcement learning. These responses are uniformly distributed throughout the dorsal striatum (i.e., motor and associative striatum, but it is unknown, at least in monkeys, whether differences in the modulation of TAN activity exist in the ventral striatum (i.e., limbic striatum, a region specialized for processing of motivational information. To address this issue, we examined the activity of dorsal and ventral TANs in two monkeys trained on a Pavlovian conditioning task in which a visual stimulus preceded the delivery of liquid reward by a fixed time interval. We found that the proportion of TANs responding to the stimulus predictive of reward did not vary significantly across regions (58%–80%, whereas the fraction of TANs responding to reward was higher in the limbic striatum (100% compared to the motor (65% and associative striatum (52%. By examining TAN modulation at the level of both the population and the individual neurons, we showed that the duration of pause responses to the stimulus and reward was longer in the ventral than in the dorsal striatal regions. Also, the magnitude of the pause was greater in ventral than dorsal striatum for the stimulus predictive of reward but not for the reward itself. We found similar region-specific differences in pause response duration to the stimulus when the timing of reward was less predictable (fixed replaced by variable time interval. Regional variations in the duration and magnitude of the pause response were transferred from the stimulus to reward when reward was delivered in the absence of any predictive stimulus. It therefore appears that ventral TANs exhibit stronger responses to

  6. Physiological modules for generating discrete and rhythmic movements: action identification by a dynamic recurrent neural network.

    Science.gov (United States)

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana M; Dan, Bernard; McIntyre, Joseph; Cheron, Guy

    2014-01-01

    In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions.

  7. Physiological modules for generating discrete and rhythmic movements: component analysis of EMG signals.

    Science.gov (United States)

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph

    2014-01-01

    A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the

  8. Do suicide attempts occur more frequently in the spring too? A systematic review and rhythmic analysis.

    Science.gov (United States)

    Coimbra, Daniel Gomes; Pereira E Silva, Aline Cristine; de Sousa-Rodrigues, Célio Fernando; Barbosa, Fabiano Timbó; de Siqueira Figueredo, Diego; Araújo Santos, José Luiz; Barbosa, Mayara Rodrigues; de Medeiros Alves, Veronica; Nardi, Antonio Egidio; de Andrade, Tiago Gomes

    2016-05-15

    Seasonal variations in suicides have been reported worldwide, however, there may be a different seasonal pattern in suicide attempts. The aim of this study was to perform a systematic review on seasonality of suicide attempts considering potential interfering variables, and a statistical analysis for seasonality with the collected data. Observational epidemiological studies about seasonality in suicide attempts were searched in PubMed, Web of Science, LILACS and Cochrane Library databases with terms attempted suicide, attempt and season. Monthly or seasonal data available were evaluated by rhythmic analysis softwares. Twenty-nine articles from 16 different countries were included in the final review. It was observed different patterns of seasonality, however, suicide attempts in spring and summer were the most frequent seasons reported. Eight studies indicated differences in sex and three in the method used for suicide attempts. Three articles did not find a seasonal pattern in suicide attempts. Cosinor analysis identified an overall pattern of seasonal variation with a suggested peak in spring, considering articles individually or grouped and independent of sex and method used. A restricted analysis with self-poisoning in hospital samples demonstrated the same profile. Grouping diverse populations and potential analytical bias due to lack of information are the main limitations. The identification of a seasonal profile suggests the influence of an important environmental modulator that can reverberate to suicide prevention strategies. Further studies controlling interfering variables and investigating the biological substrate for this phenomenon would be helpful to confirm our conclusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Rhythmic Interlimb Coordination Impairments and the Risk for Developing Mobility Limitations.

    Science.gov (United States)

    James, Eric G; Leveille, Suzanne G; Hausdorff, Jeffrey M; Travison, Thomas; Kennedy, David N; Tucker, Katherine L; Al Snih, Soham; Markides, Kyriakos S; Bean, Jonathan F

    2017-08-01

    The identification of novel rehabilitative impairments that are risk factors for mobility limitations may improve their prevention and treatment among older adults. We tested the hypothesis that impaired rhythmic interlimb ankle and shoulder coordination are risk factors for subsequent mobility limitations among older adults. We conducted a 1-year prospective cohort study of community-dwelling older adults (N = 99) aged 67 years and older who did not have mobility limitations (Short Physical Performance Battery score > 9) at baseline. Participants performed antiphase coordination of the right and left ankles or shoulders while paced by an auditory metronome. Using multivariable logistic regression, we determined odds ratios (ORs) for mobility limitations at 1-year follow-up as a function of coordination variability and asymmetry. After adjusting for age, sex, body mass index, Mini-Mental State Examination score, number of chronic conditions, and baseline Short Physical Performance Battery score, ORs were significant for developing mobility limitations based on a 1 SD difference in the variability of ankle (OR = 1.88; 95% confidence interval [CI]: 1.16-3.05) and shoulder (OR = 1.96; 95% CI: 1.17-3.29) coordination. ORs were significant for asymmetry of shoulder (OR = 2.11; 95% CI: 1.25-3.57), but not ankle (OR = 0.95; 95% CI: 0.59-1.55) coordination. Similar results were found in unadjusted analyses. The results support our hypothesis that impaired interlimb ankle and shoulder coordination are risk factors for the development of mobility limitations. Future work is needed to further examine the peripheral and central mechanisms underlying this relationship and to test whether enhancing coordination alters mobility limitations. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Meal time shift disturbs circadian rhythmicity along with metabolic and behavioral alterations in mice.

    Directory of Open Access Journals (Sweden)

    Ji-Ae Yoon

    Full Text Available In modern society, growing numbers of people are engaged in various forms of shift works or trans-meridian travels. Such circadian misalignment is known to disturb endogenous diurnal rhythms, which may lead to harmful physiological consequences including metabolic syndrome, obesity, cancer, cardiovascular disorders, and gastric disorders as well as other physical and mental disorders. However, the precise mechanism(s underlying these changes are yet unclear. The present work, therefore examined the effects of 6 h advance or delay of usual meal time on diurnal rhythmicities in home cage activity (HCA, body temperature (BT, blood metabolic markers, glucose homeostasis, and expression of genes that are involved in cholesterol homeostasis by feeding young adult male mice in a time-restrictive manner. Delay of meal time caused locomotive hyperactivity in a significant portion (42% of subjects, while 6 h advance caused a torpor-like symptom during the late scotophase. Accordingly, daily rhythms of blood glucose and triglyceride were differentially affected by time-restrictive feeding regimen with concurrent metabolic alterations. Along with these physiological changes, time-restrictive feeding also influenced the circadian expression patterns of low density lipoprotein receptor (LDLR as well as most LDLR regulatory factors. Strikingly, chronic advance of meal time induced insulin resistance, while chronic delay significantly elevated blood glucose levels. Taken together, our findings indicate that persistent shifts in usual meal time impact the diurnal rhythms of carbohydrate and lipid metabolisms in addition to HCA and BT, thereby posing critical implications for the health and diseases of shift workers.

  11. Locomotor-like leg movements evoked by rhythmic arm movements in humans.

    Directory of Open Access Journals (Sweden)

    Francesca Sylos-Labini

    Full Text Available Motion of the upper limbs is often coupled to that of the lower limbs in human bipedal locomotion. It is unclear, however, whether the functional coupling between upper and lower limbs is bi-directional, i.e. whether arm movements can affect the lumbosacral locomotor circuitry. Here we tested the effects of voluntary rhythmic arm movements on the lower limbs. Participants lay horizontally on their side with each leg suspended in an unloading exoskeleton. They moved their arms on an overhead treadmill as if they walked on their hands. Hand-walking in the antero-posterior direction resulted in significant locomotor-like movements of the legs in 58% of the participants. We further investigated quantitatively the responses in a subset of the responsive subjects. We found that the electromyographic (EMG activity of proximal leg muscles was modulated over each cycle with a timing similar to that of normal locomotion. The frequency of kinematic and EMG oscillations in the legs typically differed from that of arm oscillations. The effect of hand-walking was direction specific since medio-lateral arm movements did not evoke appreciably leg air-stepping. Using externally imposed trunk movements and biomechanical modelling, we ruled out that the leg movements associated with hand-walking were mainly due to the mechanical transmission of trunk oscillations. EMG activity in hamstring muscles associated with hand-walking often continued when the leg movements were transiently blocked by the experimenter or following the termination of arm movements. The present results reinforce the idea that there exists a functional neural coupling between arm and legs.

  12. Effect of monochromatic light on circadian rhythmic expression of clock genes in the hypothalamus of chick.

    Science.gov (United States)

    Jiang, Nan; Wang, Zixu; Cao, Jing; Dong, Yulan; Chen, Yaoxing

    2017-08-01

    To clarify the effect of monochromatic light on circadian clock gene expression in chick hypothalamus, a total 240 newly hatched chickens were reared under blue light (BL), green light (GL), red light (RL) and white light (WL), respectively. On the post-hatched day 14, 24-h profiles of seven core clock genes (cClock, cBmal1, cBmal2, cCry1, cCry2, cPer2 and cPer3) were measured at six time points (CT 0, CT 4, CT 8, CT 12, CT 16, CT 20, circadian time). We found all these clock genes expressed with a significant rhythmicity in different light wavelength groups. Meanwhile, cClock and cBmal1 showed a high level under GL, and followed a corresponding high expression of cCry1. However, RL decreased the expression levels of these genes. Be consistent with the mRNA level, CLOCK and BMAL1 proteins also showed a high level under GL. The CLOCK-like immunoreactive neurons were observed not only in the SCN, but also in the non-SCN brain region such as the nucleus anterior medialis hypothalami, the periventricularis nucleus, the paraventricular nucleus and the median eminence. All these results are consistent with the auto-regulatory circadian feedback loop, and indicate that GL may play an important role on the circadian time generation and development in the chick hypothalamus. Our results also suggest that the circadian clock in the chick hypothalamus such as non-SCN brain region were involved in the regulation of photo information. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Automatic Imitation in Rhythmical Actions: Kinematic Fidelity and the Effects of Compatibility, Delay, and Visual Monitoring

    Science.gov (United States)

    Eaves, Daniel L.; Turgeon, Martine; Vogt, Stefan

    2012-01-01

    We demonstrate that observation of everyday rhythmical actions biases subsequent motor execution of the same and of different actions, using a paradigm where the observed actions were irrelevant for action execution. The cycle time of the distractor actions was subtly manipulated across trials, and the cycle time of motor responses served as the main dependent measure. Although distractor frequencies reliably biased response cycle times, this imitation bias was only a small fraction of the modulations in distractor speed, as well as of the modulations produced when participants intentionally imitated the observed rhythms. Importantly, this bias was not only present for compatible actions, but was also found, though numerically reduced, when distractor and executed actions were different (e.g., tooth brushing vs. window wiping), or when the dominant plane of movement was different (horizontal vs. vertical). In addition, these effects were equally pronounced for execution at 0, 4, and 8 s after action observation, a finding that contrasts with the more short-lived effects reported in earlier studies. The imitation bias was also unaffected when vision of the hand was occluded during execution, indicating that this effect most likely resulted from visuomotor interactions during distractor observation, rather than from visual monitoring and guidance during execution. Finally, when the distractor was incompatible in both dimensions (action type and plane) the imitation bias was not reduced further, in an additive way, relative to the single-incompatible conditions. This points to a mechanism whereby the observed action’s impact on motor processing is generally reduced whenever this is not useful for motor planning. We interpret these findings in the framework of biased competition, where intended and distractor actions can be represented as competing and quasi-encapsulated sensorimotor streams. PMID:23071623

  14. Automatic imitation in rhythmical actions: kinematic fidelity and the effects of compatibility, delay, and visual monitoring.

    Directory of Open Access Journals (Sweden)

    Daniel L Eaves

    Full Text Available We demonstrate that observation of everyday rhythmical actions biases subsequent motor execution of the same and of different actions, using a paradigm where the observed actions were irrelevant for action execution. The cycle time of the distractor actions was subtly manipulated across trials, and the cycle time of motor responses served as the main dependent measure. Although distractor frequencies reliably biased response cycle times, this imitation bias was only a small fraction of the modulations in distractor speed, as well as of the modulations produced when participants intentionally imitated the observed rhythms. Importantly, this bias was not only present for compatible actions, but was also found, though numerically reduced, when distractor and executed actions were different (e.g., tooth brushing vs. window wiping, or when the dominant plane of movement was different (horizontal vs. vertical. In addition, these effects were equally pronounced for execution at 0, 4, and 8 s after action observation, a finding that contrasts with the more short-lived effects reported in earlier studies. The imitation bias was also unaffected when vision of the hand was occluded during execution, indicating that this effect most likely resulted from visuomotor interactions during distractor observation, rather than from visual monitoring and guidance during execution. Finally, when the distractor was incompatible in both dimensions (action type and plane the imitation bias was not reduced further, in an additive way, relative to the single-incompatible conditions. This points to a mechanism whereby the observed action's impact on motor processing is generally reduced whenever this is not useful for motor planning. We interpret these findings in the framework of biased competition, where intended and distractor actions can be represented as competing and quasi-encapsulated sensorimotor streams.

  15. Frequency-dependent tACS modulation of BOLD signal during rhythmic visual stimulation.

    Science.gov (United States)

    Chai, Yuhui; Sheng, Jingwei; Bandettini, Peter A; Gao, Jia-Hong

    2018-05-01

    Transcranial alternating current stimulation (tACS) has emerged as a promising tool for modulating cortical oscillations. In previous electroencephalogram (EEG) studies, tACS has been found to modulate brain oscillatory activity in a frequency-specific manner. However, the spatial distribution and hemodynamic response for this modulation remains poorly understood. Functional magnetic resonance imaging (fMRI) has the advantage of measuring neuronal activity in regions not only below the tACS electrodes but also across the whole brain with high spatial resolution. Here, we measured fMRI signal while applying tACS to modulate rhythmic visual activity. During fMRI acquisition, tACS at different frequencies (4, 8, 16, and 32 Hz) was applied along with visual flicker stimulation at 8 and 16 Hz. We analyzed the blood-oxygen-level-dependent (BOLD) signal difference between tACS-ON vs tACS-OFF, and different frequency combinations (e.g., 4 Hz tACS, 8 Hz flicker vs 8 Hz tACS, 8 Hz flicker). We observed significant tACS modulation effects on BOLD responses when the tACS frequency matched the visual flicker frequency or the second harmonic frequency. The main effects were predominantly seen in regions that were activated by the visual task and targeted by the tACS current distribution. These findings bridge different scientific domains of tACS research and demonstrate that fMRI could localize the tACS effect on stimulus-induced brain rhythms, which could lead to a new approach for understanding the high-level cognitive process shaped by the ongoing oscillatory signal. © 2018 Wiley Periodicals, Inc.

  16. Diurnal rhythmicity of the clock genes Per1 and Per2 in the rat ovary.

    Science.gov (United States)

    Fahrenkrug, Jan; Georg, Birgitte; Hannibal, Jens; Hindersson, Peter; Gräs, Søren

    2006-08-01

    Circadian rhythms are generated by endogenous clocks in the central brain oscillator, the suprachiasmatic nucleus, and peripheral tissues. The molecular basis for the circadian clock consists of a number of genes and proteins that form transcriptional/translational feedback loops. In the mammalian gonads, clock genes have been reported in the testes, but the expression pattern is developmental rather than circadian. Here we investigated the daily expression of the two core clock genes, Per1 and Per2, in the rat ovary using real-time RT-PCR, in situ hybridization histochemistry, and immunohistochemistry. Both Per1 and Per2 mRNA displayed a statistically significant rhythmic oscillation in the ovary with a period of 24 h in: 1) a group of rats during proestrus and estrus under 12-h light,12-h dark cycles; 2) a second group of rats representing a mixture of all 4 d of the estrous cycle under 12-h light,12-h dark conditions; and 3) a third group of rats representing a mixture of all 4 d of estrous cycle during continuous darkness. Per1 mRNA was low at Zeitgeber time 0-2 and peaked at Zeitgeber time 12-14, whereas Per2 mRNA was delayed by approximately 4 h relative to Per1. By in situ hybridization histochemistry, Per mRNAs were localized to steroidogenic cells in preantral, antral, and preovulatory follicles; corpora lutea; and interstitial glandular tissue. With newly developed antisera, we substantiated the expression of Per1 and Per2 in these cells by single/double immunohistochemistry. Furthermore, we visualized the temporal intracellular movements of PER1 and PER2 proteins. These findings suggest the existence of an ovarian circadian clock, which may play a role both locally and in the hypothalamo-pituitary-ovarian axis.

  17. Optogenetic release of ACh induces rhythmic bursts of perisomatic IPSCs in hippocampus.

    Directory of Open Access Journals (Sweden)

    Daniel A Nagode

    Full Text Available Acetylcholine (ACh influences a vast array of phenomena in cortical systems. It alters many ionic conductances and neuronal firing behavior, often by regulating membrane potential oscillations in populations of cells. Synaptic inhibition has crucial roles in many forms of oscillation, and cholinergic mechanisms regulate both oscillations and synaptic inhibition. In vitro investigations using bath-application of cholinergic receptor agonists, or bulk tissue electrical stimulation to release endogenous ACh, have led to insights into cholinergic function, but questions remain because of the relative lack of selectivity of these forms of stimulation. To investigate the effects of selective release of ACh on interneurons and oscillations, we used an optogenetic approach in which the light-sensitive non-selective cation channel, Channelrhodopsin2 (ChR2, was virally delivered to cholinergic projection neurons in the medial septum/diagonal band of Broca (MS/DBB of adult mice expressing Cre-recombinase under the control of the choline-acetyltransferase (ChAT promoter. Acute hippocampal slices obtained from these animals weeks later revealed ChR2 expression in cholinergic axons. Brief trains of blue light pulses delivered to untreated slices initiated bursts of ACh-evoked, inhibitory post-synaptic currents (L-IPSCs in CA1 pyramidal cells that lasted for 10's of seconds after the light stimulation ceased. L-IPSC occurred more reliably in slices treated with eserine and a very low concentration of 4-AP, which were therefore used in most experiments. The rhythmic, L-IPSCs were driven primarily by muscarinic ACh receptors (mAChRs, and could be suppressed by endocannabinoid release from pyramidal cells. Finally, low-frequency oscillations (LFOs of local field potentials (LFPs were significantly cross-correlated with the L-IPSCs, and reversal of the LFPs near s. pyramidale confirmed that the LFPs were driven by perisomatic inhibition. This optogenetic approach

  18. The role of alternative Polyadenylation in regulation of rhythmic gene expression.

    Science.gov (United States)

    Ptitsyna, Natalia; Boughorbel, Sabri; El Anbari, Mohammed; Ptitsyn, Andrey

    2017-08-04

    Alternative transcription is common in eukaryotic cells and plays important role in regulation of cellular processes. Alternative polyadenylation results from ambiguous PolyA signals in 3' untranslated region (UTR) of a gene. Such alternative transcripts share the same coding part, but differ by a stretch of UTR that may contain important functional sites. The methodoogy of this study is based on mathematical modeling, analytical solution, and subsequent validation by datamining in multiple independent experimental data from previously published studies. In this study we propose a mathematical model that describes the population dynamics of alternatively polyadenylated transcripts in conjunction with rhythmic expression such as transcription oscillation driven by circadian or metabolic oscillators. Analysis of the model shows that alternative transcripts with different turnover rates acquire a phase shift if the transcript decay rate is different. Difference in decay rate is one of the consequences of alternative polyadenylation. Phase shift can reach values equal to half the period of oscillation, which makes alternative transcripts oscillate in abundance in counter-phase to each other. Since counter-phased transcripts share the coding part, the rate of translation becomes constant. We have analyzed a few data sets collected in circadian timeline for the occurrence of transcript behavior that fits the mathematical model. Alternative transcripts with different turnover rate create the effect of rectifier. This "molecular diode" moderates or completely eliminates oscillation of individual transcripts and stabilizes overall protein production rate. In our observation this phenomenon is very common in different tissues in plants, mice, and humans. The occurrence of counter-phased alternative transcripts is also tissue-specific and affects functions of multiple biological pathways. Accounting for this mechanism is important for understanding the natural and engineering

  19. Effects of Forskolin on Trefoil factor 1 expression in cultured ventral mesencephalic dopaminergic neurons

    DEFF Research Database (Denmark)

    Jensen, Pia; Ducray, A D; Widmer, H R

    2015-01-01

    shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. Here, we investigated the expression of TFF1 in rat ventral mesencephalic dopaminergic neurons (embryonic day 14) grown in culture for 5, 7 or 10days......, suggesting that Forskolin induced TFF1 expression through diverse signaling pathways. In conclusion, distinct populations of cultured dopaminergic neurons express TFF1, and their numbers can be increased by factors known to influence survival and differentiation of dopaminergic cells....... to neuronal cells, and the percentage of TH/TFF1 co-expressing cells was increased to the same extent in GDNF and Forskolin-treated cultures (4-fold) as compared to controls. Interestingly, the combination of GDNF and Forskolin resulted in a significantly increased co-expression (8-fold) of TH/TFF1, which...

  20. The clinical effects of closure of the hernia gap after laparoscopic ventral hernia repair:

    DEFF Research Database (Denmark)

    Christoffersen, Mette W; Westen, Mikkel; Assadzadeh, Sami

    2014-01-01

    randomised controlled trials. The primary purpose of this paper is to compare early post-operative activity-related pain in patients undergoing laparoscopic ventral hernia repair with closure of the gap with patients undergoing standard laparoscopic ventral hernia repair (non-closure of the gap). Secondary...... outcomes are patient-rated cosmesis and hernia-specific quality of life. METHODS: A randomised, controlled, double-blinded study is planned. Based on power calculation, we will include 40 patients in each arm. Patients undergoing elective laparoscopic umbilical, epigastric or umbilical trocar-site hernia...... repair at Hvidovre Hospital and Herlev Hospital, Denmark, are invited to participate. CONCLUSION: The gap closure technique may induce more post-operative pain than the non-closure repair, but it may also be superior with regard to other important surgical outcomes. No studies have previously...