WorldWideScience

Sample records for rhizosphere competent mesorhizobiumloti

  1. Rhizosphere competent Mesorhizobiumloti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris Mesorhizobium loti MP6 rizosférico competente induz encurvamento do pelo daraiz, inibe Sclerotinia sclerotiorum e estimula o crescimento de mostarda indiana (Brassica campestris

    Directory of Open Access Journals (Sweden)

    Shikha Chandra

    2007-03-01

    Full Text Available The bacterial strain Mesorhizobium loti MP6, isolated from root nodules of Mimosa pudica induced growth and yield of Brassica campestris. The isolate MP6 secreted hydroxamate type siderophore in Chrom-Azurol Siderophore (CAS agar medium. Production of hydrocyanic acid (HCN, indole acetic acid (IAA and phosphate solubilizing ability was also recorded under normal growth conditions. Root hair curling was observed through simple glass-slide technique. In vitro study showed a significant increase in population of M. loti MP6 in rhizosphere due to root exudates of B. campestris. In dual culture technique the strain showed a strong antagonistic effect against Sclerotinia sclerotiorum, a white rot pathogen of Brassica campestris. The growth of S. sclerotiorum was inhibited by 75% after prolonged incubation. Efficient root colonization of mustard seedlings was confirmed by using a streptomycin-resistant marker M. loti MP6strep+. The M. loti MP6 coated seeds proved enhanced seed germination, early vegetative growth and grain yield as compared to control. Also, a drastic decline (99% in the incidence of white rot was observed due to application of M. loti MP6.A cepa bacteriana Mesorhizobium loti MP6 isolada de nódulos de raiz de Mimosa pudica induziu o crescimento e o rendimento de Brassica campestris. A cepa MP6 secretou sideróforo do tipo hidroxamato em meio sólido Chrom-Azurol Siderophore (CAS. Em condições normais de crescimento, a cepa foi também capaz de produzir de ácido cianídrico (HCN e acido indolacético (AIA e solubilizar fosfato. O encurvamento do pelo da raiz foi observado usando a simples técnica de lâmina e lamínula. Estudos in vitro mostraram um aumento significativo na população de M. loti MP6 na rizosfera devido aos exsudatos de B. campestris. Empregando-se técnica de co-cultura, a cepa mostrou um grande efeito antagônico contra o fungo Sclerotinia sclerotiorum, o patógeno da podridão branca de Brassica campestris. Ap

  2. Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce.

    Science.gov (United States)

    Schreiter, Susanne; Sandmann, Martin; Smalla, Kornelia; Grosch, Rita

    2014-01-01

    Rhizosphere competence of bacterial inoculants is assumed to be important for successful biocontrol. Knowledge of factors influencing rhizosphere competence under field conditions is largely lacking. The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica 3Re4-18 in field-grown lettuce in soils inoculated with Rhizoctonia solani AG1-IB or not. Two independent experiments were carried out in 2011 on an experimental plot system with three soil types sharing the same cropping history and weather conditions for more than 10 years. Rifampicin resistant mutants of the inoculants were used to evaluate their colonization in the rhizosphere of lettuce. The rhizosphere bacterial community structure was analyzed by denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from total community DNA to get insights into the effects of the inoculants and R. solani on the indigenous rhizosphere bacterial communities. Both inoculants showed a good colonization ability of the rhizosphere of lettuce with more than 10(6) colony forming units per g root dry mass two weeks after planting. An effect of the soil type on rhizosphere competence was observed for 3Re4-18 but not for RU47. In both experiments a comparable rhizosphere competence was observed and in the presence of the inoculants disease symptoms were either significantly reduced, or at least a non-significant trend was shown. Disease severity was highest in diluvial sand followed by alluvial loam and loess loam suggesting that the soil types differed in their conduciveness for bottom rot disease. Compared to effect of the soil type of the rhizosphere bacterial communities, the effects of the pathogen and the inoculants were less pronounced. The soil types had a surprisingly low influence on rhizosphere competence and biocontrol activity while they significantly affected

  3. In vitro antagonists of Rhizoctonia solani tested on lettuce: rhizosphere competence, biocontrol efficiency and rhizosphere microbial community response.

    Science.gov (United States)

    Adesina, Modupe F; Grosch, Rita; Lembke, Antje; Vatchev, Tzenko D; Smalla, Kornelia

    2009-07-01

    The rhizosphere competence of 15 in vitro antagonists of Rhizoctonia solani was determined 4 weeks after sowing inoculated lettuce seeds into nonsterile soil. Based on the colonization ability determined by selective plating, eight strains were selected for growth chamber experiments to determine their efficacy in controlling bottom rot caused by R. solani on lettuce. Although in the first experiment all antagonists colonized the rhizosphere of lettuce with CFU counts above 2 x 10(6) g(-1) of root fresh weight, only four isolates significantly reduced disease severity. In subsequent experiments involving these four antagonists, only Pseudomonas jessenii RU47 showed effective and consistent disease suppression. Plate counts and denaturing gradient gel electrophoresis (DGGE) fingerprints of Pseudomonas-specific gacA genes amplified from total community DNA confirmed that RU47 established as the dominant Pseudomonas population in the rhizosphere of inoculated lettuce plants. Furthermore, the DGGE fingerprint revealed that R. solani AG1-IB inoculation severely affected the bacterial and fungal community structure in the rhizosphere of lettuce and that these effects were much less pronounced in the presence of RU47. Although the exact mechanism of antagonistic activity and the ecology of RU47 remain to be further explored, our results suggest that RU47 is a promising agent to control bottom rot of lettuce.

  4. Selection rhizosphere-competent microbes for development of microbial products as biocontrol agents

    Science.gov (United States)

    Mashinistova, A. V.; Elchin, A. A.; Gorbunova, N. V.; Muratov, V. S.; Kydralieva, K. A.; Khudaibergenova, B. M.; Shabaev, V. P.; Jorobekova, Sh. J.

    2009-04-01

    Rhizosphere-borne microorganisms reintroduced to the soil-root interface can establish without inducing permanent disturbance in the microbial balance and effectively colonise the rhizosphere due to carbon sources of plant root exudates. A challenge for future development of microbial products for use in agriculture will be selection of rhizosphere-competent microbes that both protect the plant from pathogens and improve crop establishment and persistence. In this study screening, collection, identification and expression of stable and technological microbial strains living in soils and in the rhizosphere of abundant weed - couch-grass Elytrigia repens L. Nevski were conducted. A total of 98 bacteria isolated from the rhizosphere were assessed for biocontrol activity in vitro against phytopathogenic fungi including Fusarium culmorum, Fusarium heterosporum, Fusarium oxysporum, Drechslera teres, Bipolaris sorokiniana, Piricularia oryzae, Botrytis cinerea, Colletothrichum atramentarium and Cladosporium sp., Stagonospora nodorum. Biocontrol activity were performed by the following methods: radial and parallel streaks, "host - pathogen" on the cuts of wheat leaves. A culture collection comprising 64 potential biocontrol agents (BCA) against wheat and barley root diseases has been established. Of these, the most effective were 8 isolates inhibitory to at least 4 out of 5 phytopathogenic fungi tested. The remaining isolates inhibited at least 1 of 5 fungi tested. Growth stimulating activity of proposed rhizobacteria-based preparations was estimated using seedling and vegetative pot techniques. Seeds-inoculation and the tests in laboratory and field conditions were conducted for different agricultural crops - wheat and barley. Intact cells, liquid culture filtrates and crude extracts of the four beneficial bacterial strains isolated from the rhizosphere of weed were studied to stimulate plant growth. As a result, four bacterial strains selected from rhizosphere of weed

  5. Rhizosphere Competence and Biocontrol Effect ofPseudomonassp. RU47 Independent from Plant Species and Soil Type at the Field Scale.

    Science.gov (United States)

    Schreiter, Susanne; Babin, Doreen; Smalla, Kornelia; Grosch, Rita

    2018-01-01

    Biocontrol inoculants often show inconsistency in their efficacy at field scale and the reason for this remains often unclear. A high rhizosphere competence of inoculant strains is assumed to be a key factor for successful biocontrol effects as the biocontrol strain has to compete with the indigenous microbial community in the rhizosphere. It is known that many factors, among them plant species and soil type shape the rhizosphere microbial community composition. However, microbial community composition in the rhizosphere can also be influenced by the presence of a pathogen. We hypothesized that plant species, soil type, and a pathogen affect the rhizosphere competence of a biocontrol strain and its biocontrol effect against a soil-borne pathogen. To test the hypothesis, we used an experimental plot system with three soil types (diluvial sand, alluvial loam, loess loam) kept under similar agricultural management at the same field site for 12 years. We investigate the rhizosphere competence of Pseudomonas sp. RU47 in two plant species (potato and lettuce) and its biocontrol effect against Rhizoctonia diseases. The colonization density of a rifampicin resistant mutant of RU47 in the rhizosphere of both crops was evaluated by plate counts. Bacterial community compositions were analyzed by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments amplified from total community DNA. The inoculant RU47 was able to colonize the rhizosphere of both model crops in a sufficient density and to reduce disease severity of black scurf on potato and bottom rot on lettuce in all three soils. DGGE indicated that RU47 affected the bacterial community composition stronger in the rhizosphere of lettuce than in the potato rhizosphere. In contrast, the effect of the pathogen Rhizoctonia solani on the bacterial community was much stronger in the rhizosphere of potato than in the lettuce rhizosphere. A significant effect of RU47 on the Pseudomonas -specific gac

  6. Rhizosphere Competence and Biocontrol Effect of Pseudomonas sp. RU47 Independent from Plant Species and Soil Type at the Field Scale

    Directory of Open Access Journals (Sweden)

    Susanne Schreiter

    2018-02-01

    Full Text Available Biocontrol inoculants often show inconsistency in their efficacy at field scale and the reason for this remains often unclear. A high rhizosphere competence of inoculant strains is assumed to be a key factor for successful biocontrol effects as the biocontrol strain has to compete with the indigenous microbial community in the rhizosphere. It is known that many factors, among them plant species and soil type shape the rhizosphere microbial community composition. However, microbial community composition in the rhizosphere can also be influenced by the presence of a pathogen. We hypothesized that plant species, soil type, and a pathogen affect the rhizosphere competence of a biocontrol strain and its biocontrol effect against a soil-borne pathogen. To test the hypothesis, we used an experimental plot system with three soil types (diluvial sand, alluvial loam, loess loam kept under similar agricultural management at the same field site for 12 years. We investigate the rhizosphere competence of Pseudomonas sp. RU47 in two plant species (potato and lettuce and its biocontrol effect against Rhizoctonia diseases. The colonization density of a rifampicin resistant mutant of RU47 in the rhizosphere of both crops was evaluated by plate counts. Bacterial community compositions were analyzed by denaturing gradient gel electrophoresis (DGGE of 16S rRNA gene fragments amplified from total community DNA. The inoculant RU47 was able to colonize the rhizosphere of both model crops in a sufficient density and to reduce disease severity of black scurf on potato and bottom rot on lettuce in all three soils. DGGE indicated that RU47 affected the bacterial community composition stronger in the rhizosphere of lettuce than in the potato rhizosphere. In contrast, the effect of the pathogen Rhizoctonia solani on the bacterial community was much stronger in the rhizosphere of potato than in the lettuce rhizosphere. A significant effect of RU47 on the Pseudomonas

  7. Mrt, a gene unique to fungi, encodes an oligosaccharide transporter and facilitates rhizosphere competency in Metarhizium robertsii.

    Science.gov (United States)

    Fang, Weiguo; St Leger, Raymond J

    2010-11-01

    The symbiotic associations between rhizospheric fungi and plants have enormous environmental impact. Fungi are crucial to plant health as antagonists of pathogens and herbivores and facilitate the uptake of soil nutrients. However, little is known about the plant products obtained by fungi in exchange or how they are transported through the symbiotic interface. Here, we demonstrate that sucrose and raffinose family oligosaccharides in root exudates are important for rhizosphere competence in the insect pathogen Metarhizium robertsii (formerly known as Metarhizium anisopliae). We identified mutants in the Metarhizium raffinose transporter (Mrt) gene of M. robertsii that grew poorly in root exudate and were greatly reduced in rhizosphere competence on grass roots. Studies on sugar uptake, including competition assays, revealed that MRT was a sucrose and galactoside transporter. Disrupting MRT resulted in greatly reduced or no growth on sucrose and galactosides but did not affect growth on monosaccharides or oligosaccharides composed entirely of glucose subunits. Consistent with this, expression of Mrt is exclusively up-regulated by galactosides and sucrose. Expressing a green fluorescent protein gene under the control of the Mrt promoter confirmed that MRT was expressed by germlings in the vicinity of grass roots but not in surrounding bulk soil. Disrupting Mrt did not reduce virulence to insects, demonstrating that Mrt is exclusively involved in M. robertsii's interactions with plants. To our knowledge, MRT is the first oligosaccharide transporter identified and characterized in a fungus and is unique to filamentous fungi, but homologous genes in Magnaporthe, Ustilago, Aspergillus, Fusarium, Epichloe, and Penicillium species indicate that oligosaccharide transport is of widespread significance.

  8. Rhizosphere competent microbial consortium mediates rapid changes in phenolic profiles in chickpea during Sclerotium rolfsii infection.

    Science.gov (United States)

    Singh, Akanksha; Jain, Akansha; Sarma, Birinchi Kumar; Upadhyay, Ram S; Singh, Harikesh Bahadur

    2014-01-01

    The present study was carried out with the aim of evaluating the effectiveness and potentiality of three compatible rhizosphere microbes, viz., fluorescent Pseudomonas aeruginosa (PHU094), Trichoderma harzianum (THU0816) and Mesorhizobium sp. (RL091), in promoting plant growth and mobilizing phenolic acid biosynthesis in chickpea under challenge of Sclerotium rolfsii. The microbes were applied as seed coating in different combinations in two experimental sets and the pathogen was inoculated after 25 days of sowing in one set. Results revealed that microbe application led to higher growth in chickpea particularly in the triple microbe combination compared to their individual treatments and control. Similarly, pathogen challenged plants accumulated higher amount of phenolic compounds both at the site of attack of the pathogen i.e. collar region as well as leaves compared to unchallenged plants. All the bioagents were found to trigger the level of phenolic compounds at collar region in varying degrees as compared to the healthy control (A). However, the most effective treatment was D7 (combined application of PHU094, THU0816 and RL091 with pathogen challenge) among all the treatments. Shikimic acid was maximally induced amongst all the phenolic compounds. In leaves also, the most effective treatment was D7 where shikimic acid, t-chlorogenic acid, ferulic acid, myricetin, quercetin and syringic acid were produced in higher amounts as compared to treatment B where the plants were challenged only with the pathogen. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. Linking the response of bacterial populations to plant development through analysis of rhizosphere-competence traits of soil bacteria

    Science.gov (United States)

    Cho, H. J.; Karaoz, U.; Zhalnina, K.; Firestone, M. K.; Brodie, E.

    2016-12-01

    A growing plant root exudes changing combinations of compounds including root litter and other detritus throughout its developmental stages, providing a major source of organic C for rhizosphere bacteria. Clear patterns of microbial succession have been observed in the rhizosphere of a number of plants. These patterns of microbial succession are likely key to the processing of soil organic carbon and nutrient recycling. What is less well understood are the microbial traits, or combinations of traits, selected for during plant development. Are these traits or trait-combinations conserved, and is phylogeny a useful integrator of traits? Understanding the mechanisms underlying ecological succession would enable improved prediction of future rhizosphere states and consequences for C and nutrient cycles. In this study, we resolve the responses of rhizosphere bacteria at strain-level during plant (Avena fatua) developmental stages using both isolation and metagenomic approaches. Metagenome reads from bulk and rhizosphere soils were mapped to the genomes of thirty nine bacterial isolates numerically abundant ( 0.5% in relative abundance) and phylogenetically representative of these soils, and also to ninety six metagenome-derived genome bins. Analysis of temporal coverage patterns demonstrate that bacteria can be classified as positive and negative rhizosphere responders, with traits associated with root exudate utilization being important. Significant strain level diversity was observed and variance in the temporal coverage patterns further distinguished closely related strains of the same genera. For example, while a number of strains from the Bradyrhizobia, Mesorhizobia and Mycobacteria all increased in coverage with root growth, suggesting that recently acquired traits are selected for. Candidate traits distinguishing closely related strains included those related to xylose and other plant cell-wall derived sugar utilization, motility and aromatic organic acid

  10. Compatible Rhizosphere-Competent Microbial Consortium Adds Value to the Nutritional Quality in Edible Parts of Chickpea.

    Science.gov (United States)

    Yadav, Sudheer K; Singh, Surendra; Singh, Harikesh B; Sarma, Birinchi K

    2017-08-02

    Chickpea is used as a high-energy and protein source in diets of humans and livestock. Moreover, chickpea straw can be used as alternative of forage in ruminant diets. The present study evaluates the effect of beneficial microbial inoculation on enhancing the nutritional values in edible parts of chickpea. Two rhizosphere-competent compatible microbes (Pseudomonas fluorescens OKC and Trichoderma asperellum T42) were selected and applied to seeds either individually or in consortium before sowing. Chickpea seeds treated with the microbes showed enhanced plant growth [88.93% shoot length at 60 days after sowing (DAS)] and biomass accumulation (21.37% at 120 DAS). Notably, the uptake of mineral nutrients, viz., N (90.27, 91.45, and 142.64%), P (14.13, 58.73, and 56.84%), K (20.5, 9.23, and 35.98%), Na (91.98, 101.66, and 36.46%), Ca (16.61, 29.46, and 16%), and organic carbon (28.54, 17.09, and 18.54%), was found in the seed, foliage, and pericarp of the chickpea plants, respectively. Additionally, nutritional quality, viz., total phenolic (59.7, 2.8, and 17.25%), protein (9.78, 18.53, and 7.68%), carbohydrate content (26.22, 30.21, and 26.63%), total flavonoid content (3.11, 9.15, and 7.81%), and reducing power (112.98, 75.42, and 111.75%), was also found in the seed, foliage, and pericarp of the chickpea plants. Most importantly, the microbial-consortium-treated plants showed the maximum increase of nutrient accumulation and enhancement in nutritional quality in all edible parts of chickpea. Nutritional partitioning in different edible parts of chickpea was also evident in the microbial treatments compared to their uninoculated ones. The results thus clearly demonstrated microbe-mediated enhancement in the dietary value of the edible parts of chickpea because seeds are consumed by humans, whereas pericarp and foliage (straw) are used as an alternative of forage and roughage in ruminant diets.

  11. Mrt, a Gene Unique to Fungi, Encodes an Oligosaccharide Transporter and Facilitates Rhizosphere Competency in Metarhizium robertsii1[C][W

    Science.gov (United States)

    Fang, Weiguo; St. Leger, Raymond J.

    2010-01-01

    The symbiotic associations between rhizospheric fungi and plants have enormous environmental impact. Fungi are crucial to plant health as antagonists of pathogens and herbivores and facilitate the uptake of soil nutrients. However, little is known about the plant products obtained by fungi in exchange or how they are transported through the symbiotic interface. Here, we demonstrate that sucrose and raffinose family oligosaccharides in root exudates are important for rhizosphere competence in the insect pathogen Metarhizium robertsii (formerly known as Metarhizium anisopliae). We identified mutants in the Metarhizium raffinose transporter (Mrt) gene of M. robertsii that grew poorly in root exudate and were greatly reduced in rhizosphere competence on grass roots. Studies on sugar uptake, including competition assays, revealed that MRT was a sucrose and galactoside transporter. Disrupting MRT resulted in greatly reduced or no growth on sucrose and galactosides but did not affect growth on monosaccharides or oligosaccharides composed entirely of glucose subunits. Consistent with this, expression of Mrt is exclusively up-regulated by galactosides and sucrose. Expressing a green fluorescent protein gene under the control of the Mrt promoter confirmed that MRT was expressed by germlings in the vicinity of grass roots but not in surrounding bulk soil. Disrupting Mrt did not reduce virulence to insects, demonstrating that Mrt is exclusively involved in M. robertsii’s interactions with plants. To our knowledge, MRT is the first oligosaccharide transporter identified and characterized in a fungus and is unique to filamentous fungi, but homologous genes in Magnaporthe, Ustilago, Aspergillus, Fusarium, Epichloe, and Penicillium species indicate that oligosaccharide transport is of widespread significance. PMID:20837701

  12. Fungal invasion of the rhizosphere microbiome

    NARCIS (Netherlands)

    Chapelle, Emilie; Mendes, Rodrigo; Bakker, Peter A Hm|info:eu-repo/dai/nl/074744623; Raaijmakers, Jos M.

    2016-01-01

    The rhizosphere is the infection court where soil-borne pathogens establish a parasitic relationship with the plant. To infect root tissue, pathogens have to compete with members of the rhizosphere microbiome for available nutrients and microsites. In disease-suppressive soils, pathogens are

  13. HapX-mediated iron homeostasis is essential for rhizosphere competence and virulence of the soilborne pathogen Fusarium oxysporum.

    Science.gov (United States)

    López-Berges, Manuel S; Capilla, Javier; Turrà, David; Schafferer, Lukas; Matthijs, Sandra; Jöchl, Christoph; Cornelis, Pierre; Guarro, Josep; Haas, Hubertus; Di Pietro, Antonio

    2012-09-01

    Soilborne fungal pathogens cause devastating yield losses and are highly persistent and difficult to control. During the infection process, these organisms must cope with limited availability of iron. Here we show that the bZIP protein HapX functions as a key regulator of iron homeostasis and virulence in the vascular wilt fungus Fusarium oxysporum. Deletion of hapX does not affect iron uptake but causes derepression of genes involved in iron-consuming pathways, leading to impaired growth under iron-depleted conditions. F. oxysporum strains lacking HapX are reduced in their capacity to invade and kill tomato (Solanum lycopersicum) plants and immunodepressed mice. The virulence defect of ΔhapX on tomato plants is exacerbated by coinoculation of roots with a biocontrol strain of Pseudomonas putida, but not with a siderophore-deficient mutant, indicating that HapX contributes to iron competition of F. oxysporum in the tomato rhizosphere. These results establish a conserved role for HapX-mediated iron homeostasis in fungal infection of plants and mammals.

  14. Rhizosphere size

    Science.gov (United States)

    Kuzyakov, Yakov; Razavi, Bahar

    2017-04-01

    Estimation of the soil volume affected by roots - the rhizosphere - is crucial to assess the effects of plants on properties and processes in soils and dynamics of nutrients, water, microorganisms and soil organic matter. The challenges to assess the rhizosphere size are: 1) the continuum of properties between the root surface and root-free soil, 2) differences in the distributions of various properties (carbon, microorganisms and their activities, various nutrients, enzymes, etc.) along and across the roots, 3) temporal changes of properties and processes. Thus, to describe the rhizosphere size and root effects, a holistic approach is necessary. We collected literature and own data on the rhizosphere gradients of a broad range of physico-chemical and biological properties: pH, CO2, oxygen, redox potential, water uptake, various nutrients (C, N, P, K, Ca, Mg, Mn and Fe), organic compounds (glucose, carboxylic acids, amino acids), activities of enzymes of C, N, P and S cycles. The collected data were obtained based on the destructive approaches (thin layer slicing), rhizotron studies and in situ visualization techniques: optodes, zymography, sensitive gels, 14C and neutron imaging. The root effects were pronounced from less than 0.5 mm (nutrients with slow diffusion) up to more than 50 mm (for gases). However, the most common effects were between 1 - 10 mm. Sharp gradients (e.g. for P, carboxylic acids, enzyme activities) allowed to calculate clear rhizosphere boundaries and so, the soil volume affected by roots. The first analyses were done to assess the effects of soil texture and moisture as well as root system and age on these gradients. The most properties can be described by two curve types: exponential saturation and S curve, each with increasing and decreasing concentration profiles from the root surface. The gradient based distribution functions were calculated and used to extrapolate on the whole soil depending on the root density and rooting intensity. We

  15. Fungal invasion of the rhizosphere microbiome.

    Science.gov (United States)

    Chapelle, Emilie; Mendes, Rodrigo; Bakker, Peter A H M; Raaijmakers, Jos M

    2016-01-01

    The rhizosphere is the infection court where soil-borne pathogens establish a parasitic relationship with the plant. To infect root tissue, pathogens have to compete with members of the rhizosphere microbiome for available nutrients and microsites. In disease-suppressive soils, pathogens are strongly restricted in growth by the activities of specific rhizosphere microorganisms. Here, we sequenced metagenomic DNA and RNA of the rhizosphere microbiome of sugar beet seedlings grown in a soil suppressive to the fungal pathogen Rhizoctonia solani. rRNA-based analyses showed that Oxalobacteraceae, Burkholderiaceae, Sphingobacteriaceae and Sphingomonadaceae were significantly more abundant in the rhizosphere upon fungal invasion. Metatranscriptomics revealed that stress-related genes (ppGpp metabolism and oxidative stress) were upregulated in these bacterial families. We postulate that the invading pathogenic fungus induces, directly or via the plant, stress responses in the rhizobacterial community that lead to shifts in microbiome composition and to activation of antagonistic traits that restrict pathogen infection.

  16. The minimal rhizosphere microbiome

    NARCIS (Netherlands)

    Raaijmakers, Jos; Lugtenberg, Ben

    2015-01-01

    The rhizosphere provides a home to numerous (micro)organisms that in turn may affect plant growth, development, and tolerance to abiotic and biotic stresses. How plants shape the rhizosphere microbiome has been subject of many past and present studies with the ultimate goal to identify plant genetic

  17. The rhizosphere selects for particular groups of acidobacteria and verrucomicrobia.

    Directory of Open Access Journals (Sweden)

    Ulisses Nunes da Rocha

    Full Text Available There is a lack in our current understanding on the putative interactions of species of the phyla of Acidobacteria and Verrucomicrobia with plants. Moreover, progress in this area is seriously hampered by the recalcitrance of members of these phyla to grow as pure cultures. The purpose of this study was to investigate whether particular members of Acidobacteria and Verrucomicrobia are avid colonizers of the rhizosphere. Based on previous work, rhizosphere competence was demonstrated for the Verrucomicrobia subdivision 1 groups of Luteolibacter and Candidatus genus Rhizospheria and it was hypothesized that the rhizosphere is a common habitat for Acidobacteria subdivision 8 (class Holophagae. We assessed the population densities of Bacteria, Verrucomicrobia subdivision 1 groups Luteolibacter and Candidatus genus Rhizospheria and Acidobacteria subdivisions 1, 3, 4, 6 and Holophagae in bulk soil and in the rhizospheres of grass, potato and leek in the same field at different points in time using real-time quantitative PCR. Primers of all seven verrucomicrobial, acidobacterial and holophagal PCR systems were based on 16S rRNA gene sequences of cultivable representatives of the different groups. Luteolibacter, Candidatus genus Rhizospheria, subdivision 6 acidobacteria and Holophaga showed preferences for one or more rhizospheres. In particular, the Holophaga 16S rRNA gene number were more abundant in the leek rhizosphere than in bulk soil and the rhizospheres of grass and potato. Attraction to, and colonization of, leek roots by Holophagae strain CHC25 was further shown in an experimental microcosm set-up. In the light of this remarkable capacity, we propose to coin strain CHC25 Candidatus Porrumbacterium oxyphilus (class Holophagae, Phylum Acidobacteria, the first cultured representative with rhizosphere competence.

  18. Engineering the plant rhizosphere

    NARCIS (Netherlands)

    Zhang, Y.; Ruyter-Spira, C.P.; Bouwmeester, H.J.

    2015-01-01

    Plant natural products are low molecular weight compounds playing important roles in plant survival under biotic and abiotic stresses. In the rhizosphere, several groups of plant natural products function as semiochemicals that mediate the interactions of plants with other plants, animals and

  19. SEAGRASS RHIZOSPHERE MICROBIAL COMMUNITIES

    Science.gov (United States)

    Devereux, Richard. 2005. Seagrass Rhizosphere Microbial Communities. In: Interactions Between Macro- and Microorganisms in Marine Sediments. E. Kristense, J.E. Kostka and R.H. Haese, Editors. American Geophysical Union, Washington, DC. p199-216. (ERL,GB 1213). Seagrasses ...

  20. rhizosphere and non-rhizosphere soil mycoflora of corchorus olitorius

    African Journals Online (AJOL)

    Olahan et. al

    ABSTRACT. The physicochemical and microbial analyses of the rhizosphere and non-rhizosphere soils of Corchorus olitorius (Jute) were conducted. The soil samples were analyzed before planting of. Jute seeds and the average values of the parameters were. 11.24% (percentage moisture content), 0.29ml/g (water ...

  1. Biocontrol of collar rot disease of betelvine (Piper betle L.) caused by Sclerotium rolfsii by using rhizosphere-competent Pseudomonas fluorescens NBRI-N6 and P. fluorescens NBRI-N.

    Science.gov (United States)

    Singh, Anand; Mehta, Sangeeta; Singh, Harikesh Bahadur; Nautiyal, Chandra Shekhar

    2003-08-01

    Collar rot disease of betelvine (Piper betle L.) caused by Sclerotium rolfsii is difficult to control by conventional means by use of chemicals; therefore, use of biocontrol agents is desirable. In the present study, 186 bacterial strains of different morphological types were screened for their biocontrol activity against S. rolfsii under in vitro conditions. Two strains, Pseudomonas fluorescens NBRI-N6 and P. fluorescens NBRI-N, were selected for further studies because of their ability to inhibit the mycelial growth of the pathogen significantly. Spontaneous rifampicin-resistant (Rif) derivatives of P. fluorescens NBRI-N6 and P. fluorescens NBRI-N showing growth rate and membrane protein composition comparable to the wild type were selected to facilitate their monitoring in the rhizosphere. Field trials demonstrated that strain P. fluorescens NBRI-N6 was better than P. fluorescens NBRI-N in increasing the yield of betelvine significantly, whereas a consortium of the two strains controlled the disease more than either of the strains. The screening method should prove useful in identifying rhizosphere bacteria with the greatest potential for controlling diseases caused by phytopathogenic fungi.

  2. Metarhizium robertsii produces an extracellular invertase (MrINV that plays a pivotal role in rhizospheric interactions and root colonization.

    Directory of Open Access Journals (Sweden)

    Xinggang Liao

    Full Text Available As well as killing pest insects, the rhizosphere competent insect-pathogenic fungus Metarhizium robertsii also boosts plant growth by providing nitrogenous nutrients and increasing resistance to plant pathogens. Plant roots secrete abundant nutrients but little is known about their utilization by Metarhizium spp. and the mechanistic basis of Metarhizium-plant associations. We report here that M. robertsii produces an extracellular invertase (MrInv on plant roots. Deletion of MrInv (ΔMrInv reduced M. robertsii growth on sucrose and rhizospheric exudates but increased colonization of Panicum virgatum and Arabidopsis thaliana roots. This could be accounted for by a reduction in carbon catabolite repression in ΔMrInv increasing production of plant cell wall-degrading depolymerases. A non-rhizosphere competent scarab beetle specialist Metarhizium majus lacks invertase which suggests that rhizospheric competence may be related to the sugar metabolism of different Metarhizium species.

  3. Metarhizium robertsii produces an extracellular invertase (MrINV) that plays a pivotal role in rhizospheric interactions and root colonization.

    Science.gov (United States)

    Liao, Xinggang; Fang, Weiguo; Lin, Liangcai; Lu, Hsiao-Ling; St Leger, Raymond J

    2013-01-01

    As well as killing pest insects, the rhizosphere competent insect-pathogenic fungus Metarhizium robertsii also boosts plant growth by providing nitrogenous nutrients and increasing resistance to plant pathogens. Plant roots secrete abundant nutrients but little is known about their utilization by Metarhizium spp. and the mechanistic basis of Metarhizium-plant associations. We report here that M. robertsii produces an extracellular invertase (MrInv) on plant roots. Deletion of MrInv (ΔMrInv) reduced M. robertsii growth on sucrose and rhizospheric exudates but increased colonization of Panicum virgatum and Arabidopsis thaliana roots. This could be accounted for by a reduction in carbon catabolite repression in ΔMrInv increasing production of plant cell wall-degrading depolymerases. A non-rhizosphere competent scarab beetle specialist Metarhizium majus lacks invertase which suggests that rhizospheric competence may be related to the sugar metabolism of different Metarhizium species.

  4. Beneficial interactions in the rhizosphere

    NARCIS (Netherlands)

    Hol, W.H.G.; De Boer, W.; Medina, A.; Dighton, J.; Krumins, J.A.K

    2014-01-01

    Production of plant biomass is one of the main ecosystem services delivered by soil. The area closely surrounding the root surface, the rhizosphere, is where plants interact with soil organisms. The interaction of a plant with soil microorganisms may result in several benefits to the plant,

  5. Antifungal Rhizosphere Bacteria Can increase as Response to the Presence of Saprotrophic Fungi.

    Science.gov (United States)

    de Boer, Wietse; Hundscheid, Maria P J; Klein Gunnewiek, Paulien J A; de Ridder-Duine, Annelies S; Thion, Cecile; van Veen, Johannes A; van der Wal, Annemieke

    2015-01-01

    Knowledge on the factors that determine the composition of bacterial communities in the vicinity of roots (rhizosphere) is essential to understand plant-soil interactions. Plant species identity, plant growth stage and soil properties have been indicated as major determinants of rhizosphere bacterial community composition. Here we show that the presence of saprotrophic fungi can be an additional factor steering rhizosphere bacterial community composition and functioning. We studied the impact of presence of two common fungal rhizosphere inhabitants (Mucor hiemalis and Trichoderma harzianum) on the composition of cultivable bacterial communities developing in the rhizosphere of Carex arenaria (sand sedge) in sand microcosms. Identification and phenotypic characterization of bacterial isolates revealed clear shifts in the rhizosphere bacterial community composition by the presence of two fungal strains (M. hiemalis BHB1 and T. harzianum PvdG2), whereas another M. hiemalis strain did not show this effect. Presence of both M. hiemalis BHB1 and T. harzianum PvdG2 resulted in a significant increase of chitinolytic and (in vitro) antifungal bacteria. The latter was most pronounced for M. hiemalis BHB1, an isolate from Carex roots, which stimulated the development of the bacterial genera Achromobacter and Stenotrophomonas. In vitro tests showed that these genera were strongly antagonistic against M. hiemalis but also against the plant-pathogenic fungus Rhizoctonia solani. The most likely explanation for fungal-induced shifts in the composition of rhizosphere bacteria is that bacteria are being selected which are successful in competing with fungi for root exudates. Based on the results we propose that measures increasing saprotrophic fungi in agricultural soils should be explored as an alternative approach to enhance natural biocontrol against soil-borne plant-pathogenic fungi, namely by stimulating indigenous antifungal rhizosphere bacteria.

  6. Antifungal Rhizosphere Bacteria Can increase as Response to the Presence of Saprotrophic Fungi.

    Directory of Open Access Journals (Sweden)

    Wietse de Boer

    Full Text Available Knowledge on the factors that determine the composition of bacterial communities in the vicinity of roots (rhizosphere is essential to understand plant-soil interactions. Plant species identity, plant growth stage and soil properties have been indicated as major determinants of rhizosphere bacterial community composition. Here we show that the presence of saprotrophic fungi can be an additional factor steering rhizosphere bacterial community composition and functioning. We studied the impact of presence of two common fungal rhizosphere inhabitants (Mucor hiemalis and Trichoderma harzianum on the composition of cultivable bacterial communities developing in the rhizosphere of Carex arenaria (sand sedge in sand microcosms. Identification and phenotypic characterization of bacterial isolates revealed clear shifts in the rhizosphere bacterial community composition by the presence of two fungal strains (M. hiemalis BHB1 and T. harzianum PvdG2, whereas another M. hiemalis strain did not show this effect. Presence of both M. hiemalis BHB1 and T. harzianum PvdG2 resulted in a significant increase of chitinolytic and (in vitro antifungal bacteria. The latter was most pronounced for M. hiemalis BHB1, an isolate from Carex roots, which stimulated the development of the bacterial genera Achromobacter and Stenotrophomonas. In vitro tests showed that these genera were strongly antagonistic against M. hiemalis but also against the plant-pathogenic fungus Rhizoctonia solani. The most likely explanation for fungal-induced shifts in the composition of rhizosphere bacteria is that bacteria are being selected which are successful in competing with fungi for root exudates. Based on the results we propose that measures increasing saprotrophic fungi in agricultural soils should be explored as an alternative approach to enhance natural biocontrol against soil-borne plant-pathogenic fungi, namely by stimulating indigenous antifungal rhizosphere bacteria.

  7. Rhizosphere anode model explains high oxygen levels during operation of a Glyceria maxima PMFC

    NARCIS (Netherlands)

    Timmers, R.A.; Strik, D.P.B.T.B.; Arampatzoglou, C.; Buisman, C.J.N.; Hamelers, H.V.M.

    2012-01-01

    In this paper, the effect of root oxygen loss on energy recovery of the plant microbial fuel cell (PMFC) is described. In this manner, advanced understanding of competing processes within the rhizosphere-anode interface was provided. A microscopic model was developed on the basis of exudation,

  8. Methane Oxidation and the Competition for Oxygen in the Rice Rhizosphere

    NARCIS (Netherlands)

    Bodegom, van P.M.; Stams, F.; Mollema, L.; Boeke, S.; Leffelaar, P.A.

    2001-01-01

    A mechanistic approach is presented to describe oxidation of the greenhouse gas methane in the rice rhizosphere of flooded paddies by obligate methanotrophic bacteria. In flooded rice paddies these methanotrophs compete for available O2 with other types of bacteria. Soil incubation studies and

  9. Rhizosphere microbial populations in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, T.D.; Wolf, D.C.; Rogers, H.B.; Beyrouty, C.A.; Reynolds, C.M. [University of Arkansas, Fayetteville, AR (United States). Dept. of Agronomy

    1997-04-01

    Rhizosphere microbial populations may increase bioremediation of soil contaminated with organic chemicals. A growth chamber study was conducted to evaluate rhizosphere microbial populations in contaminated and non-contaminated soil. Alfalfa (Medicago sativa L.) and alpine bluegrass (Poa alpina L.) were grown in soil containing a mixture of organic chemicals for 14 weeks. The equal millimolar mixture of hexadecane, (2,2-dimethylpropyl)benzene, cis-decahydronaphthalene (decalin), benzoic acid, phenanthrene, and pyrene was added at levels of 0 and 2000 mg/kg. Organic chemical degrader (OCD) populations were assessed by a Most-Probable-Number technique, and bacteria and fungi were enumerated by plate count methods. Different methods for expressing OCD rhizosphere populations were enumerated by plate count methods. Different methods for expressing OCD rhizosphere populations were investigated to determine the effect it had on interpretation of the results. At 9 weeks, the OCD numbers were significantly higher in rhizosphere and contaminated soils than in bulk and non-contaminated soils, respectively. Alfalfa rhizosphere OCD levels were 4 x 10{sup 7}/g for contaminated and 6 x 10{sup 6}/g for non-contaminated soils. Bluegrass rhizosphere OCD levels were 1 x 10{sup 7}/g and 1 x 10{sup 6}/g in contaminated and non-contaminated soils, respectively. Selective enrichment of OCD populations was observed in contaminated rhizosphere soil. Higher numbers of OCD in contaminated rhizospheres suggest potential stimulation of bioremediation around plant roots. 36 refs., 10 tabs.

  10. Rhizosphere and non-rhizosphere mycoflora of two ferns from Panhala Fort, Kolhapur, Maharashtra, India

    Directory of Open Access Journals (Sweden)

    P. R. Hande

    2016-03-01

    Full Text Available Hypodematium crenatum (Forssk. Kuhn and Anogramma leptophylla (L. Link are threatened fern species from Western Ghats.  The present paper endorses the preliminary study on mycoflora associated with these ferns.  Eighteen fungal species have been isolated from rhizosphere and non-rhizosphere soils of selected ferns.  More diversity of fungi was observed in non-rhizosphere as compared to rhizosphere soils of both the ferns.  Aspergillus was found to be the most dominant genus among the population followed by Penicillium.  Higher percentage of fungal species is shown by H. crenatum, i.e., 44.5% in non-rhizosphere and 27.77% in rhizosphere; while a lower percentage of fungal species was found in A. leptophylla, i.e., 38.88% in non-rhizosphere and 16.66% in rhizosphere.  Number of colony forming units per gram soil was more in non-rhizosphere of A. leptophylla while it was less in non-rhizosphere of H. crenatum.  Inhibitory rhizosphere effect was exerted by A. leptophylla while H. crenatum has stimulatory effect on soil fungi. 

  11. Assessment of the genotypic diversity of antibiotic-producing Pseudomonas species in the rhizosphere by denaturing gradient gel electrophoresis

    NARCIS (Netherlands)

    Bergsma-Vlami, M.; Prins, M.E.; Staats, M.; Raaijmakers, J.M.

    2005-01-01

    The genotypic diversity of antibiotic-producing Pseudomonas spp. provides an enormous resource for identifying strains that are highly rhizosphere competent and superior for biological control of plant diseases. In this study, a simple and rapid method was developed to determine the presence and

  12. Reconciling Mechanistic Hypotheses About Rhizosphere Priming

    Science.gov (United States)

    Cheng, W.

    2016-12-01

    Rhizosphere priming on soil organic matter decomposition has emerged as a key mechanism regulating biogeochemnical cycling of carbon, nitrogen and other elements from local to global scales. The level of the rhizosphere priming effect on decomposition rates can be comparable to the levels of controls from soil temperature and moisture conditions. However, our understanding on mechanisms responsible for rhizosphere priming remains rudimentary and controversial. The following individual hypotheses have been postulated in the published literature: (1) microbial activation, (2) microbial community succession, (3) aggregate turnover, (4) nitrogen mining, (5) nutrient competition, (6) preferential substrate utilization, and (7) drying-rewetting. Meshing these hypotheses with existing empirical evidence tends to support a general conclusion: each of these 7 hypotheses represents an aspect of the overall rhizosphere priming complex while the relative contribution by each individual aspect varies depending on the actual plant-soil conditions across time and space.

  13. Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community.

    Science.gov (United States)

    Chowdhury, Soumitra Paul; Dietel, Kristin; Rändler, Manuela; Schmid, Michael; Junge, Helmut; Borriss, Rainer; Hartmann, Anton; Grosch, Rita

    2013-01-01

    The soil-borne pathogen Rhizoctonia solani is responsible for crop losses on a wide range of important crops worldwide. The lack of effective control strategies and the increasing demand for organically grown food has stimulated research on biological control. The aim of the present study was to evaluate the rhizosphere competence of the commercially available inoculant Bacillus amyloliquefaciens FZB42 on lettuce growth and health together with its impact on the indigenous rhizosphere bacterial community in field and pot experiments. Results of both experiments demonstrated that FZB42 is able to effectively colonize the rhizosphere (7.45 to 6.61 Log 10 CFU g(-1) root dry mass) within the growth period of lettuce in the field. The disease severity (DS) of bottom rot on lettuce was significantly reduced from severe symptoms with DS category 5 to slight symptom expression with DS category 3 on average through treatment of young plants with FZB42 before and after planting. The 16S rRNA gene based fingerprinting method terminal restriction fragment length polymorphism (T-RFLP) showed that the treatment with FZB42 did not have a major impact on the indigenous rhizosphere bacterial community. However, the bacterial community showed a clear temporal shift. The results also indicated that the pathogen R. solani AG1-IB affects the rhizosphere microbial community after inoculation. Thus, we revealed that the inoculant FZB42 could establish itself successfully in the rhizosphere without showing any durable effect on the rhizosphere bacterial community.

  14. Ecophysiological Characterization of Rhizosphere Bacterial Communities at Different Root Locations and Plant Developmental Stages of Cucumber Grown on Rockwool.

    Science.gov (United States)

    Folman, L.B.; Postma, J.; Veen, J.A.

    2001-12-01

    in the analysis of community-level carbon source utilization performed in this study. It appeared that monosaccharides (glucose and fucose), amino acids (alanine and asparagine), and organic acids (galacturonic, succinic, and linoleic acid) were used for growth mainly by bacteria from the root tips, and to a lesser extent from the intermediate region, of young plants. Disaccharides were predominantly utilized by isolates from plants in the vegetative stage. Overall, the results indicated that growth rates and carbon source utilization reflect the adaptation of bacteria to the rhizosphere environment. The possibility of using these characteristics to screen for rhizosphere competent biocontrol agents that compete for substrates with P. aphanidermatum is discussed.

  15. A mechanistic model of microbial competition in the rhizosphere of wetland plants

    Science.gov (United States)

    Aslkhodapasand, F.; Mayer, K. U.; Neumann, R. B.

    2014-12-01

    Wetlands are the largest natural source of methane to the atmosphere. Although they cover only 4-6% of earth's surface, wetlands contribute 20-39% of global methane emissions. Hollow aerenchyma tissues inside the roots, stems and leaves of plants represent one of the most important methane emission pathways for wetlands. Up to 90% of the emitted methane can diffuse through these hollow tissues that directly connect the atmosphere to the anoxic soils where methane is generated. Thus, concentrations of methane surrounding plant roots directly impact the amount of methane emitted by wetlands. Methane concentrations are controlled by a variety of microbial processes occurring in the soil around the roots of plants (aka the rhizosphere). The rhizosphere is a microbial hotspot sustained by plant inputs of organic carbon and oxygen; plant roots exude excess organic carbon generated in photosynthesis into the rhizosphere and atmospheric oxygen diffuses down to the rhizosphere through the hollow aerenchyma tissues. This environment supports a variety of microbial communities that compete with each other for available carbon and oxygen, including methanogens, methanotrophs, and heterotrophs. Methanogens ferment organic carbon into methane, a reaction that is inhibited by oxygen; methanotrophs use oxygen to oxidize methane into carbon dioxide; and heterotrophs use oxygen to oxidize organic carbon into carbon dioxide. We are interested in understanding how competition between these communities alters methane concentrations and responds to variations in plant inputs. To this end, we have developed a mechanistic root-scale model that describes microbial competition for organic carbon and oxygen in the rhizosphere of wetland plants. Our results focus on variations in rates of methane production, methane oxidation, heterotrophic respiration, and diffusion of methane into plant roots as a result of changes in carbon and oxygen inputs. The study provides insight into how plant

  16. Competence is Competence

    DEFF Research Database (Denmark)

    Bramming, Pia

    2004-01-01

    The article will address competence, its' diffusion, application, and the consequence of this application within the field of Human Resource Management (HRM). The concept competence-in-practice will be presented and in conclusion the article will consider implications and possibilities...... of competence-in-practice as an alternative approach to Competence Development within Human Resource Management....

  17. Competence is Competence

    OpenAIRE

    Bramming, Pia

    2005-01-01

    The article will address competence, its’ diffusion, application, and the consequence of this application within the field of Human Resource Management (HRM). The concept competence-in-practice will be presented and in conclusion the article will consider implications and possibilities of competence-in-practice as an alternative approach to Competence Development within Human Resource Management.

  18. Buffet hypothesis for microbial nutrition at the rhizosphere

    Science.gov (United States)

    López-Guerrero, Martha G.; Ormeño-Orrillo, Ernesto; Rosenblueth, Mónica; Martinez-Romero, Julio; Martïnez-Romero, Esperanza

    2013-01-01

    An emphasis is made on the diversity of nutrients that rhizosphere bacteria may encounter derived from roots, soil, decaying organic matter, seeds, or the microbial community. This nutrient diversity may be considered analogous to a buffet and is contrasting to the hypothesis of oligotrophy at the rhizosphere. Different rhizosphere bacteria may have preferences for some substrates and this would allow a complex community to be established at the rhizosphere. To profit from diverse nutrients, root-associated bacteria should have large degrading capabilities and many transporters (seemingly inducible) that may be encoded in a significant proportion of the large genomes that root-associated bacteria have. Rhizosphere microbes may have a tendency to evolve toward generalists. We propose that many genes with unknown function may encode enzymes that participate in degrading diverse rhizosphere substrates. Knowledge of bacterial genes required for nutrition at the rhizosphere will help to make better use of bacteria as plant-growth promoters in agriculture. PMID:23785373

  19. Buffet hypothesis for microbial nutrition at the rhizosphere

    Directory of Open Access Journals (Sweden)

    Martha eLopez-Guerrero

    2013-06-01

    Full Text Available An emphasis is made on the diversity of nutrients that rhizosphere bacteria may encounter derived from roots, soil, decaying organic matter, seeds or the microbial community. This nutrient diversity may be considered analogous to a buffet and is contrasting to the hypothesis of oligotrophy at the rhizosphere. Different rhizosphere bacteria may have preferences for some substrates and this would allow a complex community to be established at the rhizosphere. To profit from diverse nutrients, root associated bacteria should have large degrading capabilities and many transporters (seemingly inducible that may be encoded in a significant proportion of the large genomes that root associated bacteria have. Rhizosphere microbes may have a tendency to evolve towards generalists. We propose that enzymes encoded by many genes with unknown function may participate in degrading diverse rhizosphere substrates. Knowledge of bacterial genes required for nutrition at the rhizosphere will help to better make use of bacteria as plant-growth promoters in agriculture.

  20. Volatile-mediated interactions in the rhizosphere

    NARCIS (Netherlands)

    Cordovez da Cunha, Viviane

    2016-01-01

    Plants and microorganisms are constantly engaged in highly dynamic interactions both above- and belowground. Several of these interactions are mediated by volatile organic compounds (VOCs), small carbon-based compounds with high vapor pressure at ambient temperature. In the rhizosphere, VOCs have an

  1. Plant uptake of radionuclides and rhizosphere factors

    Energy Technology Data Exchange (ETDEWEB)

    Arie, Tsutomu; Gouthu, S.; Ambe, Shizuko; Yamaguchi, Isamu [Institute of Physical and Chemical Research, Wako, Saitama (Japan); Hirata, Hiroaki

    1999-03-01

    Influence of soil factors such as nuclide availability, pH, organic carbon, cation exchange capacity (CEC), exchangeable cations (Ca{sup 2+}, Mg{sup 2+}, and K{sup +}), phosphate absorption coefficient (PAC), physical composition of soil (coarse sand, fine sand, silt, and clay), soil texture, and rhizosphere microbes on uptake of radionuclides by plants are studied. (author)

  2. Characterization of potential ethylene-producing rhizosphere ...

    African Journals Online (AJOL)

    TonukariJ

    2International Centre of Insect Physiology and Ecology, Nairobi, Kenya. Accepted 12 November 2002. Three rhizosphere bacteria, Pseudomonas sp., Enterobacter sakazakii and Klebsiella oxytoca, were analyzed for genetic variation. DNA fingerprint patterns of the three bacteria were markedly different when amplified with ...

  3. Different responses of rhizosphere and non-rhizosphere soil microbial communities to consecutive Piper nigrum L. monoculture.

    Science.gov (United States)

    Li, Zhigang; Zu, Chao; Wang, Can; Yang, Jianfeng; Yu, Huan; Wu, Huasong

    2016-10-24

    Soil microorganisms have important influences on plant growth and health. In this study, four black pepper fields consecutively monocultured for 12, 18, 28 and 38 years were selected for investigating the effect of planting age on rhizosphere and non-rhizosphere soil microbial communities and soil physicochemical properties. The results revealed that the relative abundance of the dominant bacterial phyla in rhizosphere soil increased considerably with long-term consecutive monoculture but decreased in non-rhizosphere soil with a significant decline in Firmicutes. For fungi, an increasing trend over time was observed in both rhizosphere and non-rhizosphere soils, with the abundance of the pathogenic fungi Fusarium increasing significantly accompanied by a decrease in the bacteria Pseudomonas and Bacillus that is beneficial for black pepper. Consecutive monoculture, especially for 38 years, considerably decreased soil microbial diversity. Additionally, the rhizosphere soil pH and organic matter and available K contents decreased with increasing planting duration, though available N and P increased. All soil nutrient contents and microbial diversity indices were higher in rhizosphere soil compared to non-rhizosphere soil. The results suggest that long-term consecutive monoculture leads to variations in soil microbial community composition and physicochemical properties in both rhizosphere and non-rhizosphere soils, thus inhibiting the black pepper growth.

  4. [Desorption characteristics of phosphorus in tea tree rhizosphere soil].

    Science.gov (United States)

    Yang, Wei; Zhou, Wei-Jun; Bao, Chun-Hong; Miao, Xiao-Lin; Hu, Wen-Min

    2013-07-01

    In order to explore the phosphorus (P) release process and its supply mechanism in tea tree rhizosphere soil, an exogenous P adsorption and culture experiment was conducted to study the P desorption process and characters in the tea tree rhizosphere soils having been cultivated for different years and derived from different parent materials. The least squares method was used to fit the isotherms of P desorption kinetics. There was an obvious difference in the P desorption process between the rhizosphere soils and non-rhizosphere soils. The P desorption ability of the rhizosphere soils was significantly higher than that of the non-rhizosphere soils. As compared with non-rhizosphere soils, rhizosphere soils had higher available P content, P desorption rate, and beta value (desorbed P of per unit adsorbed P), with the average increment being 5.49 mg x kg(-1), 1.7%, and 24.4%, respectively. The P desorption ability of the rhizosphere soils derived from different parent materials was in the order of granite > quaternary red clay > slate. The average available P content and P desorption ability of the rhizosphere soils increased with increasing cultivation years.

  5. Peudomonas fluorescens diversity and abundance in the rhizosphere

    Science.gov (United States)

    Amina, Melinai; Ahmed, Bensoltane; Khaladi, Mederbel

    2010-05-01

    It is now over 30 years since that a several plant associated strains of fluorescent Pseudomonas spp. are known to produce antimicrobial metabolites, playing a significant role in the biological control of a lot of plant diseases. For that, the interest in the use of these bacteria for biocontrol of plant pathogenic agents has increased. However, few comprehensive studies have described the abundance of this soil borne bacteria in the region of Mascara (Northern-Algerian West). In the connection of this problem, this work was done by monitoring the number of indigenous Pseudomonas fluorescens organisms in three stations characterizing different ecosystems, to document their abundance, diversity and investigate the relationship between P. fluorescens abundance and soil properties. Our quantitative plate counting results hence the conception of their ecology in the rhizosphere. Thus, quantitative results has confirmed that P. fluorescens are successful root colonizers with strong predominance and competed for many ecological niche, where their distribution were correlated significantly (P<0.05) with the majority of soil properties. Keywords: P. Fluorescens, Ecosystems, Abundance, Diversity, Correlated, Soil Properties.

  6. Bacterial Diversity in Rhizospheres of Nontransgenic and Transgenic Corn

    OpenAIRE

    Fang, Min; Kremer, Robert J.; Motavalli, Peter P.; Davis, Georgia

    2005-01-01

    Bacterial diversity in transgenic and nontransgenic corn rhizospheres was determined. In greenhouse and field studies, metabolic profiling and molecular analysis of 16S rRNAs differentiated bacterial communities among soil textures but not between corn varieties. We conclude that bacteria in corn rhizospheres are affected more by soil texture than by cultivation of transgenic varieties.

  7. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, K.M.; Lindow, S.E.; Firestone, M.K.

    2008-10-01

    Plant photosynthate fuels carbon-limited microbial growth and activity, resulting in increased rhizosphere nitrogen (N)-mineralization. Most soil organic N is macromolecular (chitin, protein, nucleotides); enzymatic depolymerization is likely rate-limiting for plant N accumulation. Analyzing Avena (wild oat) planted in microcosms containing sieved field soil, we observed increased rhizosphere chitinase and protease specific activities, bacterial cell densities, and dissolved organic nitrogen (DON) compared to bulk soil. Low-molecular weight DON (<3000 Da) was undetectable in bulk soil but comprised 15% of rhizosphere DON. Extracellular enzyme production in many bacteria requires quorum sensing (QS), cell-density dependent group behavior. Because proteobacteria are considered major rhizosphere colonizers, we assayed the proteobacterial QS signals acyl-homoserine lactones (AHLs), which were significantly increased in the rhizosphere. To investigate the linkage between soil signaling and N cycling, we characterized 533 bacterial isolates from Avena rhizosphere: 24% had chitinase or protease activity and AHL production; disruption of QS in 7 of 8 eight isolates disrupted enzyme activity. Many {alpha}-Proteobacteria were newly found with QS-controlled extracellular enzyme activity. Enhanced specific activities of N-cycling enzymes accompanied by bacterial density-dependent behaviors in rhizosphere soil gives rise to the hypothesis that QS could be a control point in the complex process of rhizosphere N-mineralization.

  8. Microbial community structure in the rhizosphere of rice plants

    Directory of Open Access Journals (Sweden)

    Björn eBreidenbach

    2016-01-01

    Full Text Available The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e. rhizosphere versus bulk soil had a greater effect on the community structure than did time (e.g. plant growth stage. Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g. Geobacter, Anaeromyxobacter and fermenters (e.g. Clostridiaceae, Opitutaceae were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth.

  9. Rhizosphere chemical dialogues: plant-microbe interactions.

    Science.gov (United States)

    Badri, Dayakar V; Weir, Tiffany L; van der Lelie, Daniel; Vivanco, Jorge M

    2009-12-01

    Every organism on earth relies on associations with its neighbors to sustain life. For example, plants form associations with neighboring plants, microflora, and microfauna, while humans maintain symbiotic associations with intestinal microbial flora, which is indispensable for nutrient assimilation and development of the innate immune system. Most of these associations are facilitated by chemical cues exchanged between the host and the symbionts. In the rhizosphere, which includes plant roots and the surrounding area of soil influenced by the roots, plants exude chemicals to effectively communicate with their neighboring soil organisms. Here we review the current literature pertaining to the chemical communication that exists between plants and microorganisms and the biological processes they sustain.

  10. Rhizosphere Nightlife: Going with the Flow

    Science.gov (United States)

    Cardon, Z. G.; Espeleta, J. F.; Neumann, R. B.; Rastetter, E. B.; Scheibe, T. D.; Serres, M.; Vallino, J. J.

    2016-12-01

    Of the 60,000 km3of water moving from soils to the atmosphere each year, approximately half passes through the bodies of plants and is transpired from leaves. All of that water was first drawn into plants through the rhizospheres of innumerable plant roots, where an active microbial community influences nutrient availability to plants. Fueled in large part by carbon from plant roots, the rhizosphere microbial community is embedded in soils of various 3D structures, saturations, and chemistries. The complex result is a rhizosphere commodities exchange supporting productivity and carbon cycling in ecosystems, where integrated operation is influenced by advection and diffusion of resources critical for plant and microbial growth, by the extent and dynamics of soil saturation linked to root water uptake and release, by local biogeochemical reaction catalyzed by roots and microbes, and by soil chemistry. Our previous field work showed hydraulic redistribution (HR) by plant roots during drought in northern Utah nearly doubled gross mineralization rates (decomposition and microbial release of N from soil organic matter) in upper soil layers. Whether this stimulation was solely caused by the fleeting, nighttime, HR-linked enhancement of water availability in upper soil layers, or by the oscillation in soil water content driven by daytime transpiration and nighttime HR, or both, remains unclear. To examine potential mechanisms, we are developing 3D models at pore (tens of micrometer) scales to predict dynamic, local conditions and resources around microbes at various levels of soil saturation, as influenced by coupled advection, diffusion, and biogeochemical reactions catalyzed by the microbes themselves. At root scales, we are using single-root models at mm scales to explore how oscillating water flow to (and from) roots on the diel cycle promotes disequilibrium between dissolved and sorbed nutrient concentrations around plant roots, releasing cations from soil at distinct

  11. Rhizosphere chemical dialogues: plant-microbe interactions

    Energy Technology Data Exchange (ETDEWEB)

    Badri, D.V.; van der Lelie, D.; Weir, T. L.; Vivanco, J. M.

    2009-12-01

    Every organism on earth relies on associations with its neighbors to sustain life. For example, plants form associations with neighboring plants, microflora, and microfauna, while humans maintain symbiotic associations with intestinal microbial flora, which is indispensable for nutrient assimilation and development of the innate immune system. Most of these associations are facilitated by chemical cues exchanged between the host and the symbionts. In the rhizosphere, which includes plant roots and the surrounding area of soil influenced by the roots, plants exude chemicals to effectively communicate with their neighboring soil organisms. Here we review the current literature pertaining to the chemical communication that exists between plants and microorganisms and the biological processes they sustain.

  12. Pectin Enhances Bio-Control Efficacy by Inducing Colonization and Secretion of Secondary Metabolites by Bacillus amyloliquefaciens SQY 162 in the Rhizosphere of Tobacco.

    Directory of Open Access Journals (Sweden)

    Kai Wu

    Full Text Available Bacillus amyloliquefaciens is a plant-beneficial Gram-positive bacterium involved in suppressing soil-borne pathogens through the secretion of secondary metabolites and high rhizosphere competence. Biofilm formation is regarded as a prerequisite for high rhizosphere competence. In this work, we show that plant extracts affect the chemotaxis and biofilm formation of B. amyloliquefaciens SQY 162 (SQY 162. All carbohydrates tested induced the chemotaxis and biofilm formation of the SQY 162 strain; however, the bacterial growth rate was not influenced by the addition of carbohydrates. A strong chemotactic response and biofilm formation of SQY 162 were both induced by pectin through stimulation of surfactin synthesis and transcriptional expression of biofilm formation related matrix genes. These results suggested that pectin might serve as an environmental factor in the stimulation of the biofilm formation of SQY 162. Furthermore, in pot experiments the surfactin production and the population of SQY 162 in the rhizosphere significantly increased with the addition of sucrose or pectin, whereas the abundance of the bacterial pathogen Ralstonia decreased. With increased production of secondary metabolites in the rhizosphere of tobacco by SQY 162 and improved colonization density of SQY 162 in the pectin treatment, the disease incidences of bacterial wilt were efficiently suppressed. The present study revealed that certain plant extracts might serve as energy sources or environmental cues for SQY 162 to enhance the population density on tobacco root and bio-control efficacy of tobacco bacterial wilt.

  13. PERN: an EU-Russia initiative for rhizosphere microbial resources.

    Science.gov (United States)

    Declerck, Stéphane; Willems, Anne; van der Heijden, Marcel G A; Varese, Giovanna Cristina; Turkovskaya, Olga; Evtushenko, Lyudmila; Ivshina, Irena; Desmeth, Philippe

    2015-07-01

    Millions of microbial taxa inhabit the rhizosphere and could be used as biofertilizers, biopesticides, and/or for bioremediation. Only a fraction of these microbes have been described and/or are being utilized. Most are dispersed in collections, but coordination of their accessibility and availability is challenging. Here, we present the Pan-European Rhizosphere Resource Network (PERN), which is a transnational repository of microorganisms whose objectives are to facilitate access to rhizosphere resources and information and help users with technical and legal issues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Dissipation gradients of phenanthrene and pyrene in the Rice rhizosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Y.; Wu, S.C.; Yu, X.Z. [Croucher Institute for Environmental Sciences and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Wong, M.H., E-mail: mhwong@hkbu.edu.h [Croucher Institute for Environmental Sciences and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China)

    2010-08-15

    An experiment was conducted to reveal the effects of rice cultivation as well as polycyclic aromatic carbohydrates (PAHs) degrading bacterium (Acinetobacter sp.) on the dissipation gradients of two PAHs (PHE and PYR) in the rhizosphere. The results showed that the presence of rice root and bacteria significantly accelerated the dissipation rate of PHE and PYR. The root exudates contributed to the formation of dissipation gradients of PHE and PYR along the vertical direction of roots, with a higher dissipation rate in the rhizosphere and near rhizosphere zone than the soil far away the rhizosphere. - The formation of dissipation gradients of PAHs were attributed to the presence of rice root and the degrading bacteria in paddy soil.

  15. Actinomycetes in the rhizosphere of semidesert soils of Mongolia

    Science.gov (United States)

    Norovsuren, Zh.; Zenova, G. M.; Mosina, L. V.

    2007-04-01

    The population density of actinomycetes in the desert-steppe soil, rhizosphere, and the above-ground parts of plants varies from tens to hundreds of thousands of colony-forming units (CFU) per gram of substrate. The actinomycetal complexes of the brown desert-steppe soil without plant roots are more diverse in their taxonomic composition than the actinomycetal complexes in the rhizosphere and the aboveground parts of plants. Additionally to representatives of the Streptomyces and Micromonospora genera, actinomycetes from the Nocardia, Saccharopolyspora, Thermomonospora, and Actinomadura genera were identified in the soil. The population density of actinomycetes in the rhizosphere and in the soil reached hundreds of thousand CFU/g; it considerably exceeded the population density of actinomycetes in the aboveground parts of plants. The maximum population density of actinomycetes was determined in the rhizosphere of Asparagus gobicus, Salsola pestifera, and Cleistogenes songorica.

  16. Bacterial abilities and adaptation towards the rhizosphere colonization

    Directory of Open Access Journals (Sweden)

    Lucas Dantas Lopes

    2016-08-01

    Full Text Available The rhizosphere harbors one of the most complex, diverse, and active plant-associated microbial communities. This community can be recruited by the plant host to either supply it with nutrients or to help in the survival under stressful conditions. Although selection for the rhizosphere community is evident, the specific bacterial traits that make them able to colonize this environment are still poorly understood. Thus, here we used a combination of community level physiological profile (CLPP analysis and 16S rRNA gene quantification and sequencing (coupled with in silico analysis and metagenome prediction, to get insights on bacterial features and processes involved in rhizosphere colonization of sugarcane. CLPP revealed a higher metabolic activity in the rhizosphere compared to bulk soil, and suggested that D-galacturonic acid plays a role in bacterial selection by the plant roots (supported by results of metagenome prediction. Quantification of the 16S rRNA gene confirmed the higher abundance of bacteria in the rhizosphere. Sequence analysis showed that of the 252 classified families sampled, 24 were significantly more abundant in the bulk soil and 29 were more abundant in the rhizosphere. Furthermore, metagenomes predicted from the 16S rRNA gene sequences revealed a significant higher abundance of predicted genes associated with biofilm formation and also with horizontal gene transfer (HGT processes. In sum, this study identified major bacterial groups and their potential abilities to occupy the sugarcane rhizosphere, and also indicated that polygalacturonase activity and HGT events may be important features for rhizosphere colonization.

  17. PERN: art EU-Russia initiative for rhizosphere microbial resources

    OpenAIRE

    Declerck, Stéphane; Willems, Anne; van der Heijden, Marcel GA; Varese, Giovanna Cristina; Turkovskaya, Olga; Evtushenko, Lyudmila; Ivshina, Irena; Desmeth, Philippe

    2015-01-01

    Millions of microbial taxa inhabit the rhizosphere and could be used as biofertilizers, biopesticides, and/or for bioremediation. Only a fraction of these microbes have been described and/or are being utilized. Most are dispersed in collections, but coordination of their accessibility and availability is challenging. Here, we present the Pan-European Rhizosphere Resource Network (PERN), which is a transnational repository of microorganisms whose objectives are to facilitate access to rhizosph...

  18. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants.

    Science.gov (United States)

    Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; del-Val, Ek; Larsen, John

    2016-04-01

    Trichodermaspp. are common soil and root inhabitants that have been widely studied due to their capacity to produce antibiotics, parasitize other fungi and compete with deleterious plant microorganisms. These fungi produce a number of secondary metabolites such as non-ribosomal peptides, terpenoids, pyrones and indolic-derived compounds. In the rhizosphere, the exchange and recognition of signaling molecules byTrichodermaand plants may alter physiological and biochemical aspects in both. For example, severalTrichodermastrains induce root branching and increase shoot biomass as a consequence of cell division, expansion and differentiation by the presence of fungal auxin-like compounds. Furthermore,Trichoderma, in association with plant roots, can trigger systemic resistance and improve plant nutrient uptake. The present review describes the most recent advances in understanding the ecological functions ofTrichodermaspp. in the rhizosphere at biochemical and molecular levels with special emphasis on their associations with plants. Finally, through a synthesis of the current body of work, we present potential future research directions on studies related toTrichodermaspp. and their secondary metabolites in agroecosystems. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Nematode assemblages in the rhizosphere of spring barley (Hordeum vulgare L.) depended on fertilisation and plant growth phase

    DEFF Research Database (Denmark)

    Madsen, Mette Vestergård

    2004-01-01

    rhizosphere; nitrogen and phosphorus fertilisation; nematode assemblages; plant parasites; barley......rhizosphere; nitrogen and phosphorus fertilisation; nematode assemblages; plant parasites; barley...

  20. Changes in rhizosphere bacterial gene expression following glyphosate treatment.

    Science.gov (United States)

    Newman, Molli M; Lorenz, Nicola; Hoilett, Nigel; Lee, Nathan R; Dick, Richard P; Liles, Mark R; Ramsier, Cliff; Kloepper, Joseph W

    2016-05-15

    In commercial agriculture, populations and interactions of rhizosphere microflora are potentially affected by the use of specific agrichemicals, possibly by affecting gene expression in these organisms. To investigate this, we examined changes in bacterial gene expression within the rhizosphere of glyphosate-tolerant corn (Zea mays) and soybean (Glycine max) in response to long-term glyphosate (PowerMAX™, Monsanto Company, MO, USA) treatment. A long-term glyphosate application study was carried out using rhizoboxes under greenhouse conditions with soil previously having no history of glyphosate exposure. Rhizosphere soil was collected from the rhizoboxes after four growing periods. Soil microbial community composition was analyzed using microbial phospholipid fatty acid (PLFA) analysis. Total RNA was extracted from rhizosphere soil, and samples were analyzed using RNA-Seq analysis. A total of 20-28 million bacterial sequences were obtained for each sample. Transcript abundance was compared between control and glyphosate-treated samples using edgeR. Overall rhizosphere bacterial metatranscriptomes were dominated by transcripts related to RNA and carbohydrate metabolism. We identified 67 differentially expressed bacterial transcripts from the rhizosphere. Transcripts downregulated following glyphosate treatment involved carbohydrate and amino acid metabolism, and upregulated transcripts involved protein metabolism and respiration. Additionally, bacterial transcripts involving nutrients, including iron, nitrogen, phosphorus, and potassium, were also affected by long-term glyphosate application. Overall, most bacterial and all fungal PLFA biomarkers decreased after glyphosate treatment compared to the control. These results demonstrate that long-term glyphosate use can affect rhizosphere bacterial activities and potentially shift bacterial community composition favoring more glyphosate-tolerant bacteria. Copyright © 2016 The Authors. Published by Elsevier B.V. All

  1. Trophic interactions between rhizosphere bacteria and bacterial feeders influenced by phosphate and aphids in barley

    DEFF Research Database (Denmark)

    Strandmark, Lisa Bjørnlund; Mørk, Søren; Madsen, Mette Vestergård

    2006-01-01

    The aim was to study the effects of P fertilization and leaf aphid attack on the trophic interactions of bacteria and bacterial feeders in the rhizospheres of barley plants. The density of protozoa peaked in the rhizospheres of plants fertilized with N and P, whereas nematodes peaked in the rhizo......The aim was to study the effects of P fertilization and leaf aphid attack on the trophic interactions of bacteria and bacterial feeders in the rhizospheres of barley plants. The density of protozoa peaked in the rhizospheres of plants fertilized with N and P, whereas nematodes peaked...... in the rhizospheres of plants to which only N had been added. Fingerprinting of bacterial communities by length heterogeneity polymerase chain reaction revealed differences in community structure between NP rhizospheres and N rhizospheres as well as aphid-related differences within N rhizospheres. Specifically, a...

  2. Significance of rhizosphere microorganisms in reclaiming water in a CELSS.

    Science.gov (United States)

    Greene, C; Bubenheim, D L; Wignarajah, K

    1997-01-01

    Plant-microbe interactions, such as those of the rhizosphere, may be ideally suited for recycling water in a Controlled Ecological Life Support System (CELSS). The primary contaminant of waste hygiene water will be surfactants or soaps. We identified changes in the microbial ecology in the rhizosphere of hydroponical1y grown lettuce during exposure to surfactant. Six week old lettuce plants were transferred into a chamber with a recirculating hydroponic system. Microbial density and population composition were determined for the nutrient solution prior to introduction of plants and then again with plants prior to surfactant addition. The surfactant Igepon was added to the recirculating nutrient solution to a final concentration of 1.0 g L-1. Bacteria density and species diversity of the solution were monitored over a 72-h period following introduction of Igepon. Nine distinct bacterial types were identified in the rhisosphere; three species accounted for 87% of the normal rhizosphere population. Microbial cell number increased in the presence of Igepon, however species diversity declined. At the point when Igepon was degraded from solution, diversity was reduced to only two species. Igepon was found to be degraded directly by only one species found in the rhizosphere. Since surfactants are degraded from the waste hygiene water within 24 h, the potential for using rhizosphere bacteria as a waste processor in a CELSS is promising.

  3. Cyanogenic pseudomonads influence multitrophic interactions in the rhizosphere.

    Directory of Open Access Journals (Sweden)

    Thimmaraju Rudrappa

    Full Text Available In the rhizosphere, plant roots cope with both pathogenic and beneficial bacterial interactions. The exometabolite production in certain bacterial species may regulate root growth and other root-microbe interactions in the rhizosphere. Here, we elucidated the role of cyanide production in pseudomonad virulence affecting plant root growth and other rhizospheric processes. Exposure of Arabidopsis thaliana Col-0 seedlings to both direct (with KCN and indirect forms of cyanide from different pseudomonad strains caused significant inhibition of primary root growth. Further, we report that this growth inhibition was caused by the suppression of an auxin responsive gene, specifically at the root tip region by pseudomonad cyanogenesis. Additionally, pseudomonad cyanogenesis also affected other beneficial rhizospheric processes such as Bacillus subtilis colonization by biofilm formation on A. thaliana Col-0 roots. The effect of cyanogenesis on B. subtilis biofilm formation was further established by the down regulation of important B. subtilis biofilm operons epsA and yqxM. Our results show, the functional significance of pseudomonad cyanogenesis in regulating multitrophic rhizospheric interactions.

  4. Mathematical Competences

    DEFF Research Database (Denmark)

    Westphael, Henning; Mogensen, Arne

    2013-01-01

    In this article we present the notion of Mathematical competences as a tool to describe the mathematically gifted students.......In this article we present the notion of Mathematical competences as a tool to describe the mathematically gifted students....

  5. Competence articulation:

    DEFF Research Database (Denmark)

    Larsen, Simon Bo; Bardram, Jakob

    2008-01-01

    Many studies and concepts within CSCW deal with the temporal, spatial, social, and computational aspects of supporting collaborative work. In this paper we want to pay attention to another central aspect to the achievement of collaborative work, namely the competence of the people involved. In pa...... communication options for competence articulation, which again improve collaboration and thus the quality of the treatment.......Many studies and concepts within CSCW deal with the temporal, spatial, social, and computational aspects of supporting collaborative work. In this paper we want to pay attention to another central aspect to the achievement of collaborative work, namely the competence of the people involved....... In particular, we want to look at the dynamic quality of competences, and investigate how competence is mutually developed in coordinated work. We have termed this process competence articulation, a concept which tries to emphasize competence as well as social development of competence as part of cooperation...

  6. Bacterial incorporation of tritiated thymidine and populations of bacteriophagous fauna in the rhizosphere of wheat

    DEFF Research Database (Denmark)

    Christensen, Henrik; Griffiths, Bryan; Christensen, Søren

    1992-01-01

    Bacterial and microfaunal populations, and bacterial productivity measured by tritiated thymidine (3HTdr) incorporation, in the rhizosphere of wheat seedlings were measured. Soil from planted pots was fractionated into rhizosphere and non-rhizosphere (bulk) soil, while unplanted soil was taken fr...

  7. Elucidating rhizosphere processes by mass spectrometry – A review

    Energy Technology Data Exchange (ETDEWEB)

    Rugova, Ariana [Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences-BOKU, Vienna (Austria); Puschenreiter, Markus [Department of Forest and Soil Sciences, Rhizosphere Ecology and Biogeochemistry Group, University of Natural Resources and Life Sciences-BOKU, Vienna (Austria); Koellensperger, Gunda [Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna (Austria); Hann, Stephan, E-mail: stephan.hann@boku.ac.at [Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences-BOKU, Vienna (Austria)

    2017-03-01

    The presented review discusses state-of-the-art mass spectrometric methods, which have been developed and applied for investigation of chemical processes in the soil-root interface, the so-called rhizosphere. Rhizosphere soil's physical and chemical characteristics are to a great extent influenced by a complex mixture of compounds released from plant roots, i.e. root exudates, which have a high impact on nutrient and trace element dynamics in the soil-root interface as well as on microbial activities or soil physico-chemical characteristics. Chemical characterization as well as accurate quantification of the compounds present in the rhizosphere is a major prerequisite for a better understanding of rhizosphere processes and requires the development and application of advanced sampling procedures in combination with highly selective and sensitive analytical techniques. During the last years, targeted and non-targeted mass spectrometry-based methods have emerged and their combination with specific separation methods for various elements and compounds of a wide polarity range have been successfully applied in several studies. With this review we critically discuss the work that has been conducted within the last decade in the context of rhizosphere research and elemental or molecular mass spectrometry emphasizing different separation techniques as GC, LC and CE. Moreover, selected applications such as metal detoxification or nutrient acquisition will be discussed regarding the mass spectrometric techniques applied in studies of root exudates in plant-bacteria interactions. Additionally, a more recent isotope probing technique as novel mass spectrometry based application is highlighted. - Highlights: • State-of-the-art mass spectrometry methods developed and applied in rhizosphere research are reviewed. • Elemental and molecular mass spectrometry emphasizing different separation techniques (GC, LC or CE) are discussed. • Case studies on metal detoxification

  8. Glyphosate effects on soil rhizosphere-associated bacterial communities.

    Science.gov (United States)

    Newman, Molli M; Hoilett, Nigel; Lorenz, Nicola; Dick, Richard P; Liles, Mark R; Ramsier, Cliff; Kloepper, Joseph W

    2016-02-01

    Glyphosate is one of the most widely used herbicides in agriculture with predictions that 1.35 million metric tons will be used annually by 2017. With the advent of glyphosate tolerant (GT) cropping more than 10 years ago, there is now concern for non-target effects on soil microbial communities that has potential to negatively affect soil functions, plant health, and crop productivity. Although extensive research has been done on short-term response to glyphosate, relatively little information is available on long-term effects. Therefore, the overall objective was to investigate shifts in the rhizosphere bacterial community following long-term glyphosate application on GT corn and soybean in the greenhouse. In this study, rhizosphere soil was sampled from rhizoboxes following 4 growth periods, and bacterial community composition was compared between glyphosate treated and untreated rhizospheres using next-generation barcoded sequencing. In the presence or absence of glyphosate, corn and soybean rhizospheres were dominated by members of the phyla Proteobacteria, Acidobacteria, and Actinobacteria. Proteobacteria (particularly gammaproteobacteria) increased in relative abundance for both crops following glyphosate exposure, and the relative abundance of Acidobacteria decreased in response to glyphosate exposure. Given that some members of the Acidobacteria are involved in biogeochemical processes, a decrease in their abundance could lead to significant changes in nutrient status of the rhizosphere. Our results also highlight the need for applying culture-independent approaches in studying the effects of pesticides on the soil and rhizosphere microbial community. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Effects of PAH-Contaminated Soil on Rhizosphere Microbial Communities

    DEFF Research Database (Denmark)

    Pritchina, Olga; Ely, Cairn; Smets, Barth F.

    2011-01-01

    Bacterial associations with plant roots are thought to contribute to the success of phytoremediation. We tested the effect of addition of a polycyclic aromatic hydrocarbon contaminated soil on the structure of the rhizosphere microbial communities of wheat (Triticum aestivum), lettuce (Lactuca...... sativa var. Tango), zucchini (Cucurbita pepo spp. pepo var. Black Beauty), and pumpkin (C. pepo spp. pepo var. Howden) 16S rDNA terminal restriction fragment length polymorphism (T-RFLP) profiles of rhizosphere microbial communities from different soil/plant combinations were compared with a pairwise...

  10. From data to knowledge: The future of multi-omics data analysis for the rhizosphere

    Energy Technology Data Exchange (ETDEWEB)

    Allen White, Richard; Borkum, Mark I.; Rivas-Ubach, Albert; Bilbao, Aivett; Wendler, Jason P.; Colby, Sean M.; Köberl, Martina; Jansson, Christer

    2017-06-01

    The rhizosphere is the interface between a plant's roots and its surrounding soil. The rhizosphere microbiome, a complex microbial ecosystem, nourishes the terrestrial biosphere. Integrated multi-omics is a modern approach to systems biology that analyzes and interprets the datasets of multiple -omes of both individual organisms and multi-organism communities and consortia. The successful usage and application of integrated multi-omics to rhizospheric science is predicated upon the availability of rhizosphere-specific data, metadata and software. This review analyzes the availability of multi-omics data, metadata and software for rhizospheric science, identifying potential issues, challenges and opportunities.

  11. Influence of seed and root exudations on the rhizosphere effect in Sorghum vulgare and Crotalaria juncea.

    Science.gov (United States)

    Balasubramanian, A; Rangaswami, G

    1978-01-01

    The influence of seed and root exudations on the rhizosphere effect of Sorghum vulgare and Crotalaria juncea was examined. While the quantitative occurrence of certain morphological and physiological groups of bacteria on the seeds and rhizospheres of the two plant species differed, there were similarities in the occurrence of certain physiological and nutritional groups of bacteria on the seed as well as on the rhizosphere. The occurrence of some genera of fungi on the seeds and in the rhizosphere indicated the influence of both seeds and root exudations on the rhizosphere effect. Increase in root exudations of amino acids and sugars correlated with a concomitant increase in microbial activity in the rhizosphere on the 15th day of growth in both plant species but there was a delayed effect of the exuded chemicals on the rhizosphere microflora after 30 d of plant growth.

  12. Taxonomy of Streptomyces strains isolated from rhizospheres of ...

    African Journals Online (AJOL)

    This work was designed to identify and taxonomically classify Streptomyces strains isolated from the rhizospheres of various plant species; banana, rose, pomegranate and grape plants, having antagonistic activity against some microbial (bacteria and fungi) tissue culture contaminants. Streptomyces strains with the most ...

  13. Chemical and biological rhizosphere interactions in low zinc soils

    NARCIS (Netherlands)

    Duffner, A.

    2014-01-01

    Abstract of the PhD thesis entitled “Chemical and biological rhizosphere interactions in low zinc soils” by Andreas Duffner Soil provides ecosystem services critical for life. The availability of micronutrients, such as zinc (Zn), in soils is an

  14. Impact of plant domestication on rhizosphere microbiome assembly and functions

    NARCIS (Netherlands)

    Perez Jaramillo, Juan Esteban; Mendes, Rodrigo; Raaijmakers, Jos

    2016-01-01

    The rhizosphere microbiome is pivotal for plant health and growth, providing defence against pests and diseases, facilitating nutrient acquisition and helping plants to withstand abiotic stresses. Plants can actively recruit members of the soil microbial community for positive feedbacks, but the

  15. Amino acids in the rhizosphere: from plants to microbes.

    Science.gov (United States)

    Moe, Luke A

    2013-09-01

    Often referred to as the "building blocks of proteins", the 20 canonical proteinogenic amino acids are ubiquitous in biological systems as the functional units in proteins. Sometimes overlooked are their varying additional roles that include serving as metabolic intermediaries, playing structural roles in bioactive natural products, acting as cosubstrates in enzymatic transformations, and as key regulators of cellular physiology. Amino acids can also serve as biological sources of both carbon and nitrogen and are found in the rhizosphere as a result of lysis or cellular efflux from plants and microbes and proteolysis of existing peptides. While both plants and microbes apparently prefer to take up nitrogen in its inorganic form, their ability to take up and use amino acids may confer a selective advantage in certain environments where organic nitrogen is abundant. Further, certain amino acids (e.g., glutamate and proline) and their betaines (e.g., glycine betaine) serve as compatible solutes necessary for osmoregulation in plants and microbes and can undergo rapid cellular flux. This ability is of particular importance in an ecological niche such as the rhizosphere, which is prone to significant variations in solute concentrations. Amino acids are also shown to alter key phenotypes related to plant root growth and microbial colonization, symbiotic interactions, and pathogenesis in the rhizosphere. This review will focus on the sources, transport mechanisms, and potential roles of the 20 canonical proteinogenic amino acids in the rhizosphere.

  16. Antifungal activity of bacterial strains from the rhizosphere of ...

    African Journals Online (AJOL)

    This study evaluated the antifungal action of biomolecules produced from the secondary metabolism of bacterial strains found in the rhizosphere of semi arid plants against human pathogenic Candida albicans. Crude extracts were obtained using ethyl acetate as an organic solvent and the bioactivity was assessed with a ...

  17. Impact of plant domestication on rhizosphere microbiome assembly and functions.

    Science.gov (United States)

    Pérez-Jaramillo, Juan E; Mendes, Rodrigo; Raaijmakers, Jos M

    2016-04-01

    The rhizosphere microbiome is pivotal for plant health and growth, providing defence against pests and diseases, facilitating nutrient acquisition and helping plants to withstand abiotic stresses. Plants can actively recruit members of the soil microbial community for positive feedbacks, but the underlying mechanisms and plant traits that drive microbiome assembly and functions are largely unknown. Domestication of plant species has substantially contributed to human civilization, but also caused a strong decrease in the genetic diversity of modern crop cultivars that may have affected the ability of plants to establish beneficial associations with rhizosphere microbes. Here, we review how plants shape the rhizosphere microbiome and how domestication may have impacted rhizosphere microbiome assembly and functions via habitat expansion and via changes in crop management practices, root exudation, root architecture, and plant litter quality. We also propose a "back to the roots" framework that comprises the exploration of the microbiome of indigenous plants and their native habitats for the identification of plant and microbial traits with the ultimate goal to reinstate beneficial associations that may have been undermined during plant domestication.

  18. Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Coffea ...

    African Journals Online (AJOL)

    Objective: This study describes the status of mycorrhizal fungi in coffee (Coffea arabica) in the Yemeni ecosystems. Methodology and results: Soil samples were extracted from the rhizosphere of the coffee tree groves in several regions of Yemen. The frequency and the level of colonization of the arbuscular mycorrhizal fungi ...

  19. Trichoderma spp. from rhizosphere soil and their antagonism ...

    African Journals Online (AJOL)

    Trichoderma spp. from rhizosphere soil and their antagonism against Fusarium sambucinum. ... Trichoderma virens. Among these isolates, D-3-1 (T. longibrachiatum) showed the strongest inhibition of the growth of Fusarium sambucinum. Key words: Trichoderma, potato, dry rot, biological control, Fusarium sambucinum.

  20. The mechanism on rhizosphere phosphorus activation of two wheat ...

    African Journals Online (AJOL)

    A short-term greenhouse experiment was carried out with two phosphorus (P) levels of purple soil to investigate P availability and associated processes in the rhizosphere of two different P-efficiency wheat genotypes using a thin slicing technique. Two genotypes with different P efficiencies were grown in a ...

  1. PERN : An EU-Russia initiative for rhizosphere microbial resources

    NARCIS (Netherlands)

    Declerck, Stéphane; Willems, Anne; van der Heijden, Marcel G A|info:eu-repo/dai/nl/240923901; Varese, Giovanna Cristina; Turkovskaya, Olga; Evtushenko, Lyudmila; Ivshina, Irena; Desmeth, Philippe

    2015-01-01

    Millions of microbial taxa inhabit the rhizosphere and could be used as biofertilizers, biopesticides, and/or for bioremediation. Only a fraction of these microbes have been described and/or are being utilized. Most are dispersed in collections, but coordination of their accessibility and

  2. In vitro screening of selected herbicides on rhizosphere mycoflora ...

    African Journals Online (AJOL)

    In vitro screening of selected herbicides on rhizosphere mycoflora from yellow pepper ( Capsicum annum L var. Nsukka yellow) ... Fr) Lind, Trichoderma harmatum Bain aggr; Aspergillus niger Van Tiegh; Sclerotium rolfsii Sacc; Penicillium sp; Alternaria sp; Fusarium solani (Mart) Sacc and Rhizoctonia sp. The results ...

  3. Biocontrol of potato wilt by selective rhizospheric and endophytic ...

    African Journals Online (AJOL)

    Biocontrol of potato wilt by selective rhizospheric and endophytic bacteria associated with potato plant. ... identification with the Ralstonia solanacearum specific primers 759/760 revealed that 24 of the pathogenic isolates belong to the Ralstonia solanacearum species, biovar two; the causal agent of potato bacterial wilt.

  4. Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Coffea ...

    African Journals Online (AJOL)

    SARAH

    2013-04-25

    Apr 25, 2013 ... symbiosis to plant drought tolerance is the result of accumulative physical, nutritional, physiological and cellular effects. Mycorrhizal fungi, which are active in the rhizosphere, take part in the cycles and transfer of mineral elements in the soil and into the roots (George et al., 1992). Some minerals such as ...

  5. Antifungal activity of bacterial strains from the rhizosphere of ...

    African Journals Online (AJOL)

    user

    2011-06-08

    Jun 8, 2011 ... This study evaluated the antifungal action of biomolecules produced from the secondary metabolism of bacterial strains found in the rhizosphere of semi arid plants against human pathogenic Candida albicans. .... negative control, was obtained by extraction from the nutrient broth in ethyl acetate without ...

  6. Outsourcing competence

    NARCIS (Netherlands)

    Bergstra, J.; Delen, G.; van Vlijmen, B.

    2011-01-01

    The topic of this paper, competences needed for outsourcing, is organized by first providing a generic competence scheme, which is subsequently instantiated to the area of sourcing and outsourcing. Sourcing and outsourcing are positioned as different areas of activity, neither one of which is

  7. Competence Building

    DEFF Research Database (Denmark)

    Borrás, Susana; Edquist, Charles

    on the one hand, and the real world of innovation policy-making on the other, typically not speaking to each other. With this purpose in mind, this paper discusses the role of competences and competence-building in the innovation process from a perspective of innovation systems; it examines how governments...... and public agencies in different countries and different times have actually approached the issue of building, maintaining and using competences in their innovation systems; it examines what are the critical and most important issues at stake from the point of view of innovation policy, looking particularly...

  8. Mycorrhizal diversity in the rhizosphere of sugarcane and grass on different soil types

    Science.gov (United States)

    Ratri Cahyani, Vita; Rastikawati, Dewi; Yuniardi, Nestri; Syamsiyah, Jauhari; Suntoro

    2017-11-01

    Mycorrhiza has been known well as beneficial microbiota for supporting plant growth and production. Understanding of the variability and the consistency of the mycorrhizal diversity on various habitats is important for developing mycorrhizal utilization. Mycorrhizal diversity in the rhizosphere of sugarcane from 4 (four) soil types and the rhizosphere of grass from 3 (three) soil types were investigated in the present study. The results showed that Glomus indicated as a versatile genus because it was found as a common and dominant genus in the sugarcane rhizosphere on all of four soil types (Alfisol, Andisol, Inceptisol, Vertisol) and in the grass rhizosphere on all of three soil types (Ultisol, Oxisol, Histosol). In addition, Acaulospora was found as a common genus in grass rhizosphere. Statistical analysis indicated that P availability in the rhizosphere of sugarcane had a significantly negative correlation with mycorrhizal spore density, in which decreasing P availability significantly related with increasing spore density.

  9. Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress.

    Science.gov (United States)

    Nautiyal, Chandra Shekhar; Srivastava, Suchi; Chauhan, Puneet Singh; Seem, Karishma; Mishra, Aradhana; Sopory, Sudhir Kumar

    2013-05-01

    Growth and productivity of rice and soil inhabiting microbial population is negatively affected by soil salinity. However, some salt resistant, rhizosphere competent bacteria improve plant health in saline stress. Present study evaluated the effect of salt tolerant Bacillus amyloliquefaciens NBRISN13 (SN13) inoculation on rice plants in hydroponic and soil conditions exposed to salinity. SN13 increased plant growth and salt tolerance (NaCl 200 mM) and expression of at least 14 genes under hydroponic and soil conditions in rice. Among these 14 genes 4 (NADP-Me2, EREBP, SOSI, BADH and SERK1) were up-regulated and 2 (GIG and SAPK4) repressed under salt stress in hydroponic condition. In greenhouse experiment, salt stress resulted in accumulation of MAPK5 and down-regulation of the remaining 13 transcripts was observed. SN13 treatment, with or without salt gave similar expression for all tested genes as compared to control. Salt stress caused changes in the microbial diversity of the rice rhizosphere and stimulated population of betaine-, sucrose-, trehalose-, and glutamine-utilizing bacteria in salt-treated rice rhizosphere (SN13 + salt). The observations imply that SN13 confers salt tolerance in rice by modulating differential transcription in a set of at least 14 genes. Stimulation of osmoprotectant utilizing microbial population as a mechanism of inducing salt tolerance in rice is reported for the first time in this study to the best of our knowledge. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth

    OpenAIRE

    Mangal Singh; Ashutosh Awasthi; Sumit K. Soni; Rakshapal Singh; Rajesh K. Verma; Alok Kalra

    2015-01-01

    An assessment of roles of rhizospheric microbial diversity in plant growth is helpful in understanding plant-microbe interactions. Using random combinations of rhizospheric bacterial species at different richness levels, we analysed the contribution of species richness, compositions, interactions and identity on soil microbial respiration and plant biomass. We showed that bacterial inoculation in plant rhizosphere enhanced microbial respiration and plant biomass with complementary relationshi...

  11. Dynamics of Microbial Functional Groups in Rhizosphere of Spring Barley

    Directory of Open Access Journals (Sweden)

    Vlad Stoian

    2016-11-01

    Full Text Available Plant rhizosphere is the portion of soil which is in direct contact with the plant roots. From the microbiological point of view, this area is characterized by strong dynamic of functional groups with high specificity towards the substrate available. Spring barley is a crop with high requirements to the composition of the microflora in the rhizosphere, disturbances produced by agronomic inputs affecting the stability of rhizospheric contact interfaces and ultimately the plant growth. Analysis of changes within the microbial community was carried out with the purpose of defining the disruptive impact of mineral inputs and potential of zeolite to reduce these disruptions. Microbial functional groups were analyzed on the basis of the CO2 export under the specific conditions of soil inoculation on specific substrates over a time period of incubation. Microresp detection plates allow evaluation of a large number of samples under identical conditions of inoculation and the establishment of dynamics of the entire microbial community. The dynamics of the entire microbial communities (basal respiration is stimulated to increase in case of unilateral application of zeolite and zeolite as a buffer for urea fertilization. General growth trend of microbial communities follows proportional the associated application of zeolite with urea, the most powerful non-symbiotic nitrogen fixation processes being stimulated by this combination of fertilizers. Simultaneously, an increase in the dynamics of denitrifiers was observed, also the decomposition of lignin and cellulose and biological crust formation due to the proliferation of cyanobacteria. Rhizosphere of barley plants is characterized by the presence of actinomycetes as dominant in functional microbial community of all experimental variants analyzed with a high capacity for biological degradation and raised mineralization of organic matter.

  12. Rhizosphere Bacterial Degradation of RDX, Understanding and Enhancement

    Science.gov (United States)

    2014-02-01

    organic acids, sugars and amino acids (Lugtenberg and Kamilova 2009) thus rhizosphere soil can contain 10 to 200 times more bacteria than adjacent bulk...colonization by Pseudomonas.;Lugtenberg, 1999, Tomato seed and root exudate sugars : composition`, utilization by Pseudomonas biocontrol strains and...9. Wash pellets 2x with cold 70% ethanol, centrifuging 2 min each time. 10. Air dry with tube inverted on KimWipes, resuspend in DEPC’d water

  13. Exploring the maize rhizosphere microbiome in the field

    OpenAIRE

    Peiffer, Jason A.; Ruth E. Ley

    2013-01-01

    Maize is one of the most economically important crops in the world. Understanding how the genetics and management of this staple crop interact with local field environments is vital to securing sustainable harvests. The interface zone between the plant root and its surrounding soil, or rhizosphere, supports essential interactions between roots and local soils. These interactions include the exchange of carbon for nutrients and are strongly influenced by the microbial constituents of the soil,...

  14. Probiotic Diversity Enhances Rhizosphere Microbiome Function and Plant Disease Suppression.

    Science.gov (United States)

    Hu, Jie; Wei, Zhong; Friman, Ville-Petri; Gu, Shao-Hua; Wang, Xiao-Fang; Eisenhauer, Nico; Yang, Tian-Jie; Ma, Jing; Shen, Qi-Rong; Xu, Yang-Chun; Jousset, Alexandre

    2016-12-13

    Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may enhance disease suppression efficacy. Here we introduced defined Pseudomonas species consortia into naturally complex microbial communities and measured the importance of Pseudomonas community diversity for their survival and the suppression of the bacterial plant pathogen Ralstonia solanacearum in the tomato rhizosphere microbiome. The survival of introduced Pseudomonas consortia increased with increasing diversity. Further, high Pseudomonas diversity reduced pathogen density in the rhizosphere and decreased the disease incidence due to both intensified resource competition and interference with the pathogen. These results provide novel mechanistic insights into elevated pathogen suppression by diverse probiotic consortia in naturally diverse plant rhizospheres. Ecologically based community assembly rules could thus play a key role in engineering functionally reliable microbiome applications. The increasing demand for food supply requires more-efficient control of plant diseases. The use of probiotics, i.e., naturally occurring bacterial antagonists and competitors that suppress pathogens, has recently reemerged as a promising alternative to agrochemical use. It is, however, still unclear how many and which strains we should choose for constructing effective probiotic consortia. Here we present a general ecological framework for assembling effective probiotic communities based on in vitro characterization of community functioning. Specifically, we show that increasing the diversity of probiotic consortia enhances community survival in the naturally diverse rhizosphere microbiome, leading to increased pathogen suppression via intensified resource competition and interference with the pathogen. We propose that these ecological guidelines can be put to the test in microbiome engineering more widely in the future

  15. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence

    KAUST Repository

    Mapelli, Francesca

    2018-01-09

    In mature soils, plant species and soil type determine the selection of root microbiota. Which of these two factors drives rhizosphere selection in barren substrates of developing desert soils has, however, not yet been established. Chronosequences of glacier forelands provide ideal natural environments to identify primary rhizosphere selection factors along the changing edaphic conditions of a developing soil. Here, we analyze changes in bacterial diversity in bulk soils and rhizospheres of a pioneer plant across a High Arctic glacier chronosequence. We show that the developmental stage of soil strongly modulates rhizosphere community assembly, even though plant-induced selection buffers the effect of changing edaphic factors. Bulk and rhizosphere soils host distinct bacterial communities that differentially vary along the chronosequence. Cation exchange capacity, exchangeable potassium, and metabolite concentration in the soil account for the rhizosphere bacterial diversity. Although the soil fraction (bulk soil and rhizosphere) explains up to 17.2% of the variation in bacterial microbiota, the soil developmental stage explains up to 47.7% of this variation. In addition, the operational taxonomic unit (OTU) co-occurrence network of the rhizosphere, whose complexity increases along the chronosequence, is loosely structured in barren compared with mature soils, corroborating our hypothesis that soil development tunes the rhizosphere effect.

  16. Biodegradation of polycyclic aromatic hydrocarbons in rhizosphere soil

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, A.P.; Banks, M.K.; Arunachalam, M. [Kansas State Univ., Manhattan, KS (United States)

    1995-12-31

    Increased contaminant biodegradation in soil in the presence of plants has been demonstrated for several classes of organic compounds. Although enhanced dissipation of polycyclic aromatic hydrocarbons (PAHs) was observed previously in the rhizosphere of several plant species, the mechanism of this effect has not been assessed. A laboratory experiment was conducted to test the importance of cometabolism and the presence of common rhizosphere organic acids on the loss of PAHs (pyrene and phenanthrene) from soil. The role of cometabolism in the mineralization of pyrene was tested by observing the impact of adding phenanthrene to soil containing {sup 14}C-pyrene and observing the effects on {sup 14}CO{sub 2} generation. Adding phenanthrene apparently induced cometabolism of pyrene, particularly in the presence of organic acids. In a subsequent experiment, mineralization of pyrene to {sup 14}CO{sub 2} was significantly greater in soil from the rhizospheres of warm-season grasses, sorghum (Sorghum bicolor L.) and bermuda grass (Cynodon dactylon L.), compared to soil from alfalfa (Medicago sativa L.), which did not differ from sterilized control soil. A highly branched, fine root system appears to be more effective in enhancing biodegradation than taproots, and the presence of organic acids increases rates of PAH mineralization.

  17. Pyrosequencing Reveals Fungal Communities in the Rhizosphere of Xinjiang Jujube

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2015-01-01

    Full Text Available Fungi are important soil components as both decomposers and plant symbionts and play a major role in ecological and biogeochemical processes. However, little is known about the richness and structure of fungal communities. DNA sequencing technologies allow for the direct estimation of microbial community diversity, avoiding culture-based biases. We therefore used 454 pyrosequencing to investigate the fungal communities in the rhizosphere of Xinjiang jujube. We obtained no less than 40,488 internal transcribed spacer (ITS rDNA reads, the number of each sample was 6943, 6647, 6584, 6550, 6860, and 6904, and we used bioinformatics and multivariate statistics to analyze the results. The index of diversity showed greater richness in the rhizosphere fungal community of a 3-year-old jujube than in that of an 8-year-old jujube. Most operational taxonomic units belonged to Ascomycota, and taxonomic analyses identified Hypocreales as the dominant fungal order. Our results demonstrated that the fungal orders are present in different proportions in different sampling areas. Redundancy analysis (RDA revealed a significant correlation between soil properties and the abundance of fungal phyla. Our results indicated lower fungal diversity in the rhizosphere of Xinjiang jujube than that reported in other studies, and we hope our findings provide a reference for future research.

  18. Pyrosequencing reveals fungal communities in the rhizosphere of Xinjiang Jujube.

    Science.gov (United States)

    Liu, Peng; Wang, Xiao-Hui; Li, Jian-Gui; Qin, Wei; Xiao, Cheng-Ze; Zhao, Xu; Jiang, Hong-Xia; Sui, Jun-Kang; Sa, Rong-Bo; Wang, Wei-Yan; Liu, Xun-Li

    2015-01-01

    Fungi are important soil components as both decomposers and plant symbionts and play a major role in ecological and biogeochemical processes. However, little is known about the richness and structure of fungal communities. DNA sequencing technologies allow for the direct estimation of microbial community diversity, avoiding culture-based biases. We therefore used 454 pyrosequencing to investigate the fungal communities in the rhizosphere of Xinjiang jujube. We obtained no less than 40,488 internal transcribed spacer (ITS) rDNA reads, the number of each sample was 6943, 6647, 6584, 6550, 6860, and 6904, and we used bioinformatics and multivariate statistics to analyze the results. The index of diversity showed greater richness in the rhizosphere fungal community of a 3-year-old jujube than in that of an 8-year-old jujube. Most operational taxonomic units belonged to Ascomycota, and taxonomic analyses identified Hypocreales as the dominant fungal order. Our results demonstrated that the fungal orders are present in different proportions in different sampling areas. Redundancy analysis (RDA) revealed a significant correlation between soil properties and the abundance of fungal phyla. Our results indicated lower fungal diversity in the rhizosphere of Xinjiang jujube than that reported in other studies, and we hope our findings provide a reference for future research.

  19. Rhizospheric methane oxidation determined via the methyl fluoride inhibition technique

    Science.gov (United States)

    Epp, Michelle A.; Chanton, Jeffrey P.

    1993-10-01

    Methane oxidation rates in the rhizosphere of aquatic macrophytes were quantified by development of a technique employing a recently described inhibitor of methane oxidation, methyl fluoride. Unlike other inhibitors, methyl fluoride appears to be nontoxic to the plants, allowing them to act as natural conduits, transporting the inhibitor from the headspace to the rhizosphere. Increases in methane emissions were recorded after closed chamber methyl fluoride incubations, primarily in greenhouse (Pontederia cordata and Sagittaria landfolia) experiments with some preliminary outdoor and field (Oryza sativa and Typha latifolia) data. Comparison of emissions before and after incubation indicated oxidation of 23 to 90% of the methane produced (defined as CH4 emission in the absence of oxidation) in greenhouse studies and 10 to 47% in field and outdoor studies. A comparison of 1.5 and 3.0% methyl fluoride chamber headspace incubations as well as initial dose response data indicated that the lower concentration was sufficient to obtain inhibition of methane oxidation in the greenhouse studies without significantly affecting methanogenesis. Inhibition was possible with one 16- to 18-hour incubation period. Methyl fluoride within the rhizosphere disappeared after approximately 1 week due to plant ventilation and possible bacterial uptake.

  20. Timespacing competence

    DEFF Research Database (Denmark)

    Laursen, Helle Pia; Mogensen, Naja Dahlstrup

    2016-01-01

    Drawing on Kramsch’s (2009) conceptualization of the multilingual subject and the symbolic self, in this paper, we explore how multilingual children re-signify three intertwined myths about the bilingual student, linguistic diversity and language competence, when, in the researcher-generated acti......Drawing on Kramsch’s (2009) conceptualization of the multilingual subject and the symbolic self, in this paper, we explore how multilingual children re-signify three intertwined myths about the bilingual student, linguistic diversity and language competence, when, in the researcher...

  1. Investigations into rhizosphere microflora. IV. Fungal association in different root regions of some rainy-season crops

    Directory of Open Access Journals (Sweden)

    V. B. Srivastava

    2015-01-01

    Full Text Available Non-rhizosphere, rhizosphere and rhizoplane microflora of the crown and distal regions of Echinochloa crusgalli (L. Beauv. and Paspalum scrobiculatum L. were studied from seedling stage to the harvest. The variation in bacterial and fungal flora in relation to host species, stage of development and żonę of the rhizosphere were studied. The differences between fungal and bacterial flora are described. The relation between rhizosphere microflora and roots exudates is described.

  2. Analysis of rhizosphere bacterial communities in Arabidopsis: impact of plant defense signaling

    NARCIS (Netherlands)

    Doornbos, R.F.

    2009-01-01

    In the rhizosphere, numerous microbial and plant-microbe interactions occur. Of special interest is the ability of specific rhizosphere bacteria to elicit induced systemic resistance (ISR), a state of enhanced defensive capacity of the plant that is effective against a wide range of pathogens. The

  3. Plant Rhizodeposition and Rhizosphere Microflora: Their Relationship and Its Consequences in Wetlands

    OpenAIRE

    KUBEŠOVÁ, Jaroslava

    2010-01-01

    Annotation: Plant and microbial relationships in the rhizosphere have been briefly reviewed. The research of tropical wetland ecosystem in northern Belize has been summarized. After that a synthesis of both parts results in the hypothesis of carbon, nitrogen and phosphorus flows between Eleocharis cellulosa, Typha domingensis and their rhizosphere.

  4. Bacterial community profiling in the rhizosphere of field grown GM and non-GM maize

    CSIR Research Space (South Africa)

    Bumunang, EW

    2013-01-01

    Full Text Available This study examined the impact of genetically modified corn on bacterial functional community in the rhizosphere. Rhizospheric soil samples from GM and non-GM corn were collected at 30 days after sowing (DAS) and at post-harvest from two...

  5. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic and human pathogenic microorganisms

    NARCIS (Netherlands)

    Mendes, R.; Garbeva, P.; Raaijmakers, J.M.

    2013-01-01

    Microbial communities play a pivotal role in the functioning of plants by influencing their physiology and development. While many members of the rhizosphere microbiome are beneficial to plant growth, also plant pathogenic microorganisms colonize the rhizosphere striving to break through the

  6. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms

    NARCIS (Netherlands)

    Mendes, R.; Garbeva, P.V.; Raaijmakers, J.M.

    2013-01-01

    Microbial communities play a pivotal role in the functioning of plants by influencing their physiology and development. While many members of the rhizosphere microbiome are beneficial to plant growth, also plant pathogenic microorganisms colonize the rhizosphere striving to break through the

  7. Verrucomicrobia subdivision 1 strains display a difference in the colonization of the leek (Allium porrum) rhizosphere

    NARCIS (Netherlands)

    da Rocha, Ulisses Nunes; van Elsas, Jan Dirk; van Overbeek, Leonard Simon

    2011-01-01

    Strains CHC12 and CHC8, belonging to, respectively, Luteolibacter and Candidatus genus Rhizospheria (Verrucomicrobia subdivision 1), were recently isolated from the leek rhizosphere. The key question addressed in this study was: does attraction to and colonization of the rhizosphere occur in the

  8. Rhizosphere bacteria from sites with higher fungal densities exhibit greater levels of potential antifungal properties

    NARCIS (Netherlands)

    De Boer, W.; De Ridder-Duine, A.S.; Klein Gunnewiek, P.J.A.; Smant, W.; Van Veen, J.A.

    2008-01-01

    A field study was performed to examine whether an increased density of saprotrophic fungi in the rhizosphere selects for bacteria with traits advantageous to living in a fungal-rich environment. Fast-growing bacteria were isolated from the rhizosphere of Carex arenaria (sand sedge) plants growing in

  9. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms

    NARCIS (Netherlands)

    Raaijmakers, J.M.; Paulitz, T.C.; Steinberg, C.; Alabouvette, C.; Moënne-Loccoz, Y.

    2009-01-01

    The rhizosphere is a hot spot of microbial interactions as exudates released by plant roots are a main food source for microorganisms and a driving force of their population density and activities. The rhizosphere harbors many organisms that have a neutral effect on the plant, but also attracts

  10. Going back to the roots: the microbial ecology of the rhizosphere

    NARCIS (Netherlands)

    Philippot, L.; Raaijmakers, J.; Lemanceau, P.; Putten, van der W.H.

    2013-01-01

    The rhizosphere is the interface between plant roots and soil where interactions among a myriad of microorganisms and invertebrates affect biogeochemical cycling, plant growth and tolerance to biotic and abiotic stress. The rhizosphere is intriguingly complex and dynamic, and understanding its

  11. Tree species composition influences enzyme activities and microbial biomass in the rhizosphere: a rhizobox approach.

    Science.gov (United States)

    Fang, Shengzuo; Liu, Dong; Tian, Ye; Deng, Shiping; Shang, Xulan

    2013-01-01

    Monoculture causes nutrient losses and leads to declines in soil fertility and biomass production over successive cultivation. The rhizosphere, a zone of usually high microbial activities and clearly distinct from bulk soil, is defined as the volume of soil around living roots and influenced by root activities. Here we investigated enzyme activities and microbial biomass in the rhizosphere under different tree compositions. Six treatments with poplar, willow, and alder mono- or mixed seedlings were grown in rhizoboxes. Enzyme activities associated with nitrogen cycling and microbial biomass were measured in all rhizosphere and bulk soils. Both enzyme activities and microbial biomass in the rhizosphere differed significantly tree compositions. Microbial biomass contents were more sensitive to the changes of the rhizosphere environment than enzyme activities. Tree species coexistence did not consistently increase tested enzyme activities and microbial biomass, but varied depending on the complementarities of species traits. In general, impacts of tree species and coexistence were more pronounced on microbial composition than total biomass, evidenced by differences in microbial biomass C/N ratios stratified across the rhizosphere soils. Compared to poplar clone monoculture, other tree species addition obviously increased rhizosphere urease activity, but greatly reduced rhizosphere L-asparaginase activity. Poplar growth was enhanced only when coexisted with alder. Our results suggested that a highly productive or keystone plant species in a community had greater influence over soil functions than the contribution of diversity.

  12. Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris

    NARCIS (Netherlands)

    Van der Nat, F.J.; Middelburg, J.J.

    1998-01-01

    Methane oxidation in the rhizosphere of two common wetland plants, reed (Phragmites australis (Cav.) Trin. Ex Steud.) and bulrush (Scirpus lacustris L.), was quantified using the methylfluoride (CH3F) inhibition and anoxic/oxic flux chamber techniques. The similarity of rhizospheric CH4 oxidation

  13. Cucumber rhizosphere microbial community response to biocontrol agent Bacillus subtilis B068150

    Science.gov (United States)

    Gram-positive bacteria Bacillus subtilis B068150 has been used as a biocontrol agent against the pathogen Fusarium oxysporum f. sp. Cucumerinum. However, their survival ability in cucumber rhizosphere and non-rhizosphere as well as their influence on native microbial communities has not been fully i...

  14. Transient nature of rhizosphere carbon elucidated by supercritical freon-22 extraction and 13C NMR analysis

    Science.gov (United States)

    Filipe G. Sanchez; Maurice M. Bursey

    2002-01-01

    The region immediately adjacent to established roots of mature trees has been termed the "reoccurring rhizosphere" and it has been hypothesized that organic matter input from fine root turnover, root exudates and sloughing may result in a build up of the soil carbon in this region. The "reoccurring rhizosphere" for first-, second- and third-order...

  15. Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings?

    Science.gov (United States)

    Huang, Longbin; Baumgartl, Thomas; Mulligan, David

    2012-07-01

    Revegetation of mine tailings (fine-grained waste material) starts with the reconstruction of root zones, consisting of a rhizosphere horizon (mostly topsoil and/or amended tailings) and the support horizon beneath (i.e. equivalent to subsoil - mostly tailings), which must be physically and hydro-geochemically stable. This review aims to discuss key processes involved in the development of functional root zones within the context of direct revegetation of tailings and introduces a conceptual process of rehabilitating structure and function in the root zones based on a state transition model. Field studies on the revegetation of tailings (from processing base metal ore and bauxite residues) are reviewed. Particular focus is given to tailings' properties that limit remediation effectiveness. Aspects of root zone reconstruction and vegetation responses are also discussed. When reconstructing a root zone system, it is critical to restore physical structure and hydraulic functions across the whole root zone system. Only effective and holistically restored systems can control hydro-geochemical mobility of acutely and chronically toxic factors from the underlying horizon and maintain hydro-geochemical stability in the rhizosphere. Thereafter, soil biological capacity and ecological linkages (i.e. carbon and nutrient cycling) may be rehabilitated to integrate the root zones with revegetated plant communities into sustainable plant ecosystems. A conceptual framework of system transitions between the critical states of root zone development has been proposed. This will illustrate the rehabilitation process in root zone reconstruction and development for direct revegetation with sustainable plant communities. Sustainable phytostabilization of tailings requires the systematic consideration of hydro-geochemical interactions between the rhizosphere and the underlying supporting horizon. It further requires effective remediation strategies to develop hydro-geochemically stable

  16. Biological Control of Lettuce Drop and Host Plant Colonization by Rhizospheric and Endophytic Streptomycetes.

    Science.gov (United States)

    Chen, Xiaoyulong; Pizzatti, Cristina; Bonaldi, Maria; Saracchi, Marco; Erlacher, Armin; Kunova, Andrea; Berg, Gabriele; Cortesi, Paolo

    2016-01-01

    Lettuce drop, caused by the soil borne pathogen Sclerotinia sclerotiorum, is one of the most common and serious diseases of lettuce worldwide. Increased concerns about the side effects of chemical pesticides have resulted in greater interest in developing biocontrol strategies against S. sclerotiorum. However, relatively little is known about the mechanisms of Streptomyces spp. as biological control agents against S. sclerotiorum on lettuce. Two Streptomyces isolates, S. exfoliatus FT05W and S. cyaneus ZEA17I, inhibit mycelial growth of Sclerotinia sclerotiorum by more than 75% in vitro. We evaluated their biocontrol activity against S. sclerotiorum in vivo, and compared them to Streptomyces lydicus WYEC 108, isolated from Actinovate®. When Streptomyces spp. (10(6) CFU/mL) were applied to S. sclerotiorum inoculated substrate in a growth chamber 1 week prior lettuce sowing, they significantly reduced the risk of lettuce drop disease, compared to the inoculated control. Interestingly, under field conditions, S. exfoliatus FT05W and S. cyaneus ZEA17I protected lettuce from drop by 40 and 10% respectively, whereas S. lydicus WYEC 108 did not show any protection. We further labeled S. exfoliatus FT05W and S. cyaneus ZEA17I with the enhanced GFP (EGFP) marker to investigate their rhizosphere competence and ability to colonize lettuce roots using confocal laser scanning microscopy (CLSM). The abundant colonization of young lettuce seedlings by both strains demonstrated Streptomyces' capability to interact with the host from early stages of seed germination and root development. Moreover, the two strains were detected also on 2-week-old roots, indicating their potential of long-term interactions with lettuce. Additionally, scanning electron microscopy (SEM) observations showed EGFP-S. exfoliatus FT05W endophytic colonization of lettuce root cortex tissues. Finally, we determined its viability and persistence in the rhizosphere and endorhiza up to 3 weeks by quantifying

  17. Biological control of lettuce drop and host plant colonization by rhizospheric and endophytic streptomycetes

    Directory of Open Access Journals (Sweden)

    Xiaoyulong eChen

    2016-05-01

    Full Text Available Lettuce drop, caused by the soil borne pathogen Sclerotinia sclerotiorum, is one of the most common and serious diseases of lettuce worldwide. Increased concerns about the side effects of chemical pesticides have resulted in greater interest in developing biocontrol strategies against S. sclerotiorum. However, relatively little is known about the mechanisms of Streptomyces spp. as biological control agents against S. sclerotiorum on lettuce. Two Streptomyces isolates, S. exfoliatus FT05W and S. cyaneus ZEA17I, inhibit mycelial growth of Sclerotinia sclerotiorum by more than 75% in vitro. We evaluated their biocontrol activity against S. sclerotiorum in vivo, and compared them to Streptomyces lydicus WYEC 108, isolated from Actinovate®. When Streptomyces spp. (106 CFU/mL were applied to S. sclerotiorum inoculated substrate in a growth chamber one week prior lettuce sowing, they significantly reduced the risk of lettuce drop disease, compared to the inoculated control. Interestingly, under field conditions, S. exfoliatus FT05W and S. cyaneus ZEA17I protected lettuce from drop by 40% and 10% respectively, whereas S. lydicus WYEC 108 did not show any protection. We further labeled S. exfoliatus FT05W and S. cyaneus ZEA17I with the enhanced GFP (EGFP marker to investigate their rhizosphere competence and ability to colonize lettuce roots using confocal laser scanning microscopy (CLSM. The abundant colonization of young lettuce seedlings by both strains demonstrated Streptomyces’ capability to interact with the host from early stages of seed germination and root development. Moreover, the two strains were detected also on two-week-old roots, indicating their potential of long-term interactions with lettuce. Additionally, scanning electron microscopy (SEM observations showed EGFP-S. exfoliatus FT05W endophytic colonization of lettuce root cortex tissues. Finally, we determined its viability and persistence in the rhizosphere and endorhiza up to

  18. Dynamics in the Strawberry Rhizosphere Microbiome in Response to Biochar and Botrytis cinerea Leaf Infection.

    Science.gov (United States)

    De Tender, Caroline; Haegeman, Annelies; Vandecasteele, Bart; Clement, Lieven; Cremelie, Pieter; Dawyndt, Peter; Maes, Martine; Debode, Jane

    2016-01-01

    Adding biochar, the solid coproduct of biofuel production, to peat can enhance strawberry growth, and disease resistance against the airborne fungal pathogen Botrytis cinerea. Additionally, biochar can induce shifts in the strawberry rhizosphere microbiome. However, the moment that this biochar-mediated shift occurs in the rhizosphere is not known. Further, the effect of an above-ground infection on the strawberry rhizosphere microbiome is unknown. In the present study we established two experiments in which strawberry transplants (cv. Elsanta) were planted either in peat or in peat amended with 3% biochar. First, we established a time course experiment to measure the effect of biochar on the rhizosphere bacterial and fungal communities over time. In a second experiment, we inoculated the strawberry leaves with B. cinerea, and studied the impact of the infection on the rhizosphere bacterial community. The fungal rhizosphere community was stabilized after 1 week, except for the upcoming Auriculariales, whereas the bacterial community shifted till 6 weeks. An effect of the addition of biochar to the peat on the rhizosphere microbiome was solely measured for the bacterial community from week 6 of plant growth onwards. When scoring the plant development, biochar addition was associated with enhanced root formation, fruit production, and postharvest resistance of the fruits against B. cinerea. We hypothesize that the bacterial rhizosphere microbiome, but also biochar-mediated changes in chemical substrate composition could be involved in these events. Infection of the strawberry leaves with B. cinerea induced shifts in the bacterial rhizosphere community, with an increased bacterial richness. This disease-induced effect was not observed in the rhizospheres of the B. cinerea-infected plants grown in the biochar-amended peat. The results show that an above-ground infection has its effect on the strawberry rhizosphere microbiome, changing the bacterial interactions in the

  19. Religious competence as cultural competence

    Science.gov (United States)

    2012-01-01

    Definitions of cultural competence often refer to the need to be aware and attentive to the religious and spiritual needs and orientations of patients. However, the institution of psychiatry maintains an ambivalent attitude to the incorporation of religion and spirituality into psychiatric practice. This is despite the fact that many patients, especially those from underserved and underprivileged minority backgrounds, are devotedly religious and find much solace and support in their religiosity. I use the case of mental health of African Americans as an extended example to support the argument that psychiatric services must become more closely attuned to religious matters. I suggest ways in which this can be achieved. Attention to religion can aid in the development of culturally competent and accessible services, which in turn, may increase engagement and service satisfaction among religious populations. PMID:22421686

  20. Rhizosphere dynamics during phytoremediation of olive mill wastewater.

    Science.gov (United States)

    Bodini, S F; Cicalini, A R; Santori, F

    2011-03-01

    The potential of phytoremediation as a treatment option for olive mill wastewater (OMW) was tested on five perennial tree species. Cupressus sempervirens and Quercus ilex proved tolerant to six-month OMW treatment followed by six-month water irrigation, whereas Salix sp. and Laurus nobilis and, later, Pinus mugo suffered from phytotoxic effects. Test plants were compared to controls after treatment and irrigation, by monitoring biochemical and microbiological variations in the rhizosphere soil. OMW-treated soils were exposed to 50-fold higher phenols concentrations, which, irrespective of whether the respective plants were OMW-resistant or susceptible, were reduced by more than 90% by the end of the irrigation cycle, owing to significantly increased laccase, peroxidase and β-glucosidase activities, recovery/acquisition of bacterial culturability and transitory development of specialized fungal communities sharing the presence of Geotrichum candidum. Of all results, the identification of Penicillium chrysogenum and Penicillium aurantiogriseum as dominant rhizosphere fungi was distinctive of OMW-tolerant species. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Root isoflavonoids and hairy root transformation influence key bacterial taxa in the soybean rhizosphere.

    Science.gov (United States)

    White, Laura J; Ge, Xijin; Brözel, Volker S; Subramanian, Senthil

    2017-04-01

    Rhizodeposits play a key role in shaping rhizosphere microbial communities. In soybean, isoflavonoids are a key rhizodeposit component that aid in plant defense and enable symbiotic associations with rhizobia. However, it is uncertain if and how they influence rhizosphere microbial communities. Isoflavonoid biosynthesis was silenced via RNA interference of isoflavone synthase in soybean hairy root composite plants. Rhizosphere soil fractions tightly associated with roots were isolated, and PCR amplicons from 16S rRNA gene variable regions V1-V3 and V3-V5 from these fractions were sequenced using 454. The resulting data was resolved using MOTHUR and vegan to identify bacterial taxa and evaluate changes in rhizosphere bacterial communities. The soybean rhizosphere was enriched in Proteobacteria and Bacteroidetes, and had relatively lower levels of Actinobacteria and Acidobacteria compared with bulk soil. Isoflavonoids had a small effect on bacterial community structure, and in particular on the abundance of Xanthomonads and Comamonads. The effect of hairy root transformation on rhizosphere bacterial communities was largely similar to untransformed plant roots with approximately 74% of the bacterial families displaying similar colonization underscoring the suitability of this technique to evaluate the influence of plant roots on rhizosphere bacterial communities. However, hairy root transformation had notable influence on Sphingomonads and Acidobacteria. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Impact of a Recombinant Biocontrol Bacterium, Pseudomonas fluorescens pc78, on Microbial Community in Tomato Rhizosphere.

    Science.gov (United States)

    Kong, Hyun Gi; Kim, Nam Hee; Lee, Seung Yeup; Lee, Seon-Woo

    2016-04-01

    Pseudomonas fluorescens pc78 is an effective biocontrol agent for soil-borne fungal diseases. We previously constructed a P43-gfp tagged biocontrol bacteria P. fluorescens pc78-48 to investigate bacterial traits in natural ecosystem and the environmental risk of genetically modified biocontrol bacteria in tomato rhizosphere. Fluctuation of culturable bacteria profile, microbial community structure, and potential horizontal gene transfer was investigated over time after the bacteria treatment to the tomato rhizosphere. Tagged gene transfer to other organisms such as tomato plants and bacteria cultured on various media was examined by polymerase chain reaction, using gene specific primers. Transfer of chromosomally integrated P43-gfp from pc78 to other organisms was not apparent. Population and colony types of culturable bacteria were not significantly affected by the introduction of P. fluorescens pc78 or pc78-48 into tomato rhizosphere. Additionally, terminal restriction fragment length polymorphism profiles were investigated to estimate the influence on the microbial community structure in tomato rhizosphere between non-treated and pc78-48-treated samples. Interestingly, rhizosphere soil treated with strain pc78-48 exhibited a significantly different bacterial community structure compared to that of non-treated rhizosphere soil. Our results suggest that biocontrol bacteria treatment influences microbial community in tomato rhizosphere, while the chromosomally modified biocontrol bacteria may not pose any specific environmental risk in terms of gene transfer.

  3. Occurrence of perchlorate in groundwater, paired farmland soil, lettuce, and rhizosphere soil from Chengdu, China.

    Science.gov (United States)

    Tang, Yulu; Zhong, Bifeng; Qu, Bing; Feng, Shujin; Ding, Sanglan; Su, Shijun; Li, Zhi; Gan, Zhiwei

    2017-05-24

    A total of 28 groundwater, paired farmland soil, lettuce, and its rhizosphere soil samples were collected from Chengdu, China to detect perchlorate levels and to evaluate the relationships of perchlorate concentrations among these matrices. The perchlorate concentrations in the groundwater, farmland soil, lettuce, and rhizosphere soil samples ranged from below detection limit to 60.2 μg L-1, from below detection limit to 249 μg kg-1 dry weight (dw), from 2.07 to 1010 μg kg-1 wet weight, and from below detection limit to 314 μg kg-1 dw, respectively. Significant correlation was found in the perchlorate levels among the farmland soil, lettuce, and rhizosphere soil, suggesting that they have common pollution sources, or perchlorate might transfer from farmland soil-rhizosphere soil-plant. However, there is no significant correlation between groundwater and the other three matrices, indicating that infiltration from perchlorate contaminated farmland soil was not the predominant source for groundwater pollution in Chengdu. The perchlorate concentrations in the farmland soil and lettuce samples were significantly higher than those in the rhizosphere soil, primarily due to uptake of perchlorate through the rhizosphere micro-environment by lettuce, or accelerated degradation by rhizospheric microorganisms, which contributed more needs further investigation.

  4. Changes in the bacterial community of soybean rhizospheres during growth in the field.

    Directory of Open Access Journals (Sweden)

    Akifumi Sugiyama

    Full Text Available Highly diverse communities of bacteria inhabiting soybean rhizospheres play pivotal roles in plant growth and crop production; however, little is known about the changes that occur in these communities during growth. We used both culture-dependent physiological profiling and culture independent DNA-based approaches to characterize the bacterial communities of the soybean rhizosphere during growth in the field. The physiological properties of the bacterial communities were analyzed by a community-level substrate utilization assay with BioLog Eco plates, and the composition of the communities was assessed by gene pyrosequencing. Higher metabolic capabilities were found in rhizosphere soil than in bulk soil during all stages of the BioLog assay. Pyrosequencing analysis revealed that differences between the bacterial communities of rhizosphere and bulk soils at the phylum level; i.e., Proteobacteria were increased, while Acidobacteria and Firmicutes were decreased in rhizosphere soil during growth. Analysis of operational taxonomic units showed that the bacterial communities of the rhizosphere changed significantly during growth, with a higher abundance of potential plant growth promoting rhizobacteria, including Bacillus, Bradyrhizobium, and Rhizobium, in a stage-specific manner. These findings demonstrated that rhizosphere bacterial communities were changed during soybean growth in the field.

  5. Plant-microbe interactions driven by exometabolite preferences of rhizosphere bacteria

    Science.gov (United States)

    Zhalnina, K.; Louie, K. B.; Mansoori, N.; Hao, Z.; Gao, J.; Cho, H. J.; Karaoz, U.; Loqué, D.; Bowen, B.; Firestone, M.; Brodie, E.; Northen, T.

    2016-12-01

    It is known that rhizosphere bacteria can impact important processes during plant development. In `return' plants release substantial quantities of soluble C into the soil surrounding its roots, attracting bacteria and other soil organisms. Given the potential beneficial and detrimental consequences of stimulating high densities of organisms adjacent to newly formed root, regulating the chemical composition of exudates would represent a potential means of plant selection for beneficial microorganisms. If exudate resource composition functions to select specific microorganisms, then one would expect that substrate specialization exists within the rhizosphere microbiome. Here we provide evidence that in the rhizosphere of wild oats (Avena barbata), specific metabolites are exuded that are preferentially used by selected bacteria in rhizosphere and this substrate specialization, together with the changing composition of root exudates, drives the observed successional patterns. To investigate the relationship between exudates and rhizosphere bacteria we first analyzed exudate composition of hydroponically grown plants using LC-MS/MS based metabolomics. We then designed a medium to simulate plant exudates and using this medium we examined the substrate preferences of a diversity of rhizosphere bacterial isolates. We then assessed the ability of soil isolates to consume exudate components by LC-MS/MS based metabolomics. These substrate preferences were then related to genomic features and successional patterns of bacteria in the Avena rhizosphere. The major fraction of plant exudates was found to be composed of amino- and carboxylic acids, sugars, nucleosides, quaternary amines and plant hormones. Amino acids, sugars and nucleosides were consumed by all analyzed isolates. However, isolates that were preferentially stimulated by plant growth, revealed substrate utilization preferences towards aromatic organic acids, while those not responding to growing roots did not

  6. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce

    Directory of Open Access Journals (Sweden)

    Susanne eSchreiter

    2014-04-01

    Full Text Available The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for ten years under the same agricultural management to reveal differences directly linked to the soil type and not influenced by other factors such as climate or cropping history. Bulk soil and rhizosphere samples were collected three and seven weeks after planting. The analysis of 16S rRNA gene fragments amplified from total community DNA by denaturing gradient gel electrophoresis and pyrosequencing revealed soil type-dependent differences in the bacterial community structure of the bulk soils and the corresponding rhizospheres. The rhizosphere effect differed depending on the soil type and the plant growth developmental stage. Despite the soil type-dependent differences in the bacterial community composition several genera such as Sphingomonas, Rhizobium, Pseudomonas and Variovorax were significantly increased in the rhizosphere of lettuce grown in all three different soils. The number of rhizosphere responders was highest three weeks after planting. Interestingly, in the soil with the highest numbers of responders the highest shoot dry weights were observed. Heatmap analysis revealed that many dominant operational taxonomic units were shared among rhizosphere samples of lettuce grown in diluvial sand, alluvial loam, and loess loam and that only a subset was increased in relative abundance in the rhizosphere compared to the corresponding bulk soil. The findings of the study provide insights into the effect of soil types on the rhizosphere microbiome of lettuce.

  7. Distinct Microbial Communities within the Endosphere and Rhizosphere of Populus deltoides Roots across Contrasting Soil Types.

    Energy Technology Data Exchange (ETDEWEB)

    Gottel, Neil R [ORNL; Castro Gonzalez, Hector F [ORNL; Kerley, Marilyn K [ORNL; Yang, Zamin [ORNL; Pelletier, Dale A [ORNL; Podar, Mircea [ORNL; Karpinets, Tatiana V [ORNL; Uberbacher, Edward C [ORNL; Tuskan, Gerald A [ORNL; Vilgalys, Rytas [Duke University; Doktycz, Mitchel John [ORNL; Schadt, Christopher Warren [ORNL

    2011-01-01

    The root-rhizosphere interface of Populus is the nexus of a variety of associations between bacteria, fungi, and the host plant and an ideal model for studying interactions between plants and microorganisms. However, such studies have generally been confined to greenhouse and plantation systems. Here we analyze microbial communities from the root endophytic and rhizospheric habitats of Populus deltoides in mature natural trees from both upland and bottomland sites in central Tennessee. Community profiling utilized 454 pyrosequencing with separate primers targeting the V4 region for bacterial 16S rRNA and the D1/D2 region for fungal 28S rRNA genes. Rhizosphere bacteria were dominated by Acidobacteria (31%) and Alphaproteobacteria (30%), whereas most endophytes were from the Gammaproteobacteria (54%) as well as Alphaproteobacteria (23%). A single Pseudomonas-like operational taxonomic unit (OTU) accounted for 34% of endophytic bacterial sequences. Endophytic bacterial richness was also highly variable and 10-fold lower than in rhizosphere samples originating from the same roots. Fungal rhizosphere and endophyte samples had approximately equal amounts of the Pezizomycotina (40%), while the Agaricomycotina were more abundant in the rhizosphere (34%) than endosphere (17%). Both fungal and bacterial rhizosphere samples were highly clustered compared to the more variable endophyte samples in a UniFrac principal coordinates analysis, regardless of upland or bottomland site origin. Hierarchical clustering of OTU relative abundance patterns also showed that the most abundant bacterial and fungal OTUs tended to be dominant in either the endophyte or rhizosphere samples but not both. Together, these findings demonstrate that root endophytic communities are distinct assemblages rather than opportunistic subsets of the rhizosphere.

  8. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types.

    Science.gov (United States)

    Gottel, Neil R; Castro, Hector F; Kerley, Marilyn; Yang, Zamin; Pelletier, Dale A; Podar, Mircea; Karpinets, Tatiana; Uberbacher, Ed; Tuskan, Gerald A; Vilgalys, Rytas; Doktycz, Mitchel J; Schadt, Christopher W

    2011-09-01

    The root-rhizosphere interface of Populus is the nexus of a variety of associations between bacteria, fungi, and the host plant and an ideal model for studying interactions between plants and microorganisms. However, such studies have generally been confined to greenhouse and plantation systems. Here we analyze microbial communities from the root endophytic and rhizospheric habitats of Populus deltoides in mature natural trees from both upland and bottomland sites in central Tennessee. Community profiling utilized 454 pyrosequencing with separate primers targeting the V4 region for bacterial 16S rRNA and the D1/D2 region for fungal 28S rRNA genes. Rhizosphere bacteria were dominated by Acidobacteria (31%) and Alphaproteobacteria (30%), whereas most endophytes were from the Gammaproteobacteria (54%) as well as Alphaproteobacteria (23%). A single Pseudomonas-like operational taxonomic unit (OTU) accounted for 34% of endophytic bacterial sequences. Endophytic bacterial richness was also highly variable and 10-fold lower than in rhizosphere samples originating from the same roots. Fungal rhizosphere and endophyte samples had approximately equal amounts of the Pezizomycotina (40%), while the Agaricomycotina were more abundant in the rhizosphere (34%) than endosphere (17%). Both fungal and bacterial rhizosphere samples were highly clustered compared to the more variable endophyte samples in a UniFrac principal coordinates analysis, regardless of upland or bottomland site origin. Hierarchical clustering of OTU relative abundance patterns also showed that the most abundant bacterial and fungal OTUs tended to be dominant in either the endophyte or rhizosphere samples but not both. Together, these findings demonstrate that root endophytic communities are distinct assemblages rather than opportunistic subsets of the rhizosphere.

  9. [Influence of elevated atmospheric CO2 on rhizosphere microbes and arbuscular mycorrhizae].

    Science.gov (United States)

    Chen, Jing; Chen, Xin; Tang, Jianjun

    2004-12-01

    The changes of microbial communities in rhizosphere and the formation of mycorrhizae play an important role in affecting the dynamics of plant communities and terrestrial ecosystems. This paper summarized and discussed the effects of elevated atmospheric CO2 on them. Under elevated atmospheric CO2, the carbohydrates accumulated in root systems increased, and the rhizospheric environment and its microbial communities as well as the formation of mycorrhizae changed. It is suggested that the researches in the future should be focused on the effects of rhizosphere microbes and arbuscular mycorrhizae on regulating the carbon dynamics of plant communities and terrestrial ecosystems under elevated atmospheric CO2.

  10. Manipulation of rhizosphere bacterial communities to induce suppressive soils.

    Science.gov (United States)

    Mazzola, Mark

    2007-09-01

    Naturally occurring disease-suppressive soils have been documented in a variety of cropping systems, and in many instances the biological attributes contributing to suppressiveness have been identified. While these studies have often yielded an understanding of operative mechanisms leading to the suppressive state, significant difficulty has been realized in the transfer of this knowledge into achieving effective field-level disease control. Early efforts focused on the inundative application of individual or mixtures of microbial strains recovered from these systems and known to function in specific soil suppressiveness. However, the introduction of biological agents into non-native soil ecosystems typically yielded inconsistent levels of disease control. Of late, greater emphasis has been placed on manipulation of the cropping system to manage resident beneficial rhizosphere microorganisms as a means to suppress soilborne plant pathogens. One such strategy is the cropping of specific plant species or genotypes or the application of soil amendments with the goal of selectively enhancing disease-suppressive rhizobacteria communities. This approach has been utilized in a system attempting to employ biological elements resident to orchard ecosystems as a means to control the biologically complex phenomenon termed apple replant disease. Cropping of wheat in apple orchard soils prior to re-planting the site to apple provided control of the fungal pathogen Rhizoctonia solani AG-5. Disease control was elicited in a wheat cultivar-specific manner and functioned through transformation of the fluorescent pseudomonad population colonizing the rhizosphere of apple. Wheat cultivars that induced disease suppression enhanced populations of specific fluorescent pseudomonad genotypes with antagonistic activity toward R. solani AG-5, but cultivars that did not elicit a disease-suppressive soil did not modify the antagonistic capacity of this bacterial community. Alternatively

  11. PHOSPHATE-SOLUBILISING RHIZOBACTERIA ASSOCIATED WITH PHASEOLUS COCCINEUS L. RHIZOSPHERE

    Directory of Open Access Journals (Sweden)

    Marius Stefan

    2012-10-01

    Full Text Available Native phosphate solubilizing bacteria were isolated from runner bean rhizosphere in order to study their effect on releases of soluble phosphorus from inorganic P sources. 34.37% of the rhizobacteria isolates solubilized CaHPO4 in the qualitative P-solubilization plate method after seven days of incubation. The best PSB isolates were selected for further study concerning P-solubilization in liquid culture. All these isolates showed higher potential for solubilization of inorganic P as indicated by the increase of P amount in the RPAM medium. Our results showed that PSB strains play a significant role in the acidification of the medium facilitating the P solubilization probably due to organic acid production.

  12. Characterization of Petroleum Hydrocarbon Decomposing Fungi Isolated from Mangrove Rhizosphere

    Directory of Open Access Journals (Sweden)

    Nuni Gofar

    2011-01-01

    Full Text Available The research was done to obtain the isolates of soil borne fungi isolated from mangrove rhizosphere which were capable of degrading petroleum hydrocarbon compounds. The soil samples were collected from South Sumatra mangrove forest which was contaminated by petroleum. The isolates obtained were selected based on their ability to survive, to grow and to degrade polycyclic aromatic hydrocarbons in medium containing petroleum residue. There were 3 isolates of soil borne hydrocarbonoclastic fungi which were able to degrade petroleum in vitro. The 3 isolates were identified as Aspergillus fumigates, A. parasiticus, and Chrysonilia sitophila. C. sitophila was the best isolate to decrease total petroleum hydrocarbon (TPH from medium containing 5-20% petroleum residue.

  13. Effects of cultivation ages and modes on microbial diversity in the rhizosphere soil of Panax ginseng

    Directory of Open Access Journals (Sweden)

    Chunping Xiao

    2016-01-01

    Conclusion: The key factors for discontinuous P. ginseng cultivation were the lack of balance in rhizosphere microbial communities and the outbreak of soilborne diseases caused by the accumulation of its root exudates.

  14. Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens

    Directory of Open Access Journals (Sweden)

    Cui-Ping Miao

    2016-04-01

    Conclusion: Our results suggest that diverse fungi including potential pathogenic ones exist in the rhizosphere soil of 2-yr-old P. notoginseng and that antagonistic isolates may be useful for biological control of pathogens.

  15. Dynamics of Panax ginseng Rhizospheric Soil Microbial Community and Their Metabolic Function

    Directory of Open Access Journals (Sweden)

    Yong Li

    2014-01-01

    Full Text Available The bacterial communities of 1- to 6-year ginseng rhizosphere soils were characterized by culture-independent approaches, random amplified polymorphic DNA (RAPD, and amplified ribosomal DNA restriction analysis (ARDRA. Culture-dependent method (Biolog was used to investigate the metabolic function variance of microbe living in rhizosphere soil. Results showed that significant genetic and metabolic function variance were detected among soils, and, with the increasing of cultivating years, genetic diversity of bacterial communities in ginseng rhizosphere soil tended to be decreased. Also we found that Verrucomicrobia, Acidobacteria, and Proteobacteria were the dominants in rhizosphere soils, but, with the increasing of cultivating years, plant disease prevention or plant growth promoting bacteria, such as Pseudomonas, Burkholderia, and Bacillus, tended to be rare.

  16. MOLECULAR PHYLOGENETIC AND BIOGEOCHEMICAL STUDIES OF SULFATE-REDUCING BACTERIA IN THE RHIZOSPHERE OF SPARTINA ALTERNIFLORA

    Science.gov (United States)

    The population composition and biogeochemistry of sulfate-reducing bacteria (SRB) in the rhizosphere of the marsh grass Spartina alterniflora was investigated over two growing seasons using molecular probing, enumerations of culturable SRB, and measurements of SO42- reduction rat...

  17. Saccharopolyspora indica sp. nov., an actinomycete isolated from the rhizosphere of Callistemon citrinus (Curtis)

    National Research Council Canada - National Science Library

    Vaddavalli, Radha; Peddi, Sneha; Kothagauni, Srilekha Yadav; Begum, Zareena; Gaddam, Bhagyanarayana; Periketi, Madhusudhanachary; Linga, Venkateswar Rao

    2014-01-01

    A novel actinomycete strain, designated VRC122T, was isolated from a Callistemon citrinus rhizosphere sample collected from New Delhi, India, and its taxonomic status was determined by using a polyphasic approach...

  18. Molecular responses in root-associative rhizospheric bacteria to variations in plant exudates

    Science.gov (United States)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2015-04-01

    Plant exudates are a major factor in the interface of plant-soil-microbe interactions and it is well documented that the microbial community structure in the rhizosphere is largely influenced by the particular exudates excreted by various plants. Azospirillum brasilense is a plant growth promoting rhizobacterium that is known to interact with a large number of plants, including important food crops. The regulatory gene flcA has an important role in this interaction as it controls morphological differentiation of the bacterium that is essential for attachment to root surfaces. Being a response regulatory gene, flcA mediates the response of the bacterial cell to signals from the surrounding rhizosphere. This makes this regulatory gene a good candidate for analysis of the response of bacteria to rhizospheric alterations, in this case, variations in root exudates. We will report on our studies on the response of Azospirillum, an ecologically, scientifically and agriculturally important bacterial genus, to variations in the rhizosphere.

  19. Plant-driven selection of microbes in the rhizosphere and plant-microbe feedbacks

    Directory of Open Access Journals (Sweden)

    Adil ESSARIOUI

    2017-09-01

    Full Text Available Plant impacts on soil microbial communities and plant-microbe feedbacks have become the focus of much research. Recent advances in plant-microbe interactions investigations show that plants are able to shape their rhizosphere microbiome through diverse mechanisms. In this review, we gather findings from across multiple studies on the role of plants in altering the structure and functions of microbes in the rhizosphere. In addition, we discuss the roles of diverse phytochemicals in mediating these effects. Finally, we highlight that selective enrichment of specific microorganisms in the rhizosphere has either negative feedbacks, with pathogen accumulation in the rhizosphere; or, perhaps most importantly, positive feedbacks as a result of the recruitment of a beneficial microflora. Insights into the mechanisms that underpin plant selection of microbial communities with positive feedbacks will provide new opportunities to increase crop production.

  20. Rhizosphere Biological Processes of Legume//Cereal Intercropping Systems: A Review

    Directory of Open Access Journals (Sweden)

    JIANG Yuan-yuan

    2016-09-01

    Full Text Available Intercropping, a sustainable planting pattern, was widely used in the wordwide. It not only has the advantages of yield and nutrient acquisition, but also can ensure food security and reduce the risk of crop failures. The majority of intercropping systems involve legume//cereal combinations because of interspecific facilitation or complementarity. The rhizosphere is the interface between plants and soil where there are interactions among a myriad of microorganisms and affect the uptake of nutrients, water and harmful substances. The rhizosphere biologi-cal processes not only determine the amount of nutrients and the availability of nutrients, but also affect crop productivity and nutrient use efficiency. Hence, this paper summarized the progress made on root morphology, rhizosphere microorganisms, root exudates and ecological ef-fect in the perspective of the rhizosphere biological process,which would provide theoretical basis for improving nutrient availability, remov-ing heavy metals, and plant genetic improvements.

  1. Soil microbial abundances and enzyme activities in different rhizospheres in an integrated vertical flow constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Ying; Jiang, Yueping; Jiang, Qinsu; Min, Hang; Fan, Haitian; Zeng, Qiang; Chang, Jie [College of Life Sciences, Zhejiang University, Hangzhou (China); Zhang, Chongbang [School of Life Sciences, Taizhou University, Linhai (China); Yue, Chunlei [Zhejiang Forestry Academy, Hangzhou (China)

    2011-03-15

    Rhizosphere microorganism is an important bio-component for wastewater treatment in constructed wetlands (CWs). Microbial abundance and enzyme activities in the rhizospheres of nine plant species were investigated in an integrated vertical-flow CW. The abundance of denitrifiers, as well as urease, acid, and alkaline phosphatase activities were positively correlated to plant root biomass. The abundance of bacteria, fungi, actinomycetes, ammonifiers, denitrifiers, and phosphorus decomposers, related to nutrient removal efficiencies in CWs, greatly varied among rhizospheres of different plant species (p < 0.05). Significant differences in rhizosphere enzyme activity among plant species were also observed (p < 0.05), with the exception of catalase activity. The principal component analysis using the data of microbial abundance and enzyme activity showed that Miscanthus floridulus, Acorus calamus, and Reineckia carnea were candidates to be used in CWs to effectively remove nitrogen and phosphorus from wastewater. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Phosphate Solubilization Potentials of Rhizosphere Isolates from Central Anatolia (Turkey)

    Science.gov (United States)

    Ogut, M.; Er, F.

    2009-04-01

    Plant available-phosphorus (P) is usually low in Anatolian soils due mainly to the precipitation as calcium (Ca) and magnesium (Mg) phosphates in alkaline conditions. Phosphate solubilizing microorganisms (PSM) can enhance plant P-availability by dissolving the hardly soluble-P within the rhizosphere, which is the zone that surrounds the plant roots. PSM's can be used as seed- or soil-inocula to increase plant P-uptake and the overall growth. A total of 162 PSM's were isolated from the rhizosphere of wheat plants excavated from different fields located along a 75 km part of a highway in Turkey. The mean, the standart deviation, and the median for solubilized-P (ppm) in a 24 h culture in a tricalcium phosphate broth were 681, 427, and 400 for glucose; 358, 266, and 236 for sucrose; and 102, 117, and 50 for starch, respectively. There was not a linear relationship between the phosphate solubilized in the liquid cultures and the solubilization index obtained in the Pikovskaya's agar. Nine isolates representing both weak and strong solubilizers [Bacillus megaterium (5), Bacillus pumilis (1), Pseudomonas syringae pv. phaseolica (1), Pseudomonas fluorescens (1), Arthrobacter aurescens (1) as determined by the 16S rRNA gene sequence analysis] were further studied in a five day incubation. Pseudomonas syringae pv. phaseolica solubilized statistically (Pphosphate (409 ppm) than all the other strains did. There was not a statistically significant (Pphosphate solubilizing strains variably produced gluconic, 2-keto-D-gluconic, glycolic, acetic and butyric acids. The organic acids produced by these microorganisms seem to be the major source of phosphate solubilization in vitro.

  3. The development of the rhizosphere: simulation of root exudation for two contrasting exudates: citrate and mucilage

    Science.gov (United States)

    Sheng, Cheng; Bol, Roland; Vetterlein, Doris; Vanderborght, Jan; Schnepf, Andrea

    2017-04-01

    Different types of root exudates and their effect on soil/rhizosphere properties have received a lot of attention. Since their influence of rhizosphere properties and processes depends on their concentration in the soil, the assessment of the spatial-temporal exudate concentration distribution around roots is of key importance for understanding the functioning of the rhizosphere. Different root systems have different root architectures. Different types of root exudates diffuse in the rhizosphere with different diffusion coefficient. Both of them are responsible for the dynamics of exudate concentration distribution in the rhizosphere. Hence, simulations of root exudation involving four kinds of plant root systems (Vicia faba, Lupinus albus, Triticum aestivum and Zea mays) and two kinds of root exudates (citrate and mucilage) were conducted. We consider a simplified root architecture where each root is represented by a straight line. Assuming that root tips move at a constant velocity and that mucilage transport is linear, concentration distributions can be obtained from a convolution of the analytical solution of the transport equation in a stationary flow field for an instantaneous point source injection with the spatial-temporal distribution of the source strength. By coupling the analytical equation with a root growth model that delivers the spatial-temporal source term, we simulated exudate concentration distributions for citrate and mucilage with MATLAB. From the simulation results, we inferred the following information about the rhizosphere: (a) the dynamics of the root architecture development is the main effect of exudate distribution in the root zone; (b) a steady rhizosphere with constant width is more likely to develop for individual roots when the diffusion coefficient is small. The simulations suggest that rhizosphere development depends in the following way on the root and exudate properties: the dynamics of the root architecture result in various

  4. Interactions of fungal pathogens and antagonistic bacteria in the rhizosphere of Brassica napus

    OpenAIRE

    Gkarmiri, Konstantia

    2018-01-01

    The rhizosphere is an active interface where plants and microorganisms (pathogenic, beneficial and neutral) establish a complex and varied molecular dialogue, however knowledge of the functional mechanisms mediating interactions is still limited. Plants invest a significant proportion of their photosynthetically fixed carbon in maintaining the rhizosphere microbiome via root exudation and in return beneficial microbes provide profitable functions to the plant. The potential of naturally occur...

  5. Rhizospheric Bacterial Community of Endemic Rhododendron arboreum Sm. Ssp. delavayi along Eastern Himalayan Slope in Tawang

    OpenAIRE

    Rajal Debnath; Archana Yadav; Vijai Kumar Gupta; Bhim Pratap Singh; Pratap Jyoti Handique; Ratul Saikia

    2016-01-01

    Information on rhizosphere microbiome of endemic plants from high mountain ecosystems against those of cultivated plantations is inadequate. Comparative bacterial profiles of endemic medicinal plant Rhododendron arboreum Sm. subsp. delavayi rhizosphere pertaining to four altitudinal zonation Pankang Thang (PTSO), Nagula, Y-junction and Bum La (Indo-China border; in triplicates each) along cold adapted Eastern slope of Himalayan Tawang region, India is described here. Significant differences i...

  6. Bacterial communities in the rhizosphere of Vitis vinifera L. cultivated under distinct agricultural practices in Argentina.

    Science.gov (United States)

    Vega-Avila, A D; Gumiere, T; Andrade, P A M; Lima-Perim, J E; Durrer, A; Baigori, M; Vazquez, F; Andreote, F D

    2015-02-01

    Plants interact with a myriad of microbial cells in the rhizosphere, an environment that is considered to be important for plant development. However, the differential structuring of rhizosphere microbial communities due to plant cultivation under differential agricultural practices remains to be described for most plant species. Here we describe the rhizosphere microbiome of grapevine cultivated under conventional and organic practices, using a combination of cultivation-independent approaches. The quantification of bacterial 16S rRNA and nifH genes, by quantitative PCR (qPCR), revealed similar amounts of these genes in the rhizosphere in both vineyards. PCR-DGGE was used to detect differences in the structure of bacterial communities, including both the complete whole communities and specific fractions, such as Alphaproteobacteria, Betaproteobacteria, Actinobacteria, and those harboring the nitrogen-fixing related gene nifH. When analyzed by a multivariate approach (redundancy analysis), the shifts observed in the bacterial communities were poorly explained by variations in the physical and chemical characteristics of the rhizosphere. These approaches were complemented by high-throughput sequencing (67,830 sequences) based on the V6 region of the 16S rRNA gene, identifying the major bacterial groups present in the rhizosphere of grapevines: Proteobacteria, Actinobacteria, Firmicutes, Bacteriodetes, Acidobacteria, Cloroflexi, Verrucomicrobia and Planctomycetes, which occur in distinct proportions in the rhizosphere from each vineyard. The differences might be related to the selection of plant metabolism upon distinct reservoirs of microbial cells found in each vineyard. The results fill a gap in the knowledge of the rhizosphere of grapevines and also show distinctions in these bacterial communities due to agricultural practices.

  7. Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere

    Science.gov (United States)

    Trivedi, Pankaj; He, Zhili; Van Nostrand, Joy D; Albrigo, Gene; Zhou, Jizhong; Wang, Nian

    2012-01-01

    The diversity and stability of bacterial communities present in the rhizosphere heavily influence soil and plant quality and ecosystem sustainability. The goal of this study is to understand how ‘Candidatus Liberibacter asiaticus' (known to cause Huanglongbing, HLB) influences the structure and functional potential of microbial communities associated with the citrus rhizosphere. Clone library sequencing and taxon/group-specific quantitative real-time PCR results showed that ‘Ca. L. asiaticus' infection restructured the native microbial community associated with citrus rhizosphere. Within the bacterial community, phylum Proteobacteria with various genera typically known as successful rhizosphere colonizers were significantly greater in clone libraries from healthy samples, whereas phylum Acidobacteria, Actinobacteria and Firmicutes, typically more dominant in the bulk soil were higher in ‘Ca. L. asiaticus'-infected samples. A comprehensive functional microarray GeoChip 3.0 was used to determine the effects of ‘Ca. L. asiaticus' infection on the functional diversity of rhizosphere microbial communities. GeoChip analysis showed that HLB disease has significant effects on various functional guilds of bacteria. Many genes involved in key ecological processes such as nitrogen cycling, carbon fixation, phosphorus utilization, metal homeostasis and resistance were significantly greater in healthy than in the ‘Ca. L. asiaticus'-infected citrus rhizosphere. Our results showed that the microbial community of the ‘Ca. L. asiaticus'-infected citrus rhizosphere has shifted away from using more easily degraded sources of carbon to the more recalcitrant forms. Overall, our study provides evidence that the change in plant physiology mediated by ‘Ca. L. asiaticus' infection could elicit shifts in the composition and functional potential of rhizosphere microbial communities. In the long term, these fluctuations might have important implications for the productivity and

  8. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms

    OpenAIRE

    Paulitz, Timothy C.; Steinberg, Christian; Alabouvette, Claude; Moënne-Loccoz, Yvan

    2009-01-01

    The rhizosphere is a hot spot of microbial interactions as exudates released by plant roots are a main food source for microorganisms and a driving force of their population density and activities. The rhizosphere harbors many organisms that have a neutral effect on the plant, but also attracts organisms that exert deleterious or beneficial effects on the plant. Microorganisms that adversely affect plant growth and health are the pathogenic fungi, oomycetes, bacteria and nematodes. Most of th...

  9. Purple Phototrophic Bacterium Enhances Stevioside Yield by Stevia rebaudiana Bertoni via Foliar Spray and Rhizosphere Irrigation

    OpenAIRE

    Jing Wu; Yiming Wang; Xiangui Lin

    2013-01-01

    This study was conducted to compare the effects of foliar spray and rhizosphere irrigation with purple phototrophic bacteria (PPB) on growth and stevioside (ST) yield of Stevia. rebaudiana. The S. rebaudiana plants were treated by foliar spray, rhizosphere irrigation, and spray plus irrigation with PPB for 10 days, respectively. All treatments enhanced growth of S. rebaudiana, and the foliar method was more efficient than irrigation. Spraying combined with irrigation increased the ST yield pl...

  10. Plant Fe status affects the composition of siderophore-secreting microbes in the rhizosphere

    Science.gov (United States)

    Jin, Chong Wei; Li, Gui Xin; Yu, Xue Hui; Zheng, Shao Jiang

    2010-01-01

    Background and Aims Soil microbes have been demonstrated to play an important role in favouring plant iron (Fe) uptake under Fe-limiting conditions. However, the mechanisms involved are still unclear. This present study reported the effects of plant Fe status on the composition of siderophore-secreting microbes in the rhizosphere, and their potential function in improving plant Fe nutrition. Methods An Fe-efficient plant, red clover (Trifolium pratense ‘Kenland’) was cultured in a calcareous soil to obtain rhizosphere soils with (Fe-sufficient) or without (Fe-stressed) foliar FeEDTA spraying. The siderophore-producing ability of rhizospheric microbes was measured. The bioavailability of the siderophore-solubilized Fe from iron oxides/hydroxides was tested in hydroponic culture. Key Results In rhizosphere soil, the number of microbes that secreted siderophores quickly was more in the Fe-stressed treatment than in the Fe-sufficient one, while the number of microbes that did not secret siderophores was the opposite. A significantly higher concentration of phenolics was detected in the rhizosphere soil of Fe-stressed plants. Moreover, after the soil was incubated with phenolic root exudates, the composition of the siderophore-secreting microbial community was similar with that of the rhizosphere of Fe-stressed plant. Additionally, the siderophores produced by a rhizospheric microbe isolated from the Fe-stressed treatment can well solubilize iron oxides/hydroxides, and the utilization of the siderophore-solubilized Fe by plant was even more efficient than EDTA-Fe. Conclusions Iron-deficiency stress of red clover would alter the composition of siderophore-secreting microbes in the rhizosphere, which is probably due to the phenolics secretion of the root, and may in turn help to improve the solubility of Fe in soils and plant Fe nutrition via elevated microbial siderophore secretion. PMID:20356952

  11. Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the Red Sea

    KAUST Repository

    Alzubaidy, Hanin S.

    2015-11-10

    Mangroves are unique, and endangered, coastal ecosystems that play a vital role in the tropical and subtropical environments. A comprehensive description of the microbial communities in these ecosystems is currently lacking, and additional studies are required to have a complete understanding of the functioning and resilience of mangroves worldwide. In this work, we carried out a metagenomic study by comparing the microbial community of mangrove sediment with the rhizosphere microbiome of Avicennia marina, in northern Red Sea mangroves, along the coast of Saudi Arabia. Our results revealed that rhizosphere samples presented similar profiles at the taxonomic and functional levels and differentiated from the microbiome of bulk soil controls. Overall, samples showed predominance by Proteobacteria, Bacteroidetes and Firmicutes, with high abundance of sulfate reducers and methanogens, although specific groups were selectively enriched in the rhizosphere. Functional analysis showed significant enrichment in ‘metabolism of aromatic compounds’, ‘mobile genetic elements’, ‘potassium metabolism’ and ‘pathways that utilize osmolytes’ in the rhizosphere microbiomes. To our knowledge, this is the first metagenomic study on the microbiome of mangroves in the Red Sea, and the first application of unbiased 454-pyrosequencing to study the rhizosphere microbiome associated with A. marina. Our results provide the first insights into the range of functions and microbial diversity in the rhizosphere and soil sediments of gray mangrove (A. marina) in the Red Sea.

  12. New understanding of rhizosphere processes enabled by advances in molecular and spatially resolved techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Nancy J.; Paša-Tolić, Ljiljana; Bailey, Vanessa L.; Dohnalkova, Alice C.

    2017-06-01

    Understanding the role played by microorganisms within soil systems is challenged by the unique intersection of physics, chemistry, mineralogy and biology in fostering habitat for soil microbial communities. To address these challenges will require observations across multiple spatial and temporal scales to capture the dynamics and emergent behavior from complex and interdependent processes. The heterogeneity and complexity of the rhizosphere require advanced techniques that press the simultaneous frontiers of spatial resolution, analyte sensitivity and specificity, reproducibility, large dynamic range, and high throughput. Fortunately many exciting technical advancements are now available to inform and guide the development of new hypotheses. The aim of this Special issue is to provide a holistic view of the rhizosphere in the perspective of modern molecular biology methodologies that enabled a highly-focused, detailed view on the processes in the rhizosphere, including numerous, strong and complex interactions between plant roots, soil constituents and microorganisms. We discuss the current rhizosphere research challenges and knowledge gaps, as well as perspectives and approaches using newly available state-of-the-art toolboxes. These new approaches and methodologies allow the study of rhizosphere processes and properties, and rhizosphere as a central component of ecosystems and biogeochemical cycles.

  13. Coupling of the chemical niche and microbiome in the rhizosphere: implications from watermelon grafting

    Directory of Open Access Journals (Sweden)

    Yang SONG,Chen ZHU,Waseem RAZA,Dongsheng WANG,Qiwei HUANG,Shiwei GUO,Ning LING,Qirong SHEN

    2016-09-01

    Full Text Available Grafting is commonly used to overcome soil-borne diseases. However, its effects on the rhizodeposits as well as the linkages between the rhizosphere chemical niche and microbiome remained unknown. In this paper, significant negative correlations between the bacterial alpha diversity and both the disease incidence (r = -0.832, P = 0.005 and pathogen population (r = - 0.786, P = 0.012 were detected. Moreover, our results showed that the chemical diversity not only predicts bacterial alpha diversity but also can impact on overall microbial community structure (beta diversity in the rhizosphere. Furthermore, some anti-fungal compounds including heptadecane and hexadecane were identified in the rhizosphere of grafted watermelon. We concluded that grafted watermelon can form a distinct rhizosphere chemical niche and thus recruit microbial communities with high diversity. Furthermore, the diverse bacteria and the antifungal compounds in the rhizosphere can potentially serve as biological and chemical barriers, respectively, to hinder pathogen invasion. These results not only lead us toward broadening the view of disease resistance mechanism of grafting, but also provide clues to control the microbial composition by manipulating the rhizosphere chemical niche.

  14. Diversity and heritability of the maize rhizosphere microbiome under field conditions

    Science.gov (United States)

    Peiffer, Jason A.; Spor, Aymé; Koren, Omry; Jin, Zhao; Tringe, Susannah Green; Dangl, Jeffery L.; Buckler, Edward S.; Ley, Ruth E.

    2013-01-01

    The rhizosphere is a critical interface supporting the exchange of resources between plants and their associated soil environment. Rhizosphere microbial diversity is influenced by the physical and chemical properties of the rhizosphere, some of which are determined by the genetics of the host plant. However, within a plant species, the impact of genetic variation on the composition of the microbiota is poorly understood. Here, we characterized the rhizosphere bacterial diversity of 27 modern maize inbreds possessing exceptional genetic diversity grown under field conditions. Randomized and replicated plots of the inbreds were planted in five field environments in three states, each with unique soils and management conditions. Using pyrosequencing of bacterial 16S rRNA genes, we observed substantial variation in bacterial richness, diversity, and relative abundances of taxa between bulk soil and the maize rhizosphere, as well as between fields. The rhizospheres from maize inbreds exhibited both a small but significant proportion of heritable variation in total bacterial diversity across fields, and substantially more heritable variation between replicates of the inbreds within each field. The results of this study should facilitate expanded studies to identify robust heritable plant–microbe interactions at the level of individual polymorphisms by genome wide association, so that plant-microbiome interactions can ultimately be incorporated into plant breeding. PMID:23576752

  15. Soil nutritional status and biogeography influence rhizosphere microbial communities associated with the invasive tree Acacia dealbata.

    Science.gov (United States)

    Kamutando, Casper N; Vikram, Surendra; Kamgan-Nkuekam, Gilbert; Makhalanyane, Thulani P; Greve, Michelle; Roux, Johannes J Le; Richardson, David M; Cowan, Don; Valverde, Angel

    2017-07-26

    Invasiveness and the impacts of introduced plants are known to be mediated by plant-microbe interactions. Yet, the microbial communities associated with invasive plants are generally poorly understood. Here we report on the first comprehensive investigation of the bacterial and fungal communities inhabiting the rhizosphere and the surrounding bulk soil of a widespread invasive tree, Acacia dealbata. Amplicon sequencing data indicated that rhizospheric microbial communities differed significantly in structure and composition from those of the bulk soil. Two bacterial (Alphaproteobacteria and Gammaproteobacteria) and two fungal (Pezizomycetes and Agaricomycetes) classes were enriched in the rhizosphere compared with bulk soils. Changes in nutritional status, possibly induced by A. dealbata, primarily shaped rhizosphere soil communities. Despite a high degree of geographic variability in the diversity and composition of microbial communities, invasive A. dealbata populations shared a core of bacterial and fungal taxa, some of which are known to be involved in N and P cycling, while others are regarded as plant pathogens. Shotgun metagenomic analysis also showed that several functional genes related to plant growth promotion were overrepresented in the rhizospheres of A. dealbata. Overall, results suggest that rhizosphere microbes may contribute to the widespread success of this invader in novel environments.

  16. Verrucomicrobia subdivision 1 strains display a difference in the colonization of the leek (Allium porrum) rhizosphere.

    Science.gov (United States)

    da Rocha, Ulisses Nunes; van Elsas, Jan Dirk; van Overbeek, Leonard Simon

    2011-11-01

    Strains CHC12 and CHC8, belonging to, respectively, Luteolibacter and Candidatus genus Rhizospheria (Verrucomicrobia subdivision 1), were recently isolated from the leek rhizosphere. The key question addressed in this study was: does attraction to and colonization of the rhizosphere occur in the same way for both strains? Therefore, the fate of the two strains was studied near in vitro-grown leek roots and in soil zones proximate to and at a further distance from roots in a model plant-soil microcosm set-up. Quantitative PCR detection with specific primers was used, as the cultivation of these bacteria from soil is extremely fastidious. The data indicated that natural populations of Luteolibacter (akin to strain CHC12) had lower numbers in the rhizosphere than in the corresponding bulk soil. On the other hand, the populations of Candidatus genus Rhizospheria, i.e. strain CHC8, showed higher numbers in the rhizosphere than in the bulk soil. Increased strain CHC8 cell-equivalent numbers in the rhizosphere were not only the result of in situ cell multiplication, but also of the migration of cells towards the roots. Luteolibacter and Candidatus genus Rhizospheria cells displayed differences in attraction to the rhizosphere and colonization thereof, irrespective of the fact that both belonged to Verrucomicrobia subdivision 1. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Plant-microbe Cross-talk in the Rhizosphere: Insight and Biotechnological Potential.

    Science.gov (United States)

    Haldar, Shyamalina; Sengupta, Sanghamitra

    2015-01-01

    Rhizosphere, the interface between soil and plant roots, is a chemically complex environment which supports the development and growth of diverse microbial communities. The composition of the rhizosphere microbiome is dynamic and controlled by multiple biotic and abiotic factors that include environmental parameters, physiochemical properties of the soil, biological activities of the plants and chemical signals from the plants and bacteria which inhabit the soil adherent to root-system. Recent advancement in molecular and microbiological techniques has unravelled the interactions among rhizosphere residents at different levels. In this review, we elaborate on various factors that determine plant-microbe and microbe-microbe interactions in the rhizosphere, with an emphasis on the impact of host genotype and developmental stages which together play pivotal role in shaping the nature and diversity of root exudations. We also discuss about the coherent functional groups of microorganisms that colonize rhizosphere and enhance plant growth and development by several direct and indirect mechanisms. Insights into the underlying structural principles of indigenous microbial population and the key determinants governing rhizosphere ecology will provide directions for developing techniques for profitable applicability of beneficial microorganisms in sustainable agriculture and nature restoration.

  18. Cucumber Rhizosphere Microbial Community Response to Biocontrol Agent Bacillus subtilis B068150

    Directory of Open Access Journals (Sweden)

    Lihua Li

    2015-12-01

    Full Text Available Gram-positive bacteria Bacillus subtilis B068150 has been used as a biocontrol agent against the pathogen Fusarium oxysporum cucumerinum. Cucumber was grown in three soils with strain B068150 inoculated in a greenhouse for 90 days, and the colonization ability of strain B068150 in cucumber rhizosphere and non-rhizosphere soils was determined. Changes in total bacteria and fungi community composition and structures using denaturing gradient gel electrophoresis (DGGE and sequencing were determined. Colony counts showed that B068150 colonization in the rhizosphere was significantly higher (p < 0.001 than in non-rhizosphere soils. Based on our data, the introduction of B. bacillus B068150 did not change the diversity of microbial communities significantly in the rhizosphere of three soils. Our data showed that population density of B068150 in clay soil had a significant negative correlation on bacterial diversity in cucumber rhizosphere in comparison to loam and sandy soils, suggesting that the impact of B068150 might be soil specific.

  19. The state of rhizospheric science in the era of multi-omics: A practical guide to omics technologies

    Energy Technology Data Exchange (ETDEWEB)

    White, Richard Allen; Rivas-Ubach, Albert; Borkum, Mark I.; Köberl, Martina; Bilbao, Aivett; Colby, Sean M.; Hoyt, David W.; Bingol, Kerem; Kim, Young-Mo; Wendler, Jason P.; Hixson, Kim K.; Jansson, Christer

    2017-06-01

    Over the past century, the significance of the rhizosphere as a complex, biological system, comprised of vast, interconnected networks of microbial organisms that interact directly with their plant hosts (e.g., archæa, bacteria, fungi, eukaryotes, and viruses) has been increasingly recognized by the scientific community. Providing a nutritional base to the terrestrial biosphere, the rhizosphere is integral to plant growth, crop production and ecosystem health. Lack of mechanistic understanding of the rhizosphere constitutes a critical knowledge gap, inhibiting our ability to predict and control the terrestrial ecosystem in order to achieve desirable outcomes (e.g., bioenergy production, crop yield maximization, and soilbased carbon sequestration). Application of multi-omics has the potential to significantly advance our knowledge of rhizospheric science. This review covers: cutting- and bleeding-edge, multi-omic techniques and technologies; methods and protocols for specific rhizospheric science questions; and, challenges to be addressed during this century of rhizospheric science.

  20. Microbial carbon turnover in the plant-rhizosphere-soil continuum

    Science.gov (United States)

    Malik, Ashish; Dannert, Helena; Griffiths, Robert; Thomson, Bruce; Gleixner, Gerd

    2014-05-01

    Soil microbial biomass contributes significantly to maintenance of soil organic matter (SOM). It is well known that biochemical fractions of soil microorganisms have varying turnover and therefore contribute differentially to soil C storage. Here we compare the turnover rates of different microbial biochemical fractions using a pulse chase 13CO2 plant labelling experiment. The isotope signal was temporally traced into rhizosphere soil microorganisms using the following biomarkers: DNA, RNA, fatty acids and chloroform fumigation extraction derived microbial biomass size classes. C flow into soil microbial functional groups was assessed through phospholipid and neutral lipid fatty acid (PLFA/NLFA) analyses. Highest 13C enrichment was seen in the low molecular weight (LMW) size class of microbial biomass (Δδ13C =151) and in nucleic acids (DNA: 38o RNA: 66) immediately after the pulse followed by a sharp drop. The amount of 13C in the high molecular weight (HMW) microbial biomass (17-81) and total fatty acids (32-54) was lower initially and stayed relatively steady over the 4 weeks experimental period. We found significant differences in turnover rates of different microbial biochemical and size fractions. We infer that LMW cytosolic soluble compounds are rapidly metabolized and linked to respiratory C fluxes, whereas mid-sized products of microbial degradation and HMW polymeric compounds have lower renewal rate in that order. The turnover of cell wall fatty acids was also very slow. DNA and RNA showed faster turnover rate; and as expected RNA renewal was the fastest due to its rapid production by active microorganisms independent of cell replication. 13C incorporation into different functional groups confirmed that mutualistic arbuscular mycorrhizal fungi rely on root C and are important in the initial plant C flux. We substantiated through measurements of isotope incorporation into bacterial RNA that rhizosphere bacteria are also important in the initial C conduit

  1. Preliminary investigations of the rhizosphere nature of hydroponically grown lettuces

    Science.gov (United States)

    Antunes, Inês; Paille, Christel; Lasseur, Christophe

    Due to capabilities of current launchers, future manned exploration beyond the Earth orbit will imply long journeys and extended stays on planet surfaces. For this reason, it is of a great importance to develop a Regenerative Life Support System that enables the crew to be, to a very large extent, metabolic consumables self-sufficient. In this context, the European Space Agency, associated with a scientific and engineering con-sortium, initiated in 1989 the Micro-Ecological Life Support System Alternative (MELiSSA) project. This concept, inspired on a terrestrial ecosystem (i.e. a lake), comprises five intercon-nected compartments inhabited by micro-organisms and higher-plants aiming to produce food, fresh water, and oxygen from organic waste, carbon dioxide, and minerals. Given the important role of the higher-plant compartment for the consumption of carbon dioxide and the production of oxygen, potable water, and food, it was decided to study the microbial communities present in the root zone of the plants (i.e. the rhizosphere), and their synergistic and antagonistic influences in the plant growth. This understanding is important for later investigations concerning the technology involved in the higher plant compartment, since the final goal is to integrate this compartment inside the MELiSSA loop and to guarantee a healthy and controlled environment for the plants to grow under reduced-gravity conditions. To perform a preliminary assessment of the microbial populations of the root zone, lettuces were grown in a hydroponic system and their growth was characterized in terms of nutrient uptake, plant diameter, and plant wet and dry weights. In parallel, the microbial population, bacteria and fungi, present in the hydroponic medium and also inside and outside the roots were analyzed in terms of quantity and nature. The goal of this presentation is to give a preliminary review in the plant root zone of the micro-organisms communities and as well their proportions

  2. Characterization of bacterial community structure in rhizosphere soil of grain legumes.

    Science.gov (United States)

    Sharma, S; Aneja, M K; Mayer, J; Munch, J C; Schloter, M

    2005-04-01

    Molecular techniques were used to characterize bacterial community structure, diversity (16S rDNA), and activity (16S rRNA) in rhizospheres of three grain legumes: faba beans (Vicia faba L., cv. Scirocco), peas (Pisum sativum L., cv. Duel) and white lupin (Lupinus albus L., cv. Amiga). All plants were grown in the same soil under controlled conditions in a greenhouse and sampled after fruiting. Amplified 16S rDNA and rRNA products (using universal bacterial primers) were resolved by denaturing gradient gel electrophoresis (DGGE). Distinct profiles were observed for the three legumes with most of the bands derived from RNA being a subset of those derived from DNA. Comparing the total bacterial profiles with actinomycete-specific ones (using actinomycete-specific primers) highlighted the dominance of this group in the three rhizospheres. 16S PCR and RT-PCR products were cloned to construct libraries and 100 clones from each library were sequenced. Actinomycetes and proteobacteria dominated the clone libraries with differences in the groups of proteobacteria. Absence of beta-subdivision members in pea and gamma-subdivision members of proteobacteria in faba bean rhizosphere was observed. Plant-dependent rhizosphere effects were evident from significant differences in the bacterial community structure of the legume rhizospheres under study. The study gives a detailed picture of both residing and "active" bacterial community in the three rhizospheres. The high abundance of actinomycetes in the rhizospheres of mature legumes indicates their possible role in soil enrichment after the legumes are plowed into the soil as biofertilizers.

  3. Plant-Microbial Interactions Define Potential Mechanisms of Organic Matter Priming in the Rhizosphere

    Science.gov (United States)

    Zhalnina, K.; Cho, H. J.; Hao, Z.; Mansoori, N.; Karaoz, U.; Jenkins, S.; White, R. A., III; Lipton, M. S.; Deng, K.; Zhou, J.; Pett-Ridge, J.; Northen, T.; Firestone, M. K.; Brodie, E.

    2015-12-01

    In the rhizosphere, metabolic processes of plants and microorganisms are closely coupled, and together with soil minerals, their interactions regulate the turnover of soil organic C (SOC). Plants provide readily assimilable metabolites for microorganisms through exudation, and it has been hypothesized that increasing concentrations of exudate C may either stimulate or suppress rates of SOC mineralization (rhizosphere priming). Both positive and negative rhizosphere priming has been widely observed, however the underlying mechanisms remain poorly understood. To begin to identify the molecular mechanisms underlying rhizosphere priming, we isolated a broad range of soil bacteria from a Mediterranean grassland dominated by annual grass. Thirty-nine heterotrophic bacteria were selected for genome sequencing and both rRNA gene analysis and metagenome coverage suggest that these isolates represent naturally abundant strain variants. We analyzed their genomes for potential metabolic traits related to life in the rhizosphere and the decomposition of polymeric SOC. While the two dominant groups, Alphaproteobacteria and Actinobacteria, were enriched in polymer degrading enzymes, Alphaproteobacterial isolates contained greater gene copies of transporters related to amino acid, organic acid and auxin uptake or export, suggesting an enhanced metabolic potential for life in the root zone. To verify this metabolic potential, we determined the enzymatic activities of these isolates and revealed preferences of strains to degrade certain polymers (xylan, cellulose or lignin). Fourier Transform Infrared spectroscopy is being used to determine which polymeric components of plant roots are targeted by specific strains and how exudates may impact their degradation. To verify the potential of isolates to assimilate root exudates and export key metabolites we are using LC-MS/MS based exometabolomic profiling. The traits hypothesized and verified here (transporters, enzymes, exudate uptake

  4. Seasonal induced changes in spinach rhizosphere microbial community structure with varying salinity and drought.

    Science.gov (United States)

    Mark Ibekwe, A; Ors, Selda; Ferreira, Jorge F S; Liu, Xuan; Suarez, Donald L

    2017-02-01

    Salinity is a common problem under irrigated agriculture, especially in low rainfall and high evaporative demand areas of southwestern United States and other semi-arid regions around the world. However, studies on salinity effects on soil microbial communities are relatively few while the effects of irrigation-induced salinity on soil chemical and physical properties and plant growth are well documented. In this study, we examined the effects of salinity, temperature, and temporal variability on soil and rhizosphere microbial communities in sand tanks irrigated with prepared solutions designed to simulate saline wastewater. Three sets of experiments with spinach (Spinacia oleracea L., cv. Racoon) were conducted under saline water during different time periods (early winter, late spring, and early summer). Bacterial 16S V4 rDNA region was amplified utilizing fusion primers designed against the surrounding conserved regions using MiSeq® Illumina sequencing platform. Across the two sample types, bacteria were relatively dominant among three phyla-the Proteobacteria, Cyanobacteria, and Bacteroidetes-accounted for 77.1% of taxa detected in the rhizosphere, while Proteobacteria, Bacteroidetes, and Actinobacteria accounted for 55.1% of taxa detected in soil. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, community structure, and specific bacterial groups in soil and rhizosphere samples. Permutational analysis of variance (PERMANOVA) analysis showed that soil temperature (P=0.001), rhizosphere temperature (P=0.001), rhizosphere salinity (P=0.032), and evapotranspiration (P=0.002) significantly affected beta diversity of soil and rhizosphere microbial communities. Furthermore, salinity had marginal effects (P=0.078) on soil beta diversity. However, temporal variability differentially affected rhizosphere microbial communities irrigated with saline wastewater. Therefore, microbial communities in

  5. Spatio-temporal patterns in rhizosphere oxygen profiles in the emergent plant species Acorus calamus.

    Science.gov (United States)

    Wang, Wenlin; Wenlin, Wang; Han, Ruiming; Ruiming, Han; Wan, Yinjing; Yinjing, Wan; Liu, Bo; Bo, Liu; Tang, Xiaoyan; Xiaoyan, Tang; Liang, Bin; Bin, Liang; Wang, Guoxiang; Guoxiang, Wang

    2014-01-01

    Rhizosphere oxygen profiles are the key to understanding the role of wetland plants in ecological remediation. Though in situ determination of the rhizosphere oxygen profiles has been performed occasionally at certain growing stages within days, comprehensive study on individual roots during weeks is still missing. Seedlings of Acorus calamus, a wetland monocot, were cultivated in silty sediment and the rhizosphere oxygen profiles were characterized at regular intervals, using micro-optodes to examine the same root at four positions along the root axis. The rhizosphere oxygen saturation culminated at 42.9% around the middle part of the root and was at its lowest level, 3.3%, at the basal part of the root near the aboveground portion. As the plant grew, the oxygen saturation at the four positions remained nearly constant until shoot height reached 15 cm. When shoot height reached 60 cm, oxygen saturation was greatest at the point halfway along the root, followed by the point three-quarters of the way down the root, the tip of the root, and the point one-quarter of the way down. Both the internal and rhizosphere oxygen saturation steadily increased, as did the thickness of stably oxidized microzones, which ranged from 20 µm in younger seedlings to a maximum of 320 µm in older seedlings. The spatial patterns of rhizosphere oxygen profiles in sediment contrast with those from previous studies on radial oxygen loss in A. calamus that used conventional approaches. Rhizosphere oxygen saturation peaked around the middle part of roots and the thickness of stably oxidized zones increased as the roots grew.

  6. Spatio-temporal patterns in rhizosphere oxygen profiles in the emergent plant species Acorus calamus.

    Directory of Open Access Journals (Sweden)

    Wenlin Wang

    Full Text Available Rhizosphere oxygen profiles are the key to understanding the role of wetland plants in ecological remediation. Though in situ determination of the rhizosphere oxygen profiles has been performed occasionally at certain growing stages within days, comprehensive study on individual roots during weeks is still missing. Seedlings of Acorus calamus, a wetland monocot, were cultivated in silty sediment and the rhizosphere oxygen profiles were characterized at regular intervals, using micro-optodes to examine the same root at four positions along the root axis. The rhizosphere oxygen saturation culminated at 42.9% around the middle part of the root and was at its lowest level, 3.3%, at the basal part of the root near the aboveground portion. As the plant grew, the oxygen saturation at the four positions remained nearly constant until shoot height reached 15 cm. When shoot height reached 60 cm, oxygen saturation was greatest at the point halfway along the root, followed by the point three-quarters of the way down the root, the tip of the root, and the point one-quarter of the way down. Both the internal and rhizosphere oxygen saturation steadily increased, as did the thickness of stably oxidized microzones, which ranged from 20 µm in younger seedlings to a maximum of 320 µm in older seedlings. The spatial patterns of rhizosphere oxygen profiles in sediment contrast with those from previous studies on radial oxygen loss in A. calamus that used conventional approaches. Rhizosphere oxygen saturation peaked around the middle part of roots and the thickness of stably oxidized zones increased as the roots grew.

  7. Distributions and compositions of old and emerging flame retardants in the rhizosphere and non-rhizosphere soil in an e-waste contaminated area of South China.

    Science.gov (United States)

    Wang, Shaorui; Wang, Yan; Song, Mengke; Luo, Chunling; Li, Jun; Zhang, Gan

    2016-01-01

    We investigated rhizosphere effects on the distributions and compositions of polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), and dechlorane plus (DPs) in rhizosphere soils (RS) and non-rhizosphere soils (NRS) in an e-waste recycling area in South China. The concentrations of PBDEs, NBFRs, and DPs ranged from 13.9 to 351, 11.6 to 70.8, and 0.64 to 8.74 ng g(-1) in RS and 7.56 to 127, 8.98 to 144, and 0.38 to 8.45 ng g(-1) in NRS, respectively. BDE-209 and DBDPE were the dominant congeners of PBDEs and NBFRs, respectively. PBDEs, NBFRs, and DPs were more enriched in RS than NRS in most vegetables species. Further analysis suggested that the differentiation of the rhizosphere effect on halogenated flame retardants (HFRs) was not solely controlled by the octanol-water coefficients. This difference was also reflected by the correlations between total organic carbon (TOC) and PBDEs, NBFRs, or DPs, which indicated that organic carbon was a more pivotal controlling factor for PBDEs and DPs than for NBFRs in soil. We also found significant positive correlations between PBDEs and their replacement products, which indicated a similar emission pattern and environmental behaviour. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Response of N₂O emissions to elevated water depth regulation: comparison of rhizosphere versus non-rhizosphere of Phragmites australis in a field-scale study.

    Science.gov (United States)

    Gu, Xiao-Zhi; Chen, Kai-Ning; Wang, Zhao-de

    2016-03-01

    Emissions of nitrous oxide (N2O) from wetland ecosystems are globally significant and have recently received increased attention. However, relatively few direct studies of these emissions in response to water depth-related changes in sediment ecosystems have been conducted, despite the likely role they play as hotspots of N2O production. We investigated depth-related differential responses of the dissolved inorganic nitrogen distribution in Phragmites australis (Cav.) Trin. ex Steud. rhizosphere versus non-rhizosphere sediments to determine if they accelerated N2O emissions and the release of inorganic nitrogen. Changes in static water depth and P. australis growth both had the potential to disrupt the distribution of porewater dissolved NH4 (+), NO3 (-), and NO2 (-) in profiles, and NO3 (-) had strong surface aggregation tendency and decreased significantly with depth. Conversely, the highest NO2 (-) contents were observed in deep water and the lowest in shallow water in the P. australis rhizosphere. When compared with NO3 (-), NH4 (+), and NO2 (-), fluxes from the rhizosphere were more sensitive to the effects of water depth, and both fluxes increased significantly at a depth of more than 1 m. Similarly, N2O emissions were obviously accelerated with increasing depth, although those from the rhizosphere were more readily controlled by P. australis. Pearson's correlation analysis showed that water depth was significantly related to N2O emission and NO2 (-) fluxes, and N2O emissions were also strongly dependent on NO2 (-) fluxes (r = 0.491, p < 0.05). The results presented herein provide new insights into inorganic nitrogen biogeochemical cycles in freshwater sediment ecosystems.

  9. Devosia elaeis sp. nov., isolated from oil palm rhizospheric soil.

    Science.gov (United States)

    Mohd Nor, Muhammad Nuruddin; Sabaratnam, Vikineswary; Tan, Geok Yuan Annie

    2017-04-01

    A bacterial isolate, designated strain S37T, was isolated from the rhizosphere of oil palm (Elaeis guineensis). Strain S37T was found to be Gram-stain-negative, aerobic, motile and rod shaped. Based on 16S rRNA gene sequence analysis, strain S37T was most closely related to Devosia albogilva IPL15T (97.3 %), Devosia chinhatensis IPL18T (96.8 %) and Devosia subaequoris HST3-14T (96.5 %). The G+C content of the genomic DNA was 63.0 mol%, and dominant cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), 11-methyl C18 : 1ω7c and C16 : 0. The predominant isoprenoid quinone was ubiquinone-10 (Q-10), and the major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, glycolipid and phospholipids. Based on the polyphasic taxonomic data, it is clear that strain S37T represents a novel species of the genus Devosia within the family Hyphomicrobiaceae, for which we propose the name Devosia elaeis sp. nov., with strain S37T (=TBRC 5145T=LMG 29420T) as the type strain.

  10. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology

    Science.gov (United States)

    Bisht, Sandeep; Pandey, Piyush; Bhargava, Bhavya; Sharma, Shivesh; Kumar, Vivek; Sharma, Krishan D.

    2015-01-01

    The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e. polyaromatic hydrocarbons (PAHs) due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa , Pseudomons fluoresens , Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective. PMID:26221084

  11. Bioremediation of polyaromatic hydrocarbons (PAHs using rhizosphere technology

    Directory of Open Access Journals (Sweden)

    Sandeep Bisht

    2015-03-01

    Full Text Available The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e.polyaromatic hydrocarbons (PAHs due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective.

  12. Anti-Quorum Sensing Potential of Potato Rhizospheric Bacteria

    Directory of Open Access Journals (Sweden)

    Adeleh Sobhanipour

    2017-01-01

    Full Text Available The occurrence of antibiotic-resistant pathogenic bacteria is becoming a serious problem. The rise of multiresistance strains has forced the pharmaceutical industry to come up with new generation of more effective and potent antibiotics, therefore creating development of antivirulence compounds. Due to extensive usage of cell-to-cell bacterial communication (QS systems to monitor the production of virulence factors, disruption of QS system results in creation of a promising strategy for the control of bacterial infection. Numerous natural quorum quenching (QQ agents have been identified. In addition, many microorganisms are capable of producing smaller molecular QS inhibitors and/or macromolecular QQ enzymes. In present survey, anti QS activity of 1280 rhizosphere bacteria was assessed using the Pectobacterium carotovorum as AHL-donor and Chromobacterium violaceum CV026 as biosensor system. The results showed that 61 strains had highly AHL-degrading activity. Both Lux I and Lux R activity were affected by some isolates, suggesting that the rhizobacteria target both QS signal and receptor. These soil microorganisms with their anti-QS activity have the potential to be novel therapeutic agents for reducing virulence and pathogenicity of antibiotic resistant bacteria.

  13. Phosphate-solubilizing bacteria associated with runner bean rhizosphere

    Directory of Open Access Journals (Sweden)

    Mihalache Gabriela

    2015-01-01

    Full Text Available Soil microorganisms, especially rhizobacteria, play a key role in soil phosphorus (P dynamics and the subsequent availability of phosphate to plants. Utilization of phosphate-solubilizing bacteria as biofertilizers instead of synthetic chemicals is known to improve plant growth through the supply of plant nutrients, and may help to sustain environmental health and soil productivity. The main purpose of this study was to identify new phosphate-solubilizing bacteria isolated from runner bean rhizosphere. Ten out of 25 isolated bacterial strains solubilized Ca3(PO42 in qualitative and quantitative P-solubilization. The strain that exhibited the highest potential to solubilize Ca3(PO42, was selected for further determination of the mechanisms involved in the process. The medium pH was measured, organic acids released in the culture medium were identified by HPLC analysis, and the acid and alkaline phosphatase activities were determined. Our results showed that strain R7 solubilized phosphorous through the production of various organic acids such as lactic, isocitric, tartaric and pyruvic acids, and that it can be used as a potential biofertilizer.

  14. Dynamics of rhizosphere properties and antioxidative responses in wheat (Triticum aestivum L.) under cadmium stress.

    Science.gov (United States)

    Li, Yonghua; Wang, Li; Yang, Linsheng; Li, Hairong

    2014-04-01

    In this study, we performed a rhizobox experiment to examine the dynamic changes in the rhizosphere properties and antioxidant enzyme responses of Triticum aestivum L. under three levels of cadmium stress. A set of micro-techniques (i.e., Rhizobox and Rhizon SMS) were applied for the dynamically non-destructive collection of the rhizosphere soil solution to enable the observation at a high temporal resolution. The dynamics of soluble cadmium and dissolved organic carbon (DOC) in the rhizosphere soil solutions of the Triticum aestivum L. were characterised by the sequence week 0 after sowing (WAS0)0.05) and growth duration (p0.05). These results suggested the enhancement of DOC production and the greater antioxidant enzyme activities were two important protective mechanisms of Triticum aestivum L. under cadmium stress, whereas rhizosphere acidification might be an important mechanism for the mobilisation of soil cadmium. The results also revealed that plant-soil interactions strongly influence the soil solution chemistry in the rhizosphere of Triticum aestivum L., that, in turn, can stimulate chemical and biochemical responses in the plants. In most cases, these responses to cadmium stress were sensitive and might allow us to develop strategies for reducing the risks of the cadmium contamination to crop production. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Taxonomic and Functional Diversity of a Quercus pyrenaica Willd. Rhizospheric Microbiome in the Mediterranean Mountains

    Directory of Open Access Journals (Sweden)

    José F. Cobo-Díaz

    2017-10-01

    Full Text Available Altitude significantly affects vegetation growth and distribution, including the developmental stages of a forest. We used shotgun Illumina sequencing to analyze microbial community composition and functional potential in melojo-oak (Quercus pyrenaica Willd. rhizospheric soil for three different development stages along an altitudinal gradient: (a a low altitude, non-optimal site for forest maintenance; (b an intermediate altitude, optimal site for a forest; and (c a high altitude, expansion site with isolated trees but without a real forest canopy. We observed that, at each altitude, the same microbial taxa appear both in the taxonomic analysis of the whole metagenome and in the functional analysis of the methane, sulfur and nitrogen metabolisms. Although there were no major differences at the functional level, there were significant differences in the abundance of each taxon at the phylogenetic level between the rhizospheres of the forest (low and intermediate altitudes and the expansion site. Proteobacteria and Actinobacteria were the most differentially abundant phyla in forest soils compared to the expansion site rhizosphere. Moreover, Verrucomicrobia, Bacteroidetes and Nitrospirae phyla were more highly represented in the non-forest rhizosphere. Our study suggests that rhizospheric microbial communities of the same tree species may be affected by development stage and forest canopy cover via changes in soil pH and the C/N ratio.

  16. Rhizosphere bacteriome of the medicinal plant Sapindus saponaria L. revealed by pyrosequencing.

    Science.gov (United States)

    Garcia, A; Polonio, J C; Polli, A D; Santos, C M; Rhoden, S A; Quecine, M C; Azevedo, J L; Pamphile, J A

    2016-11-03

    Sapindus saponaria L. of Sapindaceae family is popularly known as soldier soap and is found in Central and South America. A study of such medicinal plants might reveal a more complex diversity of microorganisms as compared to non-medicinal plants, considering their metabolic potential and the chemical communication between their natural microbiota. Rhizosphere is a highly diverse microbial habitat with respect to both the diversity of species and the size of the community. Rhizosphere bacteriome associated with medicinal plant S. saponaria is still poorly known. The objective of this study was to assess the rhizosphere microbiome of the medicinal plant S. saponaria using pyrosequencing, a culture-independent approach that is increasingly being used to estimate the number of bacterial species present in different environments. In their rhizosphere microbiome, 26 phyla were identified from 5089 sequences of 16S rRNA gene, with a predominance of Actinobacteria (33.54%), Acidobacteria (22.62%), and Proteobacteria (24.72%). The rarefaction curve showed a linear increase, with 2660 operational taxonomic units at 3% distance sequence dissimilarity, indicating that the rhizosphere microbiome associated with S. saponaria was highly diverse with groups of bacteria important for soil management, which could be further exploited for agricultural and biotechnological purposes.

  17. A Greenhouse Assay on the Effect of Applied Urea Amount on the Rhizospheric Soil Bacterial Communities.

    Science.gov (United States)

    Shang, Shuanghua; Yi, Yanli

    2015-12-01

    The rhizospheric bacteria play key role in plant nutrition and growth promotion. The effects of increased nitrogen inputs on plant rhizospheric soils also have impacted on whole soil microbial communities. In this study, we analyzed the effects of applied nitrogen (urea) on rhizospheric bacterial composition and diversity in a greenhouse assay using the high-throughput sequencing technique. To explore the environmental factors driving the abundance, diversity and composition of soil bacterial communities, the relationship between soil variables and the bacterial communities were also analyzed using the mantel test as well as the redundancy analysis. The results revealed significant bacterial diversity changes at different amounts of applied urea, especially between the control treatment and the N fertilized treatments. Mantel tests showed that the bacterial communities were significantly correlated with the soil nitrate nitrogen, available nitrogen, soil pH, ammonium nitrogen and total organic carbon. The present study deepened the understanding about the rhizospheric soil microbial communities under different amounts of applied urea in greenhouse conditions, and our work revealed the environmental factors affecting the abundance, diversity and composition of rhizospheric bacterial communities.

  18. [Effects of Chinese onion' s root exudates on cucumber seedlings growth and rhizosphere soil microorganisms].

    Science.gov (United States)

    Yang, Yang; Liu, Shou-wei; Pan, Kai; Wu, Feng-zhi

    2013-04-01

    Taking the Chinese onion cultivars with different allelopathy potentials as the donor and cucumber as the accepter, this paper studied the effects of Chinese onion' s root exudates on the seedlings growth of cucumber and the culturable microbial number and bacterial community structure in the seedlings rhizosphere soil. The root exudates of the Chinese onion cultivars could promote the growth of cucumber seedlings, and the stimulatory effect increased with the increasing concentration of the root exudates. However, at the same concentrations of root exudates, the stimulatory effect had no significant differences between the Chinese onion cultivars with strong and weak allelopathy potential. The root exudates of the Chinese onion cultivars increased the individual numbers of bacteria and actinomyces but decreased those of fungi and Fusarium in rhizosphere soil, being more significant for the Chinese onion cultivar with high allelopathy potential (L-06). The root exudates of the Chinese onion cultivars also increased the bacterial community diversity in rhizosphere soil. The cloning and sequencing results indicated that the differential bacteria bands were affiliated with Actinobacteria, Proteobacteria, and Anaerolineaceae, and Anaerolineaceae only occurred in the rhizosphere soil in the treatment of high allelopathy potential Chinese onion (L-06). It was suggested that high concentration (10 mL per plant) of root exudates from high allelopathy potential Chinese onion (L-06) could benefit the increase of bacterial community diversity in cucumber seedlings rhizosphere soil.

  19. Impact of five insecticides on chickpea (Cicer arietinum L. nodulation, yield and nitrogen fixing rhizospheric bacteria

    Directory of Open Access Journals (Sweden)

    H. Khan

    2009-05-01

    Full Text Available A field experiment was conducted to study the effect of five insecticides i.e. Lorsban (40% EC, Decis (25% EC, Pyrifos (40% EC, Karate (25% EC, and Ripcord (10% EC on the survival of rhizosphere N2-fixing microorganisms, nodulation, pod damage (by pod borer, and grain yield of chickpea (Cicer arietinum L. crop. The study revealed that Pyrifos suppressed nodulation in chickpea and specific rhizobial counts in the crop rhizosphere, indicating that this insecticide was harmful to rhizobial population in rhizosphere. All the other tested insecticides were safe as they did not affect nodulation of the crop and the specific rhizobial counts in the rhizosphere. The results also revealed that all the tested insecticides except Lorsban (40% EC suppressed Azotobacter population in the rhizospheric soil indicating that Lorsban was harmless to Azotobacter while all other tested insecticides were harmful to the survival of this important nitrogen fixing bacterium. Pyrifos proved to be the most effective insecticide in controlling the pod borer damage and also in increasing the grain yield significantly as compared to other tested insecticides.

  20. Rhizosphere bacterial diversity and heavy metal accumulation in Nymphaea pubescens in aid of phytoremediation potential

    Directory of Open Access Journals (Sweden)

    RAISA KABEER

    2014-04-01

    Full Text Available The present work aims to characterize the bacterial diversity of the rhizosphere system of Nymphaea pubescens and the sediment system where it grows naturally. Heavy metal content in the sediment and Nymphea plant from the selected wetland system were also studied. Results of the current study showed that the concentration of copper, zinc and lead in the sediment ranged from 43 to 182 mg/Kg, from 331 to 1382 mg/Kg and from 121 to 1253 mg/Kg, respectively. Cadmium concentration in sediment samples was found to be zero and the order of abundance of heavy metals in the sediment samples was Zn>Pb>Cu>Cd. The abundance patterns of heavy metals in leaf, petiole and root were Cd>Cu>Pb>Zn. Microbial load in rhizosphere of Nymphea pubescens ranged from 93×102 to 69×103 and that of sediment was 62×102 to 125×103. Bacterial load in rhizosphere was higher than that of growing sediment. Four bacterial genera were identified from the rhizosphere of Nymphaea pubescens which include Acinetobacter, Alcaligens, Listeria and Staphylococcus. Acinetobacter, Alcaligens and Listeria are the three bacterial genera isolated from sediment samples. Copper resistance studies of the 14 bacterial isolates from rhizosphere and 7 strains from sediment samples revealed that most of them showed low resistance (<100 μg/ml and very few isolates showed high resistance of 400-500 μg/ml.

  1. Rhizospheric microbial communities associated with wild and cultivated frankincense producing Boswellia sacra tree.

    Science.gov (United States)

    Khan, Abdul Latif; Asaf, Sajjad; Al-Rawahi, Ahmed; Lee, In-Jung; Al-Harrasi, Ahmed

    2017-01-01

    Boswellia sacra, a frankincense producing endemic tree, has been well known for its cultural, religious and economic values. However, the tree has been least explored for the associated microsymbiota in the rhizosphere. The current study elucidates the fungal and bacterial communities of the rhizospheric regions of the wild and cultivated B. sacra tree populations through next generation sequencing. The sequence analysis showed the existence of 1006±8.9 and 60.6±3.1 operational taxonomic unit (OTUs) for bacterial and fungal communities respectively. In fungal communities, five major phyla were found with significantly higher abundance of Ascomycota (60.3%) in wild population and Basidiomycota (52%) in cultivated tree rhizospheres. Among bacterial communities, 31 major phyla were found, with significant distribution of Actinobacteria in wild tree rhizospheres, whereas Proteobacteria and Acidobacteria were highly abundant in cultivated trees. The diversity and abundance of microbiome varied significantly depending upon soil characteristics of the three different populations. In addition, significantly higher glucosidases, cellulases and indole-3-acetic acid were found in cultivated tree's rhizospheres as compared to wild tree populations. for these plants to survive the harsh arid-land environmental conditions. The current study is a first comprehensive work and advances our knowledge about the core fungal and bacterial microbial microbiome associated with this economically important tree.

  2. Rhizospheric microbial communities associated with wild and cultivated frankincense producing Boswellia sacra tree.

    Directory of Open Access Journals (Sweden)

    Abdul Latif Khan

    Full Text Available Boswellia sacra, a frankincense producing endemic tree, has been well known for its cultural, religious and economic values. However, the tree has been least explored for the associated microsymbiota in the rhizosphere. The current study elucidates the fungal and bacterial communities of the rhizospheric regions of the wild and cultivated B. sacra tree populations through next generation sequencing. The sequence analysis showed the existence of 1006±8.9 and 60.6±3.1 operational taxonomic unit (OTUs for bacterial and fungal communities respectively. In fungal communities, five major phyla were found with significantly higher abundance of Ascomycota (60.3% in wild population and Basidiomycota (52% in cultivated tree rhizospheres. Among bacterial communities, 31 major phyla were found, with significant distribution of Actinobacteria in wild tree rhizospheres, whereas Proteobacteria and Acidobacteria were highly abundant in cultivated trees. The diversity and abundance of microbiome varied significantly depending upon soil characteristics of the three different populations. In addition, significantly higher glucosidases, cellulases and indole-3-acetic acid were found in cultivated tree's rhizospheres as compared to wild tree populations. for these plants to survive the harsh arid-land environmental conditions. The current study is a first comprehensive work and advances our knowledge about the core fungal and bacterial microbial microbiome associated with this economically important tree.

  3. Bacterial community structure in the rhizosphere of three cactus species from semi-arid highlands in central Mexico.

    Science.gov (United States)

    Aguirre-Garrido, J Félix; Montiel-Lugo, Daniel; Hernández-Rodríguez, César; Torres-Cortes, Gloria; Millán, Vicenta; Toro, Nicolás; Martínez-Abarca, Francisco; Ramírez-Saad, Hugo C

    2012-05-01

    The nature reserve of Tehuacan-Cuicatlan in central Mexico is known for its diversity and endemism mainly in cactus plants. Although the xerophytic flora is reasonably documented, the bacterial communities associated with these species have been largely neglected. We assessed the diversity and composition of bacterial communities in bulk (non-rhizospheric) soil and the rhizosphere of three cactus plant species: Mammillaria carnea, Opuntia pilifera and Stenocereus stellatus, approached using cultivation and molecular techniques, considering the possible effect of dry and rainy seasons. Cultivation-dependent methods were focused on putative N(2)-fixers and heterotrophic aerobic bacteria, in the two media tested the values obtained for dry season samples grouped together regardless of the sample type (rhizospheric or non-rhizospheric), these groups also included the non-rhizospheric sample for rainy season, on each medium. These CFU values were smaller and significantly different from those obtained on rhizospheric samples from rainy season. Genera composition among isolates of the rhizospheric samples was very similar for each season, the most abundant taxa being α-Proteobacteria, Actinobacteria and Firmicutes. Interestingly, the genus Ochrobactrum was highly represented among rhizospheric samples, when cultured in N-free medium. The structure of the bacterial communities was approached with molecular techniques targeting partial 16S rRNA sequences such as denaturing gradient gel electrophoresis and serial analysis of ribosomal sequence tags. Under these approaches, the most represented bacterial phyla were Actinobacteria, Proteobacteria and Acidobacteria. The first two were also highly represented when using isolation techniques.

  4. Rhizosphere bacterial community composition in natural stands of Carex arenaria (sand sedge) is determined by bulk soil community composition

    NARCIS (Netherlands)

    De Ridder-Duine, A.S.; Kowalchuk, G.A.; Klein Gunnewiek, P.J.A.; Smant, W.; Van Veen, J.A.; De Boer, W.

    2005-01-01

    The relative importance of specific plant properties versus soil characteristics in shaping the bacterial community structure of the rhizosphere is a topic of considerable debate. Here, we report the results of a study on the bacterial composition of the rhizosphere of the wild plant Carex arenaria

  5. The seasonal dynamics of yeast communities in the rhizosphere of soddy-podzolic soils

    Science.gov (United States)

    Golubtsova, Yu. V.; Glushakova, A. M.; Chernov, I. Yu.

    2007-08-01

    The annual dynamics of the number and taxonomic composition of yeast was studied in the rhizosphere of two plant species (Ajuga reptans L. and Taraxacum officinale Wigg.) in a forb-birch forest on soddy-podzolic soil. Eurybiont phyllobasidial cryptococci and red-pigmented phytobionts Rhodotorula glutinis were found to predominate in the phyllosphere of these plants, whereas the typical pedobionts Cryptococcus terricola and Cr. podzolicus occurred on the surface of roots and in the rhizosphere. The seasonal changes in the number and species composition of the yeast communities in the rhizosphere were more smooth as compared to those in the phyllosphere. In the period of active vegetation of the plants, the phytobiont yeasts develop over their whole surface, including the rhizoplane. Their number on the aboveground parts of the plants was significantly lower than that of the pedobiont forms. Thus, the above-and underground parts of the plants significantly differed in the composition of the dominant species of epiphytic yeasts.

  6. Ammonia-oxidizing Bacteria and Archaea in the Rhizosphere of Freshwater Macrophytes

    DEFF Research Database (Denmark)

    Herrmann, Martina; Schramm, Andreas

    2007-01-01

    AMMONIA-OXIDIZING ARCHAEA AND BACTERIA IN THE RHIZOSPHERE OF FRESHWATER MACROPHYTES Martina Herrmann and Andreas Schramm Department of Biological Sciences, Microbiology, University of Aarhus, Denmark Aquatic macrophytes such as Littorella uniflora and Lobelia dortmanna release oxygen from...... their roots and thereby stimulate nitrification and coupled nitrification-denitrification in their rhizosphere. However, oxygen release and inorganic nitrogen concentrations differ markedly between macrophyte species. We therefore propose (i) that the rhizosphere of freshwater macrophytes harbours a species......-specific microbial community distinct from that of unvegetated sediment and (ii) that aquatic macrophytes have an impact on abundance and activity of nitrifying and denitrifying bacteria in freshwater sediment. The goal of this study was to test these hypotheses for the key functional group for coupled nitrification...

  7. Impacts of endophyte infection of ryegrass on rhizosphere metabolome and microbial community

    DEFF Research Database (Denmark)

    Wakelin, S.; Harrison, Scott James; Mander, C.

    2015-01-01

    The use of grasses such as ryegrass and fescues infected with endophytic fungi of the Epichloë genus is widespread in New Zealand's pastoral systems. Each endophyte-cultivar combination represents a distinctive genome-genome association, resulting in unique biological outcomes. The wider influence......37, within a genetically uniform breeding line of perennial ryegrass (Lolium perenne cv. Samson 11104) on the rhizosphere metabolome and the composition of the fungal, bacterial, and Pseudomonas communities. There were strong differences in the rhizosphere metabolomes between infested and non......-infested ryegrass strains (P=0.06). These were attributed to shifts in various n-alkane hydrocarbon compounds. The endophyte-associated alteration in rhizosphere metabolome was linked to changes in the total bacterial (P

  8. Purple phototrophic bacterium enhances stevioside yield by Stevia rebaudiana Bertoni via foliar spray and rhizosphere irrigation.

    Science.gov (United States)

    Wu, Jing; Wang, Yiming; Lin, Xiangui

    2013-01-01

    This study was conducted to compare the effects of foliar spray and rhizosphere irrigation with purple phototrophic bacteria (PPB) on growth and stevioside (ST) yield of Stevia. rebaudiana. The S. rebaudiana plants were treated by foliar spray, rhizosphere irrigation, and spray plus irrigation with PPB for 10 days, respectively. All treatments enhanced growth of S. rebaudiana, and the foliar method was more efficient than irrigation. Spraying combined with irrigation increased the ST yield plant (-1) by 69.2% as compared to the control. The soil dehydrogenase activity, S. rebaudiana shoot biomass, chlorophyll content in new leaves, and soluble sugar in old leaves were affected significantly by S+I treatment, too. The PPB probably works in the rhizosphere by activating the metabolic activity of soil bacteria, and on leaves by excreting phytohormones or enhancing the activity of phyllosphere microorganisms.

  9. Purple phototrophic bacterium enhances stevioside yield by Stevia rebaudiana Bertoni via foliar spray and rhizosphere irrigation.

    Directory of Open Access Journals (Sweden)

    Jing Wu

    Full Text Available This study was conducted to compare the effects of foliar spray and rhizosphere irrigation with purple phototrophic bacteria (PPB on growth and stevioside (ST yield of Stevia. rebaudiana. The S. rebaudiana plants were treated by foliar spray, rhizosphere irrigation, and spray plus irrigation with PPB for 10 days, respectively. All treatments enhanced growth of S. rebaudiana, and the foliar method was more efficient than irrigation. Spraying combined with irrigation increased the ST yield plant (-1 by 69.2% as compared to the control. The soil dehydrogenase activity, S. rebaudiana shoot biomass, chlorophyll content in new leaves, and soluble sugar in old leaves were affected significantly by S+I treatment, too. The PPB probably works in the rhizosphere by activating the metabolic activity of soil bacteria, and on leaves by excreting phytohormones or enhancing the activity of phyllosphere microorganisms.

  10. Purple Phototrophic Bacterium Enhances Stevioside Yield by Stevia rebaudiana Bertoni via Foliar Spray and Rhizosphere Irrigation

    Science.gov (United States)

    Wu, Jing; Wang, Yiming; Lin, Xiangui

    2013-01-01

    This study was conducted to compare the effects of foliar spray and rhizosphere irrigation with purple phototrophic bacteria (PPB) on growth and stevioside (ST) yield of Stevia. rebaudiana. The S. rebaudiana plants were treated by foliar spray, rhizosphere irrigation, and spray plus irrigation with PPB for 10 days, respectively. All treatments enhanced growth of S. rebaudiana, and the foliar method was more efficient than irrigation. Spraying combined with irrigation increased the ST yield plant -1 by 69.2% as compared to the control. The soil dehydrogenase activity, S. rebaudiana shoot biomass, chlorophyll content in new leaves, and soluble sugar in old leaves were affected significantly by S+I treatment, too. The PPB probably works in the rhizosphere by activating the metabolic activity of soil bacteria, and on leaves by excreting phytohormones or enhancing the activity of phyllosphere microorganisms. PMID:23825677

  11. Stimulation of bacteria and protists in rhizosphere of glyphosate-treated barley

    DEFF Research Database (Denmark)

    Imparato, Valentina; Santos, Susana; Johansen, Anders

    2016-01-01

    Glyphosate is extensively used for weed control and to ripen crops. Despite a number of studies on the direct effect of glyphosate on plants and soil organisms, only little is known about indirect effect of glyphosate on rhizosphere microbial communities, following the accelerated turnover...... of the fast-dying root biomass. In microcosms we studied the indirect effect of glyphosate on the microbial community in the rhizosphere of barley with phyllosphere application of glyphosate in comparison to leaving the plant intact or cutting off the shoot. Attempting to link the response of bacterial...... and protist communities to foliar application of glyphosate, we measured bacterial and protist abundance, diversity and physiological status, as well as soil organic carbon. Foliar application of glyphosate doubled bacterial abundance of the culturable fraction present in the rhizosphere compared to the other...

  12. Fungal Communities in Rhizosphere Soil under Conservation Tillage Shift in Response to Plant Growth

    Directory of Open Access Journals (Sweden)

    Ziting Wang

    2017-07-01

    Full Text Available Conservation tillage is an extensively used agricultural practice in northern China that alters soil texture and nutrient conditions, causing changes in the soil microbial community. However, how conservation tillage affects rhizosphere and bulk soil fungal communities during plant growth remains unclear. The present study investigated the effect of long-term (6 years conservation (chisel plow, zero and conventional (plow tillage during wheat growth on the rhizosphere fungal community, using high-throughput sequencing of the internal transcribed spacer (ITS gene and quantitative PCR. During tillering, fungal alpha diversity in both rhizosphere and bulk soil were significantly higher under zero tillage compared to other methods. Although tillage had no significant effect during the flowering stage, fungal alpha diversity at this stage was significantly different between rhizosphere and bulk soils, with bulk soil presenting the highest diversity. This was also reflected in the phylogenetic structure of the communities, as rhizosphere soil communities underwent a greater shift from tillering to flowering compared to bulk soil communities. In general, less variation in community structure was observed under zero tillage compared to plow and chisel plow treatments. Changes in the relative abundance of the fungal orders Capnodiales, Pleosporales, and Xylariales contributed the highest to the dissimilarities observed. Structural equation models revealed that the soil fungal communities under the three tillage regimes were likely influenced by the changes in soil properties associated with plant growth. This study suggested that: (1 differences in nutrient resources between rhizosphere and bulk soils can select for different types of fungi thereby increasing community variation during plant growth; (2 tillage can alter fungal communities' variability, with zero tillage promoting more stable communities. This work suggests that long-term changes in

  13. Fungal Communities in Rhizosphere Soil under Conservation Tillage Shift in Response to Plant Growth.

    Science.gov (United States)

    Wang, Ziting; Li, Tong; Wen, Xiaoxia; Liu, Yang; Han, Juan; Liao, Yuncheng; DeBruyn, Jennifer M

    2017-01-01

    Conservation tillage is an extensively used agricultural practice in northern China that alters soil texture and nutrient conditions, causing changes in the soil microbial community. However, how conservation tillage affects rhizosphere and bulk soil fungal communities during plant growth remains unclear. The present study investigated the effect of long-term (6 years) conservation (chisel plow, zero) and conventional (plow) tillage during wheat growth on the rhizosphere fungal community, using high-throughput sequencing of the internal transcribed spacer (ITS) gene and quantitative PCR. During tillering, fungal alpha diversity in both rhizosphere and bulk soil were significantly higher under zero tillage compared to other methods. Although tillage had no significant effect during the flowering stage, fungal alpha diversity at this stage was significantly different between rhizosphere and bulk soils, with bulk soil presenting the highest diversity. This was also reflected in the phylogenetic structure of the communities, as rhizosphere soil communities underwent a greater shift from tillering to flowering compared to bulk soil communities. In general, less variation in community structure was observed under zero tillage compared to plow and chisel plow treatments. Changes in the relative abundance of the fungal orders Capnodiales, Pleosporales, and Xylariales contributed the highest to the dissimilarities observed. Structural equation models revealed that the soil fungal communities under the three tillage regimes were likely influenced by the changes in soil properties associated with plant growth. This study suggested that: (1) differences in nutrient resources between rhizosphere and bulk soils can select for different types of fungi thereby increasing community variation during plant growth; (2) tillage can alter fungal communities' variability, with zero tillage promoting more stable communities. This work suggests that long-term changes in tillage regimes may

  14. Rhizosphere impacts on peat decomposition and nutrient cycling across a natural water table gradient

    Science.gov (United States)

    Gill, A. L.; Finzi, A.

    2014-12-01

    High latitude forest and peatland soils represent a major terrestrial carbon store sensitive to climate change. Warming temperatures and increased growing-season evapotranspiration are projected to reduce water table (WT) height in continental peatlands. WT reduction increases peat aerobicity and facilitates vascular plant and root growth. Root-associated microbial communities are exposed to a different physical and chemical environment than microbial communities in non-root associated "bulk" peat, and therefore have distinct composition and function within the soil system. As the size of the peatland rhizosphere impacts resources available to the microbial communities, transitions from a root-free high water table peatland to a root-dominated low WT peatland may alter seasonal patterns of microbial community dynamics, enzyme production, and carbon storage within the system. We used a natural water table gradient in Caribou Bog near Orono, ME to explore the influence of species composition, root biomass, and rhizosphere size on seasonal patterns in microbial community structure, enzyme production, and carbon mineralization. We quantified root biomass across the water table gradient and measured microbial biomass carbon and nitrogen, C mineralization, N mineralization, and exoenzyme activity in root-associated and bulk peat samples throughout the 2013 growing season. Microbial biomass was consistently higher in rhizosphere-associated soils and peaked in the spring. Microbial biomass CN and enzyme activity was higher in rhizosphere-associated soil, likely due to increased mycorrhizal abundance. Exoenzyme activity peaked in the fall, with a larger relative increase in enzyme activity in rhizosphere peat, while carbon mineralization rates did not demonstrate a strong seasonal pattern. The results suggest that rhizosphere-associated peat sustains higher and more variable rates of enzyme activity throughout the growing season, which results in higher rates of carbon

  15. Bioaugmentation and rhizosphere-assisted biodegradation as strategies for optimization of the dissipation capacity of biobeds.

    Science.gov (United States)

    Campos, M; Perruchon, C; Karas, P A; Karavasilis, D; Diez, M C; Karpouzas, D G

    2017-02-01

    Biobeds are on-farm biodepuration systems whose efficiency rely on their high pesticide biodegradation capacity. We evaluated two optimization strategies, bioaugmentation and/or rhizosphere-assisted biodegradation, to maximize the dissipation capacity of biobeds. Iprodione was used as a model pesticide. Its dissipation and metabolism was determined in a biobed packing material inoculated with an iprodione-degrading Arthrobacter strain C1 (bioaugmentation, treatments B+C1) and/or seeded with ryegrass (rhizosphere-assisted biodegradation, treatments B+P). The impact of those strategies on the activity and composition of the microbial community was determined. Bioaugmentation accelerated the dissipation of iprodione which was further enhanced in the bioaugmented, rhizosphere-assisted treatment (treatment B+P+C1, Half-life (DT50) = 3.4 d), compared to the non-bioaugmented, non rhizosphere-assisted control (DT50 = 9.5 d, treatment B). Bioaugmentation resulted in the earlier formation of intermediate formation of metabolites I (3,5-dichlorophenyl-carboxamide), II (3,5-dichlorophenylurea acetate) and 3,5-dichloroaniline (3,5-DCA). The latter was further dissipated by the indigenous microbial community. Acid phosphatase (AP) and β-glucosidase (GLU) were temporarily stimulated in rhizosphere-assisted treatments, whereas a stimulation of the fluorescein diacetate (FDA) hydrolytic activity in the bioaugmented treatments coincided with the hydrolysis of iprodione. q-PCR showed that changes in the abundance of alpha-proteobacteria and firmicutes was driven by the presence of rhizosphere while bioaugmentation had no significant effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. [Effects of tobacco garlic crop rotation and intercropping on tobacco yield and rhizosphere soil phosphorus fractions].

    Science.gov (United States)

    Tang, Biao; Zhang, Xi-zhou; Yang, Xian-bin

    2015-07-01

    A field plot experiment was conducted to investigate the tobacco yield and different forms of soil phosphorus under tobacco garlic crop rotation and intercropping patterns. The results showed that compared with tobacco monoculture, the tobacco yield and proportion of middle/high class of tobacco leaves to total leaves were significantly increased in tobacco garlic crop rotation and intercropping, and the rhizosphere soil available phosphorus contents were 1.3 and 1.7 times as high as that of tobacco monoculture at mature stage of lower leaf. For the inorganic phosphorus in rhizosphere and non-rhizosphere soil in different treatments, the contents of O-P and Fe-P were the highest, followed by Ca2-P and Al-P, and Ca8-P and Ca10-P were the lowest. Compared with tobacco monoculture and tobacco garlic crop intercropping, the Ca2-P concentration in rhizosphere soil under tobacco garlic crop rotation at mature stage of upper leaf, the Ca8-P concentration at mature stage of lower leaf, and the Ca10-P concentration at mature stage of middle leaf were lowest. The Al-P concentrations under tobacco garlic crop rotation and intercropping were 1.6 and 1.9 times, and 1.2 and 1.9 times as much as that under tobacco monoculture in rhizosphere soil at mature stages of lower leaf and middle leaf, respectively. The O-P concentrations in rhizosphere soil under tobacco garlic crop rotation and intercropping were significantly lower than that under tobacco monoculture. Compared with tobacco garlic crop intercropping, the tobacco garlic crop rotation could better improve tobacco yield and the proportion of high and middle class leaf by activating O-P, Ca10-P and resistant organic phosphorus in soil.

  17. Bioavailability enhanced rhizosphere remediation of petroleum hydrocarbon contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Marchenko, A.; Vorobyov, A.; Zharikov, G.; Ermolenko, Z.; Dyadishchev, N.; Borovick, R.; Sokolov, M. [Research Centre for Toxicology and Hygienic Regulation of Biopreparations, Moscow region (Russian Federation); Ortega-Calvo, J.J. [Instituto de Recursos Naturales y Agrobiologia, CSIC, Sevilla (Spain)

    2005-07-01

    Aliphatic, aromatic and polycyclic aromatic oil hydrocarbons are structurally complicated man-caused pollutants that are constantly brought into biosphere. Oil production in Russia, so as all over the world, is connected with pollution of biotopes, ecosystems and agro-landscapes. Presently large funds are allocated either for oil leak prevention or for discharged oil gathering. At the same time, in spite of large necessity in technologies for efficient reconstruction of soil bio-productivity, reliable regional systems of their remediation in situ have not been developed yet. One such method is rhizosphere remediation, a biotechnology, based on the functioning of plant-microbial complexes. Little is known about bioavailability in phyto-remediation systems. Specific bioavailability-promoting mechanisms, operating in soil with hydrocarbon-degrading populations, may be responsible for increased rates of pollutant transformation (increased bacterial adherence to the pollutants, production of bio-surfactants by bacteria or by plants, possible role of chemotaxis). In the course of work collection of 42 chemo-tactically active bio-surfactant producing strain-degraders of petroleum hydrocarbons including polycyclic aromatic hydrocarbons (PAHs) was created. Two representative strains were selected for detailed chemotaxis studies with PAHs (naphthalene, phenanthrene, anthracene, and pyrene), bacterial lipopolysaccharide and root exudates from seven different plants. These strains are produce the bio-surfactants (rhamno-lipid). The chemotactic response was quantified with a capillary and densitometric chemotaxis assay. Surface tension of cultural liquid was measured after cultivation of strains in the presence of hexadecane or phenanthrene with the use of a ring tensiometer. Before measuring of surface tension microbial cells were collected from liquid culture by centrifugation. Total petroleum Hydrocarbons (TPH) in soil were analyzed by infra-red spectroscopy method. PAHs

  18. Genotypic diversity among rhizospheric bacteria of three legumes assessed by cultivation-dependent and cultivation-independent techniques.

    Science.gov (United States)

    Pongsilp, Neelawan; Nimnoi, Pongrawee; Lumyong, Saisamorn

    2012-02-01

    The genotypic diversity of rhizospheric bacteria of 3 legumes including Vigna radiata, Arachis hypogaea and Acacia mangium was compared by using cultivation-dependent and cultivation-independent methods. For cultivation-dependent method, Random amplified polymorphic DNA (RAPD) profiles revealed that the bacterial genetic diversity of V. radiata and A. mangium rhizospheres was higher than that of A. hypogaea rhizosphere. For cultivation-independent method, Denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified 16S rRNA genes revealed the difference in bacterial community and diversity of rhizospheres collected from 3 legumes. The ribotype richness which indicates species diversity, was highest in V. radiata rhizosphere, followed by A. hypogaea and A. mangium rhizospheres, respectively. Three kinds of media were used to cultivate different target groups of bacteria. The result indicates that the communities of cultivable bacteria in 3 rhizospheres recovered from nutrient agar (NA) medium were mostly different from each other, while Bradyrhizobium selective medium (BJSM) and nitrogen-free medium shaped the communities of cultivable bacteria. Nine isolates grown on BJSM were identified by 16S rRNA gene sequence analysis. These isolates were very closely related (with 96% to 99% identities) to either one of the three groups including Cupriavidus-Ralstonia group, Bacillus group and Bradyrhizobium-Bosea-Afipia group. The rhizospheres were also examined for their enzymatic patterns. Of 19 enzymes tested, 3 rhizospheres were distinguishable by the presence or the absence of leucine acrylamidase and acid phosphatase. The selected cultivable bacteria recovered from NA varied in their abilities to produce indole-acetic acid and ammnonia. The resistance to 10 antibiotics was indistinguishable among bacteria isolated from different rhizospheres.

  19. Fusaria and other fungi taxa associated with rhizosphere and rhizoplane of lentil and sesame at different growth stages

    Directory of Open Access Journals (Sweden)

    Sobhy I. Abdel-Hafez

    2013-12-01

    Full Text Available Density and diversity of Fusarium species and other fungi associated with rhizosphere and rhizoplane of lentil and sesame plants at three different growth stages were investigated. Sixteen species of Fusarium were isolated from rhizosphere (13 species and rhizoplane (11 of both plants studied. In lentil, 11 species were recorded from its rhizosphere (9 species and rhizoplane (8. Fusarium species associated with lentil rhizoplane gave highest number of propagules at the first stage of plant growth while the ones of Fusarium associated with the rhizosphere produced the highest number at the second stage of growth. F. solani was the most common in the three growth stages. In addition, of two growth stages, F. culmorum and F. tricinctum were isolated from the rhizosphere while F. nygamai and F. verticillioides from the rhizoplane. The other species were recorded from only one growth stage of lentil plant. In sesame plants, rhizosphere yielded nine Fusarium species while rhizoplane gave only six from the three stages investigated. Stage I of sesame rhizosphere possessed the highest colony forming units of Fusarium. As the case for lentil, F. solani was the most common species in sesame rhizospere and rhizoplane. F. verticillioides and F. nygamai (in three different growth stages followed by F. oxysporum and F. tricinctum (in two growth stages were recorded using the dilution-plate and/or soil-plate methods from sesame rhizosphere soils. Rhizoplane Fusarium species of sesame plants were isolated at the three different growth stages with almost equal number of colony forming units. F. poae came after F. solani in its frequency since it was recovered from two growth stages. Several of the isolated species are well-known as pathogens to many cultivated plants. To the best of our knowledge, three species are recorded here for the first time in Egypt from the rhizosphere (F. acutatum, rhizoplane of sesame plants (F. longipes and from rhizosphere of both

  20. Bacillus oryzisoli sp. nov., isolated from rice rhizosphere.

    Science.gov (United States)

    Zhang, Xiao-Xia; Gao, Ju-Sheng; Zhang, Lei; Zhang, Cai-Wen; Ma, Xiao-Tong; Zhang, Jun

    2016-09-01

    The taxonomy of strain 1DS3-10T, a Gram-staining-positive, endospore-forming bacterium isolated from rice rhizosphere, was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that the novel strain was grouped with established members of the genus Bacillus and appeared to be closely related to the type strains Bacillus benzoevorans DSM 5391T (97.9 %), Bacillus circulans DSM 11T (97.7 %), Bacillus novalis JCM 21709T (97.3 %), Bacillus soli JCM 21710T (97.3 %), Bacillus oceanisediminis CGMCC 1.10115T (97.3 %) and BacillusnealsoniiFO-92T (97.1 %). The fatty acid profile of strain 1DS3-10T, which showed a predominance of iso-C15 : 0 and anteiso-C15 : 0, supported the allocation of the strain to the genus Bacillus. The predominant menaquinone was MK-7 (100 %). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and unknown aminolipids. Cell-wall peptidoglycan contained meso-diaminopimelic acid. DNA-DNA hybridization values between strain 1DS3-10T and the type strains of closely related species were 25-33 %, which supported that 1DS3-10T represented a novel species in the genus Bacillus. The results of some physiological and biochemical tests also allowed the phenotypic differentiation of strain 1DS3-10T from the most closely related recognized species. On the basis of the phylogenetic and phenotypic evidence, strain 1DS3-10T represents a novel species of the genus Bacillus, for which the name Bacillus oryzisoli sp. nov. is proposed. The type strain of the novel species is 1DS3-10T (=ACCC 19781T=DSM 29761T).

  1. Biological control of potato black scurf by rhizosphere associated bacteria

    Directory of Open Access Journals (Sweden)

    Mohsin Tariq

    2010-06-01

    Full Text Available The present work was carried out to study the potential of plant rhizosphere associated bacteria for the biocontrol of potato black scurf disease caused by Rhizoctonia solani Khun AG-3. A total of twenty-eight bacteria isolated from diseased and healthy potato plants grown in the soil of Naran and Faisalabad, Pakistan were evaluated for their antagonistic potential. Nine bacterial strains were found to be antagonistic in vitro, reduced the fungal growth and caused the lysis of sclerotia of R. solani in dual culture assay as well as in extracellular metabolite efficacy test. The selected antagonistic strains were further tested for the production and efficacy of volatile and diffusible antibiotics, lytic enzymes and siderophores against R. solani. Selected antagonistic bacteria were also characterized for growth promoting attributes i.e., phosphate solubilization, nitrogen fixation and indole acetic acid production. Biocontrol efficacy and percent yield increase by these antagonists was estimated in greenhouse experiment. Statistical analysis showed that two Pseudomonas spp. StT2 and StS3 were the most effective with 65.1 and 73.9 percent biocontrol efficacy, as well as 87.3 and 98.3 percent yield increase, respectively. Potential antagonistic bacterial strain StS3 showed maximum homology to Pseudomonas sp. as determined by 16S rRNA gene sequencing. These results suggest that bacterial isolates StS3 and StT2 have excellent potential to be used as effective biocontrol agents promoting plant growth with reduced disease incidence.

  2. Rhodococcus psychrotolerans sp. nov., isolated from rhizosphere of Deschampsia antarctica.

    Science.gov (United States)

    Silva, Leonardo Jose; Souza, Danilo Tosta; Genuario, Diego Bonaldo; Hoyos, Harold Alexander Vargas; Santos, Suikinai Nobre; Rosa, Luiz Henrique; Zucchi, Tiago Domingues; Melo, Itamar Soares

    2017-11-15

    A novel actinobacterium, designated strain CMAA 1533(T), was isolated from the rhizosphere of Deschampsia antarctica collected at King George Island, Antarctic Peninsula. Strain CMAA 1533(T) was found to grow over a wide range of temperatures (4-28 °C) and pH (4-10). Macroscopically, the colonies were observed to be circular shaped, smooth, brittle and opaque-cream on most of the culture media tested. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CMAA 1533(T) belongs to the family Nocardiaceae and forms a distinct phyletic line within the genus Rhodococcus. Sequence similarity calculations indicated that the novel strain is closely related to Rhodococcus degradans CCM 4446(T), Rhodococcus erythropolis NBRC 15567(T) and Rhodococcus triatomae DSM 44892(T) (≤ 96.9%). The organism was found to contain meso-diaminopimelic acid, galactose and arabinose in whole cell hydrolysates. Its predominant isoprenologue was identified as MK-8(H2) and the polar lipids as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannosides. The major fatty acids were identified as Summed feature (C16:1 ω6c and/or C16:1 ω7c), C16:0, C18:1 ω9c and 10-methyl C18:0. The G+C content of genomic DNA was determined to be 65.5 mol%. Unlike the closely related type strains, CMAA 1533(T) can grow at 4 °C but not at 37 °C and was able to utilise adonitol and galactose as sole carbon sources. Based on phylogenetic, chemotaxonomic and physiological data, it is concluded that strain CMAA 1533(T) (= NRRL B-65465(T) = DSM 104532(T)) represents a new species of the genus Rhodococcus, for which the name Rhodococcus psychrotolerans sp. nov. is proposed.

  3. Rhizobium helianthi sp. nov., isolated from the rhizosphere of sunflower.

    Science.gov (United States)

    Wei, Xuexin; Yan, Shouwei; Li, Dai; Pang, Huancheng; Li, Yuyi; Zhang, Jianli

    2015-12-01

    A Gram-stain-negative, non-spore-forming, rod-shaped and aerobic bacterium, designated Xi19T, was isolated from a soil sample collected from the rhizosphere of sunflower (Helianthus annuus) in Wuyuan county of Inner Mongolia, China and was characterized taxonomically by using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel isolate was related to species of the genus Rhizobium, sharing the greatest 16S rRNA gene sequence similarity with Rhizobium rhizoryzae J3-AN59T (98.4 %), followed by Rhizobium pseudoryzae J3-A127T (97.4 %). There were low similarities ( Rhizobium. DNA-DNA hybridization values between strain Xi19T and the most related strain Rhizobium rhizoryzae J3-AN59T were low. The major cellular fatty acids of strain Xi19T were C16 : 0, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C19 : 0 cyclo ω8c. Q-10 was identified as the predominant ubiquinone and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. The DNA G+C content of strain Xi19T was 60.2 mol%. On the basis of physiological and biochemical characteristics, coupled with genotypic data obtained in this work, strain Xi19T represents a novel species of the genus Rhizobium, for which the name Rhizobium helianthi is proposed. The type strain is Xi19T ( = CGMCC 1.12192T = KCTC 23879T).

  4. Rewetting Rate of Dry Rhizosphere Limited by Mucilage Viscosity and Mucilage Hydrophobicity

    Science.gov (United States)

    Reeder, Stacey; Zarebanadkouki, Mohsen; Kroener, Eva; Ahmed, Mutez Ali; Carminati, Andrea; Kostka, Stanley

    2015-04-01

    During root water uptake from dry soils, the highly nonlinear relation between hydraulic conductivity and water content as well as the radial root geometry result in steep water potential gradients close to the root surface. The hydraulic properties of the rhizosphere - the interface between root and soil - are one of the most important and least understood components in controlling root water uptake. Previous research using young lupine plants revealed that after irrigation it took 1-2 days for the water content of the dry rhizosphere to increase. How can this delay be explained? Our hypotheses are that: a) mucilage - a polymeric plant exudate - alters rhizosphere hydraulic properties, b) its hydrophobic moieties make the rhizosphere water repellent when dry, c) mucilage is a highly viscous, gelatinous material, the dryer it gets the more viscous it becomes, d) mucilage viscosity reduces rhizosphere hydraulic conductivity. To test our hypotheses we used mucilage extracted from chia seed as an analogue for root mucilage. We measured: 1) the contact angle between water and pure dry and wet mucilage, dry soil treated with various concentrations of mucilage, 2) mucilage viscosity as function of concentration and shear rate, 3) saturated hydraulic conductivity as function of mucilage concentration, 4) swelling of dry mucilage in water. Finally, to mimic flow of water across the rhizosphere, we measured the capillary rise in soils treated with different mucilage concentrations. The results showed that: 1) dry mucilage has a contact angle > 90° while it loses its water repellency when it gets wet, 2) viscosity and saturated hydraulic conductivity can change several orders of magnitude with a small change in mucilage concentration, 3) 1g of dry mucilage absorbs 300g water in its fully swollen state, 4) the swelling rate of mucilage showed an exponential behavior with half time of 5 hours. Capillary rise became slower in soils with higher mucilage concentration, while the

  5. [Effect of reed rhizosphere on nitrogen and COD removal efficiency in subsurface flow constructed wetlands].

    Science.gov (United States)

    Dai, Yuan-yuan; Yang, Xin-ping; Zhou, Li-xiang

    2008-12-01

    Nitrogen removal efficiency was investigated in three subsurface flow constructed wetlands (CWs) with and without reed. Root bag made of nylon sieve with 300 mesh was used to enwrap the reed root in one of reed CWs to distinguish reed rhizosphere from non-rhizosphere. The CWs with root bag enwrapped reed root (hereinafter called as mesh CWs) and other CWs were fed with artificial ammonium-rich wastewater. The results indicated that the COD and N removal occurred mainly in the front of CWs, and C and nitrogen removal occurred concurrently along the stream way. When C/N ratio of influent was 5, the removal efficiencies of NH4+ -N in control CWs, reed CWs and mesh CWs were 66.2%, 94.2% and 82.2%, respectively. TN removal efficiencies were 67.2%, 90.7% and 76.1% respectively. Simultaneous nitrification and denitrification phenomenon in this study was also observed. The removal efficiency of organic carbon was different from nitrogen removal efficiency, mesh CWs showed the highest COD removal efficiency with 80.9%, while control CWs and reed CWs were 72.2% and 56.2%, respectively. C/N ratio of wastewater throughout the bed was more than 5 in three CWs, which indicated carbon source supply was enough for denitrification. The oxidation-reduction position (ORP) and concentration of total organic carbon in rhizosphere and non-rhizosphere were detected. The ORP in the front of mesh CWs's rhizosphere was much higher than that in control CWs and non-rhizosphere in mesh CWs, which were 11-311 mV and 62-261 mV, respectively. Root exudates also showed the difference between rhizosphere and non-rhizosphere in mesh CWs, the TOC of them were 21.3-54.6 mg x L(-1) and 6.65-12.0 mg x L(-1). Due to the higher ORP and concentration of TOC, the nitrogen removal efficiency in plant CWs was much higher than that in control CWs.

  6. Developing mathematical modelling competence

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Jensen, Tomas Højgaard

    2003-01-01

    In this paper we introduce the concept of mathematical modelling competence, by which we mean being able to carry through a whole mathematical modelling process in a certain context. Analysing the structure of this process, six sub-competences are identified. Mathematical modelling competence...... cannot be reduced to these six sub-competences, but they are necessary elements in the development of mathematical modelling competence. Experience from the development of a modelling course is used to illustrate how the different nature of the sub-competences can be used as a tool for finding...... the balance between different kinds of activities in a particular educational setting. Obstacles of social, cognitive and affective nature for the students' development of mathematical modelling competence are reported and discussed in relation to the sub-competences....

  7. Effect of soil water content on spatial distribution of root exudates and mucilage in the rhizosphere

    Science.gov (United States)

    Holz, Maire; Zarebanadkouki, Mohsen; Kuzyakov, Yakov; Carminati, Andrea

    2016-04-01

    Water and nutrients are expected to become the major factors limiting food production. Plant roots employ various mechanisms to increase the access to these limited soil resources. Low molecular root exudates released into the rhizosphere increase nutrient availability, while mucilage improves water availability under low moisture conditions. However, studies on the spatial distribution and quantification of exudates in soil are scarce. Our aim was therefore to quantify and visualize root exudates and mucilage distribution around growing roots using neutron radiography and 14C imaging at different levels of water stress. Maize plants were grown in rhizotrons filled with a silty soil and were exposed to varying soil conditions, from optimal to dry. Mucilage distribution around the roots was estimated from the profiles of water content in the rhizosphere - note that mucilage increases the soil water content. The profiles of water content around different root types and root ages were measured with neutron radiography. Rhizosphere extension was approx. 0.7 mm and did not differ between wet and dry treatments. However, water content (i.e. mucilage concentration) in the rhizosphere of plants grown in dry soils was higher than for plants grown under optimal conditions. This effect was particularly pronounced near the tips of lateral roots. The higher water contents near the root are explained as the water retained by mucilage. 14C imaging of root after 14CO2 labeling of shoots (Pausch and Kuzyakov 2011) was used to estimate the distribution of all rhizodeposits. Two days after labelling, 14C distribution was measured using phosphor-imaging. To quantify 14C in the rhizosphere a calibration was carried out by adding given amounts of 14C-glucose to soil. Plants grown in wet soil transported a higher percentage of 14C to the roots (14Croot/14Cshoot), compared to plants grown under dry conditions (46 vs. 36 %). However, the percentage of 14C allocated from roots to

  8. INTERPERSONAL COMMUNICATION COMPETENCE: CULTURAL UNDERPINNINGS

    National Research Council Canada - National Science Library

    Adrian Lesenciuc; Aura Codreanu

    2012-01-01

      The concepts of interpersonal communication competence, intercultural communication competence and intercultural competence are prone to frequent misunderstanding as a result of an epistemic field...

  9. Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants.

    Science.gov (United States)

    Marques, Joana M; da Silva, Thais F; Vollu, Renata E; Blank, Arie F; Ding, Guo-Chun; Seldin, Lucy; Smalla, Kornelia

    2014-05-01

    The hypothesis that sweet potato genotypes containing different starch yields in their tuberous roots can affect the bacterial communities present in the rhizosphere (soil adhering to tubers) was tested in this study. Tuberous roots of field-grown sweet potato of genotypes IPB-149 (commercial genotype), IPB-052, and IPB-137 were sampled three and six months after planting and analyzed by denaturing gradient gel electrophoresis (DGGE) and pyrosequencing analysis of 16S rRNA genes PCR-amplified from total community DNA. The statistical analysis of the DGGE fingerprints showed that both plant age and genotypes influenced the bacterial community structure in the tuber rhizosphere. Pyrosequencing analysis showed that the IPB-149 and IPB-052 (both with high starch content) displayed similar bacterial composition in the tuber rhizosphere, while IPB-137 with the lowest starch content was distinct. In comparison with bulk soil, higher 16S rRNA gene copy numbers (qPCR) and numerous genera with significantly increased abundance in the tuber rhizosphere of IPB-137 (Sphingobium, Pseudomonas, Acinetobacter, Stenotrophomonas, Chryseobacterium) indicated a stronger rhizosphere effect. The genus Bacillus was strongly enriched in the tuber rhizosphere samples of all sweet potato genotypes studied, while other genera showed a plant genotype-dependent abundance. This is the first report on the molecular identification of bacteria being associated with the tuber rhizosphere of different sweet potato genotypes. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Rhizosphere bacterial communities of dominant steppe plants shift in response to a gradient of simulated nitrogen deposition

    Science.gov (United States)

    Yang, An; Liu, Nana; Tian, Qiuying; Bai, Wenming; Williams, Mark; Wang, Qibing; Li, Linghao; Zhang, Wen-Hao

    2015-01-01

    We evaluated effects of 9-year simulated nitrogen (N) deposition on microbial composition and diversity in the rhizosphere of two dominant temperate grassland species: grass Stipa krylovii and forb Artemisia frigida. Microbiomes in S. krylovii and A. frigida rhizosphere differed, but changed consistently along the N gradient. These changes were correlated to N-induced shifts to plant community. Hence, as plant biomass changed, so did bacterial rhizosphere communities, a result consistent with the role that N fertilizer has been shown to play in altering plant-microbial mutualisms. A total of 23 bacterial phyla were detected in the two rhizospheric soils by pyrosequencing, with Proteobacteria, Acidobacteria, and Bacteroidetes dominating the sequences of all samples. Bacterioidetes and Proteobacteria tended to increase, while Acidobacteria declined with increase in N addition rates. TM7 increased >5-fold in the high N addition rates, especially in S. krylovii rhizosphere. Nitrogen addition also decreased diversity of OTUs (operational taxonomic units), Shannon and Chao1 indices of rhizospheric microbes regardless of plant species. These results suggest that there were both similar but also specific changes in microbial communities of temperate steppes due to N deposition. These findings would contribute to our mechanistic understanding of impacts of N deposition on grassland ecosystem by linking changes in plant traits to their rhizospheric microbes-mediated processes. PMID:26322024

  11. Characterization of rhizosphere and endophytic fungal communities from roots of Stipa purpurea in alpine steppe around Qinghai Lake.

    Science.gov (United States)

    Lu, Dengxue; Jin, Hui; Yang, Xiaoyan; Zhang, Denghong; Yan, Zhiqiang; Li, Xiuzhuang; Zhao, Yuhui; Han, Rongbing; Qin, Bo

    2016-08-01

    Stipa purpurea is among constructive endemic species in the alpine steppe on the Qinghai-Xizang Plateau. To reveal the fungal community structure and diversity in the rhizosphere and roots of this important grass and to analyze the potential influence of different habitats on the structure of fungal communities, we explored the root endophyte and the directly associated rhizosphere communities of S. purpurea by using internal transcribed spacer rRNA cloning and sequencing methods. We found that the roots of S. purpurea are associated with a diverse consortium of Basidiomycota (59.8%) and Ascomycota (38.5%). Most fungi obtained from rhizosphere soil in S. purpurea have been identified as Ascomycetes, while the high proportion detected in roots were basidiomycetous endophytes. The species richness, diversity, and evenness of fungal assemblages were higher in roots than in the rhizosphere soil. Fungi inhabiting the rhizosphere and roots of S. purpurea are significantly different, and the rhizosphere and endophyte communities are largely independent with little overlap in the dominant phyla or operational taxonomic units. Taken together, these results suggested that a wide variety of fungal communities are associated with the roots and rhizosphere soil of S. purpurea and that the fungal assemblages are strongly influenced by different habitats.

  12. Unearthing microbial diversity of Taxus rhizosphere via MiSeq high-throughput amplicon sequencing and isolate characterization

    Science.gov (United States)

    Hao, Da Cheng; Song, Si Meng; Mu, Jun; Hu, Wen Li; Xiao, Pei Gen

    2016-04-01

    The species variability and potential environmental functions of Taxus rhizosphere microbial community were studied by comparative analyses of 15 16S rRNA and 15 ITS MiSeq sequencing libraries from Taxus rhizospheres in subtropical and temperate regions of China, as well as by isolating laccase-producing strains and polycyclic aromatic hydrocarbon (PAH)-degrading strains. Total reads could be assigned to 2,141 Operational Taxonomic Units (OTUs) belonging to 31 bacteria phyla and 2,904 OTUs of at least seven fungi phyla. The abundance of Planctomycetes, Actinobacteria, and Chloroflexi was higher in T. cuspidata var. nana and T. × media rhizospheres than in T. mairei rhizosphere (NF), while Acidobacteria, Proteobacteria, Nitrospirae, and unclassified bacteria were more abundant in the latter. Ascomycota and Zygomycota were predominant in NF, while two temperate Taxus rhizospheres had more unclassified fungi, Basidiomycota, and Chytridiomycota. The bacterial/fungal community richness and diversity were lower in NF than in other two. Three dye decolorizing fungal isolates were shown to be highly efficient in removing three classes of reactive dye, while two PAH-degrading fungi were able to degrade recalcitrant benzo[a]pyrene. The present studies extend the knowledge pedigree of the microbial diversity populating rhizospheres, and exemplify the method shift in research and development of resource plant rhizosphere.

  13. Heavy metal (Pb, Zn) uptake and chemical changes in rhizosphere soils of four wetland plants with different radial oxygen loss.

    Science.gov (United States)

    Yang, Junxing; Ma, Zuoluo; Ye, Zhihong; Guo, Xueyan; Qiu, Rongliang

    2010-01-01

    Lead and Zn uptake and chemical changes in rhizosphere Soils of four emergent-rooted wetland plants; Aneilema bracteatum, Cyperus alternifolius, Ludwigia hyssopifolia and Veronica serpyllifolia were investigated by two experiments: (1) rhizobag filled with "clean" or metal-contaminated soil for analysis of Pb and Zn in plants and rhizosphere soils; and (2) applied deoxygenated solution for analyzing their rates of radial oxygen loss (ROL). The results showed that the wetland plants with different ROL rates had significant effects on the mobility and chemical forms of Pb and Zn in rhizosphere under flooded conditions. These effects were varied with different metal elements and metal concentrations in the soils. Lead mobility i n rhizosphere of the four plants both in t"clean" and contaminated soils was decreased, while Zn mobility was increased in the rhizosphere of the "clean" soil, but decreased in the contaminated soil. Among the four plants, V serpyllifolia, with the highest ROL, formed the highest degree of Fe plaque on the root surface, immobilized more Zn in Fe plaque, and has the highest effects on the changes of Zn form (EXC-Zn) in rhizosphere under both "clean" and contaminated soil conditions. These results suggested that ROL of wetland plants could play an important role in Fe plaque formation and mobility and chemical changes of metals in rhizosphere soil under flood conditions.

  14. Pseudomonas guariconensis sp. nov., isolated from rhizospheric soil.

    Science.gov (United States)

    Toro, Marcia; Ramírez-Bahena, Martha-Helena; Cuesta, Maria José; Velázquez, Encarna; Peix, Alvaro

    2013-12-01

    We isolated a bacterial strain designated PCAVU11(T) in the course of a study of phosphate-solubilizing bacteria occurring in rhizospheric soil of Vigna unguiculata (L.) Walp. in Guárico state, Venezuela. The 16S rRNA gene sequence had 99.2 % sequence similarity with respect to the most closely related species, Pseudomonas taiwanensis, and 99.1 % with respect to Pseudomonas entomophila, Pseudomonas plecoglossicida and Pseudomonas monteilii, on the basis of which PCAVU11(T) was classified as representing a member of the genus Pseudomonas. Analysis of the housekeeping genes rpoB, rpoD and gyrB confirmed the phylogenetic affiliation and showed sequence similarities lower than 95 % in all cases with respect to the above-mentioned closest relatives. Strain PCAVU11(T) showed two polar flagella. The respiratory quinone was Q9. The major fatty acids were 16 : 0 (25.7 %), 18 : 1ω7c (20.4 %), 17 : 0 cyclo (11.5 %) and 16 : 1ω7c/15 : 0 iso 2-OH in summed feature 3 (10.8 %). The strain was oxidase-, catalase- and urease-positive, the arginine dihydrolase system was present but nitrate reduction, β-galactosidase production and aesculin hydrolysis were negative. Strain PCAVU11(T) grew at 44 °C and at pH 10. The DNA G+C content was 61.5 mol%. DNA-DNA hybridization results showed values lower than 56 % relatedness with respect to the type strains of the four most closely related species. Therefore, the results of genotypic, phenotypic and chemotaxonomic analyses support the classification of strain PCAVU11(T) as representing a novel species of the genus Pseudomonas, which we propose to name Pseudomonas guariconensis sp. nov. The type strain is PCAVU11(T) ( = LMG 27394(T) = CECT 8262(T)).

  15. Bacteriocins from the rhizosphere microbiome – from an agriculture perspective

    Directory of Open Access Journals (Sweden)

    Sowmyalakshmi eSubramanian

    2015-10-01

    Cl stress, and was most effective at 100 mM NaCl. The 48 h post germination proteome suggested efficient and speedier partitioning of storage proteins, activation of carbon, nitrogen and energy metabolisms in Th17 treated seeds both under optimal and 100 mM NaCl. This review focuses on the bacteriocins produced by plant-rhizosphere colonizers and plant-pathogenic bacteria, that might have uses in agriculture, veterinary and human medicine.

  16. The Rhizosphere Bacterial Microbiota of Vitis vinifera cv. Pinot Noir in an Integrated Pest Management Vineyard

    Directory of Open Access Journals (Sweden)

    Giorgia Novello

    2017-08-01

    Full Text Available Microorganisms associated with Vitis vinifera (grapevine can affect its growth, health and grape quality. The aim of this study was to unravel the biodiversity of the bacterial rhizosphere microbiota of grapevine in an integrated pest management vineyard located in Piedmont, Italy. Comparison between the microbial community structure in the bulk and rhizosphere soil (variable: space were performed. Moreover, the possible shifts of the bulk and rhizosphere soil microbiota according to two phenological stages such as flowering and early fruit development (variable: time were characterized. The grapevine microbiota was identified using metagenomics and next-generation sequencing. Biodiversity was higher in the rhizosphere than in the bulk soil, independent of the phenological stage. Actinobacteria were the dominant class with frequencies ≥ 50% in all the soil samples, followed by Proteobacteria, Gemmatimonadetes, and Bacteroidetes. While Actinobacteria and Proteobacteria are well-known as being dominant in soil, this is the first time the presence of Gemmatimonadetes has been observed in vineyard soils. Gaiella was the dominant genus of Actinobacteria in all the samples. Finally, the microbiota associated with grapevine differed from the bulk soil microbiota and these variations were independent of the phenological stage of the plant.

  17. The Rhizosphere Bacterial Microbiota of Vitis vinifera cv. Pinot Noir in an Integrated Pest Management Vineyard.

    Science.gov (United States)

    Novello, Giorgia; Gamalero, Elisa; Bona, Elisa; Boatti, Lara; Mignone, Flavio; Massa, Nadia; Cesaro, Patrizia; Lingua, Guido; Berta, Graziella

    2017-01-01

    Microorganisms associated with Vitis vinifera (grapevine) can affect its growth, health and grape quality. The aim of this study was to unravel the biodiversity of the bacterial rhizosphere microbiota of grapevine in an integrated pest management vineyard located in Piedmont, Italy. Comparison between the microbial community structure in the bulk and rhizosphere soil (variable: space) were performed. Moreover, the possible shifts of the bulk and rhizosphere soil microbiota according to two phenological stages such as flowering and early fruit development (variable: time) were characterized. The grapevine microbiota was identified using metagenomics and next-generation sequencing. Biodiversity was higher in the rhizosphere than in the bulk soil, independent of the phenological stage. Actinobacteria were the dominant class with frequencies ≥ 50% in all the soil samples, followed by Proteobacteria, Gemmatimonadetes, and Bacteroidetes. While Actinobacteria and Proteobacteria are well-known as being dominant in soil, this is the first time the presence of Gemmatimonadetes has been observed in vineyard soils. Gaiella was the dominant genus of Actinobacteria in all the samples. Finally, the microbiota associated with grapevine differed from the bulk soil microbiota and these variations were independent of the phenological stage of the plant.

  18. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition.

    Science.gov (United States)

    Tkacz, Andrzej; Cheema, Jitender; Chandra, Govind; Grant, Alastair; Poole, Philip S

    2015-11-01

    We examined succession of the rhizosphere microbiota of three model plants (Arabidopsis, Medicago and Brachypodium) in compost and sand and three crops (Brassica, Pisum and Triticum) in compost alone. We used serial inoculation of 24 independent replicate microcosms over three plant generations for each plant/soil combination. Stochastic variation between replicates was surprisingly weak and by the third generation, replicate microcosms for each plant had communities that were very similar to each other but different to those of other plants or unplanted soil. Microbiota diversity remained high in compost, but declined drastically in sand, with bacterial opportunists and putative autotrophs becoming dominant. These dramatic differences indicate that many microbes cannot thrive on plant exudates alone and presumably also require carbon sources and/or nutrients from soil. Arabidopsis had the weakest influence on its microbiota and in compost replicate microcosms converged on three alternative community compositions rather than a single distinctive community. Organisms selected in rhizospheres can have positive or negative effects. Two abundant bacteria are shown to promote plant growth, but in Brassica the pathogen Olpidium brassicae came to dominate the fungal community. So plants exert strong selection on the rhizosphere microbiota but soil composition is critical to its stability. microbial succession/ plant-microbe interactions/rhizosphere microbiota/selection.

  19. 3Hthymidine incorporation of rhizosphere bacteria influenced by plant N-status

    DEFF Research Database (Denmark)

    Christensen, H.; Christensen, S.

    1994-01-01

    The effect of plant-root N-status on bacterial growth in the rhizosphere was studied with 5-week-old wheat plants grown in soil with low N content obtained by mixing 9:1 gravel:sandy loam. As a consequence of N limitation, significant increase in3Hthymidine (Tdr) incorporation rate occured 3 days...

  20. Impact of elevated carbon dioxide on the rhizosphere communities of Carex arenaria and Festuce rubra

    NARCIS (Netherlands)

    Drigo, B.; Kowalchuk, G.A.; Yergeau, E.; Bezemer, T.M.; Boschker, H.T.S.; Veen, van J.A.

    2007-01-01

    The increase in atmospheric carbon dioxide (CO2) levels is predicted to stimulate plant carbon (C) fixation, potentially influencing the size, structure and function of micro- and mesofaunal communities inhabiting the rhizosphere. To assess the effects of increased atmospheric CO2 on bacterial,

  1. Impact of elevated carbon dioxide on the rhizosphere communities of Carex arenaria and Festuca rubra

    NARCIS (Netherlands)

    Drigo, B.; Kowalchuk, G.A.; Yergeau, E.; Bezemer, T.M.; Boschker, H.T.S.; Van Veen, J.A.

    2007-01-01

    The increase in atmospheric carbon dioxide (CO2) levels is predicted to stimulate plant carbon (C) fixation, potentially influencing the size, structure and function of micro- and mesofaunal communities inhabiting the rhizosphere. To assess the effects of increased atmospheric CO2 on bacterial,

  2. Predicting Ecological Roles in the Rhizosphere Using Metabolome and Transportome Modeling.

    Directory of Open Access Journals (Sweden)

    Peter E Larsen

    Full Text Available The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. However, new algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad's ecological role in the rhizosphere: a biofilm, biocontrol agent, promoter of plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89. The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism's transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data.

  3. Salt tolerant SUV3 overexpressing transgenic rice plants conserve physicochemical properties and microbial communities of rhizosphere.

    Science.gov (United States)

    Sahoo, Ranjan K; Ansari, Mohammad W; Tuteja, Renu; Tuteja, Narendra

    2015-01-01

    Key concerns in the ecological evaluation of GM crops are undesirably spread, gene flow, other environmental impacts, and consequences on soil microorganism's biodiversity. Numerous reports have highlighted the effects of transgenic plants on the physiology of non-targeted rhizospheric microbes and the food chain via causing adverse effects. Therefore, there is an urgent need to develop transgenics with insignificant toxic on environmental health. In the present study, SUV3 overexpressing salt tolerant transgenic rice evaluated in New Delhi and Cuttack soil conditions for their effects on physicochemical and biological properties of rhizosphere. Its cultivation does not affect soil properties viz., pH, Eh, organic C, P, K, N, Ca, Mg, S, Na and Fe(2+). Additionally, SUV3 rice plants do not cause any change in the phenotype, species characteristics and antibiotic sensitivity of rhizospheric bacteria. The population and/or number of soil organisms such as bacteria, fungi and nematodes were unchanged in the soil. Also, the activity of bacterial enzymes viz., dehydrogenase, invertase, phenol oxidases, acid phosphatases, ureases and proteases was not significantly affected. Further, plant growth promotion (PGP) functions of bacteria such as siderophore, HCN, salicylic acid, IAA, GA, zeatin, ABA, NH3, phosphorus metabolism, ACC deaminase and iron tolerance were, considerably, not influenced. The present findings suggest ecologically pertinent of salt tolerant SUV3 rice to sustain the health and usual functions of the rhizospheric organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates.

    Directory of Open Access Journals (Sweden)

    Salme Timmusk

    Full Text Available BACKGROUND: All plants in nature harbor a diverse community of rhizosphere bacteria which can affect the plant growth. Our samples are isolated from the rhizosphere of wild barley Hordeum spontaneum at the Evolution Canyon ('EC', Israel. The bacteria which have been living in close relationship with the plant root under the stressful conditions over millennia are likely to have developed strategies to alleviate plant stress. METHODOLOGY/PRINCIPAL FINDINGS: We studied distribution of culturable bacteria in the rhizosphere of H. spontaneum and characterized the bacterial 1-aminocyclopropane-1-carboxylate deaminase (ACCd production, biofilm production, phosphorus solubilization and halophilic behavior. We have shown that the H. spontaneum rhizosphere at the stressful South Facing Slope (SFS harbors significantly higher population of ACCd producing biofilm forming phosphorus solubilizing osmotic stress tolerant bacteria. CONCLUSIONS/SIGNIFICANCE: The long-lived natural laboratory 'EC' facilitates the generation of theoretical testable and predictable models of biodiversity and genome evolution on the area of plant microbe interactions. It is likely that the bacteria isolated at the stressful SFS offer new opportunities for the biotechnological applications in our agro-ecological systems.

  5. Iron mineralogy and uranium-binding environment in the rhizosphere of a wetland soil

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I.; Kukkadapu, Ravi; Seaman, John C.; Arey, Bruce W.; Dohnalkova, Alice C.; Buettner, Shea; Li, Dien; Varga, Tamas; Scheckel, Kirk G.; Jaffé, Peter R.

    2016-11-01

    Wetlands mitigate the migration of groundwater contaminants through the creation of biogeochemical gradients that enhance multiple contaminant-binding processes. Our hypothesis was that wetland plants not only contribute organic carbon, produce strong redox gradients, and elevate microbial populations to soils, but together these conditions also promote the formation of Fe (oxyhydr)oxides within the plant rhizosphere that may also contribute to contaminant immobilization. Mineralogy and U binding environments of the rhizosphere (plant-impacted soil zone) were evaluated in samples collected from contaminated and non-contaminated areas of a wetland on the Savannah River Site in South Carolina. Based on Mossbauer spectroscopy, rhizosphere soil collected from the field study site was greatly enriched with poorly crystalline nanoparticulate Fe-oxide/ferrihydrite-like materials and nano-goethite (<15-nm). X-ray computed tomography or various microscopy techniques showed that root plaques, tens-of microns thick, were consisted of highly oriented nanoparticles in an orientation suggestive that the roots were involved in the Fe-nanoparticle formation. Because of detection limits, SEM/EDS could not confirm whether U was enriched in the rhizosphere but did demonstrate that U was enriched on root plaques. Uranium in the plaques was always found in association with P and frequently with Fe. Together these findings suggest that plants may not only alter soil microbial and chemical conditions, but also mineralogical conditions that may be conducive to aqueous contaminant immobilization in wetlands.

  6. Nutrient depletion from rhizosphere solution by maize grown in soil with long-term compost amendment

    Science.gov (United States)

    Improved understanding of rhizosphere chemistry will enhance our ability to model nutrient dynamics and on a broader scale, to develop effective management strategies for applied plant nutrients. With a controlled-climate study, we evaluated in situ changes in macro-nutrient concentrations in the rh...

  7. Cadmium accumulation and main rhizosphere characteristics of seven French marigold (Tagetes patula L.) cultivars.

    Science.gov (United States)

    Sun, Ruilian; Sun, Qianqian; Wang, Renqing; Cao, Lidong

    2017-10-20

    The study was conducted to determine Cd accumulation and Cd fraction in the rhizosphere soil of seven Tagetes patula cultivars (Little Hero Orange, Durango Yellow, Janie Yellow Bright, Lucifer Yellow, Hero Flame, Hongyun Red, Konghuang Yellow). T. patula cultivars showed strong tolerance and accumulation to Cd. The highest Cd concentration (273.77 mg kg-1) in shoots was observed in Little Hero Orange when treated with Cd100. For most cultivars, Cd treatments significantly affected rhizosphere pH values, but had a slight effect on dissolved organic carbon (DOC). pH were negatively correlated with Cd accumulation and Cd percentages in the exchangeable fraction in the rhizosphere soil of Little Hero Orange, Durango Yellow, and Konghuang Yellow. No significant correlation was observed between DOC, Cd accumulation and Cd percentage in the exchangeable fraction in the rhizosphere soil, except for Konghuang Yellow. The results suggested that pH might be related to Cd bioavailability and their uptake by T. patula. Among seven cultivars, Little Hero Orange showed the greatest pH decrease, highest shoot Cd accumulation and Cd percentage in the exchangeable fraction, suggesting the difference in pH responses to Cd levels among T. patula might be responsible for their different ability of Cd activation.

  8. Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells.

    Science.gov (United States)

    Kouzuma, Atsushi; Kaku, Nobuo; Watanabe, Kazuya

    2014-12-01

    Microbial fuel cells (MFCs) are devices that use living microbes for the conversion of organic matter into electricity. MFC systems can be applied to the generation of electricity at water/sediment interfaces in the environment, such as bay areas, wetlands, and rice paddy fields. Using these systems, electricity generation in paddy fields as high as ∼80 mW m(-2) (based on the projected anode area) has been demonstrated, and evidence suggests that rhizosphere microbes preferentially utilize organic exudates from rice roots for generating electricity. Phylogenetic and metagenomic analyses have been conducted to identify the microbial species and catabolic pathways that are involved in the conversion of root exudates into electricity, suggesting the importance of syntrophic interactions. In parallel, pot cultures of rice and other aquatic plants have been used for rhizosphere MFC experiments under controlled laboratory conditions. The findings from these studies have demonstrated the potential of electricity generation for mitigating methane emission from the rhizosphere. Notably, however, the presence of large amounts of organics in the rhizosphere drastically reduces the effect of electricity generation on methane production. Further studies are necessary to evaluate the potential of these systems for mitigating methane emission from rice paddy fields. We suggest that paddy-field MFCs represent a promising approach for harvesting latent energy of the natural world.

  9. Fungal biodiversity in rhizosphere of healthy and needle cast-affected Scots pine transplants

    Directory of Open Access Journals (Sweden)

    Małgorzata Mańka

    2013-12-01

    Full Text Available Healthy Scots pine (Pinus sylvestris L. transplants had in rhizosphere a community of saprotrophic fungi which considerably suppressed the growth of severe root pathogens Heterobasidion annosum and Armillaria obscura. A community from transplants affected by needle cast (Lophodermium spp. suppressed both pathogens to a much smaller extent.

  10. Soil microbial communities associated to plant rhizospheres in an organic farming system in Alabama

    Science.gov (United States)

    The microbial communities under different organic crop rhizospheres (0-10 and 10-20 cm) were characterized using fatty acid methyl ester (FAME) and pyrosequencing techniques. The soil was a silt loam (12.8% clay, 71.8% silt and15.4% sand). Soils at this site are characterized as having pH of ~6.53, ...

  11. The Antimicrobial Volatile Power of the Rhizospheric Isolate Pseudomonas donghuensis P482.

    NARCIS (Netherlands)

    Ossowicki, A.; Jafra, S.; Garbeva, P.V.

    2017-01-01

    Soil and rhizosphere bacteria produce an array of secondary metabolites including a wide range of volatile organic compounds (VOCs). These compounds play an important role in the long-distance interactions and communication between (micro)organisms. Furthermore, bacterial VOCs are involved in plant

  12. Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates.

    Science.gov (United States)

    Timmusk, Salme; Paalme, Viiu; Pavlicek, Tomas; Bergquist, Jonas; Vangala, Ameraswar; Danilas, Triin; Nevo, Eviatar

    2011-03-23

    All plants in nature harbor a diverse community of rhizosphere bacteria which can affect the plant growth. Our samples are isolated from the rhizosphere of wild barley Hordeum spontaneum at the Evolution Canyon ('EC'), Israel. The bacteria which have been living in close relationship with the plant root under the stressful conditions over millennia are likely to have developed strategies to alleviate plant stress. We studied distribution of culturable bacteria in the rhizosphere of H. spontaneum and characterized the bacterial 1-aminocyclopropane-1-carboxylate deaminase (ACCd) production, biofilm production, phosphorus solubilization and halophilic behavior. We have shown that the H. spontaneum rhizosphere at the stressful South Facing Slope (SFS) harbors significantly higher population of ACCd producing biofilm forming phosphorus solubilizing osmotic stress tolerant bacteria. The long-lived natural laboratory 'EC' facilitates the generation of theoretical testable and predictable models of biodiversity and genome evolution on the area of plant microbe interactions. It is likely that the bacteria isolated at the stressful SFS offer new opportunities for the biotechnological applications in our agro-ecological systems.

  13. Influence of resistance breeding in common bean on rhizosphere microbiome composition and function

    NARCIS (Netherlands)

    Mendes, Lukas W.; Raaijmakers, J.M.; De Hollander, M.; Mendes, Rodrigo; Tsai, S.M.

    2017-01-01

    The rhizosphere microbiome has a key role in plant growth and health, providing a first line of defense against root infections by soil-borne pathogens. Here, we investigated the composition and metabolic potential of the rhizobacterial community of different common bean (Phaseolus vulgaris)

  14. Nonequilibrium water dynamics in the rhizosphere: How mucilage affects water flow in soils

    Science.gov (United States)

    Kroener, Eva; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2014-08-01

    The flow of water from soil to plant roots is controlled by the properties of the narrow region of soil close to the roots, the rhizosphere. In particular, the hydraulic properties of the rhizosphere are altered by mucilage, a polymeric gel exuded by the roots. In this paper we present experimental results and a conceptual model of water flow in unsaturated soils mixed with mucilage. A central hypothesis of the model is that the different drying/wetting rate of mucilage compared to the bulk soil results in nonequilibrium relations between water content and water potential in the rhizosphere. We coupled this nonequilibrium relation with the Richards equation and obtained a constitutive equation for water flow in soil and mucilage. To test the model assumptions, we measured the water retention curve and the saturated hydraulic conductivity of sandy soil mixed with mucilage from chia seeds. Additionally, we used neutron radiography to image water content in a layer of soil mixed with mucilage during drying and wetting cycles. The radiographs demonstrated the occurrence of nonequilibrium water dynamics in the soil-mucilage mixture. The experiments were simulated by numerically solving the nonequilibrium model. Our study provides conceptual and experimental evidences that mucilage has a strong impact on soil water dynamics. During drying, mucilage maintains a greater soil water content for an extended time, while during irrigation it delays the soil rewetting. We postulate that mucilage exudation by roots attenuates plant water stress by modulating water content dynamics in the rhizosphere.

  15. Screening of endoglucanase-producing bacteria in the saline rhizosphere of Rhizophora mangle

    Directory of Open Access Journals (Sweden)

    André Luís Braghini Sá

    2014-01-01

    Full Text Available In screening the culturable endoglucanase-producing bacteria in the rhizosphere of Rhizophora mangle, we found a prevalence of genera Bacillus and Paenibacillus. These bacteria revealed different activities in endoglucolysis and biofilm formation when exposed to specific NaCl concentrations, indicating modulated growth under natural variations in mangrove salinity.

  16. Screening of endoglucanase-producing bacteria in the saline rhizosphere of Rhizophora mangle.

    Science.gov (United States)

    Sá, André Luís Braghini; Dias, Armando Cavalcante Franco; Quecine, Maria Carolina; Cotta, Simone Raposo; Fasanella, Cristiane Cipola; Andreote, Fernando Dini; de Melo, Itamar Soares

    2014-01-01

    In screening the culturable endoglucanase-producing bacteria in the rhizosphere of Rhizophora mangle, we found a prevalence of genera Bacillus and Paenibacillus. These bacteria revealed different activities in endoglucolysis and biofilm formation when exposed to specific NaCl concentrations, indicating modulated growth under natural variations in mangrove salinity.

  17. How genetic modification of roots affects rhizosphere processes and plant performance

    NARCIS (Netherlands)

    Kabouw, P.; Van Dam, N.M.; Van der Putten, W.H.; Biere, A.

    2012-01-01

    Genetic modification of plants has become common practice. However, root-specific genetic modifications have only recently been advocated. Here, a review is presented regarding how root-specific modifications can have both plant internal and rhizosphere-mediated effects on aboveground plant

  18. Rhizosphere microorganisms affected by soil solarization and cover cropping in Capsicum annuum and Phaseolus lunatus agroecosystems

    Science.gov (United States)

    Field experiments were conducted to evaluate the effects of soil solarization or cover cropping on bell pepper (Capsicum annuum) and lima bean (Phaseolus lunatus, L.) rhizosphere microorganisms. In Experiment I, flat surface solarization (FSS), raised bed solarization (RBS), cowpea (Vigna unguiculat...

  19. Diversity and activity of biosurfactant-producing Pseudomonas in the rhizosphere of black pepper in Vietnam

    NARCIS (Netherlands)

    Tran, H.; Kruijt, M.; Raaijmakers, J.M.

    2008-01-01

    Aims: Phytophthora capsici is a major pathogen of black pepper and zoospores play an important role in the infection process. Fluorescent pseudomonads that produce biosurfactants with zoosporicidal activities were isolated from the black pepper rhizosphere in Vietnam, and their genotypic diversity

  20. Predicting Ecological Roles in the Rhizosphere Using Metabolome and Transportome Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Peter E.; Collart, Frank R.; Dai, Yang; Blanchard, Jeffrey L.

    2015-09-02

    The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. However, new algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad's ecological role in the rhizosphere: a biofilm, biocontrol agent, promoter of plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism's transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data.

  1. Quantification of methane oxidation in the rice rhizosphere using 13C-labelled methane

    NARCIS (Netherlands)

    Groot, T.T; van Bodegom, P.M.; Harren, F.J.M.; Meijer, H.A.J.

    In this paper isotope ratio mass spectrometry is used to determine the methane (CH4) oxidation fraction in the rhizosphere of intact rice plant-soil systems. Earlier studies on quantification of the methane oxidation were based on inhibition or incubation procedures which strongly interfered with

  2. Quantification of methane oxidation in the rice rhizosphere using C-13-labelled methane

    NARCIS (Netherlands)

    Groot, T.T.; Bodegom, van P.M.; Harren, F.J.M.; Meijer, H.A.J.

    2003-01-01

    In this paper isotope ratio mass spectrometry is used to determine the methane (CH4) oxidation fraction in the rhizosphere of intact rice plant-soil systems. Earlier studies on quantification of the methane oxidation were based on inhibition or incubation procedures which strongly interfered with

  3. Potential rates of ammonium oxidation, nitrite oxidation, nitrate reduction and denitrification in the young barley rhizosphere

    DEFF Research Database (Denmark)

    Højberg, Ole; Binnerup, S. J.; Sørensen, Jan

    1996-01-01

    Potential activities (enzyme contents) of ammonium (NH4+) oxidizing, nitrite (NO2-) oxidizing, nitrate (NO3-) reducing and denitrifying bacteria were measured in bulk and rhizosphere soil obtained from young barley plants in the field. The activities as well as pools of inorganic N (NH4+, NO2...

  4. Analysis of the community compositions of rhizosphere fungi in soybeans continuous cropping fields.

    Science.gov (United States)

    Bai, Li; Cui, Jiaqi; Jie, Weiguang; Cai, Baiyan

    2015-11-01

    We used rhizosphere soil sampled from one field during zero year and two years of continuous cropping of high-protein soybean to analyze the taxonomic community compositions of fungi during periods of high-incidence of root rot. Our objectives were to identify the dominant pathogens in order to provide a theoretical basis for the study of pathogenesis as well as control tactics for soybean root rot induced by continuous cropping. A total of 17,801 modified internal transcribed spacer (ITS) sequences were obtained from three different soybean rhizosphere soil samples after zero year and 1 or 2 years of continuous cropping using 454 high-throughput sequencing. The dominant eumycote fungal were identified to be Ascomycota and Basidiomycota in the three soil samples. Continuous cropping of soybean affected the diversity of fungi in rhizosphere soils and increased the abundance of Thelebolus and Mortierellales significantly. Thanatephorus, Fusarium, and Alternaria were identified to be the dominant pathogenic fungal genera in rhizosphere soil from continuously cropped soybean fields. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Distinct Microbial Communities within the Endosphere and Rhizosphere of Populus deltoides Roots across Contrasting Soil Types ▿†

    Science.gov (United States)

    Gottel, Neil R.; Castro, Hector F.; Kerley, Marilyn; Yang, Zamin; Pelletier, Dale A.; Podar, Mircea; Karpinets, Tatiana; Uberbacher, Ed; Tuskan, Gerald A.; Vilgalys, Rytas; Doktycz, Mitchel J.; Schadt, Christopher W.

    2011-01-01

    The root-rhizosphere interface of Populus is the nexus of a variety of associations between bacteria, fungi, and the host plant and an ideal model for studying interactions between plants and microorganisms. However, such studies have generally been confined to greenhouse and plantation systems. Here we analyze microbial communities from the root endophytic and rhizospheric habitats of Populus deltoides in mature natural trees from both upland and bottomland sites in central Tennessee. Community profiling utilized 454 pyrosequencing with separate primers targeting the V4 region for bacterial 16S rRNA and the D1/D2 region for fungal 28S rRNA genes. Rhizosphere bacteria were dominated by Acidobacteria (31%) and Alphaproteobacteria (30%), whereas most endophytes were from the Gammaproteobacteria (54%) as well as Alphaproteobacteria (23%). A single Pseudomonas-like operational taxonomic unit (OTU) accounted for 34% of endophytic bacterial sequences. Endophytic bacterial richness was also highly variable and 10-fold lower than in rhizosphere samples originating from the same roots. Fungal rhizosphere and endophyte samples had approximately equal amounts of the Pezizomycotina (40%), while the Agaricomycotina were more abundant in the rhizosphere (34%) than endosphere (17%). Both fungal and bacterial rhizosphere samples were highly clustered compared to the more variable endophyte samples in a UniFrac principal coordinates analysis, regardless of upland or bottomland site origin. Hierarchical clustering of OTU relative abundance patterns also showed that the most abundant bacterial and fungal OTUs tended to be dominant in either the endophyte or rhizosphere samples but not both. Together, these findings demonstrate that root endophytic communities are distinct assemblages rather than opportunistic subsets of the rhizosphere. PMID:21764952

  6. Assessment of Innovation Competency

    DEFF Research Database (Denmark)

    Nielsen, Jan Alexis

    2015-01-01

    competency, and communication competency) as well as assessment criteria for a number of skills relevant to these subcompetencies. These assessment criteria, it is argued, largely resonate with existing literature and they provide a detailed glimpse into how assessment of innovation competency could......The author employed a 3-step qualitative research design with multiple instances of source validation to capture expert teachers’ (n = 28) reflections on which manifest signs they would look for when they asses students’ innovation competency. The author reports on the thematic analysis...... of the recorded talk in interaction that occurred in teacher group discussion sessions at 5 upper secondary schools. Based on the analysis, it was possible to extrapolate assessment criteria for 5 subcompetencies relevant to innovation (creative competency, collaboration competency, navigation competency, action...

  7. Mycological composition in the rhizosphere of winter wheat in different crop production systems

    Science.gov (United States)

    Frac, Magdalena; Lipiec, Jerzy; Usowicz, Boguslaw

    2010-05-01

    Fungi play an important role in the soil ecosystem as decomposers of plant residues, releasing nutrients that sustain and stimulate processes of plant growth. Some fungi possess antagonistic properties towards plant pathogens. The structure of plant and soil communities is influenced by the interactions among its component species and also by anthropogenic pressure. In the study of soil fungi, particular attention is given to the rhizosphere. Knowledge of the structure and diversity of the fungal community in the rhizosphere lead to the better understanding of pathogen-antagonist interactions. The aim of this study was to evaluate the mycological composition of the winter wheat rhizosphere in two different crop production systems. The study was based on a field experiment established in 1994 year at the Experimental Station in South-East Poland. The experiment was conducted on grey-brown podzolic soil. In this experiment winter wheat were grown in two crop production systems: ecological and conventional - monoculture. The research of fungi composition was conducted in 15th year of experiment. Rhizosphere was collected two times during growing season, in different development stage: shooting phase and full ripeness phase. Martin medium and the dilutions 10-3 and 10-4 were used to calculate the total number cfu (colony forming units) of fungi occurring in the rhizosphere of winter wheat. The fungi were identified using Czapeka-Doxa medium for Penicillium, potato dextrose agar for all fungi and agar Nirenberga (SNA) for Fusarium. High number of antagonistic fungi (Penicillium sp., Trichoderma sp.) was recorded in the rhizosphere of wheat in ecological system. The presence of these fungi can testify to considerable biological activity, which contributes to the improvement of the phytosanitary condition of the soil. However, the decrease of the antagonistic microorganism number in the crop wheat in monoculture can be responsible for appearance higher number of the

  8. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome.

    Science.gov (United States)

    Pii, Youry; Borruso, Luigimaria; Brusetti, Lorenzo; Crecchio, Carmine; Cesco, Stefano; Mimmo, Tanja

    2016-02-01

    Plant-associated microorganisms can stimulate plants growth and influence both crops yield and quality by nutrient mobilization and transport. Therefore, rhizosphere microbiome appears to be one of the key determinants of plant health and productivity. The roots of plants have the ability to influence its surrounding microbiology, the rhizosphere microbiome, through the creation of specific chemical niches in the soil mediated by the release of phytochemicals (i.e. root exudates) that depends on several factors, such as plants genotype, soil properties, plant nutritional status, climatic conditions. In the present research, two different crop species, namely barley and tomato, characterized by different strategies for Fe acquisition, have been grown in the RHIZOtest system using either complete or Fe-free nutrient solution to induce Fe starvation. Afterward, plants were cultivated for 6 days on two different calcareous soils. Total DNA was extracted from rhizosphere and bulk soil and 454 pyrosequencing technology was applied to V1-V3 16S rRNA gene region. Approximately 5000 sequences were obtained for each sample. The analysis of the bacterial population confirmed that the two bulk soils showed a different microbial community. The presence of the two plant species, as well as the nutritional status (Fe-deficiency and Fe-sufficiency), could promote a differentiation of the rhizosphere microbiome, as highlighted by non-metric multidimensional scaling (NMDS) analysis. Alphaproteobacteria, Actinobacteria, Chloracidobacteria, Thermoleophilia, Betaproteobacteria, Saprospirae, Gemmatimonadetes, Gammaproteobacteria, Acidobacteria were the most represented classes in all the samples analyzed even though their relative abundance changed as a function of the soil, plant species and nutritional status. To our knowledge, this research demonstrate for the first time that different plants species with a diverse nutritional status can promote the development of a peculiar

  9. Diurnal Cycling of Rhizosphere Bacterial Communities is Associated with Shifts in Carbon Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Staley, Christopher; Ferrieri, Abigail P.; Tfaily, Malak M.; Cui, Yaya; Chu, Rosalie K.; Wang, Ping; Shaw, Jared B.; Ansong, Charles K.; Brewer, Heather M.; Norbeck, Angela D.; Markillie, Lye Meng; do Amaral, Fernanda P.; Tuleski, Thalita; Pellizzaro, Tomas; Agtuca, Beverly J.; Ferrieri, Richard A.; Tringe, Susannah; Pasa Tolic, Ljiljana; Stacey, Gary; Sadowsky, Michael

    2017-06-24

    The circadian clock regulates plant metabolic functions and is an important component in plant health and productivity. Rhizosphere bacteria play critical roles in plant growth, health, and development and are shaped primarily by soil communities. Using Illumina next-generation sequencing, we characterized bacterial communities of wild-type (Col-0) Arabidopsis thaliana and an acyclic line (OX34) ectopically expressing the CCA1 transcription factor, relative to a soil control. Significantly different bacterial community structures (P = 0.031) were observed in the rhizosphere of wild-type plants between light and dark cycle samples. Furthermore, 13% of the community showed cycling, with abundances of several families, including Burkholderiaceae, Rhodospirillaceae, Planctomycetaceae, and Gaiellaceae, exhibiting fluctuation in abundances relative to the light cycle. However, limited-to-no cycling was observed in the acyclic CCAox34 line or soil controls. Functional gene inference revealed that genes involved in carbohydrate metabolism were likely more abundant in near-dawn, dark samples. Additionally, the composition of organic matter in the rhizosphere showed a significant variation between dark and light cycles. The results of this study suggest that the rhizosphere bacterial community is regulated to some extent by the circadian clock and is likely influenced by and exerts influences on plant metabolism and productivity. The timing of bacterial cycling in relation to that of Arabidopsis further suggests that diurnal dynamics influence plant-microbe carbon metabolism and exchange. Equally important, our study suggests that previous studies done without relevance to time of day need to be re-evaluated with regard to the impact of diurnal cycles on the rhizosphere microbial community.

  10. Iron mineralogy and uranium-binding environment in the rhizosphere of a wetland soil

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I., E-mail: daniel.kaplan@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Kukkadapu, Ravi [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Seaman, John C. [Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802 (United States); Arey, Bruce W.; Dohnalkova, Alice C. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Buettner, Shea [Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802 (United States); Li, Dien [Savannah River National Laboratory, Aiken, SC 29808 (United States); Varga, Tamas [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Scheckel, Kirk G. [US Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH 45224 (United States); Jaffé, Peter R. [Princeton University, Princeton, NJ 08540 (United States)

    2016-11-01

    Wetlands mitigate the migration of groundwater contaminants through a series of biogeochemical gradients that enhance multiple contaminant-binding processes. The hypothesis of this study was that wetland plant roots contribute organic carbon and release O{sub 2} within the rhizosphere (plant-impact soil zone) that promote the formation of Fe(III)-(oxyhydr)oxides. In turn, these Fe(III)-(oxyhydr)oxides stabilize organic matter that together contribute to contaminant immobilization. Mineralogy and U binding environments of the rhizosphere were evaluated in samples collected from contaminated and non-contaminated areas of a wetland on the Savannah River Site in South Carolina. Based on Mössbauer spectroscopy, rhizosphere soil was greatly enriched with nanogoethite, ferrihydrite-like nanoparticulates, and hematite, with negligible Fe(II) present. X-ray computed tomography and various microscopy techniques showed that root plaques were tens-of-microns thick and consisted of highly oriented Fe-nanoparticles, suggesting that the roots were involved in creating the biogeochemical conditions conducive to the nanoparticle formation. XAS showed that a majority of the U in the bulk wetland soil was in the + 6 oxidation state and was not well correlated spatially to Fe concentrations. SEM/EDS confirm that U was enriched on root plaques, where it was always found in association with P. Together these findings support our hypothesis and suggest that plants can alter mineralogical conditions that may be conducive to contaminant immobilization in wetlands. - Highlights: • Uranium concentrated in wetland environments • Hypothesized that plant roots change mineralogy and contaminant binding environment, promoting contaminant immobilization • Field study showed sharp dissolved U concentration profiles over the centimeter scale. • Spectroscopy identified unique mineralogy in rhizosphere compared to non-rhizosphere soil. • Uranium concentrated in root plaques in the + 6

  11. Effects of Nitrogen Application Rates on Rhizosphere Microbial Community Functional Diversity in Maize and Potato Intercropping

    Directory of Open Access Journals (Sweden)

    QIN Xiao-min

    2015-08-01

    Full Text Available Field trials were carried out to investigate the effects of different nitrogen application rates N0(0 kg·hm-2, N1(125 kg·hm-2, N2 (250 kg·hm-2and N3(375 kg·hm-2on the rhizosphere microbial population and metabolic function diversity of maize and potato under intercropping using plate culture method and BIOLOG technique. The results indicated that nitrogen(N1, N2 and N3application increased the amounts of bacteria, actinomyces and total microbes, but decreased the quantities of fungi significantly in rhizosphere soil of maize and potato in intercropping, and the highest increment was with N2 treatment. In comparison with N0, nitrogen fertilizer application could increase significantly the diversities of soil microbial community, the utilization rate of carbon source, richness of soil microbial community. And the AWCD value, Shannon-Wiener index(H, Simpson index(D, Evenness index(Eand Richness index(Sin rhizosphere soil of maize under intercropping were the highest at N3 treatment, while that of potato were the highest at N2 treatment, but the effects of different N application rates on the ability of rhizospheric microbes in utilizing six types of carbon sources were different. Principal component analysis (PCAand cluster analysis showed that there were differences in carbon substrate utilization patterns and metabolic characteristics of the soil microbes in maize and potato intercropping with different N application rates. It suggested that applying N could regulate the rhizosphere soil microbial communities and promote the functional diversity of crop intercropping.

  12. Role of 2-hexyl, 5-propyl resorcinol production by Pseudomonas chlororaphis PCL1606 in the multitrophic interactions in the avocado rhizosphere during the biocontrol process.

    Science.gov (United States)

    Calderón, Claudia E; de Vicente, Antonio; Cazorla, Francisco M

    2014-07-01

    Different bacterial traits can contribute to the biocontrol of soilborne phytopathogenic fungus. Among others, (1) antagonism, (2) competition for nutrients and niches, (3) induction of systemic resistance of the plants and (4) predation and parasitism are the most studied. Pseudomonas chlororaphis PCL1606 is an antagonistic rhizobacterium that produces the antifungal metabolite 2-hexyl, 5-propyl resorcinol (HPR). This bacterium can biologically control the avocado white root rot caused by Rosellinia necatrix. Confocal laser scanning microscopy of the avocado rhizosphere revealed that this biocontrol bacterium and the fungal pathogen compete for the same niche and presumably also for root exudate nutrients. The use of derivative mutants in the geners related to HPR biosynthesis (dar genes) revealed that the lack of HPR production by P. chlororaphis PCL1606 negatively influences the bacterial colonisation of the avocado root surface. Microscopical analysis showed that P. chlororaphis PCL1606 closely interacts and colonises the fungal hyphae, which may represent a novel biocontrol mechanism in this pseudomonad. Additionally, the presence of HPR-producing biocontrol bacteria negatively affects the ability of the fungi to infect the avocado root. HPR production negatively affects hyphal growth, leading to alterations in the R. necatrix physiology visible under microscopy, including the curling, vacuolisation and branching of hyphae, which presumably affects the colonisation and infection abilities of the fungus. This study provides the first report of multitrophic interactions in the avocado rhizosphere, advancing our understanding of the role of HPR production in those interactions. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. The Global People competency framework: competencies for effective intercultural interaction

    OpenAIRE

    Spencer-Oatey, Helen; Stadler, Stefanie

    2009-01-01

    This Competency Framework explains the competencies that are needed for effective intercultural interaction. In contrast to the Life Cycle Model for Intercultural Partnerships (see the Global People Toolbook) which presents the competencies by stage (i.e. key competencies are identified for each stage of a project life cycle), the Competency Framework presents them by clusters. Intercultural competencies can be grouped into four interrelated clusters, according to the aspect of competence the...

  14. [In situ dynamics of phosphorus in the rhizosphere solution and organic acids exudation of two aquatic plants].

    Science.gov (United States)

    Wang, Zhen-yu; Wen, Sheng-fang; Luo, Xian-xiang; Li, Ai-feng; Xing, Bao-shan; Li, Feng-min

    2009-08-15

    A mini-rhizotron experiment with Alternanthera philoxeroides and Typha latifolia was conducted to measure the spatial and temporal dynamics of phosphorus in the rhizosphere solution. The organic acids in the in situ rhizosphere soil solution were analyzed. A decreasing phosphorus concentration gradient in soil solution toward the root was observed for both A. philoxeroides and T. latifolia. The phosphorus concentration in the rhizosphere soil solution of A. philoxeroides (2.53 mg x L(-1)) was lower than that of T. latifolia (5.43 mg x L(-1)) in the forth sampling day. Compared to T. latifolia, A. philoxeroides released more malic acid (27.33 umol x L(-1)) which was more efficient in phosphorus mobilization. A. philoxeroides was more effective in phosphorus uptake in the rhizosphere than T. latifolia.

  15. [Allelopathy autotoxicity effects of aquatic extracts from rhizospheric soil on rooting and growth of stem cuttings in Pogostemon cablin].

    Science.gov (United States)

    Tang, Kun; Li, Ming; Dong, Shan; Li, Yun-qi; Huang, Jie-wen; Li, Long-ming

    2014-06-01

    To study the allelopathy effects of aquatic extracts from rhizospheric soil on the rooting and growth of stem cutting in Pogostemon cablin, and to reveal its mechanism initially. The changes of rhizogenesis characteristics and physic-biochemical during cutting seedlings were observed when using different concentration of aquatic extracts from rhizospheric soil. Aquatic extracts from rhizospheric soil had significant inhibitory effects on rooting rate, root number, root length, root activity, growth rate of cutting with increasing concentrations of tissue extracts; The chlorophyll content of cutting seedlings were decreased, but content of MDA were increased, and activities of POD, PPO and IAAO in cutting seedlings were affected. Aquatic extracts from rhizospheric soil of Pogostemon cablin have varying degrees of inhibitory effects on the normal rooting and growth of stem cuttings.

  16. Influence of introduced potential biocontrol agents on maize seedling growth and bacterial community structure in the rhizosphere

    NARCIS (Netherlands)

    Kozdroj, J; Trevors, JT; van Elsas, JD

    2004-01-01

    Two species of Pseudomonas chromosomally tagged with gfp, which had shown antagonistic activity against the tomato pathogen Ralstonia solanacearum in a previous study, were assessed for their impact in the rhizosphere of maize. Plant growth characteristics, numbers of indigenous heterotrophic

  17. Evolution of the Crop Rhizosphere: Impact of Domestication on Root Exudates in Tetraploid Wheat (Triticum turgidumL.).

    Science.gov (United States)

    Iannucci, Anna; Fragasso, Mariagiovanna; Beleggia, Romina; Nigro, Franca; Papa, Roberto

    2017-01-01

    Domestication has induced major genetic changes in crop plants to satisfy human needs and as a consequence of adaptation to agroecosystems. This adaptation might have affected root exudate composition, which can influence the interactions in the rhizosphere. Here, using two different soil types (sand, soil), we provide an original example of the impact of domestication and crop evolution on root exudate composition through metabolite profiling of root exudates for a panel of 10 wheat genotypes that correspond to the key steps in domestication of tetraploid wheat (wild emmer, emmer, durum wheat). Our data show that soil type can dramatically affect the composition of root exudates in the rhizosphere. Moreover, the composition of the rhizosphere metabolites is associated with differences among the genotypes of the wheat domestication groups, as seen by the high heritability of some of the metabolites. Overall, we show that domestication and breeding have had major effects on root exudates in the rhizosphere, which suggests the adaptive nature of these changes.

  18. Screening of Rhizosphere Bacteria From Rice Fields in The Coastal Area as Acc-Deaminase and Auxin Producer

    OpenAIRE

    Annisyia Zarina Putri; Djarot Sasongko; Dwi N Susilowati

    2015-01-01

    Salinity and drought stress results in the production of ethylene. Rhizosphere bacterial activity suppresses the production of ethylene through the activity of 1-aminocycopropane-1-carboxylate (ACC) deaminase. In this study,a sampel of rhizosphere bacteria from coastal rice plant area was tested. The method used was acc deaminase activity test performed on Dworkin - Foster (DF) media and PCR acdS gene using specific primers of ACC and a quantitative analysis of the production of auxin (IAA). ...

  19. Effect of clonal integration on nitrogen cycling in rhizosphere of rhizomatous clonal plant, Phyllostachys bissetii, under heterogeneous light.

    Science.gov (United States)

    Li, Yang; Chen, Jing-Song; Xue, Ge; Peng, Yuanying; Song, Hui-Xing

    2018-02-14

    Clonal integration plays an important role in clonal plant adapting to heterogeneous habitats. It was postulated that clonal integration could exhibit positive effects on nitrogen cycling in the rhizosphere of clonal plant subjected to heterogeneous light conditions. An in-situ experiment was conducted using clonal fragments of Phyllostachys bissetii with two successive ramets. Shading treatments were applied to offspring or mother ramets, respectively, whereas counterparts were treated to full sunlight. Rhizomes between two successive ramets were either severed or connected. Extracellular enzyme activities and nitrogen turnover were measured, as well as soil properties. Abundance of functional genes (archaeal or bacterial amoA, nifH) in the rhizosphere of shaded, offspring or mother ramets were determined using quantitative polymerase chain reaction. Carbon or nitrogen availabilities were significantly influenced by clonal integration in the rhizosphere of shaded ramets. Clonal integration significantly increased extracellular enzyme activities and abundance of functional genes in the rhizosphere of shaded ramets. When rhizomes were connected, higher nitrogen turnover (nitrogen mineralization or nitrification rates) was exhibited in the rhizosphere of shaded offspring ramets. However, nitrogen turnover was significantly decreased by clonal integration in the rhizosphere of shaded mother ramets. Path analysis indicated that nitrogen turnover in the rhizosphere of shaded, offspring or mother ramets were primarily driven by the response of soil microorganisms to dissolved organic carbon or nitrogen. This unique in-situ experiment provided insights into the mechanism of nutrient recycling mediated by clonal integration. It was suggested that effects of clonal integration on the rhizosphere microbial processes were dependent on direction of photosynthates transport in clonal plant subjected to heterogeneous light conditions. Copyright © 2018 Elsevier B.V. All rights

  20. Bacterial communities in the rhizosphere of amilaceous maize (Zea mays L. as assessed by pyrosequencing

    Directory of Open Access Journals (Sweden)

    David Correa-Galeote

    2016-07-01

    Full Text Available Maize (Zea mays L. is the staple diet of the native peasants in the Quechua region of the Peruvian Andes who continue growing it in small plots called chacras following ancestral traditions. The abundance and structure of bacterial communities associated with the roots of amilaceous maize has not been studied in Andean chacras. Accordingly, the main objective of this study was to describe the rhizospheric bacterial diversity of amilaceous maize grown either in the presence or the absence of bur clover cultivated in soils from the Quechua maize belt. Three 16S rRNA gene libraries, one corresponding to sequences of bacteria from bulk soil of a chacra maintained under fallow conditions, the second from the rhizosphere of maize-cultivated soils, and the third prepared from rhizospheric soil of maize cultivated in intercropping with bur clover were examined using pyrosequencing tags spanning the V4 and V5 hypervariable regions of the gene. A total of 26031 sequences were found that grouped into 5955 distinct operational taxonomic units which distributed in 309 genera. The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from bulk soil. One hundred ninety seven genera were found in the bulk soil library and 234 and 203 were in those from the maize and maize/bur clover-cultivated soils. Sixteen out of the 309 genera had a relative abundance higher than 0.5% and the were (in decreasing order of abundance Gp4, Gp6, Flavobacterium, Subdivision3 genera incertae sedis of the Verrucomicrobia phylum, Gemmatimonas, Dechloromonas, Ohtaekwangia, Rhodoferax, Gaiella, Opitutus, Gp7, Spartobacteria genera incertae sedis, Terrimonas, Gp5, Steroidobacter and Parcubacteria genera incertae sedis. Genera Gp4 and Gp6 of the Acidobacteria, Gemmatimonas and Rhodoferax were the most abundant in bulk soil, whereas Flavobacterium, Dechloromonas and Ohtaekwangia were the main genera in the rhizosphere

  1. Linking Nitrogen Load to the Structure and Function of Wetland Soil and Rhizosphere Microbial Communities.

    Science.gov (United States)

    Hester, Eric R; Harpenslager, Sarah F; van Diggelen, Josepha M H; Lamers, Leon L; Jetten, Mike S M; Lüke, Claudia; Lücker, Sebastian; Welte, Cornelia U

    2018-01-01

    Wetland ecosystems are important reservoirs of biodiversity and significantly contribute to emissions of the greenhouse gases CO2, N2O, and CH4. High anthropogenic nitrogen (N) inputs from agriculture and fossil fuel combustion have been recognized as a severe threat to biodiversity and ecosystem functioning, such as control of greenhouse gas emissions. Therefore, it is important to understand how increased N input into pristine wetlands affects the composition and activity of microorganisms, especially in interaction with dominant wetland plants. In a series of incubations analyzed over 90 days, we disentangled the effects of N fertilization on the microbial community in bulk soil and the rhizosphere of Juncus acutiflorus, a common and abundant graminoid wetland plant. We observed an increase in greenhouse gas emissions when N is increased in incubations with J. acutiflorus, changing the system from a greenhouse gas sink to a source. Using 16S rRNA gene amplicon sequencing, we determined that the bacterial orders Opitutales, subgroup 6 Acidobacteria, and Sphingobacteriales significantly responded to high N availability. Based on metagenomic data, we hypothesize that these groups are contributing to the increased greenhouse gas emissions. These results indicated that increased N input leads to shifts in microbial activity within the rhizosphere, altering N cycling dynamics. Our study provides a framework for connecting environmental conditions of wetland bulk and rhizosphere soil to the structure and metabolic output of microbial communities. IMPORTANCE Microorganisms living within the rhizospheres of wetland plants significantly contribute to greenhouse gas emissions. Understanding how microbes produce these gases under conditions that have been imposed by human activities (i.e., nitrogen pollution) is important to the development of future management strategies. Our results illustrate that within the rhizosphere of the wetland plant Juncus acutiflorus

  2. Nontarget effects of chemical pesticides and biological pesticide on rhizospheric microbial community structure and function in Vigna radiata.

    Science.gov (United States)

    Singh, Sunil; Gupta, Rashi; Kumari, Madhu; Sharma, Shilpi

    2015-08-01

    Intensive agriculture has resulted in an indiscriminate use of pesticides, which demands in-depth analysis of their impact on indigenous rhizospheric microbial community structure and function. Hence, the objective of the present work was to study the impact of two chemical pesticides (chlorpyrifos and cypermethrin) and one biological pesticide (azadirachtin) at two dosages on the microbial community structure using cultivation-dependent approach and on rhizospheric bacterial communities involved in nitrogen cycle in Vigna radiata rhizosphere through cultivation-independent technique of real-time PCR. Cultivation-dependent study highlighted the adverse effects of both chemical pesticide and biopesticide on rhizospheric bacterial and fungal communities at different plant growth stages. Also, an adverse effect on number of genes and transcripts of nifH (nitrogen fixation); amoA (nitrification); and narG, nirK, and nirS (denitrification) was observed. The results from the present study highlighted two points, firstly that nontarget effects of pesticides are significantly detrimental to soil microflora, and despite being of biological origin, azadirachtin exerted negative impact on rhizospheric microbial community of V. radiata behaving similar to chemical pesticides. Hence, such nontarget effects of chemical pesticide and biopesticide in plants' rhizosphere, which bring out the larger picture in terms of their ecotoxicological effect, demand a proper risk assessment before application of pesticides as agricultural amendments.

  3. Direct evidence for the enhanced acquisition of phosphorus in the rhizosphere of aquatic plants: A case study on Vallisneria natans.

    Science.gov (United States)

    Xing, Xigang; Ding, Shiming; Liu, Ling; Chen, Musong; Yan, Wenming; Zhao, Liping; Zhang, Chaosheng

    2018-03-01

    There are few studies about the processes and mechanisms for aquatic plants to take up phosphorus (P) in wetland soils and sediments. Direct observation of P mobilization in rhizosphere is lacking. In this study, high-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) techniques were used to capture the small-scale changes of soluble reactive P (SRP) and soluble Fe, and labile P in the rhizosphere of Vallisneria natans (V. natans), respectively. The results showed 5.92- and 3.12-fold enrichments of P and Fe in the Fe plaques formed on the root surfaces, respectively, in comparison with the P and Fe concentrations in the non-rhizosphere sediments. Moreover, simultaneous releases of P and Fe appeared in rhizosphere and the SRP concentration showed up to 114-fold increases compared to the non-rhizosphere sediments. Five kinds of low-molecular weight organic acids (LMWOAs) were detected in the root exudates; oxalic acid accounted for 87.5% of the total. Extraction of Fe and P in the Fe plaques was greatly enhanced by root exudates compared to deionized water, and oxalic acid contributed to 67% and 75% of the total extracted Fe and P, respectively. The coupling processes of Fe plaque enrichment of P and oxalic acid complexation of Fe(III) led to significantly enhanced P acquisition in the rhizosphere of V. natans. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Mapping the Centimeter-Scale Spatial Variability of PAHs and Microbial Populations in the Rhizosphere of Two Plants.

    Directory of Open Access Journals (Sweden)

    Amélia Bourceret

    Full Text Available Rhizoremediation uses root development and exudation to favor microbial activity. Thus it can enhance polycyclic aromatic hydrocarbon (PAH biodegradation in contaminated soils. Spatial heterogeneity of rhizosphere processes, mainly linked to the root development stage and to the plant species, could explain the contrasted rhizoremediation efficiency levels reported in the literature. Aim of the present study was to test if spatial variability in the whole plant rhizosphere, explored at the centimetre-scale, would influence the abundance of microorganisms (bacteria and fungi, and the abundance and activity of PAH-degrading bacteria, leading to spatial variability in PAH concentrations. Two contrasted rhizospheres were compared after 37 days of alfalfa or ryegrass growth in independent rhizotron devices. Almost all spiked PAHs were degraded, and the density of the PAH-degrading bacterial populations increased in both rhizospheres during the incubation period. Mapping of multiparametric data through geostatistical estimation (kriging revealed that although root biomass was spatially structured, PAH distribution was not. However a greater variability of the PAH content was observed in the rhizosphere of alfalfa. Yet, in the ryegrass-planted rhizotron, the Gram-positive PAH-degraders followed a reverse depth gradient to root biomass, but were positively correlated to the soil pH and carbohydrate concentrations. The two rhizospheres structured the microbial community differently: a fungus-to-bacterium depth gradient similar to the root biomass gradient only formed in the alfalfa rhizotron.

  5. Cadmium uptake and speciation changes in the rhizosphere of cadmium accumulator and non-accumulator oilseed rape varieties.

    Science.gov (United States)

    Su, Dechun; Xing, Jianping; Jiao, Weiping; Wong, Woonchung

    2009-01-01

    Characteristics of cadmium (Cd) uptake kinetics and distribution of Cd speciation in the rhizosphere for Cd accumulator and non-accumulator oilseed rape varieties were investigated under nutrient solution and rhizobox soil culture conditions. The results showed that the maximal influx (V(max)) for Cd2+ and Km were significantly different for the two oilseed rape varieties. The value of V(max) for Cd accumulator oilseed rape Zhucang Huazi was two-fold greater than that for oilseed rape Chuan you II-93. The exchangeable Cd concentration in the rhizosphere was significantly lower than in non-rhizospheric soils supplemented with CdSO4 for both the varieties. Carbonate-bound Cd in the rhizosphere of Cd accumulator oilseed rape was significantly higher than that in the rhizosphere of non-accumulator oilseed rape and non-rhizospheric soil. Cd accumulator oilseed rape had a higher Cd2+ affinity and more ability to uptake insoluble Cd in the soil than the non-accumulator oilseed rape.

  6. Rhizosphere bacterial communities of dominant steppe plants shift in response to a gradient of simulated nitrogen deposition

    Directory of Open Access Journals (Sweden)

    An eYang

    2015-08-01

    Full Text Available We evaluated effects of 9-year simulation of simulated nitrogen (N deposition on microbial composition and diversity in the rhizosphere of two dominant temperate grassland species: grass Stipa krylovii and forb Artemisia frigida. Microbiomes in S. krylovii and A.frigida rhizosphere differed, but changed consistently along the N gradient. These changes were correlated to N-induced shifts to plant community. Hence, as plant biomass changed, so did bacterial rhizosphere communities, a result consistent with the role that N fertilizer has been shown to play in altering plant-microbial mutualisms. A total of 23 bacterial phyla were detected in the two rhizospheric soils by pyrosequencing, with Proteobacteria, Acidobacteria and Bacteroidetes dominating the sequences of all samples. Bacterioidetes and Proteobacteria tended to increase, while Acidobacteria declined with increase in N addition rates. TM7 increased >5-fold in the high N addition rates, especially in S. krylovii rhizosphere. Nitrogen addition also decreased diversity of OTUs (operational taxonomic units, Shannon and Chao1 indices of rhizospheric microbes regardless of plant species. These results suggest that there were both similar but also specific changes in microbial communities of temperate steppes due to N deposition.

  7. Mapping the Centimeter-Scale Spatial Variability of PAHs and Microbial Populations in the Rhizosphere of Two Plants.

    Science.gov (United States)

    Bourceret, Amélia; Leyval, Corinne; de Fouquet, Chantal; Cébron, Aurélie

    2015-01-01

    Rhizoremediation uses root development and exudation to favor microbial activity. Thus it can enhance polycyclic aromatic hydrocarbon (PAH) biodegradation in contaminated soils. Spatial heterogeneity of rhizosphere processes, mainly linked to the root development stage and to the plant species, could explain the contrasted rhizoremediation efficiency levels reported in the literature. Aim of the present study was to test if spatial variability in the whole plant rhizosphere, explored at the centimetre-scale, would influence the abundance of microorganisms (bacteria and fungi), and the abundance and activity of PAH-degrading bacteria, leading to spatial variability in PAH concentrations. Two contrasted rhizospheres were compared after 37 days of alfalfa or ryegrass growth in independent rhizotron devices. Almost all spiked PAHs were degraded, and the density of the PAH-degrading bacterial populations increased in both rhizospheres during the incubation period. Mapping of multiparametric data through geostatistical estimation (kriging) revealed that although root biomass was spatially structured, PAH distribution was not. However a greater variability of the PAH content was observed in the rhizosphere of alfalfa. Yet, in the ryegrass-planted rhizotron, the Gram-positive PAH-degraders followed a reverse depth gradient to root biomass, but were positively correlated to the soil pH and carbohydrate concentrations. The two rhizospheres structured the microbial community differently: a fungus-to-bacterium depth gradient similar to the root biomass gradient only formed in the alfalfa rhizotron.

  8. Fractal Feature of Particle-Size Distribution in the Rhizospheres and Bulk Soils during Natural Recovery on the Loess Plateau, China.

    Science.gov (United States)

    Song, Zilin; Zhang, Chao; Liu, Guobin; Qu, Dong; Xue, Sha

    2015-01-01

    The application of fractal geometry to describe soil structure is an increasingly useful tool for better understanding the performance of soil systems. Only a few studies, however, have focused on the structure of rhizospheric zones, where energy flow and nutrient recycling most frequently occur. We used fractal dimensions to investigate the characteristics of particle-size distribution (PSD) in the rhizospheres and bulk soils of six croplands abandoned for 1, 5, 10, 15, 20, and 30 years on the Loess Plateau of China and evaluated the changes over successional time. The PSDs of the rhizospheres and the fractal dimensions between rhizosphere soil and bulk soils during the natural succession differed significantly due to the influence of plant roots. The rhizospheres had higher sand (0.05-1.00 mm) contents, lower silt (nutrient status and the understanding of the performance of rhizospheric zones during ecological restoration.

  9. Quality Circle Competencies.

    Science.gov (United States)

    Reeves, Cecil

    The assessment instrument to be used with seven monographs relating to quality circles, this booklet is used to evaluate quality circle competencies for participants attending Quality Circle Training Institutes. The assessment instrument contains nine competency areas for evaluating effectiveness of participants on a scale from 1 (ineffective) to…

  10. Communicative Competence Reconsidered.

    Science.gov (United States)

    Doushaq, Mufeeq

    A discussion of points raised by Dell Hymes in his article "On Communicative Competence" leads to a proposal for a clearer and more comprehensive theory of communicative competence based on two models, a matrix of discourse analysis and a model of communication interaction. Pedagogical implications of the theory are considered, including the…

  11. Documentation of Improvement Competences

    DEFF Research Database (Denmark)

    Johansen, Jørn; Back, Karsten Kristensen; Korsaa, Morten

    2017-01-01

    competences, which should or could be brought into play during the project – and therefor also in one way or another addresses the quality of the activated competences in the improvement project – a kind of qualification. The clue is that the structure of the report follows the units and element in the SPI...

  12. Paying for Employee Competence.

    Science.gov (United States)

    Risher, Howard

    2000-01-01

    Competency-based pay provides an incentive for employees to enhance their capacity for performing their jobs. Salary increases are not linked to past performance, but to future professional growth to meet increasingly higher expectations. Discussions to identify key teaching competencies must precede implementation. (MLH)

  13. Competencies in Ornamental Horticulture

    Science.gov (United States)

    Loewen, Curtis E.

    1974-01-01

    Based on the author's dissertation, this article pertains to the identification of competencies for ornamental horticulture workers in Oregon. Findings were based on interviews with 56 ornamental horticulture business employers regarding 100 competencies. The method used can serve as a model for obtaining occupational information to develop and…

  14. Core Competence and Education.

    Science.gov (United States)

    Holmes, Gary; Hooper, Nick

    2000-01-01

    Outlines the concept of core competence and applies it to postcompulsory education in the United Kingdom. Adopts an educational perspective that suggests accreditation as the core competence of universities. This economic approach suggests that the market trend toward lifetime learning might best be met by institutions developing a core competence…

  15. Developing Clinical Competence

    NARCIS (Netherlands)

    P.F. Wimmers (Paul)

    2006-01-01

    textabstractThe development of clinical competence is the main purpose of medical education. The long road to become clinically competent starts on the first day of medical school, and every institution strives to select the best students. The responsibility of medical schools is to train

  16. The mycorrhizal fungus (¤Glomus intraradices¤) affects microbial activity in the rhizosphere of pea plants (¤Pisum sativum¤)

    DEFF Research Database (Denmark)

    Wamberg, C.; Christensen, S.; Jakobsen, I.

    2003-01-01

    decreased. AM also affected the composition of the rhizosphere bacterial community as revealed from DNA analysis (DGGE). With or without mycorrhiza, rhizosphere respiration was P-limited on very young roots, not nutrient limited at more mature roots and C-limited at withering. This suggests changes...... in the rhizosphere community during plant growth also supported by changes in the bacteria (DGGE). (C) 2003 Elsevier Ltd. All rights reserved....

  17. Abiotic/biotic coupling in the rhizosphere: a reactive transport modeling analysis

    Science.gov (United States)

    Lawrence, Corey R.; Steefel, Carl; Maher, Kate

    2014-01-01

    A new generation of models is needed to adequately simulate patterns of soil biogeochemical cycling in response changing global environmental drivers. For example, predicting the influence of climate change on soil organic matter storage and stability requires models capable of addressing complex biotic/abiotic interactions of rhizosphere and weathering processes. Reactive transport modeling provides a powerful framework simulating these interactions and the resulting influence on soil physical and chemical characteristics. Incorporation of organic reactions in an existing reactive transport model framework has yielded novel insights into soil weathering and development but much more work is required to adequately capture root and microbial dynamics in the rhizosphere. This endeavor provides many advantages over traditional soil biogeochemical models but also many challenges.

  18. ECOTOXICITY AND PHYTOTOXICITY OF PLANT PROTECTION PRODUCTS TO RHIZOSPHERE FUNGI AND WINTER WHEAT SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Anna Daria Stasiulewicz-Paluch

    2015-11-01

    Full Text Available Registration of plant protection products involves the analysis of their effects on soil microorganisms. The residues of plant protection products penetrate the soil, but their impact on fungi remains scarcely researched. In this study, the influence of selected plant protection products on the abundance of rhizosphere-dwelling fungi and the growth of winter wheat seedlings was evaluated under greenhouse conditions. The analysed plant protection products had an inhibitory effect on the growth of filamentous fungi in the rhizosphere, whereas yeasts were resistant to those products applied to soil. Tebuconazole exerted the strongest suppressive effect on the growth of filamentous fungi, and propiconazole was characterized by the greatest phytotoxic activity against winter wheat seedlings. Azoxystrobin had the weakest ecotoxic and phytotoxic effects, and its application to soil usually led to a rapid increase in the counts of fungi of the genus Acremonium.

  19. Importance of PGPR application and its effect on microbial activity in maize rhizosphere

    Directory of Open Access Journals (Sweden)

    Mrkovački Nastasija

    2012-01-01

    Full Text Available Microorganisms are involved in the formation of soil fertility, both potential and effective. They facilitate the processes of humification and dehumification and play a key role in the cycling of nutrients - macro and microelements. Rhizosphere is the soil in direct contact with plant roots and influenced by plant exudates. Root exudates of maize significantly affect the composition and abundance of microorganisms in the rhizosphere. Bio-fertilizers are microbial fertilizers composed of highly effective strains of bacteria, algae and fungi isolated from soil. Their application activates microbial processes that secure a better and steadier supply of plants with nitrogen, phosphorus, potassium and some micronutrients. The application of PGPR-containing biofertilizers reduces the need for expensive nitrogen fertilizers, facilitates phosphorus uptake by plants and affects the direction and dynamics of microbial processes.

  20. Use of Rhizosphere Metabolomics to Investigate Exudation of Phenolics by Arabidopsis Roots

    Science.gov (United States)

    Lee, Yong Jian; Rai, Amit; Reuben, Sheela; Nesati, Victor; Almeida, Reinaldo; Swarup, Sanjay

    2013-04-01

    The rhizosphere is a specialised micro-niche for bacteria that have an active exchange of signals and nutrients with the host plant. Nearly 20% of photosynthates are released as root exudates, which consist of primary metabolites and products of secondary metabolism which are largely phenolic in nature. Previously, using rhizosphere metabolomics, we showed that nearly 50% of organic carbon in the exudates is in the form of phenolic compounds, of which the largest fraction is from the phenylpropanoid synthesis pathway. Using Arabidopsis as a model, we have demonstrated that a biased rhizosphere can be created using plants with varying levels of phenylpropanoids due to mutations in the biosynthetic or regulatory genes. These phenylpropanoids levels are reflected in the exudates, and exudates from lines with regulatory gene mutations, tt8 and ttg, have higher levels of phenylpropanoids, whereas biosynthetic mutant line, tt4, has very low and undetectable levels of phenylpropanoids. The biased rhizosphere of tt8 and ttg lines provides a nutritional advantage to rhizobacteria that can utilize these phenylpropanoids such as quercetin. With such a strategy to increase the competitiveness of plant growth-promoting rhizobacteria (PGPR) such as Pseudomonas putida, this system can be applied to improve plant performance. In order to better understand the metabolic basis of the nutritional advantage behind the competitiveness of the favoured P. putida, we elucidated its quercetin utilization pathway. We have recently cloned the gene for quercetin oxidoreductase (QuoA) and expressed it in transgenic Arabidopsis lines to alter the plant phenylpropanoid metabolism, using a gain of function approach. Since phenylpropanoid biosynthesis in plants involve formation of quercetin from naringenin, we envisaged that QuoA expression in plants will provide us with a genetic tool to "reverse" this biosynthetic step. This perturbation led to a decrease in flavonoids and an increase in lignin

  1. Utilization of Heterologous Siderophores Enhances Levels of Iron Available to Pseudomonas putida in the Rhizosphere

    Science.gov (United States)

    Loper, Joyce E.; Henkels, Marcella D.

    1999-01-01

    Pseudomonas spp. have the capacity to utilize siderophores produced by diverse species of bacteria and fungi, and the present study was initiated to determine if siderophores produced by rhizosphere microorganisms enhance the levels of iron available to a strain of Pseudomonas putida in this natural habitat. We used a previously described transcriptional fusion (pvd-inaZ) between an iron-regulated promoter (pvd) and the ice nucleation reporter gene (inaZ) to detect alterations in iron availability to P. putida. Ice nucleation activity (INA) expressed from the pvd-inaZ fusion by P. putida N1R or N1R Pvd−, a derivative deficient in the production of a pyoverdine siderophore, was inversely related to the concentration of ferric citrate in a culture medium. In culture, INA expressed by N1R Pvd− (pvd-inaZ) was reduced in the presence of the ferric complex of pseudobactin-358, a pyoverdine siderophore produced by P. putida WCS358 that can be utilized as a source of iron by N1R Pvd−. In the rhizosphere of cucumbers grown in sterilized soil, N1R Pvd− (pvd-inaZ) expressed INA, indicating that iron availability was sufficiently low in that habitat to allow transcription of the iron-regulated pvd promoter. Coinoculation with WCS358 or N1R significantly decreased INA expressed by N1R Pvd− (pvd-inaZ) in the rhizosphere, whereas coinoculation with a pyoverdine-deficient mutant of WCS358 did not reduce INA expressed by N1R Pvd− (pvd-inaZ). These results indicate that iron availability to N1R Pvd− (pvd-inaZ) in the rhizosphere was enhanced by the presence of another strain of P. putida that produces a pyoverdine that N1R Pvd− (pvd-inaZ) was able to utilize as a source of iron. In culture, strain N1R Pvd− also utilized ferric complexes of the siderophores enterobactin and aerobactin as sources of iron. In the rhizosphere of cucumbers grown in sterilized soil, INA expressed by N1R Pvd− (pvd-inaZ) was reduced in the presence of strains of Enterobacter cloacae that

  2. Bacterial-plant-interactions: approaches to unravel the biological function of bacterial volatiles in the rhizosphere

    Directory of Open Access Journals (Sweden)

    Marco eKai

    2016-02-01

    Full Text Available Rhizobacteria produce an enormous amount of volatile compounds, however, the function of these metabolites is scarcely understood. Investigations evaluating influences on plants performed in various laboratories using individually developed experimental setups revealed different and often contradictory results, e.g. ranging from a significant plant growth promotion to a dramatic suppression of plant development. In addition to these discrepancies, these test systems neglected properties and complexity of the rhizosphere. Therefore, to pursue further investigations of the role of bacterial volatiles in this underground habitat, the applied methods have to simulate its natural characteristics as much as possible. In this review, we will describe and discuss pros and cons of currently used bioassays, give insights into rhizosphere characteristics, and suggest improvements for test systems that would consider in natura conditions and would allow gaining further knowledge of the potential function and significance of rhizobacterial volatiles in plant life.

  3. Ten-Competence: Life-Long Competence Development and Learning

    NARCIS (Netherlands)

    Koper, Rob; Specht, Marcus

    2006-01-01

    Koper, R., & Specht, M. (2008). Ten-Competence: Life-Long Competence Development and Learning. In M-A. Cicilia (Ed.), Competencies in Organizational e-learning: concepts and tools (pp. 234-252). Hershey: IGI-Global.

  4. Rhizosphere soil microbial index of tree species in a coal mining ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, S.; Masto, R.E.; Ram, L.C.; Selvi, V.A.; Srivastava, N.K.; Tripathi, R.C.; George, J. [Central Institute of Mining & Fuel Research, Dhanbad (India)

    2009-09-15

    Microbial characterization of the tree rhizosphere provides important information relating to the screening of tree species for re-vegetation of degraded land. Rhizosphere soil samples collected from a few predominant tree species growing in the coal mining ecosystem of Dhanbad, India, were analyzed for soil organic carbon (SOC), mineralizable N, microbial biomass carbon (MBC), active microbial biomass carbon (AMBC), basal soil respiration (BSR), and soil enzyme activities (dehydrogenase, urease, catalase, phenol oxidase, and peroxidase). Principal component analysis was employed to derive a rhizosphere soil microbial index (RSMI) and accordingly, dehydrogenase, BSR/MBC, MBC/SOC, EC, phenol oxidase and AMBC were found to be the most critical properties. The observed values for the above properties were converted into a unitless score (0-1.00) and the scores were integrated into RSMI. The tree species could be arranged in decreasing order of the RSMI as: A. marmelos (0.718), A. indica (0.715), Bauhinia bauhinia (0.693), B. monosperma (0.611), E. jambolana (0.601), Moringa oleifera (0.565), Dalbergia sissoo (0.498), T indica (0.488), Morus alba (0.415), F religiosa (0.291), Eucalyptus sp. (0.232) and T grandis (0.181). It was concluded that tree species in coal mining areas had diverse effects on their respective rhizosphere microbial processes, which could directly or indirectly determine the survival and performance of the planted tree species in degraded coal mining areas. Tree species with higher RSMI values could be recommended for re-vegetation of degraded coal mining area.

  5. Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments

    Directory of Open Access Journals (Sweden)

    François eThomas

    2014-06-01

    Full Text Available Salt marshes are highly productive ecosystems hosting an intense sulfur (S cycle, yet little is known about S-oxidizing microorganisms in these ecosystems. Here, we studied the diversity and transcriptional activity of S-oxidizers in salt marsh sediments colonized by the plant Spartina alterniflora, and assessed variations with sediment depth and small-scale compartments within the rhizosphere. We combined next-generation amplicon sequencing of 16S rDNA and rRNA libraries with phylogenetic analyses of marker genes for two S-oxidation pathways (soxB and rdsrAB. Gene and transcript numbers of soxB and rdsrAB phylotypes were quantified simultaneously, using newly designed (RT-qPCR assays. We identified a diverse assemblage of S-oxidizers, with Chromatiales and Thiotrichales being dominant. The detection of transcripts from S-oxidizers was mostly confined to the upper 5 cm sediments, following the expected distribution of root biomass. A common pool of species dominated by Gammaproteobacteria transcribed S-oxidation genes across roots, rhizosphere, and surrounding sediment compartments, with rdsrAB transcripts prevailing over soxB. However, the root environment fine-tuned the abundance and transcriptional activity of the S-oxidizing community. In particular, the global transcription of soxB was higher on the roots compared to mix and rhizosphere samples. Furthermore, the contribution of Epsilonproteobacteria-related S-oxidizers tended to increase on Spartina roots compared to surrounding sediments. These data shed light on the under-studied oxidative part of the sulfur cycle in salt marsh sediments and indicate small-scale heterogeneities are important factors shaping abundance and potential activity of S-oxidizers in the rhizosphere.

  6. Taxonomic and functional diversity of a Quercus pyrenaicaWilld. Rhizospheric microbiome in the Mediterranean mountains

    OpenAIRE

    Cobo-Díaz, JF; Fernández-González, AJ; Villadas, PJ; Toro, N; Tringe, SG; Fernández-López, M

    2017-01-01

    © 2017 by the authors. Altitude significantly affects vegetation growth and distribution, including the developmental stages of a forest. We used shotgun Illumina sequencing to analyze microbial community composition and functional potential in melojo-oak (Quercus pyrenaica Willd.) rhizospheric soil for three different development stages along an altitudinal gradient: (a) a low altitude, non-optimal site for forest maintenance; (b) an intermediate altitude, optimal site for a forest; and (c) ...

  7. RHIZOSPHERE MICROBIOLOGY OF CHLORINATED ETHENE CONTAMINATED SOILS: EFFECTS ON PHOSPHOLIPID FATTY ACID CONTENT

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R. L.; Stanhopc, A.; Franck, M. M.; McKinsey, P. C.; Berry, C. J.

    2005-05-26

    Microbial degradation of chlorinated ethenes (CE) in rhizosphere soils was investigated at seepline areas impacted by CE plumes. Successful bioremediation of CE in rhizosphere soils is dependent on microbial activity, soil types, plant species, and groundwater CE concentrations. Seepline soils were exposed to trichloroethylene (TCE) and perchloroethylene (PCE) in the 10-50 ppb range. Greenhouse soils were exposed to 2-10 ppm TCE. Plants at the seepline were poplar and pine while the greenhouse contained sweet gum, willow, pine, and poplar. Phospholipid fatty acid (PLFA) analyses were performed to assess the microbial activity in rhizosphere soils. Biomass content was lowest in the nonvegetated control soil and highest in the Sweet Gum soil. Bacterial rhizhosphere densities, as measured by PLFA, were similar in different vegetated soils while fungi biomass was highly variable. The PLFA soil profiles showed diverse microbial communities primarily composed of Gram-negative bacteria. Adaptation of the microbial community to CE was determined by the ratio of {omega}7t/{omega}7c fatty acids. Ratios (16:1{omega}7v16:1{omega}7c and 18:l{omega}7t/18:1{omega}7c) greater than 0.1 were demonstrated in soils exposed to higher CE concentrations (10-50 ppm), indicating an adaptation to CE resulting in decreased membrane permeability. Ratios of cyclopropyl fatty acids showed that the vegetated control soil sample contained the fastest microbial turnover rate and least amount of environmental stress. PLFA results provide evidence that sulfate reducing bacteria (SRB) are active in these soils. Microcosm studies with these soils showed CE dechlorinating activity was occurring. This study demonstrates microbial adaptation to environmental contamination and supports the application of natural soil rhizosphere activity as a remedial strategy.

  8. Specific rhizosphere bacterial and fungal groups respond differently to elevated atmospheric CO(2).

    Science.gov (United States)

    Drigo, Barbara; van Veen, Johannes A; Kowalchuk, George A

    2009-10-01

    Soil community responses to increased atmospheric CO(2) concentrations are expected to occur mostly through interactions with changing vegetation patterns and plant physiology. To gain insight into the effects of elevated atmospheric CO(2) on the composition and functioning of microbial communities in the rhizosphere, Carex arenaria (a non-mycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown under defined atmospheric conditions with either ambient (350 p.p.m.) or elevated (700 p.p.m.) CO(2) concentrations. PCR-DGGE (PCR-denaturing gradient gel electrophoresis) and quantitative-PCR were carried out to analyze, respectively, the structure and abundance of the communities of actinomycetes, Fusarium spp., Trichoderma spp., Pseudomonas spp., Burkholderia spp. and Bacillus spp. Responses of specific functional groups, such as phloroglucinol, phenazine and pyrrolnitrin producers, were also examined by quantitative-PCR, and HPLC (high performance liquid chromatography) was employed to assess changes in exuded sugars in the rhizosphere. Multivariate analysis of group-specific community profiles showed disparate responses to elevated CO(2) for the different bacterial and fungal groups examined, and these responses were dependent on plant type and soil nutrient availability. Within the bacterial community, the genera Burkholderia and Pseudomonas, typically known as successful rhizosphere colonizers, were significantly influenced by elevated CO(2), whereas the genus Bacillus and actinomycetes, typically more dominant in bulk soil, were not. Total sugar concentrations in the rhizosphere also increased in both plants in response to elevated CO(2). The abundances of phloroglucinol-, phenazine- and pyrrolnitrin-producing bacterial communities were also influenced by elevated CO(2), as was the abundance of the fungal genera Fusarium and Trichoderma.

  9. Biofilm formation and indole-3-acetic acid production by two rhizospheric unicellular cyanobacteria.

    Science.gov (United States)

    Ahmed, Mehboob; Stal, Lucas J; Hasnain, Shahida

    2014-08-01

    Microorganisms that live in the rhizosphere play a pivotal role in the functioning and maintenance of soil ecosystems. The study of rhizospheric cyanobacteria has been hampered by the difficulty to culture and maintain them in the laboratory. The present work investigated the production of the plant hormone indole-3-acetic acid (IAA) and the potential of biofilm formation on the rhizoplane of pea plants by two cyanobacterial strains, isolated from rice rhizosphere. The unicellular cyanobacteria Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 that were isolated from a rice rhizosphere, were investigated. Production of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 was measured under experimental conditions (pH and light). The bioactivity of the cyanobacterial auxin was demonstrated through the alteration of the rooting pattern of Pisum sativum seedlings. The increase in the concentration of L-tryptophan and the time that this amino acid was present in the medium resulted in a significant enhancement of the synthesis of IAA (r > 0.900 at p = 0.01). There was also a significant correlation between the concentration of IAA in the supernatant of the cyanobacteria cultures and the root length and number of the pea seedlings. Observations made by confocal laser scanning microscopy revealed the presence of cyanobacteria on the surface of the roots and also provided evidence for the penetration of the cyanobacteria in the endorhizosphere. We show that the synthesis of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 occurs under different environmental conditions and that the auxin is important for the development of the seedling roots and for establishing an intimate symbiosis between cyanobacteria and host plants.

  10. Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments.

    Science.gov (United States)

    Thomas, François; Giblin, Anne E; Cardon, Zoe G; Sievert, Stefan M

    2014-01-01

    Salt marshes are highly productive ecosystems hosting an intense sulfur (S) cycle, yet little is known about S-oxidizing microorganisms in these ecosystems. Here, we studied the diversity and transcriptional activity of S-oxidizers in salt marsh sediments colonized by the plant Spartina alterniflora, and assessed variations with sediment depth and small-scale compartments within the rhizosphere. We combined next-generation amplicon sequencing of 16S rDNA and rRNA libraries with phylogenetic analyses of marker genes for two S-oxidation pathways (soxB and rdsrAB). Gene and transcript numbers of soxB and rdsrAB phylotypes were quantified simultaneously, using newly designed (RT)-qPCR assays. We identified a diverse assemblage of S-oxidizers, with Chromatiales and Thiotrichales being dominant. The detection of transcripts from S-oxidizers was mostly confined to the upper 5 cm sediments, following the expected distribution of root biomass. A common pool of species dominated by Gammaproteobacteria transcribed S-oxidation genes across roots, rhizosphere, and surrounding sediment compartments, with rdsrAB transcripts prevailing over soxB. However, the root environment fine-tuned the abundance and transcriptional activity of the S-oxidizing community. In particular, the global transcription of soxB was higher on the roots compared to mix and rhizosphere samples. Furthermore, the contribution of Epsilonproteobacteria-related S-oxidizers tended to increase on Spartina roots compared to surrounding sediments. These data shed light on the under-studied oxidative part of the sulfur cycle in salt marsh sediments and indicate small-scale heterogeneities are important factors shaping abundance and potential activity of S-oxidizers in the rhizosphere.

  11. The Role of Siderophores on Plants under Heavy Meal Stress: A View from the Rhizosphere

    OpenAIRE

    Mihiri Seneviratne; Meththika Vithanage

    2015-01-01

    Siderophores are Fe chelators produced by both microbes and plants. Since Fe is an essential element to all forms of life, siderophores plays a vital role to overcome the Fe limitations. It has been revealed that in the rhizosphere, where many complex biochemical reactions takes place, both microbial and plant siderophores involve to fulfill Fe requirements of the plant. Interestingly, siderophores exhibit a tremendous role in protecting the plant from oxidative stress caused by heavy metals....

  12. Diversity and Structure of Diazotrophic Communities in Mangrove Rhizosphere, Revealed by High-Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Yanying Zhang

    2017-10-01

    Full Text Available Diazotrophic communities make an essential contribution to the productivity through providing new nitrogen. However, knowledge of the roles that both mangrove tree species and geochemical parameters play in shaping mangove rhizosphere diazotrophic communities is still elusive. Here, a comprehensive examination of the diversity and structure of microbial communities in the rhizospheres of three mangrove species, Rhizophora apiculata, Avicennia marina, and Ceriops tagal, was undertaken using high-throughput sequencing of the 16S rRNA and nifH genes. Our results revealed a great diversity of both the total microbial composition and the diazotrophic composition specifically in the mangrove rhizosphere. Deltaproteobacteria and Gammaproteobacteria were both ubiquitous and dominant, comprising an average of 45.87 and 86.66% of total microbial and diazotrophic communities, respectively. Sulfate-reducing bacteria belonging to the Desulfobacteraceae and Desulfovibrionaceae were the dominant diazotrophs. Community statistical analyses suggested that both mangrove tree species and additional environmental variables played important roles in shaping total microbial and potential diazotroph communities in mangrove rhizospheres. In contrast to the total microbial community investigated by analysis of 16S rRNA gene sequences, most of the dominant diazotrophic groups identified by nifH gene sequences were significantly different among mangrove species. The dominant diazotrophs of the family Desulfobacteraceae were positively correlated with total phosphorus, but negatively correlated with the nitrogen to phosphorus ratio. The Pseudomonadaceae were positively correlated with the concentration of available potassium, suggesting that diazotrophs potentially play an important role in biogeochemical cycles, such as those of nitrogen, phosphorus, sulfur, and potassium, in the mangrove ecosystem.

  13. Comparative metaproteomic analysis on consecutively Rehmannia glutinosa-monocultured rhizosphere soil.

    Directory of Open Access Journals (Sweden)

    Linkun Wu

    Full Text Available BACKGROUND: The consecutive monoculture for most of medicinal plants, such as Rehmannia glutinosa, results in a significant reduction in the yield and quality. There is an urgent need to study for the sustainable development of Chinese herbaceous medicine. METHODOLOGY/PRINCIPAL FINDINGS: Comparative metaproteomics of rhizosphere soil was developed and used to analyze the underlying mechanism of the consecutive monoculture problems of R. glutinosa. The 2D-gel patterns of protein spots for the soil samples showed a strong matrix dependency. Among the spots, 103 spots with high resolution and repeatability were randomly selected and successfully identified by MALDI TOF-TOF MS for a rhizosphere soil metaproteomic profile analysis. These proteins originating from plants and microorganisms play important roles in nutrient cycles and energy flow in rhizospheric soil ecosystem. They function in protein, nucleotide and secondary metabolisms, signal transduction and resistance. Comparative metaproteomics analysis revealed 33 differentially expressed protein spots in rhizosphere soil in response to increasing years of monoculture. Among them, plant proteins related to carbon and nitrogen metabolism and stress response, were mostly up-regulated except a down-regulated protein (glutathione S-transferase involving detoxification. The phenylalanine ammonia-lyase was believed to participate in the phenylpropanoid metabolism as shown with a considerable increase in total phenolic acid content with increasing years of monoculture. Microbial proteins related to protein metabolism and cell wall biosynthesis, were up-regulated except a down-regulated protein (geranylgeranyl pyrophosphate synthase functioning in diterpenoid synthesis. The results suggest that the consecutive monoculture of R. glutinosa changes the soil microbial ecology due to the exudates accumulation, as a result, the nutrient cycles are affected, leading to the retardation of plant growth and

  14. Which fraction of soil organic matter is more vulnerable to rhizosphere priming effect?

    Science.gov (United States)

    Zhu, B.; Cheng, W.

    2016-12-01

    Rhizosphere priming effect (RPE) is defined as the stimulation or suppression of soil organic matter (SOM) decomposition by living roots. It remains unclear which fraction of SOM is more vulnerable to rhizosphere priming. We conducted two experiments in continuous 13CO2 labeling growth chamber to compare the intensity of RPE for the active (or labile) vs. slow (or recalcitrant) SOM. A sandy loam (Alfisol) was incubated at 20oC and 80% water holding capacity for different periods, which created a gradient in the relative proportion of active vs. slow SOM in the remaining soils. We then grew sunflower (Helianthus annuus) and soybean (Glycine max) in these remaining soils for 50 days under the same environmental conditions to compare the RPE of these two plant species on the decomposition of soils that varied in the lability of SOM. In both experiments, as the incubation proceeded from 1 to 8 to 14 months (in experiment 1) and the soil changed from freshly-sampled soil to two-year-incubated soil (in experiment 2), the intensity of RPE increased significantly even after accounting for the changes in root biomass or root-derived CO2. This result suggests that the slow (or recalcitrant) fraction of SOM is likely more vulnerable to rhizosphere priming compared to the active (or labile) fraction of SOM. Although the underlying mechanisms of this finding await further investigation, our study clearly shows that the main component of SOM (slow or recalcitrant SOM, decadal turnover) is vulnerable to rhizosphere priming. Therefore, the RPE has the potential to substantially regulate both short-term and long-term soil carbon dynamics.

  15. Arbuscular mycorrhizal fungi diversity in the rhizosphere of tea plant (Camellia sinensis) grown in Laoshan, Shandong

    OpenAIRE

    Lisha Wu; Yu Wang; Min Li; Zhaotang Ding; Runjin Liu

    2009-01-01

    To determine the diversity of arbuscular mycorrhizal (AM) fungi in the rhizosphere of tea plant (Camellia sinensis) in Laoshan region, Shandong Province, we selected and sampled 12 representative tea gardens. Soil samples were collected from these gardens in September 2007. Spores of AM fungi were identified to reveal the species richness, frequency, spore density, relative abundance, importance value and Shannon-Wiener indices of AM fungi. Species diversity and composition of AM fungal commu...

  16. ESTCP Cost and Performance Report: Field Demonstration of Rhizosphere-Enhanced Treatment of Organics-Contaminated Soils on Native American Lands with Application to Northern FUD Sites

    National Research Council Canada - National Science Library

    Reynolds, C. M

    2004-01-01

    ... can be used in other situations dealing with surface soil contamination. This project included field demonstrations of rhizosphere-enhanced bioremediation of petroleum, oils, and lubricants (POLs...

  17. Effect of rhizosphere on soil microbial community and in-situ pyrene biodegradation

    Science.gov (United States)

    Su, Y.; Yang, X.; Chiou, C.T.

    2008-01-01

    To access the influence of a vegetation on soil microorganisms toward organic pollutant biogegration, this study examined the rhizospheric effects of four plant species (sudan grass, white clover, alfalfa, and fescue) on the soil microbial community and in-situ pyrene (PYR) biodegradation. The results indicated that the spiked PYR levels in soils decreased substantially compared to the control soil without planting. With equal planted densities, the efficiencies of PYR degradation in rhizosphere with sudan grass, white clover, alfalfa and fescue were 34.0%, 28.4%, 27.7%, and 9.9%, respectively. However, on the basis of equal root biomass the efficiencies were in order of white clover >> alfalfa > sudan > fescue. The increased PYR biodegradation was attributed to the enhanced bacterial population and activity induced by plant roots in the rhizosphere. Soil microbial species and biomasses were elucidated in terms of microbial phospholipid ester-linked fatty acid (PLFA) biomarkers. The principal component analysis (PCA) revealed significant changes in PLFA pattern in planted and non-planted soils spiked with PYR. Total PLFAs in planted soils were all higher than those in non-planted soils. PLFA assemblages indicated that bacteria were the primary PYR degrading microorganisms, and that Gram-positive bacteria exhibited higher tolerance to PYR than Gram-negative bacteria did. ?? 2008 Higher Education Press and Springer-Verlag GmbH.

  18. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation.

    Science.gov (United States)

    Martínez-Alcalá, I; Walker, D J; Bernal, M P

    2010-05-01

    To understand better the suitability of white lupin (Lupinus albus L.) for phytoremediation of heavy metal-contaminated soils, the effect of its roots on chemical and biological properties of the rhizosphere affecting soil metal fractionation was studied. Plants were cultivated in two similar soils, with high levels of Zn, Cd, Cu and Pb but differing pH values (4.2 and 6.8). In the rhizosphere of both soils, its roots induced increases in water-soluble carbon, which influenced the fractionation of heavy metals and ultimately their uptake by plant roots. In the rhizosphere of the acid soil, the concentrations of 0.1M CaCl(2)-extractable Mn, Zn and Cu were lower than in the bulk soil, possibly due to their increased retention on Fe (III) hydroxides/oxyhydroxides, while in the neutral soil only the Zn concentration was lower. Higher concentrations of heavy metals were found in plants growing on the acid soil, reflecting their greater availability in this soil. The restricted transfer of heavy metals to the shoot confirms the potential role of this species in the initial phytoimmobilisation of heavy metals, particularly in neutral-alkaline soils. Crown Copyright 2009. Published by Elsevier Inc. All rights reserved.

  19. Amazonian dark Earth and plant species from the Amazon region contribute to shape rhizosphere bacterial communities.

    Science.gov (United States)

    Barbosa Lima, Amanda; Cannavan, Fabiana Souza; Navarrete, Acacio Aparecido; Teixeira, Wenceslau Geraldes; Kuramae, Eiko Eurya; Tsai, Siu Mui

    2015-05-01

    Amazonian Dark Earths (ADE) or Terra Preta de Índio formed in the past by pre-Columbian populations are highly sustained fertile soils supported by microbial communities that differ from those extant in adjacent soils. These soils are found in the Amazon region and are considered as a model soil when compared to the surrounding and background soils. The aim of this study was to assess the effects of ADE and its surrounding soil on the rhizosphere bacterial communities of two leguminous plant species that frequently occur in the Amazon region in forest sites (Mimosa debilis) and open areas (Senna alata). Bacterial community structure was evaluated using terminal restriction fragment length polymorphism (T-RFLP) and bacterial community composition by V4 16S rRNA gene region pyrosequencing. T-RFLP analysis showed effect of soil types and plant species on rhizosphere bacterial community structure. Differential abundance of bacterial phyla, such as Acidobacteria, Actinobacteria, Verrucomicrobia, and Firmicutes, revealed that soil type contributes to shape the bacterial communities. Furthermore, bacterial phyla such as Firmicutes and Nitrospira were mostly influenced by plant species. Plant roots influenced several soil chemical properties, especially when plants were grown in ADE. These results showed that differences observed in rhizosphere bacterial community structure and composition can be influenced by plant species and soil fertility due to variation in soil attributes.

  20. [Effects of different mulches on rhizosphere temperature, growth, and physiological properties of fluecured tobacco].

    Science.gov (United States)

    Jia, Zhihong; Yi, Jianhua; Sun, Zaijun

    2006-11-01

    With greenhouse plastic film, rice straw plus greenhouse plastic film, soil-mulching plastic film, rice straw, rice straw plus sun-shading net, and sun-shading net as test mulches, this paper studied their effects on the rhizosphere temperature, growth, and physiological properties of flue-cured tobacco. The results showed that after mulching for 22 days, the accumulative rhizosphere temperature at the depth of 5 cm was the highest (424.75 degrees C) for greenhouse plastic film and the lowest (378.75 degrees C) for rice straw plus sun-shading net, while that at the depth of 15 cm was the highest (396.75 degrees C) for greenhouse plastic film and the lowest (368.31 degrees C) for sun-shading net. With the increase of accumulative rhizosphere temperature, the dry weight of above- and underground parts, photosynthesis, and root vigor of flue-cured tobacco tended to increase, and at the 10th day after mulches removal, root biomass had the largest increment in the treatment of soil-mulching plastic film and the smallest increment in the treatment of rice straw plus sun-shading net.

  1. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere.

    Science.gov (United States)

    Yang, Bo; Wang, Xiao-Mi; Ma, Hai-Yan; Yang, Teng; Jia, Yong; Zhou, Jun; Dai, Chuan-Chao

    2015-01-01

    The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N), but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics, the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea). Ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage). A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates, affected the abundance and community structure of AOA, AOB, and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids in root exudates. Plant-soil feedback mechanisms may be mediated by the rice-endophyte interaction, especially in nutrient-limited soil.

  2. Ozone exposure of field-grown winter wheat affects soil mesofauna in the rhizosphere

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, Stefan, E-mail: stefan.schrader@vti.bund.d [Johann Heinrich von Thuenen-Institute (vTI), Federal Research Institute for Rural Areas, Forestry and Fisheries, Institute of Biodiversity, Bundesallee 50, 38116 Braunschweig (Germany); Bender, Juergen; Weigel, Hans-Joachim [Johann Heinrich von Thuenen-Institute (vTI), Federal Research Institute for Rural Areas, Forestry and Fisheries, Institute of Biodiversity, Bundesallee 50, 38116 Braunschweig (Germany)

    2009-12-15

    A 2-year open-top chamber experiment with field-grown winter wheat (Triticum aestivum L. cv. Astron) was conducted to examine the effects of ozone on plant growth and selected groups of soil mesofauna in the rhizosphere. From May through June in each year, plants were exposed to two levels of O{sub 3}: non-filtered (NF) ambient air or NF+ 40 ppb O{sub 3} (NF+). During O{sub 3} exposure, soil sampling was performed at two dates according to different plant growth stages. O{sub 3} exposure reduced above- and below-ground plant biomass in the first year, but had little effect in the second year. The individual density of enchytraeids, collembolans and soil mites decreased significantly in the rhizosphere of plants exposed to NF+ in both years. Differences were highest around anthesis, i.e. when plants are physiologically most active. The results suggest that elevated O{sub 3} concentrations may influence the dynamic of decomposition processes and the turnover of nutrients. - Ozone reduced the individual densities of enchytraeids, collembolans and soil mites in the rhizosphere of winter wheat indirectly via the plant-soil-system.

  3. Diversity and activity of biosurfactant-producing Pseudomonas in the rhizosphere of black pepper in Vietnam.

    Science.gov (United States)

    Tran, H; Kruijt, M; Raaijmakers, J M

    2008-03-01

    Phytophthora capsici is a major pathogen of black pepper and zoospores play an important role in the infection process. Fluorescent pseudomonads that produce biosurfactants with zoosporicidal activities were isolated from the black pepper rhizosphere in Vietnam, and their genotypic diversity and potential to control Phy. capsici root rot was determined. Biosurfactant-producing pseudomonads were genotypically and biochemically characterized by BOX-polymerase chain reaction (PCR), 16S-rDNA sequencing, reverse-phase-high-performance liquid chromatography and liquid chromatography-mass spectrometry analyses. Biosurfactant-producing fluorescent pseudomonads make up c. 1.3% of the culturable Pseudomonas population in the rhizosphere of black pepper. Although BOX-PCR revealed substantial genotypic diversity, the isolates were shown to produce the same biosurfactants and were all identified as Pseudomonas putida. When applied to black pepper stem cuttings, several of the biosurfactant-producing strains provided significant disease control. In absence of the disease, several of the bacterial strains promoted shoot and root growth of black pepper stem cuttings. Biosurfactant-producing pseudomonads indigenous to the rhizosphere of black pepper plants are genotypically diverse and provide a novel resource for the control of Phy. capsici root rot and growth promotion of black pepper stem cuttings. The results of this study provide a strong basis for further development of supplementary strategies with antagonistic bacteria to control foot and root rot of black pepper and to promote plant growth.

  4. [Isolation and biodiversity of copper-resistant bacteria from rhizosphere soil of Elsholtzia splendens].

    Science.gov (United States)

    Sun, Leni; He, Linyan; Zhang, Yanfeng; Zhang, Wenhui; Wang, Qi; Sheng, Xiafang

    2009-10-01

    Isolation and characterization of rhizosphere copper-resistant bacteria from a copper accumulator plant Elsholtzia splendens were investigated. Cultivable Cu-resistant bacteria were isolated by plating and screening from rhizosphere soils of Elsholtzia splendens growing on a copper mine tailing. Bacteria were characterized regarding characteristics that may be relevant for a beneficial plant-microbe interaction--Cu tolerance, phosphate-solubilizing, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, siderophore and indoleacetic acid production, and further classified by restriction analysis of 16S rDNA (ARDRA). Strains that produced ACC deaminase were identified by 16S rDNA sequence analysis. Twenty-seven Cu-resistant strains were isolated from rhizosphere soil of Elsholtzia splendens and classified by ARDRA in 7 different taxonomic groups at the similarity level of 60% . All strains produced IAA or their derivatives, 44.4% of the strains produced a very high level of siderophores, and five strains were able to grow on ACC as the sole nitrogen source. Strains 2EBS12, 2EBS13, 2EBS15 and 3EBS11 were identified as Acinetobacter, strain 2EBS14 was essentially consistent Alcaligenes. Cu-resistant rhizobacteria isolated from Elsholtzia splendens have abundant characteristics relative to promoting plant growth and genetic diversity, rhizobacteria Acinetobacter sp. and Alcaligenes sp. contained ACC deaminase activity.

  5. Effect of Azotobacter croococcum on productive traits and microorganisms in sugar beet rhizosphere

    Directory of Open Access Journals (Sweden)

    Kuzevski Janja

    2011-01-01

    Full Text Available The aim of this study was to determine the effects of three different inoculation methods with selected Azotobacter chroococcum strains on productive and technological traits of sugar beet, as well as on the total number of microorganisms and azotobacter in rhizosphere. The results of this two-year study showed that effectiveness of the tested inoculation methods in increasing root yield and sugar content varies greatly, depending on year and azotobacter strains. Effectiveness of inoculation methods was not largely impacted by year on granulated sugar. Achieved granulated sugar yield was significantly higher by using pre-sowing azotobacter application, than by using seed inoculation. A significantly increased number of microorganisms in sugar beet rhizosphere was determined, not only by using pre-sowing azotobacter application but also by using sugar beet seed inoculation. Pre-sowing azotobacter application and inter-row cultivation both caused an equal increase in the number of these bacteria in sugar beet rhizosphere (42.2% and 46.9%. Use of sugar beet seed inoculation caused an increase of 33.7% in the number of azotobacter. In order to achieve higher effectiveness in applying azotobacter on productive and technological traits of sugar beet, and considering determined interaction between a certain year, an inoculation method and a strain, it is necessary for future research to focus on determining efficiency of these strains when they are in a mixture.

  6. [Isolation and identification of dominant microorganisms in rhizosphere of continuous cropping with peanut].

    Science.gov (United States)

    Yan, Yanwei; Zhang, Hong; Liu, Lu; Xian, Hongquan; Cui, Dejie

    2011-06-01

    We isolated and identified dominant microorganisms from the rhizosphere of continuous cropping with peanut, to study the relationship between dominant microorganisms and peanut continuous cropping. By using dilution-plate method we isolated dominant bacteria, dominant fungi and actinomycetes from the rhizosphere of continuous cropping with peanut. Morphological specificity, culture shape, physiological-biochemical characteristic and partial 16S rDNA sequences were used to identify bacteria and actinomycetes. Morpholog, growth on various media, and Internal Transcribed Spacer (ITS) rDNA sequences homology analysis were performed to identify dominant fungi. We isolated seven dominant bacteria strains, seven dominant fungi and seven dominant actinomycetes. Dominant bacteria were identified as Leifsonia xyli, Arthrobacter chlorophenolicus, Microbacterium flavescens, Sphingomonas sp., Pasteurella sp., Bacillus simplex and Bacillus megaterium. Dominant fungi were identified as Cladosporium cladosporioides, Penicillium purpurogenum , Hypocrea lixii, Exophiala pisciphila, Penicillium janthinellum, Aspergillus sp. and Verticillium dahliae. Dominant actinomycetes were identified as Streptomyces violaceoruber, Streptomyces flaveus, Streptomyces panaciterrae, Streptomyces achromogenes, Streptomyces pseudogriseolus, Streptomyces cellulosae and Streptomyces aureus. This study was the first time to isolate and identify dominant microorganisms from the rhizosphere of continuous cropping with peanut. The type of dominant microorganisms changed obviously after planting peanut, although the change was without regularity.

  7. Dry Season Constrains Bacterial Phylogenetic Diversity in a Semi-Arid Rhizosphere System.

    Science.gov (United States)

    Taketani, Rodrigo Gouvêa; Lançoni, Milena Duarte; Kavamura, Vanessa Nessner; Durrer, Ademir; Andreote, Fernando Dini; Melo, Itamar Soares

    2017-01-01

    The rhizosphere is viewed as a deterministic environment led by the interaction between plants and microorganisms. In the case of semi-arid plants, this interaction is strengthened by the harshness of the environment. We tested the hypothesis that dry season represents a constraint on the bacterial diversity of the rhizosphere from semi-arid plants. To accomplish this, we sampled two leguminous species at five locations during the dry and rainy seasons in the Caatinga biome and characterised bacterial community structures using qPCR and 16S rRNA sequencing. We found that the main differences between seasons were due to reduced phylogenetic diversity caused by dryness. Variation partitioning indicated that environmental characteristics significant impacts in β-diversity. Additionally, distance decay relationship and taxa area relationship indicate a higher spatial turnover at the rainy season. During the dry season, decreased bacterial abundance is likely due to the selection of resistant or resilient microorganisms; with the return of the rain, the sensitive populations start to colonise the rhizosphere by a process that is strongly influenced by environmental characteristics. Thus, we propose that the reduction of PD and strong influence of environmental parameters on the assemblage of these communities make them prone to functional losses caused by climatic disturbances.

  8. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere

    Directory of Open Access Journals (Sweden)

    Bo eYang

    2015-09-01

    Full Text Available The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N, but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics,the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea. Ammonia-oxidizing archaea (AOA, ammonia-oxidizing bacteria (AOB and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage. A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates (PNR, affected the abundance and community structure of AOA, AOB and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids

  9. Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture

    Science.gov (United States)

    Wu, Linkun; Wang, Juanying; Huang, Weimin; Wu, Hongmiao; Chen, Jun; Yang, Yanqiu; Zhang, Zhongyi; Lin, Wenxiong

    2015-10-01

    Under consecutive monoculture, the biomass and quality of Rehmannia glutinosa declines significantly. Consecutive monoculture of R. glutinosa in a four-year field trial led to significant growth inhibition. Most phenolic acids in root exudates had cumulative effects over time under sterile conditions, but these effects were not observed in the rhizosphere under monoculture conditions. It suggested soil microbes might be involved in the degradation and conversion of phenolic acids from the monocultured plants. T-RFLP and qPCR analysis demonstrated differences in both soil bacterial and fungal communities during monoculture. Prolonged monoculture significantly increased levels of Fusarium oxysporum, but decreased levels of Pseudomonas spp. Abundance of beneficial Pseudomonas spp. with antagonistic activity against F. oxysporum was lower in extended monoculture soils. Phenolic acid mixture at a ratio similar to that found in the rhizosphere could promote mycelial growth, sporulation, and toxin (3-Acetyldeoxynivalenol, 15-O-Acetyl-4-deoxynivalenol) production of pathogenic F. oxysporum while inhibiting growth of the beneficial Pseudomonas sp. W12. This study demonstrates that extended monoculture can alter the microbial community of the rhizosphere, leading to relatively fewer beneficial microorganisms and relatively more pathogenic and toxin-producing microorganisms, which is mediated by the root exudates.

  10. Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy.

    Science.gov (United States)

    Weston, Leslie A; Mathesius, Ulrike

    2013-02-01

    Flavonoids are biologically active low molecular weight secondary metabolites that are produced by plants, with over 10,000 structural variants now reported. Due to their physical and biochemical properties, they interact with many diverse targets in subcellular locations to elicit various activities in microbes, plants, and animals. In plants, flavonoids play important roles in transport of auxin, root and shoot development, pollination, modulation of reactive oxygen species, and signalling of symbiotic bacteria in the legume Rhizobium symbiosis. In addition, they possess antibacterial, antifungal, antiviral, and anticancer activities. In the plant, flavonoids are transported within and between plant tissues and cells, and are specifically released into the rhizosphere by roots where they are involved in plant/plant interactions or allelopathy. Released by root exudation or tissue degradation over time, both aglycones and glycosides of flavonoids are found in soil solutions and root exudates. Although the relative role of flavonoids in allelopathic interference has been less well-characterized than that of some secondary metabolites, we present classic examples of their involvement in autotoxicity and allelopathy. We also describe their activity and fate in the soil rhizosphere in selected examples involving pasture legumes, cereal crops, and ferns. Potential research directions for further elucidation of the specific role of flavonoids in soil rhizosphere interactions are considered.

  11. Fungal Diversity in Tomato Rhizosphere Soil under Conventional and Desert Farming Systems.

    Science.gov (United States)

    Kazerooni, Elham A; Maharachchikumbura, Sajeewa S N; Rethinasamy, Velazhahan; Al-Mahrouqi, Hamed; Al-Sadi, Abdullah M

    2017-01-01

    This study examined fungal diversity and composition in conventional (CM) and desert farming (DE) systems in Oman. Fungal diversity in the rhizosphere of tomato was assessed using 454-pyrosequencing and culture-based techniques. Both techniques produced variable results in terms of fungal diversity, with 25% of the fungal classes shared between the two techniques. In addition, pyrosequencing recovered more taxa compared to direct plating. These findings could be attributed to the ability of pyrosequencing to recover taxa that cannot grow or are slow growing on culture media. Both techniques showed that fungal diversity in the conventional farm was comparable to that in the desert farm. However, the composition of fungal classes and taxa in the two farming systems were different. Pyrosequencing revealed that Microsporidetes and Dothideomycetes are the two most common fungal classes in CM and DE, respectively. However, the culture-based technique revealed that Eurotiomycetes was the most abundant class in both farming systems and some classes, such as Microsporidetes, were not detected by the culture-based technique. Although some plant pathogens (e.g., Pythium or Fusarium) were detected in the rhizosphere of tomato, the majority of fungal species in the rhizosphere of tomato were saprophytes. Our study shows that the cultivation system may have an impact on fungal diversity. The factors which affected fungal diversity in both farms are discussed.

  12. Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture.

    Science.gov (United States)

    Wu, Linkun; Wang, Juanying; Huang, Weimin; Wu, Hongmiao; Chen, Jun; Yang, Yanqiu; Zhang, Zhongyi; Lin, Wenxiong

    2015-10-30

    Under consecutive monoculture, the biomass and quality of Rehmannia glutinosa declines significantly. Consecutive monoculture of R. glutinosa in a four-year field trial led to significant growth inhibition. Most phenolic acids in root exudates had cumulative effects over time under sterile conditions, but these effects were not observed in the rhizosphere under monoculture conditions. It suggested soil microbes might be involved in the degradation and conversion of phenolic acids from the monocultured plants. T-RFLP and qPCR analysis demonstrated differences in both soil bacterial and fungal communities during monoculture. Prolonged monoculture significantly increased levels of Fusarium oxysporum, but decreased levels of Pseudomonas spp. Abundance of beneficial Pseudomonas spp. with antagonistic activity against F. oxysporum was lower in extended monoculture soils. Phenolic acid mixture at a ratio similar to that found in the rhizosphere could promote mycelial growth, sporulation, and toxin (3-Acetyldeoxynivalenol, 15-O-Acetyl-4-deoxynivalenol) production of pathogenic F. oxysporum while inhibiting growth of the beneficial Pseudomonas sp. W12. This study demonstrates that extended monoculture can alter the microbial community of the rhizosphere, leading to relatively fewer beneficial microorganisms and relatively more pathogenic and toxin-producing microorganisms, which is mediated by the root exudates.

  13. Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment.

    Science.gov (United States)

    Timm, Collin M; Campbell, Alisha G; Utturkar, Sagar M; Jun, Se-Ran; Parales, Rebecca E; Tan, Watumesa A; Robeson, Michael S; Lu, Tse-Yuan S; Jawdy, Sara; Brown, Steven D; Ussery, David W; Schadt, Christopher W; Tuskan, Gerald A; Doktycz, Mitchel J; Weston, David J; Pelletier, Dale A

    2015-01-01

    The bacterial microbiota of plants is diverse, with 1000s of operational taxonomic units (OTUs) associated with any individual plant. In this work, we used phenotypic analysis, comparative genomics, and metabolic models to investigate the differences between 19 sequenced Pseudomonas fluorescens strains. These isolates represent a single OTU and were collected from the rhizosphere and endosphere of Populus deltoides. While no traits were exclusive to either endosphere or rhizosphere P. fluorescens isolates, multiple pathways relevant for plant-bacterial interactions are enriched in endosphere isolate genomes. Further, growth phenotypes such as phosphate solubilization, protease activity, denitrification and root growth promotion are biased toward endosphere isolates. Endosphere isolates have significantly more metabolic pathways for plant signaling compounds and an increased metabolic range that includes utilization of energy rich nucleotides and sugars, consistent with endosphere colonization. Rhizosphere P. fluorescens have fewer pathways representative of plant-bacterial interactions but show metabolic bias toward chemical substrates often found in root exudates. This work reveals the diverse functions that may contribute to colonization of the endosphere by bacteria and are enriched among closely related isolates.

  14. Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment

    Directory of Open Access Journals (Sweden)

    Collin M Timm

    2015-10-01

    Full Text Available The bacterial microbiota of plants is diverse, with 1,000s of operational taxonomic units (OTUs associated with any individual plant. In this work we investigate the differences between 19 sequenced Pseudomonas fluorescens strains, isolated from Populus deltoides rhizosphere and endosphere and which represent a single OTU, using phenotypic analysis, comparative genomics, and metabolic models. While no traits were exclusive to either endosphere or rhizosphere P. fluorescens isolates, multiple pathways relevant for plant-bacterial interactions are enriched in endosphere isolate genomes. Further, growth phenotypes such as phosphate solubilization, protease activity, denitrification and root growth promotion are biased towards endosphere isolates. Endosphere isolates have significantly more metabolic pathways for plant signaling compounds and an increased metabolic range that includes utilization of energy rich nucleotides and sugars, consistent with endosphere colonization. Rhizosphere P. fluorescens have fewer pathways representative of plant-bacterial interactions but show metabolic bias towards chemical substrates often found in root exudates. This work reveals the diverse functions that may contribute to colonization of the endosphere by bacteria and are enriched among closely related isolates.

  15. Diversity of Rhizosphere Soil Arbuscular Mycorrhizal Fungi in Various Soybean Cultivars under Different Continuous Cropping Regimes

    Science.gov (United States)

    Jie, Weiguang; Liu, Xiaorui; Cai, Baiyan

    2013-01-01

    Recent studies have shown that continuous cropping in soybean causes substantial changes to the microbial community in rhizosphere soil. In this study, we investigated the effects of continuous cropping for various time periods on the diversity of rhizosphere soil arbuscular mycorrhizal (AM) fungi in various soybean cultivars at the branching stage. The soybean cultivars Heinong 37 (an intermediate cultivar), Heinong 44 (a high-fat cultivar) and Heinong 48 (a high-protein cultivar) were seeded in a field and continuously cropped for two or three years. We analyzed the diversity of rhizosphere soil AM fungi of these soybean plants at the branching stage using morphological and denaturing gradient gel electrophoresis (DGGE) techniques. The clustering analysis of unweighted pair-group method with arithmetic averages (UPGMA) was then used to investigate the AM fungal community shifts. The results showed that increasing the number of years of continuous cropping can improve the colonization rate of AM fungi in different soybean cultivars at the branching stage. The dominant AM fungi in the experimental fields were Funneliformismosseae and Glomus spp. The number of years of continuous cropping and the soybean cultivar both had obvious effects on the diversity of AM fungi, which was consistent with the results of colonization rate analysis. This study establishes a basis for screening dominant AM fungi of soybean. In addition, the results of this study may be useful for the development of AM fungal inoculants. PMID:23977368

  16. Glyphosate affects micro-organisms in rhizospheres of glyphosate-resistant soybeans.

    Science.gov (United States)

    Zobiole, L H S; Kremer, R J; Oliveira, R S; Constantin, J

    2011-01-01

    Glyphosate-resistant (GR) soybean production increases each year because of the efficacy of glyphosate for weed management. A new or 'second' generation of GR soybean (GR2) is now commercially available for farmers that is being promoted as higher yielding relative to the previous, 'first generation' (GR1) cultivars. Recent reports show that glyphosate affects the biology and ecology of rhizosphere micro-organisms in GR soybean that affect yield. The objective of this research was to evaluate the microbiological interactions in the rhizospheres of GR2 and GR1 soybean and the performance of the cultivars with different rates of glyphosate applied at different growth stages. A greenhouse study was conducted using GR1 and GR2 soybean cultivars grown in a silt loam soil. Glyphosate was applied at V2, V4 and V6 growth stages at three rates. Plants harvested at R1 growth stage had high root colonization by Fusarium spp.; reduced rhizosphere fluorescent pseudomonads, Mn-reducing bacteria, and indoleacetic acid-producing rhizobacteria; and reduced shoot and root biomass. Glyphosate applied to GR soybean, regardless of cultivar, negatively impacts the complex interactions of microbial groups, biochemical activity and root growth that can have subsequent detrimental effects on plant growth and productivity. The information presented here will be crucial in developing strategies to overcome the potential detrimental effects of glyphosate in GR cropping systems. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology. No claim to Brazilian Government works.

  17. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum

    Science.gov (United States)

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-01-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. PMID:24311557

  18. Microbial abundance in rhizosphere of medicinal and aromatic plant species in conventional and organic growing systems

    Directory of Open Access Journals (Sweden)

    Adamović Dušan

    2015-01-01

    Full Text Available This study was aimed at comparing the abundance of microorganisms in the rhizosphere of four different medicinal and aromatic plant species (basil, mint, dill and marigold grown under both conventional and organic management on the chernozem soil at the experimental field of Bački Petrovac (Institute of Field and Vegetable Crops, Novi Sad, Serbia. Two sampling terms (June 1 and July 18, 2012 were performed to collect samples for microbiological analyses. The microbial abundance was higher in organic than in conventional system while at the same time significant differences were obtained only with dill rhizosphere. The differences in number of microorganisms belonging to different groups relied upon both plant species and sampling term. Thus, in mint, the recorded number of azotobacters and fungi was significantly higher whereas the number of ammonifiers was significantly lower. The present results indicate that organic growing system affected the abundance of microorganisms in rhizosphere of species investigated, especially in the second term of sampling.

  19. Different pioneer plant species select specific rhizosphere bacterial communities in a high mountain environment.

    Science.gov (United States)

    Ciccazzo, Sonia; Esposito, Alfonso; Rolli, Eleonora; Zerbe, Stefan; Daffonchio, Daniele; Brusetti, Lorenzo

    2014-01-01

    The rhizobacterial communities of 29 pioneer plants belonging to 12 species were investigated in an alpine ecosystem to assess if plants from different species could select for specific rhizobacterial communities. Rhizospheres and unvegetated soils were collected from a floristic pioneer stage plot at 2,400 m a.s.l. in the forefield of Weisskugel Glacier (Matsch Valley, South Tyrol, Italy), after 160 years of glacier retreat. To allow for a culture-independent perspective, total environmental DNA was extracted from both rhizosphere and bare soil samples and analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and Denaturing Gradient Gel Electrophoresis (DGGE). ARISA fingerprinting showed that rhizobacterial genetic structure was extremely different from bare soil bacterial communities while rhizobacterial communities clustered strictly together according to the plant species. Sequencing of DGGE bands showed that rhizobacterial communities were mainly composed of Acidobacteria and Proteobacteria whereas bare soil was colonized by Acidobacteria and Clostridia. UniFrac significance calculated on DGGE results confirmed the rhizosphere effect exerted by the 12 species and showed different bacterial communities (P < 0.05) associated with all the plant species. These results pointed out that specific rhizobacterial communities were selected by pioneer plants of different species in a high mountain ecosystem characterized by oligotrophic and harsh environmental conditions, during an early primary succession.

  20. [Effects of elevated rhizosphere CO2 concentration on the photosynthetic characteristics, yield, and quality of muskmelon].

    Science.gov (United States)

    Liu, Yi-Ling; Sun, Zhou-Ping; Li, Tian-Lai; Gu, Feng-Ying; He, Yu

    2013-10-01

    By using aeroponics culture system, this paper studied the effects of elevated rhizosphere CO2 concentration on the leaf photosynthesis and the fruit yield and quality of muskmelon during its anthesis-fruiting period. In the fruit development period of muskmelon, as compared with those in the control (350 microL CO2 x L (-1)), the leaf chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and the maximal photochemical efficiency of PS II (Fv/Fm) in treatments 2500 and 5000 microL CO2 x L(-1) decreased to some extents, but the stomatal limitation value (Ls) increased significantly, and the variation amplitudes were larger in treatment 5000 microL CO2 x L(-1) than in treatment 2500 microL CO2 x L(-1). Under the effects of elevated rhizosphere CO2 concentration, the fruit yield per plant and the Vc and soluble sugar contents in fruits decreased markedly, while the fruit organic acid content was in adverse. It was suggested that when the rhizosphere CO2 concentration of muskmelon during its anthesis-fruiting period reached to 2500 microL x L(-1), the leaf photosynthesis and fruit development of muskmelon would be depressed obviously, which would result in the decrease of fruit yield and quality of muskmelon.

  1. Removal of Copper by Eichhornia crassipes and the Characterization of Associated Bacteria of the Rhizosphere System

    Directory of Open Access Journals (Sweden)

    Raisa Kabeer

    2014-06-01

    Full Text Available Excess doses of trace element contamination make conventional water treatment methods less effective and more expensive, where in alternative biotechnological applications open up new opportunities with their reduced cost and lesser impacts to the environment. In the present investigation, effectiveness of aquatic macrophyte Eichhornia crassipes was tested for the removal of copper in laboratory conditions. Water samples were collected from macrophytes natural habitat and water tubs used for growing E. crassipes and analysed along with plant tissues for Cu content. The work also characterized the associated microbiota of the rhizosphere system of the E. crassipes as well as the wetland system of its occurrence. Copper concentration of the wetland water samples ranged from 0.009 to 0.03ppm. Six bacterial genera (Acinetobacter, Alcaligenes, Bacillus, Kurthia, Listeria and Chromobacterium were represented in rhizosphere of E.crassipes and 4 bacterial genera (Acinetobacter, Bacillus, Listeria and Chromobacterium were recorded in wetland water samples. Copper resistance studies of the bacterial isolates showed that out of 26 isolates from rhizosphere and 19 strains from water samples,12 of them showed low resistance (80% of copper during 15 days experiment. Copper accumulation was found to be high in the root followed by leaf and petiole. Results of the present study concluded that E. crassipes is an efficient plant for the removal of copper.

  2. Fungal Diversity in Tomato Rhizosphere Soil under Conventional and Desert Farming Systems

    Directory of Open Access Journals (Sweden)

    Elham A. Kazerooni

    2017-08-01

    Full Text Available This study examined fungal diversity and composition in conventional (CM and desert farming (DE systems in Oman. Fungal diversity in the rhizosphere of tomato was assessed using 454-pyrosequencing and culture-based techniques. Both techniques produced variable results in terms of fungal diversity, with 25% of the fungal classes shared between the two techniques. In addition, pyrosequencing recovered more taxa compared to direct plating. These findings could be attributed to the ability of pyrosequencing to recover taxa that cannot grow or are slow growing on culture media. Both techniques showed that fungal diversity in the conventional farm was comparable to that in the desert farm. However, the composition of fungal classes and taxa in the two farming systems were different. Pyrosequencing revealed that Microsporidetes and Dothideomycetes are the two most common fungal classes in CM and DE, respectively. However, the culture-based technique revealed that Eurotiomycetes was the most abundant class in both farming systems and some classes, such as Microsporidetes, were not detected by the culture-based technique. Although some plant pathogens (e.g., Pythium or Fusarium were detected in the rhizosphere of tomato, the majority of fungal species in the rhizosphere of tomato were saprophytes. Our study shows that the cultivation system may have an impact on fungal diversity. The factors which affected fungal diversity in both farms are discussed.

  3. [Effects of planting transgenic Bt + CpTI cotton on rhizosphere denitrifier abundance and diversity].

    Science.gov (United States)

    Dong, Lianhua; Meng, Ying; Wang, Jing

    2015-03-04

    To evaluate the effect of planting genetically modified cotton on soil denitrifer. The impact of transgenic Bt + CpTI cotton (SGK321) and its receptor cotton (SY321) on rhizosphere denitrifier abundance and diversity were investigated by using quantitative PCR (qPCR) and terminal restriction fragment length polymorphism (T-RFLP). We collected rhizosphere soil before cotton planting (Pre) and along with the cotton growth stage (budding, flowering, belling and boll opening). The abundance of denitrifier in both cottons changed significantly across the growth stage, but the variation tendency was different. In the rhizosphere of transgenic cotton, the denitrifier abundance increased from 3.12 x 10(6) copies/g dry soil (Pre) to 2.81 x 10(7) copies/g dry soil (belling). The denitrifier abundance in non-transgenic cotton was significantly affected by the growth stage: increased at budding, decreased at flowering, and then increased at belling. Canonical correspondence analysis and partial canonical correspondence analysis show that the denitrifier diversity was more correlated with pH, concentration of NO3- and budding and flowering. Additionally, cotton genotype was an important factor of influencing the diversity of denitrifier. This indicates the abundance and diversity were influenced by both the cotton growth stage and the cotton genotype by adjusting the soil pH and concentration of NO3-. Planting of transgenic Bt + CpTI cotton leads an increase in the soil pH, which results in an increase in abundance and diversity of denitrifier.

  4. On Verbal Competence

    Directory of Open Access Journals (Sweden)

    Zhongxin Dai

    2014-04-01

    Full Text Available This paper explored a new concept, verbal competence, to present a challenge to Chomsky’s linguistic competence and Hymes’ communicative competence. It is generally acknowledged that Chomsky concerned himself only with the syntactic/grammatical structures, and viewed the speaker’s generation and transformation of syntactic structures as the production of language. Hymes challenged Chomsky’s conception of linguistic competence and argued for an ethnographic or sociolinguistic concept, communicative competence, but his concept is too broad to be adequately grasped and followed in such fields as linguistics and second language acquisition. Communicative competence can include abilities to communicate with nonverbal behaviors, e.g. gestures, postures or even silence. The concept of verbal competence concerns itself with the mental and psychological processes of verbal production in communication. These processes originate from the speaker’s personal experience, in a certain situation of human communication, and with the sudden appearance of the intentional notion, shape up as the meaning images and end up in the verbal expression.

  5. ACCP Clinical Pharmacist Competencies.

    Science.gov (United States)

    Saseen, Joseph J; Ripley, Toni L; Bondi, Deborah; Burke, John M; Cohen, Lawrence J; McBane, Sarah; McConnell, Karen J; Sackey, Bryan; Sanoski, Cynthia; Simonyan, Anahit; Taylor, Jodi; Vande Griend, Joseph P

    2017-05-01

    The purpose of the American College of Clinical Pharmacy (ACCP) is to advance human health by extending the frontiers of clinical pharmacy. Consistent with this mission and its core values, ACCP is committed to ensuring that clinical pharmacists possess the knowledge, skills, attitudes, and behaviors necessary to deliver comprehensive medication management (CMM) in team-based, direct patient care environments. These components form the basis for the core competencies of a clinical pharmacist and reflect the competencies of other direct patient care providers. This paper is an update to a previous ACCP document and includes the expectation that clinical pharmacists be competent in six essential domains: direct patient care, pharmacotherapy knowledge, systems-based care and population health, communication, professionalism, and continuing professional development. Although these domains align with the competencies of physician providers, they are specifically designed to better reflect the clinical pharmacy expertise required to provide CMM in patient-centered, team-based settings. Clinical pharmacists must be prepared to complete the education and training needed to achieve these competencies and must commit to ongoing efforts to maintain competence through ongoing professional development. Collaboration among stakeholders will be needed to ensure that these competencies guide clinical pharmacists' professional development and evaluation by educational institutions, postgraduate training programs, professional societies, and employers. © 2017 Pharmacotherapy Publications, Inc.

  6. Leadership Competences Among Managers

    Directory of Open Access Journals (Sweden)

    Anna Baczynska

    2017-06-01

    Full Text Available Purpose: The aim of this paper is to present the results of a survey conducted among managers (N=38 in the framework of the project “Development of the Bounded Leadership Theory”. The research juxtaposes two types of variables: (1 leadership competencies outlined in Kozminski’s theory (i.e. anticipatory, visionary, value-creating, mobilizing, self-reflection with (2 three psychological predispositions of leaders, such as intelligence, personality and ability to influence others. The tested predispositions represented three groups: non-variable traits, or permanent characteristics (intelligence, partially variable characteristics (personality and variable characteristics (influence tactics. Methodology: A total of 38 middle and senior managers, students of the MBA programme at Kozminski University, took part in the survey. Participants flled out a preliminary version of the Leadership Competence Questionnaire, as well as tests pertaining to intelligence, personality and influence tactics. The hypotheses were tested using Spearman’s rho correlation. The research has brought interesting results relating to the correlation between the fve tested competencies and leadership predispositions. Findings: Permanent and partly stable characteristics do not correlate with leadership competencies, i.e. a high score in leadership competencies is not necessarily synonymous with high intelligence levels or positive personality traits. Correlations have been observed between mobilization skills and influence tactics in the surveyed sample, i.e. legitimacy and personal appeals that leaders have recourse to and, in the case of value-creating competencies, an interesting correlation with legitimacy. Originality: The study constitutes an important contribution to the extant literature, as – first and foremost – it represents a new approach to the understanding of leadership competencies. Secondly, it reveals correlations between complex skills, i

  7. Building Project Competence

    DEFF Research Database (Denmark)

    Pemsel, Sofia; Wiewiora, Anna

    This research investigates the development of project competence, and particularly, three related dynamic capabilities (shifting, adapting, leveraging) that contribute to project competence development. In doing so, we make use of the emerging literature on knowledge governance and theorize how...... knowledge governance mechanisms can move the organization towards desired knowledge-based goals. A multiple-case study comprising 23 cases advances our understanding of the elements that trigger, enable, hamper, and drive shifting, leveraging and adapting. Finally, the paper offers a tentative framework...... of dynamic capability building promoting project competence development....

  8. Competence development in UAS

    DEFF Research Database (Denmark)

    Thorslund, Jørgen; Brodersen, Anne Mygind

    As a University of Applied Science (UAS) University College Lillebaelt in Denmark is addressing education, knowledge production and professional development in perspective of life-long and life-wide learning. It is our basic assumption that that internal competence development ? individually...... and organizationally - among UAS educators should be based on same learning concepts as used in professional development to avoid parallelism. Do for yourself, what you preach for others. Second, competence development of faculty is a central element in transformation of our institutions from schools of higher...... education to universities of applied science (UAS). Competence development strategies should thus include objectives for the institutions ability to contribute to knowledge production....

  9. [Effects of nitrogen fertilization and root separation on the plant growth and grain yield of maize and its rhizosphere microorganisms].

    Science.gov (United States)

    Zhang, Xiang-Qian; Huang, Guo-Qin; Bian, Xin-Min; Zhao, Qi-Guo

    2012-12-01

    A field experiment with root separation was conducted to study the effects of root interaction in maize-soybean intercropping system on the plant growth and grain yield of maize and its rhizosphere microorganisms under different nitrogen fertilization levels (0.1, 0.3, 0.5, and 0.7 g x kg(-1)). Root interaction and nitrogen fertilization had positive effects on the plant height, leaf length and width, and leaf chlorophyll content of maize. Less difference was observed in the root dry mass of maize at maturing stage between the treatments root separation and no root separation. However, as compared with root separation, no root separation under the nitrogen fertilization levels 0.1, 0.3, 0.5, and 0.7 g x kg(-1) increased the biomass per maize plant by 8.8%, 6.3%, 3.6%, and 0.7%, and the economic yield per maize plant by 17.7%, 10.0%, 8.2%, and 0.9%, respectively. No root separation increased the quantity of rhizosphere fungi and azotobacteria significantly, as compared with root separation. With increasing nitrogen fertilization level, the quantity of rhizosphere bacteria, fungi, and actinomycetes presented an increasing trend, while that of rhizosphere azotobacteria decreased after an initial increase. The root-shoot ratio of maize at maturing stage was significantly negatively correlated with the quantity of rhizosphere bacteria, fungi, and actinomycetes, but less correlated with the quantity of rhizosphere azotobacteria. It was suggested that the root interaction in maize-soybean intercropping system could improve the plant growth of maize and increase the maize yield and rhizosphere microbial quantity, but the effect would be decreased with increasing nitrogen fertilization level.

  10. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices.

    Science.gov (United States)

    Tan, Yong; Cui, Yinshan; Li, Haoyu; Kuang, Anxiu; Li, Xiaoran; Wei, Yunlin; Ji, Xiuling

    2017-01-01

    Rhizosphere and endophytic fungal communities are considered critically important for plant health and soil fertility. In response to continuous cropping, Panax notoginseng becomes vulnerable to attack by fungal pathogens. In the present study, culture-independent Illumina MiSeq was used to investigate the rhizospheric and root endophytic fungi in response to continuous Panax notoginseng cropping practices. The results demonstrated that fungal diversity is increased inside the roots and in rhizospheric. Ascomycota, Zygomycota, Basidiomycota and Chytridiomycota were the dominant phyla detected during the continuous cropping of Panax notoginseng. The fungal diversity in the rhizospheric soil and roots of root-rot P. notoginseng plants are less than that of healthy plants in the same cultivating year, thus showing that root-rot disease also affects the community structure and diversity of rhizospheric and root endophytic fungi. Similarities in the major fungal components show that endophytic fungal communities are similar to rhizospheric soil fungal community based on a specialized subset of organisms. Canonical correspondence analysis on the fungal communities in root-rot rhizospheric from both healthy plants and rotation soils reveals that the soil pH and organic matter have the greatest impact upon the microbial community composition during continuous cropping, whereas soil nutrition status does not significantly affect the fungal community composition in response to continuous cropping practices. In addition, the results suggest that the unclassified genera Leotiomycetes, Cylindrocarpon, Fusarium and Mycocentrospora are shown as the potential pathogens which are responsible for the obstacles in continuous cropping of P. notoginseng. Further exploration of these potential pathogens might be useful for the biological control of continuous cropping of P. notoginseng. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome.

    Science.gov (United States)

    Zhang, Yunzeng; Xu, Jin; Riera, Nadia; Jin, Tao; Li, Jinyun; Wang, Nian

    2017-08-10

    Roots are the primary site for plant-microbe interactions. Among the three root-associated layers (i.e., rhizosphere, rhizoplane, and endorhiza), the rhizoplane is a key component serving a critical gating role that controls microbial entry into plant roots. The microbial communities colonizing the three layers are believed to be gradually enriched from the bulk soil inoculum. However, it is unknown how this enrichment process, particularly the rhizosphere to rhizoplane step, is affected by biotic stresses, such as disease. In this study, we address this question using the citrus root-associated microbiome as a model. We identified the rhizosphere-to-rhizoplane-enriched taxonomic and functional properties of the citrus root-associated microbiome and determined how they were affected by Huanglongbing (HLB), a severe systemic disease caused by Candidatus Liberibacter asiaticus, using metagenomic and metatranscriptomic approaches. Multiple rhizoplane-enriched genera were identified, with Bradyrhizobium and Burkholderia being the most dominant. Plant-derived carbon sources are an important driving force for the enrichment process. The enrichment of functional attributes, such as motility, chemotaxis, secretion systems, and lipopolysaccharide (LPS) synthesis, demonstrated more active microbe-plant interactions on the rhizoplane than the rhizosphere. We observed that HLB impaired the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome in three ways: (1) by decreasing the relative abundance of most rhizoplane-enriched genera; (2) by reducing the relative abundance and/or expression activity of the functional attributes involved in microbe-plant interactions; and (3) by recruiting more functional features involved in autotrophic life cycle adaptation, such as carbon fixation and nitrogen nitrification in the HLB rhizoplane microbiome. Finally, our data showed that inoculation of Burkholderia strains isolated from the healthy citrus root

  12. Production competence revisited

    DEFF Research Database (Denmark)

    Szász, Levente; Demeter, Krisztina; Boer, Harry

    2015-01-01

    Purpose – The purpose of this paper is to seek remedy to two major flaws of the production competence literature, which concern: the way the production competence construct is operationalized and the way its effects on performance are measured. Design/methodology/approach – The paper proposes...... to measure production competence as the two-dimensional operational level construct it actually is, and to use Slack’s (1994) importance performance matrix to study its business level performance effects. The three hypotheses developed are tested using a subsample of the International Manufacturing Strategy...... Survey database, which includes 465 manufacturing companies from 21 countries. Findings – The study offers additional empirical support for production competence theory. Going beyond supporting existing theory, the results give more detailed insight by indicating that low operational performance on even...

  13. TENCompetence Competence Observatory

    NARCIS (Netherlands)

    Vervenne, Luk

    2010-01-01

    Vervenne, L. (2007) TENCompetence Competence Observatory. Sources available http://tencompetence.cvs.sourceforge.net/viewvc/tencompetence/wp8/org.tencompetence.co/. Available under the three clause BSD license, copyright TENCompetence Foundation.

  14. Developing Leadership Competencies.

    Science.gov (United States)

    Croft, Lucy; Seemiller, Corey

    2017-12-01

    This chapter provides an overview of leadership competencies including the history of emergence, contemporary uses, common frameworks, challenges, benefits, and future implications. © 2017 Wiley Periodicals, Inc., A Wiley Company.

  15. Measuring Cognitive Competencies

    OpenAIRE

    Ulrich Trautwein

    2009-01-01

    "The systematic of key cognitive competencies is of high scientific and societal relevance, as is the availability of high-quality data on cognitive competencies. In order to make well-informed decisions, politicians and educational authorities need high-quality data about the effectiveness of formal and non-formal educational environments. Similarly, researchers need strong data to test complex theoretical models about how individual biographies are shaped by the interplay between individual...

  16. Strategic Leader Competencies

    Science.gov (United States)

    1992-05-08

    competencies in line with his "visionary leadership theory ." His concept draws extensively from sound, quantitative research and social learning theory . A key...element of Sashkin’s theory identifies and distinguishes between "behavioral skills" required at the highest leadership levels and "personal... LEADERSHIP COMPETENCIES: - drawn from theory and research .... Co, sistent with broad groups of personality characteristics identified by Stogdill (1948

  17. Physician Assistant Genomic Competencies.

    Science.gov (United States)

    Goldgar, Constance; Michaud, Ed; Park, Nguyen; Jenkins, Jean

    2016-09-01

    Genomic discoveries are increasingly being applied to the clinical care of patients. All physician assistants (PAs) need to acquire competency in genomics to provide the best possible care for patients within the scope of their practice. In this article, we present an updated version of PA genomic competencies and learning outcomes in a framework that is consistent with the current medical education guidelines and the collaborative nature of PAs in interprofessional health care teams.

  18. Competence, governance, and entrepreneurship

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Mahnke, Volker

    , what determines their boundaries and internal organization), but would also be helpful for informing strategy issues, such as understanding strategic flexibility, strategic options, and the sources of competitive advantage. This volume brings together prominent voices on competence, governance......This title illustrates modern economics. Because it informs strategic choices, it is relevant to business administration in general, and for strategic management in particular. Two dominant streams may be identified in the literature, namely the "competence" and "governance" perspectives...

  19. Designing for competences

    DEFF Research Database (Denmark)

    Christiansen, Rene B; Gundersen, Peter Bukovica

    2014-01-01

    of these professionals has changed - and has become more cross-professional, more complex and analytic and reflective competencies have entered the policy papers of these human-professions as central, important forms of knowledge. These bachelor degrees in Denmark within the field of education (teaching and preschool...... and generating solutions in the form of design principles when moving from a focus of knowledge to a focus of competences....

  20. Salicornia strobilacea (synonym of Halocnemum strobilaceum) Grown Under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona

    2016-04-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the PGP potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  1. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona

    2016-08-22

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  2. The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO₂.

    Science.gov (United States)

    Meier, Ina C; Pritchard, Seth G; Brzostek, Edward R; McCormack, M Luke; Phillips, Richard P

    2015-02-01

    While multiple experiments have demonstrated that trees exposed to elevated CO₂ can stimulate microbes to release nutrients from soil organic matter, the importance of root- versus mycorrhizal-induced changes in soil processes are presently unknown. We analyzed the contribution of roots and mycorrhizal activities to carbon (C) and nitrogen (N) turnover in a loblolly pine (Pinus taeda) forest exposed to elevated CO₂ by measuring extracellular enzyme activities at soil microsites accessed via root windows. Specifically, we quantified enzyme activity from soil adjacent to root tips (rhizosphere), soil adjacent to hyphal tips (hyphosphere), and bulk soil. During the peak growing season, CO₂ enrichment induced a greater increase of N-releasing enzymes in the rhizosphere (215% increase) than in the hyphosphere (36% increase), but a greater increase of recalcitrant C-degrading enzymes in the hyphosphere (118%) than in the rhizosphere (19%). Nitrogen fertilization influenced the magnitude of CO₂ effects on enzyme activities in the rhizosphere only. At the ecosystem scale, the rhizosphere accounted for c. 50% and 40% of the total activity of N- and C-releasing enzymes, respectively. Collectively, our results suggest that root exudates may contribute more to accelerated N cycling under elevated CO₂ at this site, while mycorrhizal fungi may contribute more to soil C degradation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  3. Population densities of indigenous Acidobacteria change in the presence of plant growth promoting rhizobacteria (PGPR) in rhizosphere.

    Science.gov (United States)

    Kalam, Sadaf; Das, Subha Narayan; Basu, Anirban; Podile, Appa Rao

    2017-05-01

    Rhizosphere microbial community has diverse metabolic capabilities and plays a crucial role in maintaining plant health. Oligotrophic plant growth promoting rhizobacteria (PGPR), along with difficult-to-culture microbial fractions, might be involved synergistically in microbe-microbe and plant-microbe interactions in the rhizosphere. Among the difficult-to-culture microbial fractions, Acidobacteria constitutes the most dominant phylum thriving in rhizospheric soils. We selected effective PGPR for tomato and black gram and studied their effect on population densities of acidobacterial members. Three facultatively oligotrophic PGPR were identified through 16S rRNA gene sequencing as Sphingobacterium sp. (P3), Variovorax sp. (P4), and Roseomonas sp. (A2); the latter being a new report of PGPR. In presence of selected PGPR strains, the changes in population densities of Acidobacteria were monitored in metagenomic DNA extracted from bulk and rhizospheric soils of tomato and black gram using real time qPCR. A gradual increase in equivalent cell numbers of Acidobacteria members was observed over time along with a simultaneous increase in plant growth promotion by test PGPR. We report characterization of three effective PGPR strains and their effects on indigenous, underexplored difficult-to-culture phylum-Acidobacteria. We suggest that putative interactions between these two bacterial groups thriving in rhizospheric soils could be beneficial for plant growth. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Salicornia strobilacea (synonym of Halocnemum strobilaceum Grown Under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    Directory of Open Access Journals (Sweden)

    Ramona Marasco

    2016-08-01

    Full Text Available Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the PGP potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  5. Influence of plant genotype on the cultivable fungi associated to tomato rhizosphere and roots in different soils.

    Science.gov (United States)

    Poli, Anna; Lazzari, Alexandra; Prigione, Valeria; Voyron, Samuele; Spadaro, Davide; Varese, Giovanna Cristina

    2016-01-01

    Rhizosphere and root-associated microbiota are crucial in determining plant health and in increasing productivity of agricultural crops. To date, research has mainly focused on the bacterial dimension of the microbiota. However, interest in the mycobiota is increasing, since fungi play a key role in soil ecosystems. We examined the effect of plant genotype, soil, and of Fusarium oxysporum f. sp. lycopersici (Fol) on the cultivable component of rhizosphere and root-associated mycobiota of tomato. Resistant and susceptible varieties were cultivated on two different soils (A and B), under glasshouse conditions. Isolated fungi were identified by morphological and molecular approaches. Differences were found between the rhizosphere and the roots, which in general displayed a lower number of species. The structure of the mycobiota was significantly affected by the soil type in the rhizosphere as well as by the plant genotype within the roots (NPERMANOVA, p fungi. Overall, the results indicated that i) soil type and plant genotype affect the fungal communities; ii) plant roots select few species from the rhizosphere; and iii) the fungal community structure is influenced by Fol. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. Modeling of Nonlinear Dynamics and Synchronized Oscillations of Microbial Populations, Carbon and Oxygen Concentrations, Induced by Root Exudation in the Rhizosphere

    Science.gov (United States)

    Molz, F. J.; Faybishenko, B.; Jenkins, E. W.

    2012-12-01

    Mass and energy fluxes within the soil-plant-atmosphere continuum are highly coupled and inherently nonlinear. The main focus of this presentation is to demonstrate the results of numerical modeling of a system of 4 coupled, nonlinear ordinary differential equations (ODEs), which are used to describe the long-term, rhizosphere processes of soil microbial dynamics, including the competition between nitrogen-fixing bacteria and those unable to fix nitrogen, along with substrate concentration (nutrient supply) and oxygen concentration. Modeling results demonstrate the synchronized patterns of temporal oscillations of competing microbial populations, which are affected by carbon and oxygen concentrations. The temporal dynamics and amplitude of the root exudation process serve as a driving force for microbial and geochemical phenomena, and lead to the development of the Gompetzian dynamics, synchronized oscillations, and phase-space attractors of microbial populations and carbon and oxygen concentrations. The nonlinear dynamic analysis of time series concentrations from the solution of the ODEs was used to identify several types of phase-space attractors, which appear to be dependent on the parameters of the exudation function and Monod kinetic parameters. This phase space analysis was conducted by means of assessing the global and local embedding dimensions, correlation time, capacity and correlation dimensions, and Lyapunov exponents of the calculated model variables defining the phase space. Such results can be used for planning experimental and theoretical studies of biogeochemical processes in the fields of plant nutrition, phyto- and bio-remediation, and other ecological areas.

  7. Humor Competence: The Fifth Component.

    Science.gov (United States)

    Vega, Gladys M.

    The production and understanding of humor calls for a specific competence. It appears that second language learners fail to develop this competence even when they reach native-like proficiency levels. A review of the literature suggests that the notion of humor competence in second language learning has not been examined. Humor competence can be…

  8. Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer

    NARCIS (Netherlands)

    Coelho, M.R.R.; Vos, de M.; Carneiro, N.P.; Marriel, I.E.; Paiva, E.; Seldin, L.

    2008-01-01

    The diversity of nitrogen-fixing bacteria was assessed in the rhizospheres of two cultivars of sorghum (IS 5322-C and IPA 1011) sown in Cerrado soil amended with two levels of nitrogen fertilizer (12 and 120 kg ha(-1)). The nifH gene was amplified directly from DNA extracted from the rhizospheres,

  9. Accumulation of trace metals in grey mangrove Avicennia marina fine nutritive roots: the role of rhizosphere processes.

    Science.gov (United States)

    Chaudhuri, Punarbasu; Nath, Bibhash; Birch, Gavin

    2014-02-15

    Mangrove sediment has long been recognized as being important in restricting the mobility of contaminants in estuarine environments. To investigate the role of rhizosphere processes in the accumulation of trace metals in mangrove fine nutritive roots, the mangrove sediments and associated fine nutritive roots are collected from five major embayments of Sydney estuary (Australia) for geochemical studies. In this estuary Avicennia marina sediments are accumulating large quantities of trace metals due to presence of abundant fine sediment (fine nutritive roots responds to total sediment chemistry mainly due to rhizosphere sediment geochemical processes resulting in a strong linear correlation between metal concentrations in fine nutritive roots vs. total and bio-available contents in sediments. Accumulation of trace metals in fine nutritive roots is almost always exceeds rhizosphere total sediment metal concentrations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Amino acid fingerprint in the rhizosphere of Pisum sativum in response to water stress

    Science.gov (United States)

    Bobille, Hélène; Fustec, Joëlle; Robins, Richard J.; Cukier, Caroline; Limami, Anis M.

    2017-04-01

    In cropping systems, legumes release substantial amounts of nitrogen (N) into the soil, via rhizodeposition, and constitute a sustainable source of N, instead of synthetic N fertilisers (Fustec et al. 2010). More frequent or/and intense droughts and floodings, due to climate change and intensification of agriculture, may affect N rhizodeposition (Preece & Peñuelas 2016). However, the effects of water stress on this process are poorly documented. A part of N derived from root exudates, mainly in amino acids (AAs) form, is suspected shape and regulate rhizosphere microbial community, thus playing a potential role in maintaining plant health in case of abiotic stress (Moe 2013). We hypothesized that root AA exudation could change significantly, according to water availability, and would help to understand N metabolism changes in plant-rhizosphere interactions. Because studying exudation from plant grown in unsterilized soil is challenging (Oburger et al. 2013), we have measured the rhizosphere AA fingerprint (RAAF), as the result of interactions between AA exudation and rhizospheric environment. In addition, plants were stem-labeled (cotton-wick) with 15N-urea for 72 h to provide direct evidence of a link between root AA and exudation in the soil. The RAAF was measured in Pisum sativum rhizosphere, under either a water deficit or a water excess for 72 h. Water deficit decreases biomass accumulation in shoots but not in roots. Then, water deficit had no significant effect on total AAs released into the rhizosphere but, it significantly modified the composition of RAAF, with a preferential increase of proline, alanine and glutamate and a rise in isotopic enrichment of AAs derived from oxaloacetate in tricarboxylic acidic cycle (asparagine, aspartate, threonine and isoleucine). These results support the idea that, under the early stages of water deficit, recently assimilated N is rapidly translocated to the roots, and part of it is exudated in AAs. Most of the exudated

  11. Rhizospheric Bacterial Community of Endemic Rhododendron arboreum Sm. Ssp. delavayi along Eastern Himalayan Slope in Tawang.

    Science.gov (United States)

    Debnath, Rajal; Yadav, Archana; Gupta, Vijai K; Singh, Bhim P; Handique, Pratap J; Saikia, Ratul

    2016-01-01

    Information on rhizosphere microbiome of endemic plants from high mountain ecosystems against those of cultivated plantations is inadequate. Comparative bacterial profiles of endemic medicinal plant Rhododendron arboreum Sm. subsp. delavayi rhizosphere pertaining to four altitudinal zonation Pankang Thang (PTSO), Nagula, Y-junction and Bum La (Indo-China border; in triplicates each) along cold adapted Eastern slope of Himalayan Tawang region, India is described here. Significant differences in DGGE profile between below ground bulk vs. rhizospheric community profile associated with the plant was identified. Tagged 16S amplicon sequencing from PTSO (3912 m) to Bum La (4509 m), revealed that soil pH, total nitrogen (TN), organic matter (OM) significantly influenced the underlying bacterial community structure at different altitudes. The relative abundance of Acidobacteria was inversely related to pH, as opposed to TN which was positively correlated to Acidobacteria and Proteobacteria abundance. TN was also the significant predictor for less abundant taxonomic groups Chloroflexi, Gemmatimonadetes, and Nitrospirae. Bum La soil harbored less bacterial diversity compared to other sites at lower altitudes. The most abundant phyla at 3% genetic difference were Acidobacteria, Actinobacteria, and Proteobacteria amongst others. Analysis of similarity indicated greater similarity within lower altitudinal than higher altitudinal group (ANOSIM, R = 0.287, p = 0.02). Constraining the ordination with the edaphic factor explained 83.13% of variation. Unique phylotypes of Bradyrhizobium and uncultured Rhizobiales were found in significant proportions at the four regions. With over 1% relative abundance Actinobacteria (42.6%), Acidobacteria (24.02%), Proteobacteria (16.00%), AD3 (9.23%), WPS-2 (5.1%), and Chloroflexi (1.48%) dominated the core microbiome.

  12. Lettuce cultivar mediates both phyllosphere and rhizosphere activity of Escherichia coli O157:H7.

    Science.gov (United States)

    Quilliam, Richard S; Williams, A Prysor; Jones, Davey L

    2012-01-01

    Plant roots and leaves can be colonized by human pathogenic bacteria, and accordingly some of the largest outbreaks of foodborne illness have been associated with salad leaves contaminated by E. coli O157. Integrated disease management strategies often exploit cultivar resistance to provide a level of protection from economically important plant pathogens; however, there is limited evidence of whether the genotype of the plant can also influence the extent of E. coli O157 colonization. To determine cultivar-specific effects on colonization by E. coli O157, we used 12 different cultivars of lettuce inoculated with a chromosomally lux-marked strain of E. coli O157:H7. Lettuce seedlings grown gnotobiotically in vitro did exhibit a differential cultivar-specific response to E. coli O157 colonization, although importantly there was no relationship between metabolic activity (measured as bioluminescence) and cell numbers. Metabolic activity was highest and lowest on the cultivars Vaila-winter gem and Dazzle respectively, and much higher in endophytic and tightly bound cells than in epiphytic and loosely bound cells. The cultivar effect was also evident in the rhizosphere of plants grown in compost, which suggests that cultivar-specific root exudate influences E. coli O157 activity. However, the influence of cultivar in the rhizosphere was the opposite to that in the phyllosphere, and the higher number and activity of E. coli O157 cells in the rhizosphere may be a consequence of them not being able to gain entry to the plant as effectively. If metabolic activity in the phyllosphere corresponds to a more prepared state of infectivity during human consumption, leaf internalization of E. coli O157 may pose more of a public health risk than leaf surface contamination alone.

  13. Effect of immobilized rhizobacteria and organic amendment in bulk and rhizospheric soil of Cistus albidus L.

    Science.gov (United States)

    Mengual, Carmen Maria; del Mar Alguacil, Maria; Roldan, Antonio; Schoebitz, Mauricio

    2013-04-01

    A field experiment was carried out to assess the effectiveness of the immobilized microbial inoculant and the addition of organic olive residue. The microbial inoculant contained two rhizobacterial species identified as Azospirillum brasilense and Pantoea dispersa immobilized in a natural inert support. Bacterial population densities were 3.5×109 and 4.1×109 CFU g-1 of A. brasilense M3 and P. dispersa C3, respectively. The amendment used was the organic fraction extracted with KOH from composted "alperujo". The raw material was collected from an olive-mill and mixed with fresh cow bedding as bulking agent for composting. The inoculation of rhizobacteria and the addition of organic residue were employed for plant growth promotion of Cistus albidus L. and enhancement of soil physicochemical, biochemical and biological properties in a degraded semiarid Mediterranean area. One year after planting, the available phosphorus and potassium content in the amended soils was about 100 and 70% respectively higher than in the non-amended soil. Microbial inoculant and their interaction with organic residue increased the aggregate stability of the rhizosphere soil of C. albidus (by 12% with respect to control soil) while the organic residue alone not increased the aggregate stability of the rhizosphere of C. albidus. Microbial biomass C content and enzyme activities (dehydrogenase, urease, protease-BAA and alkaline phosphatase) of the rhizosphere of C. albidus were increased by microbial inoculant and organic residue interaction but not by microbial inoculation alone. The microbial inoculant and organic residue interaction were the most effective treatment for stimulating the roots dry weight of C. albidus (by 133% with respect to control plants) and microbial inoculant was the most effective treatment for increase the shoot dry weigh of plants (by 106% with respect to control plants). The combined treatment, involving microbial inoculant and addition of the organic residue

  14. Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica.

    Science.gov (United States)

    Teixeira, Lia C R S; Peixoto, Raquel S; Cury, Juliano C; Sul, Woo Jun; Pellizari, Vivian H; Tiedje, James; Rosado, Alexandre S

    2010-08-01

    The Antarctic is a pristine environment that contributes to the maintenance of the global climate equilibrium. The harsh conditions of this habitat are fundamental to selecting those organisms able to survive in such an extreme habitat and able to support the relatively simple ecosystems. The DNA of the microbial community associated with the rhizospheres of Deschampsia antarctica Desv (Poaceae) and Colobanthus quitensis (Kunth) BartI (Caryophyllaceae), the only two native vascular plants that are found in Antarctic ecosystems, was evaluated using a 16S rRNA multiplex 454 pyrosequencing approach. This analysis revealed similar patterns of bacterial diversity between the two plant species from different locations, arguing against the hypothesis that there would be differences between the rhizosphere communities of different plants. Furthermore, the phylum distribution presented a peculiar pattern, with a bacterial community structure different from those reported of many other soils. Firmicutes was the most abundant phylum in almost all the analyzed samples, and there were high levels of anaerobic representatives. Also, some phyla that are dominant in most temperate and tropical soils, such as Acidobacteria, were rarely found in the analyzed samples. Analyzing all the sample libraries together, the predominant genera found were Bifidobacterium (phylum Actinobacteria), Arcobacter (phylum Proteobacteria) and Faecalibacterium (phylum Firmicutes). To the best of our knowledge, this is the first major bacterial sequencing effort of this kind of soil, and it revealed more than expected diversity within these rhizospheres of both maritime Antarctica vascular plants in Admiralty Bay, King George Island, which is part of the South Shetlands archipelago.

  15. Rhizospheric Bacterial Community of Endemic Rhododendron arboreum Sm. Ssp. delavayi along Eastern Himalayan Slope in Tawang

    Directory of Open Access Journals (Sweden)

    Rajal Debnath

    2016-09-01

    Full Text Available Information on rhizosphere micobiome of endemic plants from high mountain ecosystems against those of cultivated plantations is inadequate. Comparative bacterial profiles of endemic medicinal plant R. arboreum Sm. subsp. delavayi rhizosphere pertaining to four altitudinal zonation Pankang-Thang (PTSO, Nagula, Y-junction and Bum La (Indo-China border (in triplicates each along cold adapted Eastern slope of Himalayan Tawang region, India is described here. Significant differences in DGGE profile between below ground bulk vs rhizospheric community profile associated with the plant was identified. Tagged 16S amplicon sequencing from PTSO (3912m to Bum La (4509 m, revealed that soil pH, total nitrogen (TN, organic matter (OM significantly influenced the underlying bacterial community structure at different altitudes. The relative abundance of Acidobacteria was inversely related to pH, as opposed to TN which was positively correlated to Acidobacteria and Proteobacteria abundance. TN was also the significant predictor for less abundant taxonomic groups Chloroflexi, Gemmatimonadetes and Nitrospirae. Bum La soil harbored less bacterial diversity compared to other sites at lower altitudes. The most abundant phyla at 3% genetic difference were Acidobacteria, Actinobacteria and Proteobacteria amongst others. Analysis of similarity indicated greater similarity within lower altitudinal than higher altitudinal group (ANOSIM, R = 0.287, p = 0.02. Constraining the ordination with the edaphic factor explained 83.13% of variation. Unique phylotypes of Bradyrhizobium and uncultured Rhizobiales were found in significant proportions at the four regions. With over 1% relative abundance Actinobacteria (42.6%, Acidobacteria (24.02%, Proteobacteria (16.00%, AD3 (9.23%, WPS-2 (5.1% and Chloroflexi (1.48% dominated the core microbiome.

  16. Lettuce cultivar mediates both phyllosphere and rhizosphere activity of Escherichia coli O157:H7.

    Directory of Open Access Journals (Sweden)

    Richard S Quilliam

    Full Text Available Plant roots and leaves can be colonized by human pathogenic bacteria, and accordingly some of the largest outbreaks of foodborne illness have been associated with salad leaves contaminated by E. coli O157. Integrated disease management strategies often exploit cultivar resistance to provide a level of protection from economically important plant pathogens; however, there is limited evidence of whether the genotype of the plant can also influence the extent of E. coli O157 colonization. To determine cultivar-specific effects on colonization by E. coli O157, we used 12 different cultivars of lettuce inoculated with a chromosomally lux-marked strain of E. coli O157:H7. Lettuce seedlings grown gnotobiotically in vitro did exhibit a differential cultivar-specific response to E. coli O157 colonization, although importantly there was no relationship between metabolic activity (measured as bioluminescence and cell numbers. Metabolic activity was highest and lowest on the cultivars Vaila-winter gem and Dazzle respectively, and much higher in endophytic and tightly bound cells than in epiphytic and loosely bound cells. The cultivar effect was also evident in the rhizosphere of plants grown in compost, which suggests that cultivar-specific root exudate influences E. coli O157 activity. However, the influence of cultivar in the rhizosphere was the opposite to that in the phyllosphere, and the higher number and activity of E. coli O157 cells in the rhizosphere may be a consequence of them not being able to gain entry to the plant as effectively. If metabolic activity in the phyllosphere corresponds to a more prepared state of infectivity during human consumption, leaf internalization of E. coli O157 may pose more of a public health risk than leaf surface contamination alone.

  17. Shifts of functional gene representation in wheat rhizosphere microbial communities under elevated ozone.

    Science.gov (United States)

    Li, Xinyu; Deng, Ye; Li, Qi; Lu, Caiyan; Wang, Jingjing; Zhang, Huiwen; Zhu, Jianguo; Zhou, Jizhong; He, Zhili

    2013-03-01

    Although the influence of ozone (O(3)) on plants has been well studied in agroecosystems, little is known about the effect of elevated O(3) (eO(3)) on soil microbial functional communities. Here, we used a comprehensive functional gene array (GeoChip 3.0) to investigate the functional composition, and structure of rhizosphere microbial communities of Yannong 19 (O(3)-sensitive) and Yangmai 16 (O(3)-relatively sensitive) wheat (Triticum aestivum L.) cultivars under eO(3). Compared with ambient O(3) (aO(3)), eO(3) led to an increase in soil pH and total carbon (C) percentages in grain and straw of wheat plants, and reduced grain weight and soil dissolved organic carbon (DOC). Based on GeoChip hybridization signal intensities, although the overall functional structure of rhizosphere microbial communities did not significantly change by eO(3) or cultivars, the results showed that the abundance of specific functional genes involved in C fixation and degradation, nitrogen (N) fixation, and sulfite reduction did significantly (Pwheat cultivars. Also, Yannong 19 appeared to harbor microbial functional communities in the rhizosphere more sensitive in response to eO(3) than Yangmai 16. Additionally, canonical correspondence analysis suggested that the functional structure of microbial community involved in C cycling was largely shaped by soil and plant properties including pH, DOC, microbial biomass C, C/N ratio and grain weight. This study provides new insight into our understanding of the influence of eO(3) and wheat cultivars on soil microbial communities.

  18. Variation in phenolic root exudates and rhizosphere carbon cycling among tree species in temperate forest ecosystems

    Science.gov (United States)

    Zwetsloot, Marie; Bauerle, Taryn; Kessler, André; Wickings, Kyle

    2017-04-01

    Temperate forest tree species composition has been highly dynamic over the past few centuries and is expected to only further change under current climate change predictions. While aboveground changes in forest biodiversity have been widely studied, the impacts on belowground processes are far more challenging to measure. In particular, root exudation - the process through which roots release organic and inorganic compounds into the rhizosphere - has received little scientific attention yet may be the key to understanding root-facilitated carbon cycling in temperate forest ecosystems. The aim of this study was to analyze the extent by which tree species' variation in phenolic root exudate profiles influences soil carbon cycling in temperate forest ecosystems. In order to answer this question, we grew six temperate forest tree species in a greenhouse including Acer saccharum, Alnus rugosa, Fagus grandifolia, Picea abies, Pinus strobus, and Quercus rubra. To collect root exudates, trees were transferred to hydroponic growing systems for one week and then exposed to cellulose acetate strips in individual 800 mL jars with a sterile solution for 24 hours. We analyzed the methanol-extracted root exudates for phenolic composition with high-performance liquid chromatography (HPLC) and determined species differences in phenolic abundance, diversity and compound classes. This information was used to design the subsequent soil incubation study in which we tested the effect of different phenolic compound classes on rhizosphere carbon cycling using potassium hydroxide (KOH) traps to capture soil CO2 emissions. Our findings show that tree species show high variation in phenolic root exudate patterns and that these differences can significantly influence soil CO2 fluxes. These results stress the importance of linking belowground plant traits to ecosystem functioning. Moreover, this study highlights the need for research on root and rhizosphere processes in order to improve

  19. Prokaryotic Diversity in the Rhizosphere of Organic, Intensive, and Transitional Coffee Farms in Brazil.

    Science.gov (United States)

    Caldwell, Adam Collins; Silva, Lívia Carneiro Fidéles; da Silva, Cynthia Canêdo; Ouverney, Cleber Costa

    2015-01-01

    Despite a continuous rise in consumption of coffee over the past 60 years and recent studies showing positive benefits linked to human health, intensive coffee farming practices have been associated with environmental damage, risks to human health, and reductions in biodiversity. In contrast, organic farming has become an increasingly popular alternative, with both environmental and health benefits. This study aimed to characterize and determine the differences in the prokaryotic soil microbiology of three Brazilian coffee farms: one practicing intensive farming, one practicing organic farming, and one undergoing a transition from intensive to organic practices. Soil samples were collected from 20 coffee plant rhizospheres (soil directly influenced by the plant root exudates) and 10 control sites (soil 5 m away from the coffee plantation) at each of the three farms for a total of 90 samples. Profiling of 16S rRNA gene V4 regions revealed high levels of prokaryotic diversity in all three farms, with thousands of species level operational taxonomic units identified in each farm. Additionally, a statistically significant difference was found between each farm's coffee rhizosphere microbiome, as well as between coffee rhizosphere soils and control soils. Two groups of prokaryotes associated with the nitrogen cycle, the archaeal genus Candidatus Nitrososphaera and the bacterial order Rhizobiales were found to be abundant and statistically different in composition between the three farms and in inverse relationship to each other. Many of the nitrogen-fixing genera known to enhance plant growth were found in low numbers (e.g. Rhizobium, Agrobacter, Acetobacter, Rhodospirillum, Azospirillum), but the families in which they belong had some of the highest relative abundance in the dataset, suggesting many new groups may exist in these samples that can be further studied as potential plant growth-promoting bacteria to improve coffee production while diminishing negative

  20. Prokaryotic Diversity in the Rhizosphere of Organic, Intensive, and Transitional Coffee Farms in Brazil.

    Directory of Open Access Journals (Sweden)

    Adam Collins Caldwell

    Full Text Available Despite a continuous rise in consumption of coffee over the past 60 years and recent studies showing positive benefits linked to human health, intensive coffee farming practices have been associated with environmental damage, risks to human health, and reductions in biodiversity. In contrast, organic farming has become an increasingly popular alternative, with both environmental and health benefits. This study aimed to characterize and determine the differences in the prokaryotic soil microbiology of three Brazilian coffee farms: one practicing intensive farming, one practicing organic farming, and one undergoing a transition from intensive to organic practices. Soil samples were collected from 20 coffee plant rhizospheres (soil directly influenced by the plant root exudates and 10 control sites (soil 5 m away from the coffee plantation at each of the three farms for a total of 90 samples. Profiling of 16S rRNA gene V4 regions revealed high levels of prokaryotic diversity in all three farms, with thousands of species level operational taxonomic units identified in each farm. Additionally, a statistically significant difference was found between each farm's coffee rhizosphere microbiome, as well as between coffee rhizosphere soils and control soils. Two groups of prokaryotes associated with the nitrogen cycle, the archaeal genus Candidatus Nitrososphaera and the bacterial order Rhizobiales were found to be abundant and statistically different in composition between the three farms and in inverse relationship to each other. Many of the nitrogen-fixing genera known to enhance plant growth were found in low numbers (e.g. Rhizobium, Agrobacter, Acetobacter, Rhodospirillum, Azospirillum, but the families in which they belong had some of the highest relative abundance in the dataset, suggesting many new groups may exist in these samples that can be further studied as potential plant growth-promoting bacteria to improve coffee production while

  1. Selection and evaluation of phosphate-solubilizing bacteria from grapevine rhizospheres for use as biofertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M.; Liu, X.; Cheng, B.S.; Ma, X.L.; Lyu, X.; Zhao, X.; Ju, Y.; Min, Z.; Fang, Y.

    2016-07-01

    Phosphate-solubilizing bacteria (PSB) have the ability to solubilize insoluble phosphorus (P) and release soluble P. Extensive research has been performed with respect to PSB isolation from the rhizospheres of various plants, but little is known about the prevalence of PSB in the grapevine rhizosphere. In this study, we aimed to isolate and identify PSB from the grapevine rhizosphere in five vineyards of Northwest China, to characterize their plant-growth-promoting (PGP) traits, evaluate the effect of stress on their phosphate-solubilizing activity (PSA), and test their ability to stimulate the growth of Vitis vinifera L. cv. Cabernet Sauvignon. From the vineyard soils, 66 PSB isolates were screened, and 10 strains with high PSA were identified by 16S rRNA sequencing. Sequence analysis revealed that these 10 strains belonged to 4 genera and 5 species: Bacillus aryabhattai, B. megaterium, Klebsiella variicola, Stenotrophomonas rhizophila, and Enterobacter aerogenes. The selected PSB strains JY17 (B. aryabhattai) and JY22 (B. aryabhattai) were positive for multiple PGP traits, including nitrogen fixation and production of indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, chitinase, and protease. JY17 and JY22 showed strong PSA under stress conditions of high pH, high salt, and high temperature. Therefore, these two isolates can be used as biofertilizers in saline-alkaline soils. The inoculation with PSB significantly facilitated the growth of V. vinifera cv. Cabernet Sauvignon under greenhouse conditions. Use of these PSB as biofertilizers will increase the available P content in soils, minimize P-fertilizer application, reduce environmental pollution, and promote sustainable agriculture.

  2. The coupling of the plant and microbial catabolisms of phenanthrene in the rhizosphere of Medicago sativa.

    Science.gov (United States)

    Muratova, Anna; Dubrovskaya, Ekaterina; Golubev, Sergey; Grinev, Vyacheslav; Chernyshova, Marina; Turkovskaya, Olga

    2015-09-01

    We studied the catabolism of the polycyclic aromatic hydrocarbon phenanthrene by four rhizobacterial strains and the possibility of enzymatic oxidation of this compound and its microbial metabolites by the root exudates of alfalfa (Medicago sativa L.) in order to detect the possible coupling of the plant and microbial metabolisms under the rhizospheric degradation of the organic pollutant. A comparative study of phenanthrene degradation pathways in the PAH-degrading rhizobacteria Ensifer meliloti, Pseudomonas kunmingensis, Rhizobium petrolearium, and Stenotrophomonas sp. allowed us to identify the key metabolites from the microbial transformation of phenanthrene, including 9,10-phenanthrenequinone, 2-carboxybenzaldehyde, and 1-hydroxy-2-naphthoic, salicylic, and o-phthalic acids. Sterile alfalfa plants were grown in the presence and absence of phenanthrene (0.03 g kg(-1)) in quartz sand under controlled environmental conditions to obtain plant root exudates. The root exudates were collected, concentrated by ultrafiltration, and the activity of oxidoreductases was detected spectrophotometrically by the oxidation rate for various substrates. The most marked activity was that of peroxidase, whereas the presence of oxidase and tyrosinase was detected on the verge of the assay sensitivity. Using alfalfa root exudates as a crude enzyme preparation, we found that in the presence of the synthetic mediator, the plant peroxidase could oxidize phenanthrene and its microbial metabolites. The results indicate the possibility of active participation of plants in the rhizospheric degradation of polycyclic aromatic hydrocarbons and their microbial metabolites, which makes it possible to speak about the coupling of the plant and microbial catabolisms of these contaminants in the rhizosphere. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Speciation of arsenic in bulk and rhizosphere soils from artisanal cooperative mines in Bolivia.

    Science.gov (United States)

    Acosta, Jose A; Arocena, Joselito M; Faz, Angel

    2015-11-01

    Soils near artisanal and small-scale gold mines (ASGM) have high arsenic (As) contents due to the presence of arsenopyrite in gold ores and accelerated accumulations due to mine wastes disposal practices and other mining activities. We determined the content and speciation to understand the fate and environmental risks of As accumulations in 24 bulk and 12 rhizosphere soil samples collected in the Virgen Del Rosario and the Rayo Rojo cooperative mines in the highlands of Bolivia. Mean total As contents in bulk and rhizosphere soils ranged from 13 to 64 mg kg(-1) and exceeded the soil environmental quality guidelines of Canada. Rhizosphere soils always contained at least twice the As contents in the bulk soil. Elemental mapping using 4×5 μm synchrotron-generated X-ray micro-beam revealed As accumulations in areas enriched with Fe. Results of As-X-ray Absorption Near Edge Spectroscopy (As-XANES) showed that only As(V) species was detectable in all samples regardless of As contents, size fractions and types of vegetation. Although the toxicity of As(V) is less than As(III), we suggest that As uptake of commonly-grazed vegetation by alpaca and llama must be determined to fully understand the environmental risks of high As in soils near ASGM in Bolivia. In addition, knowledge on the speciation of the As bio-accessible fraction will provide another useful information to better understand the fate and transfer of As from soils into the food chain in environments associated with the ASGM in Bolivia and other parts of the world. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Language competence in movement

    DEFF Research Database (Denmark)

    Laursen, Helle Pia; Mogensen, Naja Dahlstrup

    2016-01-01

    This article examines how, in a multilingual perspective, language competence is experienced, talked about and practiced by language users themselves. By viewing children as active co-creators of the spaces in which language is used, this article contributes to a research tradition in which focus...... is shifted from viewing the individual's language competence as a mental linguistic or communicative property, to viewing language as a series of social and spatial practices. Looking at data from the research project Tegn på Sprog (in the following referred to as Signs of Language), which examines...... multilingual children's language and literacy acquisition processes, we direct our focus to a single child's active exploration of what it means to know a language. Through analysis of interviews and researcher generated activities, we see how this child both describes and does language competence...

  5. Pseudodementia and competency.

    Science.gov (United States)

    Good, M I

    1993-01-01

    An increase in the number of challenges to competency determinations in probate cases parallels an increasingly aging population. In the literature on competency determination, there is little if any discussion of the implications of pseudodementing conditions, which can quite readily be misdiagnosed as true dementias, especially in the elderly. This case report describes a patient thought to have had a stroke with dementia and paresis who turned out to have had a pseudodementia. She later made a dramatic and somewhat surprising recovery. It subsequently came to light that a nearly successful attempt had been made to defraud her of her estate during her presumed dementia, which was thought to have been irreversible. The case underscores issues in competency determination, including matters of diagnosis, prognosis, and undue influence.

  6. Fractal Feature of Particle-Size Distribution in the Rhizospheres and Bulk Soils during Natural Recovery on the Loess Plateau, China.

    Directory of Open Access Journals (Sweden)

    Zilin Song

    Full Text Available The application of fractal geometry to describe soil structure is an increasingly useful tool for better understanding the performance of soil systems. Only a few studies, however, have focused on the structure of rhizospheric zones, where energy flow and nutrient recycling most frequently occur. We used fractal dimensions to investigate the characteristics of particle-size distribution (PSD in the rhizospheres and bulk soils of six croplands abandoned for 1, 5, 10, 15, 20, and 30 years on the Loess Plateau of China and evaluated the changes over successional time. The PSDs of the rhizospheres and the fractal dimensions between rhizosphere soil and bulk soils during the natural succession differed significantly due to the influence of plant roots. The rhizospheres had higher sand (0.05-1.00 mm contents, lower silt (<0.002 mm contents, and lower fractal dimensions than the bulk soils during the early and intermediate successional stages (1-15 years. The fractal dimensions of the rhizosphere soil and bulk soil ranged from 2.102 to 2.441 and from 2.214 to 2.459, respectively, during the 30-year restoration. Rhizospheric clay and silt contents and fractal dimension tended to be higher and sand content tended to be lower as abandonment age increased, but the bulk soils had the opposite trend. Linear regression analysis indicated that the fractal dimensions of both the rhizospheres and bulk soils were significantly linearly correlated with clay, sand, organic-carbon, and total-nitrogen contents, with R2 ranging from 0.526 to 0.752 (P<0.001. In conclusion, PSD differed significantly between the rhizosphere soil and bulk soil. The fractal dimension was a sensitive and useful index for quantifying changes in the properties of the different soil zones. This study will greatly aid the application of the fractal method for describing soil structure and nutrient status and the understanding of the performance of rhizospheric zones during ecological

  7. Microgradients of microbial oxygen consumption in a barley rhizosphere model system

    DEFF Research Database (Denmark)

    Højberg, Ole; Sorensen, J.

    1993-01-01

    consumption by microbial respiration in the rhizosphere (30 mm from the root) was determined by using Fick's laws of diffusion and an analytical approach with curve fitting to measured microprofiles of oxygen concentration. A marked increase of microbial respiration...... was in turn 10 to 30 times higher than that in the rhizoplane. Both microbial respiration and oxygen uptake by the root varied between different roots. This was probably due to a between-root variation of the exudation rate for easily degradable carbon compounds supporting the microbial oxygen consumption....

  8. Soil Rhizosphere Microbial Communities and Enzyme Activities under Organic Farming in Alabama

    Directory of Open Access Journals (Sweden)

    Zachary Senwo

    2011-07-01

    Full Text Available Evaluation of the soil rhizosphere has been limited by the lack of robust assessments that can explore the vast complex structure and diversity of soil microbial communities. Our objective was to combine fatty acid methyl ester (FAME and pyrosequencing techniques to evaluate soil microbial community structure and diversity. In addition, we evaluated biogeochemical functionality of the microbial communities via enzymatic activities of nutrient cycling. Samples were taken from a silt loam at 0–10 and 10–20 cm in an organic farm under lettuce (Lactuca sativa, potato (Solanum tuberosum, onion (Allium cepa L, broccoli (Brassica oleracea var. botrytis and Tall fescue pasture grass (Festuca arundinacea. Several FAMEs (a15:0, i15:0, i15:1, i16:0, a17:0, i17:0, 10Me17:0, cy17:0, 16:1ω5c and 18:1ω9c varied among the crop rhizospheres. FAME profiles of the soil microbial community under pasture showed a higher fungal:bacterial ratio compared to the soil under lettuce, potato, onion, and broccoli. Soil under potato showed higher sum of fungal FAME indicators compared to broccoli, onion and lettuce. Microbial biomass C and enzyme activities associated with pasture and potato were higher than the other rhizospheres. The lowest soil microbial biomass C and enzyme activities were found under onion. Pyrosequencing revealed significant differences regarding the maximum operational taxonomic units (OTU at 3% dissimilarity level (roughly corresponding to the bacterial species level at 0–10 cm (581.7–770.0 compared to 10–20 cm (563.3–727.7 soil depths. The lowest OTUs detected at 0–10 cm were under broccoli (581.7; whereas the lowest OTUs found at 10–20 cm were under potato (563.3. The predominant phyla (85% in this soil at both depths were Bacteroidetes (i.e., Flavobacteria, Sphingobacteria, and Proteobacteria. Flavobacteriaceae and Xanthomonadaceae were predominant under broccoli. Rhizobiaceae, Hyphomicrobiaceae, and Acidobacteriaceae were more

  9. Siderophoregenic Acinetobacter calcoaceticus Isolated From Wheat Rhizosphere With Strong PGPR Activity

    Directory of Open Access Journals (Sweden)

    Chaudhari Bhushan, L.

    2009-01-01

    Full Text Available Thirty-two bacterial isolates were obtained from wheat rhizosphere in black cotton soils of North Maharashtra region and subsequently tested for in-vitro siderophore production. Wheat isolate SCW1, being a strong siderophore producer, was selected, identified and confirmed as Acinetobacter calcoaceticus. The strain produced catechol type of siderophores during exponential phase which was influenced by iron content of medium. Seed bacterization with siderophoregenic A. calcoaceticus improved plant growth in pot and field studies. Such PGPR activity was attributed to the ability of strain to solubilise phosphates and produce IAA. Siderophore mediated antagonism was observed against common phytopathogens viz., Aspergillus flavus, A. niger, Colletotrichum capsicum and Fusarium oxysporum.

  10. Customer satisfaction and competencies

    DEFF Research Database (Denmark)

    Gritti, Paola; Foss, Nicolai Juul

    We empirically address how customer satisfaction and loyalty in the banking industry may affect profitability. This helps to identify the strategy and competencies necessary to benefit from customer relationships which are important sources for improved performance in the banking. We do this by a......We empirically address how customer satisfaction and loyalty in the banking industry may affect profitability. This helps to identify the strategy and competencies necessary to benefit from customer relationships which are important sources for improved performance in the banking. We do...

  11. Developing Creative Competencies

    DEFF Research Database (Denmark)

    Friis, Silje Alberthe Kamille

    2012-01-01

    from the field of psychology, as well as research-in-practice with students at the Kolding School of Design and presents the outline of a model for how to work with and facilitate the development of creative competencies. While the research is still in its early phases, response from participants......This paper offers a theoretical framework for how to think about and understand creativity – and how to work with the development of creative competencies in design education. Most design students experience recurrent, individual challenges in design work, which have to do with their personal...

  12. Competence, governance, and entrepreneurship

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Mahnke, Volker

    This title illustrates modern economics. Because it informs strategic choices, it is relevant to business administration in general, and for strategic management in particular. Two dominant streams may be identified in the literature, namely the "competence" and "governance" perspectives on the f......This title illustrates modern economics. Because it informs strategic choices, it is relevant to business administration in general, and for strategic management in particular. Two dominant streams may be identified in the literature, namely the "competence" and "governance" perspectives......, and entrepreneurship to advance and stimulate economic strategy research....

  13. RHIZOSPHERE pH AND PHOSPHATASE ACTIVITY IN ORTHIC ALLOPHANIC SOIL UNDER Pinus radiata SEEDLINGS GROWN WITH BROOM AND RYEGRASS

    Directory of Open Access Journals (Sweden)

    Achmad A. Rivaie

    2009-06-01

    Full Text Available Under  Pinus radiata plantations  where  the tree spacing  is wider  and most soils are phosphorus  (P deficient,  the radiata  tree response to P fertilizer is expected  to be more influenced  by  the interaction between  the applied  P fertilizer, the tree and understorey vegetation.  Therefore,  a better understanding of the soil P chemistry under radiata pine trees in association  with  other  plants  is required.  We investigated  the effect of broom  (Cytisus scoparius L. and ryegrass  (Lolium multiflorum grown  with  radiata  seedlings  in Orthic Allophanic Soil treated with  0, 50, and 100 μg P g-1  soil of TSP on the pH and phosphatase activity in the rhizosphere soils under glasshouse condition. The pHs of radiata rhizosphere soils either grown with broom or grass were lower than  those in the  bulk soils and the bulk and rhizosphere soils of grass and broom,  whether  they  were grown  alone or grown  with radiata at the  applications of 50 and 100 μg P g-1 soil. These results suggest that P application enhanced root induced acidification  in a P-deficient Allophanic Soil under radiata.  The soils in the rhizosphere of grass and broom, grown in association with radiata, were also acidified by  the effect of radiata  roots.  Acid  phosphatase  activity in soils under  radiata,  grass and broom  decreased with  an increased  rate of P application. At all P rates,  acid phosphatase activity was higher in the rhizosphere of radiata  grown  with  broom than in the bulk soils. The phosphatase activity in the rhizosphere soil of radiata grown with broom was also higher than that of radiata grown with grass, but it was slightly lower than that in the rhizosphere of broom grown  alone. These results suggest that broom may have also contributed to the higher  phosphatase  activity in the rhizosphere soils than  in the bulk  soils of broom  and radiata when they were grown  together

  14. Conspiracies and Competences

    Science.gov (United States)

    Erpenbeck, John

    Universities and other higher education institutions are predominantly organizations that convey knowledge, more than developing competences - these are often the verbally proclaimed but only rarely achieved goals. There can be two reasons for this discrepancy. First, conveying informational as well as subject-specific and specialized knowledge can even today be planned, assessed, and checked much more easily than conveying competences - an approach for teaching, which needs new patterns of thought and actions. Teachers and learners, assistants and assessing staff, and especially actors and planners who are concerned with questions of educational politics therefore form a "conspiracy of assessors," which has chosen the simpler and seemingly safer approach. This approach, however, seems to be ignorant of future developments. Second, conveying competences needs different forms of learning and teaching than conveying knowledge. The question of the acquisition (interiorization) of rules, assessments, and results of assessments (= values) and norms in the form of the learners' own emotions and motivations is central. Becoming emotionally labilized is pivotal to this appropriation. Emotional labilization also provides a criterion for assessing the effectiveness of Web 2.0 instruments for developing competences.

  15. Competence, governance, and entrepreneurship

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Mahnke, Volker

    This title illustrates modern economics. Because it informs strategic choices, it is relevant to business administration in general, and for strategic management in particular. Two dominant streams may be identified in the literature, namely the "competence" and "governance" perspectives on the f......, and entrepreneurship to advance and stimulate economic strategy research....

  16. Adult educators' core competences

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne

    2016-01-01

    environment as well as the kind of adult education concerned (e.g. basic education, work-related education etc.). However, it seems that it is possible to identify certain competence requirements which transcend national, cultural and functional boundaries. This research note summarises these common or “core...

  17. Skills and Competencies

    Directory of Open Access Journals (Sweden)

    Nasios Orinos

    2013-07-01

    Full Text Available This article presents the results of a study aimed to investigate the requirements of the business sector in light of the skills and competencies students should have in order to be recruited. In this fashion, the study intended to measure the importance of the skills and competencies sought by the business world, revealing ways through which students can develop such skills. This project portrayed that, some of the required classes will certainly give students a strong theoretical background but they will neither completely prepare this student with all possible skills or competencies nor provide the student with any practical experience that will enable him/her to be more competitive when entering the business market. In some classes, however, like Public Speaking, which is designed to teach presentation skills, successful students are able to build good communication and interpersonal skills. Additionally, an English writing class will certainly attempt to provide them with strong writing skills, and a business class will possibly demand reading skills. Moreover, a calculus and a statistics class will provide basic arithmetic/mathematical skills. However, through this project it is proven that all of these classes will neglect the indoctrination of creative thinking in students, or make students believe in their own self-worth (self-esteem skills; the courses will also fail to develop the sense of urgency, drive and determination that students should possess not just to compete but also to survive in a business world.

  18. Assessing cataract surgical competency

    NARCIS (Netherlands)

    Lee, Andrew G.; Greenlee, Emily; Oetting, Thomas A.; Beaver, Hilary A.; Johnson, A. Tim; Boldt, H. Culver; Abramoff, Michael; Olson, Richard; Carter, Keith

    2007-01-01

    The Accreditation Council for Graduate Medical Education has mandated that all residency training programs teach and assess 6 general competencies.1 A.G. Lee and K.D. Carter, Managing the new mandate in resident education: A blueprint for translating a national mandate into local compliance,

  19. Calibrating Communication Competencies

    Science.gov (United States)

    Surges Tatum, Donna

    2016-11-01

    The Many-faceted Rasch measurement model is used in the creation of a diagnostic instrument by which communication competencies can be calibrated, the severity of observers/raters can be determined, the ability of speakers measured, and comparisons made between various groups.

  20. Pragmatics and Communicative Competences

    Science.gov (United States)

    Lin, Grace Hui Chin; Su, Simon Chun Feng; Ho, Max Ming Hsuang

    2009-01-01

    Pragmatics is included in one of four communicative competences (Canale, 1980). It is necessary and important to teach pragmatics at school in our globalized world in order to avoid as much as misunderstanding, which is likely to stem from cultural difference. As a result, greater importance should be attached to diverse customs and pragmatics.…

  1. The MUPPLE competence continuum

    NARCIS (Netherlands)

    Wild, Joanna; Wild, Fridolin; Kalz, Marco; Specht, Marcus; Hofer, Margit

    2009-01-01

    Wild, J., Wild, F., Kalz, M., Specht, M., & Hofer, M. (2009). The MUPPLE competence continuum. In F. Wild, M. Kalz, M. Palmér & D. Müller (Eds.), Proceedings of 2nd Workshop Mash-Up Personal Learning Envrionments (MUPPLE'09). Workshop in conjunction with 4th European Conference on Technology

  2. Competing for Criminal Money

    NARCIS (Netherlands)

    Rawlings, G.; Unger, B.

    2005-01-01

    To compete for criminal money by means of low bank secrecy seems a tempting strategy for countries in order to attract additional funds. We show in a model that this “Seychelles-strategy” can increase national output, in particular if a country takes a (Stackelberg ) leadership in the competition

  3. Competing Auctions of Skills

    DEFF Research Database (Denmark)

    Kennes, John; le Maire, Daniel

    We generalize McAfee’s (1993) game of competing sellers to the case of heterogeneous sellers. In the generalized McAfee (GM) game, the equilibrium expected job offer distribution of each worker (seller) type evolves over time as a function of stochastic events. We derive a tractable method of sol...

  4. Supporting Lifelong Competence Development

    NARCIS (Netherlands)

    Koper, Rob

    2007-01-01

    The slides of a keynote for the EFODL conference about Demonstrating Transformation in Learning: Practice, Process and Product. 23rd & 24th May 2007, Belfast (http://efodl.belfastinstitute.ac.uk/). It introduces the core concepts of TENCompetence: Learning Networks, Personal Competence Management,

  5. Competencies, skills and assessment

    DEFF Research Database (Denmark)

    Højgaard, Tomas

    2009-01-01

    This paper is an analysis of the challenge of assessing student learning and how that is affected by using descriptions of competencies as a core element when describing the aims of the learning process. Assessment is modelled as a three step process; characterising, identifying and judging, to a...... the characterisation part of an assessment process. From a teaching and teachers' perspective, the latter is far more important than the former.......This paper is an analysis of the challenge of assessing student learning and how that is affected by using descriptions of competencies as a core element when describing the aims of the learning process. Assessment is modelled as a three step process; characterising, identifying and judging......, to allow for the following argument: Working with competency descriptions is rightly said to make judging more difficult. This potentially lowers the reliability of the assessment. But competency descriptions also carry a great potential of raising the validity of the assessment by focusing...

  6. Competences of IT Architects

    NARCIS (Netherlands)

    Wieringa, Roelf J.; van Eck, Pascal; Steghuis, C.; Proper, E.

    2008-01-01

    The field of architecture in the digital world uses a plethora of terms to refer to different kinds of architects, and recognizes a confusing variety of competences that these architects are required to have. Different service providers use different terms for similar architects and even if they use

  7. Competences of IT Architects

    NARCIS (Netherlands)

    Wieringa, Roelf J.; van Eck, Pascal; Steghuis, Claudia; Proper, Erik

    The field of architecture in the digital world uses a plethora of terms to refer to different kinds of architects, and recognises a confusing variety of competences that these architects are required to have. Different service providers use different terms for similar architects and even if they use

  8. Evolution of subsidiary competences

    DEFF Research Database (Denmark)

    Geisler Asmussen, Christian; Pedersen, Torben; Dhanaraj, Charles

    of competitive advantage of nations, we hypothesize the contingencies under which heterogeneity in host environments influences subsidiary competence configuration. We test our model with data from more than 2,000 subsidiaries in seven Western European countries. Our results provide new insights on the evolution...

  9. Adult educators' core competences

    Science.gov (United States)

    Wahlgren, Bjarne

    2016-06-01

    Which competences do professional adult educators need? This research note discusses the topic from a comparative perspective, finding that adult educators' required competences are wide-ranging, heterogeneous and complex. They are subject to context in terms of national and cultural environment as well as the kind of adult education concerned (e.g. basic education, work-related education etc.). However, it seems that it is possible to identify certain competence requirements which transcend national, cultural and functional boundaries. This research note summarises these common or "core" requirements, organising them into four thematic subcategories: (1) communicating subject knowledge; (2) taking students' prior learning into account; (3) supporting a learning environment; and (4) the adult educator's reflection on his or her own performance. At the end of his analysis of different competence profiles, the author notes that adult educators' ability to train adult learners in a way which then enables them to apply and use what they have learned in practice (thus performing knowledge transfer) still seems to be overlooked.

  10. Assessing Culturally Competent Scholarship.

    Science.gov (United States)

    Mendias, Elnora P.; Guevara, Edilma B.

    2001-01-01

    Eight criteria for culturally competent scholarship (contextuality, relevance, communication styles, awareness of identity and power differences, disclosure, reciprocation, empowerment, time) were applied to an international education/research nursing program. Appropriate measures for each were developed and ways to improve the program were…

  11. Diesel Vehicle Maintenance Competencies.

    Science.gov (United States)

    Braswell, Robert; And Others

    Designed to provide a model set of competencies, this manual presents tasks which were identified by employers, employees, and teachers as important in a postsecondary diesel vehicle maintenance curriculum. The tasks are divided into seven major component areas of instruction: chassis and suspension, diesel engines, diesel fuel, electrical,…

  12. Competing Auctions of Skills

    DEFF Research Database (Denmark)

    Kennes, John; le Maire, Christian Daniel

    The model of competing sellers McAfee (1993) is applied to a labor market environment with heterogeneous workers, who differ by outside option and skill type, and heterogeneous firms, who differ by the amount of output produced when matched to each possible worker tyoe. We derive both a static...

  13. Competencies: requirements and acquisition

    NARCIS (Netherlands)

    Kuenn, A.C.; Meng, C.M.; Peters, Z.; Verhagen, A.M.C.

    2013-01-01

    Higher education is given the key task to prepare the highly talented among the young to fulfil highly qualified roles in the labour market. Successful labour market performance of graduates is generally associated with the acquisition of the correct competencies. Education as an individual

  14. Classical competing risks

    CERN Document Server

    Crowder, Martin J

    2001-01-01

    If something can fail, it can often fail in one of several ways and sometimes in more than one way at a time. There is always some cause of failure, and almost always, more than one possible cause. In one sense, then, survival analysis is a lost cause. The methods of Competing Risks have often been neglected in the survival analysis literature. Written by a leading statistician, Classical Competing Risks thoroughly examines the probability framework and statistical analysis of data of Competing Risks. The author explores both the theory of the subject and the practicalities of fitting the models to data. In a coherent, self-contained, and sequential account, the treatment moves from the bare bones of the Competing Risks setup and the associated likelihood functions through survival analysis using hazard functions. It examines discrete failure times and the difficulties of identifiability, and concludes with an introduction to the counting-process approach and the associated martingale theory.With a dearth of ...

  15. Using Raman spectroscopy and SERS for in situ studies of rhizosphere bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Mohseni, Hooman; Agahi, Massoud H.; Razeghi, Manijeh; Polisetti, Sneha; Baig, Nameera; Bible, Amber; Morrell-Falvey, Jennifer; Doktycz, Mitchel; Bohn, Paul W.

    2015-08-21

    Bacteria colonize plant roots to form a symbiotic relationship with the plant and can play in important role in promoting plant growth. Raman spectroscopy is a useful technique to study these bacterial systems and the chemical signals they utilize to interact with the plant. We present a Raman study of Pantoea YR343 that was isolated from the rhizosphere of Populus deltoides (Eastern Cottonwood). Pantoea sp. YR343 produce yellowish carotenoid pigment that play a role in protection against UV radiation, in the anti-oxidative pathways and in membrane fluidity. Raman spectroscopy is used to non-invasively characterize the membrane bound carotenoids. The spectra collected from a mutant strain created by knocking out the crtB gene that encodes a phytoene synthase responsible for early stage of carotenoid biosynthesis, lack the carotenoid peaks. Surface Enhanced Raman Spectroscopy is being employed to detect the plant phytoharmone indoleacetic acid that is synthesized by the bacteria. This work describes our recent progress towards utilizing Raman spectroscopy as a label free, non-destructive method of studying plant-bacteria interactions in the rhizosphere.

  16. Pesticide dissipation and microbial community changes in a biopurification system: influence of the rhizosphere.

    Science.gov (United States)

    Diez, M C; Elgueta, S; Rubilar, O; Tortella, G R; Schalchli, H; Bornhardt, C; Gallardo, F

    2017-12-01

    The dissipation of atrazine, chlorpyrifos and iprodione in a biopurification system and changes in the microbial and some biological parameters influenced by the rhizosphere of Lolium perenne were studied in a column system packed with an organic biomixture. Three column depths were analyzed for residual pesticides, peroxidase, fluorescein diacetate activity and microbial communities. Fungal colonization was analyzed by confocal laser scanning microscopy to assess the extent of its proliferation in wheat straw. The L. perenne rhizosphere enhanced pesticide dissipation and negligible pesticide residues were detected at 20-30 cm column depth. Atrazine, chlorpyrifos and iprodione removal was 82, 89 and 74% respectively in the first 10 cm depth for columns with vegetal cover. The presence of L. perenne in contaminated columns stimulated peroxidase activity in all three column depth sections. Fluorescein diacetate activity decreased over time in all column sections with the highest values in biomixtures with vegetal cover. Microbial communities, analyzed by PCR-DGGE, were not affected by the pesticide mixture application, presenting high values of similarity (>65%) with and without vegetal cover. Microbial abundance of Actinobacteria varied according to treatment and no clear link was observed. However, bacterial abundance increased over time and was similar with and without vegetal cover. On the other hand, fungal abundance decreased in all sections of columns after 40 days, but an increase was observed in response to pesticide application. Fungal colonization and straw degradation during pesticide dissipation were verified by monitoring the lignin autofluorescence loss.

  17. Mass spectrometry imaging: Towards mapping the elemental and molecular composition of the rhizosphere

    Energy Technology Data Exchange (ETDEWEB)

    Veličković, Dušan; Anderton, Christopher R.

    2017-06-01

    This short review will discuss and provide perspective into the utilization of mass spectrometry imaging (MSI) in studying the rhizosphere. It also serves to compliment the multi-omic focused review by White et al. in this journal issue, as MSI is capable of elucidating chemical distributions within samples of interest in an in situ fashions, and thus can provide spatial context to MS omics data in complementary experimental endeavors. The majority of reported MSI-based studies of plant-microbe interactions have focused on the phyllosphere and ‘associated rhizosphere’ (e.g., material that is not removed during harvesting), as sample preparation for these in situ analyses tends to be a limiting factor. These studies have provided valuable insight into the spatial arrangement of proteins, peptides, lipids, and other metabolites within these systems. We intend for this short review to be a primer about the history of MSI and its role in plant-microbe analysis. Along the way we reference many comprehensive reviews for the interested reader. Lastly, we offer a perspective on the future of MSI and its use in understanding the molecular transformations beyond what we coined as the ‘associated rhizosphere’ to the rest of rhizosphere zone and into the bulk soil.

  18. Effect of rhizosphere enzymes on phytoremediation in PAH-contaminated soil using five plant species.

    Science.gov (United States)

    Liu, Rui; Dai, Yuanyuan; Sun, Libo

    2015-01-01

    A pot experiment was performed to study the effectiveness of remediation using different plant species and the enzyme response involved in remediating PAH-contaminated soil. The study indicated that species Echinacea purpurea, Festuca arundinacea Schred, Fire Phoenix (a combined F. arundinacea), and Medicago sativa L. possess the potential for remediation in PAH-contaminated soils. The study also determined that enzymatic reactions of polyphenol oxidase (except Fire Phoenix), dehydrogenase (except Fire Phoenix), and urease (except Medicago sativa L.) were more prominent over cultivation periods of 60d and 120d than 150d. Urease activity of the tested species exhibited prominently linear negative correlations with alkali-hydrolyzable nitrogen content after the tested plants were cultivated for 150d (R2 = 0.9592). The experiment also indicated that alkaline phosphatase activity in four of the five tested species (Echinacea purpurea, Callistephus chinensis, Festuca arundinacea Schred and Fire Phoenix) was inhibited during the cultivation process (at 60d and 120d). At the same time, the study determined that the linear relationship between alkaline phosphatase activity and effective phosphorus content in plant rhizosphere soil exhibited a negative correlation after a growing period of 120d (R2 = 0.665). Phytoremediation of organic contaminants in the soil was closely related to specific characteristics of particular plant species, and the catalyzed reactions were the result of the action of multiple enzymes in the plant rhizosphere soil.

  19. Bacterial Rhizosphere Biodiversity from Several Pioneer Desert Sand Plants Near Jizan, Saudi Arabia

    KAUST Repository

    Osman, Jorge R.

    2016-04-08

    Life in arid regions and, in particular, hot deserts is often limited due to their harsh environmental conditions, such as large temperature fluctuations and low amounts of water. These extreme environments can influence the microbial community present on the surface sands and any rhizosphere members surrounding desert plant roots. The Jizan desert area, located in Saudi Arabia, supports particular vegetation that grows in the large sandy flat terrain. We examined five different samples, four from the rhizosphere of pioneer plants plus a surface sand sample, and used pyrosequencing of PCR-amplified V1-V3 regions of 16S rDNA genes from total extracted DNA to reveal and compare the bacterial population diversity of the samples. The results showed a total of 3,530 OTUs in the five samples, calculated using ≥ 97% sequence similarity levels. The Chao1 estimation of the bacterial diversity fluctuated from 637 to 2,026 OTUs for a given sample. The most abundant members found in the samples belong to the Bacteroidetes, Firmicutes and Proteobacteria phyla. This work shows that the Jizan desert area of Saudi Arabia can contain a diverse bacterial community on the sand and surrounding the roots of pioneer desert plants. It also shows that desert sand microbiomes can vary depending on conditions, with broad implications for sandstone monument bacterial communities

  20. Copper-tolerant rhizosphere bacteria-characterization and assessment of plant growth promoting factors.

    Science.gov (United States)

    Rathi, Manohari; Nandabalan, Yogalakshmi Kadapakkam

    2017-04-01

    Remediation of heavy metal contaminated soil is a major problem or concern worldwide. Heavy metal accumulation in the soil is increasing day by day by industries, mines, agriculture, fuel combustion and municipal waste discharge. Such contaminated soils harbour a large number of resistant microbial populations. Screening and isolation of such microbes would be utilized for natural remediation of metal contaminated soils. Therefore, in the present study, highly copper-tolerant bacteria from rhizosphere soil of Cynodon dactylon grown in brass effluent contaminated soil were isolated and assessed for plant growth promoting factors. A total of 61 isolates were isolated from the rhizosphere of three contaminated sites. Six highly copper-tolerant isolates named as MYS1, MYS2, MYS3, MYS4, MYS5 and MYS6 were isolated through enrichment in copper containing nutrient broth. 16S rRNA analysis revealed that the isolates were from genera Stenotrophomonas and Brevundimonas and belong to classes Alpha Proteobacteriacea and Gamma Proteobacteriacea, respectively. Strain MYS1, MYS2 and MYS4 showed 95-99% similarity with Stenotrophomonas acidaminiphila, strain MYS3 and MYS5 showed 99 and 97% similarity with Stenotrophomonas maltophilia and Stenotrophomonas sp. Strain MYS6 showed 94% similarity with Brevundimonas diminuta. All the rhizobacteria showed plant growth promoting traits such as production of siderophores, indole acetic acid (IAA), phosphate solubilization and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. From this study, we can conclude that all the isolates possess copper resistance and potential for phytoremediation of copper polluted soils.

  1. Phosphate Solubilization Potential of Rhizosphere Fungi Isolated from Plants in Jimma Zone, Southwest Ethiopia.

    Science.gov (United States)

    Elias, Firew; Woyessa, Delelegn; Muleta, Diriba

    2016-01-01

    Phosphorus (P) is one of the major bioelements limiting agricultural production. Phosphate solubilizing fungi play a noteworthy role in increasing the bioavailability of soil phosphates for plants. The present study was aimed at isolating and characterizing phosphate solubilizing fungi from different rhizospheres using both solid and liquid Pikovskaya (PVK) medium. A total of 359 fungal isolates were obtained from 150 rhizosphere soil samples of haricot bean, faba bean, cabbage, tomato, and sugarcane. Among the isolates, 167 (46.52%) solubilized inorganic phosphate. The isolated phosphate solubilizing fungi belonged to genera of Aspergillus (55.69%), Penicillium spp. (23.35%), and Fusarium (9.58%). Solubilization index (SI) ranged from 1.10 to 3.05. Isolates designated as JUHbF95 (Aspergillus sp.) and JUFbF59 (Penicillium sp.) solubilized maximum amount of P 728.77 μg·mL(-1) and 514.44 μg mL(-1), respectively, from TCP (tricalcium phosphate) after 15 days of incubation. The highest (363 μg mL(-1)) soluble-P was released from RP with the inoculation of JUHbF95 in the PVK broth after 10 days of incubation. The present study indicated the presence of diverse plant associated P-solubilizing fungi that may serve as potential biofertilizers.

  2. Arbuscular Mycorrhizal Fungal Diversity in Sugarcane Rhizosphere in Relation with Soil Properties

    Directory of Open Access Journals (Sweden)

    Promita DATTA

    2012-02-01

    Full Text Available Arbuscular mycorrhizal (AM species diversity and their root colonization patterns may vary in a plant species as influenced by soil environmental and biological factors. In the present study, sugarcane rhizospheric soils were collected from 41 main sugarcane producing tehsil places belonging to 10 districts from Maharashtra, India. Rhizospheric soil samples and roots were analyzed for spore density, relative abundance and frequency of AM spores at genus as well as at species level, extent of AM colonization in roots and various soil chemical properties. Soil sample from Jalgaon district possessed maximum spore density and AM root colonization. Genus Glomus exhibited highest relative abundance with maximum frequency of 32.55%. Species wise, Glomus fasciculatum possessed highest relative abundance and maximum frequency was observed in case of Glomus fasciculatum, Glomus intraradices, Glomus mosseae and Glomus versiforme. Maximum similarity of AM spores was recorded between Satara and Sangli districts which may be because of almost similar soil pH profile. Data obtained after cluster analysis represented the close relationship between spore density, AM root colonization and soil Cu, Zn and Fe concentrations. A statistically significant positive correlation was also found when AM spore density and root colonization was compared with soil Cu, Zn and Fe contents. This kind of data can be used to predict type of AM fungi to be used as bioinoculant in particular region.

  3. Lettuce and rhizosphere microbiome responses to growth promoting Pseudomonas species under field conditions.

    Science.gov (United States)

    Cipriano, Matheus A P; Lupatini, Manoeli; Lopes-Santos, Lucilene; da Silva, Márcio J; Roesch, Luiz F W; Destéfano, Suzete A L; Freitas, Sueli S; Kuramae, Eiko E

    2016-12-01

    Plant growth promoting rhizobacteria are well described and recommended for several crops worldwide. However, one of the most common problems in research into them is the difficulty in obtaining reproducible results. Furthermore, few studies have evaluated plant growth promotion and soil microbial community composition resulting from bacterial inoculation under field conditions. Here we evaluated the effect of 54 Pseudomonas strains on lettuce (Lactuca sativa) growth. The 12 most promising strains were phylogenetically and physiologically characterized for plant growth-promoting traits, including phosphate solubilization, hormone production and antagonism to pathogen compounds, and their effect on plant growth under farm field conditions. Additionally, the impact of beneficial strains on the rhizospheric bacterial community was evaluated for inoculated plants. The strains IAC-RBcr4 and IAC-RBru1, with different plant growth promoting traits, improved lettuce plant biomass yields up to 30%. These two strains also impacted rhizosphere bacterial groups including Isosphaera and Pirellula (phylum Planctomycetes) and Acidothermus, Pseudolabrys and Singusphaera (phylum Actinobacteria). This is the first study to demonstrate consistent results for the effects of Pseudomonas strains on lettuce growth promotion for seedlings and plants grown under tropical field conditions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Identification and characterization of rhizospheric microbial diversity by 16S ribosomal RNA gene sequencing.

    Science.gov (United States)

    Naveed, Muhammad; Mubeen, Samavia; Khan, SamiUllah; Ahmed, Iftikhar; Khalid, Nauman; Suleria, Hafiz Ansar Rasul; Bano, Asghari; Mumtaz, Abdul Samad

    2014-01-01

    In the present study, samples of rhizosphere and root nodules were collected from different areas of Pakistan to isolate plant growth promoting rhizobacteria. Identification of bacterial isolates was made by 16S rRNA gene sequence analysis and taxonomical confirmation on EzTaxon Server. The identified bacterial strains were belonged to 5 genera i.e. Ensifer, Bacillus, Pseudomona, Leclercia and Rhizobium. Phylogenetic analysis inferred from 16S rRNA gene sequences showed the evolutionary relationship of bacterial strains with the respective genera. Based on phylogenetic analysis, some candidate novel species were also identified. The bacterial strains were also characterized for morphological, physiological, biochemical tests and glucose dehydrogenase (gdh) gene that involved in the phosphate solublization using cofactor pyrroloquinolone quinone (PQQ). Seven rhizoshperic and 3 root nodulating stains are positive for gdh gene. Furthermore, this study confirms a novel association between microbes and their hosts like field grown crops, leguminous and non-leguminous plants. It was concluded that a diverse group of bacterial population exist in the rhizosphere and root nodules that might be useful in evaluating the mechanisms behind plant microbial interactions and strains QAU-63 and QAU-68 have sequence similarity of 97 and 95% which might be declared as novel after further taxonomic characterization.

  5. Effect of rhizosphere enzymes on phytoremediation in PAH-contaminated soil using five plant species.

    Directory of Open Access Journals (Sweden)

    Rui Liu

    Full Text Available A pot experiment was performed to study the effectiveness of remediation using different plant species and the enzyme response involved in remediating PAH-contaminated soil. The study indicated that species Echinacea purpurea, Festuca arundinacea Schred, Fire Phoenix (a combined F. arundinacea, and Medicago sativa L. possess the potential for remediation in PAH-contaminated soils. The study also determined that enzymatic reactions of polyphenol oxidase (except Fire Phoenix, dehydrogenase (except Fire Phoenix, and urease (except Medicago sativa L. were more prominent over cultivation periods of 60d and 120d than 150d. Urease activity of the tested species exhibited prominently linear negative correlations with alkali-hydrolyzable nitrogen content after the tested plants were cultivated for 150d (R2 = 0.9592. The experiment also indicated that alkaline phosphatase activity in four of the five tested species (Echinacea purpurea, Callistephus chinensis, Festuca arundinacea Schred and Fire Phoenix was inhibited during the cultivation process (at 60d and 120d. At the same time, the study determined that the linear relationship between alkaline phosphatase activity and effective phosphorus content in plant rhizosphere soil exhibited a negative correlation after a growing period of 120d (R2 = 0.665. Phytoremediation of organic contaminants in the soil was closely related to specific characteristics of particular plant species, and the catalyzed reactions were the result of the action of multiple enzymes in the plant rhizosphere soil.

  6. Phosphate Solubilization Potential of Rhizosphere Fungi Isolated from Plants in Jimma Zone, Southwest Ethiopia

    Science.gov (United States)

    Elias, Firew

    2016-01-01

    Phosphorus (P) is one of the major bioelements limiting agricultural production. Phosphate solubilizing fungi play a noteworthy role in increasing the bioavailability of soil phosphates for plants. The present study was aimed at isolating and characterizing phosphate solubilizing fungi from different rhizospheres using both solid and liquid Pikovskaya (PVK) medium. A total of 359 fungal isolates were obtained from 150 rhizosphere soil samples of haricot bean, faba bean, cabbage, tomato, and sugarcane. Among the isolates, 167 (46.52%) solubilized inorganic phosphate. The isolated phosphate solubilizing fungi belonged to genera of Aspergillus (55.69%), Penicillium spp. (23.35%), and Fusarium (9.58%). Solubilization index (SI) ranged from 1.10 to 3.05. Isolates designated as JUHbF95 (Aspergillus sp.) and JUFbF59 (Penicillium sp.) solubilized maximum amount of P 728.77 μg·mL−1 and 514.44 μg mL−1, respectively, from TCP (tricalcium phosphate) after 15 days of incubation. The highest (363 μg mL−1) soluble-P was released from RP with the inoculation of JUHbF95 in the PVK broth after 10 days of incubation. The present study indicated the presence of diverse plant associated P-solubilizing fungi that may serve as potential biofertilizers. PMID:27688771

  7. Effect of Azotobacter chroococcum application type on microorganisms in the rhizosphere and sugar beet yield

    Directory of Open Access Journals (Sweden)

    Mrkovački Nastasija

    2010-01-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR are a group of diverse soil bacteria which stimulate the growth of the host plant. It has been shown that Azotobacter chroococcum may be used as biofertilizer for increasing the yield and improving technological characteristics of sugar beet. The effect of three different ways of inoculation of sugarbeet with Azotobacter chroococcum on the production features of sugar beet and microbiological status of rhizosphere soil has been tested. One variety of sugar beet, Drena, was included in the tests in the region Rimski Šančevi, Novi Sad, during 2008 and 2009. Five strains of Azotobacter chroococcum (1, 5, 8, 10 and 14 were used as microbiological fertilizers. There were three variations of inoculation: (A incorporation in the soil, (B before the fi rst cultivation, and (C applying the liquid culture of strain on the seed before sowing. The highest increase in yield of sugar beet roots 6.25 t ha-1 and yield of white sugar 0.91 t ha-1 was achieved with strain 10 with variant of inoculation of soil before the first cultivation. In both years, a positive effect of Azotobacter chroococcum was observed on the total number of microorganisms in the rhizosphere.

  8. Characterization of rhizosphere bacteria for control of phytopathogenic fungi of tomato.

    Science.gov (United States)

    Pastor, Nicolás; Carlier, Evelin; Andrés, Javier; Rosas, Susana B; Rovera, Marisa

    2012-03-01

    Fluorescent Pseudomonas spp., isolated from rhizosphere soil of tomato and pepper plants, were evaluated in vitro as potential antagonists of fungal pathogens. Strains were characterized using the API 20NE biochemical system, and tested against the causal agents of stem canker and leaf blight (Alternaria alternata f. sp. lycopersici), southern blight (Sclerotium rolfsii Sacc.), and root rot (Fusarium solani). To this end, dual culture antagonism assays were carried out on 25% Tryptic Soy Agar, King B medium, and Potato Dextrose Agar to determine the effect of the strains on mycelial growth of the pathogens. The effect of two concentrations of FeCl(3) on antagonism against Alternaria alternata f. sp. lycopersici was also tested. In addition, strains were screened for ability to produce exoenzymes and siderophores. Finally, the selected Pseudomonas strain, PCI2, was evaluated for effect on tomato seedling development and as a potential candidate for controlling tomato damping-off caused by Sclerotium rolfsii Sacc., under growth chamber conditions. All strains significantly inhibited Alternaria alternata f. sp. lycopersici, particularly in 25% TSA medium. Antagonistic effect on Sclerotium rolfsii Sacc. and Fusarium solani was greater on King B medium. Protease was produced by 30% of the strains, but no strains produced cellulase or chitinase. Growth chamber studies resulted in significant increases in plant stand as well as in root dry weight. PCI2 was able to establish and survive in tomato plants rhizosphere after 40 days following planting of bacterized seeds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot.

    Science.gov (United States)

    Saravanakumar, Kandasamy; Li, Yaqian; Yu, Chuanjin; Wang, Qiang-Qiang; Wang, Meng; Sun, Jianan; Gao, Jin-Xin; Chen, Jie

    2017-05-11

    Fusarium stalk rot (FSR) caused by Fusarium graminearum (FG) significantly affects the productivity of maize grain crops. Application of agrochemicals to control the disease is harmful to environment. In this regard, use of biocontrol agent (BCA) is an alternative to agrochemicals. Although Trichoderma species are known as BCA, the selection of host-pathogen specific Trichoderma is essential for the successful field application. Hence, we screened a total of 100 Trichoderma isolates against FG, selected Trichoderma harzianum (CCTCC-RW0024) for greenhouse experiments and studied its effect on changes of maize rhizosphere microbiome and biocontrol of FSR. The strain CCTCC-RW0024 displayed high antagonistic activity (96.30%), disease reduction (86.66%), biocontrol-related enzyme and gene expression. The root colonization of the strain was confirmed by eGFP tagging and qRT-PCR analysis. Pyrosequencing revealed that exogenous inoculation of the strain in maize rhizosphere increased the plant growth promoting acidobacteria (18.4%), decreased 66% of FG, and also increased the plant growth. In addition, metabolites of this strain could interact with pathogenicity related transcriptional cofactor FgSWi6, thereby contributing to its inhibition. It is concluded that T. harzianum strain CCTCC-RW0024 is a potential BCA against FSR.

  10. Visualisation and quantification of water in bulk and rhizosphere soils using X-ray Computed Tomography

    Science.gov (United States)

    Tracy, Saoirse; Daly, Keith; Crout, Neil; Bennett, Malcolm; Pridmore, Tony; Foulkes, John; Roose, Tiina; Mooney, Sacha

    2015-04-01

    Understanding how water is distributed in soil and how it changes during the redistribution process or from root uptake is crucial for enhancing our understanding for managing soil and water resources. The application of X-ray Computed Tomography (CT) to soil science research is now well established; however few studies have utilised the technique for visualising water in pore spaces due to several inherent difficulties. Here we present a new method to visualise the water content of a soil in situ and in three-dimensions at successive drying matric potentials. A water release curve was obtained for different soil types using measurements from their real pore geometries. The water, soil, air and root phases from the images were segmented using image analysis techniques and quantified. These measurements allowed us to characterise pore size, shape and connectivity for both air filled pores and water. The non-destructive technique enabled water to be visualised in situ and repeated scanning allowed wetting patterns to be analysed. The experimental results were validated against conventional laboratory derived water release curves and specifically developed mechanistic models of soil-water-root interactions. Micro-scale revelations of the water-soil-root interfaces enabled us to make macro-scale predictions on water movement in soil. The information and insights obtained on the hydraulic properties of rhizosphere and bulk soil will enhance our understanding of rhizosphere biophysics and improve current water uptake models.

  11. Identification and characterization of rhizospheric microbial diversity by 16S ribosomal RNA gene sequencing

    Directory of Open Access Journals (Sweden)

    Muhammad Naveed

    2014-09-01

    Full Text Available In the present study, samples of rhizosphere and root nodules were collected from different areas of Pakistan to isolate plant growth promoting rhizobacteria. Identification of bacterial isolates was made by 16S rRNA gene sequence analysis and taxonomical confirmation on EzTaxon Server. The identified bacterial strains were belonged to 5 genera i.e. Ensifer, Bacillus, Pseudomona, Leclercia and Rhizobium. Phylogenetic analysis inferred from 16S rRNA gene sequences showed the evolutionary relationship of bacterial strains with the respective genera. Based on phylogenetic analysis, some candidate novel species were also identified. The bacterial strains were also characterized for morphological, physiological, biochemical tests and glucose dehydrogenase (gdh gene that involved in the phosphate solublization using cofactor pyrroloquinolone quinone (PQQ. Seven rhizoshperic and 3 root nodulating stains are positive for gdh gene. Furthermore, this study confirms a novel association between microbes and their hosts like field grown crops, leguminous and non-leguminous plants. It was concluded that a diverse group of bacterial population exist in the rhizosphere and root nodules that might be useful in evaluating the mechanisms behind plant microbial interactions and strains QAU-63 and QAU-68 have sequence similarity of 97 and 95% which might be declared as novel after further taxonomic characterization.

  12. Colonization of Paracoccus sp. QCT6 and Enhancement of Metribuzin Degradation in Maize Rhizosphere Soil.

    Science.gov (United States)

    Huang, Xing; Zhang, Hao; Chen, Feng; Song, Man

    2017-09-22

    Strain QCT6, capable of degrading metribuzin, was isolated from metribuzin-contaminated soil. The isolate was identified as Paracoccus sp. according to its physiological characteristics, biochemical tests, and 16S rRNA gene phylogenetic analysis. In liquid culture, 86.4% of 50 mg/L metribuzin was removed by strain QCT6 after incubation for 7 days. The product of metribuzin degradation by QCT6 was identified as deamino-metribuzin, which has reduced phytotoxicity on the growth of maize. After being marked with the gfp gene, the colonization and distribution of gfp-tagged QCT6 were directly observed with a confocal laser scanning microscope. The QCT6 strain showed good colonization ability on maize roots and was maintained for at least 20 days in rhizosphere soil. After root irrigation with gfp-tagged QCT6, 75.7% of 15 mg/L metribuzin was removed from the maize rhizosphere soil. This metribuzin-degrading strain QCT6 has strong potential applications for in situ bioremediation of soil contaminated with metribuzin.

  13. The effect of pH, electrolytes and temperature on the rhizosphere geochemistry of phytosiderophores.

    Science.gov (United States)

    Walter, M; Kraemer, S M; Schenkeveld, W D C

    2017-01-01

    Graminaceous plants are grown worldwide as staple crops under a variety of climatic and soil conditions. They release phytosiderophores for Fe acquisition (Strategy II). Aim of the present study was to uncover how the rhizosphere pH, background electrolyte and temperature affect the mobilization of Fe and other metals from soil by phytosiderophores. For this purpose a series of kinetic batch interaction experiments with the phytosiderophore 2'-deoxymugineic acid (DMA), a calcareous clay soil and a mildly acidic sandy soil were performed. The temperature, electrolyte concentration and applied electrolyte cation were varied. The effect of pH was examined by applying two levels of lime and Cu to the acidic soil. Fe mobilization by DMA increased by lime application, and was negatively affected by Cu amendment. Mobilization of Fe and other metals decreased with increasing ionic strength, and was lower for divalent than for monovalent electrolyte cations at equal ionic strength, due to higher adsorption of metal-DMA complexes to the soil. Metal mobilization rates increased with increasing temperature leading to a faster onset of competition; Fe was mobilized faster, but also became depleted faster at higher temperature. Temperature also affected biodegradation rates of metal-DMA complexes. Rhizosphere pH, electrolyte type and concentration and temperature can have a pronounced effect on Strategy II Fe acquisition by affecting the time and concentration 'window of Fe uptake' in which plants can benefit from phytosiderophore-mediated Fe uptake.

  14. Phosphate Solubilization Potential of Rhizosphere Fungi Isolated from Plants in Jimma Zone, Southwest Ethiopia

    Directory of Open Access Journals (Sweden)

    Firew Elias

    2016-01-01

    Full Text Available Phosphorus (P is one of the major bioelements limiting agricultural production. Phosphate solubilizing fungi play a noteworthy role in increasing the bioavailability of soil phosphates for plants. The present study was aimed at isolating and characterizing phosphate solubilizing fungi from different rhizospheres using both solid and liquid Pikovskaya (PVK medium. A total of 359 fungal isolates were obtained from 150 rhizosphere soil samples of haricot bean, faba bean, cabbage, tomato, and sugarcane. Among the isolates, 167 (46.52% solubilized inorganic phosphate. The isolated phosphate solubilizing fungi belonged to genera of Aspergillus (55.69%, Penicillium spp. (23.35%, and Fusarium (9.58%. Solubilization index (SI ranged from 1.10 to 3.05. Isolates designated as JUHbF95 (Aspergillus sp. and JUFbF59 (Penicillium sp. solubilized maximum amount of P 728.77 μg·mL−1 and 514.44 μg mL−1, respectively, from TCP (tricalcium phosphate after 15 days of incubation. The highest (363 μg mL−1 soluble-P was released from RP with the inoculation of JUHbF95 in the PVK broth after 10 days of incubation. The present study indicated the presence of diverse plant associated P-solubilizing fungi that may serve as potential biofertilizers.

  15. Professional competence of practising nurses.

    Science.gov (United States)

    Numminen, Olivia; Meretoja, Riitta; Isoaho, Hannu; Leino-Kilpi, Helena

    2013-05-01

    To compare nurse competence in terms of its quality and frequency of action in medical, surgical, paediatric/obstetric/gynaecological and psychiatric clinical fields. One challenge of current health care is to target practising nurses' competencies to optimal use. Therefore, a systematic assessment of nurse competence is justified. Studies using the Nurse Competence Scale have found that nurses' competence is on a good or very good level and it increases with age and work experience. A cross-sectional comparative survey using the Nurse Competence Scale. A purposive sample of 2083 nurses in a major University Hospital in Finland participated in this study in 2007-2008. Descriptive statistics and inferential statistics' anova with Bonferroni correction, and Pearson/Spearman correlation coefficients were used to analyse the data. The overall level of competence of nurses was good, and the quality of action correlated positively with the frequency of action. Nurses in the psychiatric field reached somewhat higher overall mean scores than nurses in other clinical fields. On item level, nurses seemed to be the most competent in actions related to immediate individualised patient care, the maintenance of their own professional competence and commitment to nursing ethics. Age and particularly work experience were positively correlated with the competence. Findings from this large data corroborate previous study results on the category level assessment of nurse competence using the Nurse Competence Scale indicating a good level of competence. On item level, findings revealed more detailed themes of nurse competence, which complements earlier knowledge retrieved from the category level analysis and could be used to target nurses' competencies to even more optimal use. Competence assessment and targeted interventions are recommended as tools for the management for planning nurses' career development and continuing education to ensure competent and motivated work force and

  16. Enhanced phytoextraction of germanium and rare earth elements - a rhizosphere-based approach

    Science.gov (United States)

    Wiche, Oliver

    2016-04-01

    Germanium (Ge) and rare earth elements (REEs) are economically valuable raw materials that have become an integral part of our modern high tech society. While most of these elements are not actually rare in terms of general amounts in the earth's crust, they are rarely found in sufficient abundances in single locations for their mining to be economically viable. The average concentration of Ge in soils is estimated at 1.6 μg g-1. The REEs comprise a group of 16 elements including La, the group of lanthanides and Y that are abundant in the earth crust with concentrations varying from 35 μg g-1 (La), 40 μg g-1 (Nd), 6 μg g-1 (Gd) and 3.5 μg g-1 (Er) to 0.5 μg g-1 in Tm. Thus, a promising chance to improve supply of these elements could be phytomining. Unfortunately, bioavailability of Ge and REEs in soils appears to be low, in particular in neutral or alkaline soils. A sequential dissolution analysis of 120 soil samples taken from the A-horizons of soils in the area of Freiberg (Saxony, Germany) revealed that only 0.2% of total Ge and about 0.5% of La, Nd, Gd and Er of bulk concentrations were easily accessible by leaching with NH4-acetate (pH 7). Most of the investigated elements were bound to Fe-/Mn-oxides and silicates and were therefore only poorly available for plant uptake. Here we report an environmentally friendly approach for enhanced phytoextraction of Ge and REEs from soils using mixed cultures of plant species with efficient mechanisms for the acquisition of nutrients in the rhizosphere. The rhizosphere is characterized as the zone in soil sourrounding a plant root that consists of a gradient in chemical, physical and biological soil properties driven by rhizodeposits like carboxylates and protons. Some species like white lupin (Lupinus albus) are able to excrete large amounts of organic acid anions(predominantly citrate and malate) and show a particularly high potential for the acidification of the rhizosphere. In our experiments, mixed cultures

  17. Distribution of root exudates and mucilage in the rhizosphere: combining 14C imaging with neutron radiography

    Science.gov (United States)

    Holz, Maire; Carminati, Andrea; Kuzyakov, Yakov

    2015-04-01

    Water and nutrients will be the major factors limiting food production in future. Plant roots employ various mechanisms to increase the access to limited soil resources. Low molecular weight organic substances released by roots into the rhizosphere increase nutrient availability by interactions with microorganisms, while mucilage improves water availability under low moisture conditions. Though composition and quality of these substances have intensively been investigated, studies on the spatial distribution and quantification of exudates in soil are scarce. Our aim was to quantify and visualize root exudates and mucilage distribution around growing roots using neutron radiography and 14C imaging depending on drought stress. Plants were grown in rhizotrons well suited for neutron radiography and 14C imaging. Plants were exposed to various soil water contents experiencing different levels of drought stress. The water content in the rhizosphere was imaged during several drying/wetting cycles by neutron radiography. The radiographs taken a few hours after irrigation showed a wet region around the root tips showing the allocation and distribution of mucilage. The increased water content in the rhizosphere of the young root segments was related to mucilage concentrations by parameterization described in Kroener et al. (2014). In parallel 14C imaging of root after 14CO2 labeling of shoots (Pausch and Kuzyakov 2011) showed distribution of rhizodeposits including mucilage. Three days after setting the water content, plants were labeled in 14CO2 atmosphere. Two days later 14C distribution in soil was imaged by placing a phosphor-imaging plate on the rhizobox. To quantify rhizodeposition, 14C activity on the image was related to the absolute 14C activity in the soil and root after destructive sampling. By comparing the amounts of mucilage (neutron radiography) with the amount of total root derived C (14C imaging), we were able to differentiate between mucilage and root

  18. Carbon transfer from plant roots to soil - NanoSIMS analyses of undisturbed rhizosphere samples

    Science.gov (United States)

    Vidal, Alix; Hirte, Juliane; Bender, S. Franz; Mayer, Jochen; Gattinger, Andreas; Mueller, Carsten W.

    2017-04-01

    Soils are composed of a wide diversity of organic and mineral compounds, interacting to form complex mosaics of microenvironments. Roots and microorganisms are both key sources of organic carbon (OC). The volume of soil around living roots, i.e. the rhizosphere, is a privileged area for soil microbial activity and diversity. The microscopic observation of embedded soil sections has been applied since the 1950´s and has enabled observation of the rhizosphere at the smallest scale of organism interaction, i.e. at the level of root cells and bacteria (Alexander and Jackson, 1954). However, the observation of microorganisms in their intact environment, especially in soil, remains challenging. Existing microscopic images do not provide clear evidence of the chemical composition of compounds observed in the rhizosphere. Nano-scale secondary ion mass spectrometry (NanoSIMS) is a high spatial resolution method providing elemental and isotopic maps of organic and mineral materials. This technic has been increasingly used in soil science during the last decade (Hermann et al., 2007; Vogel et al., 2014) and more specifically for undisturbed soil sample observations (Vidal et al., 2016). In the present study, NanoSIMS was used to illustrate the biological, physical and chemical processes occurring in the rhizosphere at the microscale. To meet this objective, undisturbed rhizosphere samples were collected from a field experiment in Switzerland where wheat plants were pulse-labelled with 99% 13C-CO2 in weekly intervals throughout the growing season and sampled at flowering. Samples were embedded, sectioned, polished and analyzed with NanoSIMS, obtaining secondary ion images of 12C, 13C, 12C14N, 16O, 31P16O2, and 32S. The δ13C maps were obtained thanks to 12C and 13C images. 13C labelled root cells were clearly distinguished on images and presented highly variable δ13C values. Labelled spots (soil particles, forming microaggregates tightly bound to root cells. Finally, some

  19. The Interrelations between Competences for Sustainable Development and Research Competences

    Science.gov (United States)

    Lambrechts, Wim; Van Petegem, Peter

    2016-01-01

    Purpose: The purpose of this paper is to explore how competences for sustainable development and research interrelate within a context of competence-based higher education. Specific focus is oriented towards strengthening research competences for sustainability. Design/methodology/approach: Following a hermeneutic-interpretive methodology, this…

  20. Influence of soil type, cultivar and Verticillium dahliae on the structure of the root and rhizosphere soil fungal microbiome of strawberry.

    Science.gov (United States)

    Nallanchakravarthula, Srivathsa; Mahmood, Shahid; Alström, Sadhna; Finlay, Roger D

    2014-01-01

    Sustainable management of crop productivity and health necessitates improved understanding of the ways in which rhizosphere microbial populations interact with each other, with plant roots and their abiotic environment. In this study we examined the effects of different soils and cultivars, and the presence of a soil-borne fungal pathogen, Verticillium dahliae, on the fungal microbiome of the rhizosphere soil and roots of strawberry plants, using high-throughput pyrosequencing. Fungal communities of the roots of two cultivars, Honeoye and Florence, were statistically distinct from those in the rhizosphere soil of the same plants, with little overlap. Roots of plants growing in two contrasting field soils had high relative abundance of Leptodontidium sp. C2 BESC 319 g whereas rhizosphere soil was characterised by high relative abundance of Trichosporon dulcitum or Cryptococcus terreus, depending upon the soil type. Differences between different cultivars were not as clear. Inoculation with the pathogen V. dahliae had a significant influence on community structure, generally decreasing the number of rhizosphere soil- and root-inhabiting fungi. Leptodontidium sp. C2 BESC 319 g was the dominant fungus responding positively to inoculation with V. dahliae. The results suggest that 1) plant roots select microorganisms from the wider rhizosphere pool, 2) that both rhizosphere soil and root inhabiting fungal communities are influenced by V. dahliae and 3) that soil type has a stronger influence on both of these communities than cultivar.

  1. Elevated CO2benefits the soil microenvironment in the rhizosphere of Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils.

    Science.gov (United States)

    Huang, Shuping; Jia, Xia; Zhao, Yonghua; Bai, Bo; Chang, Yafei

    2017-02-01

    Soil contamination by heavy metals in combination with elevated atmospheric CO 2 has important effects on the rhizosphere microenvironment by influencing plant growth. Here, we investigated the response of the R. pseudoacacia rhizosphere microenvironment to elevated CO 2 in combination with cadmium (Cd)- and lead (Pb)-contamination. Organic compounds (total soluble sugars, soluble phenolic acids, free amino acids, and organic acids), microbial abundance and activity, and enzyme activity (urease, dehydrogenase, invertase, and β-glucosidase) in rhizosphere soils increased significantly (p soil microbial community in the rhizosphere. Heavy metals alone resulted in an increase in total soluble sugars, free amino acids, and organic acids, a decrease in phenolic acids, microbial populations and biomass, and enzyme activity, and a change in microbial community in rhizosphere soils. Elevated CO 2 led to an increase in organic compounds, microbial populations, biomass, and activity, and enzyme activity (except for l-asparaginase), and changes in microbial community under Cd, Pb, or Cd + Pb treatments relative to ambient CO 2 . In addition, elevated CO 2 significantly (p soils. Overall, elevated CO 2 benefited the rhizosphere microenvironment of R. pseudoacacia seedlings under heavy metal stress, which suggests that increased atmospheric CO 2 concentrations could have positive effects on soil fertility and rhizosphere microenvironment under heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Rhizospheric effects on the microbial community of e-waste-contaminated soils using phospholipid fatty acid and isoprenoid glycerol dialkyl glycerol tetraether analyses.

    Science.gov (United States)

    Song, Mengke; Cheng, Zhineng; Luo, Chunling; Jiang, Longfei; Zhang, Dayi; Yin, Hua; Zhang, Gan

    2018-01-26

    We performed the study of rhizospheric effects on soil microbial community structure, including bacteria, fungi, actinomycete, and archaea, at an electronic waste (e-waste) recycling site by analyzing the phospholipid fatty acid (PLFA) and isoprenoid glycerol dialkyl glycerol tetraether (GDGT) contents. By comparing PLFA and isoprenoid GDGT profiles of rhizospheric and surrounding bulk soils of 11 crop species, we observed distinct microbial community structures. The total PLFA concentration was significantly higher in rhizospheric soils than in non-rhizospheric soils, whereas no obvious difference was found in the total isoprenoid GDGT concentrations. The microbial community structure was also different, with higher ratios of fungal-to-bacterial PLFAs (F/B) and lower relative abundance of Gram-positive bacteria in rhizospheric soils. The extent of rhizospheric effects varied among plant species, and Colocasia esculenta L. had the greatest positive effects on the total microbial biomass. Dissolved organic carbon and pH were the main environmental factors affecting the microbial community represented by PLFAs, while the archaeal community was influenced by copper and zinc in all soils. These results offer a comprehensive view of rhizospheric effects on microbes in heavy metal and persistent organic pollutant co-contaminated soil, and provide fundamental knowledge regarding microbial ecology in e-waste-contaminated soils.

  3. Experts views' on Digital Competence

    NARCIS (Netherlands)

    Janssen, José; Stoyanov, Slavi

    2013-01-01

    Janssen, J., & Stoyanov, S. (2012, 20 November). Online Consultation for a Digital Competence Framework: Experts' views on Digital Competence. Workshop presentation at the Institute for Prospective Technological Studies, Seville, Spain.

  4. Competency Mapping of the Employees

    Science.gov (United States)

    Anisha, N.

    2012-10-01

    Human resource management is a process of bringing people and organizations together so that the goals of each other are met. Nowadays it is not possible to show a good financial or operating report unless your personnel relations are in order. Over the years, highly skilled and knowledge based jobs are increasing while low skilled jobs are decreasing. Competency Mapping is a process of identifying key competencies for an organization, the jobs and functions within it. Competency mapping, the buzz word in any industry is not complicated as it may appear. At the heart of any successful activity lies a competence or skill. In the recent years, various thought leaders in business strategy have emphasized the need to identify what competencies a business needs, in order to compete in a specific environment. In this article explains the why competencies needed and how is measured competency of employees in the organization.

  5. Characterization of copper-resistant rhizosphere bacteria from Avena sativa and Plantago lanceolata for copper bioreduction and biosorption.

    Science.gov (United States)

    Andreazza, Robson; Okeke, Benedict C; Pieniz, Simone; Camargo, Flávio A O

    2012-04-01

    Copper is a toxic heavy metal widely used to microbial control especially in agriculture. Consequently, high concentrations of copper residues remain in soils selecting copper-resistant organisms. In vineyards, copper is routinely used for fungi control. This work was undertaken to study copper resistance by rhizosphere microorganisms from two plants (Avena sativa L. and Plantago lanceolata L.) common in vineyard soils. Eleven rhizosphere microorganisms were isolated, and four displayed high resistance to copper. The isolates were identified by 16S rRNA gene sequence analysis as Pseudomonas putida (A1), Stenotrophomonas maltophilia (A2) and Acinetobacter sp. (A6), isolated from Avena sativa rhizosphere, and Acinetobacter sp. (T5), isolated from Plantago lanceolata rhizosphere. The isolates displayed high copper resistance in the temperature range from 25°C to 35°C and pH in the range from 5.0 to 9.0. Pseudomonas putida A1 resisted as much as 1,000 mg L(-1) of copper. The isolates showed similar behavior on copper removal from liquid medium, with a bioremoval rate of 30% at 500 mg L(-1) after 24 h of growth. Speciation of copper revealed high copper biotransformation, reducing Cu(II) to Cu(I), capacity. Results indicate that our isolates are potential agents for copper bioremoval and bacterial stimulation of copper biosorption by Avena sativa and Plantago lanceolata.

  6. [Correlation Analysis Between Physicochemical Properties of Rhizosphere Soil and Appearance Characters of Codonopsis pilosula Root in Jiuzhaigou County].

    Science.gov (United States)

    Liao, Er-hua; Du, Gang; Zou, Yuan-feng; Chen, Xing-fu; Zhang, Jing-bo

    2015-08-01

    To study the physicochemical properties of rhizosphere soil and their influence on appearance characters of semi-natural cultivated Codonopsis pilosula root. The comprehensive methods by combining outdoor investigating with indoor analyzing were applied. Rhizosphere soil samples and plant materials were collected from 35 collection points, the physicochemical properties of soil and the appearance characters of plant materials were investigated. The physical property of rhizosphere soil under semi-natural cultivated condition was good, the soil texture was coarse powder of loam, slightly alkaline. The cultivated layer contained abundant nutrient components, the average organic matter content of 35 soil samples was 60.66 g/kg,and 2.99 g/kg for total nitrogen, 115.46 mg/g for available nitrogen, 0.8 g/kg for total phosphorus, 6.43 mg/kg for available phosphorus, 23.69 g/kg for total potassium and 124.48 mg/kg for available potassium, respectively. The result of correlation analysis indicated that the physicochemical properties of rhizosphere soil had significant influence on the appearance characters of Codonopsis pilosula root. The semi-natural cultivated model can maintain the structure of soil and hold nutrient components, it is conducive to the growth of Codonopsis pilosula and the standardized production base establishment. To increase the yield of Codonopsis pilosula root, it is recommended to increase the application of nitrogen and phosphorus fertilizer.

  7. Soil nitrogen availability and plant genotype modify the nutrition strategies of M. truncatula and the associated rhizosphere microbial communities.

    Directory of Open Access Journals (Sweden)

    Anouk Zancarini

    Full Text Available Plant and soil types are usually considered as the two main drivers of the rhizosphere microbial communities. The aim of this work was to study the effect of both N availability and plant genotype on the plant associated rhizosphere microbial communities, in relation to the nutritional strategies of the plant-microbe interactions, for six contrasted Medicago truncatula genotypes. The plants were provided with two different nutrient solutions varying in their nitrate concentrations (0 mM and 10 mM. First, the influence of both nitrogen availability and Medicago truncatula genotype on the genetic structure of the soil bacterial and fungal communities was determined by DNA fingerprint using Automated Ribosomal Intergenic Spacer Analysis (ARISA. Secondly, the different nutritional strategies of the plant-microbe interactions were evaluated using an ecophysiological framework. We observed that nitrogen availability affected rhizosphere bacterial communities only in presence of the plant. Furthermore, we showed that the influence of nitrogen availability on rhizosphere bacterial communities was dependent on the different genotypes of Medicago truncatula. Finally, the nutritional strategies of the plant varied greatly in response to a modification of nitrogen availability. A new conceptual framework was thus developed to study plant-microbe interactions. This framework led to the identification of three contrasted structural and functional adaptive responses of plant-microbe interactions to nitrogen availability.

  8. Temporal dynamics of microbial communities in the rhizosphere of two genetically modified (GM) maize hybrids in tropical agrosystems

    NARCIS (Netherlands)

    Cotta, Simone Raposo; Franco Dias, Armando Cavalcante; Marriel, Ivanildo Evodio; Gomes, Eliane Aparecida; van Elsas, Jan Dirk; Seldin, Lucy

    The use of genetically modified (GM) plants still raises concerns about their environmental impact. The present study aimed to evaluate the possible effects of GM maize, in comparison to the parental line, on the structure and abundance of microbial communities in the rhizosphere. Moreover, the

  9. Effect of Genetically Modified Pseudomonas putida WCS358r on the Fungal Rhizosphere Microflora of Field-Grown Wheat

    NARCIS (Netherlands)

    Glandorf, D.C.M.; Verheggen, Patrick; Jansen, Timo; Jorritsma, J.-W.; Smit, Eric; Leeflang, Paula; Wernars, Karel; Thomashow, L.S.; Laureijs, Eric; Thomas-Oates, J.E.; Bakker, P.A.H.M.; Loon, L.C. van

    2001-01-01

    We released genetically modified Pseudomonas putida WCS358r into the rhizospheres of wheat plants. The two genetically modified derivatives, genetically modified microorganism (GMM) 2 and GMM 8, carried the phz biosynthetic gene locus of strain P. fluorescens 2-79 and constitutively produced the

  10. Pseudomonas community structure and antagonistic potential in the rhizosphere : insights gained by combining phylogenetic and functional gene-based analyses

    NARCIS (Netherlands)

    Costa, Rodrigo; Gomes, Newton C. M.; Kroegerrecklenfort, Ellen; Opelt, Katja; Berg, Gabriele; Smalla, Kornelia

    The Pseudomonas community structure and antagonistic potential in the rhizospheres of strawberry and oilseed rape (host plants of the fungal phytopathogen Verticillium dahliae) were assessed. The use of a new PCR-DGGE system, designed to target Pseudomonas-specific gacA gene fragments in

  11. Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression

    NARCIS (Netherlands)

    Voort, van der M.; Kempenaar, Marcel; Driel, van Marc; Raaijmakers, Jos M.; Mendes, Rodrigo

    2016-01-01

    The rhizosphere microbiome offers a range of ecosystem services to the plant, including nutrient acquisition and tolerance to (a)biotic stress. Here, analysing the data by Mendes et al. (2011), we show that short heat disturbances (50 or 80 °C, 1 h) of a soil suppressive to the root pathogenic

  12. Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression

    NARCIS (Netherlands)

    van der Voort, M.; Kempenaar, M.; van Driel, M.; Raaijmakers, J.M.; Mendes, R.

    2016-01-01

    The rhizosphere microbiome offers a range of ecosystem services to the plant, including nutrient acquisition and tolerance to (a)biotic stress. Here, analysing the data by Mendes et al. (2011), we show that short heat disturbances (50 or 80 °C, 1 h) of a soil suppressive to the root pathogenic

  13. Effects of Selected Rhizosphere Microorganisms and Carbon on Soybean Cyst Nematode Population Density and Reproduction in Different Tillage Regimes

    Science.gov (United States)

    Soybean cyst nematode (SCN) population density can be influenced by tillage practices. Data were collected over two growing seasons on total and active bacteria, total and active fungi, and protozoans (amobae, flagellates, ciliates) in the soybean rhizosphere to determine whether the levels of these...

  14. Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity

    NARCIS (Netherlands)

    Perneel, M.; Heyrman, J.; Adiobo, A.; Maeyer, de K.; Raaijmakers, J.M.; Vos, de P.; Höfte, M.

    2007-01-01

    Aim: To screen for novel antagonistic Pseudomonas strains producing both phenazines and biosurfactants that are as effective as Pseudomonas aeruginosa PNA1 in the biocontrol of cocoyam root rot caused by Pythium myriotylum. Material and Results: Forty pseudomonads were isolated from the rhizosphere

  15. Impact of Faba Bean-Seed Rhizobial Inoculation on Microbial Activity in the Rhizosphere Soil during Growing Season.

    Science.gov (United States)

    Siczek, Anna; Lipiec, Jerzy

    2016-05-20

    Inoculation of legume seeds with Rhizobium affects soil microbial community and processes, especially in the rhizosphere. This study aimed at assessing the effect of Rhizobium inoculation on microbial activity in the faba bean rhizosphere during the growing season in a field experiment on a Haplic Luvisol derived from loess. Faba bean (Vicia faba L.) seeds were non-inoculated (NI) or inoculated (I) with Rhizobium leguminosarum bv. viciae and sown. The rhizosphere soil was analyzed for the enzymatic activities of dehydrogenases, urease, protease and acid phosphomonoesterase, and functional diversity (catabolic potential) using the Average Well Color Development, Shannon-Weaver, and Richness indices following the community level physiological profiling from Biolog EcoPlate™. The analyses were done on three occasions corresponding to the growth stages of: 5-6 leaf, flowering, and pod formation. The enzymatic activities were higher in I than NI (p < 0.05) throughout the growing season. However, none of the functional diversity indices differed significantly under both treatments, regardless of the growth stage. This work showed that the functional diversity of the microbial communities was a less sensitive tool than enzyme activities in assessment of rhizobial inoculation effects on rhizosphere microbial activity.

  16. Characterization of Bacillus isolates of potato rhizosphere from andean soils of Peru and their potential PGPR characteristics

    Directory of Open Access Journals (Sweden)

    Pamela Calvo

    2010-12-01

    Full Text Available Bacillus spp. are well known rhizosphere residents of many crops and usually show plant growth promoting (PGP activities that include biocontrol capacity against some phytopatogenic fungi. Potato crops in the Andean Highlands of Peru face many nutritional and phytophatogenic problems that have a significant impact on production. In this context is important to investigate the natural presence of these microorganisms in the potato rhizosphere and propose a selective screening to find promising PGP strains. In this study, sixty three Bacillus strains isolated from the rhizosphere of native potato varieties growing in the Andean highlands of Peru were screened for in vitro antagonism against Rhizoctonia solani and Fusarium solani. A high prevalence (68% of antagonists against R. solani was found. Ninety one percent of those strains also inhibited the growth of F. solani. The antagonistic strains were also tested for other plant growth promotion activities. Eighty one percent produced some level of the auxin indole-3-acetic acid, and 58% solubilized tricalcium phosphate. Phylogenetic analysis revealed that the majority of the strains belonged to the B. amyloliquefaciens species, while strains Bac17M11, Bac20M1 and Bac20M2 may correspond to a putative new Bacillus species. The results suggested that the rhizosphere of native potatoes growing in their natural habitat in the Andes is a rich source of Bacillus fungal antagonists, which have a potential to be used in the future as PGP inoculants to improve potato crop.

  17. Linking fungal communities in roots, rhizosphere, and soil to the health status of Pisum sativum

    DEFF Research Database (Denmark)

    Xu, Lihui; Ravnskov, Sabine; Larsen, John

    2012-01-01

    Changes in fungal communities associated with healthy and diseased pea roots were investigated using deep amplicon pyrosequencing in three spatial compartments: roots, rhizosphere, and surrounding soil. Thirty root systems were collected from three fields, half of which showing clear symptoms of ...

  18. The multiple personalities of Streptomyces spp. from the rhizosphere of apple cultivated in brassica seed meal ameded soils

    Science.gov (United States)

    Brassicaceae seed meal soil amendments proved control of Rhizoctonia root rot, in part, through the proliferation of indigenous rhizosphere colonizing Streptomyces spp. Studies were conducted to assess the relative role of antibiosis and nitric oxide (NO) production in the capacity of Streptomyces ...

  19. The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions.

    Science.gov (United States)

    Hassan, Samira; Mathesius, Ulrike

    2012-05-01

    The flavonoid pathway produces a diverse array of plant compounds with functions in UV protection, as antioxidants, pigments, auxin transport regulators, defence compounds against pathogens and during signalling in symbiosis. This review highlights some of the known function of flavonoids in the rhizosphere, in particular for the interaction of roots with microorganisms. Depending on their structure, flavonoids have been shown to stimulate or inhibit rhizobial nod gene expression, cause chemoattraction of rhizobia towards the root, inhibit root pathogens, stimulate mycorrhizal spore germination and hyphal branching, mediate allelopathic interactions between plants, affect quorum sensing, and chelate soil nutrients. Therefore, the manipulation of the flavonoid pathway to synthesize specifically certain products has been suggested as an avenue to improve root-rhizosphere interactions. Possible strategies to alter flavonoid exudation to the rhizosphere are discussed. Possible challenges in that endeavour include limited knowledge of the mechanisms that regulate flavonoid transport and exudation, unforeseen effects of altering parts of the flavonoid synthesis pathway on fluxes elsewhere in the pathway, spatial heterogeneity of flavonoid exudation along the root, as well as alteration of flavonoid products by microorganisms in the soil. In addition, the overlapping functions of many flavonoids as stimulators of functions in one organism and inhibitors of another suggests caution in attempts to manipulate flavonoid rhizosphere signals.

  20. Ecotoxicological assessment of pesticides and their combination on rhizospheric microbial community structure and function of Vigna radiata.

    Science.gov (United States)

    Walvekar, Varsha Ashok; Bajaj, Swati; Singh, Dileep K; Sharma, Shilpi

    2017-07-01

    India is one of the leading countries in production and indiscriminate consumption of pesticides. Owing to their xenobiotic nature, pesticides affect soil microorganisms that serve as mediators in plant growth promotion. Our study aimed to deliver a comprehensive picture, by comparing the effects of synthetic pesticides (chlorpyriphos, cypermethrin, and a combination of both) with a biopesticide (azadirachtin) at their recommended field application level (L), and three times the recommended dosage (H) on structure and function of microbial community in rhizosphere of Vigna radiata. Effect on culturable fraction was assessed by enumeration on selective media, while PCR-denaturing gradient gel electrophoresis (DGGE) was employed to capture total bacterial community diversity. This was followed by a metabolic sketch using community-level physiological profiling (CLPP), to obtain a broader picture of the non-target effects on rhizospheric microbial community. Although plant parameters were not significantly affected by pesticide application, the microbial community structure experienced an undesirable impact as compared to control devoid of pesticide treatment. Examination of DGGE banding patterns through cluster analysis revealed that microbial community structure of pesticide-treated soils had only 70% resemblance to control rhizospheric soil even at 45 days post application. Drastic changes in the metabolic profiles of pesticide-treated soils were also detected in terms of substrate utilization, rhizospheric diversity, and evenness. It is noteworthy that the effects exacerbated by biopesticide were comparable to that of synthetic pesticides, thus emphasizing the significance of ecotoxicological assessments before tagging biopesticides as "safe alternatives."

  1. Rhizosphere bacterial community composition responds to arbuscular mycorrhiza, but not to reductions in microbial activity induced by foliar cutting

    DEFF Research Database (Denmark)

    Madsen, Mette Vestergård; Henry, Frédéric; Rangel-Castro, J. Ignacio

    2008-01-01

    and BCC are lacking. Other soil microorganisms, e.g. arbuscular mycorrhizal fungi (AMF), may also influence BCC. We simulated foliar herbivory (cutting) to reduce belowground carbon allocation and rhizodeposition of pea plants grown either with or without AMF. This reduced soil respiration, rhizosphere...

  2. The rhizosphere and PAH amendment mediate impacts on functional and structural bacterial diversity in sandy peat soil

    Energy Technology Data Exchange (ETDEWEB)

    Yrjaelae, Kim, E-mail: kim.yrjala@helsinki.f [Department of Biological and Environmental Sciences, General Microbiology, University of Helsinki, P.O. Box 56, (Biocenter 1C), 00014 Helsinki (Finland); Keskinen, Anna-Kaisa; Akerman, Marja-Leena; Fortelius, Carola [METROPOLIA University of Applied Science, Vantaa (Finland); Sipilae, Timo P. [Department of Biological and Environmental Sciences, General Microbiology, University of Helsinki, P.O. Box 56, (Biocenter 1C), 00014 Helsinki (Finland)

    2010-05-15

    To reveal the degradation capacity of bacteria in PAH polluted soil and rhizosphere we combined bacterial extradiol ring-cleavage dioxygenase and 16S rRNA analysis in Betula pubescens rhizoremediation. Characterisation of the functional bacterial community by RFLP revealed novel environmental dioxygenases, and their putative hosts were studied by 16S rRNA amplification. Plant rhizosphere and PAH amendment effects were detected by the RFLP/T-RFLP analysis. Functional species richness increased in the birch rhizosphere and PAH amendment impacted the compositional diversity of the dioxygenases and the structural 16S rRNA community. A shift from an Acidobacteria and Verrucomicrobia dominated to an Alpha- and Betaproteobacteria dominated community structure was detected in polluted soil. Clone sequence analysis indicated catabolic significance of Burkholderia in PAH polluted soil. These results advance our understanding of rhizoremediation and unveil the extent of uncharacterized functional bacteria to benefit bioremediation by facilitating the development of the molecular tool box to monitor bacterial populations in biodegradation. - The bacterial community analysis using 16S rRNA and extradiol dioxygenase marker genes in rhizoremediation revealed both a rhizosphere and a PAH-pollution effect.

  3. Plant rhizosphere influence on microbial C metabolism: the role of elevated CO2, N availability and root stoichiometry

    Science.gov (United States)

    Microbial decomposer C metabolism is considered a factor controlling soil C stability, a key regulator of global climate. The plant rhizosphere is now recognized as a crucial driver of soil C dynamics but specific mechanisms are unclear. Climate change could affect microbial C metabolism via impacts...

  4. Cultivation of hitherto-uncultured bacteria belonging to the Verrucomicrobia subdivision 1 from the potato (Solanum tuberosum L.) rhizosphere

    NARCIS (Netherlands)

    da Rocha, Ulisses Nunes; Andreote, Fernando Dini; de Azevedo, Joao Lucio; van Elsas, Jan Dirk; van Overbeek, Leo S.; Andreoti, F.D.

    The role of dominant bacterial groups in the plant rhizosphere, e.g., those belonging to the phyla Acidobacteria and Verrucomicrobia, has, so far, not been elucidated, and this is mainly due to the lack of culturable representatives. This study aimed to isolate hitherto-uncultured bacteria from the

  5. Cultivation of hitherto-uncultured bacteria belonging to the Verrucomicrobia subdivision 1 from the potato (Solanum tuberosum L.) rhizosphere

    NARCIS (Netherlands)

    Rocha, da U.N.; Andreote, F.D.; Azevedo, J.L.; Elsas, van J.D.; Overbeek, van L.S.

    2010-01-01

    The role of dominant bacterial groups in the plant rhizosphere, e.g., those belonging to the phyla Acidobacteria and Verrucomicrobia, has, so far, not been elucidated, and this is mainly due to the lack of culturable representatives. This study aimed to isolate hitherto-uncultured bacteria from the

  6. Bacteria utilizing plant-derived carbon in the rhizosphere of Triticum aestivum change in different depths of an arable soil.

    Science.gov (United States)

    Uksa, Marie; Buegger, Franz; Gschwendtner, Silvia; Lueders, Tillmann; Kublik, Susanne; Kautz, Timo; Athmann, Miriam; Köpke, Ulrich; Munch, Jean Charles; Schloter, Michael; Fischer, Doreen

    2017-12-01

    Root exudates shape microbial communities at the plant-soil interface. Here we compared bacterial communities that utilize plant-derived carbon in the rhizosphere of wheat in different soil depths, including topsoil, as well as two subsoil layers up to 1 m depth. The experiment was performed in a greenhouse using soil monoliths with intact soil structure taken from an agricultural field. To identify bacteria utilizing plant-derived carbon, 13 C-CO2 labelling of plants was performed for two weeks at the EC50 stage, followed by isopycnic density gradient centrifugation of extracted DNA from the rhizosphere combined with 16S rRNA gene-based amplicon sequencing. Our findings suggest substantially different bacterial key players and interaction mechanisms between plants and bacteria utilizing plant-derived carbon in the rhizosphere of subsoils and topsoil. Among the three soil depths, clear differences were found in 13 C enrichment pattern across abundant operational taxonomic units (OTUs). Whereas, OTUs linked to Proteobacteria were enriched in 13 C mainly in the topsoil, in both subsoil layers OTUs related to Cohnella, Paenibacillus, Flavobacterium showed a clear 13 C signal, indicating an important, so far overseen role of Firmicutes and Bacteriodetes in the subsoil rhizosphere. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Evolution of the Crop Rhizosphere: Impact of Domestication on Root Exudates in Tetraploid Wheat (Triticum turgidum L.

    Directory of Open Access Journals (Sweden)

    Anna Iannucci

    2017-12-01

    Full Text Available Domestication has induced major genetic changes in crop plants to satisfy human needs and as a consequence of adaptation to agroecosystems. This adaptation might have affected root exudate composition, which can influence the interactions in the rhizosphere. Here, using two different soil types (sand, soil, we provide an original example of the impact of domestication and crop evolution on root exudate composition through metabolite profiling of root exudates for a panel of 10 wheat genotypes that correspond to the key steps in domestication of tetraploid wheat (wild emmer, emmer, durum wheat. Our data show that soil type can dramatically affect the composition of root exudates in the rhizosphere. Moreover, the composition of the rhizosphere metabolites is associated with differences among the genotypes of the wheat domestication groups, as seen by the high heritability of some of the metabolites. Overall, we show that domestication and breeding have had major effects on root exudates in the rhizosphere, which suggests the adaptive nature of these changes.

  8. Comparative analysis of bacterial diversity in the rhizosphere of tomato by culture-dependent and -independent approaches.

    Science.gov (United States)

    Lee, Shin Ae; Park, Jiyoung; Chu, Bora; Kim, Jeong Myeong; Joa, Jae-Ho; Sang, Mee Kyung; Song, Jaekyeong; Weon, Hang-Yeon

    2016-12-01

    The microbiome in the rhizosphere-the region surrounding plant roots-plays a key role in plant growth and health, enhancing nutrient availability and protecting plants from biotic and abiotic stresses. To assess bacterial diversity in the tomato rhizosphere, we performed two contrasting approaches: culture-dependent and -independent. In the culture-dependent approach, two culture media (Reasoner's 2A agar and soil extract agar) were supplemented with 12 antibiotics for isolating diverse bacteria from the tomato rhizosphere by inhibiting predominant bacteria. A total of 689 bacterial isolates were clustered into 164 operational taxonomic units (OTUs) at 97% sequence similarity, and these were found to belong to five bacterial phyla (Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria, and Firmicutes). Of these, 122 OTUs were retrieved from the antibiotic-containing media, and 80 OTUs were recovered by one specific antibiotic-containing medium. In the culture-independent approach, we conducted Illumina MiSeq amplicon sequencing of the 16S rRNA gene and obtained 19,215 high-quality sequences, which clustered into 478 OTUs belonging to 16 phyla. Among the total OTUs from the MiSeq dataset, 22% were recovered in the culture collection, whereas 41% of OTUs in the culture collection were not captured by MiSeq sequencing. These results showed that antibiotics were effective in isolating various taxa that were not readily isolated on antibiotic-free media, and that both contrasting approaches provided complementary information to characterize bacterial diversity in the tomato rhizosphere.

  9. [Comparison between transgenic insect-resistant cotton expressing Cry1Ac protein and its parental variety in rhizospheric fungal diversity].

    Science.gov (United States)

    Pan, Jian-Gang; Jiao, Hai-Hua; Bai, Zhi-Hui; Qi, Hong-Yan; Ma, An-Zhou; Zhuang, Guo-qiang; Zhang, Hong-xun

    2014-11-01

    The dynamics of rhizospheric fungal diversity and biomass at different sampling stages associated with two transgenic insectresistant cottons expressing Cry1Ac protein and their control varieties were studied under greenhouse conditions, followed by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative real-time polymerase chain reaction (Q-PCR), in order to evaluate the ecological security of planting transgenic cotton expressing Cry1Ac protein. The results indicated that the fungal superior bands in rhizosphere of transgenic Bt cotton were similar with that of control cotton at four sampling stages, the more obvious difference in the blurred bands among transgenic Bt cotton, JM20 and SHIYUAN321 was detected. The rhizospheric fungal biomass of transgenic Bt cotton SGK321 was significantly lower than that of its parental control cotton at seedling stage, while the slight decrease in fungal biomass of transgenic Bt cotton XP188 was detected at boll forming stage, the ill-defined decrease, even growing tendency in two transgenic Bt cottons was detected at other stages. However, the difference of rhizospheric fungal community compositions and biomass was not only existed between transgenic cotton and its control, but also between SHIYUAN321 and JM20, and the same phenomenon was also detected between transgenic Bt cotton SGK321 and XP188. Hence, Bt protein is not the only incentive resulting in the difference in fungal community composition and diversity, the decrease in biomass between transgenic cotton and untransgenic cotton, different cotton varieties has an effect on them.

  10. Fractal Feature of Particle-Size Distribution in the Rhizospheres and Bulk Soils during Natural Recovery on the Loess Plateau, China

    Science.gov (United States)

    Song, Zilin; Zhang, Chao; Liu, Guobin; Qu, Dong; Xue, Sha

    2015-01-01

    The application of fractal geometry to describe soil structure is an increasingly useful tool for better understanding the performance of soil systems. Only a few studies, however, have focused on the structure of rhizospheric zones, where energy flow and nutrient recycling most frequently occur. We used fractal dimensions to investigate the characteristics of particle-size distribution (PSD) in the rhizospheres and bulk soils of six croplands abandoned for 1, 5, 10, 15, 20, and 30 years on the Loess Plateau of China and evaluated the changes over successional time. The PSDs of the rhizospheres and the fractal dimensions between rhizosphere soil and bulk soils during the natural succession differed significantly due to the influence of plant roots. The rhizospheres had higher sand (0.05–1.00 mm) contents, lower silt (soils during the early and intermediate successional stages (1–15 years). The fractal dimensions of the rhizosphere soil and bulk soil ranged from 2.102 to 2.441 and from 2.214 to 2.459, respectively, during the 30-year restoration. Rhizospheric clay and silt contents and fractal dimension tended to be higher and sand content tended to be lower as abandonment age increased, but the bulk soils had the opposite trend. Linear regression analysis indicated that the fractal dimensions of both the rhizospheres and bulk soils were significantly linearly correlated with clay, sand, organic-carbon, and total-nitrogen contents, with R2 ranging from 0.526 to 0.752 (Psoil and bulk soil. The fractal dimension was a sensitive and useful index for quantifying changes in the properties of the different soil zones. This study will greatly aid the application of the fractal method for describing soil structure and nutrient status and the understanding of the performance of rhizospheric zones during ecological restoration. PMID:26368339

  11. Strategic Competence and Language Teaching.

    Science.gov (United States)

    Rababah, Ghaleb Ahmed

    This paper discusses the notion of communicative competence, particularly strategic competence in English language teaching. Strategic competence refers to the individual's ability to use communication strategies such as paraphrase, circumlocution, literal translation, lexical approximation, and mime to get their message across and to compensate…

  12. Physical Education Teachers' Cultural Competency

    Science.gov (United States)

    Harrison, Louis, Jr.; Carson, Russell L.; Burden, Joe, Jr.

    2010-01-01

    The purpose of this study was to evaluate the common assumption that teachers of color (TOC) are more culturally competent than White teachers by assessing physical education teachers' cultural competency. A secondary purpose was to ascertain the possible differences in cultural competence levels of White teachers in diverse school settings versus…

  13. Guide to Marketing Course Competencies.

    Science.gov (United States)

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum and Resource Center.

    This curriculum guide was developed as a model for schools in Virginia to prepare local programs of studies for the marketing program. In addition to marketing competencies for developing occupational expertise, this curriculum includes foundational competencies important for successful performance in marketing. These baseline competencies address…

  14. Intercultural Competence: Another Challenge

    Directory of Open Access Journals (Sweden)

    Norma Barletta Manjarrés

    2009-04-01

    Full Text Available This paper intends to draw the attention of language teachers and educational authorities to the area of culture teaching in foreign language education at a time when the recently issued Basic Standards of Competencies in Foreign Language have conferred modest attention to this aspect of language education. The paper first describes the notion of Intercultural communicative competence. It then discusses the tensions between this new understanding of the teaching of culture and the prevailing teaching practices, approaches, beliefs and discourses associated with the learning and teaching of culture. Third, it reports on the results of a study which critically analyzed the academic discourses of in-service teachers in Colombia regarding the cultural component of foreign language programs; finally, it proposes ways to start taking new directions.

  15. Competence, governance, and entrepreneurship

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Mahnke, Volker

    This title illustrates modern economics. Because it informs strategic choices, it is relevant to business administration in general, and for strategic management in particular. Two dominant streams may be identified in the literature, namely the "competence" and "governance" perspectives......, what determines their boundaries and internal organization), but would also be helpful for informing strategy issues, such as understanding strategic flexibility, strategic options, and the sources of competitive advantage. This volume brings together prominent voices on competence, governance...... on the firm. While there has been little direct discussion between the main proponents of these perspectives, both claim that they are reaching for a "strategic theory of the firm". Such a theory would not only shed light on the classical questions considered in the theory of the firm (e.g. why firms exist...

  16. WHO NEEDS INTERCULTURAL COMPETENCES?

    Directory of Open Access Journals (Sweden)

    Carmen-Laura ZARZU

    2013-06-01

    Full Text Available The current essay focuses on the need for formal education in the area of intercultural communication and training of intercultural competences. It builds on cultural identity and diversity literature, on the experiment conducted in the Low Countries in introducing a new topic for students from social sciences referring to intercultural communication and on reports and papers of international companies, organizations and agencies. The argument of globalization which should give equal opportunities to each and every world’s citizen adds pressure on managers dealing with multicultural teams. Intercultural competences gain importance in recruiting, while turning cultural diversity in team performance requires skills, knowledge and experience. Managing cultural diversity presupposes that people are aware, recognize, understand and deal with differences. Thus intercultural communication should be studied as a stand-alone topic or imbedded in other subjects in different forms of education or training, so people are prepared for intercultural, social and professional relationships.

  17. Documentation of Improvement Competences

    DEFF Research Database (Denmark)

    Johansen, Jørn; Back, Karsten Kristensen; Korsaa, Morten

    2017-01-01

    This paper demonstrates how a report used in a Master in Project management and Process improvement training at Roskilde University Denmark can be used to evaluate if a student can pass the ECQA SPI Manager exam. It also demonstrates how the structure of the report addresses all necessary compete...... Manager job role, which is based on the SPI Manifesto and the ImprovAbilityTM model (part of ISO/IEC 33014 Guideline for Process Improvement) among other types of knowledge and research....

  18. Competencies: requirements and acquisition

    OpenAIRE

    Kuenn, A.C.; Meng, C.M.; Peters, Z.; Verhagen, A.M.C.

    2013-01-01

    Higher education is given the key task to prepare the highly talented among the young to fulfil highly qualified roles in the labour market. Successful labour market performance of graduates is generally associated with the acquisition of the correct competencies. Education as an individual investment in human capital is a viewpoint dating back to the 17th century and the writings of Sir William Petty (1662), and includes later work by Adam Smith (1776). The idea was formalized and brought in...

  19. Leadership Competences Among Managers

    OpenAIRE

    Anna Baczynska; Pawel Korzynski

    2017-01-01

    Purpose: The aim of this paper is to present the results of a survey conducted among managers (N=38) in the framework of the project “Development of the Bounded Leadership Theory”. The research juxtaposes two types of variables: (1) leadership competencies outlined in Kozminski’s theory (i.e. anticipatory, visionary, value-creating, mobilizing, self-reflection) with (2) three psychological predispositions of leaders, such as intelligence, personality and ability to influence others. The tested ...

  20. Dissociative State and Competence

    Directory of Open Access Journals (Sweden)

    Yu-Ju Lin

    2007-10-01

    Full Text Available This report presents the results of forensic evaluation of the civil competence of a case of alleged dissociative identity disorder (DID and discusses whether such dissociative states substantially jeopardize civil competence. A 40-year-old woman claimed that she had had many personalities since her college days. From the age of 37 to 40, she shopped excessively, which left her with millions of dollars of debt. She ascribed her shopping to a certain identity state, over which she had no control. (In this article, we use the term identity state to replace personality as an objective description of a mental state. She thus raised the petition of civil incompetence. During the forensic evaluation, it was found that the identity states were relatively stable and mutually aware of each other. The switch into another identity state was sometimes under voluntary control. The subject showed consistency and continuity in behavioral patterns across the different identity states, and no matter which identity state she was in, there was no evidence of impairment in her factual knowledge of social situations and her capacity for managing personal affairs. We hence concluded that she was civilly competent despite the claimed DID. Considering that the existence and diagnosis of DID are still under dispute and a diagnosis of DID alone is not sufficient to interdict a person's civil right, important clinical and forensic issues remain to be answered.

  1. Effects of Intercropping with Potato Onion on the Growth of Tomato and Rhizosphere Alkaline Phosphatase Genes Diversity

    Science.gov (United States)

    Wu, Xia; Wu, Fengzhi; Zhou, Xingang; Fu, Xuepeng; Tao, Yue; Xu, Weihui; Pan, Kai; Liu, Shouwei

    2016-01-01

    Background and Aims: In China, excessive fertilization has resulted in phosphorus (P) accumulation in most greenhouse soils. Intercropping can improve the efficiency of nutrient utilization in crop production. In this study, pot experiments were performed to investigate the effects of intercropping with potato onion (Allium cepa L. var. aggregatum G. Don) on tomato (Solanum lycopersicum L.) seedlings growth and P uptake, the diversity of rhizosphere phosphobacteria and alkaline phosphatase (ALP) genes in phosphorus-rich soil. Methods: The experiment included three treatments, namely tomato monoculture (TM), potato onion monoculture (OM), and tomato/potato onion intercropping (TI-tomato intercropping and OI-potato onion intercropping). The growth and P uptake of tomato and potato onion seedlings were evaluated. The dilution plating method was used to determine the population of phosphate-solubilizing bacteria (PSB) and phosphate-mineralizing bacteria (PMB). The genomic DNAs of PSB and PMB in the rhizosphere of tomato and potato onions were extracted and purified, and then, with the primer set of 338f /518r, the PCR amplification of partial bacterial 16S rDNA sequence was performed and sequenced to determine the diversities of PSB and PMB. After extracting the total genomic DNAs from the rhizosphere, the copy numbers and diversities of ALP genes were investigated using real-time PCR and PCR-DGGE, respectively. Results: Intercropping with potato onion promoted the growth and P uptake of tomato seedlings, but inhibited those of potato onion. After 37 days of transplanting, compared to the rhizosphere of TM, the soil pH increased, while the electrolytic conductivity and Olsen P content decreased (p onion promoted the growth and P uptake of tomato in phosphorus-rich soil and affected the community structure and function of phosphobacteria in tomato rhizosphere. Intercropping with potato onion also improved soil quality by lowering levels of soil acidification and

  2. Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: the impact of a rhizobial inoculum.

    Science.gov (United States)

    Xu, Li; Teng, Ying; Li, Zhen-Gao; Norton, Jeanette M; Luo, Yong-Ming

    2010-02-01

    Polychlorinated biphenyls (PCB) are persistent pollutants in soil environments where they continue to present considerable human health risks. Successful strategies to remediate contaminated soils are needed that are effective and of low cost. Bioremediation approaches that include the use of plants and microbial communities to promote degradation of PCB have significant potential but need further assessment under field conditions. The effects of growth of alfalfa (Medicago sativa L.) and inoculation with a symbiotic nitrogen fixing bacterium (Rhizobium meliloti) on the removal of polychlorinated biphenyls (PCB) from rhizosphere soil were evaluated in a field experiment. The initial PCB content of the soil ranged from 414 to 498 microg kg(-)(1). PCB removal for the rhizosphere soil was enhanced in the planted treatments, an average of 36% decrease in PCB levels compared to a 5.4% decrease in the unplanted soil, and further enhanced when plants were inoculated with the symbiotic Rhizobium (an average of 43% decrease) when evaluated at 90 days after planting. Plant biomass production was higher in the inoculated treatment. The total PCB content was increased from 3.30 microg kg(-)(1) to 26.72 microg kg(-)(1) in plant shoots, and from 115.07 microg kg(-)(1) to 142.23 microg kg(-)(1) in roots in the inoculated treatment compared to the planted treatment. Increased colony forming units (cfu) of total heterotrophic bacteria, biphenyl-degrading bacteria and fungi were observed in the rhizosphere of inoculated plants. PCB removal from the rhizosphere soil was not significantly correlated with the direct PCB uptake by the plants in any of the treatments but was significantly correlated with the stimulation of rhizosphere microflora. Changes in the soil microbial community structure in the planted and inoculated treatment were observed by profiling of bacterial ribosomal sequences. Some bacteria, such as Flavobacterium sp., may have contributed to the effective degradation

  3. Comparison of rhizosphere properties as affected by different Bt- and non-Bt-cotton (Gossypium hirsutum L.) genotypes and fertilization.

    Science.gov (United States)

    Ahamd, Maqshoof; Abbasi, Waleed Mumtaz; Jamil, Moazzam; Iqbal, Muhammad; Hussain, Azhar; Akhtar, Muhammad Fakhar-U-Zaman; Nazli, Farheen

    2017-06-01

    Incorporation of genetically modified crops in the cropping system raises the need for studying the effect of these crops on the soil ecosystem. The current study aimed to compare the effect of Bacillus thuringiensis (Bt)- and non-Bt-cotton (Gossypium hirsutum L.) genotypes on rhizosphere properties under fertilized and unfertilized soil conditions. One non-Bt-cotton (IUB 75) and four Bt-cotton varieties (IUB-222, MM-58, IUB-13, FH-142) were sown in a Randomized Complete Block Design (RCBD) in a factorial fashion with three replications under unfertilized (T1) and fertilized (T2 at NPK 310-170-110 kg ha -1 ) soil conditions. The culturable soil bacterial population was recorded at flowering, boll opening, and harvesting stages, while other rhizosphere biological and chemical properties were recorded at harvesting. Results revealed that Bt-cotton genotypes IUB-222 and FH-142 showed significantly higher rhizosphere total nitrogen, NH 4 + -N, available phosphorus, and available potassium. Total organic carbon and microbial biomass carbon was also maximum in the rhizosphere of IUB-222 under fertilized conditions. Similarly, bacterial population (CFU g -1 ) at flowering stage and at harvesting was significantly higher in the rhizosphere of IUB-222 as compared to non-Bt- (IUB-75) and other Bt-cotton genotypes under same growth conditions. It showed that Bt genotypes can help in maintaining soil macronutrients (total nitrogen, available phosphorus, and available potassium) under proper nutrient management. Moreover, Bt-cotton genotypes seem to strengthen certain biological properties of the soil, thus increasing the growth and yield capability, maintaining available nutrients in the soil as compared to non-Bt cotton, while no harmful effects of Bt cotton on soil properties was detected.

  4. Warmer winters increase the rhizosphere carbon flow to mycorrhizal fungi more than to other microorganisms in a temperate grassland.

    Science.gov (United States)

    Birgander, Johanna; Rousk, Johannes; Olsson, Pål Axel

    2017-12-01

    A decisive set of steps in the terrestrial carbon (C) cycle is the fixation of atmospheric C by plants and the subsequent C-transfer to rhizosphere microorganisms. With climate change winters are expected to become milder in temperate ecosystems. Although the rate and pathways of rhizosphere C input to soil could be impacted by milder winters, the responses remain unknown. To address this knowledge-gap, a winter-warming experiment was established in a seminatural temperate grassland to follow the C flow from atmosphere, via the plants, to different groups of soil microorganisms. In situ 13 CO2 pulse labelling was used to track C into signature fatty acids of microorganisms. The winter warming did not result in any changes in biomass of any of the groups of microorganisms. However, the C flow from plants to arbuscular mycorrhizal (AM) fungi, increased substantially by winter warming. Saprotrophic fungi also received large amounts of plant-derived C-indicating a higher importance for the turnover of rhizosphere C than biomass estimates would suggest-still, this C flow was unaffected by winter warming. AM fungi was the only microbial group positively affected by winter warming-the group with the closest connection to plants. Winter warming resulted in higher plant productivity earlier in the season, and this aboveground change likely induced plant nutrient limitation in warmed plots, thus stimulating the plant dependence on, and C allocation to, belowground nutrient acquisition. The preferential C allocation to AM fungi was at the expense of C flow to other microbial groups, which were unaffected by warming. Our findings imply that warmer winters may shift rhizosphere C-fluxes to become more AM fungal-dominated. Surprisingly, the stimulated rhizosphere C flow was matched by increased microbial turnover, leading to no accumulation of soil microbial biomass. © 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  5. Identification and onion pathogenicity of Burkholderia cepacia complex isolates from the onion rhizosphere and onion field soil.

    Science.gov (United States)

    Jacobs, Janette L; Fasi, Anthony C; Ramette, Alban; Smith, James J; Hammerschmidt, Raymond; Sundin, George W

    2008-05-01

    Burkholderia cepacia complex strains are genetically related but phenotypically diverse organisms that are important opportunistic pathogens in patients with cystic fibrosis (CF,) as well as pathogens of onion and banana, colonizers of the rhizospheres of many plant species, and common inhabitants of bulk soil. Genotypic identification and pathogenicity characterization were performed on B. cepacia complex isolates from the rhizosphere of onion and organic soils in Michigan. A total of 3,798 putative B. cepacia complex isolates were recovered on Pseudomonas cepacia azelaic acid tryptamine and trypan blue tetracycline semiselective media during the 2004 growing season from six commercial onion fields located in two counties in Michigan. Putative B. cepacia complex isolates were identified by hybridization to a 16S rRNA gene probe, followed by duplex PCR using primers targeted to the 16S rRNA gene and recA sequences and restriction fragment length polymorphism analysis of the recA sequence. A total of 1,290 isolates, 980 rhizosphere and 310 soil isolates, were assigned to the species B. cepacia (160), B. cenocepacia (480), B. ambifaria (623), and B. pyrrocinia (27). The majority of isolates identified as B. cepacia (85%), B. cenocepacia (90%), and B. ambifaria (76%) were pathogenic in a detached onion bulb scale assay and caused symptoms of water soaking, maceration, and/or necrosis. A phylogenetic analysis of recA sequences from representative B. cepacia complex type and panel strains, along with isolates collected in this study, revealed that the B. cenocepacia isolates associated with onion grouped within the III-B lineage and that some strains were closely related to strain AU1054, which was isolated from a CF patient. This study revealed that multiple B. cepacia complex species colonize the onion rhizosphere and have the potential to cause sour skin rot disease of onion. In addition, the onion rhizosphere is a natural habitat and a potential environmental source

  6. Dementia and legal competency.

    Science.gov (United States)

    Filaković, Pavo; Erić, Anamarija Petek; Mihanović, Mate; Glavina, Trpimir; Molnar, Sven

    2011-06-01

    The legal competency or capability to exercise rights is level of judgment and decision-making ability needed to manage one's own affairs and to sign official documents. With some exceptions, the person entitles this right in age of majority. It is acquired without legal procedures, however the annulment of legal capacity requires a juristic process. This resolution may not be final and could be revoked thorough the procedure of reverting legal capacity - fully or partially. Given the increasing number of persons with dementia, they are often subjects of legal expertise concerning their legal capacity. On the other part, emphasis on the civil rights of mentally ill also demands their maximal protection. Therefore such distinctive issue is approached with particular attention. The approach in determination of legal competency is more focused on gradation of it's particular aspects instead of existing dual concept: legally capable - legally incapable. The main assumption represents how person with dementia is legally capable and should enjoy all the rights, privileges and obligations as other citizens do. The aspects of legal competency for which person with dementia is going to be deprived, due to protection of one's rights and interests, are determined in legal procedure and then passed over to the guardian decided by court. Partial annulment of legal competency is measure applied when there is even one existing aspect of preserved legal capability (pension disposition, salary or pension disposition, ability of concluding contract, making testament, concluding marriage, divorce, choosing whereabouts, independent living, right to vote, right to decide course of treatment ect.). This measure is most often in favour of the patient and rarely for protection of other persons and their interests. Physicians are expected to precisely describe early dementia symptoms which may influence assessment of specific aspects involved in legal capacity (memory loss, impaired task

  7. Physical engineering of rhizosphere by plant exudates varies with species, origin and microbial decomposition

    Science.gov (United States)

    Naveed, Muhammad; Brown, Lawrie; Raffan, Annette; George, Timothy; Bengough, Glyn; Roose, Tiina; Sinclair, Ian; Koebernick, Nicolai; Cooper, Laura; Hallett, Paul

    2017-04-01

    Rhizosphere physical conditions are continually modified by the release of plant root exudates and microbial metabolites. Separate studies have shown that model root exudates influence surface tension, contact angle, water retention and soil stability, but an integrated assessment of these properties for different real root exudates is absent. We hypothesise that influence of root exudates on soil physical properties depends on the physico-chemical characteristics of the exudates itself. The first part of this study examines the physico-chemical characteristics of barley root exudate, maize root exudate, and chia seed exudate. The second part of the study has shown the influence of these root exudates on micromechanics (dispersion and aggregation), water retention, hysteresis and shrinkage-swelling of soils. Highest amount of amino acids and organic acids were observed for barley root exudate followed by maize root and chia seed, respectively. Conversely, the reverse is true for sugars i.e. chia seed exudate > maize root exudate > barley root exudate. We found that barley root exudates have the capacity to weaken soil followed by strengthening after biological decomposition. The initial weakening of soil by barley root exudation may ease root penetration through soil and help in releasing nutrients from soil that were initially not accessible. Maize root exudates and chia seed exudates, on the other hand, strengthen soil from the onset, with biological decomposition decreasing strength that was still significantly higher compared to that of control soil. This strengthening of soil by maize root and chia seed exudation could drive more stable soil structure near roots. Under drying conditions both maize root and chia seed exudates were acted as a gel that retained more water but also enhanced hysteresis during rewetting. On the other hand barely root exudate more acted as a surfactant that decreased soil water retention as well as hysteresis compared to the control

  8. Aerobic Toluene Degraders in the Rhizosphere of a Constructed Wetland Model Show Diurnal Polyhydroxyalkanoate Metabolism.

    Science.gov (United States)

    Lünsmann, Vanessa; Kappelmeyer, Uwe; Taubert, Anja; Nijenhuis, Ivonne; von Bergen, Martin; Heipieper, Hermann J; Müller, Jochen A; Jehmlich, Nico

    2016-07-15

    Constructed wetlands (CWs) are successfully applied for the treatment of waters contaminated with aromatic compounds. In these systems, plants provide oxygen and root exudates to the rhizosphere and thereby stimulate microbial degradation processes. Root exudation of oxygen and organic compounds depends on photosynthetic activity and thus may show day-night fluctuations. While diurnal changes in CW effluent composition have been observed, information on respective fluctuations of bacterial activity are scarce. We investigated microbial processes in a CW model system treating toluene-contaminated water which showed diurnal oscillations of oxygen concentrations using metaproteomics. Quantitative real-time PCR was applied to assess diurnal expression patterns of genes involved in aerobic and anaerobic toluene degradation. We observed stable aerobic toluene turnover by Burkholderiales during the day and night. Polyhydroxyalkanoate synthesis was upregulated in these bacteria during the day, suggesting that they additionally feed on organic root exudates while reutilizing the stored carbon compounds during the night via the glyoxylate cycle. Although mRNA copies encoding the anaerobic enzyme benzylsuccinate synthase (bssA) were relatively abundant and increased slightly at night, the corresponding protein could not be detected in the CW model system. Our study provides insights into diurnal patterns of microbial processes occurring in the rhizosphere of an aquatic ecosystem. Constructed wetlands are a well-established and cost-efficient option for the bioremediation of contaminated waters. While it is commonly accepted knowledge that the function of CWs is determined by the interplay of plants and microorganisms, the detailed molecular processes are considered a black box. Here, we used a well-characterized CW model system treating toluene-contaminated water to investigate the microbial processes influenced by diurnal plant root exudation. Our results indicated stable

  9. Molecular Identification of Microorganisms Associated to the Rhizosphere of Vanilla Plants in Colombia

    Directory of Open Access Journals (Sweden)

    Claudia Lucía Álvarez López

    2013-06-01

    Full Text Available The cultivation of vanilla (Vanilla planifolia is highly promising in Colombia, but more research is needed on its agronomical management and beneficial microorganisms that grow associated to its rhizosphere, on which the plant depends for its nutrition and growth. This study involved the identification of microorganisms associated to the rhizosphere of vanilla plants in a crop located in Sopetrán, Colombia. The microbes were isolated in selective media for functional groups such as cellulolytic, proteolytic, inorganic and organic phosphate (phytate solubilizers, and asymbiotic nitrogen fixing bacteria. After isolation and purification, 109 microbial isolates were obtained. DNA was extracted from 52 selected isolates for molecular identification based on ITS and 16S rDNA sequencing, for fungi and bacteria, respectively. The diversity of rhizosphere microorganismsfound was significant. Bacteria such as Bacillus megaterium, Pseudomonas koreensis and Acinetobacter sp., and the fungus Plectosphaerella sp., may have a high potential to be used as biofertilizers to improve vanilla plant nutrition and growth.IDENTIFICACIÓN MOLECULAR DE MICROORGANISMOS ASOCIADOS A LA RIZOSFERA DE PLANTAS DE VAINILLA EN COLOMBIAEl cultivo de vainilla es altamente promisorio en Colombia, pero se requiere mayor conocimiento de su manejo agronómico y de los microorganismos que crecen asociados a su rizosfera, de los cuales depende esta planta para su nutrición y crecimiento. En este trabajo se realizaron aislamientos de microorganismos de la rizosfera de plantas de vainilla en un cultivo piloto ubicado en el municipio de Sopetrán (Antioquia, Colombia. Los microorganismos se aislaron en medios selectivos de crecimiento para evaluar su capacidad para descomponer celulosa, proteínas, solubilizar fosfato inorgánico y orgánico (fitato y fijar nitrógeno en forma asimbiótica. Una vez aislados y purificados, se obtuvieron un total de 109 aislamientos, de los

  10. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere.

    Science.gov (United States)

    Rogers, H H; Runion, G B; Krupa, S V

    1994-01-01

    (2). Root biomass is known to increase but, with few exceptions, detailed studies of root growth and function are lacking. Potential enhancement of root growth could translate into greater rhizodeposition, which, in turn, could lead to shifts in the rhizosphere itself. Some of the direct effects of CO(2) on vegetation have been reasonably well-studied, but for others work has been inadequate. Among these neglected areas are plant roots and the rhizosphere. Therefore, experiments on root and rhizosphere response in plants grown in CO(2)-enriched atmospheres will be reviewed and, where possible, collectively integrated. To this will be added data which have recently been collected by us. Having looked at the available data base, we will offer a series of hypotheses which we consider as priority targets for future research.

  11. The responses of soil and rhizosphere respiration to simulated climatic changes vary by season.

    Science.gov (United States)

    Suseela, Vidya; Dukes, Jeffrey S

    2013-02-01

    Responses of soil respiration (Rs) to anthropogenic climate change will affect terrestrial carbon storage and, thus, feed back to warming. To provide insight into how warming and changes in precipitation regimes affect the rate and temperature sensitivity of Rs and rhizosphere respiration (Rr) across the year, we subjected a New England old-field ecosystem to four levels of warming and three levels of precipitation (ambient, drought, and wet treatments). We measured Rs and heterotrophic respiration (Rh) monthly (in areas of the plots with and without plants, respectively) and estimated Rr by calculating the difference in respiration between Rs and Rh. Even in this mesic ecosystem, Rs and Rr responded strongly to the precipitation treatments. Drought reduced Rs and Rr, both annually and during the growing season. Annual cumulative Rs responded nonlinearly to precipitation treatments; both drought and supplemental precipitation suppressed Rs compared to the ambient treatment. Warming increased Rs and Rr in spring and winter when soil moisture was optimal but decreased these rates in summer when moisture was limiting. Cumulative winter Rr increased by about 200% in the high warming (approximately 3.5 degrees C) treatment. The effect of climate treatments on the temperature sensitivity of Rs depended on the season. In the fall, the drought treatment decreased apparent Q10 relative to the other precipitation treatments. The responses of Rs to warming and altered precipitation were largely driven by changes in Rr. We emphasize the importance of incorporating realistic soil moisture responses into simulations of soil carbon fluxes; the long-term effects of warming on carbon--climate feedback will depend on future precipitation regimes. Our results highlight the nonlinear responses of soil respiration to soil moisture and, to our knowledge, quantify for the first time the loss of carbon through winter rhizosphere respiration due to warming. While this additional loss is

  12. Competencies for disaster mental health.

    Science.gov (United States)

    King, Richard V; Burkle, Frederick M; Walsh, Lauren E; North, Carol S

    2015-03-01

    Competencies for disaster mental health are essential to domestic and international disaster response capabilities. Numerous consensus-based competency sets for disaster health workers exist, but no prior study identifies and discusses competency sets pertaining specifically to disaster mental health. Relevant competency sets were identified via MEDLINE, PsycINFO, EBSCO, and Google Scholar searches. Sixteen competency sets are discussed, some providing core competencies for all disaster responders and others for specific responder groups within particular professions or specialties. Competency sets specifically for disaster mental health professionals are lacking, with the exception of one set that focused only on cultural competence. The identified competency sets provide guidance for educators in developing disaster mental health curricula and for disaster health workers seeking education and training in disaster mental health. Valid, criterion-based competencies are required to guide selection and training of mental health professionals for the disaster mental health workforce. In developing these competencies, consideration should be given to the requirements of both domestic and international disaster response efforts.

  13. PLURILINGUAL COMPETENCE, STYLES AND VARIATION

    Directory of Open Access Journals (Sweden)

    Jyrki Kalliokoski

    2011-01-01

    Full Text Available The paper explores plurilingual competence in respect to language proficiency, language education and pluri- and multilingualism. The notion of communicative competence was introduced by Hymes (1972 as a reaction to chomskyan view of language as an autonomous system. Hymes’ notion of communicative competence originally included plurilingualism. The concept of communicative competence was quickly adopted to applied linguistics but the idea of a linguistic repertoire consisting of the competencies of linguistic varieties was not imported to SLA or language testing. The Hymesian perspective to plurilingualism as an essential dimension of communicative competence was revived in the Common European Framework (CEFR. However,the practice of applying the CEFR has mostly neglected the dimension on plurilingualism and plurilingual competence. The focus in the use of the CEFR has been on the different areas of language skills within one single language at a time, while the application of plurilingual practices has gained very little attention. The Hymesian notion of communicative competence has lived on in the sociolinguistic research tradition, especially within interactional sociolinguistics. The present paper relates the notion of plurilingual competence to its hymesian origin, to recent trends in plurilingual and pluricultural education, and to the sociolinguistic study of style and linguistic variation in multilingual communities. The article uses Finnish L2 data to show how plurilingual competence is used as an interactional resource.From the perspective of language learning, plurilingual competence enables speakers with different linguistic backgrounds to use their shared linguistic repertoire in order to ensure smooth interaction and achieve mutual understanding.

  14. Children’s Participation: Questioning Competence and Competencies?

    Directory of Open Access Journals (Sweden)

    Carine Le Borgne

    2017-09-01

    Full Text Available While Article 12 of the Convention on the Rights of the Child has encouraged children’s participation in collective decision-making, the literature is replete with the challenges as well as successes of such participation. One challenge is adults’ perceptions of children’s competence and competencies. These are frequently used as threshold criteria, so that children viewed as incompetent or lacking competencies are not allowed or supported to participate. Despite this casual elision between children’s participation and their (perceived competence and competencies, the latter are rarely explicitly defined, theorised or evidenced. This article draws on research undertaken in Tamil Nadu (South India and Scotland (UK, with two non-governmental organisations supporting children’s participation in their communities. The article examines how staff members can validate and enhance children’s competence and competencies, by scaffolding children to influence decision-making and recognising and adding to children’s knowledge. These empirical findings suggest the need for increased scrutiny of the concepts of competence and competencies, recognising their disempowering potential. The findings argue that competence is situationally and socially constructed rather than a set and individual characteristic.

  15. Barley uptake of N deposited in the rhizosphere of associated field pea

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1996-01-01

    N deposited in the rhizosphere of a legume may contribute to the N-nutrition of an intercropped non-legume. The process of deposition and subsequent uptake by a neighbouring plant is often termed N-transfer. The N-transfer from field pea (Pisum sativum L.) to associated spring barley (Hordeum...... the pea plant had no effect on the amount of pea-derived N taken up in barley. The N deposited up to 45 days of growth contributed pea. It is concluded that field pea rhizodeposition of N may...... vulgare L.) was determined in three pot experiments using a direct split-root N-15-labelling technique. The donor (pea) and receiver (barley) plants were grown with their root systems either mixed within the same soil compartment or separated by a 20 mu m mesh bag. Pea-derived N was detected in barley...

  16. Changes in Trace Metal Species and Other Components of the Rhizosphere During Growth of Radish

    DEFF Research Database (Denmark)

    Hamon, R. E.; Lorenz, S. E.; Holm, Peter Engelund

    1995-01-01

    transpiration rates and prevented excess addition of nutrient ions, so that subtle changes in soil solution composition would not be obscured. Soil solution pH, the concentration of dissolved organic carbon (DOC) and the concentrations of major and trace elements in solution were found to vary over time. Strict......Changes in the properties of soil solution in the rhizosphere of developing radish plants were investigated. Variations in these properties were expected to affect the distribution and speciation of metals in the soil and soil solution. Applications of essential nutrients were linked to plant...... existing in the uncomplexed state. Changes in the concentrations of uncomplexed Cd and Zn with time gave the best correlations with changes in plant uptake of these metals over time, supporting the hypothesis that plants mainly absorb the free metal ion from soil solution....

  17. Rhizosphere bacteria affected by transgenic potatoes with antibacterial activities compared with the effects of soil, wild-type potatoes, vegetation stage and pathogen exposure

    NARCIS (Netherlands)

    Rasche, F; Hodl, [No Value; Poll, C; Kandeler, E; Gerzabek, MH; van Elsas, JD; Sessitsch, A

    A greenhouse experiment was performed to analyze a potential effect of genetically modified potatoes expressing antibacterial compounds (attacin/cecropin, T4 lysozyme) and their nearly isogenic, nontransformed parental wild types on rhizosphere bacterial communities. To compare plant

  18. An Apple Fruit Fermentation (AFF) Treatment Improves the Composition of the Rhizosphere Microbial Community and Growth of Strawberry (Fragaria × ananassa Duch ‘Benihoppe’) Seedlings

    National Research Council Canada - National Science Library

    Zhang, Jie; Pang, Hui; Ma, Mengxia; Bu, Yufen; Shao, Wei; Huang, Weijing; Ji, Qianlong; Yao, Yuncong

    2016-01-01

      Plant growth can be promoted by the application of apple fruit fermentation (AFF), despite unclear of the underlying mechanisms, the effects involved in AFF on rhizosphere microorganisms have been hypothesized...

  19. Phosphate enhanced abiotic and biotic arsenic mobilization in the wetland rhizosphere.

    Science.gov (United States)

    Zhang, Zheyun; Moon, Hee Sun; Myneni, Satish C B; Jaffé, Peter R

    2017-11-01

    Although abiotic process of competitive sorption between phosphate (P) and arsenate (As(V)), especially onto iron oxides, are well understood, P-mediated biotic processes of Fe and As redox transformation contributing to As mobilization and speciation in wetlands remain poorly defined. To gain new insights into the effects of P on As mobility, speciation, and bioavailability in wetlands, well-controlled greenhouse experiments were conducted. As expected, increased P levels contributed to more As desorption, but more interestingly the interactions between P and wetland plants played a synergistic role in the microbially-mediated As mobilization and enhanced As uptake by plants. High levels of P promoted plant growth and the exudation of labile organic carbon from roots, enhancing the growth of heterotrophic bacteria, including As and Fe reducers. This in turn resulted in both, more As desorption into solution due to reductive iron dissolution, and a higher fraction of the dissolved As in the form of As(III) due to the higher number of As(V) reducers. Consistent with the dissolved As results, arsenic-XANES spectra from solid medium samples demonstrated that more As was sequestered in the rhizosphere as As(III) in the presence of high P levels than for low P levels. Hence, increased P loading to wetlands stimulates both abiotic and biotic processes in the wetland rhizosphere, resulting in more As mobilization, more As reduction, as well as more As uptake by plants. These interactions are important to be taken into account in As fate and transport models in wetlands and management of wetlands containing As. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Characterization of Pseudomonas chlororaphis from Theobroma cacao L. rhizosphere with antagonistic activity against Phytophthora palmivora (Butler).

    Science.gov (United States)

    Acebo-Guerrero, Y; Hernández-Rodríguez, A; Vandeputte, O; Miguélez-Sierra, Y; Heydrich-Pérez, M; Ye, L; Cornelis, P; Bertin, P; El Jaziri, M

    2015-10-01

    To isolate and characterize rhizobacteria from Theobroma cacao with antagonistic activity against Phytophthora palmivora, the causal agent of the black pod rot, which is one of the most important diseases of T. cacao. Among 127 rhizobacteria isolated from cacao rhizosphere, three isolates (CP07, CP24 and CP30) identified as Pseudomonas chlororaphis, showed in vitro antagonistic activity against P. palmivora. Direct antagonism tested in cacao detached leaves revealed that the isolated rhizobacteria were able to reduce symptom severity upon infection with P. palmivora Mab1, with Ps. chlororaphis CP07 standing out as a potential biocontrol agent. Besides, reduced symptom severity on leaves was also observed in planta where cacao root system was pretreated with the isolated rhizobacteria followed by leaf infection with P. palmivora Mab1. The production of lytic enzymes, siderophores, biosurfactants and HCN, as well as the detection of genes encoding antibiotics, the formation of biofilm, and bacterial motility were also assessed for all three rhizobacterial strains. By using a mutant impaired in viscosin production, derived from CP07, it was found that this particular biosurfactant turned out to be crucial for both motility and biofilm formation, but not for the in vitro antagonism against Phytophthora, although it may contribute to the bioprotection of T. cacao. In the rhizosphere of T. cacao, there are rhizobacteria, such as Ps. chlororaphis, able to protect plants against P. palmivora. This study provides a theoretical basis for the potential use of Ps. chlororaphis CP07 as a biocontrol agent for the protection of cacao plants from P. palmivora infection. © 2015 The Society for Applied Microbiology.

  1. Biocontrol and Plant Growth Promotion Characterization of Bacillus Species Isolated from Calendula officinalis Rhizosphere.

    Science.gov (United States)

    Ait Kaki, Asma; Kacem Chaouche, Noreddine; Dehimat, Laid; Milet, Asma; Youcef-Ali, Mounia; Ongena, Marc; Thonart, Philippe

    2013-12-01

    The phenotypic and genotypic diversity of the plant growth promoting Bacillus genus have been widely investigated in the rhizosphere of various agricultural crops. However, to our knowledge this is the first report on the Bacillus species isolated from the rhizosphere of Calendula officinalis. 15 % of the isolated bacteria were screened for their important antifungal activity against Fusarium oxysporum, Botrytis cinerea, Aspergillus niger, Cladosporium cucumerinium and Alternaria alternata. The bacteria identification based on 16S r-RNA and gyrase-A genes analysis, revealed strains closely related to Bacillus amyloliquefaciens, B. velezensis, B. subtilis sub sp spizezenii and Paenibacillus polymyxa species. The electro-spray mass spectrometry coupled to liquid chromatography (ESI-LC MS) analysis showed that most of the Bacillus isolates produced the three lipopeptides families. However, the P. polymyxa (18SRTS) didn't produce any type of lipopeptides. All the tested Bacillus isolates produced cellulase but the protease activity was observed only in the B. amyloliquefaciens species (9SRTS). The Salkowsky colorimetric test showed that the screened bacteria synthesized 6-52 μg/ml of indole 3 acetic acid. These bacteria produced siderophores with more than 10 mm wide orange zones on chromazurol S. The greenhouse experiment using a naturally infested soil with Sclerotonia sclerotiorum showed that the B. amyloliquefaciens (9SRTS) had no significant (P > 0.05) effect on the pre-germination of the chickpea seeds. However, it increased the size of the chickpea plants and reduced the stem rot disease (P officinalis and other crop systems.

  2. Remediation of acid mine drainage (AMD)-contaminated soil by Phragmites australis and rhizosphere bacteria.

    Science.gov (United States)

    Guo, Lin; Cutright, Teresa J

    2014-06-01

    Experiments were conducted to assess the impact of citric acid (CA) and rhizosphere bacteria on metal uptake in Phragmites australis cultured in a spiked acid mine drainage (AMD) soil. Rhizosphere iron-oxidizing bacteria (Fe(II)OB) enhanced the formation of Fe plaque on roots, which decreased the uptake of Fe and Mn. CA inhibited the growth of Fe(II)OB, decreased the formation of metal plaque, raised the metal mobility in soil, and increased the accumulation of metals in all tissues of the reeds. The higher the CA dosage, the more metals accumulated into reeds. The total amount of metals in reeds increased from 7.8 ± 0.5 × 10(-6) mol plant(-1) (Mn), 1.4 ± 0.1 × 10(-3) mol plant(-1) (Fe), and 1.0 ± 0.1 × 10(-4) mol plant(-1) (Al) in spiked soil without CA to 22.2 ± 0.5 × 10(-6) mol plant(-1) (Mn), 3.5 ± 0.06 × 10(-3) mol plant(-1) (Fe), and 5.0 ± 0.2 × 10(-4) mol plant(-1) (Al) in soil added with 33.616 g C6H8O7·H2O for per kilogram soil. CA could be effective at enhancing the phytoremediation of metals from AMD-contaminated soil.

  3. Nitrogen addition shifts the microbial community in the rhizosphere of Pinus tabuliformis in Northwestern China.

    Science.gov (United States)

    Lv, Fenglian; Xue, Sha; Wang, Guoliang; Zhang, Chao

    2017-01-01

    Atmospheric nitrogen (N) deposition profoundly alters the soil microbial communities and will thus affect nutrient cycles. The effects of N availability on microbial community, however, are not clear. We used PLFA analysis to evaluate the effects of a gradient of N addition (0, 2.8, 5.6, 11.2, and 22.4 g N m-2 y-1) for three years on the rhizospheric microbial community of Pinus tabuliformis seedlings. The main factors influencing the community were quantified using structural equation modelling and redundancy analysis. At the microbial-community level, N addition increased the total phospholipid fatty acids content by increasing the dissolved organic carbon (DOC) and root biomass. Increases in soil microbial biomass carbon and N, however, was attributed to the increased DOC, N content and decreased pH. At the microbial-groups level, Fungal, arbuscular mycorrhizal fungal (AMF), gram-positive bacterial (GP) abundances and the GP:GN ratio first increased and then decreased with N addition. Nitrogen addition increased the abundances of bacteria, fungi, and actinomycetes mainly by increasing the DOC content and decreasing root biomass. Additionally, the decrease of pH and ammonium N caused by N addition increased the fungal abundances and reduced actinomycete abundances, respectively. Nitrogen addition shifted the rhizospheric microbial community mainly by altering the DOC content and root biomass. The current rate of N deposition (2.5 g N m-2 y-1) benefits plant growth and increases the abundances of fungi, arbuscular mycorrhizal fungi, GP, actinomycetes and the GP:GN ratio.

  4. Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa).

    Science.gov (United States)

    Wang, Xun; Tam, Nora Fung-Yee; Fu, Shi; Ametkhan, Aray; Ouyang, Yun; Ye, Zhihong

    2014-08-01

    Mercury (Hg) is an extremely toxic pollutant, especially in the form of methylmercury (MeHg), whereas selenium (Se) is an essential trace element in the human diet. This study aimed to ascertain whether addition of Se can produce rice with enriched Se and lowered Hg content when growing in Hg-contaminated paddy fields and, if so, to determine the possible mechanisms behind these effects. Two cultivars of rice (Oryza sativa, japonica and indica) were grown in either hydroponic solutions or soil rhizobags with different Se and Hg treatments. Concentrations of total Hg, MeHg and Se were determined in the roots, shoots and brown rice, together with Hg uptake kinetics and Hg bioavailability in the soil. Root anatonmy was also studied. The high Se treatment (5 μg g(-1)) significantly increased brown rice yield by 48 % and total Se content by 2·8-fold, and decreased total Hg and MeHg by 47 and 55 %, respectively, compared with the control treatments. The high Se treatment also markedly reduced 'water-soluble' Hg and MeHg concentrations in the rhizosphere soil, decreased the uptake capacity of Hg by roots and enhanced the development of apoplastic barriers in the root endodermis. Addition of Se to Hg-contaminated soil can help produce brown rice that is simultaneously enriched in Se and contains less total Hg and MeHg. The lowered accumulation of total Hg and MeHg appears to be the result of reduced bioavailability of Hg and production of MeHg in the rhizosphere, suppression of uptake of Hg into the root cells and an enhancement of the development of apoplastic barriers in the endodermis of the roots. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Biomass of active microorganisms is not limited only by available carbon in the rhizosphere

    Science.gov (United States)

    Gilmullina, Aliia

    2017-04-01

    Microbial activity is generally limited by carbon (C) availability. The easily available substrate release by roots creates so called "hotspots" in the rhizosphere that drives microbial activity removing C limitation. We simulated a gradient of root exudates by glucose addition at different concentrations to stimulate the activation of microbial biomass (MB). Glucose was added at the rates lower than MB (5, 10, 25 and 50%) and at the rates similar or higher than MB (100, 150, 200, 250, 300 and 400%). During incubation CO2 efflux was measured by conductometry, the size of active MB and specific growth rate were estimated by substrate-induced growth response method. We tested a hypothesis that glucose addition exceeding 100% MB is able to activate major fraction of soil microbial community. Addition of glucose at concentrations higher than 5% decreased specific growth rate, demonstrating the shift of microbial community from r-strategy to K-strategy. The percentage of active MB grew up by the increase of glucose concentration. The treatment with glucose at 100% presented a dramatic shift in the activation of MB up to 14%. Contrary to our hypothesis, further increase in glucose rate caused moderate stimulation of active MB up to 22% of total MB. Furthermore, glucose addition above 200% did not increase the fraction of active biomass indicating glucose oversaturation and possible limitation by other nutrients. The results suggest that despite the fact that C is the most important limitation factor, limitless C supply is not able to activate MB up to 100%. Thus, if the rhizosphere is limited by nutrients, the fraction of active biomass remains at low level despite an excess of available C.

  6. Developing professional competence

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne

    2015-01-01

    The purpose of university programs for professionals is to qualify the students to act competently in a subsequent job situation. Practical experiences as well as comprehensive research studies have shown that only a limited part of what is learned during the coursework is applied in the subsequent...... professional practice. There is too little transfer from the training programs to application in the workplace. Based on Danish research the relation between school and professional work, between scholastic knowledge and practical knowledge, is analyzed. Guideline for a new and more efficient curricula...

  7. Comparisons of Soil Properties, Enzyme Activities and Microbial Communities in Heavy Metal Contaminated Bulk and Rhizosphere Soils of Robinia pseudoacacia L. in the Northern Foot of Qinling Mountain

    Directory of Open Access Journals (Sweden)

    Yurong Yang

    2017-11-01

    Full Text Available The toxic effects of heavy metal (HM contamination on plant metabolism and soil microorganisms have been emphasized recently; however, little is known about the differences in soil physical, chemical, and biological properties between bulk and rhizosphere soils contaminated with HMs in forest ecosystem. The present study was conducted to evaluate the rhizosphere effect on soil properties, enzyme activities and bacterial communities associated with Robinia pseudoacacia L. along a HM contamination gradient. Soil organic matter (SOM, available nitrogen (AN and phosphorus (AP contents were significantly higher in rhizosphere soil than those in bulk soil at HM contaminated sites (p < 0.05. Compared to bulk soil, activities of four soil enzymes indicative of C cycle (β-glucosidase, N cycle (protease, urease and P cycle (alkaline phosphatase in rhizosphere soil across all study sites increased by 47.5%, 64.1%, 52.9% and 103.8%, respectively. Quantitative PCR (qPCR and restriction fragment length polymorphism (RFLP were used to determine the relative abundance, composition and diversity of bacteria in both bulk and rhizosphere soils, respectively. The copy number of bacterial 16S rRNA gene in bulk soil was significantly lower than that in rhizosphere soil (p < 0.05, and it had significantly negative correlations with total/DTPA-extractable Pb concentrations (p < 0.01. Alphaproteobacteria, Gammaproteobacteria and Firmicutes were the most dominant groups of bacteria at different study sites. The bacterial diversity index of Species richness (S and Margalef (dMa were significantly higher in rhizosphere soil compared with those in bulk soil, although no difference could be found in Simpson index (D between bulk and rhizosphere soils (p > 0.05. Redundancy analysis (RDA results showed that soil pH, EC, SOM and total/DTPA-extractable Pb concentrations were the most important variables affecting relative abundance, composition and diversity of bacteria (p < 0

  8. Estimation by PLFA of Microbial Community Structure Associated with the Rhizosphere of Lygeum spartum and Piptatherum miliaceum Growing in Semiarid Mine Tailings

    OpenAIRE

    Carrasco, Lucía; Gattinger, Andreas; Fließbach, Andreas; Roldán, Antonio; Schloter, Michael; Caravaca, Fuensanta

    2009-01-01

    The objective of this study was to compare the microbial community composition and biomass associated with the rhizosphere of a perennial gramineous species (Lygeum spartum L.) with that of an annual (Piptatherum miliaceum L.), both growing in semiarid mine tailings. We also established their relationship with the contents of potentially toxic metals as well as with indicators of soil quality. The total phospholipid fatty acid (PLFA) amount was significantly higher in the rhizosphere soil of ...

  9. The effect of mulching and soil compaction on fungi composition and microbial communities in the rhizosphere of soybean

    Science.gov (United States)

    Frac, M.; Siczek, A.; Lipiec, J.

    2009-04-01

    The soil environment is the habitat of pathogenic and saprotrophic microorganisms. The composition of the microbial community are related to biotic and abiotic factors, such as root exudates, crop residues, climate factors, mulching, mineral fertilization, pesticides introduction and soil compaction. The aim of the study was to determine the effect of the mulching and soil compaction on the microorganism communities in the rhizosphere soil of soybean. The studies were carried out on silty loam soil (Orthic Luvisol) developed from loess (Lublin, Poland). The experiment area was 192m2 divided into 3 sections consisted of 6 micro-plots (7m2). Three levels of soil compaction low, medium and heavy obtained through tractor passes were compared. The soil was compacted and loosened within seedbed layer 2 weeks before sowing. Soybean "Aldana" seeds were inoculated with Bradyrhizobium japonicum and were sown with interrow spacing of 0.3m. Wheat straw (as mulch) was uniformly spread on the half of each micro-plot at an amount of 0.5kg m-1 after sowing. Rhizosphere was collected three times during growing season of soybean. Microbiological analyses were conducted in 3 replications and included the determination of: the total number of bacteria and fungi, the number of bacteria Pseudomonas sp. and Bacillus sp., the genus identification of fungi isolated from rhizosphere of soybean. Results indicated a positive effect of mulching on the increase number of all groups of examined rhizosphere microorganisms (fungi, bacteria, Pseudomonas sp., Bacillus sp.). The highest number of the microorganisms was found in the low and medium compacted soil and markedly decreased in the most compacted soil. Relatively high number of antagonistic fungi (Penicillium sp., Trichoderma sp.) was recorded in the rhizosphere of low and medium compacted soil, particularly in mulched plots. The presence of these fungi can testify to considerable biological activity, which contributes to the improvement of

  10. Maintaining medical competence

    Directory of Open Access Journals (Sweden)

    Robbins RA

    2012-11-01

    Full Text Available No abstract available. Article truncated at 150 words. I recently renewed my Arizona medical license and meet all the requirements. I far exceed the required CME hours and have no Medical Board actions, removal of hospital privileges, lawsuits, or felonies. None of the bad things are likely since I have not seen patients since July 1, 2011 and I no longer have hospital privileges. However, this caused me to pause when I came to the question of “Actively practicing”? A quick check of the status of several who do not see patients but are administrators, retired or full time editors of other medical journals revealed they were all listed as “active”. I guess that “medical journalism” is probably as much a medical activity as “administrative medicine” which is recognized by the Arizona Medical Board. This got me to thinking about competence and the Medical Board’s obligation to ensure competent physicians. Medical boards focused on preventing the unlicensed practice …

  11. Effects of genetically modified starch metabolism in potato plants on photosynthate fluxes into the rhizosphere and on microbial degraders of root exudates.

    Science.gov (United States)

    Gschwendtner, Silvia; Esperschütz, Jürgen; Buegger, Franz; Reichmann, Michael; Müller, Martin; Munch, Jean Charles; Schloter, Michael

    2011-06-01

    A high percentage of photosynthetically assimilated carbon is released into soil via root exudates, which are acknowledged as the most important factor for the development of microbial rhizosphere communities. As quality and quantity of root exudates are dependent on plant genotype, the genetic engineering of plants might also influence carbon partitioning within the plant and thus microbial rhizosphere community structure. In this study, the carbon allocation patterns within the plant-rhizosphere system of a genetically modified amylopectin-accumulating potato line (Solanum tuberosum L.) were linked to microbial degraders of root exudates under greenhouse conditions, using (13)C-CO(2) pulse-chase labelling in combination with phospholipid fatty acid (PLFA) analysis. In addition, GM plants were compared with the parental cultivar as well as a second potato cultivar obtained by classical breeding. Rhizosphere samples were obtained during young leaf developmental and flowering stages. (13)C allocation in aboveground plant biomass, water-extractable organic carbon, microbial biomass carbon and PLFA as well as the microbial community structure in the rhizosphere varied significantly between the natural potato cultivars. However, no differences between the GM line and its parental cultivar were observed. Besides the considerable impact of plant cultivar, the plant developmental stage affected carbon partitioning via the plant into the rhizosphere and, subsequently, microbial communities involved in the transformation of root exudates. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. EVALUATION OF UNIVERSITY GRADUATE COMPETENCES

    Directory of Open Access Journals (Sweden)

    Mikhail B. Gitman

    2014-01-01

    Full Text Available The quality evaluation problem in training of students at competence-based approach is considered in the article. The technique of creation of a negentropic assessment of level of the competences formation of graduates students is offered. The article deals with the special learning curves, which provide the opportunity to be more precise in defi ning the dependence of the level of the students' competence formation of the on their scoring. 

  13. INTERPERSONAL COMMUNICATION COMPETENCE: CULTURAL UNDERPINNINGS

    Directory of Open Access Journals (Sweden)

    Adrian LESENCIUC

    2012-01-01

    Full Text Available The concepts of interpersonal communication competence, intercultural communication competence and intercultural competence are prone to frequent misunderstanding as a result of an epistemic field that does not draw clear cut distinctions among the disciplines the former are subject of. With a view to facilitating future research in the fields of the aforementioned concepts, this paper will focus on their operationalization by delineating not only the differences among them, but also their inherent marginal overlapping.

  14. Desired Competences for Project Managers

    OpenAIRE

    Miranda, Tiago; Ghimire, Bimal

    2008-01-01

    Project Management is multidisciplinary in nature; it involves a number of activities and requires the project manager to possess a wide variety of competences. This thesis aims to investigate which competences organizations currently require from project managers. In particular the focus of this research is to examine and contrast the “soft” (interpersonal) and “hard” (technical) competences required by the job market and to find out if organizations recognize the importance of both of them ...

  15. Locus of control and competence.

    Science.gov (United States)

    Naditch, M P; DeMaio, T

    1975-12-01

    The relation of locus of control and competence in school achievement, social interactions, sports, and home related activities was examined. The sample consisted of 346 ninth-grade students, and competence was measured using self-report, antional battery test scores, grades, and sociometric ratings. Among males, locus of control was significantly related to competent performance only among those subjects who placed a high value on outcomes in each area. Among females, the pattern was exactly reversed. Locus of control and various forms of competence were related only in areas of low interest value. The implications of these findings were discussed.

  16. eCompetence Case Studies

    DEFF Research Database (Denmark)

    Jensen, Helle Bækkelund

    2006-01-01

    In this paper we present some details of the processes undertaken in the European eCompetence Initiative. We present two illustrative and representative case studies. The research aims to identify and understand patterns of individual and organisational eCompetence approaches.......In this paper we present some details of the processes undertaken in the European eCompetence Initiative. We present two illustrative and representative case studies. The research aims to identify and understand patterns of individual and organisational eCompetence approaches....

  17. Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere

    DEFF Research Database (Denmark)

    Steidle, A.; Sigl, K.; Schuhegger, R.

    2001-01-01

    developed and characterized novel Gfp-based monitor strains that allow in situ visualization of AHL-mediated communication between individual cells in the plant rhizosphere. For this purpose, three Gfp-based AHL sensor plasmids that respond to different spectra of AHL molecules were transferred into AHL......-negative derivatives of Pseudomonas putida IsoF and Serratia liquefaciens MG1, two strains that are capable of colonizing tomato roots. These AHL monitor strains were used to visualize communication between defined bacterial populations in the rhizosphere of axenically grown tomato plants. Furthermore, we integrated......Given that a large proportion of the bacteria colonizing the roots of plants is capable of producing N-acyl-L-homoserine lactone (AHL) molecules, it appears likely that these bacterial pheromones may serve as signals for communication between cells of different species. In this study, we have...

  18. Sustainable biodegradation of phenol by Acinetobacter calcoaceticus P23 isolated from the rhizosphere of duckweed Lemna aoukikusa.

    Science.gov (United States)

    Yamaga, Fumiko; Washio, Kenji; Morikawa, Masaaki

    2010-08-15

    Phenol-degrading bacteria were isolated from the rhizosphere of duckweed (Lemna aoukikusa) using an enrichment culture method. One of the isolates, P23, exhibited an excellent ability to degrade phenol and attach to a solid surface under laboratory conditions. Phylogenetic analysis revealed that P23 belongs to the genera Acinetobacter and has the highest similarity to Acinetobacter calcoaceticus. P23 rapidly colonized on the surface of sterilized duckweed roots and formed biofilms, indicating that the conditions provided by the root system of duckweed are favorable to P23. A long-term performance test (160 h) showed that continuous removal of phenol can be attributed to the beneficial symbiotic interaction between duckweed and P23. P23 is the first growth-promoting bacterium identified from Lemna aoukikusa. The results in this study suggest the potential usefulness of dominating a particular bacterium in the rhizosphere of duckweeds to achieve efficient and sustainable bioremediation of polluted water.

  19. [Effects of Green Manure Intercropping and Straw Mulching on Winter Rape Rhizosphere Soil Organic Carbon and Soil Respiration].

    Science.gov (United States)

    Zhou, Quan; Wang, Long-chang; Xiong, Ying; Zhang, Sai; Du, Juan; Zhao, Lin-lu

    2016-03-15

    Under the background of global warming, the farmland soil respiration has become the main way of agricultural carbon emissions. And green manure has great potential to curb greenhouse gas emissions and achieve energy conservation and emissions reduction. However, in purple soil region of Southwest, China, soil respiration under green manure remains unclear, especially in the winter and intercropping. Through the green manure ( Chinese milk vetch) intercropping with rape, therefore, we compared the effects of rape rhizosphere under straw mulching. The soil organic carbon and soil respiration were examined. The results showed, compared with straw mulching, root separation was the major influencing factors of soil organic carbon on rape rhizosphere. Soil organic carbon was significantly decreased by root interaction. In addition, straw mulching promoted while green manure intercropping inhibited the soil respiration. Soil respiration presented the general characteristics of fall-rise-fall due to the strong influence of rape growth period. Therefore, it showed a cubic curve relationship with soil temperature.

  20. Aphid effects on rhizosphere microorganisms and microfauna depend more on barley growth phase than on soil fertilization

    DEFF Research Database (Denmark)

    Madsen, Mette Vestergård; Strandmark, Lisa Bjørnlund; Christensen, Søren

    2004-01-01

    This paper gives the first reports on aphid effects on rhizosphere organisms as influenced by soil nutrient status and plant development. Barley plants grown in pots fertilized with N but without P (N), with N and P (NP), or not fertilized (0) were sampled in the early growth phase (day 25), 1 week...... before and 1 week after spike emergence. Aphids were added 16 days before sampling was carried out. In a separate experiment belowground respiration was measured on N and NP fertilized plant–soil systems with aphid treatments comparable to the first experiment. Aphids reduced numbers of rhizosphere...... bacteria and fungal feeding nematodes 1 week before spike emergence. Before spike emergence, aphids reduced belowground respiration in NP treatments. These findings strongly indicate that aphids reduced allocation of photoassimilates to roots and deposition of root exudates in the growth phase of the plant...