WorldWideScience

Sample records for rhic detector workshop

  1. The PHOBOS detector at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B. E-mail: back@phy.anl.gov; Baker, M.D.; Barton, D.S.; Basilev, S.; Baum, R.; Betts, R.R.; Bialas, A.; Bindel, R.; Bogucki, W.; Budzanowski, A.; Busza, W.; Carroll, A.; Ceglia, M.; Chang, Y.-H.; Chen, A.E.; Coghen, T.; Connor, C.; Czyz, W.; Dabrowski, B.; Decowski, M.P.; Despet, M.; Fita, P.; Fitch, J.; Friedl, M.; Galuszka, K.; Ganz, R.; Garcia, E.; George, N.; Godlewski, J.; Gomes, C.; Griesmayer, E.; Gulbrandsen, K.; Gushue, S.; Halik, J.; Halliwell, C.; Haridas, P.; Hayes, A.; Heintzelman, G.A.; Henderson, C.; Hollis, R.; Holynski, R.; Hofman, D.; Holzman, B.; Johnson, E.; Kane, J.; Katzy, J.; Kita, W.; Kotula, J.; Kraner, H.; Kucewicz, W.; Kulinich, P.; Law, C.; Lemler, M.; Ligocki, J.; Lin, W.T.; Manly, S.; McLeod, D.; Michalowski, J.; Mignerey, A.; Muelmenstaedt, J.; Neal, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I.C.; Patel, M.; Pernegger, H.; Plesko, M.; Reed, C.; Remsberg, L.P.; Reuter, M.; Roland, C.; Roland, G.; Ross, D.; Rosenberg, L.; Ryan, J.; Sanzgiri, A.; Sarin, P.; Sawicki, P.; Scaduto, J.; Shea, J.; Sinacore, J.; Skulski, W.; Steadman, S.G.; Stephans, G.S.F.; Steinberg, P.; Straczek, A.; Stodulski, M.; Strek, M.; Stopa, Z.; Sukhanov, A.; Surowiecka, K.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; Nieuwenhuizen, G.J. van; Verdier, R.; Wadsworth, B.; Wolfs, F.L.H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A.H.; Wyslouch, B.; Zalewski, K.; Zychowski, P

    2003-03-01

    This manuscript contains a detailed description of the PHOBOS experiment as it is configured for the Year 2001 running period. It is capable of detecting charged particles over the full solid angle using a multiplicity detector and measuring identified charged particles near mid-rapidity in two spectrometer arms with opposite magnetic fields. Both of these components utilize silicon pad detectors for charged particle detection. The minimization of material between the collision vertex and the first layers of silicon detectors allows for the detection of charged particles with very low transverse momenta, which is a unique feature of the PHOBOS experiment. Additional detectors include a time-of-flight wall which extends the particle identification range for one spectrometer arm, as well as sets of scintillator paddle and Cherenkov detector arrays for event triggering and centrality selection.

  2. PROCEEDINGS FROM RIKEN-BNL RESEARCH CENTER WORKSHOP: PARITY-VIOLATING SPIN ASYMMETRIES AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    VOGELSANG,W.; PERDEKAMP, M.; SURROW, B.

    2007-04-26

    The RHIC spin program is now fully underway. Several runs have been successfully completed and are producing exciting first results. Luminosity and polarization have improved remarkably and promising advances toward the higher RHIC energy of {radical}s = 500 GeV have been made. At this energy in particular, it will become possible to perform measurements of parity-violating spin asymmetries. Parity violation occurs in weak interactions, and in combination with the unique polarization capabilities at RHIC fascinating new opportunities arise. In particular, parity-violating single- and double-spin asymmetries give new insights into nucleon structure by allowing probes of up and down sea and anti-quark polarizations. Such measurements at RHIC are a DOE performance milestone for the year 2013 and are also supported by a very large effort from RIKEN. With transverse polarization, charged-current interactions may be sensitive to the Sivers effect. Parity-violating effects at RHIC have been proposed even as probes of physics beyond the Standard Model. With the era of measurements of parity-violating spin asymmetries at RHIC now rapidly approaching, we had proposed a small workshop that would bring together the main experts in both theory and experiment. We are very happy that this worked out. The whole workshop contained 17 formal talks, both experiment (10) and theory (7), and many fruitful discussions. The physics motivations for, the planned measurements were reviewed first. The RHIC machine prospects regarding polarized 500 GeV running were discussed, as well as the plans by the RHIC experiments for the vital upgrades of their detectors needed for the W physics program. We also had several talks on the topic of ''semi-inclusive deep-inelastic scattering'', which provides different access to related physics observables. On the theory side, new calculations were presented, for example in terms of QCD all-order resummations of perturbation theory

  3. Proceedings of the symposium on RHIC detector R&D

    Energy Technology Data Exchange (ETDEWEB)

    Makdisi, Y.; Stevens, A.J. [eds.

    1991-12-31

    This report contains papers on the following topics: Development of Analog Memories for RHIC Detector Front-end Electronic Systems; Monolithic Circuit Development for RHIC at Oak Ridge National Laboratory; Highly Integrated Electronics for the STAR TPC; Monolithic Readout Circuits for RHIC; New Methods for Trigger Electronics Development; Neurocomputing methods for Pattern Recognition in Nuclear Physics; The Development of a Silicon Multiplicity Detector System; The Vertex Detector for the Lepton/Photon Collaboration; Simulations of Silicon Vertex Tracker for STAR Experiment at RHIC; Calorimeter/Absorber Optimization for a RHIC Dimuon Experiment (RD-10 Project); Applications of the LAHET simulation Code to Relativistic Heavy Ion Detectors; Highly Segmented, High Resolution Time-of-Flight System; Research and Development on a Sub 100 Picosecond Time-of-Flight System Based on Silicon Avalance Diodes; Behavior of TPC`s in a High Particle Flux Environment; Generic R&D on Undoped Cesium Iodide and Lead Fluoride; and A Transition Radiation Detector for RHIC Featuring Accurate Tracking and dE/dx Particle Identification. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  4. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED "ODDERON SEARCHES AT RHIC" (VOLUME 76)

    Energy Technology Data Exchange (ETDEWEB)

    ORGANIZERS: GURYN, W.; KOVCHEGOV, Y.; VOGELSANG, W.; TRUEMAN, L.

    2005-10-25

    saturation/CGC effects tend to decrease the Odderon intercept, possibly providing an explanation for the lack of experimental evidence for the Odderon so far. This has added further motivation for pursuing searches for the Odderon. During the workshop the status of the Odderon in QCD and its phenomenology were reviewed. The participants also agreed on the most promising observables for the Odderon search at RHIC, which we list. The conclusion of the workshop is that the best available setup to address experimental questions related to the search for the Odderon at RHIC is the proposed combination of STAR experiment and Roman pots of pp2pp experiment, described in the proposal ''Physics with Tagged Forward Protons with the STAR detector at RHIC''.

  5. Workshops on radiation imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sochinskii, N.V.; Sun, G.C.; Kostamo, P.; Silenas, A.; Saynatjoki, A.; Grant, J.; Owens, A.; Kozorezov, A.G.; Noschis, E.; Van Eijk, C.; Nagarkar, V.; Sekiya, H.; Pribat, D.; Campbell, M.; Lundgren, J.; Arques, M.; Gabrielli, A.; Padmore, H.; Maiorino, M.; Volpert, M.; Lebrun, F.; Van der Putten, S.; Pickford, A.; Barnsley, R.; Anton, M.E.G.; Mitschke, M.; Gros d' Aillon, E.; Frojdh, C.; Norlin, B.; Marchal, J.; Quattrocchi, M.; Stohr, U.; Bethke, K.; Bronnimann, C.H.; Pouvesle, J.M.; Hoheisel, M.; Clemens, J.C.; Gallin-Martel, M.L.; Bergamaschi, A.; Redondo-Fernandez, I.; Gal, O.; Kwiatowski, K.; Montesi, M.C.; Smith, K

    2005-07-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications.

  6. Proceedings of RIKEN BNL Research Center Workshop: Progress in High-pT Physics at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Bazilevsky, A.; Bland, L.; Vogelsang, W.

    2010-03-17

    This volume archives the presentations at the RIKEN BNL Research Center workshop 'Progress in High-PT Physics at RHIC', held at BNL in March 2010. Much has been learned from high-p{sub T} physics after 10 years of RHIC operations for heavy-ion collisions, polarized proton collisions and d+Au collisions. The workshop focused on recent progress in these areas by both theory and experiment. The first morning saw review talks on the theory of RHIC high-p{sub T} physics by G. Sterman and J. Soffer, and on the experimental results by M. Tannenbaum. One of the most exciting recent results from the RHIC spin program is the first observation of W bosons and their associated single-spin asymmetry. The new preliminary data were reported on the first day of our workshop, along with a theoretical perspective. There also were detailed discussions on the global analysis of polarized parton distributions, including the knowledge on gluon polarization and the impact of the W-data. The main topic of the second workshop day were single-transverse spin asymmetries and their analysis in terms of transverse-momentum dependent parton distributions. There is currently much interest in a future Drell-Yan program at RHIC, thanks to the exciting physics opportunities this would offer. This was addressed in some of the talks. There also were presentations on the latest results on transverse-spin physics from HERMES and BELLE. On the final day of the workshop, the focus shifted toward forward and small-x physics at RHIC, which has become a cornerstone of the whole RHIC program. Exciting new data were presented and discussed in terms of their possible implications for our understanding of strong color-field phenomena in QCD. In the afternoon, there were discussions of nuclear parton distributions and jet observables, among them fragmentation. The workshop was concluded with outlooks toward the near-term (LHC, JLab) and longer-term (EIC) future. The workshop has been a great success

  7. Large acceptance forward Cherenkov detector for the BRAHMS experiment at RHIC

    Science.gov (United States)

    Budick, B.; Beavis, D.; Chasman, C.

    2010-09-01

    A multi-element detector based on Cherenkov radiation in plastic and on photomultiplier tubes has been constructed that is particularly useful in collider experiments. The detector covers the pseudorapidity interval 3.23Monte Carlo simulations describe the pulse height response of the detector well, as does an analytic expression that has been developed. The detector performed well in the RHIC experiment BRAHMS.

  8. Proceedings of RIKEN BNL Resarch Center Workshop: Fluctuations, Correlations and RHIC Low Energy Runs

    Energy Technology Data Exchange (ETDEWEB)

    Karsch, F.; Kojo, T.; Mukherjee, S.; Stephanov, M.; Xu, N.

    2011-10-27

    background for the search of the CEP using observables related to fluctuations and correlations. While new data are pouring in from the RHIC low energy scan program, many recent advances have also been made in the phenomenological and lattice gauge theory sides in order to have a better theoretical understanding of the wealth of new data. This workshop tried to create a synergy between the experimental, phenomenological and lattice QCD aspects of the fluctuation and correlation related studies of the RHIC low energy scan program. The workshop brought together all the leading experts from related fields under the same forum to share new ideas among themselves in order to streamline the continuing search of CEP in the RHIC low energy scan program.

  9. A new detector at RHIC, sPHENIX goals and status

    Science.gov (United States)

    Reed, Rosi; sPHENIX Collaboration

    2017-01-01

    The study of heavy-ion collisions, which can create a new form matter, a nearly ideal strongly interacting fluid where quarks and gluons are no longer confined into nucleons, called Quark Gluon Plasma (QGP), is on the frontier of QCD studies. The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab (BNL) has had a long and successful program of QGP study since 2000, with many upgrades that have increased the delivered luminosity considerably in the last decade. The sPHENIX proposal is for a second generation experiment at RHIC, which will take advantage of the increased luminosity, and allow measurements of jets, jet correlations and Upsilons (ϒs), with a kinematic reach that will overlap with measurements made at the Large Hadron Collider (LHC). Complementary measurements at RHIC and at the LHC probe the QGP at different temperatures and densities, which are necessary to determine the temperature dependence of transport coefficients of the QGP. The sPHENIX detector will have large acceptance electromagnetic and hadronic calorimetry, as well as precision tracking, and high rate capability which are necessary for precision jet and ϒ observables. The experiment will enable a program of systematic measurements at RHIC, with a detector capable of acquiring a large sample of events in p+p, p+A, and A+A collisions. This proceedings outlines the key measurements enabled by the new detector, and status of the project itself.

  10. Detectors for low energy electron cooling in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, F. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-15

    Low-energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS, the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions between the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted, turned by 180-degrees, and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.

  11. $\\phi$- meson Production at RHIC energies using the PHENIX Detector

    CERN Document Server

    Sharma, Deepali

    2009-01-01

    Light vector mesons are among the most informative probes to understand the strongly coupled Quark Gluon Plasma created at RHIC. The suppression of light mesons at high transverse momentum, compared to expectations from scaled $p+p$ results, reflects the properties of the strongly interacting matter formed. The $\\phi$-meson is one of the probes whose systematic measurement in $p+p$, $d+Au$ and $Au+Au$ collisions can provide useful information about initial and final state effects on particle production. The mass, width and branching ratio of the $\\phi$-meson decay in the di-kaon and di-electron decay channels could be modified in \\au collisions due to the restoration of chiral symmetry in the QGP. The PHENIX experiment at RHIC has measured $\\phi$-meson production in various systems ranging form $p+p$, $d+Au$ to $Au+Au$ collisions via both its di-electron and di-kaon decay modes. A summary of PHENIX results on invariant spectra, nuclear modification factor and elliptic flow of the $\\phi$-meson are presented he...

  12. Large acceptance forward Cherenkov detector for the BRAHMS experiment at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Budick, B., E-mail: bb2@nyu.ed [New York University, New York, NY 10003 (United States); Beavis, D., E-mail: beavis@bnl.go [Brookhaven National Laboratory, Upton, NY 11973 (United States); Chasman, C., E-mail: chasman@bnl.go [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2010-09-21

    A multi-element detector based on Cherenkov radiation in plastic and on photomultiplier tubes has been constructed that is particularly useful in collider experiments. The detector covers the pseudorapidity interval 3.23<{eta}<5.25 with large acceptance for the products of proton-proton and heavy ion collisions. The detector's primary purposes are determining the vertex of the interaction, providing a minimum bias trigger, finding the start time for time of flight (and other timing applications), and monitoring the luminosity. Monte Carlo simulations describe the pulse height response of the detector well, as does an analytic expression that has been developed. The detector performed well in the RHIC experiment BRAHMS.

  13. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 57, HIGH PT PHYSICS AT RHIC, DECEMBER 2-6, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Kretzer, Stefan; Venugopalan, Raju; Vogelsang, Werner

    2004-02-18

    The AuAu, dAu, and pp collision modes of the RHIC collider at BNL have led to the publication of exciting high p{perpendicular} particle production data. There have also been two physics runs with polarized protons, and preliminary results on the double-spin asymmetry for pion production had been presented very recently. The ontological questions behind these measurements are fascinating: Did RHIC collisions create a Quark-Gluon-Plasma phase and did they verify the Color Glass Condensate as the high energy limit of QCD? Will the Spin Crisis finally be resolved in terms of gluon polarization and what new surprises are we yet to meet for Transverse Spin? Phenomena related to sub-microscopic questions as important as these call for interpretations that are footed in solid theory. At large p{perpendicular}, perturbative concepts are legitimately expected to provide useful approaches. The corresponding hard parton dynamics are, in several ways, key to unraveling the initial or final state and collisional phase of hard scattering events in vacuum as well as in hot or cold nuclear matter. Before the advent of RHIC data, a RIKEN-BNL workshop had been held at BNL in March 1999 on ''Hard Parton Physics in High Energy Nuclear Collisions''. The 2003 workshop on ''High p{perpendicular} Physics at RHIC'' was a logical continuation of this previous workshop. It gave the opportunity to revisit the 1999 expectations in the light of what has been found in the meantime and, at the same time, to critically discuss the underlying theoretical concepts. We brought together theorists who have done seminal work on the foundations of parton phenomenology in field theory, with theorists and experimentalists who are presently working on RHIC phenomenology. The participants were both from a high-energy physics and nuclear physics background and it remains only to be said here that this chemistry worked perfectly and the workshop was a great success.

  14. Performances of the Si microstrip detector of the STAR experiment at RHIC; Performances du detecteur en silicium a micropistes de l'experience STAR a RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Bouchet, J

    2007-10-15

    The Silicon Strip Detector (SSD) is the fourth layer of detector using a double-sided microstrip technology of the STAR experiment at RHIC, completing STAR's inner tracking device. The goal of STAR is to study heavy ions collisions in order to probe the existence of the quark gluon plasma (QGP), a deconfined state of nuclear matter. Strangeness enhancement, such as {kappa}{sub S}{sup 0}, {lambda}, {xi} and {omega}, for particles production, has been proposed to sign the formation of QGP. Then precise measurement of secondary vertices is needed. The SSD will also permit an attempt to use the inner tracking device to measure charm and beauty with direct topological identification. It was proposed to enhance the STAR tracking capabilities by providing a better connection between reconstructed tracks in the main tracking device (TPC) and the initial vertex detector (SVT). In this thesis, we will present the intrinsic performances of the SSD and its impact on the inner tracking system performances by studying Cu-Cu collisions occurred at RHIC in 2005. We show that the SSD detector has excellent performances in terms of resolution: (945 {+-} 18) {mu}m in azimuth and (1021 {+-} 13) {mu}m along the beam axis. For the final result when SSD is associated to the SVT the resolutions are (281 {+-} 1) {mu}m and (213 {+-} 0.8) {mu}m in azimuth and along the beam axis respectively. The resolution reached by the addition of the Silicon Vertex detectors of STAR will allow the search for rare particles like charm and beauty, which have a decay-length of the order of hundred microns.

  15. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON SPIN PHYSICS AT RHIC IN YEAR-1 AND BEYOND.

    Energy Technology Data Exchange (ETDEWEB)

    BLAND, L.; BOER, D.; SAITO, N.; VOGELSANG, W.

    2001-05-14

    The much anticipated RHIC spin physics program will commence this fall when the first physics run with colliding beams of polarized protons is expected. More specifically, the planned year-1 RHIC-Spin measurements are (1) the double-spin asymmetry A{sub LL}{sup {pi}} in production of pions by collisions of longitudinally polarized protons (in order to obtain first information on the proton's spin-dependent gluon density, {Delta}g); (2) the transverse single-spin asymmetry A{sub N}{sup {pi}} for pion production. These two reactions provided part of the motivation for our workshop. On the first day there were informative talks on the specific plans of STAR (by Rakness) and PHENIX (by Goto) for the polarized run of Year-1. Some of the theoretical questions related to the double-spin asymmetry A{sub LL}{sup {pi}} were discussed on the first day by Vogelsang and Kretzer, which centered mostly around the questions of how well the unpolarized fragmentation functions are known, the need for next-to-leading order calculations, and on how sensitive the asymmetry is to the possible {Delta}g distributions. Vetterli presented HERMES measurements of fragmentation functions, which overlap in Q{sup 2} with the future lower-p{sub T} measurements at RHIC.

  16. 18th International Workshop on Radiation Imaging Detectors

    CERN Document Server

    2016-01-01

    The International Workshops on Radiation Imaging Detectors are held yearly and provide an international forum for discussing current research and developments in the area of position sensitive detectors for radiation imaging, including semiconductor detectors, gas and scintillator-based detectors. Topics include processing and characterization of detector materials, hybridization and interconnect technologies, design of counting or integrating electronics, readout and data acquisition systems, and applications in various scientific and industrial fields. The workshop will have plenary sessions with invited and contributed papers presented orally and in poster sessions. The invited talks will be chosen to review recent advances in different areas covered in the workshop.

  17. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON BARYON DYNAMICS AT RHIC, MARCH 28-30, 2002, BROOKHAVEN NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    GYULASSY,M.; KHARZEEV,D.; XU,N.

    2002-03-28

    One of the striking observations at RHIC is the large valence baryon rapidity density observed at mid rapidity in central Au+Au at 130 A GeV. There are about twice as many valence protons at mid-rapidity than predicted based on extrapolation from p+p collisions. Even more striking PHENIX observed that the high pt spectrum is dominated by baryons and anti-baryons. The STAR measured event anisotropy parameter v2 for lambdas are as high as charged particles at pt {approx} 2.5 GeV/c. These are completely unexpected based on conventional pQCD parton fragmentation phenomenology. One exciting possibility is that these observables reveal the topological gluon field origin of baryon number transport referred to as baryon junctions. Another is that hydrodynamics may apply up to high pt in A+A. There is no consensus on what are the correct mechanisms for producing baryons and hyperons at high pt and large rapidity shifts and the new RHIC data provide a strong motivation to hold a meeting focusing on this class of observables. The possible role of junctions in forming CP violating domain walls and novel nuclear bucky-ball configurations would also be discussed. In this workshop, we focused on all measured baryon distributions at RHIC energies and related theoretical considerations. To facilitate the discussions, results of heavy ion collisions at lower beam energies, results from p+A /p+p/e+e collisions were included. Some suggestions for future measurements have been made at the workshop.

  18. 2015 INFN Workshop on Future Detectors

    Science.gov (United States)

    Italy has been one of the key players in the effort that led to the discovery awarded the 2013 Nobel Prize for Physics, having provided a highly recognized technological contribution both to the LHC and to the experiments. The top priority of the European Strategy for Particle Physics is the exploitation of the full potential of the LHC including the high-luminosity upgrade of the machine and detectors. To be able to contribute at the international level and to foster common R&D projects the INFN Workshop on Future Detectors for HL-LHC (IFD2014) was held in Trento (March 11-13, 2014) to focus on the upgrades of the experiments for the High Luminosity LHC. The goal was to establish an open framework to discuss and work on new ideas for research and development where expertise can be shared and expanded across the different INFN experimental groups. This effort aimed to explore and consolidate a constructive interaction within different national research centers, facilities and industry also to better prepare for Horizon2020 applications. At the same time INFN started the What Next (WN) program, a process based on open and wide discussions to investigate possible new research ideas and to promote new science-driven experiments. It is clear that new or improved technologies play a crucial role to pave the road towards the necessary breakthrough for possible discoveries. With this aim IFD2015 in Torino, became the INFN Workshop on Future Detectors (December 16-18, 2015), where the What Next challenge to identify new ideas to be explored was technology-driven exploiting cross synergies coming out from different research groups, research facilities and industry.

  19. Workshop on detectors for third-generation synchrotron sources: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    The aims of the workshop were (1) to acquaint APS users with current R and D being carried out on detectors, (2) to identify new detector systems possible during the next five years, (3) to identify new detectors theoretically possible in the future, (4) to stimulate interactions between user groups and detector developers, and (5) to obtain recommendations from expert panels on technical issues needing resolution. Development of detectors at ESRF, Spring-8, BNL, CERN and LBL are included.

  20. Proceedings of the Second Infrared Detector Technology Workshop

    Science.gov (United States)

    Mccreight, C. R. (Compiler)

    1986-01-01

    The workshop focused on infrared detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers are organized into the following categories: discrete infrared detectors and readout electronics; advanced bolometers; intrinsic integrated infrared arrays; and extrinsic integrated infrared arrays. Status reports on the Space Infrared Telescope Facility (SIRTF) and Infrared Space Observatory (ISO) programs are also included.

  1. The PHENIX experiment at RHIC

    CERN Document Server

    Aronson, Samuel H

    2001-01-01

    PHENIX is a large detector at the Relativistic Heavy Ion Collider (RHIC) at BNL. RHIC and PHENIX have recently operated for the first time, producing and detecting collisions of gold ions at beam energies of 30 and 65 GeV per nucleon. The current performance and future plans of PHENIX and of RHIC are presented. (2 refs).

  2. Proceedings of the Third Infrared Detector Technology Workshop

    Science.gov (United States)

    Mccreight, Craig R. (Compiler)

    1989-01-01

    This volume consists of 37 papers which summarize results presented at the Third Infrared Detector Technology Workshop, held February 7-9, 1989, at Ames Research Center. The workshop focused on infrared (IR) detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers on discrete IR detectors, cryogenic readouts, extrinsic and intrinsic IR arrays, and recent results from ground-based observations with integrated arrays were given. Recent developments in the second-generation Hubble Space Telescope (HST) infrared spectrometer and in detectors and arrays for the European Space Agency's Infrared Space Observatory (ISO) are also included, as are status reports on the Space Infrared Telescope Facility (SIRTF) and the Stratospheric Observatory for Infrared Astronomy (SOFIA) projects.

  3. ϕ Meson Measurements at Forward/Backward Rapidity at RHIC with PHENIX Detector

    Science.gov (United States)

    He, Xiaochun; Phenix Collaboration

    2016-09-01

    Given the relatively small hadronic interaction cross section, ϕ meson production provide a unique and complimentary method for exploring the hot and dense medium properties created in the relativistic heavy ion collisions. In this talk, a summary of the ϕ measurements at forward and backward rapidities in p+p, d+Au, Cu+Au collisions in the PHENIX experiment at RHIC will be given. Office of Science, Department of Energy.

  4. Proceedings of PIXEL98 -- International pixel detector workshop

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.F.; Kwan, S. [eds.

    1998-08-01

    Experiments around the globe face new challenges of more precision in the face of higher interaction rates, greater track densities, and higher radiation doses, as they look for rarer and rarer processes, leading many to incorporate pixelated solid-state detectors into their plans. The highest-readout rate devices require new technologies for implementation. This workshop reviewed recent, significant progress in meeting these technical challenges. Participants presented many new results; many of them from the weeks--even days--just before the workshop. Brand new at this workshop were results on cryogenic operation of radiation-damaged silicon detectors (dubbed the Lazarus effect). Other new work included a diamond sensor with 280-micron collection distance; new results on breakdown in p-type silicon detectors; testing of the latest versions of read-out chip and interconnection designs; and the radiation hardness of deep-submicron processes.

  5. PHYSICS OF POLARITY AT RHIC-VOLUME 10.

    Energy Technology Data Exchange (ETDEWEB)

    IMAI,K.; FIELDS,D.

    1998-08-04

    The RBRC Workshop on Physics of Polarimetry at RHIC was held from Aug 4 to 7, 1998 at BNL. The primary motive of the workshop is (1) to discuss the RHIC polarimeter using the elastic proton-carbon scattering at Coulomb-nuclear interference region (p-C CNI polarimeter) in detail and write a proposal for the test experiment a t the AGS, (2) to discuss the related physics, (3) and to discuss other options for the RHIC polarimetry. The idea of the p-C CNI polarimeter was proposed last year as a simple, inexpensive and efficient polarimeter for RHIC. In order to establish this polarimeter, we have decided to carry out a test experiment by using a polarized beam at the AGS. We have made a draft of the proposal during the workshop. For the p-C CNI polarimeter, a telescope detector using both the micro-channel plate (MCP) and the SSD was proposed to detect low energy recoil carbon ions, based on the test measurements at IUCF and Kyoto, where the carbon ions as low as 200 keV were successfully detected. The kinetic energy of carbon ion is measured with the SSD, and the velocity is measured by TOF between the two detectors and between the accelerator rf pulse and the two detectors. Counting rates for the background and true events were estimated. With the proposed polarimeter, one can expect to measure the beam polarization at the AGS and RHIC at an accuracy of 10% within a reasonable time period. We will test this detector system at Kyoto as soon as possible and install it in the AGS ring for the test measurement of A{sub N} during E880 which is scheduled early in the next year.

  6. Measurement of the Central Exclusive Production of pion pairs using tagged forward protons at the STAR detector at RHIC

    Directory of Open Access Journals (Sweden)

    Turnau Jacek

    2012-12-01

    Full Text Available We present preliminary measurement of the invariant mass spectrum of the two oppositely charged pions produced in the process pp → pπ+π−p (Central Exclusive Production, obtained with the STAR detector at RHIC at √(s = 200 GeV. The Roman Pots were used to tag forward protons and the invariant mass of the pion pair was obtained using tracks reconstructed in the STAR Time Projection Chamber (TPC. The non-exclusive background estimated from events with like-sign track pairs is small, thus proof of principle of this type of the measurement at small momentum transfer to proton is established. Plans for the future are also discussed.

  7. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON RHIC SPIN PHYSICS III AND IV, POLARIZED PARTONS AT HIGH Q2 REGION, AUGUST 3, 2000 AT BNL, OCTOBER 14, 2000 AT KYOTO UNIVERSITY.

    Energy Technology Data Exchange (ETDEWEB)

    BUNCE, G.; VIGDOR, S.

    2001-03-15

    International workshop on II Polarized Partons at High Q2 region 11 was held at the Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan on October 13-14, 2000, as a satellite of the international conference ''SPIN 2000'' (Osaka, Japan, October 16-21,2000). This workshop was supported by RIKEN (The Institute of Physical and Chemical Research) and by Yukawa Institute. The scientific program was focused on the upcoming polarized collider RHIC. The workshop was also an annual meeting of RHIC Spin Collaboration (RSC). The number of participants was 55, including 28 foreign visitors and 8 foreign-resident Japanese participants, reflecting the international nature of the RHIC spin program. At the workshop there were 25 oral presentations in four sessions, (1) RHIC Spin Commissioning, (2) Polarized Partons, Present and Future, (3) New Ideas on Polarization Phenomena, (4) Strategy for the Coming Spin Running. In (1) the successful polarized proton commissioning and the readiness of the accelerator for the physics program impressed us. In (2) and (3) active discussions were made on the new structure function to be firstly measured at RHIC, and several new theoretical ideas were presented. In session (4) we have established a plan for the beam time requirement toward the first collision of polarized protons. These proceedings include the transparencies presented at the workshop. The discussion on ''Strategy for the Coming Spin Running'' was summarized by the chairman of the session, S. Vigdor and G. Bunce.

  8. 2nd Workshop on Jet Modification in the RHIC and LHC Era

    CERN Document Server

    2013-01-01

    A workshop organized jointly by the Wayne State Heavy Ion Group and the JET Collaboration. The goal of this 2 1/2 day meeting is to review the most important new experimental measurements and theoretical breakthroughs that have occurred in the past year andto throughly explore the limits of perturbative QCD based approaches to the description of hard processes in heavy-ion collisions. Over the period of three days, topics covered will include new experimental observables that may discern between different perturbative approaches, the inevitable transformation of analytic schemes to Monte-Carlo event generators, and the progress made towards Next to Leading Order calculations of energy loss. The workshop is intended to be slow paced:We envision a mixture of longer invited talks and shorter contributed talks,allowing sufficient time for discussion, as well as time to follow up on more technical aspects of the data analysis and theoretical calculations. One of the outcomes of this workshop will be a ...

  9. RHIC instrumentation

    Science.gov (United States)

    Shea, T. J.; Witkover, R. L.

    1998-12-01

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 1011 protons to 250 GeV, or 109 fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test.

  10. RESEARCH PLAN FOR SPIN PHYSICS AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    AIDALA, C.; BUNCE, G.; ET AL.

    2005-02-01

    In this report we present the research plan for the RHIC spin program. The report covers (1) the science of the RHIC spin program in a world-wide context; (2) the collider performance requirements for the RHIC spin program; (3) the detector upgrades required, including timelines; (4) time evolution of the spin program.

  11. Single Cluster π0 Reconstruction at High Energy Using the MPC-EX Detector at RHIC-PHENIX

    Science.gov (United States)

    White, John; Phenix Collaboration

    2016-09-01

    Most photons produced in collisions at the Relativistic Heavy Ion Collider (RHIC) at Brookehaven National Laboratory (BNL) originate from the decay of π0 mesons. The Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) is a versatile detector and it is capable of detecting photons with energy >40 GeV at forward rapidity using the Muon Piston Calorimeter (MPC). At these high energies the photons decay with such a small opening angle that the MPC cannot resolve the two photons, but the two photons can be still be disambiguated in the MPC-Extension (MPC-EX), a Si-W preshower detector. An algorithm that detects the photon peaks and calculates their opening angle has been developed. Using knowledge of the opening angle, total energy of the shower and asymmetry, it is possible to reconstruct the mass of the π0. We will show the current state of the high energy π0 analysis in d+Au collisions. National Science Foundation.

  12. The silicon drift vertex detector for the STAR experiment at RHIC

    CERN Document Server

    Pandey, S U; Beuttenmüller, Rolf H; Caines, H; Chen, W; Dimassimo, D; Dyke, H; Elliot, D; Eremin, V; Grau, M; Hoffmann, G W; Humanic, T; Ilyashenko, Yu S; Kotov, I; Kraner, H W; Kuczewski, P; Leonhardt, B; Li, Z; Liaw, C J; Lo Curto, G; Middelkamp, P; Minor, R; Munhoz, M; Ott, G; Pruneau, C A; Rykov, V L; Schambach, J; Sedlmeir, J; Soja, B; Sugarbaker, E R; Takahashi, J; Wilson, K; Wilson, R

    2002-01-01

    The current status of the STAR Silicon Vertex Tracker (SVT) is presented. The performance of the Silicon Drift Detectors (SDD) is discussed. Results for a recent 15 layer SDD tracker which prototypes all components of the SVT are presented. The enhanced physics capabilities of the STAR detector due to the addition of the SVT are addressed.

  13. Innovative Long Wavelength Infrared Detector Workshop Proceedings

    Science.gov (United States)

    1995-12-01

    barrier - h v "* Low quantum efficiency Obn= 0.8 -• -0.2 for GalnAs Ec2 AEC n+ n 260 FERMI LEVEL POSIoN T 300 2000 250 ._ o4 1500 ~200 150 - 1000 s I0...sensitivities close to the a"of. This property avoids a serious weak~ness of Schottky detector where the Fowlers depen den provides reasonabl OE only a...Substitutional Doping: p-Type ( Arsenic ) HgT*.HgfjCdL.7T* Supertattice HgT*.HgguCd&7T* Supalatiica ~. (A74) 3. -.*4I (AIQ 3 Dsmbb.LArm . L,- 3 U of

  14. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED "GLOBAL ANALYSIS OF POLARIZED PARTON DESTRIBUTIONS IN THE RHIC ERA" (VOLUME 86).

    Energy Technology Data Exchange (ETDEWEB)

    DESHPANDE,A.; VOGELSANG, W.

    2007-10-08

    The determination of the polarized gluon distribution is a central goal of the RHIC spin program. Recent achievements in polarization and luminosity of the proton beams in RHIC, has enabled the RHIC experiments to acquire substantial amounts of high quality data with polarized proton beams at 200 and 62.4 GeV center of mass energy, allowing a first glimpse of the polarized gluon distribution at RHIC. Short test operation at 500 GeV center of mass energy has also been successful, indicating absence of any fundamental roadblocks for measurements of polarized quark and anti-quark distributions planned at that energy in a couple of years. With this background, it has now become high time to consider how all these data sets may be employed most effectively to determine the polarized parton distributions in the nucleon, in general, and the polarized gluon distribution, in particular. A global analysis of the polarized DIS data from the past and present fixed target experiments jointly with the present and anticipated RHIC Spin data is needed.

  15. A transition radiation detector for RHIC featuring accurate tracking and dE/dx particle identification

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H. [Brookhaven National Lab., Upton, NY (United States); Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W. [Columbia Univ., New York, NY (United States); Cherniatin, V.; Dolgoshein, B. [Moscow Institute of Physics and Engineering, (Russian Federation); Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K. [Yale Univ., New Haven, CT (United States)

    1991-12-31

    We describe the results of a test ran involving a Transition Radiation Detector that can both distinguish electrons from pions which momenta greater titan 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most, efficient below 2 GeV/c while particle ID utilizing Transition Radiation effective above 1.5 GeV/c. Combined, the electron-pion separation is-better than 5 {times} 10{sup 2}. The single-wire, track-position resolution for the TRD is {approximately}230 {mu}m.

  16. PREFACE: 2nd Workshop on Germanium Detectors and Technologies

    Science.gov (United States)

    Abt, I.; Majorovits, B.; Keller, C.; Mei, D.; Wang, G.; Wei, W.

    2015-05-01

    The 2nd workshop on Germanium (Ge) detectors and technology was held at the University of South Dakota on September 14-17th 2014, with more than 113 participants from 8 countries, 22 institutions, 15 national laboratories, and 8 companies. The participants represented the following big projects: (1) GERDA and Majorana for the search of neutrinoless double-beta decay (0νββ) (2) SuperCDMS, EDELWEISS, CDEX, and CoGeNT for search of dark matter; (3) TEXONO for sub-keV neutrino physics; (4) AGATA and GRETINA for gamma tracking; (5) AARM and others for low background radiation counting; (5) as well as PNNL and LBNL for applications of Ge detectors in homeland security. All participants have expressed a strong desire on having better understanding of Ge detector performance and advancing Ge technology for large-scale applications. The purpose of this workshop was to leverage the unique aspects of the underground laboratories in the world and the germanium (Ge) crystal growing infrastructure at the University of South Dakota (USD) by brining researchers from several institutions taking part in the Experimental Program to Stimulate Competitive Research (EPSCoR) together with key leaders from international laboratories and prestigious universities, working on the forefront of the intensity to advance underground physics focusing on the searches for dark matter, neutrinoless double-beta decay (0νββ), and neutrino properties. The goal of the workshop was to develop opportunities for EPSCoR institutions to play key roles in the planned world-class research experiments. The workshop was to integrate individual talents and existing research capabilities, from multiple disciplines and multiple institutions, to develop research collaborations, which includes EPSCor institutions from South Dakota, North Dakota, Alabama, Iowa, and South Carolina to support multi-ton scale experiments for future. The topic areas covered in the workshop were: 1) science related to Ge

  17. ϕ Meson Production at Forward Rapidity with the PHENIX Detector at RHIC

    Science.gov (United States)

    Sarsour, Murad

    2017-12-01

    The ϕ meson production in p+p collisions is an important tool to study QCD, providing data to tune phenomenological QCD models, while in high-energy heavy-ion collisions it provides key information on the hot and dense state of the strongly interacting matter produced in such collisions. It is sensitive to the medium-induced effects such as strangeness enhancement, a phenomenon associated with soft particles in bulk matter. Measurements in the dilepton channels are especially interesting since leptons interact only electromagnetically, thus carrying the information from their production phase directly to the detector. Measurements in different nucleus-nucleus collisions allow us to perform a systematic study of the nuclear medium effects on ϕ meson production. The PHENIX detector provides the capabilities to measure the ϕ meson production in a wide range of transverse momentum and rapidity to study various cold nuclear effects such as soft multiple parton rescattering and modification of the parton distribution functions in nuclei. In this proceeding, we report the most recent PHENIX results on ϕ meson production in p+p, d+Au and Cu+Au collisions.

  18. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP: VOLUME 61 RIKEN-TODAI MINI-WORKSHOP ON ''TOPICS IN HADRON PHYSICS AT RHIC''. VOLUME 61

    Energy Technology Data Exchange (ETDEWEB)

    EN' YO,H.HAMAGAKI,H.HATSUDAT.WATANABA,Y.YAZAKI,K.

    2004-05-26

    The RIKEN-TODAI Mini-Workshop on ''Topics in Hadron Physics at RHIC'' was held on March 23rd and 24th, 2064 at the Nishina Memorial Hall of RIKEN, Wako, Saitama, Japan, sponsored by RIKEN (Institute of Physical and Chemical Research) and TODAI (University of Tokyo). The workshop was planned when we learned that two distinguished theorists in hadron physics, Professors L. McLerran and S.H. Lee, would be visiting TODAI and/or RIKEN during the week of March 22-26. We asked them to give key talks at the beginning of the workshop and attend the sessions consisting of talks by young theorists in RIKEN, TODAI and other institutes in Japan and they kindly agreed on both. Considering the JPS meeting scheduled from March 27 through 30, we decided to have a.one-and-half-a-day workshop on March 23 and 24. The purpose of the workshop was to offer young researchers an opportunity to learn the forefront of hadron physics as well as to discuss their own works with the distinguished theorists.

  19. Heavy Flavor Results at RHIC - A Comparative Overview

    OpenAIRE

    Dong, Xin

    2012-01-01

    I review the latest heavy flavor measurements at RHIC experiments. Measurements from RHIC together with preliminary results from LHC offer us an opportunity to systematically study the sQGP medium properties. In the end, I will outlook a prospective future on precision heavy flavor measurements with detector upgrades at RHIC.

  20. The PHENIX Experiment at RHIC

    OpenAIRE

    PHENIX Collaboration; Morrison, David P.

    1998-01-01

    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.

  1. Two particle interferometry at RHIC

    CERN Document Server

    Laue, F

    2002-01-01

    We present preliminary results from a pion interferometry analysis of Au+Au collisions at square root (S/sub NN/)=130 GeV, recorded with the STAR (Solenoidal Tracker At RHIC) detector at the Relativistic Heavy Ion Collider (RHIC). The evaluation of three-dimensional correlation functions indicates increasing source sizes with increasing event centrality. The dependence of the calculated HBT radii on transverse momentum is attributed to strong space-momentum correlations (transverse flow). In the study presented in this paper we have not observed anomalously large source sizes as have been predicted as a signal for quark-qluon plasma formation. However, the measured HBT radii seem to follow the trend established at lower energies (AGS/SPS). We find the ratio R/sub o//R/sub s/ approximately =1, suggesting a short duration of pion emission. The "universal" pion phase space density, observed at AGS/SPS, seems to hold also at RHIC. (26 refs).

  2. Reconstructing π0 Decays at Intermediate Energy Using the MPC-EX Detector at RHIC-PHENIX

    Science.gov (United States)

    Bethancourt, Hugo; Phenix Collaboration

    2016-09-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory produces π0s that decay into the majority of photons detected by the Pioneering High Energy Nuclear Interaction eXperiment (PHENIX). The Muon Piston Calorimeter (MPC) in PHENIX is a PbWO4 electromagnetic calorimeter situated at forward rapidity (3< | η | <4). The preshower MPC-EX is a Si-W extension to the MPC that detects the decay photon shower position with higher spatial resolution than the MPC. The lowest energy π0s decay into photons that are separated in the MPC while the highest energy π0s decay to photons that are reconstructed as a single electromagnetic shower. At intermediate energies, both can happen and fluctuations in the showers are larger than at higher energies. Care must be taken to reconstruct π0s at these energies. We will show the current status of the analysis of intermediate energy π0s in √{sNN} = 200 GeV d+Au collisions. National Science Foundation.

  3. Summary of the very large hadron collider physics and detector workshop

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, G.; Berger, M.; Brandt, A.; Eno, S. [and others

    1997-10-01

    One of the options for an accelerator beyond the LHC is a hadron collider with higher energy. Work is going on to explore accelerator technologies that would make such a machine feasible. This workshop concentrated on the physics and detector issues associated with a hadron collider with an energy in the center of mass of the order of 100 to 200 TeV.

  4. ABSOLUTE POLARIMETRY AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  5. Monolithic readout circuits for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, P.; Harder, J. [Brookhaven National Laboratory, Upton, NY (United States)

    1991-12-31

    Several CMOS ASICs have been developed for a proposed RHIC experiment. This paper discusses why ASIC implementation was chosen for certain functions, circuit specifications and the design techniques used to meet them, and results of simulations and early prototypes. By working closely together from an early stage in the planning process, in-house ASIC designers and detector and data acquisition experimenters can achieve optimal use of this important technology.

  6. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, RHIC SPIN COLLABORATION MEETINGS VIII, IX, X, XI, APRIL 12, MAY, 22, JUNE 17, JULY 29, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,B.

    2003-03-06

    Since its inception, the RHIC Spin Collaboration (RSC) has held semi-regular meetings each year to discuss the physics possibilities and the operational details of the program. Having collected our first data sample of polarized proton-proton collisions in Run02 of RHIC, we are now in the process of examining the performance of both the accelerator and the experiments. From this evaluation, we not only aim to formulate a consensus plan for polarized proton-proton during Run03 of RHIC but also to look more forward into the future to ensure the success of the spin program. In the second meeting of this series (which took place at BNL on April 12, 2002), we focused on Run02 polarization issues. This meeting opened with a presentation by Thomas Roser about his reflections on the outcome from the RHIC retreat during which the Run02 performance was evaluated. Of particular importance, Thomas pointed out that, with the expected beam time and his estimates for machine-tuning requirements, the experiments should limit their beam requests to two or three programs.

  7. A prototype ionization profile monitor for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Cameron, P.; Ryan, W. [and others

    1997-07-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPM`s). Each IPM collects and measures the distribution of electrons in the beamline resulting from residual gas ionization during bunch passage. The electrons are swept transversely from the beamline and collected on strip anodes oriented parallel to the beam axis. At each bunch passage the charge pulses are amplified, integrated, and digitized for display as a profile histogram. A prototype detector was tested in the injection line during the RHIC Sextant Test. This paper describes the detector and gives results from the beam tests.

  8. Design,construction and commissioning of a cylinder of double-sided silicon micro-strips detectors for the Star experiment at RHIC; Developpement et mise en oeuvre de detecteurs silicium a micropistes pour l'experience star

    Energy Technology Data Exchange (ETDEWEB)

    Guedon, M

    2005-05-15

    This study has been performed in the frame of quark gluon plasma physics research in the STAR experiment at RHIC. It deals with the design, the construction and the commissioning of a barrel of silicon-strip detectors (SSD). Added to the Silicon Vertex Tracker (SVT) of the STAR detector, it extends the capabilities of track reconstruction for charged particles emitted in ultra-relativistic heavy-ion collisions. It also contributes to the general study of the quark-gluon plasma production undertaken at STAR. The SSD is a cylinder of 1 m long and of 23 cm radius, and it is composed of 320 compact identical modules. Each module includes one double-sided silicon micro-strip detector, 12 readout chips ALICE 128C, 12 TAB ribbons, 2 COSTAR control chips and 2 hybrids supporting all the components. The document explains why the SSD is an important and relevant element, and justifies the technological choices as well as their validation by in-beam characterization. All component functionalities, characteristics and test procedures are presented. The data and test results are stored in a database for tracing purpose. Component and module production is described. Two parallel studies have been performed, analysed and described. One on the temperature dependence of the module performances and the other one on the optimal adjustments of the analogue blocks inside the ALICE 128C chip. The SSD installation on the RHIC site as well as the commissioning are presented together with the first data takings. (author)

  9. Study of the open charm and Drell-Yan production in p + p collisions at 200 GeV with the Phenix detector at RHIC; Etude de la production de charme ouvert et de Drell-Yan dans les collisions p + p a 200 GeV avec le detecteur Phenix a RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gadrat, S

    2005-09-15

    Ultra-relativistic heavy ions collisions allow the study of nuclear matter under extreme conditions of temperature and pressure and, more specifically, of a new phase of nuclear matter: the quarks and gluons plasma (QGP). The RHIC collider, located at the Brookhaven National Laboratory (Usa), produces such collisions. PHENIX, one of the four operational detectors at the collider, is the only one capable of measuring muons. In this dissertation, we present a dimuon data analysis, which data have been collected by PHENIX in p + p collisions during two data taking runs (3 and 4). p + p collisions provide a requisite reference for the understanding of heavy ions collisions. The aim of the analysis discussed in this dissertation is to extract the cross sections of the main physical components of the dimuon spectrum observed at RHIC for p + p collisions: J/{psi}, open charm and Drell-Yan. This analysis is based on a global line shape fit of the dimuon mass spectrum. This fit has been possible thanks to prior simulation study of the mass distribution shapes of these different components. Production yields were obtained from the fit. Lastly, the response function study for each components and the use of various efficiencies led to the estimate of the different production cross sections. The results have been compared to other existing measurements and show an overall good agreement. The work presented in this dissertation offers a first estimate of the open charm production cross section in the dimuon channel, as well as a first estimate of the Drell-Yan production cross section at RHIC for p + p collisions: {sigma}(J/{psi} {yields} {mu}{mu}) = (2.9 {+-} 0.1) {mu}b; {sigma}(cc-bar {yields} {mu}{mu}) = (0.96 {+-} 0.18) mb; {sigma}(Drell-Yan {yields} {mu}{mu}) = (0.20 {+-} 0.04) {mu}b.

  10. THE RHIC INJECTION SYSTEM.

    Energy Technology Data Exchange (ETDEWEB)

    FISCHER,W.; GLENN,J.W.; MACKAY,W.W.; PTITSIN,V.; ROBINSON,T.G.; TSOUPAS,N.

    1999-03-29

    The RHIC injection system has to transport beam from the AGS-to-RHIC transfer line onto the closed orbits of the RHIC Blue and Yellow rings. This task can be divided into three problems. First, the beam has to be injected into either ring. Second, once injected the beam needs to be transported around the ring for one turn. Third, the orbit must be closed and coherent beam oscillations around the closed orbit should be minimized. We describe our solutions for these problems and report on system tests conducted during the RHIC Sextant test performed in 1997. The system will be fully commissioned in 1999.

  11. The sPHENIX Experiment at RHIC

    Science.gov (United States)

    Haggerty, John; Sphenix Collaboration

    2017-09-01

    The proposed sPHENIX experiment at RHIC will make high statistics measurements of jets, jet correlations, and upsilon states in heavy ion collisions in the early 2020's. High resolution tracking coupled with uniform electromagnetic and hadronic calorimetry will be used to characterize the temperature dependence of transport coefficients of the quark-gluon plasma. Progress on the design of the detector, test results of prototypes, and expectations from full detector simulation which demonstrate the capabilities of the experiment will be presented.

  12. RHIC BEAM LOSS MONITOR SYSTEM INITIAL OPERATION.

    Energy Technology Data Exchange (ETDEWEB)

    WITKOVER,R.L.; MICHNOFF,R.J.; GELLER,J.M.

    1999-03-29

    The RHIC Beam Loss Monitor (BLM) System is designed to prevent beam loss quenching of the superconducting magnets, and acquire loss data. Four hundred ion chambers are located around the rings to detect losses. The required 8-decade range in signal current is compressed using an RC pre- integrator ahead of a low current amplifier. A beam abort may be triggered if fast or slow losses exceed programmable threshold levels. A micro-controller based VME module sets references and gains and reads trip status for up to 64 channels. Results obtained with the detectors in the RHIC Sextant Test and the prototype electronics in the AGS-to-RHIC (AtR) transfer line are presented along with the present status of the system.

  13. International Workshop on Semiconductor Pixel Detectors for Particles and Imaging (PIXEL2016)

    CERN Document Server

    Rossi, Leonardo; PIXEL2016

    2016-01-01

    The workshop will cover various topics related to pixel detector technology. Development and applications will be discussed for charged particle tracking in High Energy Physics, Nuclear Physics and Astrophysics, and for X-ray imaging in Astronomy, Biology, Medicine and Material Science. The conference program will also include reports on front and back end electronics, radiation effects, low mass mechanics, environmental control and construction techniques. Emerging technologies, such as monolithic and HV&HR CMOS, will also be treated. Will be published in: http://pos.sissa.it/

  14. Opportunities for Polarized He-3 in RHIC and EIC

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer E.; Deshpande, A.; Fischer, W.; Derbenev, S.; Milner, R.; Roser, T.; Zelenski, A.

    2011-10-01

    The workshop on opportunities for polarized He-3 in RHIC and EIC was targeted at finding practical ways of implementing and using polarized He-3 beams. Polarized He-3 beams will provide the unique opportunity for first measurements, i.e, to a full quark flavor separation measuring single spin asymmetries for p{sup +}, p{sup -} and p{sup 0} in hadron-hadron collisions. In electron ion collisions the combination of data recorded with polarized electron proton/He-3 beams allows to determine the quark flavor separated helicity and transverse momentum distributions. The workshop had sessions on polarized He-3 sources, the physics of colliding polarized He-3 beams, polarimetry, and beam acceleration in the AGS Booster, AGS, RHIC, and ELIC. The material presented at the workshop will allow making plans for the implementation of polarized He-3 beams in RHIC.

  15. The eRHIC Project

    OpenAIRE

    Burton Thomas

    2014-01-01

    The eRHIC project plans to expand Brookhaven National Laboratory’s Relativistic Heavy Ion Collider (RHIC) with a high-intensity electron beam. Building on the exciting discoveries of RHIC, CERN, HERA and others, eRHIC will break new ground in collider luminosity and will push the frontiers of knowledge in nucleon and nuclear structure and in spin physics. The varied eRHIC physics programme and the proposed machine design will be presented and discussed.

  16. The eRHIC Project

    Directory of Open Access Journals (Sweden)

    Burton Thomas

    2014-04-01

    Full Text Available The eRHIC project plans to expand Brookhaven National Laboratory’s Relativistic Heavy Ion Collider (RHIC with a high-intensity electron beam. Building on the exciting discoveries of RHIC, CERN, HERA and others, eRHIC will break new ground in collider luminosity and will push the frontiers of knowledge in nucleon and nuclear structure and in spin physics. The varied eRHIC physics programme and the proposed machine design will be presented and discussed.

  17. Note on RHIC polarimetry.

    Energy Technology Data Exchange (ETDEWEB)

    Spinka, H.

    1999-11-12

    For physics measurements with polarized colliding beams, beam polarizations and relative luminosities must both be determined. Predictions for spin observables of many interesting physics processes at RHIC are quite small in magnitude. This requires high statistics measurements of relative luminosities and careful control of systematic errors. Discussions about the polarized beams at RHIC often presume that the polarization and intensity of each bunch within a will be known quite well from measurements by the RHIC polarimeters. The purpose of this note is to give a description of the knowledge that can actually be obtained from these polarimeters.

  18. Summary and Outlook of the International Workshop on Aging Phenomena in Gaseous Detectors (DESY, Hamburg, October, 2001)

    CERN Document Server

    Titov, M L; Padilla, C; Tesch, N

    2002-01-01

    High Energy Physics experiments are currently entering a new era which requires the operation of gaseous particle detectors at unprecedented high rates and integrated particle fluxes. Full functionality of such detectors over the lifetime of an experiment in a harsh radiation environment is of prime concern to the involved experimenters. New classes of gaseous detectors such as large-scale straw-type detectors, Micro-pattern Gas Detectors and related detector types with their own specific aging effects have evolved since the first workshop on wire chamber aging was held at LBL, Berkeley in 1986. In light of these developments and as detector aging is a notoriously complex field, the goal of the workshop was to provide a forum for interested experimentalists to review the progress in understanding of aging effects and to exchange recent experiences. A brief summary of the main results and experiences reported at the 2001 workshop is presented, with the goal of providing a systematic review of aging effects in ...

  19. ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI,I.

    2001-05-13

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling.

  20. Measurement of Elliptic Llow in p+Au Collisions at √SNN = 200 GeV Using the PHENIX Detector at RHIC

    Science.gov (United States)

    Koblesky, Theodore E.

    The Quark Gluon Plasma (QGP), a hot and dense state of matter in which quarks are not confined inside hadrons, is thought to be the same as the matter comprising the entire universe approximately one microsecond after the Big Bang. In Au+Au collisions at √SNN = 200 GeV at the Relativistic Heavy Ion Collider (RHIC) and Pb+Pb collisions at √ SNN = 2.76 TeV at the Large Hadron Collider (LHC), QGP has been discovered to have unique properties, such as its opacity to color charges and the fact that it behaves like a near-perfect fluid. Collective behavior in the form of a substantial elliptical azimuthal anisotropy ( v2) in the momentum distribution of final state particles has been observed, indicating a strongly-coupled, hydrodynamically flowing medium. Recently, features of collectivity have been detected in high-multiplicity, small collision systems thought to be too small to produce the QGP, such as 3He+Au and d+Au at √SNN = 200 GeV, p+Pb at √SNN = 5 TeV, and in p+p = 13 TeV events. In order to constrain models seeking to describe this phenomena, collision systems with distinct initial collision geometries were run at RHIC: 3He+Au for triangular geometry, d+Au for elliptical geometry, and p+Au for circular geometry. Together with coauthors, in a theory paper published in 2014, we proposed the suite of measurements at RHIC of the three collision systems. This thesis is the completion of that set of three measurements, by measuring v2 in the p+Au system. This thesis gives details on the analysis techniques used to make the measurement including the quality assurance of the data, the optimization of the midrapidity charged hadron cuts, and the event plane angle calibration. Special attention is given to correcting the systematic effects produced by the beam alignment unique to the p+Au dataset in order to make the v2 measurement with sufficient precision. Comparisons of v2 in the three collision systems and various theoretical models are made and it appears to

  1. Heavy flavor in heavy-ion collisions at RHIC and RHIC II

    Energy Technology Data Exchange (ETDEWEB)

    Frawley, A D; Ullrich, T; Vogt, R

    2008-03-30

    In the initial years of operation, experiments at the Relativistic Heavy Ion Collider (RHIC) have identified a new form of matter formed in nuclei-nuclei collisions at energy densities more than 100 times that of a cold atomic nucleus. Measurements and comparison with relativistic hydrodynamic models indicate that the matter thermalizes in an unexpectedly short time, has an energy density at least 15 times larger than needed for color deconfinement, has a temperature about twice the critical temperature predicted by lattice QCD, and appears to exhibit collective motion with ideal hydrodynamic properties--a 'perfect liquid' that appears to flow with a near-zero viscosity to entropy ratio--lower than any previously observed fluid and perhaps close to a universal lower bound. However, a fundamental understanding of the medium seen in heavy-ion collisions at RHIC does not yet exist. The most important scientific challenge for the field in the next decade is the quantitative exploration of the new state of nuclear matter. That will require new data that will, in turn, require enhanced capabilities of the RHIC detectors and accelerator. In this report we discuss the scientific opportunities for an upgraded RHIC facility --RHIC II--in conjunction with improved capabilities of the two large RHIC detectors, PHENIX and STAR. We focus solely on heavy flavor probes. Their production rates are calculable using the well-established techniques of perturbative QCD and their sizable interactions with the hot QCD medium provide unique and sensitive measurements of its crucial properties making them one of the key diagnostic tools available to us.

  2. Highlights from BNL and RHIC 2015

    CERN Document Server

    Tannenbaum, M J

    2016-01-01

    Highlights of news from Brookhaven National Laboratory (BNL) and results from the Relativistic Heavy Ion Collider (RHIC) in the period July 2014-June 2015 are presented. The news this year was mostly very positive. The major event at BNL was the startup and dedication of the new NSLS II, "the World's brightest Synchrotron Light Source". The operation of RHIC was outstanding with a polarized p+p run at $\\sqrt{s}=200$ GeV with integrated luminosity that exceeded the sum of all previous p+p integrated luminosity at this $\\sqrt{s}$. For the first time at RHIC asymmetric p+Au and p+Al runs were made but the p+Al run caused damage in the PHENIX forward detectors from quenches that were inadequately shielded for this first p+A run. This was also the 10th anniversary of the 2005 announcement of the Perfect Liquid Quark Gluon Plasma at RHIC and a review is presented of the discoveries leading to this claim. A new result on net-charge fluctuations (with no particle identification) from PHENIX based on previous scans ov...

  3. RHIC FY15 pp Run RHIC and AGS polarization analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Adams, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-20

    The polarization information is important for the spin physics program in Relativistic Heavy Ion Collider (RHIC). There are discrepancies between AGS and RHIC polarization measurements. First, the face value of AGS polarization is higher than RHIC ones in general. Second, the measured polarization profile (described by the profile ratio R) is stronger in AGS than in RHIC. This note analyzes the polarization data from FY15 pp run period. The results show that the differences between AGS and RHIC polarization measurements are reasonable, but the R value difference is puzzling. The difference between blue and yellow ring is worth of spin simulation to explain.

  4. Workshop

    DEFF Research Database (Denmark)

    Hess, Regitze; Lotz, Katrine

    2003-01-01

    Program for en arkitektur-workshop med focus på de danske havne. Præsentation af 57 yngre danske og internationale deltagende arkitekter.......Program for en arkitektur-workshop med focus på de danske havne. Præsentation af 57 yngre danske og internationale deltagende arkitekter....

  5. RHIC SPIN FLIPPER

    Energy Technology Data Exchange (ETDEWEB)

    BAI,M.; ROSER, T.

    2007-06-25

    This paper proposes a new design of spin flipper for RHIC to obtain full spin flip with the spin tune staying at half integer. The traditional technique of using an rf dipole or solenoid as spin flipper to achieve full spin flip in the presence of full Siberian snake requires one to change the snake configuration to move the spin tune away from half integer. This is not practical for an operational high energy polarized proton collider like RHIC where beam lifetime is sensitive to small betatron tune change. The design of the new spin flipper as well as numerical simulations are presented.

  6. The PHOBOS experiment at the RHIC collider

    Energy Technology Data Exchange (ETDEWEB)

    Katzy, Judith M.; Back, B.; Baker, M.D.; Barton, D.; Betts, R.; Bialas, A.; Budzanowski, A.; Busza, W.; Carroll, A.; Chang, Y.-H.; Chen, A.E.; Coghen, T.; Czyz, W.; Decowski, M.P.; Friedl, M.; Galuszka, K.; Ganz, R.; Garcia-Solis, E.; George, N.; Godlewski, J.; Gulbrandsen, K.H.; Gushue, S.; Halliwell, C.; Hayes, A.; Heintzelman, G.; Holynski, R.; Holzman, B.; Jagadish, U.; Johnson, E.; Kotula, J.; Kucewicz, W.; Kulinich, P.; Lemler, M.; Lin, W.T.; Manly, S.; McLeod, D.; Michalowski, J.; Mignerey, A.; Muelmenstaedt, J.; Neal, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I.; Pernegger, H.; Plesko, M.; Remsberg, L.P.; Reuter, M.; Roland, G.; Rosenberg, L.; Sarin, P.; Sawicki, P.; Stanskas, P.J.; Stephans, G.S.F.; Stodulski, M.; Sukhanov, A.; Trzupek, A.; Van Nieuwenhuizen, G.; Vale, C.; Verdier, R.; Wadsworth, B.; Wolfs, F.; Wosiek, B.; Wozniak, K.; Wuosmaa, A.; Wyslouch, B.; Zalewski, K

    1999-12-27

    PHOBOS is one of four experiments at the Relativistic Heavy Ion Collider (RHIC), scheduled to start data collection in fall 1999. Its main goal is to collect events using minimum bias triggers. A search will then be made for interesting, and perhaps rare, classes of events that may indicate the formation of a quark gluon plasma (QGP) or the restoration of chiral symmetry. In this report we describe the PHOBOS detector design and present the first results in detector development. We will also present our expectations from the first year of operation.

  7. Beam Injection into RHIC

    Science.gov (United States)

    Fischer, W.; Hahn, H.; Mackay, W. W.; Tsoupas, N.

    1997-05-01

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. We describe the injection zone and its bottlenecks, the application program to steer the beam and the injection kickers. We report on the commissioning of the injection systems and on measurements of the kickers.

  8. Feasibility of Jet Shape Measurements at RHIC

    Science.gov (United States)

    Jeffas, Sean; STAR Collaboration

    2017-09-01

    One of the current main questions in nuclear physics is determining the properties of the Quark Gluon Plasma (QGP). One method of studying the properties of the QGP used at the Compact Muon Solenoid (CMS) is measuring the jet shapes, defined as the fractional transverse momentum radial distribution, in a heavy ion collision at a center of mass energy of 2.76 TeV. By comparing how these jets change in the presence of the QGP we can find out more about its properties. This method would be useful to measure the QGP's properties at the Relativistic Heavy Ion Collider (RHIC) at a center of mass energy of 200 GeV. Therefore simulations have been run at RHIC energies and STAR detector specifications to see if jet shape measurements would be feasible.

  9. Proceedings of RIKEN BNL Research Center workwhop on RHIC spin

    Energy Technology Data Exchange (ETDEWEB)

    SOFFER,J.

    1999-10-06

    This RHIC Spin Workshop is the 1999 annual meeting of the RHIC Spin Collaboration, and the second to be hosted at Brookhaven and sponsored by the RIKEN BNL Research Center. The previous meetings were at Brookhaven (1998), Marseille (1996), MIT in 1995, Argonne 1994, Tucson in 1991, and the Polarized Collider Workshop at Penn State in 1990. As noted last year, the Center provides a home for combined work on spin by theorists, experimenters, and accelerator physicists. This proceedings, as last year, is a compilation of 1 page summaries and 5 selected transparencies for each speaker. It is designed to be available soon after the workshop is completed. Speakers are welcome to include web or other references for additional material. The RHIC spin program and RHIC are rapidly becoming reality. RHIC has completed its first commissioning run, as described here by Steve Peggs. The first Siberian Snake for spin has been completed and is being installed in RHIC. A new polarized source from KEK and Triumf with over 1 milliampere of polarized H{sup minus} is being installed, described by Anatoli Zelenski. They have had a successful test of a new polarimeter for RHIC, described by Kazu Kurita and Haixin Huang. Spin commissioning is expected next spring (2000), and the first physics run for spin is anticipated for spring 2001. The purpose of the workshop is to get everyone together about once per year and discuss goals of the spin program, progress, problems, and new ideas. They also have many separate regular forums on spin. There are spin discussion sessions every Tuesday, now organized by Naohito Saito and Werner Vogelsang. The spin discussion schedule and copies of presentations are posted on http://riksg01.rhic.bnl.gov/rsc. Speakers and other spinners are encouraged to come to BNL and to lead a discussion on your favorite idea. They also have regular polarimeter and snake meetings on alternate Thursdays, led by Bill McGahern, the lead engineer for the accelerator spin

  10. HARD PARTON PHYSICS IN HIGH ENERGY NUCLEAR COLLISIONS. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 17

    Energy Technology Data Exchange (ETDEWEB)

    CARROLL,J.

    1999-09-10

    The RIKEN-BNL center workshop on ''Hard parton physics in high energy nuclear collisions'' was held at BNL from March 1st-5th! 1999. The focus of the workshop was on hard probes of nucleus-nucleus collisions that will be measured at RHIC with the PHENIX and STAR detectors. There were about 45 speakers and over 70 registered participants at the workshop, with roughly a quarter of the speakers from overseas. About 60% of the talks were theory talks. A nice overview of theory for RHIC was provided by George Sterman. The theoretical talks were on a wide range of topics in QCD which can be classified under the following: (a) energy loss and the Landau-Pomeranchuk-Migdal effect; (b) minijet production and equilibration; (c) small x physics and initial conditions; (d) nuclear parton distributions and shadowing; (e) spin physics; (f) photon, di-lepton, and charm production; and (g) hadronization, and simulations of high pt physics in event generators. Several of the experimental talks discussed the capabilities of the PHENIX and STAR detectors at RHIC in measuring high pt particles in heavy ion collisions. In general, these talks were included in the relevant theory sessions. A session was set aside to discuss the spin program at RHIC with polarized proton beams. In addition, there were speakers from 08, HERA, the fixed target experiments at Fermilab, and the CERN fixed target Pb+Pb program, who provided additional perspective on a range of issues of relevance to RHIC; from jets at the Tevatron, to saturation of parton distributions at HERA, and recent puzzling data on direct photon production in fixed target experiments, among others.

  11. Opportunities for Drell-Yan Physics at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, E.; Bland, L.; Crawford, H.; Goto, Y.; Eyser, O.; Kang, Z.; Vossen, A.

    2011-05-24

    Drell-Yan (DY) physics gives the unique opportunity to study the parton structure of nucleons in an experimentally and theoretically clean way. With the availability of polarized proton-proton collisions and asymmetric d+Au collisions at the Relativistic Heavy Ion Collider (RHIC), we have the basic (and unique in the world) tools to address several fundamental questions in QCD, including the expected gluon saturation at low partonic momenta and the universality of transverse momentum dependent parton distribution functions. A Drell-Yan program at RHIC is tied closely to the core physics questions of a possible future electron-ion collider, eRHIC. The more than 80 participants of this workshop focused on recent progress in these areas by both theory and experiment, trying to address imminent questions for the near and mid-term future.

  12. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  13. RHIC LUMINOSITY UPGRADE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.

    2010-05-23

    The Relativistic Heavy Ion Collider (RHIC) operates with either ions or polarized protons. After increasing the heavy ion luminosity by two orders of magnitude since its commissioning in 2000, the current luminosity upgrade program aims for an increase by another factor of 4 by means of 3D stochastic cooling and a new 56 MHz SRF system. An Electron Beam Ion Source is being commissioned that will allow the use of uranium beams. Electron cooling is considered for collider operation below the current injection energy. For the polarized proton operation both luminosity and polarization are important. In addition to ongoing improvements in the AGS injector, the construction of a new high-intensity polarized source has started. In RHIC a number of upgrades are under way to increase the intensity and polarization transmission to 250 GeV beam energy. Electron lenses will be installed to partially compensate the head-on beam-beam effect.

  14. PHOBOS at RHIC 2000

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E.; Baum, R.; Bindel, R.; Mignerey, A.; Shea, J. [University of Maryland (United States); Back, B.B.; Betts, R.R.; George, N.; Wuosmaa, A.H. [Argonne National Laboratory (United States); Baker, M.D.; Barton, D.S.; Carroll, A.; Ceglia, M.; Gushue, S.; Heintzelman, G.A.; Kraner, H.; Olszewski, A.; Pak, R.; Remsberg, L.P.; Scaduto, J.; Sinacore, J.; Steinberg, P.; Sukhanov, A. [Brookhaven National Laboratory, (United States); Bogucki, W.; Budzanowski, A.; Coghen, T.; Dabrowski, B.; Despet, M.; Galuszka, K.; Godlewski, J.; Halik, J.; Holynski, R.; Kita, W.; Kotula, J.; Lemler, M.; Ligocki, J.; Michalowski, J.; Sawicki, P.; Straczek, A.; Stodulski, M.; Strek, M.; Stopa, Z.; Trzupek, A.; Wosiek, B.; Wozniak, K.; Zychowski, P. [Institute of Nuclear Physics, Krak (Poland); Bialas, A.; Czyz, W.; Zalewski, K. [Jagellonian Univiversity, Krak , (Poland); Basilev, S.; Bates, B.D.; Busza, W.; Decowski, M.P.; Fita, P.; Fitch, J.; Friedl, M.; Gomes, C.; Griesmayer, E.; Gulbrandsen, K.; Haridas, P.; Henderson, C.; Kane, J.; Katzy, J.; Kulinich, P.; Law, C.; Mulmenstadt, J.; Neal, M.; Patel, M.; Pernegger, H.; Plesko, M.; Reed, C.; Roland, C.; Roland, G.; Ross, D.; Rosenberg, L.; Ryan, J.; Sarin, P.; Steadman, S.G.; Stephans, G.S.F.; Surowiecka, K.; Vale, C.M.; Van Nieuwenhuizen, G.J.; Verdier, R.; Wadsworth, B.; Wyslouch, B. [Massachusetts Institute of Technology (United States); Chang, Y.H.; Chen, A.E.; Lin, W.T.; Tang, J.L. [National Central University, Taiwan (China); Conner, C.; Ganz, R.; Halliwell, C.; Hollis, R.; Holzman, B.; Kucewicz, W.; McLeod, D.; Nouicer, R.; Reuter, M. [University of Illinois at Chicago (United States); Hayes, A.; Johnson, E.; Manly, S.; Park, I.C.; Skulski, W.; Teng, R.; Wolfs, F.L.H. [University of Rochester (United States); Sanzgiri, A. [Yale University (United States)

    2001-07-01

    The relativistic heavy ion collider (RHIC) at Brookhaven national laboratory delivered in June 2000 the first collisions between Au nuclei at the highest center-of-mass energies achieved in a controlled environment to date. PHOBOS is one of the four experiments installed during this phase of RHIC running. This paper will describe the PHOBOS experiment, and discuss the results of the first physics measurement, thc pseudo rapidity densities of primary charged particles near mid rapidity in central Au + Au collisions at two different energies, {radical} S{sub NN} = 56 and 130 GeV. The observed densities are higher than those previously observed in any collisions, and the rate of increase between the two energies is larger than that for nucleon-nucleon collisions at comparable beam energies. This talk will describe the PHOBOS experiment, discuss the first physics measurement, and conclude with the present status of the experiment, the physics analysis and the perspectives fi the future. (Author)

  15. Hard Probes at RHIC

    Directory of Open Access Journals (Sweden)

    Bielčíková Jana

    2014-04-01

    Full Text Available Measurements of jets and heavy flavour, the so called hard probes, play a crucial role in understanding properties of hot and dense nuclear matter created in high energy heavy-ion collisions. The measurements at the Relativistic Heavy Ion Collider (RHIC showed that in central Au+Au collisons at RHIC energy ( √sNN = 200 GeV the nuclear matter created has properties close to those of perfect liquid, manifests partonic degrees of freedom and is opaque to hard probes. In order to draw quantitative conclusions on properties of this hot and dense nuclear matter reference measurements in proton-proton collisions and d+Au collisions are essential to estimate cold nuclear matter effects. In this proceedings a review of recent results on hard probes measurements in p+p, d+Au and A+A collisions as well as of beam energy dependence of jet quenching from STAR and PHENIX experiments at RHIC is presented.

  16. From RHIC to LHC: First Lessons

    CERN Document Server

    Tserruya, Itzhak

    2011-01-01

    The first heavy-ion run at the LHC with Pb+Pb collisions at roots_NN = 2.76 TeV took place in the fall of 2010. In a short and relatively low luminosity run, the three detectors, ALICE, ATLAS and CMS showcased an impressive performance and produced a wealth of a high quality results. This article compares the new LHC results with those accumulated over the last decade at RHIC, focussing on the quantitative and qualitative differences between the different energy regimes of these two facilities.

  17. Polarized proton collider at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S.Y.; Luccio, A.; MacKay, W.W. E-mail: mackay@bnl.govhttp://www.rhichome.bnl.gov/People/waldowaldo@bnl.gov; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.N

    2003-03-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998, reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to {radical}s=500 GeV.

  18. Fast Automated Decoupling at RHIC

    CERN Document Server

    Beebe-Wang, Joanne

    2005-01-01

    Coupling correction is essential for the operational performance of RHIC. The independence of the transverse degrees of freedom makes diagnostics and tune control easier, and it is advantageous to operate an accelerator close to the coupling resonance to minimize nearby nonlinear sidebands. An automated decoupling application has been developed at RHIC for coupling correction during routine operations. The application decouples RHIC globally by minimizing the tune separation through finding the optimal settings of two orthogonal skew quadrupole families. The program provides options of automatic, semi-automatic and manual decoupling operations. It accesses tune information from all RHIC tune measurement systems: the PLL (Phase Lock Loop), the high frequency Schottky system, and the tune meter. It also supplies tune and skew quadrupole scans, finding the minimum tune separation, display the real time results and interface with the RHIC control system. We summarize the capabilities of the decoupling application...

  19. The eRHIC Ring-Ring Collider Design

    CERN Document Server

    Wang, Fuhua; Beebe-Wang, Joanne; Deshpande, Abhay A; Farkhondeh, Manouchehr; Franklin, Wilbur; Graves, William; Litvinenko, Vladimir N; MacKay, William W; Milner, Richard; Montag, Christoph; Ozaki, Satoshi; Parker, Brett; Peggs, Steve; Ptitsyn, Vadim; Roser, Thomas; Tepikian, Steven; Trbojevic, Dejan; Tschalär, C; Wang, Dong; Zolfaghari, Abbasali; Zwart, Townsend; van der Laan, Jan

    2005-01-01

    The eRHIC ring-ring collider is the main design option of the future lepton-ion collider at Brookhaven National Laboratory. We report the revisions of the ring-ring collider design features to the baseline design presented in the eRHIC Zeroth Design Report (ZDR). These revisions have been made during the past year. They include changes of the interaction region which are required from the modifications in the design of the main detector. They also include changes in the lepton storage ring for high current operations as a result of better understandings of beam-beam interaction effects. The updated collider luminosity and beam parameters also take into account a more accurate picture of current and future operational aspects of RHIC.

  20. Direct Photons at RHIC

    OpenAIRE

    David, G.; Collaboration, for the PHENIX

    2004-01-01

    Direct photons are ideal tools to investigate kinematical and thermodynamical conditions of heavy ion collisions since they are emitted from all stages of the collision and once produced they leave the interaction region without further modification by the medium. The PHENIX experiment at RHIC has measured direct photon production in p+p and Au+Au collisions at 200 GeV over a wide transverse momentum ($p_T$) range. The $p$ + $p$ measurements allow a fundamental test of QCD, and serve as a bas...

  1. Partonic collectivity at RHIC

    Science.gov (United States)

    Shi, Shusu

    2009-10-01

    The measurement of event anisotropy, often called v2, provides a powerful tool for studying the properties of hot and dense medium created in high-energy nuclear collisions. The important discoveries of partonic collectivity and the brand-new process for hadronization - quark coalescence were obtained through a systematic analysis of the v2 for 200 GeV Au+Au collisions at RHIC [1]. However, early dynamic information might be masked by later hadronic rescatterings. Multistrange hadrons (φ, ξ and φ) with their large mass and presumably small hadronic cross sections should be less sensitive to hadronic rescattering in the later stage of the collisions and therefore a good probe of the early stage of the collision. We will present the measurement of v2 of π, p, KS^0, λ, ξ, φ and φ in heavy ion collisions. In minimum-bias Au+Au collisions at √sNN = 200 GeV, a significant amount of elliptic flow, almost identical to other mesons and baryons, is observed for φ and φ. Experimental observations of pT dependence of v2 of identified particles at RHIC support partonic collectivity. [4pt] [1] B. I. Abelev et al., (STAR Collaboration), Phys. Rev. C 77, 054901 (2008).

  2. Recent Highlights from the PHENIX Heavy-Ion Program at RHIC

    CERN Document Server

    Sahlmueller, Baldo

    2014-01-01

    Over the last decade it has been established that a quark-gluon plasma (QGP) is formed in ultrarelativistic A+A collisions at RHIC energies. In recent years, detector upgrades have enabled the detailed study of this hot and dense matter. Important probes, among others, are direct photons and heavy flavor observables. Although the RHIC d+Au program was originally undertaken to study initial state and cold nuclear matter effects, recent measurements at both RHIC (d+Au) and the LHC (p+Pb) have found evidence for collective phenomena in these small systems.

  3. RHIC spin flipper commissioning results

    Energy Technology Data Exchange (ETDEWEB)

    Bai M.; Roser, T.; Dawson, C.; Kewisch, J.; Makdisi, Y.; Oddo, P.; Pai, C.; Pile, P.

    2012-05-20

    The five AC dipole RHIC spin flipper design in the RHIC Blue ring was first tested during the RHIC 2012 polarized proton operation. The advantage of this design is to eliminate the vertical coherent betatron oscillations outside the spin flipper. The closure of each ac dipole vertical bump was measured with orbital response as well as spin. The effect of the rotating field on the spin motion by the spin flipper was also confirmed by measuring the suppressed resonance at Q{sub s} = 1 - Q{sub osc}.

  4. ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI,I.; AHRENS,L.; BRENNAN,M.; HARRISON,M.; KEWISCH,J.; MACKAY,W.; PEGGS,S.; ROSER,T.; SATOGATA,T.; TRBOJEVIC,D.; YAKIMENKO,V.

    2001-06-18

    We introduce plans for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This project has a number of new features as electron coolers go: It will cool 100 GeV/nucleon ions with 50 MeV electrons; it will be the first attempt to cool a collider at storage-energy; and it will be the first cooler to use a bunched beam and a linear accelerator as the electron source. The linac will be superconducting with energy recovery. The electron source will be based on a photocathode gun. The project is carried out by the Collider-Accelerator Department at BNL in collaboration with the Budker Institute of Nuclear Physics.

  5. RHIC results from LHC perspectives

    CERN Document Server

    Salgado, C A

    2006-01-01

    RHIC data opens new ways of characterizing the medium created in a heavy ion collision by measuring particles with high transverse momentum. In addition to the observation of the predicted jet quenching, the new data on particle correlations indicate that a strong modification of the jet-like shapes is driven by the dynamical properties of the medium. I will review the lessons we are learning from RHIC and outline some new directions which could become of primary importance at the LHC.

  6. First results from RHIC-PHENIX

    CERN Document Server

    Ghosh, T K; Adler, S S; Ajitanand, N N; Akiba, Y; Alexander, J; Aphecetche, L; Arai, Y; Aronson, S H; Averbeck, R; Awes, T C; Barish, K N; Barnes, P D; Barrette, J; Bassalleck, B; Bathe, S; Baublis, V; Bazilevsky, A; Belikov, S V; Bellaiche, F G; Belyaev, S T; Bennett, M J; Berdnikov, Yu A; Botelho, S S; Brooks, M L; Brown, D S; Bruner, N L; Bucher, D; Büsching, H; Bunce, G M; Burward-Hoy, J M; Butsyk, S; Carey, T A; Chand, P; Chang, J; Chang, W C; Chavez, L L; Chernichenko, S K; Chi, C Y; Chiba, J; Chiu, M; Choudhury, R K; Christ, T; Chujo, T; Chung, M S; Chung, P; Cianciolo, V; Cole, B A; D'Enterria, D G; Dávid, G; Delagrange, H; Denisov, A; Deshpande, A A; Desmond, E J; Dietzsch, O; Dinesh, B V; Drees, A; Durum, A A; Dutta, D; Ebisu, K; Efremenko, Yu V; Chenawi, K E; En-Yo, H; Esumi, S C; Ewell, L A; Ferdousi, T; Fields, D E; Fokin, S L; Fraenkel, Zeev; Franz, A; Frawley, A D; Fung, S Y; Garpman, S; Ghosh, T K; Glenn, A; Godoi, A L; Goto, Y; Greene, S V; Grosse-Perdekamp, M; Gupta, S K; Guryn, W; Gustafsson, Hans Åke; Haggerty, J S; Hamagaki, H; Hansen, A G; Hara, H; Hartouni, E P; Havano, R; Hayashi, N; He, X; Hemmick, T K; Heuser, J M; Hill, J C; Ho, D S; Homma, K; Hong, B; Hoover, A; Ichihara, T; Imai, K; Ippolitov, M S; Ishihara, M; Jacak, B V; Jang, W Y; Jia, J; Johnson, B M; Johnson, S C; Joo, K S; Kametani, S; Kang, J H; Kann, M; Kapoor, S S; Kelly, S; Khachaturov, B A; Khanzadeev, A V; Kikuchi, J; Kim, D J; Kim, H J; Kim, S Y; Kim, Y G; Kinnison, W W; Kistenev, E P; Kiyomichi, A; Klein-Bösing, C; Klinksiek, S A; Kochenda, L M; Kochetkov, D; Kochetkov, V; Köhler, D; Kohama, T; Kozlov, A; Kroon, P J; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R A; Lajoie, J G; Lauret, J; Lebedev, A; Lee, D M; Leitch, M J; Li, X H; Li, Z; Lim, D J; Liu, M X; Liu, X; Liu, Z; Maguire, C F; Mahon, J; Makdisi, Y I; Man'ko, V I; Mao, Y; Mark, S K; Markacs, S; Martínez, G; Marx, M D; Massaike, A; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E A; Merschmeyer, M; Messer, F; Messer, M; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Muhlbacher, F; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagasaka, Y; Nagle, J L; Nakada, Y; Nandi, B K; Newby, J; Nikkinen, L; Nilsson, P O; Nishimura, S; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Ono, M; Onuchin, V A; Oskarsson, A; Österman, L; Otterlund, I; Oyama, K; Paffrath, L; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Pate, S F; Peitzmann, Thomas; Petridis, A N; Pinkenburg, C H; Pisani, R P; Pitukhin, P; Plasil, F; Pollack, M E; Pope, K; Purschke, M L; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Rosati, M; Rose, A A; Ryu, S S; Saitô, N; Sakaguchi, A; Sakaguchi, T; Sako, H; Sakuma, T; Samsonov, V; Sangster, T C; Santo, R; Sato, H D; Sato, S; Sawada, S; Schlei, B R; Schutz, Y; Semenov, V; Seto, R; Shea, T K; Shein, I; Shibata, T A; Shigaki, K; Shiina, T; Shin, Y H; Sibiryak, Yu; Silvermyr, D; Sim, K S; Simon-Gillo, J; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sørensen, S; Stankus, P W; Starinsky, N; Steinberg, P; Stenlund, E; Ster, A; Stoll, S P; Sugioka, M; Sugitate, T; Sullivan, J P; Sumi, Y; Sun, Z; Suzuki, M; Takagui, E M; Taketani, A; Tamai, M; Tanaka, Y; Taniguchi, E; Tannenbaum, M J; Thomas, J; Thomas, J H; Thomas, T L; Tian, W; Tojo, J; Torii, H A; Towell, R S; Tserruya, Itzhak; Tsuruoke, H; Tsvetkov, A A; Tuli, S K; Tydesjo, H; Tyurin, N; Ushiroda, T; van Hecke, H; Velissaris, C; Velkovska, J; Velkovsky, M; Vingradov, A A; Volkov, M A; Vorobyov, A A; Vznuzdaev, E A; Wang, H; Watanabe, Y; White, S N; Witzig, C; Wohn, F K; Woody, C L; Xie, W; Yagi, K; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, Z; Zhou, S

    2001-01-01

    The PHENIX experiment consists of a large detector system located at the newly commissioned Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory. The primary goal of the PHENIX experiment is to look for signatures of the QCD prediction of a deconfined high-energy-density phase of nuclear matter and the quark gluon plasma. PHENIX started taking data for Au+Au collisions at square root (s/sub NN/)=130 GeV in June 2000. The signals from the beam-beam counter (BBC) and zero degree calorimeter (ZDC) are used to determine the centrality of the collision. A Glauber model reproduces the ZDC spectrum reasonably well to determine the participants in a collision. The charged particle multiplicity distribution from the first PHENIX paper is compared with the other RHIC experiment and the CERN and SPS results. Transverse momentum of photons are measured in the electro-magnetic calorimeter (EMCal) and preliminary results an presented. Particle identification is made by a time-of-flight (TOF) detecto...

  7. Charm Prodution at RHIC

    CERN Document Server

    Knospe, A G

    2007-01-01

    Observations by the PHENIX and STAR collaborations suggest that a strongly coupled quark-gluon plasma is produced in heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC). After a brief introduction to heavy-ion physics, measurements of heavy-quark production in heavy-ion collisions and the modification of heavy-quark spectra by the QGP are presented. Measurements of the total charm cross-section in several different collision systems confirm that charm quark-antiquark pairs are produced through parton hard-scattering in the initial stages of the collisions. Non-photonic electrons (proxies for heavy quarks) are suppressed by about a factor of 5 in central Au + Au collisions relative to p + p collisions. This is larger than most current theoretical predictions and has lead to a re-examination of heavy-quark energy loss in the medium. STAR measures azimuthal correlation functions of non-photonic electrons and hadrons to determine the relative contributions of c and b decays to the non-photonic elec...

  8. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  9. Configuration Manual Polarized Proton Collider at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S. Y.; Luccio, A.; MacKay, W. W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Svirida, D.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.

    2006-01-01

    In this report we present our design to accelerate and store polarized protons in RHIC, with the level of polarization, luminosity, and control of systematic errors required by the approved RHIC spin physics program. We provide an overview of the physics to be studied using RHIC with polarized proton beams, and a brief description of the accelerator systems required for the project.

  10. CONFIGURATION MANUAL POLARIZED PROTON COLLIDER AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    ROSER,T.; MACKAY,W.W.; ALEKSEEV,I.; BAI,M.; BROWN,K.; BUNCE,G.; CAMERON,P.; COURANT,E.; ET AL.

    2001-03-01

    In this report, the authors present their design to accelerate and store polarized protons in RHIC, with the level of polarization, luminosity, and control of systematic errors required by the approved RHIC spin physics program. They provide an overview of the physics to be studied using RHIC with polarized proton beams, and a brief description of the accelerator systems required for the project.

  11. Ion optics of RHIC EBIS

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

    2011-09-10

    RHIC EBIS has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  12. Open Heavy Flavor and Quarkonia Results at RHIC

    Directory of Open Access Journals (Sweden)

    Nouicer Rachid

    2017-01-01

    Full Text Available RHIC experiments carry out a comprehensive physics program which studies open heavy flavor and quarkonium production in relativistic heavy-ion collisions. The discovery at RHIC of large high-pT suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at SNN=200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1 PHENIX Collaboration installed silicon vertex tracker (VTX at mid-rapidity region and forward silicon vertex tracker (FVTX at the forward rapidity region, and (2 STAR Collaboration installed the heavy flavor tracker (HFT and the muon telescope detector (MTD both at the mid-rapidity region. With these new upgrades, both experiments have collected large data samples. These new detectors enhance the capability of heavy flavor measurements via precision tracking. The PHENIX experiments established measurements of ψ(1S and ψ(2S production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at SNN=200 GeV. In p/3He + A collisions at forward rapidity, we observe no difference in the ψ(2S/ψ(1S ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ(2S is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ψ and ϒ measurements in the di-muon decay channel in Au + Au collisions at SNN=200 GeV at mid-rapidity at RHIC. We observe clear J/ψ RAA suppression and qualitatively well described by transport models simultaneously accounting for dissociation and regeneration processes.

  13. RHIC off-line computing

    Energy Technology Data Exchange (ETDEWEB)

    Featherly, J.; Gibbard, B.; Gould, J. [and others

    1993-06-30

    A report was prepared in Sept 1992, RHIC/DET Note 8, also known as ROCOCO, which estimated the various computing resources which will be required by the RHIC experimental program. A study has now been undertaken to review technical issues associated with supplying these resources. This study, organized by the HEP/NP Computing Group but including other appropriate participants, addresses questions of technologies, manpower, cost and schedule. The following document is an interim summary of this study both in terms of discussions which have occurred and initial conclusions reached.

  14. Spin Physics with the PHENIX Detector System

    OpenAIRE

    Saito, N.; Collaboration, for the PHENIX

    1998-01-01

    The PHENIX experiment at RHIC has extended its scope to cover spin physics using polarized proton beams. The major goals of the spin physics at RHIC are elucidation of the spin structure of the nucleon and precision tests of the symmetries. Sensitivities of the spin physics measurements with the PHENIX detector system are reviewed.

  15. High level controls at RHIC

    Science.gov (United States)

    Peggs, S.; Saltmarsh, C.; Satogata, T.; Fryer, M.

    1994-12-01

    We report on the software tools and techniques in development to ensure that the commissioning and operations teams for RHIC have access to high level analysis, diagnosis, modelling and control functions early in the start up of the machine. The first tests will be for the sextant test in mid-1995.

  16. High density matter at RHIC

    Indian Academy of Sciences (India)

    Keywords. Quark-gluon plasma; relativistic heavy ion physics; relativistic heavy ion collider ... matter and a quark-gluon plasma at high energy density. The relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory is a new facility dedicated to the experimental study of matter under extreme conditions. Already ...

  17. Absolute beam emittance measurements at RHIC using ionization profile monitors

    Energy Technology Data Exchange (ETDEWEB)

    Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Connolly, R [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Summers, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-08-15

    In the past, comparisons between emittance measurements obtained using ionization profile monitors, Vernier scans (using as input the measured rates from the zero degree counters, or ZDCs), the polarimeters and the Schottky detectors evidenced significant variations of up to 100%. In this report we present studies of the RHIC ionization profile monitors (IPMs). After identifying and correcting for two systematic instrumental errors in the beam size measurements, we present experimental results showing that the remaining dominant error in beam emittance measurements at RHIC using the IPMs was imprecise knowledge of the local beta functions. After removal of the systematic errors and implementation of measured beta functions, precise emittance measurements result. Also, consistency between the emittances measured by the IPMs and those derived from the ZDCs was demonstrated.

  18. Workshop on Low-temperature Detectors for Neutrinos and Dark Matter

    CERN Document Server

    Schmitz, Norbert; Stodolsky, Leo; Low temperature detectors for neutrinos and dark matter

    1987-01-01

    For the last few years astrophysicists and elementary particle physicists have been working jointly on the following fascinating phenomena: 1. The solar neutrino puzzle and the question: What happens to the neutrinos on their way from the sun to the earth? 2. The growing evidence that our universe is filled with about 10 times more matter than is visible and the question: What is dark matter made of? 3. The supernovae explosions and the question: What do neutrinos tell us about such explosions and vice versa? The experimental investigation of these phenomena is difficult and involves unconventional techniques. These are presently under development, and bring together such seemingly disparate disciplines as astrophysics and elementary particle physics on the one hand and superconductivity and solid-state physics on the other. This book contains the proceedings of a workshop held in March 1987 at which the above subjects and their experimental investigation were discussed. The proposed experimental meth...

  19. Heavy Ion Physics at Low, Intermediate and Relativistic Energies Using 4PI Detectors - Proceedings of the International Research Workshop

    Science.gov (United States)

    Petrovici, M.; Sandulescu, A.; Pelte, D.; Stöcker, H.; Randrup, J.

    1997-10-01

    Energies * Production and Propagation of Neutral Mesons at Relativistic Energies * Bose-Einstein Correlations of Pion Wavepackets * Freeze-Out Conditions in Heavy Ion Collisions from 1 to 2 AGeV * Kaon and Pion Production in Nuclear Collisions * Strangeness Production and Propagation in Relativistic Heavy Ion Collisions * Studies of Meson Production at SIS Energies * Particle Production from SIS to SPS Energies * Correlations in the Vacuum * Strangeness Enhancement in Proton-Nucleus and Nucleus-Nucleus Interactions at SPS Energies * The ALICE Detector at the CERN LHC * Charge Ratio of Cosmic Rays Muons Measured by Their Decay with a Compact Detector Device * Current Interests in Cosmic Ray Research * Workshop Poster * Workshop Program * Participants * Sponsors

  20. A study of nuclear effects using forward-rapidity hadron production and di-hadron angular correlations in square root of S(NN) = 200 GeV deuteron-gold and proton-proton collisions with the PHENIX detector at RHIC

    Science.gov (United States)

    Meredith, Beau Anthony

    Measurements using the PHENIX forward detectors at the Relativistic Heavy Ion Collider (RHIC) in high-energy deuteron-gold (d+Au) collisions enable us to study cold nuclear matter effects in nucleon structure at small parton-momentum fraction, or Bjorken-x. The large gluon densities in Lorentz-contracted gold nuclei enable us to search for the yet-unobserved saturation of the gluon distribution at small x, which is caused by a balance between gluon fusion and splitting. Gluon saturation is described by the Color Glass Condensate (CGC) theory [1], which predicts a suppression of inclusive particle production in heavy-ion collisions, in particular at forward rapidity, because of a decreased gluon density. In addition, it has been suggested that forward rapidity di-hadron correlations may elucidate CGC effects with two signatures that are specific predictions from CGC: awayside-yield suppression and angular broadening [2]. This thesis describes the first experimental measurements of these forward di-hadron correlations in PHENIX. Previously, RHIC experiments have shown a suppression in the single-particle nuclear modification factors (RdA, R cp) for sNN = 200 GeV d+Au collisions in the forward (deuteron) direction [3, 4]. Multiple theories can explain the observed suppression (including CGC), but a conclusive measurement discriminating amongst the models has yet to be carried out. Two new forward-rapidity electromagnetic calorimeters (Muon Piston Calorimeters or MPCs, --3.7 BRAHMS experiment in the forward direction wherein the suppression increases with decreasing collision impact parameter [3]. We also observe a larger suppression in the higher-rapidity bin (3.4 monte-carlo simulations does not seem to originate from di-jet production, but from some other momentum-conserving process. While PYTHIA admittedly does not correctly simulate the partonic interactions, this study still raises questions about the nature of di-jet production in this region.

  1. eRHIC Beam Scrubbing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S. Y. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-06-22

    We propose using beam scrubbing to mitigate the electron cloud e ect in the eRHIC. The bunch number is adjusted below the heat load limit, then it increases with the reduced secondary electron yield resulted from the beam scrubbing, up to the design bunch number. Since the electron density threshold of beam instability is lower at the injection, a preliminary injection scrubbing should go rst, where large chromaticity can be used to keep the beam in the ring for scrubbing. After that, the beam can be ramped to full energy, allowing physics scrubbing. Simulations demonstrated that with beam scrubbing in a reasonable period of time, the eRHIC baseline design is feasible.

  2. Joining the RHIC Online and Offline Models

    CERN Document Server

    Malitsky, Nikolay; Fedotov, Alexei V; Kewisch, Jorg; Luccio, Alfredo U; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Satogata, Todd; Talman, Richard M; Tepikian, Steven; Wei, Jie

    2005-01-01

    The paper presents an interface encompassing the RHIC online ramp model and the UAL offline simulation framework. The resulting consolidated facility aims to minimize the gap between design and operational data, and to facilitate analysis of RHIC performance and future upgrades in an operational context. The interface is based on the Accelerator Description Exchange Format (ADXF), and represents a snapshot of the RHIC online model which is in turn driven by machine setpoints. This approach is also considered as an intermediate step towards integrating the AGS and RHIC modeling environments to produce a unified online and offline AGS model for operations.

  3. Mars science laboratory radiation assessment detector (MSL/RAD) modeling workshop proceedings

    Science.gov (United States)

    Hassler, Donald M.; Norbury, John W.; Reitz, Günther

    2017-08-01

    The Radiation Assessment Detector (RAD) (Hassler et al., 2012; Zeitlin et al., 2016) onboard the Mars Science Laboratory (MSL) Curiosity rover (Grotzinger et al., 2012) is a sophisticated charged and neutral particle radiation analyzer developed by an international team of scientists and engineers from Southwest Research Institute in Boulder, Colorado as the leading institution, the University of Kiel and the German Aerospace Center in Cologne, Germany. RAD is a compact, powerful instrument capable of distinguishing between ionizing particles and neutral particles and providing neutron, gamma, and charged particle spectra from protons to iron as well as absorbed dose measurements in tissue-equivalent material. During the 6 month cruise to Mars, inside the MSL spacecraft, RAD served as a proxy to validate models of the radiation levels expected inside a spacecraft that future astronauts might experience (Zeitlin et al., 2013). RAD was turned on one day after the landing on August 7, 2012, exactly 100 years to the day after the discovery of cosmic rays on Earth by Victor Hess. These measurements are the first of their kind on the surface of another planet (Hassler et al., 2014), and the radiation data collected by RAD on the surface of Mars will inform projections of crew health risks and the design of protective surface habitats and other countermeasures for future human missions in the coming decades.

  4. χ cJ polarization in polarized proton-proton collisions at RHIC

    Science.gov (United States)

    Nayak, Gouranga C.

    2017-01-01

    We study inclusive χ cJ production with definite polarizations in polarized proton-proton collisions at √ s = 200 and 500 GeV at RHIC by using non-relativistic QCD (NRQCD) color-octet mechanism. We present results of rapidity distribution of χ c0, χ c1 and χ c2 production with specific polarizations in polarized p-p collisions at RHIC within the PHENIX detector acceptance range. We also present the corresponding results for the spin asymmetries.

  5. Results from STAR experiment at RHIC

    Indian Academy of Sciences (India)

    We present some of the important experimental results from nucleus–nucleus collision studies carried out by the STAR experiment at Relativistic Heavy Ion Collider (RHIC). The results suggests that central Au+Au collisions at RHIC has produced a dense and rapidly thermalizing matter with initial energy densities above the ...

  6. Optics Measurements and Corrections at RHIC

    CERN Document Server

    Bai, M; Blaskiewicz, M; Luo, Y; Robert-Demolaize, G; White, S; Vanbavinckhove, G

    2012-01-01

    The further improvement of RHIC luminosity performance requires more precise understanding of the RHIC modeling. Hence, it is necessary to minimize the beta-beat, deviation of measured beta function from the calculated beta functions based on an model. The correction of betabeat also opens up the possibility of exploring operating RHIC polarized protons at a working point near integer, a prefered choice for both luminosity as well as beam polarization. The segment-by-segment technique for reducing beta-beat demonstrated in the LHC operation for reducing the beta-beat was first tested in RHIC during its polarized proton operation in 2011 [2]. It was then fully implemented during the RHIC polarized proton operation in 2012. This paper reports the commissioning results. Future plan is also presented.

  7. Optics measurements and corrections at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Bai M.; Aronson, J.; Blaskiewicz, M.; Luo, Y.; Robert-Demolaize, G.; White, S.

    2012-05-20

    The further improvement of RHIC luminosity performance requires more precise understanding of the RHIC modeling. Hence, it is necessary to minimize the beta-beat, deviation of measured beta function from the calculated beta functions based on an model. The correction of betabeat also opens up the possibility of exploring operating RHIC polarized protons at a working point near integer, a prefered choice for both luminosity as well as beam polarization. The segment-by-segment technique for reducing beta-beat demonstrated in the LHC operation for reducing the beta-beat was first tested in RHIC during its polarized proton operation in 2011. It was then fully implemented during the RHIC polarized proton operation in 2012. This paper reports the commissioning results. Future plan is also presented.

  8. Production of Quarkonia at RHIC

    CERN Document Server

    Vertesi, Robert

    2015-01-01

    The production of different quarkonium states provides unique insight to the hot and cold nuclear matter effects in the strongly interacting medium that is formed in high energy heavy ion collisions. While LHC explores the energy frontier, RHIC has a broad physics program to explore the nuclear modification at different energies in a wide range of systems. Some of the most interesting recent results on $J/\\psi$ and $\\Upsilon$ production in p+p, d+Au and A+A collisions from PHENIX and STAR are summarized in this work.

  9. The abstract geometry modeling language (AgML): experience and road map toward eRHIC

    Science.gov (United States)

    Webb, Jason; Lauret, Jerome; Perevoztchikov, Victor

    2014-06-01

    The STAR experiment has adopted an Abstract Geometry Modeling Language (AgML) as the primary description of our geometry model. AgML establishes a level of abstraction, decoupling the definition of the detector from the software libraries used to create the concrete geometry model. Thus, AgML allows us to support both our legacy GEANT 3 simulation application and our ROOT/TGeo based reconstruction software from a single source, which is demonstrably self- consistent. While AgML was developed primarily as a tool to migrate away from our legacy FORTRAN-era geometry codes, it also provides a rich syntax geared towards the rapid development of detector models. AgML has been successfully employed by users to quickly develop and integrate the descriptions of several new detectors in the RHIC/STAR experiment including the Forward GEM Tracker (FGT) and Heavy Flavor Tracker (HFT) upgrades installed in STAR for the 2012 and 2013 runs. AgML has furthermore been heavily utilized to study future upgrades to the STAR detector as it prepares for the eRHIC era. With its track record of practical use in a live experiment in mind, we present the status, lessons learned and future of the AgML language as well as our experience in bringing the code into our production and development environments. We will discuss the path toward eRHIC and pushing the current model to accommodate for detector miss-alignment and high precision physics.

  10. Event generator for RHIC spin physics. RIKEN BNL Research Center Proceedings, Volume 18

    Energy Technology Data Exchange (ETDEWEB)

    Saito, N.; Schaefer, A. [eds.

    1999-03-15

    This volume archives the reports from the RIKEN BNL Research Center workshop on ''Event Generator for RHIC Spin Physics II'' held during the week March 15, 1999 at Brookhaven National Laboratory. It was the second meeting on the subject following a first one in last September. This workshop has been initiated to establish a firm collaboration between theorists and experimentalists involved in RHIC spin physics with the aim of developing a reliable, high-precision event generator for RHIC spin physics. Needless to say, adequate event generators are indispensible tools for high energy physics programs in general, especially in the process of: planning the experimental programs, developing algorithms to extract the physics signals of interest, estimating the background in the extracted results, and connecting the final particle kinematics to the fundamental i.e. partonic level processes. Since RHIC is the first polarized collider, dedicated efforts are required to obtain a full-fledged event generator which describes spin dependent reactions in great detail. The RHIC spin project will be in the transition from R&D and construction phase to operation phase in the year 2000. As soon as data will be available, it should be analysed, interpreted and compared with theoretical predictions to extract its physical significance. Without mutual understanding between theorists and experimentalists on the technical details, it is hard to perform detailed comparisons in a consistent framework. The importance of this fact has been recognized especially during the analyses of hadron induced reactions observed at CERN, Fermilab and DESY. Since the use of event generator is indispensible for the analyses, it should be developed in a way that both experimentalists and theorists can agree upon.

  11. Results from the PHOBOS Experiment on Au+Au Collisions at RHIC

    CERN Document Server

    Wozniak, K; Baker, M D; Barton, D S; Basilev, S N; Baum, R; Betts, R R; Bialas, A; Bindel, R; Bogucki, W; Budzanowski, A; Busza, W; Carroll, A; Ceglia, M; Chang, Y H; Chen, A E; Coghen, T; Conner, C L; Czyz, W; Dabrowski, B; Decowski, M P; Despet, M; Fita, P; Fitch, J; Friedl, M; Galuszka, K; Ganz, R E; García-Solis, E; George, N; Godlewski, J; Gomes, C; Griesmayer, E; Gulbrandsen, K H; Gushue, S; Halik, J; Halliwell, C; Haridas, P; Hayes, A; Heintzelman, G A; Henderson, C; Hollis, R; Holynski, R; Holzman, B; Johnson, E; Kane, J; Katzy, J M; Kita, W; Kotula, J; Kraner, H W; Kucewicz, W; Kulinich, P A; Law, C; Lemler, M A; Ligocki, T J; Lin, W T; Manly, S L; McLeod, D; Michalowski, J; Mignerey, A C; Mülmenstädt, J; Neal, M; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Patel, M; Pernegger, H; Plesko, M; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Ross, D; Rosenberg, L J; Ryan, J; Sanzgiri, A; Sarin, P; Sawicki, P; Scaduto, J; Shea, J; Sinacore, J; Skulski, W; Steadman, S G; Stephans, G S F; Steinberg, P; Straczek, A; Stodulski, M; Strek, M; Stopa, Z; Sukhanov, A; Surowiecka, K; Tang, J L; Teng, R; Trzupek, A; Vale, C J; van Nieuwenhuizen, G J; Verdier, R; Wadsworth, B; Wolfs, F L H; Wosiek, B; Wozniak, K; Wuosmaa, A H; Wyslouch, B; Zalewski, Kasper

    2001-01-01

    PHOBOS is one of four experiments studying the Au-Au interactions at RHIC. The data collected during the first few weeks after the RHIC start-up, using the initial configuration of the PHOBOS detector, were sufficient to obtain the first physics results for the most central collisions of Au nuclei at the center of mass energy of 56 and 130 AGeV. The pseudorapidity density of charged particles near midrapidity is shown and compared with data at lower energies and from $pp$ and $p\\bar{p}$ collisions. The progress of the analysis of the data is also presented.PHOBOS is one of four experiments studying the Au-Au interactions at RHIC. The data collected during the first few weeks after the RHIC start-up, using the initial configuration of the PHOBOS detector, were sufficient to obtain the first physics results for the most central collisions of Au nuclei at the center of mass energy of 56 and 130 AGeV. The pseudorapidity density of charged particles near midrapidity is shown and compared with data at lower energie...

  12. Optical Detectors for Astronomy II : State-of-the-art at the Turn of the Millennium : 4th ESO CCD Workshop

    CERN Document Server

    Beletic, James

    2000-01-01

    th The 4 ESO CCO Workshop, Optical Detectors for Astronomy, was held during September 13-16, 1999 at its usual location, the headquarters of the European Southern Observatory in Garching, Germany. We prefer to remember this workshop as a "meeting of friends", who came to Garching to visit ESO and to present their work, rather than a formal meeting. Based on our experience with the 1996 ESO CCO workshop, we deliberately put emphasis on creating an environment that encouraged the participants to stay together and informally exchange ideas. These informal events began with a tour of the BWM auto factory and continued with a reception at "SchloB Beletic", the conference dinner at a real SchloB of the Bavarian International School (where the participants enjoyed basket, baseball, table soccer, rock climbing and eventually dancing) and concluded with a tour of the Paulaner Brewery and dinner at the Seehaus in the Englisher Garten. The lunch "Biergarten", adjacent to the poster session area, was a daily meeting poin...

  13. 31st Winter Workshop in Nuclear Dynamics

    CERN Document Server

    2015-01-01

    The 31st edition of the Winter Workshop will be held January 25-31st, 2015 in the Keystone Resort, Colorado, USA. As with previous years, the workshop will bring together scientists from all fields of nuclear physics for engaging and friendly exchanges of ideas. Much emphasis will be on the recent LHC and RHIC heavy ion results, but advances in the ongoing and future programs at FAIR, FRIB, NICA and JLab will also be featured.

  14. Summary of the RHIC Retreat 2007

    Energy Technology Data Exchange (ETDEWEB)

    Pilat,F.; Gardner, C.; Montag, C.; Roser, T.

    2008-08-01

    The RHIC Retreat 2007 took place on July 16-17 2007 at the Foxwoods Resort in CT, about 3 weeks after the end of the RHIC Run-7. The goal of the Retreat is traditionally to plan the upcoming run in the light of the results from the previous one, by providing a snapshot of the present understanding of the machine and a forum for free and frank discussion. A particular attention was paid to the challenge of increasing the time at store, and the related issue of system reliability. An interesting Session covered all new developments aimed to improve the machine performance and luminosity. In Section 2 we summarize the results from Run-7 for RHIC and the injectors and discuss the present objectives of the RHIC program and performance. Sections 3-6 are summaries of the Retreat sessions focused on preparation for deuteron gold and polarized protons, respectively, machine availability and new developments.

  15. Experts dismiss doomsday scenarios for RHIC

    CERN Multimedia

    Levi, B G

    2000-01-01

    A panel of particle physicists examining the possibility that operation of RHIC could generate blackholes or 'strangelets' which would consume ordinary matter, have declared that such scenarios are 'firmly excluded' (1 p).

  16. Enhanced dilepton radiation at RHIC

    CERN Document Server

    Toia, Alberica

    2009-01-01

    Recently, there is growing evidence that a new state of matter is formed in Au+Au collisions at RHIC: a strongly coupled Quark Gluon Plasma of partonic degrees of freedom which develops a collective motion. Dilepton spectra are not affected by strong interaction and can therefore probe the whole time evolution of the collision. Thus they may be sensitive to the onset of deconfinement, chiral symmetry restoration, as well as the production of thermal photons. The PHENIX experiment measured the production of e+e− pairs in p+p and Au+Au collisions at . An enhanced dilepton yield in the mass range is measured. The excess increases faster with centrality than the number of participating nucleons, and is concentrated at . At higher pT the excess below 300 MeV/c2 has been related to an enhanced production of direct photons, possibly of thermal origin.

  17. A luminosity model of RHIC gold runs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Y.

    2011-11-01

    In this note, we present a luminosity model for RHIC gold runs. The model is applied to the physics fills in 2007 run without cooling, and with the longitudinal cooling applied to one beam only. Having good comparison, the model is used to project a fill with the longitudinal cooling applied to both beams. Further development and possible applications of the model are discussed. To maximize the integrated luminosity, usually the higher beam intensity, smaller longitudinal and transverse emittance, and smaller {beta} are the directions to work on. In past 10 years, the RHIC gold runs have demonstrated a path toward this goal. Most recently, a successful commissioning of the bunched beam stochastic cooling, both longitudinal and transverse, has offered a chance of further RHIC luminosity improvement. With so many factors involved, a luminosity model would be useful to identify and project gains in the machine development. In this article, a preliminary model is proposed. In Section 2, several secondary factors, which are not yet included in the model, are identified based on the RHIC operation condition and experience in current runs. In Section 3, the RHIC beam store parameters used in the model are listed, and validated. In Section 4, the factors included in the model are discussed, and the luminosity model is presented. In Section 5, typical RHIC gold fills without cooling, and with partial cooling are used for comparison with the model. Then a projection of fills with more coolings is shown. In Section 6, further development of the model is discussed.

  18. The gold flashlight: Coherent photons (and Pomerons) at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Klein, S.; Scannapieco, E. [Lawrence Berkeley National Lab., CA (United States). Nuclear Science Div.

    1997-06-01

    The Relativistic Heavy Ion Collider (RHIC) will be the first heavy ion accelerator energetic enough to produce hadronic final states via coherent {gamma}{gamma}, {gamma}P, and PP interactions. Because the photon flux scales as Z{sup 2}, up to an energy of about {gamma}{h_bar}c/R {approx} 3 GeV/c, the {gamma}{gamma} interaction rates are large. RHIC {gamma}P interactions test how Pomerons couple to nuclei and measure how different vector mesons, including the J/{psi}, interact with nuclear matter. PP collisions can probe Pomeron couplings. Because these collisions can involve identical initial states, for identical final states, the {gamma}{gamma}, {gamma}P, and PP channels may interfere, producing new effects. The authors review the physics of these interactions and discuss how these signals can be detected experimentally, in the context of the STAR detector. Signals can be separated from backgrounds by using isolation cuts (rapidity gaps) and p{perpendicular}. The authors present Monte Carlo studies of different backgrounds, showing that representative signals can be extracted with good rates and signal to noise ratios.

  19. A first look at Au·Au collisions at RHIC energies using the PHOBOS ...

    Indian Academy of Sciences (India)

    A first look at Au·Au collisions at RHIC energies using the PHOBOS detector. BIRGER BACK1, for the PHOBOS Collaboration. M D Baker2, D S Barton2, R R Betts6, R Bindel7, A Budzanowski3, W Busza4,. A Carroll2, J Corbo2, M P Decowski4, E Garcia6, N George1, K Gulbrandsen4, S Gushue2,. C Halliwell6, J Hamblen8, ...

  20. Flow and bose-einstein correlations in Au-Au collisions at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Manly, Steven; Back, B.B.; Baker, M.D.; Barton, D.S.; Betts, R.R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M.P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hofman, D.; Hollis, R.S.; Holyinski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C.M.; Lin, W.T.; Manly, S.; McLeod, D.; Michalowski, J.; Mignerey, A.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I.C.; Pernegger, H.; Reed, C.; Remsberg, L.P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S.G.; Steinberg, P.; Stephans, G.S.F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; Nieuwenhuizen, G.J. van; Verdier, R.; Wadsworth, B.; Wolfs, F.L.H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A.H.; Wyslouch, B

    2003-03-10

    Argonne flow and Bose-Einstein correlations have been measured in Au-Au collisions at {radical}S{sub NN} = 130 and 200 GeV using the PHOBOS detector at RHIC. The systematic dependencies of the flow signal on the transverse momentum, pseudorapidity, and centrality of the collision, as well as the beam energy are shown. In addition, results of a 3-dimensional analysis of two-pion correlations in the 200 GeV data are presented.

  1. Vernier Scan Results from the First RHIC Proton Run at 250 GeV

    CERN Document Server

    Drees, Angelika

    2010-01-01

    Using the Vernier scan or Van der Meer scan technique, where one beam is swept stepwise transversely across the other while measuring the collision rate as a function of beam displacement, the transverse beam profiles, the luminosity and the effective cross section of the detector in question can be measured. This report briefly recalls the vernier scan technique and presents results from the first RHIC polarized proton run at 250GeV per beam in 2009

  2. Recent Workshops

    CERN Multimedia

    Wickens, F. J.

    Since the previous edition of ATLAS e-news, the NIKHEF Institute in Amsterdam has hosted not just one but two workshops related to ATLAS TDAQ activities. The first in October was dedicated to the Detector Control System (DCS). Just three institutes, CERN, NIKHEF and St Petersburg, provide the effort for the central DCS services, but each ATLAS sub-detector provides effort for their own controls. Some 30 people attended, including representatives for all of the ATLAS sub-detectors, representatives of the institutes working on the central services and the project leader of JCOP, which brings together common aspects of detector controls across the LHC experiments. During the three-day workshop the common components were discussed, and each sub-detector described their experiences and plans for their future systems. Whilst many of the components to be used are standard commercial components, a key custom item for ATLAS is the ELMB (Embedded Local Monitor Board). Prototypes for this have now been extensively test...

  3. PHENIX EXPERIMENT AT RHIC: DECADAL PLAN 2004-2013

    Energy Technology Data Exchange (ETDEWEB)

    ZAJC,W.ET. AL.

    2003-11-30

    program is achievable using the present capabilities of PHENIX experimental apparatus, but the physics reach is considerably extended and the program made even more compelling by a proposed set of upgrades which include: (1) An aerogel and time-of-flight system to provide complete {pi}/K/p separation for momenta up to 10 GeV/c. (2) A vertex detector to detect displaced vertices from the decay of mesons containing charm or bottom quarks. (3) A hadron-blind detector to detect and track electrons near the vertex. (4) A micro-TPC to extend the range of PHENIX tracking in azimuth and pseudo-rapidity. (5) A forward detector upgrade for an improved muon trigger to preserve sensitivity at the highest projected RHIC luminosities. (6) A forward calorimeter to provide photon+jet studies over a wide kinematic range. The success of the proposed program is contingent upon several factors external to PHENIX. Implementation of the upgrades is predicated on the availability of R&D funds to develop the required detector technologies on a timely, and in some cases urgent, basis. The necessity for such funding, and the physics merit of the proposed PHENIX program, has been endorsed in the first meeting of BNL's Detector Advisory Committee in December, 2002. Progress towards the physics goals depends in an essential way on the development of the design values for RHIC luminosity, polarization and availability. An analysis based on the guidance from the Collider Accelerator Department indicates that moderate increases in the yearly running time lead to very considerable increases in progress toward the enunciated goals. Efficient access to the rarest probes in the proposed program is achieved via the order-of-magnitude increase in luminosity provided by RHIC-II.

  4. LHeC and eRHIC

    CERN Document Server

    Litvinenko, Vladimir N; Beebe-Wang, J.; Ben-Zvi, I.; Blaskiewicz, M.; Burrill, A.; Calaga, R.; Chang, X.; Drees, A.; Fedotov, A.V.; Hahn, H.; Hammons, L.; Hao, Y.; Huang, H.; Jain, A.; Kayran, D.; Kewisch, J.; Lucio, A.; McIntyre, G.; Parker, B.; Pozdeyev, E.; Ptitsyn, V.; Roser, T.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Webb, S.; Zelensky, A.; Tsentalovich, E.; Zimmermann, F.; Bordry, F.; Braun, H.H.; Bruning, O.S.; Burkhardt, H.; Eide, A.; De Roeck, A.; Garoby, R.; Holzer, B.; Jowett, J.M.; Linnecar, T.; Mess, K.H.; Osborne, J.; Rinolfi, L.; Schulte, D.; Tomas, R.; Tuckmantel, J.; Vivoli, A.; Chattopadhyay, S.; Dainton, J.; Klein, M.; Omori, T.; Urakawa, J.; Willeke, F.; Ciftci, A.K.; Aksakal, H.; Nigde, U.; Sultansoy, S.

    2009-01-01

    This paper is focused on possible designs and predicted performances of two proposed highenergy, high-luminosity electron-hadron colliders: eRHIC at Brookhaven National Laboratory (BNL, Upton, NY, USA) and LHeC at Organisation Européenne pour la Recherche Nucléaire (CERN, Geneve, Switzerland). The Relativistic Heavy Ion Collider (RHIC, BNL) and the Large Hadron Collider (LHC, CERN) are designed as versatile colliders. RHIC is colliding various species of hadrons staring from polarized protons to un-polarized heavy ions (such as fully stripped Au (gold) ions) in various combinations: polarized p-p, d-Au, Cu-Cu, Au-Au. Maximum energy in RHIC is 250 GeV (per beam) for polarized protons and 100 GeV/n for heavy ions. There is planed expansion of the variety of species to include polarized He3 and unpolarized fully stripped U (uranium). LHeC is designed to collide both un-polarized protons with energy up to 7 TeV per beam and fully stripped Pb (lead) ions with energy up to 3 TeV/n. Both eRHIC and LHeC plan to add...

  5. Strangeness in STAR at RHIC

    CERN Document Server

    ,

    2016-01-01

    We present the recent results of strangeness production at the mid-rapidity in Au + Au collisions at RHIC, from $\\sqrt{s_{\\rm NN}}$ = 7.7 to 200 GeV. The $v_2$ of multi-strange baryon $\\Omega$ and $\\phi$ mesons are similar to that of pions and protons in the intermediate $p_T$ range (2 - 5 GeV/$c$) in $\\sqrt{s_{\\rm NN}}$ = 200 GeV Au + Au collisions, indicating that the major part of collective flow has been built up at partonic stage. The breaking of mass ordering between $\\phi$ mesons and protons in the low $p_T$ range ($<$ 1 GeV/$c$) is consistent with a picture that $\\phi$ mesons are less sensitive to later hadronic interaction. The nuclear modification factor $R_{\\rm CP}$ and baryon to meson ratio change dramatically when the collision energy is lower than 19.6 GeV. It suggests a possible change of medium property of the system compared to those from high energies.

  6. The STAR-RICH Detector

    CERN Document Server

    Lasiuk, B; Braem, André; Cozza, D; Davenport, M; De Cataldo, G; Dell'Olio, L; Di Bari, D; Di Mauro, A; Dunlop, J C; Finch, E; Fraissard, Daniel; Franco, A; Gans, J; Ghidini, B; Harris, J W; Horsley, M; Kunde, G J; Lasiuk, B; Lesenechal, Y; Majka, R D; Martinengo, P; Morsch, Andreas; Nappi, E; Paic, G; Piuz, François; Posa, F; Raynaud, J; Salur, S; Sandweiss, J; Santiard, Jean-Claude; Satinover, J; Schyns, E M; Smirnov, N; Van Beelen, J; Williams, T D; Xu, Z

    2002-01-01

    The STAR-RICH detector extends the particle idenfication capabilities of the STAR spectrometer for charged hadrons at mid-rapidity. It allows identification of pions and kaons up to ~3 GeV/c and protons up to ~5 GeV/c. The characteristics and performance of the device in the inaugural RHIC run are described.

  7. The STAR-RICH Detector

    OpenAIRE

    Andrés, Yu; Braem, André; Cozza, D; Davenport, M; De Cataldo, G; Dell'Olio, L; Di Bari, D; Di Mauro, A.; Dunlop, J C; Finch, E; Fraissard, Daniel; Franco, A; Gans, J.; Ghidini, B.; Harris, J.W.

    2001-01-01

    The STAR-RICH detector extends the particle idenfication capabilities of the STAR spectrometer for charged hadrons at mid-rapidity. It allows identification of pions and kaons up to ~3 GeV/c and protons up to ~5 GeV/c. The characteristics and performance of the device in the inaugural RHIC run are described.

  8. The RHIC polarized H⁻ ion source.

    Science.gov (United States)

    Zelenski, A; Atoian, G; Raparia, D; Ritter, J; Steski, D

    2016-02-01

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H(-) ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H(-) ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC.

  9. Estimation of collective instabilities in RHIC

    Science.gov (United States)

    Mackay, W. W.; Blaskiewicz, M.; Deng, D.; Mane, V.; Peggs, S.; Ratti, A.; Rose, J.; Shea, T. J.; Wei, J.

    1995-05-01

    The authors have estimated the broadband impedance in RHIC to be absolute value of(Z/n) less than 1.2 Omega for frequencies above 100 MHz. The Z/n threshold is set for Au(79+) ions at transition with an estimated 10% growth in emittance for Z/n = 1.5 Omega. They summarize the sources of broad and narrow band impedances in RHIC and investigate the multibunch instability limits throughout the machine cycle. The largest contribution to the broadband impedance comes from the abort and injection kickers. Since RHIC is designed to accelerate fully stripped ions from H(+) up to Au(79+) they give results for both protons and gold ions; other ions should give results somewhere between these two extremes. All ion species are expected to be stable during storage. At lower energies damping systems and chromaticity corrections will limit any growth to acceptable levels during the short time it takes to inject and accelerate the beams.

  10. Highlights from RHIC Spin Physics Program

    CERN Document Server

    Liu, Ming X

    2011-01-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory delivers the world's highest energy polarized proton-proton collisions at a center of mass energy up to 500 GeV and provides a unique opportunity to study the quark and gluon spin structure of the proton and QCD dynamics at high energy scale. RHIC has produced many exiting physics results in recent years. The latest data from RHIC significantly constrain the gluon spin contribution to the proton spin, and the parity violating single spin asymmetry are observed for the first time in W production by both the PHENIX and STAR collaborations. In this report, I present the latest results from the PHENIX and STAR experiments, followed by a brief discussion of the future prospects of transverse physics, particularly on the importance of the unique measurements of Drell-Yan single spin asymmetry.

  11. RHIC OPTICS MEASUREMENTS AT DIFFERENT WORKING POINTS.

    Energy Technology Data Exchange (ETDEWEB)

    CALAGA,R.; BAI,M.; PEGGS,S.; ROSER,T.; SATOGATA,T.

    2004-07-05

    Working point scans at RHIC were performed during 2004 to determine the effect on lifetime and luminosity. Linear optics were measured for different working point tunes by exciting coherent oscillations with the aid of RHIC AC dipoles. Two methods are currently used to measure the beta functions and phases advances: a conventional fitting technique, and an alternate method based on singular value decomposition (SVD). This paper focuses on the effect of working point on the measurement of linear optics using a SVD based technique. The use of a 3-bump beta wave algorithm to identify quadrupole error sources is also presented.

  12. HYDROGEN AND ITS DESORPTION IN RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    HSEUH,H.C.

    2002-11-11

    Hydrogen is the dominating gas specie in room temperature, ultrahigh vacuum systems of particle accelerators and storage rings, such as the Relativistic Heavy Ion Collider (RHIC) at Brookhaven. Rapid pressure increase of a few decades in hydrogen and other residual gases was observed during RHIC's recent high intensity gold and proton runs. The type and magnitude of the pressure increase were analyzed and compared with vacuum conditioning, beam intensity, number of bunches and bunch spacing. Most of these pressure increases were found to be consistent with those induced by beam loss and/or electron stimulated desorption from electron multipacting.

  13. STAR Vertex Detector Upgrade Development

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Leo C.; Matis, Howard S.; Stezelberger, Thorsten; Vu,Chinh Q.; Wieman, Howard; Szelezniak, Michal; Sun, Xiangming

    2008-01-28

    We report on the development and prototyping efforts undertaken with the goal of producing a micro-vertex detector for the STAR experiment at the RHIC accelerator at BNL. We present the basic detector requirements and show a sensor development path, conceptual mechanical design candidates and readout architecture. Prototyping and beam test results with current generation MimoSTAR-2 sensors and a readout system featuring FPGA based on-the-fly hit finding and data sparsification are also presented.

  14. High density matter in AGS, SPS and RHIC collisions: Proceedings. Volume 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This 1-day workshop focused on phenomenological models regarding the specific question of the maximum energy density achievable in collisions at AGS, SPS and RHIC. The idea was to have 30-minute (or less) presentations of each model--but not the model as a whole, rather then that strongly narrowed to the above physics question. The key topics addressed were: (1) to estimate the energy density in heavy-ion collisions within a model, and to discuss its physical implications; (2) to suggest experimental observables that may confirm the correctness of a model approach--with respect to the energy density estimate; (3) to compare with existing data from AGS and SPS heavy-ion collisions, and to give predictions for the future RHIC experiments. G. Ogilvie started up the workshop with a critical summary of experimental manifestations of high-density matter at the AGS, and gave a personal outlook on RHIC physics. R. Mattiello talked about his newly developed hadron cascade model for applications to AGS and SPS collisions. Next, D. Kharzeev gave a nice introduction of the Glauber approach to high-energy collisions and illustrated the predictive power of this approach in nucleus-nucleus collisions at the SPS. It followed S. Vance with a presentation of the baryon-junction model to explain the observed baryon stopping phenomenon in collisions of heavy nuclei. S. Bass continued with a broad perspective of the UrQMD model, and provided insight into the details of the microscopic dynamical features of nuclear collisions at high energy. J. Sandweiss and J. Kapusta addressed the interesting aspect of photon production in peripherical nuclear collisions due to intense electromagnetic bremstrahlung by the highly charged, fast moving ions. Finally, H. Sorge closed up the one-day workshop with a presentation of his recent work with the RQMD model. This report consists of a summary and vugraphs of the presentations.

  15. Heavy-flavour meson production at RHIC

    NARCIS (Netherlands)

    Mischke, A.

    2010-01-01

    Collisions of heavy atomic nuclei at very high beam energies allow to create and study hot QCD matter under laboratory-controlled conditions. Measurements at the SPS and RHIC facilities have yielded compelling evidence for the formation of this novel state of matter, the so-called Quark-Gluon

  16. Anisotropic flow from RHIC to the LHC

    NARCIS (Netherlands)

    Snellings, R.J.M.

    2007-01-01

    Anisotropic flow is recognized as one of the main observables providing information on the early stage of a heavy-ion collision. At RHIC the large observed anisotropic flow and its successful description by ideal hydrodynamics is considered evidence for an early onset of thermalization and almost

  17. Polarized proton beam for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    RHIC has provided polarized proton collisions from 31 GeV to 255 GeV in the past decade. To preserve polarization through numerous depolarizing resonances through the whole accelerator chain, harmonic orbit correction, partial snakes, horizontal tune jump system and full snakes have been used. In addition, close attentions have been paid to betatron tune control, orbit control and beam line alignment. The polarization of 60% at 255 GeV has been delivered to experiments with 1.8×1011 bunch intensity. For the eRHIC era, the beam brightness has to be maintained to reach the desired luminosity. Since we only have one hadron ring in the eRHIC era, existing spin rotator and snakes can be converted to six snake configuration for one hadron ring. With properly arranged six snakes, the polarization can be maintained at 70% at 250 GeV. This paper summarizes the effort and plan to reach high polarization with small emittance for eRHIC.

  18. Spin physics at RHIC: Present and future

    Indian Academy of Sciences (India)

    I will review the progress made by the RHIC spin program, followed by the physics goals for the next few years. After that I will present a brief overview of a proposal to build a high intensity polarized electron/positron beam facility at BNL which would enable deep inelastic scattering (DIS) experiments to be pursued at BNL ...

  19. Development of High Voltage Power Supply Controls for the STAR Experiment at RHIC

    Science.gov (United States)

    Ruiz, Samuel; Fujita, Jiro

    2017-09-01

    The STAR (Solenoidal Tracker at RHIC) experiment at RHIC (Relativistic Heavy Ion Collider) at Brookhaven National Laboratory studies the collisions of various ion species. The large number of channels to be controlled and monitored require an experiment-wide control system for efficient operation. Additionally, the radiation levels require that the user interfaces of the system are located outside the experimental hall. Each sub-detector system at STAR is controlled by software input/output controllers (IOCs). Aging high voltages systems at STAR are being replaced or are having their software updated to run on new processors. The outdated high voltage controls systems occasionally malfunction or require frequent rebooting of the remote hardware. This project aims to design and implement more effective controls software for the Beam-Beam Counter and the Zero Degree Calorimeter high voltage systems in order to mitigate this problem. This work will also be applicable to other subsystems with similar hardware issues.

  20. A FIRST LOOK AT BEAM DIAGNOSTICS FOR THE RHIC ELECTRON COOLING PROJECT.

    Energy Technology Data Exchange (ETDEWEB)

    CAMERON, P.; BEN-ZVI, I.; KEWISCH, J.; LITVINENKO, V.

    2005-06-06

    High energy electron cooling [1] is essential to meet the luminosity specification for RHIC II [2]. In preparation for electron cooling, an Energy Recovery Linac (ERL) test facility [3] is under construction at BNL. A preliminary description of Diagnostics for the ERL was presented at an earlier workshop [4]. A significant portion of the eCooling Diagnostics will be a simple extension of those developed for the ERL test facility. In this paper we present a preliminary report on eCooling Diagnostics. We summarize the planned conventional Diagnostics, and follow with more detailed descriptions of Diagnostics specialized to the requirements of high-energy magnetized cooling.

  1. Heavy Flavor Measurements at RHIC in the Near Future

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Nu

    2006-12-01

    We discuss the recent results on open charm measurements at RHIC. The heavy flavor upgrade program for both PHENIX and STAR experiments are briefly discussed. The completion of the program will yield important information on light flavor thermalization of the partonic matter created in high-energy nuclear collisions at RHIC. A new era of RHIC is ahead of us with the progress of the upgrade program.

  2. RHIC electron lens test bench diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Gassner, D.; Beebe, E.; Fischer, W.; Gu, X.; Hamdi, K.; Hock, J.; Liu, C.; Miller, T.; Pikin, A.; Thieberger, P.

    2011-05-16

    An Electron Lens (E-Lens) system will be installed in RHIC to increase luminosity by counteracting the head-on beam-beam interaction. The proton beam collisions at the RHIC experimental locations will introduce a tune spread due to a difference of tune shifts between small and large amplitude particles. A low energy electron beam will be used to improve luminosity and lifetime of the colliding beams by reducing the betatron tune shift and spread. In preparation for the Electron Lens installation next year, a test bench facility will be used to gain experience with many sub-systems. This paper will discuss the diagnostics related to measuring the electron beam parameters.

  3. Ferrite HOM Absorber for the RHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  4. Observations of Snake Resonance in RHIC

    CERN Document Server

    Bai, Mei; Lee, Shyh-Yuan; Lin, Fanglei; MacKay, William; Ptitsyn, Vadim; Roser, Thomas; Tepikian, Steven

    2005-01-01

    Siberian snakes now become essential in the polarized proton acceleration. With proper configuration of Siberian snakes, the spin precession tune of the beam becomes $\\frac{1}{2}$ which avoids all the spin depolarizing resonance. However, the enhancement of the perturbations on the spin motion can still occur when the betatron tune is near some low order fractional numbers, called snake resonances, and the beam can be depolarized when passing through the resonance. The snake resonances have been confirmed in the spin tracking calculations, and observed in RHIC with polarized proton beam. Equipped with two full Siberian snakes in each ring, RHIC provides us a perfect facility for snake resonance studies. This paper presents latest experimental results. New insights are also discussed.

  5. Conceptual design of a quadrupole magnet for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Witte, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC) hadron facility at Brookhaven National Laboratory, which would allow collisions of up to 21 GeV polarized electrons with a variety of species from the existing RHIC accelerator. eRHIC employs an Energy Recovery Linac (ERL) and an FFAG lattice for the arcs. The arcs require open-midplane quadrupole magnets of up to 30 T/m gradient of good field quality. In this paper we explore initial quadrupole magnet design concepts based on permanent magnetic material which allow to modify the gradient during operation.

  6. RHIC polarized proton performance in run-8.

    Energy Technology Data Exchange (ETDEWEB)

    Montag,C.; Abreu, N.; Ahrens, L.; Bai, M.; Barton, D.; et al.

    2008-06-23

    During Run-8, the Relativistic Heavy Ion Collider (RHIC) provided collisions of spin-polarized proton beams at two interaction regions. Helical spin rotators at these two interaction regions were used to control the spin orientation of both beams at the collision points. Physics data were taken with different orientations of the beam polarization. We present recent developments and improvements as well as the luminosity and polarization performance achieved during Run-8.

  7. PHOBOS at RHIC: Some global observations

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 61; Issue 5. PHOBOS at RHIC: Some global observations. Alan S Carroll B B Back M D Baker D S Barton R R Betts M Ballintijn A A Bickley R Bindel A Budzanowski W Busza A Carroll M P Decowski E García N George K Gulbrandsen S Gushue C Halliwell J Hamblen ...

  8. eRHIC ERL modeling in Zgoubi

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hao, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Jing, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-01

    This Note discusses on-going work regarding the modeling of eRHIC ERL in the ray-tracing code Zgoubi. The various pieces of the recirculator puzzle, their optical properties and their assemblage into an operational input data file in are addressed. The Note reports in particular on preparatory stages toward extensive end-to-end 6D polarized electron bunch transport simulations, which yield methods, as well a series of preliminary qualitative outcomes, discussed as well.

  9. RHIC low-energy challenges and plans

    Energy Technology Data Exchange (ETDEWEB)

    Satogata,T.; Ahrens, L.; Bai, M.; Brennan, J.M.; Bruno, D.; Butler, J.; Drees, A.; Fedotov, A.; Fischer, W.; Harvey, M.; Hayes, T.; Jappe, W.; Lee, R.C.; MacKay, W.W.; Malitsky, N.; Marr, G.; Michnoff, R.; Oerter, B.; Pozdeyev, E.; Roser, T.; Schoefer, V.; Severino, F.; Smith, K.; Tepikian, S.; Tsoupas, N.

    2009-06-08

    Future Relativistic Heavy Ion Collider (RHIC) runs, including a portion of FY10 heavy ion operations, will explore collisions at center of mass energies of 5-50 GeV/n (GeV/nucleon). Operations at these energies is motivated by the search for a possible QCD phase transition critical point. The lowest end of this energy range is nearly a factor of four below the nominal RHIC injection center of mass energy {radical}s = 19.6 GeV/n. There are several operational challenges in the RHIC low-energy regime, including harmonic number changes, small longitudinal acceptance, lowered magnet field quality, nonlinear orbit control, and luminosity monitoring. We report on the experience with these challenges during beam tests with gold beams in March 2008. This includes first operations at {radical}s = 9.18 GeV/n, first beam experience at {radical}s = 5 GeV/n, and luminosity projections for near-term operations.

  10. QCD and Heavy Ions RHIC Overview

    CERN Document Server

    Granier de Cassagnac, Raphael

    2010-01-01

    Nowadays, the most violent heavy ion collisions available to experimental study occur at the Relativistic Heavy Ion Collider (RHIC) of the Brookhaven National Laboratory. There, gold ions collide at psNN = 200 GeV. The early and most striking RHIC results were summarised in 2005 by its four experiments, BRAHMS, PHENIX, PHOBOS and STAR, in their so-called white papers [1, 2, 3, 4] that will be largely referenced thereafter. Beyond and after this, a wealth of data has been collected and analysed, providing additional information about the properties of the matter created at RHIC. It is categorically impossible to give a comprehensive review of these results in a 20 minutes talk or a 7 pages report. Here, I have made a selection of some of the most striking or intriguing signatures: jet quenching in Section 2, quarkonia suppressions in Section 3 and thermal photons in Section 4. A slightly longer and older version of this review can be found in [5]. Some updates are given here, as well as emphasis on new probes ...

  11. The development of a silicon multiplicity detector system

    Energy Technology Data Exchange (ETDEWEB)

    Beuttenmuller, R.H.; Kraner, H.W.; Lissauer, D.; Makowiecki, D.; Polychronakos, V.; Radeka, V.; Sondericker, J.; Stephani, D. [Brookhaven National Laboratory, Upton, NY (United States); Barrette, J.; Hall, J.; Mark, S.K.; Pruneau, C.A. [McGill Univ., Montreal, Quebec (Canada); Wolfe, D. [Univ. of New Mexico, Albuquerque (United States); Borenstein, S.R. [York College-CUNY, Jamaica, NY (United States)

    1991-12-31

    The physics program and the design criteria for a Silicon Pad Detector at RHIC are reviewed. An end cap double sided readout detector configuration for RHIC is presented. Its performance as an on-line and off-line centrality tagging device is studied by means of simulations with Fritiof as the event generator. The results of an in-beam test of a prototype double-sided Si-detector are presented. Good signal-to-noise ratio are obtained with front junction and the resistive back side readout. Good separation between one and two minimum-ionizing particle signals is achieved.

  12. Development of a Polarized Helium-3 Source for RHIC and eRHIC

    Science.gov (United States)

    Maxwell, J.; Epstein, C.; Milner, R.; Alessi, J.; Beebe, E.; Pikin, A.; Ritter, J.; Zelenski, A.

    2016-02-01

    The addition of a polarized 3He ion source for use at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory would enable a host of new measurements, particularly in the context of a planned eRHIC. We are developing such a source using metastability exchange optical pumping to polarize helium-3, which will be then transferred into RHIC’s Electron Beam Ion Source for ionization. We aim to deliver nuclear polarization of near 70%, and roughly 1011 doubly-ionized 3He++ ions will be created in each 20 μsec pulse. We discuss the design of the source, and the status of its development.

  13. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP (VOLUME 70)

    Energy Technology Data Exchange (ETDEWEB)

    JACAK, B.; SHURYAK, E.; HALLMAN, T.; BASS, S.; DAVIDSON, R.

    2005-01-14

    The Relativistic Heavy Ion Collider (RHIC) was commissioned for heavy ion collisions and for polarized pp collisions in 2001. All principal components of the accelerator chain were operational by the 2003 RHIC run. Approximately 50 papers on RHIC experimental results have been published in refereed journals to date. This is a testament to the vast amount of exciting new information and the unprecedented analysis and publication rate from RHIC. A number of signals of creation of matter at extreme energy density, and of new physics in that matter, have been observed. The RHIC community has been heavily engaged in discussion about these signals, and about the appropriate level of proof for Quark Gluon Plasma discovery at the RHIC. In fact, such discussions were the subject of an earlier RBRC Workshop. One of the striking results from heavy ion collisions at RHIC is that the quark gluon plasma accessible appears to be strongly coupled. The properties of strongly coupled plasmas are of intense interest in the traditional Plasma Physics community, who have been developing tools to study such matter theoretically and experimentally. Despite the fact that one plasma interacts electromagnetically and the other through the strong interaction, there is tremendous commonality in the intellectual approach and even the theoretical and experimental tools. It is important to broaden the discussion of Quark Gluon Plasma discovery beyond possible signals of deconfinement to also encompass signals of plasma phenomena in heavy ion collisions. Thus it is imperative establish more direct contact among Nuclear, Plasma and Atomic physicists to share techniques and ideas. RHIC physicists will benefit from familiarity with typical plasma diagnostics and theoretical methods to study strongly coupled plasmas. Plasma and Atomic physicists may fmd new techniques parallel to the multi-particle correlations used in RHIC data analysis, and theoretical tools to study high energy density matter

  14. The STAR Vertex Position Detector

    Energy Technology Data Exchange (ETDEWEB)

    Llope, W.J., E-mail: llope@rice.edu [Rice University, Houston, TX 77005 (United States); Zhou, J.; Nussbaum, T. [Rice University, Houston, TX 77005 (United States); Hoffmann, G.W. [University of Texas, Austin, TX 78712 (United States); Asselta, K. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Brandenburg, J.D.; Butterworth, J. [Rice University, Houston, TX 77005 (United States); Camarda, T.; Christie, W. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Crawford, H.J. [University of California, Berkeley, CA 94720 (United States); Dong, X. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Engelage, J. [University of California, Berkeley, CA 94720 (United States); Eppley, G.; Geurts, F. [Rice University, Houston, TX 77005 (United States); Hammond, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Judd, E. [University of California, Berkeley, CA 94720 (United States); McDonald, D.L. [Rice University, Houston, TX 77005 (United States); Perkins, C. [University of California, Berkeley, CA 94720 (United States); Ruan, L.; Scheblein, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); and others

    2014-09-21

    The 2×3 channel pseudo Vertex Position Detector (pVPD) in the STAR experiment at RHIC has been upgraded to a 2×19 channel detector in the same acceptance, called the Vertex Position Detector (VPD). This detector is fully integrated into the STAR trigger system and provides the primary input to the minimum-bias trigger in Au+Au collisions. The information from the detector is used both in the STAR Level-0 trigger and offline to measure the location of the primary collision vertex along the beam pipe and the event “start time” needed by other fast-timing detectors in STAR. The offline timing resolution of single detector channels in full-energy Au+Au collisions is ∼100 ps, resulting in a start time resolution of a few tens of picoseconds and a resolution on the primary vertex location of ∼1 cm.

  15. Workshop Summary -- Accelerator Issues

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Alex

    1999-06-22

    As we enter the high energy regime covered by RHIC and HERA, depolarization effects become strong, so that depolarization resonances begin to overlap. As a result, the ''good old days'' of the ZGS and AGS--when techniques for dealing with isolated resonances were sufficient--are now in the past, and a new generation of spin dynamics questions have to be addressed and new techniques have to be developed. Exciting results were presented at this workshop ranging from the recent rapid R&D advances on polarized H- sources to deeper understanding of the subtle spin dynamics involving Siberian snakes. This summary is an attempt to give some of the highlights.

  16. Quantifying the sQGP - Heavy Ion Collisions at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Seto, Richard [Univ. of California, Riverside, CA (United States)

    2014-12-01

    This is the closeout for DE-FG02-86ER40271 entitled Quantifying the sQGP - Heavy Ion Collisions at the RHIC. Two major things were accomplished. The first, is the physics planning, design, approval, construction, and commissioning of the MPC-EX. The MPC-EX is an electromagnetic calorimeter covering a rapidity of 3<|eta|<4, which was added to the PHENIX detector. Its primary aim is to measure low-x gluons, in order to understand the suppression seen in a variety of signatures, such as the J/Psi. A candidate to explain this phenomena is the Color Glass Condensate (CGC) A second task was to look at collisions of asymmetric species, in particularly Cu+Au. The signature was the suppression of J/Psi mesons at forward and backward rapidity, where a stronger suppression was seen in the copper going direction. While the blue of the suppression is due to hot nuclear matter effects (e.g. screening) the increase in suppression on the Au side was consistent with cold nuclear matter effects seen in d+Au collisions. A major candidate for the explanation of this phenomena is the aforementioned CGC. Finally the work on sPHENIX, particularly an extension to the forward region, called fsPHENIX is described.

  17. A Study on Double Event Detection for PHENIX at RHIC

    Science.gov (United States)

    Vazquez-Carson, Sebastian; Phenix Collaboration

    2016-09-01

    Many measurements made in Heavy Ion experiments such as PHENIX at RHIC focus on geometrical properties because phenomena such as collective flow give insight into quark-gluon plasma and the strong nuclear force. As part of this investigation, PHENIX has taken data in 2016 for deuteron on gold collisions at several energies. An acceptable luminosity is achieved by injecting up to 120 separate bunches each with billions of ions into the storage ring, from which two, separate beams are made to collide. This method has a drawback as there is a chance for multiple pairs of nuclei to collide in a single bunch crossing. Data taken in a double event cannot be separated into two independent events and has no clear interpretation. This effect's magnitude is estimated and incorporated in published results as a systematic uncertainty and studies on this topic have already been conducted within PHENIX. I develop several additional algorithms to flag multiple interaction events by examining the time dependence of data from the two Beam-Beam Counters - detectors surrounding the beam pipe on opposite ends of the interaction region. The algorithms are tested with data, in which events with double interactions are artificially produced using low luminosity data. I am working at the University of Colorado at Boulder on behalf of the PHENIX collaboration.

  18. "Upgraded" physics at the LHC and RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Llope, W. J. [Wayne State University, Detroit, MI (United States)

    2017-09-03

    Closeout materials enclosed. This grant supported a postdoctoral scientist (S. Jowzaee) and the tuition for a graduate student (B. Erko), both working under the supervision of Prof. W.J. Llope at Wayne State University. Travel to a STAR Collaboration Meeting and the Quark Matter 2017 conference was also supported. The physics research concentrated on particle-identified two-particle correlations in the Beam Energy Scan data from the STAR experiment at RHIC. S. Jowzaee gave an oral presentation on this research at the Quark Matter 2017 conference.

  19. RHIC operation with asymmetric collisions in 2015

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Aschenauer, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Atoian, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, K. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bruno, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Connolly, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ottavio, T. D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Drees, K. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gu, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hayes, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Laster, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Makdisi, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marr, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Michnoff, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morris, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Narayan, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Nayak, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Nemesure, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pile, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Poblaguev, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schmidke, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Severino, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shrey, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Steski, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); White, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yip, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zeno, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhang, S. Y. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-08-07

    To study low-x shadowing/saturation physics as well as other nuclear effects [1], [2], proton-gold (p-Au, for 5 weeks) and proton-Aluminum (p-Al, for 2 weeks) collisions were provided for experiments in 2015 at the Relativistic Heavy Ion Collider (RHIC), with polarized proton beam in the Blue ring and Au/Al beam in the Yellow ring. The special features of the asymmetric run in 2015 will be introduced. The operation experience will be reviewed as well in the report.

  20. Collective flow measurements at RHIC energies

    Directory of Open Access Journals (Sweden)

    Esumi Shinichi

    2017-01-01

    Full Text Available Recent experimental results on collective flow measurements from relativistic heavy-ion collider (RHIC are presented and discussed to study high-temperature and high-density quark-nuclear matter, Quark Gluon Plasma (QGP especially focusing on bulk properties, such as freeze-out parameters, temperature, chemical potential, collective expansion, azimuthal event anisotropy measurements. Their relations to the various correlation and fluctuation studies are also discussed, including initial geometrical and E- and B-field conditions as well as possible collective flow evolution that could even be developed in small systems. Current results and understandings from the beam energy scan program (BES and future plans are discussed and reviewed.

  1. Recent results from PHOBOS at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Baker, M.D.; Barton, D.S.; Betts, R.R.; Ballintijn, M.; Bickley, A.A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M.P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G.A.; Henderson, C.; Hofman, D.J.; Hollis, R.S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C.M.; Lin, W.T.; Manly, S.; McLeod, D.; Michalowski, J.; Mignerey, A.C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I.C.; Pernegger, H.; Reed, C.; Remsberg, L.P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S.G.; Steinberg, P.; Stephans, G.S.F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; Niewwenhuizen, G.J. van; Verdier, R.; Wadsworth, B.; Wolfs, F.L.H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A.H.; Wyslouch, B

    2003-06-30

    The PHOBOS experiment at RHIC has recorded measurements for Au-Au collisions spanning nucleon-nucleon center-of-mass energies from {radical}S{sub NN} = 19.6 GeV to 200 GeV. Global observables such as elliptic flow and charged particle multiplicity provide important constraints on model predictions that characterize the state of matter produced in these collisions. The nearly 4{pi} acceptance of the PHOBOS experiment provides excellent coverage for complete flow and multiplicity measurements. Results including beam energy and centrality dependencies are presented and compared to elementary systems.

  2. RHIC spin physics: Proceedings. Volume 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This proceedings compiles one-page summaries and five transparencies for each talk, with the intention that the speaker should include a web location for additional information in the summary. Also, email addresses are given with the participant list. The order follows the agenda: gluon, polarimetry, accelerator, W production and quark/antiquark polarization, parity violation searches, transversity, single transverse spin, small angle elastic scattering, and the final talk on ep collisions at RHIC. The authors begin the Proceedings with the full set of transparencies from Bob Jaffe`s colloquium on spin, by popular request.

  3. Polarization response of RHIC electron lens lattices

    Directory of Open Access Journals (Sweden)

    V. H. Ranjbar

    2016-10-01

    Full Text Available Depolarization response for a system of two orthogonal snakes at irrational tunes is studied in depth using lattice independent spin integration. In particular we consider the effect of overlapping spin resonances in this system, to understand the impact of phase, tune, relative location and threshold strengths of the spin resonances. These results are benchmarked and compared to two dimensional direct tracking results for the RHIC e-lens lattice and the standard lattice. Finally we consider the effect of longitudinal motion via chromatic scans using direct six dimensional lattice tracking.

  4. Estimates of rates and errors for measurements of direct-. gamma. and direct-. gamma. + jet production by polarized protons at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Beddo, M.E.; Spinka, H.; Underwood, D.G.

    1992-08-14

    Studies of inclusive direct-{gamma} production by pp interactions at RHIC energies were performed. Rates and the associated uncertainties on spin-spin observables for this process were computed for the planned PHENIX and STAR detectors at energies between {radical}s = 50 and 500 GeV. Also, rates were computed for direct-{gamma} + jet production for the STAR detector. The goal was to study the gluon spin distribution functions with such measurements. Recommendations concerning the electromagnetic calorimeter design and the need for an endcap calorimeter for STAR are made.

  5. Dilepton production from RHIC to the LHC

    Directory of Open Access Journals (Sweden)

    Dahms Torsten

    2015-01-01

    Full Text Available The goal of ultrarelativistic heavy-ion collisions at RHIC and the LHC is to study the properties of the quark-gluon plasma (QGP, a phase of matter with partonic degrees of freedom. Electromagnetic radiation, in form of photons or lepton pairs, is a penetrating probe that allows the investigation of the full time evolution and dynamics of the produced matter as it does not undergo strong interaction in the final state. The dilepton spectrum is extremely rich in physics sources: Thermal black-body radiation is of particular interest as it carries information about the QGP temperature. Modifications of the spectral functions of light vector mesons are linked to the potential restoration of chiral symmetry in the QGP phase. Correlated lepton pairs from semi-leptonic charm and beauty decays provide additional information about the heavy-quark energy loss. Finally, the suppression of quarkonia in the QGP give access to an independent temperature measurement. In this proceedings, dilepton results from RHIC are reviewed and the status as well as prospects of low-mass dilepton measurements at the LHC are given.

  6. Dilepton production from RHIC to the LHC

    Science.gov (United States)

    Dahms, Torsten

    2015-06-01

    The goal of ultrarelativistic heavy-ion collisions at RHIC and the LHC is to study the properties of the quark-gluon plasma (QGP), a phase of matter with partonic degrees of freedom. Electromagnetic radiation, in form of photons or lepton pairs, is a penetrating probe that allows the investigation of the full time evolution and dynamics of the produced matter as it does not undergo strong interaction in the final state. The dilepton spectrum is extremely rich in physics sources: Thermal black-body radiation is of particular interest as it carries information about the QGP temperature. Modifications of the spectral functions of light vector mesons are linked to the potential restoration of chiral symmetry in the QGP phase. Correlated lepton pairs from semi-leptonic charm and beauty decays provide additional information about the heavy-quark energy loss. Finally, the suppression of quarkonia in the QGP give access to an independent temperature measurement. In this proceedings, dilepton results from RHIC are reviewed and the status as well as prospects of low-mass dilepton measurements at the LHC are given.

  7. Results from RHIC with Implications for LHC

    CERN Document Server

    Tannenbaum, M J

    2010-01-01

    Results from the PHENIX experiment at RHIC in p-p and Au+Au collisions are reviewed from the perspective of measurements in p-p collisions at the CERN-ISR which serve as a basis for many of the techniques used. Issues such as J/Psi suppression and hydrodynamical flow in A+A collisions require data from LHC-Ions for an improved understanding. Suppression of high pT particles in Au+Au collisions, first observed at RHIC, also has unresolved mysteries such as the equality of the suppression of inclusive pi0 (from light quarks and gluons) and direct-single electrons (from the decay of heavy quarks) in the transverse momentum range 4< pT < 9 GeV/c. This disfavors a radiative explanation of suppression and leads to a fundamental question of whether the Higgs boson gives mass to fermions. Observation of an exponential distribution of direct photons in central Au+Au collisions for 1< pT <2 GeV/c where hard-processes are negligible and with no similar exponential distribution in p-p collisions indicates the...

  8. High luminosity electron-hadron collider eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ptitsyn, V.; Aschenauer, E.; Bai, M.; Beebe-Wang, J.; Belomestnykh, S.; Ben-Zvi, I.; Blaskiewicz, M..; Calaga, R.; Chang, X.; Fedotov, A.; Gassner, D.; Hammons, L.; Hahn, H.; Hammons, L.; He, P.; Hao, Y.; Jackson, W.; Jain, A.; Johnson, E.C.; Kayran, D.; Kewisch, J.; Litvinenko, V.N.; Luo, Y.; Mahler, G.; McIntyre, G.; Meng, W.; Minty, M.; Parker, B.; Pikin, A.; Rao, T.; Roser, T.; Skaritka, J.; Sheehy, B.; Skaritka, J.; Tepikian, S.; Than, Y.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Webb, S.; Wu, Q.; Xu, W.; Pozdeyev, E.; Tsentalovich, E.

    2011-03-28

    We present the design of a future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 10{sup 34} cm{sup -2} s{sup -1} can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling, ERL test facility and the compact magnets for recirculation passes. A natural staging scenario of step-by-step increases of the electron beam energy by building-up of eRHIC's SRF linacs is presented.

  9. AC dipole based optics measurement and correction at RHIC

    CERN Document Server

    Shen, X; Bai, M; White, S; Robert-Domolaize, G; Luo, Y; Marusic, A; Tomas, R

    2013-01-01

    Independent component analysis (ICA) was applied to the AC dipole based optics measurement at RHIC to extract beta functions as well as phase advances at each BPM. Existence of excessive beta-beat was observed in both rings of RHIC at polarized proton store energy. A unique global optics correction scheme was then developed and tested successfully during the RHIC polarized proton run in 2013. The feasibility of using horizontal closed orbit bump at sextupole for arc beta-beat correction was also demonstrated.

  10. IBS simulation with different RF configurations in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-11-07

    It is a crucial task to understand the beam emittance growth during RHIC cycle and the underlying causes. One would benefit not just for the current operation of RHIC, also for the design of eRHIC. This report focuses on the Intra-Beam Scattering (IBS) contribution to the emittance growth of the proton beam with two different configurations of RF system. The answers to these questions will be given in the end of the report; can IBS explain the emittance growth all alone? What’s the difference of IBS growth rates for different RF configurations?

  11. The vertex detector for the Lepton/Photon collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.P.; Boissevain, J.G.; Fox, D.; Hecke, H. van; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E. [Los Alamos National Lab., NM (United States)

    1991-12-31

    The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two con- centric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity ({nu}) distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed.

  12. Two-photon physics at RHIC: Separating signals from backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Nystrand, J.; Klein, S.

    1997-11-01

    This presentation will show the feasibility of studying two-photon interactions in the STAR experiment at RHIC. Signals, detection efficiencies, backgrounds, triggering and analysis techniques will be discussed.

  13. ERL Based Electron-Ion Collider eRHIC

    CERN Document Server

    Litvinenko, Vladimir N; Bai, Mei; Beebe-Wang, Joanne; Ben-Zvi, Ilan; Blaskiewicz, Michael; Brennan, Joseph M; Calaga, Rama; Chang, Xiangyun; Deshpande, Abhay A; Farkhondeh, Manouchehr; Fedotov, Alexei V; Fischer, Wolfram; Kayran, Dmitry; Kewisch, Jorg; MacKay, William W; Montag, Christoph; Parker, Brett; Peggs, Steve; Ptitsyn, Vadim; Roser, Thomas; Ruggiero, Alessandro; Satogata, Todd; Surrow, Bernd; Tepikian, Steven; Trbojevic, Dejan; Yakimenko, Vitaly; Zhang, S Y

    2005-01-01

    We present the designs of a future polarized electron-hadron collider, eRHIC* based on a high current super-conducting energy-recovery linac (ERL) with energy of electrons up to 20 GeV. We plan to operate eRHIC in both dedicated (electron-hadrons only) and parallel(with the main hadron-hadron collisions) modes. The eRHIC has very large tunability range of c.m. energies while maintaining very high luminosity up to 1034 cm-2 s-1 per nucleon. Two of the most attractive features of this scheme are full spin transparency of the ERL at all operational energies and the capability to support up to four interaction points. We present two main layouts of the eRHIC, the expected beam and luminosity parameter, and discuss the potential limitation of its performance.

  14. RHIC PERFORMANCE AND PLANS TOWARDS HIGHER LUMINOSITY AND HIGHER POLARIZATION.

    Energy Technology Data Exchange (ETDEWEB)

    SATOGATA,T.

    2004-07-05

    The Relativistic Heavy Ion Collider (RHIC), the first hadron accelerator and collider consisting of two independent rings, has completed its fourth year of operation since commissioning in 1999. RHIC is designed to provide luminosity over a wide range of beam energies and species, including heavy ions, polarized protons, and asymmetric beam collisions. RHIC has produced physics data at four experiments in runs that include gold-on-gold collisions at various beam energies (9.8, 31, 65, and 100 GeV/u), high-energy polarized proton-proton collisions (100 GeV), and deuteron-gold collisions (100 GeV/u). We review recent machine performance for high-luminosity gold-gold operations and polarized proton operations, including causes and solutions for known operational limits. Plans and progress for luminosity and polarization improvements, electron cooling, and the electron-ion collider eRHIC are discussed.

  15. PROGRESS OF HIGH-ENERGY ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV,A.V.

    2007-09-10

    The fundamental questions about QCD which can be directly answered at Relativistic Heavy Ion Collider (RHIC) call for large integrated luminosities. The major goal of RHIC-I1 upgrade is to achieve a 10 fold increase in luminosity of Au ions at the top energy of 100 GeV/nucleon. Such a boost in luminosity for RHIC-II is achievable with implementation of high-energy electron cooling. The design of the higher-energy cooler for RHIC-II recently adopted a non-magnetized approach which requires a low temperature electron beam. Such electron beams will be produced with a superconducting Energy Recovery Linac (ERL). Detailed simulations of the electron cooling process and numerical simulations of the electron beam transport including the cooling section were performed. An intensive R&D of various elements of the design is presently underway. Here, we summarize progress in these electron cooling efforts.

  16. Machine Protection System for Concurrent Operation of RHIC and BLIP

    CERN Document Server

    Wilinski, Michelle; Glenn, Joseph; Mausner, Leonard; Unger, Kerry

    2005-01-01

    The Brookhaven 200 MeV linac is a multipurpose machine used to inject low intensity polarized protons ultimately ending up in RHIC as well as to inject high intensity protons to BLIP, a medical isotope production facility. If high intensity protons were injected to RHIC by mistake, administrative radiation limits could be exceeded or sensitive electronics could be damaged. In the past, the changeover from polarized proton to high intensity proton operation has been a lengthy process, thereby never allowing the two programs to run simultaneously. To remedy this situation and allow for concurrent operation of RHIC and BLIP, an active interlock system has been designed to monitor current levels in the AGS using two current transformers with fail safe circuitry and associated electronics to inhibit beam to RHIC if high intensity is detected.

  17. MEASUREMENT OF TRANSVERSE ECHOES IN RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    FISCHER, W.; SATOGATA, T.; TOMAS. R.

    2005-05-16

    Beam echoes are a very sensitive method to measure diffusion, and longitudinal echo measurements were performed in a number of machines. In RHIC, for the first time, a transverse beam echo was observed after applying a dipole kick followed by a quadrupole .kick. After application of the dipole kick, the dipole moment decohered completely due to lattice nonlinearities. When a quadrupole kick is applied at time {tau} after the dipole kick, the beam re-cohered at time 2{tau} thus showing an echo response. We describe the experimental setup and measurement results. In the measurements the dipole and quadrupole kick amplitudes, amplitude dependent tune shift, and the time between dipole and quadrupole kick were varied. In addition, measurements were taken with gold bunches of different intensities. These should exhibit different transverse diffusion rates due to intra-beam scattering.

  18. Heavy Ion results from RHIC-BNL

    Directory of Open Access Journals (Sweden)

    Esumi Shinlchi

    2013-05-01

    Full Text Available Recent results from heavy ion collision experiments from RHIC at BNL are presented and discussed in terms of Quark Gluon Plasm properties, such as partonic collectivity and partonic energy loss. The experimental results with direct photons and heavy quarks have given important additional insights of the plasma on top of what has been known with light hadrons. Higher order event anisotropies and the related results have provided the geometrical, temporal and dynamical information of the plasma. The beam energy dependence of the various measurements could reveal the structure of QCD phase diagram and possibly the critical point in the diagram, where the properties of phase transition are expected to change drastically.

  19. Hadronization via coalescence at RHIC and LHC

    Directory of Open Access Journals (Sweden)

    Minissale V.

    2016-01-01

    Full Text Available An hadronization model that includes coalescence and fragmentation is used in this work to obtain predictions at both RHIC and LHC energy for light and strange hadrons transverse momentum spectra (π, p, k, Λ and baryon to meson ratios (p/π, Λ/k in a wide range of pT. This is accomplished without changing coalescence parameters. The ratios p/π and Λ/K shows the right behaviour except for some lack of baryon yield in a limited pT range around 6 GeV. This would indicate that the AKK fragmentation functions is too flat at pT < 8 GeV.

  20. Tracking studies in eRHIC energy-recovery recirculator

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-07-13

    Beam and polarization tracking studies in eRHIC energy recovery electron recirculator are presented, based on a very preliminary design of the FFAG lattice. These simulations provide examples of some of the beam and spin optics aspects of the linear FFAG lattice concept and its application in eRHIC, they provide code benchmarking for synchrotron radiation and spin diffusion in addition, and pave the way towards end-to-end 6-D(phasespace)+3D(spin) tracking simulations.

  1. Quadrupole Beam-Based Alignment in the RHIC Interaction Regions

    Energy Technology Data Exchange (ETDEWEB)

    T. Satogata, J. Ziegler

    2011-03-01

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements.

  2. Polarization simulations in the RHIC run 15 lattice

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; White, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    RHIC polarized proton Run 15 uses a new acceleration ramp optics, compared to RHIC Run 13 and earlier runs, in relation with electron-lens beam-beam compensation developments. The new optics induces different strengths in the depolarizing snake resonance sequence, from injection to top energy. As a consequence, polarization transport along the new ramp has been investigated, based on spin tracking simulations. Sample results are reported and discussed.

  3. Thermal and prompt photons at RHIC and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Paquet, Jean-François [Department of Physics & Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A2T8 (Canada); Shen, Chun [Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A2T8 (Canada); Denicol, Gabriel [Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A2T8 (Canada); Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Luzum, Matthew [Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Galicia-Spain (Spain); Universidade de São Paulo, Rua do Matão Travessa R, no. 187, 05508-090, Cidade Universitária, São Paulo (Brazil); Schenke, Björn [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Jeon, Sangyong; Gale, Charles [Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A2T8 (Canada)

    2016-12-15

    Thermal and prompt photon production in heavy ion collisions is evaluated and compared with measurements from both RHIC and the LHC. An event-by-event hydrodynamical model of heavy ion collisions that includes shear and bulk viscosities is used, along with up-to-date photon emission rates. Larger tension with measurements is observed at RHIC than at the LHC. The center-of-mass energy and centrality dependence of thermal and prompt photons is investigated.

  4. Desenvolvimento e Aplicação de um Novo Tipo de Detector, \\'Silicon Drift Detector\\', para o Projeto STAR

    OpenAIRE

    Jun Takahashi

    1998-01-01

    Neste trabalho, é descrito o desenvolvimento completo de um detector tipo \\"Silicon Drift Detector\\" para uso no projeto STAR/SVT, um experimento do acelerador de íons pesados relativísticos- RHIC. O \\"Silicon Drift detector\\" é um novo tipo de detector, que além da medida de energia depositada, fornece a posição de incidência de uma partícula, combinando as melhores características de detectores semicondutores com as de uma câmara de arrasto. O desempenho e a caracterização destes detectores...

  5. Interaction region design and auxiliary detector systems for an EIC

    Directory of Open Access Journals (Sweden)

    Petti R.

    2016-01-01

    Full Text Available There are a number of exciting physics opportunities at a future electron-ion collider facility. One possible design for such a facility is eRHIC, where the current RHIC facility located at Brookhaven National Lab would be transformed into an electron-ion collider. It is imperative for a seamless integration of auxiliary detector systems into the interaction region design to have a machine that meets the needs for the planned physics analyses, as well as take into account the space constraints due to the tunnel geometry and the necessary beam line elements. In this talk, we describe the current ideas for integrating a luminosity detector, electron polarimeter, roman pots, and a low Q2-tagger into the interaction region for eRHIC.

  6. The Third ATLAS ROD Workshop

    CERN Multimedia

    Poggioli, L.

    A new-style Workshop After two successful ATLAS ROD Workshops dedicated to the ROD hardware and held at the Geneva University in 1998 and in 2000, a new style Workshop took place at LAPP in Annecy on November 14-15, 2002. This time the Workshop was fully dedicated to the ROD-TDAQ integration and software in view of the near future integration activities of the final RODs for the detector assembly and commissioning. More precisely, the aim of this workshop was to get from the sub-detectors the parameters needed for T-DAQ, as well as status and plans from ROD builders. On the other hand, what was decided and assumed had to be stated (like EB decisions and URDs), and also support plans. The Workshop gathered about 70 participants from all ATLAS sub-detectors and the T-DAQ community. The quite dense agenda allowed nevertheless for many lively discussions, and for a dinner in the old town of Annecy. The Sessions The Workshop was organized in five main sessions: Assumptions and recommendations Sub-de...

  7. Recent STAR results in high-energy polarized proton-proton collisions at RHIC

    CERN Document Server

    Surrow, Bernd

    2010-01-01

    The STAR experiment at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory is carrying out a spin physics program in high-energy polarized $\\vec{p}+\\vec{p}$ collisions at $\\sqrt{s}=200-500\\,$GeV to gain a deeper insight into the spin structure and dynamics of the proton. One of the main objectives of the spin physics program at RHIC is the extraction of the polarized gluon distribution function based on measurements of gluon initiated processes, such as hadron and jet production. The STAR detector is well suited for the reconstruction of various final states involving jets, $\\pi^{0}$, $\\pi^{\\pm}$, e$^{\\pm}$ and $\\gamma$, which allows to measure several different processes. Recent results will be shown on the measurement of jet production and hadron production at $\\sqrt{s}=200\\,$GeV. The RHIC spin physics program has recently completed the first data taking period in 2009 of polarized $\\vec{p}+\\vec{p}$ collisions at $\\sqrt{s}=500\\,$GeV. This opens a new era in the study of the spin-flavor str...

  8. Polarized proton parameters for the 2015 PP-on-Au setup in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-08-25

    Values are given for RHIC circumference shifts due to snakes for various situations. Relevant parameters are tabulated for polarized protons (PP) in the booster and in AGS and RHIC for PP-on-Au stores.

  9. Polarized proton parameters for the 2015 PP-on-Aluminum setup in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-02

    Values are given for RHIC circumference shifts due to snakes for various situations. Relevant parameters are tabulated for polarized protons (PP) in the booster and in AGS and RHIC for PP-on-Aluminum stores.

  10. Performances du détecteur en silicium à micropistes de l'expérience STAR à RHIC

    CERN Document Server

    Bouchet, Jonathan

    2007-01-01

    The Silicon Strip Detector (SSD) is the fourth layer of detector using a double-sided microstrip technology of the STAR experiment at RHIC, thus completes its inner tracking device. The goal of STAR is to study heavy ions collisions in order to probe the existence of the QGP, a deconfined state of nuclear matter. Strangeness enhancement, such as $K_S^0$, $\\Lambda$, $\\Xi$ et $\\Omega$, particles production, has been proposed to sign the formation of the QGP. Then precise measurement of secondary vertices is needed. The SSD will also permit an attempt to use the inner tracking device to measure charm and beauty with direct topological identification. It was proposed to enhance the STAR tracking capabilities by providing a better connexion between reconstructed tracks in the main tracking device (TPC) and the initial vertex detector (SVT). In this thesis, we will present the intrinsic performances of the SSD and its impact on the inner tracking system performances by studying Cu-Cu collisions occured at RHIC in 2...

  11. Pion Interferometry of square root of (s(NN)) =130 GeV Au + Au collisions at RHIC.

    Science.gov (United States)

    Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Bland, L C; Blyth, C O; Bonner, B E; Bossingham, R; Boucham, A; Brandin, A; Cadman, R V; Caines, H; Calderón De La Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chattopadhyay, S; Chen, M L; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Conin, L; Cormier, T M; Cramer, J G; Crawford, H J; DeMello, M; Deng, W S; Derevschikov, A A; Didenko, L; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grabski, J; Grachov, O; Greiner, D; Grigoriev, V; Guedon, M; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Heffner, M; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Hümmler, H; Igo, G; Ishihara, A; Ivanshin, Y I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E; Kaneta, M; Kaplan, M; Keane, D; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Konstantinov, A S; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R K; Kuznetsov, A A; Lakehal-Ayat, L; Lamas-Valverde, J; Lamont, M A; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lebedev, A; LeCompte, T; Lednický, R; Leontiev, V M; LeVine, M J; Li, Q; Li, Q; Lindenbaum, S J; Lisa, M A; Ljubicic, T; Llope, W J; LoCurto, G; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lynn, D; Majka, R; Margetis, S; Martin, L; Marx, J; Matis, H S; Matulenko, Y A; McShane, T S; Meissner, F; Melnick, Y; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moltz, D; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Mutchler, G S; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Pinganaud, W; Platner, E; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Radomski, S; Rai, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Roy, C; Russ, D; Rykov, V; Sakrejda, I; Sandweiss, J; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Schweda, K; Schmitz, N; Schroeder, L S; Schüttauf, A; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Shvetcov, V S; Skoro, G; Smirnov, N; Snellings, R; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Stroebele, H; Struck, C; Suaide, A A; Sugarbaker, E; Suire, C; Sumbera, M; Symons, T J; Szanto De Toledo, A; Szarwas, P; Takahashi, J; Tang, A H; Thomas, J H; Tikhomirov, V; Trainor, T A; Trentalange, S; Tokarev, M; Tonjes, M B; Trofimov, V; Tsai, O; Turner, K; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vanyashin, A; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Wenaus, T; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yokosawa, A; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, W M; Zoulkarneev, R; Zubarev, A N

    2001-08-20

    Two-pion correlation functions in Au+Au collisions at square root of [s(NN)] = 130 GeV have been measured by the STAR (solenoidal tracker at RHIC) detector. The source size extracted by fitting the correlations grows with event multiplicity and decreases with transverse momentum. Anomalously large sizes or emission durations, which have been suggested as signals of quark-gluon plasma formation and rehadronization, are not observed. The Hanbury Brown-Twiss parameters display a weak energy dependence over a broad range in square root of [s(NN)].

  12. Electron cooling for low-energy RHIC program

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, A.; Ben-Zvi, I.; Chang, X.; Kayran, D.; Litvinenko, V.N.; Pendzick, A.; Satogata, T.

    2009-08-31

    Electron cooling was proposed to increase luminosity of the RHIC collider for heavy ion beam energies below 10 GeV/nucleon. Providing collisions at such energies, termed RHIC 'low-energy' operation, will help to answer one of the key questions in the field of QCD about existence and location of critical point on the QCD phase diagram. The electron cooling system should deliver electron beam of required good quality over energies of 0.9-5 MeV. Several approaches to provide such cooling were considered. The baseline approach was chosen and design work started. Here we describe the main features of the cooling system and its expected performance. We have started design work on a low-energy RHIC electron cooler which will operate with kinetic electron energy range 0.86-2.8 (4.9) MeV. Several approaches to an electron cooling system in this energy range are being investigated. At present, our preferred scheme is to transfer the Fermilab Pelletron to BNL after Tevatron shutdown, and to use it for DC non-magnetized cooling in RHIC. Such electron cooling system can significantly increase RHIC luminosities at low-energy operation.

  13. Possibilities for stochastic cooling at RHIC

    CERN Document Server

    Brennan, J M; Wei, J

    2004-01-01

    Intra-Beam Scattering (IBS) is the fundamental performance limitation for RHIC. The emittance growth from IBS determines the ultimate luminosity lifetime and the only cure is cooling. Full-energy electron cooling will be installed to not only control emittance growth but also reduce emittances during a store. Before that, stochastic cooling could increase integrated luminosity by momentum cooling. Two significant benefits would follow; the average luminosity in a 10 h store would double, and the problem of coasting beam in the abort gap would be solved. Of course high-frequency bunched beam stochastic cooling is required and previous attempts at this at the Tevatron and SPS were not successful. It appears that the conditions in the heavy ion collider are more favorable. First, the high charge state of ions gives better signal to noise ratio in the Schottky signal. Second, the anomalous coherent components in the pick up signals that caused saturation in the electronics in previous attempts are greatly reduced...

  14. Heavy flavor in heavy-ion collisions at RHIC and RHIC II

    CERN Document Server

    Frawley, A D; Vogt, R

    2008-01-01

    In the initial years of operation, experiments at the Relativistic Heavy Ion Collider (RHIC) have identified a new form of matter formed in nuclei-nuclei collisions at energy densities more than 100 times that of a cold atomic nucleus. Measurements and comparison with relativistic hydrodynamic models indicate that the matter thermalizes in an unexpectedly short time, has an energy density at least 15 times larger than needed for color deconfinement, has a temperature about twice the critical temperature predicted by lattice QCD, and appears to exhibit collective motion with ideal hydrodynamic properties - a "perfect liquid" that appears to flow with a near-zero viscosity to entropy ratio - lower than any previously observed fluid and perhaps close to a universal lower bound. However, a fundamental understanding of the medium seen in heavy-ion collisions at RHIC does not yet exist. The most important scientific challenge for the field in the next decade is the quantitative exploration of the new state of nucle...

  15. Preparing Accelerator Systems for the RHIC Sextant Commissioning

    Science.gov (United States)

    Trbojevic, D.; Pilat, F.; Ahrens, L.; Barton, D.; Clifford, T.; Connoly, R.; Fischer, W.; Harrison, M.; Mackay, W.; Olsen, B.; Peggs, S.; Satogata, T.; Tepikian, S.; Thompson, P.; Trahern, C.; Witkover, R.

    1997-05-01

    The Relativistic Heavy Ion Collider (RHIC) construction is progressing steadily towards the beginning of the 1999 when beams will first be circulated in both collider rings. One of the major tests of the RHIC project is the commissioning of the first sextant with gold ion beams. This is a report on the preparation of the RHIC accelerator systems during the first sextant test, including beam position monitors, timing, injection correction through the magnetic septum and kickers, current transformers, ``flags'' and the ionization beam profile monitors, beam loss monitors, beam and quench permit link system, power supply controls, and the CYBASE data base system. The software and hardware development and coordination of the different systems before commissioning were regularly checked during bi-weekly, and (later) weekly, progress report meetings.

  16. Preparing Accelerator Systems for the RHIC Sextant Commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pilat, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ahrens, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Barton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Clifford, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Connoly, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); HaJ.Tison, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); MacKay, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Olsen, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Peggs, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Satogata, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Thompson, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trahern, C. G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Witkover, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    1997-05-12

    The Relativistic Heavy Ion Collider (RHIC) construction is progressing steadily towards completion in 1999 when beams will circulate in both collider rings. One of the major tests of the RHIC project was the commissioning of the first sextant with gold ion beams in early 1997. This is a report on preparation of the RHIC accelerator systems for the first sextant test. It includes beam position monitors, timing, injection correction through the magnetic septum and kickers, current transformers, "flags" and the ionization beam profile monitors, beam loss monitors, beam and quench permit link system, power supply controls, and the configuration database system. The software and hardware development and coordination of the different systems before commissioning were regularly checked during bi-weekly, and (later) weekly, progress report meetings.

  17. Spin tune dependence on closed orbit in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ptitsyn, V.; Bai, M.; Roser, T.

    2010-05-23

    Polarized proton beams are accelerated in RHIC to 250 GeV energy with the help of Siberian Snakes. The pair of Siberian Snakes in each RHIC ring holds the design spin tune at 1/2 to avoid polarization loss during acceleration. However, in the presence of closed orbit errors, the actual spin tune can be shifted away from the exact 1/2 value. It leads to a corresponding shift of locations of higher-order ('snake') resonances and limits the available betatron tune space. The largest closed orbit effect on the spin tune comes from the horizontal orbit angle between the two snakes. During RHIC Run in 2009 dedicated measurements with polarized proton beams were taken to verify the dependence of the spin tune on the local orbits at the Snakes. The experimental results are presented along with the comparison with analytical predictions.

  18. Ion optics of RHIC electron beam ion source.

    Science.gov (United States)

    Pikin, A; Alessi, J; Beebe, E; Kponou, A; Okamura, M; Raparia, D; Ritter, J; Tan, Y; Kuznetsov, G

    2012-02-01

    RHIC electron beam ion source has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  19. Transverse impedance measurement in RHIC and the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Biancacci, Nicolo [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mernick, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; White, S. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-05-12

    The RHIC luminosity upgrade program aims for an increase of the polarized proton luminosity by a factor 2. To achieve this goal a significant increase in the beam intensity is foreseen. The beam coupling impedance could therefore represent a source of detrimental effects for beam quality and stability at high bunch intensities. For this reason it is essential to quantify the accelerator impedance budget and the major impedance sources, and possibly cure them. In this MD note we summarize the results of the 2013 transverse impedance measurements in the AGS and RHIC. The studies have been performed measuring the tune shift as a function of bunch intensity and deriving the total accelerator machine transverse impedance. For RHIC, we could obtain first promising results of impedance localization measurements as well.

  20. Experimental Highlights: Heavy Quark Physics in Heavy-Ion Collisions at RHIC

    Directory of Open Access Journals (Sweden)

    Nouicer Rachid

    2017-01-01

    Full Text Available The discovery at RHIC of large high-pT suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at √sNN = 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1 PHENIX Collaboration installed silicon vertex tracker (VTX at midrapidity region and forward silicon vertex tracker (FVTX at the forward rapidity region, and (2 STAR Collaboration installed the heavy flavor tracker (HFT and the muon telescope detector (MTD both at the mid-rapidity region. The PHENIX experiments established measurements of ψ (1S and ψ (2S production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at √sNN = 200 GeV. In p/3He + A collisions at forward rapidity, we observe no difference in the ψ (2S /ψ (1S ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ (2S is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ ψ measurements in the di-muon decay channel in Au + Au at √sNN = 200 GeV at mid-rapidity. We observe a clear J/ψ RAA suppression and qualitatively well described by transport models, including dissociation and regeneration simultaneously.

  1. Experimental Highlights: Heavy Quark Physics in Heavy-Ion Collisions at RHIC

    Science.gov (United States)

    Nouicer, Rachid

    2017-03-01

    The discovery at RHIC of large high-pT suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at √sNN = 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1) PHENIX Collaboration installed silicon vertex tracker (VTX) at midrapidity region and forward silicon vertex tracker (FVTX) at the forward rapidity region, and (2) STAR Collaboration installed the heavy flavor tracker (HFT) and the muon telescope detector (MTD) both at the mid-rapidity region. The PHENIX experiments established measurements of ψ (1S ) and ψ (2S ) production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at √sNN = 200 GeV. In p/3He + A collisions at forward rapidity, we observe no difference in the ψ (2S )/ψ (1S ) ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ (2S ) is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ ψ measurements in the di-muon decay channel in Au + Au at √sNN = 200 GeV at mid-rapidity. We observe a clear J/ψ RAA suppression and qualitatively well described by transport models, including dissociation and regeneration simultaneously.

  2. PHENIX plans for RHIC low energy run

    CERN Document Server

    Sakaguchi, Takao

    2009-01-01

    PHENIX plans for low energy running are presented. Current detector setting makes it possible to measure dielectron spectra down to sqrt(s_NN)=39GeV, and photon/high pT hadron spectra down to below sub-injection energy (sqrt(s_NN)=5-10GeV). The upgrade of the trigger scheme after the installation of VTX detector will enable PHENIX to fully explore the sub-injection energy regime, starting 2011.

  3. Simulations of silicon vertex tracker for star experiment at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Odyniec, G.; Cebra, D.; Christie, W.; Naudet, C.; Schroeder, L.; Wilson, W. [Lawrence Berkeley Lab., CA (United States); Liko, D. [Institut fur Hochenenergiephysik, Vienna, (Austria); Cramer, J.; Prindle, D.; Trainor, T. [Univ. of Washington, Seattle (United States); Braithwaite, W. [Univ. of Arkansas, Little Rock (United States)

    1991-12-31

    The first computer simulations to optimize the Silicon Vertex Tracker (SVT) designed for the STAR experiment at RHIC are presented. The physics goals and the expected complexity of the events at RHIC dictate the design of a tracking system for the STAR experiment. The proposed tracking system will consist of a silicon vertex tracker (SVT) to locate the primary interaction and secondary decay vertices and to improve the momentum resolution, and a time projection chamber (TPC), positioned inside a solenoidal magnet, for continuous tracking.

  4. Why is the null HBT result at RHIC so interesting?

    CERN Document Server

    Gyulassy, M

    2003-01-01

    Pion interferometry (HBT of A+A) data have posed a thorn in the theoretical interpretation of AA collisions at RHIC (sq root s = 130 AGeV). How can R sub o sub u sub t approx R sub s sub i sub d sub e approx R sub l sub o sub n sub g and remain so between AGS and RHIC? Where is the QGP Stall? Can elephants hide along the x sub 0 sup + dimension? We rummage old hydrodynamic scenarios and uncover some previously ignored NULL solutions. (author)

  5. Nuclear Effects on Heavy Boson Production at RHIC and LHC

    CERN Document Server

    Zhang, X; Zhang, Xiaofei; Fai, George

    2002-01-01

    We predict W and Z transverse momentum distributions from proton-proton and nuclear collisions at RHIC and LHC. A resummation formalism with power corrections to the renormalization group equations is used. The dependence of the resummed QCD results on the non-perturbative input is very weak for the systems considered. Shadowing effects are discussed and found to be unimportant at RHIC, but important for LHC. We study the enhancement of power corrections due to multiple scattering in nuclear collisions and numerically illustrate the weak effects of the dependence on the nuclear mass.

  6. JEWEL predictions for Jet structure modifications at RHIC

    Science.gov (United States)

    Verma, Aditya; Kunnawalkam Elayavalli, Raghav; Salur, Sevil

    2017-09-01

    RHIC is ideally suited to investigate transport and tomographic properties of the quark gluon plasma in heavy ion collisions using fully reconstructed jets as hard probes. In this poster, we present predictions for inclusive di-jet and jet structure observables sensitive to jet-medium interactions. This is accomplished by harnessing JEWEL, a Monte Carlo event generator for heavy ion collisions with its updated medium recoil information. With JEWEL's successful record of predictions at the LHC, studying its performance at RHIC energies can precipitate an improved understanding of the jet quenching phenomena.

  7. An alternative model of jet suppression at RHIC energies

    CERN Document Server

    Lietava, R; Pisútová, N; Tomasik, Boris; Lietava, Roman; Pisut, Jan; Pisutova, Neva; Tomasik, Boris

    2003-01-01

    We propose a simple Glauber-type mechanism for suppression of jet production up to transverse momenta of about 10 GeV/c at RHIC. For processes in this kinematic region, the formation time is smaller than the interval between two successive hard partonic collisions and the subsequent collision influences the jet production. Number of jets then roughly scales with the number of participants. Proportionality to the number of binary collisions is recovered for very high transverse momenta. The model predicts suppression of jet production in d+Au collisions at RHIC.

  8. Strange hard probes to characterize the partonic medium at RHIC

    CERN Document Server

    Bellwied, R

    2005-01-01

    I will show examples of high momentum identified particle measurements in heavy ion collisions at RHIC energies. Identified particles enable us to probe the existence and the hadronization mechanisms of the produced partonic medium in the case of the formation of a Quark-Gluon-Plasma (QGP). Besides probing the features of the plasma we also learn about the in-medium parton fragmentation process. I propose future measurements at RHIC-II and LHC in order to determine the dynamic evolution of the system from partonic to hadronic degrees of freedom.

  9. Estimates of rates and errors for measurements of direct-{gamma} and direct-{gamma} + jet production by polarized protons at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Beddo, M.E.; Spinka, H.; Underwood, D.G.

    1992-08-14

    Studies of inclusive direct-{gamma} production by pp interactions at RHIC energies were performed. Rates and the associated uncertainties on spin-spin observables for this process were computed for the planned PHENIX and STAR detectors at energies between {radical}s = 50 and 500 GeV. Also, rates were computed for direct-{gamma} + jet production for the STAR detector. The goal was to study the gluon spin distribution functions with such measurements. Recommendations concerning the electromagnetic calorimeter design and the need for an endcap calorimeter for STAR are made.

  10. International Workshop on Linear Colliders 2010

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options.Contact Workshop Secretariat  IWLC2010 is hosted by CERN

  11. DESIGN AND OPERATON OF THE RHIC 80K COOLER

    Energy Technology Data Exchange (ETDEWEB)

    NICOLETTI,A.REUTER,A.SIDI-YEKHLEF,A.TALTY,P.QUIMBY,E.

    2003-09-22

    A stand alone cryogenic system designed to maintain the magnets of the Relativistic Heavy Ion Collider (RHIC) at between 80 and 100 K during accelerator shutdown periods has been conceived and designed at Brookhaven National Laboratory and built by PHPK Technologies of Columbus, Ohio. Since most thermal contraction occurs above this temperature, this unit, referred to as the 80 K Cooler, will eliminate the stresses associated with thermal cycling. The cooling system will provide the necessary refrigeration by circulating cooled Helium gas at approximately 15 atmospheres through the RHIC heat shields and magnets. This Helium is cooled by heat exchange with liquid nitrogen and circulated via three cold centrifugal pumps. The nominal delivered cooling capacity required to maintain the magnets at temperature is approximately 36 kW, primarily intercepted at the heat shield. The system also has separate heat exchangers for use as a pre-Cooler from room temperature to 82 K. Selection of sextant or sextants for pre-cooling is designed into the RHIC cryogenic distribution system. Topics covered include Cooler design decisions, details of the Cooler as built, integration into the existing RHIC cryogenic system and initial operating experience.

  12. Jet quenching in QCD matter: from RHIC to LHC

    CERN Document Server

    d'Enterria, David

    2009-01-01

    The current experimental and theoretical status of hadron and jet production at large transverse momentum in high-energy nucleus-nucleus collisions is summarised. The most important RHIC results are compared to theoretical parton energy loss predictions providing direct information on the (thermo)dynamical properties of hot and dense QCD matter. Prospects for the LHC are also outlined.

  13. STAR results from the first year at RHIC

    Indian Academy of Sciences (India)

    Thomas S Ullrich

    Abstract. An overview of the latest results from the STAR experiment at RHIC is presented. Pre- liminary measurements of π K p Λ and Ξ, plus their respective anti-particles at pt. 2 GeV/c, where the majority of particle production occurs, allow us to probe the soft processes whilst the harder per- turbative regime can be ...

  14. Exploring quantum chromodynamics phase transitions at RHIC and ...

    Indian Academy of Sciences (India)

    admin

    Exploring quantum chromodynamics phase transitions at RHIC and LHC. The Standard Model of particle physics describes the fundamental constituents of matter, leptons and quarks. The interactions amongst quarks are described by. Quantum Chromodynamics (QCD), which is the theory of strong interactions, an.

  15. Jet Tomography versus Holography at RHIC and LHC

    Directory of Open Access Journals (Sweden)

    Torrieri G.

    2011-04-01

    Full Text Available We compare pQCD based jet tomography to AdS/CFT based jet holography approach to address the heavy quark jet puzzle and discuss future tests at RHIC and LHC that could help decide which paradigm can provide the most consistent quantitative theory to explain modification of jet observabkles in high energy nuclear collisions.

  16. Experimental Results of Heavy Flavor Production and Correlation at RHIC

    Science.gov (United States)

    Xie, Wei

    2017-08-01

    Heavy flavor probes are essential tools to study the strongly coupled quark gluon plasma created in heavy-ion collisions. The experiments at RHIC pioneered the measurements of production and correlation of heavy flavor probes. This paper presents highlights of these measurements and focus on the recent results.

  17. Geometric scaling at BNL RHIC and CERN LHC

    NARCIS (Netherlands)

    Boer, D.; Utermann, A.; Wessels, E.

    2008-01-01

    We present a new phenomenological model of the dipole scattering amplitude to demonstrate that the RHIC data for hadron production in d-Au collisions for all available rapidities are compatible with geometric scaling, just like the small-x inclusive deep inelastic scattering data. A detailed

  18. STAR results from the first year at RHIC

    Indian Academy of Sciences (India)

    An overview of the latest results from the STAR experiment at RHIC is presented. Preliminary measurements of , , , and Ξ, plus their respective anti-particles at t < 2 GeV/c, where the majority of particle production occurs, allow us to probe the soft processes whilst the harder perturbative regime can be accessed by ...

  19. Net-proton measurements at RHIC and the quantum ...

    Indian Academy of Sciences (India)

    Gz; 12.38.Mh; 21.65.Qr; 25.75.−q; 25.75.Nq. 1. Introduction. The formation of a hot and dense medium of deconfined quarks and gluons (QGP) has been established in high-energy heavy-ion collisions at the Relativistic Heavy Ion Col- lider (RHIC) Facility at Brookhaven National Laboratory and the Large Hadron Collider.

  20. Latest RHIC Results on Ultra-Peripheral Collisions

    CERN Document Server

    Debbe, Ramiro

    2013-01-01

    With RHIC running in its second phase at higher luminosities the new data sets collected so far by PHENIX and STAR are allowing improvements in the study of vector meson photo-production in Ultra peripheral Collision events in Au+Au at the highest energy. This is a brief summary of what has been accomplished so far by both collaborations.

  1. HIGH-CURRENT ERL-BASED ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI, I.

    2005-09-18

    The design of an electron cooler must take into account both electron beam dynamics issues as well as the electron cooling physics. Research towards high-energy electron cooling of RHIC is in its 3rd year at Brookhaven National Laboratory. The luminosity upgrade of RHIC calls for electron cooling of various stored ion beams, such as 100 GeV/A gold ions at collision energies. The necessary electron energy of 54 MeV is clearly out of reach for DC accelerator system of any kind. The high energy also necessitates a bunched beam, with a high electron bunch charge, low emittance and small energy spread. The Collider-Accelerator Department adopted the Energy Recovery Linac (ERL) for generating the high-current, high-energy and high-quality electron beam. The RHIC electron cooler ERL will use four Superconducting RF (SRF) 5-cell cavities, designed to operate at ampere-class average currents with high bunch charges. The electron source will be a superconducting, 705.75 MHz laser-photocathode RF gun, followed up by a superconducting Energy Recovery Linac (ERL). An R&D ERL is under construction to demonstrate the ERL at the unprecedented average current of 0.5 amperes. Beam dynamics performance and luminosity enhancement are described for the case of magnetized and non-magnetized electron cooling of RHIC.

  2. Results from STAR experiment at RHIC

    Indian Academy of Sciences (India)

    ated with a uniform magnetic field of maximum value 0.5 T and consists of the following sub-detectors: Charged particle tracking close to the interaction region is accomplished by a silicon vertex tracker (SVT). A large volume time projection chamber (TPC) for charged particle tracking and particle identification is located.

  3. Identification of High $\\rm p_{\\perp}$ Particles with the STAR-RICH Detector

    CERN Document Server

    Braem, A.; Davenport, M.; De Cataldo, G.; Dell Olio, L.; Di Bari, D.; DiMauro, A.; Dunlop, J.C.; Finch, E.; Fraissard, D.; Franco, A.; Gans, J.; Ghidini, B.; Harris, J.W.; Horsley, M.; Kunde, G.J.; Lasiuk, B.; Lesenechal, Y.; Majka, R.D.; Martinengo, P.; Morsch, A.; Nappi, E.; Paic, G.; Piuz, F.; Posa, F.; Raynaud, J.; Salur, S.; Sandweiss, J.; Santiard, J.C.; Satinover, J.; Schyns, E.; Smirnov, N.; Van Beelen, J.; Williams, T.D.; Xu, Z.

    2003-01-01

    The STAR-RICH detector extends the particle identification capapbilities of the STAR experiment for charged hadrons at mid-rapidity. This detector represents the first use of a proximity-focusing CsI-based RICH detector in a collider experiment. It provides identification of pions and kaons up to 3 GeV/c and protons up to 5 GeV/c. The characteristics and performance of the device in the inaugural RHIC run are described.

  4. INDICO Workshop

    CERN Multimedia

    CERN. Geneva; Fabbrichesi, Marco

    2004-01-01

    The INtegrated DIgital COnferencing EU project has finished building a complete software solution to facilitate the MANAGEMENT OF CONFERENCES, workshops, schools or simple meetings from their announcement to their archival. Everybody involved in the organization of events is welcome to join this workshop, in order to understand the scope of the project and to see demonstrations of the various features.

  5. Workshop report

    African Journals Online (AJOL)

    abp

    2017-09-14

    Sep 14, 2017 ... mean of KT and EQUIST at the end of the workshop ranged from 8.0%-88.1% and 65.6%-158.4% respectively. Findings of this study suggest that policymakers' and researchers KT and EQUSIT use competence relevant to evidence-informed policymaking can be enhanced through training workshop.

  6. Perturbative QCD as a probe of hadron structure: Volume 2. Proceedings of RIKEN BNL Research Center workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The workshop brought together about thirty invited participants from around the world, and an almost equal number of Brookhaven users and staff, to discuss recent developments and future prospects for hadronic strong interaction studies at high energy, particularly relating to the RHIC project at Brookhaven. RIKEN and Brookhaven have long traditions in and commitments to the study of the strong interactions, and the advent of the RHIC collider will open new opportunities both for relativistic heavy ion and polarized proton-proton studies. Activities at the RIKEN BNL Research Center are intended to focus on physics opportunities stimulated by this new facility. Thus, one of the purposes of the center is to provide a forum where workers in the field can gather to share and develop their ideas in a stimulating environment. The purpose of the workshop was both to delineate theoretical problems and stimulate collaborations to address them. The workshop focused primarily, but not exclusively, on spin and small-x physics.

  7. AGS-2000: Experiments for the 21. Century. Proceedings of the workshop held at Brookhaven National Laboratory, May 13--17, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Littenberg, L. [ed.] [Brookhaven National Lab., Upton, NY (United States); Sandweiss, J. [ed.] [Yale Univ., New Haven, CT (United States)

    1996-10-01

    The AGS has a vital and interesting potential for new research. The reasons for this are a fortunate concomitance of the energy chosen for the AGS and the steady stream of technological advances which have both increased the intensity and flexibility of the AGS beams, and the capability of detectors to use these new beam parameters. The physics potentials of the future AGS program can be roughly divided into three broad areas. (1) fundamental elementary particle studies (based on rare kaon decays, rare muon processes and searches for new particles); (2) non-perturbative QCD; and (3) heavy ion physics. The overriding considerations for the operation of the AGS in the next decade must, of course, be the interest and potential of the scientific program. However, once that has been established, there are other aspects of the AGS program which deserve mention. Although experiments at the AGS are of increasing sophistication, they are smaller, less expensive, and more quickly executed than experiments at newer, larger facilities. Finally, the authors note that since the AGS must be maintained as a viable accelerator to serve as an injector to RHIC, the cost of an AGS fixed target experiment need be only the incremental cost of the experiment itself along with some modest additional operating costs. This means that AGS fixed target experiments are substantially cheaper than they would have been before the RHIC era. The remainder of this document contains brief summaries of the experiments considered by the working groups in the AGS-2000 Workshop. These summaries expand on points discussed here.

  8. Upgrade of RHIC Vacuum Systems for High Luminosity Operation

    CERN Document Server

    Hseuh Hsiao Chaun; Smart, Loralie; Todd, Robert J; Weiss, Daniel

    2005-01-01

    With increasing ion beam intensity during recent RHIC operations, pressure rises of several decades were observed at most room temperature sections and at a few cold sections. The pressure rises are associated with electron multi-pacting, electron stimulated desorption and beam ion induced desorption and have been one of the major intensity and luminosity limiting factors for RHIC. Improvement of the warm sections has been carried out in the last few years. Extensive in-situ bakes, additional UHV pumping, anti-grazing ridges and beam tube solenoids have been implemented. Several hundred meters of NEG coated beam pipes have been installed and activated. Vacuum monitoring and interlock were enhanced to reduce premature beam aborts. Preliminary measures, such as pumping before cool down to reduce monolayer condensates, were also taken to suppress the pressure rises in the cold sections. The effectiveness of these measures in reducing the pressure rises during machine studies and during physics runs are discussed...

  9. Performance of the RHIC Injection Line Instrumentation Systems

    Science.gov (United States)

    Shea, T. J.; Witkover, R. L.; Cameron, P.; Connolly, R.; Ryan, W. A.; Smith, G.; Zitvogel, E.

    1997-05-01

    The beam injection line from the Alternating Gradient Synchrotron (AGS) to the Relativistic Heavy Ion Collider (RHIC) transports proton and heavy ion bunches. This line and the RHIC first sextant currently contain thefollowing complement of beam instrumentation: stripline position monitors, ionization loss monitors, video profile monitors, and commercial current transformers. Over several years, these systems have been designed and bench tested to assure a desired performance level. The design criteria will be briefly reviewed. Then, using data from laboratory tests and the recent single pass beam tests, desired performance and attained performance will be compared. Finally, experience from the beam based tests will be applied to the design criteria for the future collider ring instrumentation.

  10. UPGRADE OF RHIC VACUUM SYSTEMS FOR HIGH LUMINOSITY OPERATION.

    Energy Technology Data Exchange (ETDEWEB)

    HSEUH, H.C.; MAPES, M.; SMART, L.A.; TODD, R.; WEISS, D.

    2005-05-16

    With increasing ion beam intensity during recent RHIC operations, rapid pressure rises of several decades were observed at most warm sections and at a few cold sections. The pressure rises are associated with electron multi-pacting, electron stimulated desorption and beam ion induced desorption and have been one of the major intensity and luminosity limiting factors for RHIC. Improvement of the warm sections has been carried out in the last few years. Extensive in-situ bakes, additional UHV pumping and anti-grazing ridges have been implemented. Several hundred meters of NEG coated beam pipes have been installed and activated. Vacuum monitoring and logging were enhanced. Preventive measures, such as pumping before cool down to reduce monolayer condensates, were also taken to suppress the pressure rises in the cold sections. The effectiveness of these measures in reducing the pressure rises during machine studies and during physics runs are discussed and summarized.

  11. The strongly coupled quark-gluon plasma created at RHIC

    CERN Document Server

    Heinz, Ulrich W

    2009-01-01

    The Relativistic Heavy Ion Collider (RHIC) was built to re-create and study in the laboratory the extremely hot and dense matter that filled our entire universe during its first few microseconds. Its operation since June 2000 has been extremely successful, and the four large RHIC experiments have produced an impressive body of data which indeed provide compelling evidence for the formation of thermally equilibrated matter at unprecedented temperatures and energy densities -- a "quark-gluon plasma (QGP)". A surprise has been the discovery that this plasma behaves like an almost perfect fluid, with extremely low viscosity. Theorists had expected a weakly interacting gas of quarks and gluons, but instead we seem to have created a strongly coupled plasma liquid. The experimental evidence strongly relies on a feature called "elliptic flow" in off-central collisions, with additional support from other observations. This article explains how we probe the strongly coupled QGP, describes the ideas and measurements whi...

  12. Electromagnetic radiation from nuclear collisions at RHIC energies

    CERN Document Server

    Turbide, Simon; Frodermann, Evan; Heinz, Ulrich

    2008-01-01

    The hot and dense strongly interacting matter created in collisions of heavy nuclei at RHIC energies is modeled with relativistic hydrodynamics, and the spectra of real and virtual photons produced at mid-rapidity in these events are calculated. Several different sources are considered, and their relative importance is compared. Specifically, we include jet fragmentation, jet-plasma interactions, the emission of radiation from the thermal medium and from primordial hard collisions. Our calculations consistently take into account jet energy loss, as evaluated in the AMY formalism. We obtain results for the spectra, the nuclear modification factor (R_AA), and the azimuthal anisotropy (v_2) that agree with the photon measurements performed by the PHENIX collaboration at RHIC.

  13. Polarized proton collisions at 205 GeV at RHIC.

    Science.gov (United States)

    Bai, M; Roser, T; Ahrens, L; Alekseev, I G; Alessi, J; Beebe-Wang, J; Blaskiewicz, M; Bravar, A; Brennan, J M; Bruno, D; Bunce, G; Courant, E; Drees, A; Fischer, W; Gardner, C; Gill, R; Glenn, J; Haeberli, W; Huang, H; Jinnouchi, O; Kewisch, J; Luccio, A; Luo, Y; Nakagawa, I; Okada, H; Pilat, F; Mackay, W W; Makdisi, Y; Montag, C; Ptitsyn, V; Satogata, T; Stephenson, E; Svirida, D; Tepikian, S; Trbojevic, D; Tsoupas, N; Wise, T; Zelenski, A; Zeno, K; Zhang, S Y

    2006-05-05

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) has been providing collisions of polarized protons at a beam energy of 100 GeV since 2001. Equipped with two full Siberian snakes in each ring, polarization is preserved during acceleration from injection to 100 GeV. However, the intrinsic spin resonances beyond 100 GeV are about a factor of 2 stronger than those below 100 GeV making it important to examine the impact of these strong intrinsic spin resonances on polarization survival and the tolerance for vertical orbit distortions. Polarized protons were first accelerated to the record energy of 205 GeV in RHIC with a significant polarization measured at top energy in 2005. This Letter presents the results and discusses the sensitivity of the polarization survival to orbit distortions.

  14. Overview of results from PHOBOS experiment at RHIC

    CERN Document Server

    Olszewski, A; Baker, M D; Barton, D S; Betts, R R; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Corbo, J; Decowski, M P; García, E; George, N; Gulbrandsen, K H; Gushue, S; Halliwell, C; Hamblen, J; Henderson, C; Hicks, D; Hofman, D J; Holzman, B; Hollis, R S; Holynski, R; Iordanova, A; Johnson, E; Kane, J L; Katzy, J; Khan, N; Kucewicz, W; Kulinich, P A; Kuo, C M; Lin, W T; Manly, S L; McLeod, D; Michalowski, J; Mignerey, A C; Mülmenstädt, J; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Rafelski, M; Rbeiz, M; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Rosenberg, L J; Sagerer, J; Sarin, P; Sawicki, P; Skulski, W; Steadman, S G; Steinberg, P; Stephans, G S F; Stodulski, M; Sukhanov, A; Tang, J L; Teng, R; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Verdier, R; Wadsworth, B; Wolfs, F L H; Wosiek, B; Wozniak, K; Wuosmaa, A H; Wyslouch, B

    2002-01-01

    An overview of results for interactions of Au+Au ions at centre-of- mass energies of square root s/sub NN/=56, 130 and 200 GeV obtained by the PHOBOS collaboration at RHIC is given. Measurements of the primary charged particle density near mid-rapidity indicate that particle production grows logarithmically with collision energy and faster than linearly with the number of interacting nucleons. Elliptic flow is found to be much stronger at RHIC than at SPS energy. The effect is strongest in peripheral events and decreases for more central collisions and emission angles $\\beta >1$. The measured anti-particle to particle ratios of production rates for pions, kaons and protons in central Au+Au interactions at square root s/sub NN/=130 GeV are compatible with the statistical model of particle production, showing an increasingly baryon-free region in mid-rapidity with the increase of collision energy. (16 refs).

  15. Monolithic circuit development for RHIC at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Alley, G.T.; Britton, C.L. Jr.; Kennedy, E.J.; Newport, D.F.; Wintenberg, A.L.; Young, G.R. [Oak Ridge National Laboratory, TN (United States)

    1991-12-31

    The work performed for RHIC at Oak Ridge National Laboratory during FY 91 is presented in this paper. The work includes preamplifier, analog memory, and analog-digital converter development for Dimuon Pad Readout, and evaluation and development of preamplifier-shapers for silicon strip readout. The approaches for implementation are considered as well as measured data for the various circuits that have been developed.

  16. Frequency choice of eRHIC SRF linac

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-05

    eRHIC is a FFAG lattice-based multipass ERL. The eRHIC SRF linac has been decided to change from 422 MHz 5-cell cavity to 647 MHz 5-cell cavity. There are several considerations affecting the frequency choice for a high-current multipass-ERL: the beam structure, bunch length, energy spread, beam-break-up (BBU) threshold, SRF loss considerations. Beyond the physics considerations, cost and complexity or risk is an important consideration for the frequency choice, especially when we are designing a machine to be built in a few years. Although there are some benefits of using a 422 MHz cavity for eRHIC ERL, however, there are some very critical drawbacks, including lack of facilities to fabricate a 422 MHz 5-cell cavity, very few facilities to process such a cavity and no existing facility to test the cavity anywhere. As the cavity size is big and its weight is large, it is difficult to handle it during fabrication, processing and testing, and no one has experience in this area. As the cavity size is large, the cryomodule becomes big as well. All of these considerations drive the risk of building eRHIC ERL with 422 MHz cavities to a very high level. Therefore, a decision was made to change the frequency of main linac to be 647 MHz 5-cell cavities. This note will compare these two linacs: 422MHz 5-cell cavity linac and 647Mz 5-cell cavity SRF linac, from both practical point of view and physics point of view.

  17. Calirimeter/absorber optimization for a RHIC dimuon experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aronson, S.H.; Murtagh, M.J.; Starks, M. [Brookhaven National Lab., Upton, NY (United States); Liu, X.T.; Petitt, G.A.; Zhang, Z. [Georgia State Univ., Atlanta (United States); Ewell, L.A.; Hill, J.C.; Wohn, F.K. [Iowa State Univ., Ames (United States); Costales, J.B.; Namboodiri, M.N., Sangster, T.C.; Thomas, J.H. [Lawrence Livermore National Lab., CA (United States); Gavron, A.; Waters, L. [Los Alamos National Lab., NM (United States); Kehoe, W.L.; Steadman, S.G. [Massachusetts Institute of Technology, Cambridge (United States); Awes, T.C.; Obenshain, F.E.; Saini, S.; Young, G.R. [Oak Ridge National Lab., TN (United States); Chang, J.; Fung, S.Y.; Kang, J.H. [Univ. of California, Riverside, CA (United States); Kreke, J.; He, Xiaochun, Sorensen, S.P. [Univ. of Tennessee, Knoxville (United States); Cornell, E.C.; Maguire, C.F. [Vanderbilt Univ., Nashville, TN (United States)

    1991-12-31

    The RD-10 R&D effort on calorimeter/absorber optimization for a RHIC experiment had an extended run in 1991 using the A2 test beam at the AGS. Measurements were made of the leakage of particles behind various model hadron calorimeters. Behavior of the calorimeter/absorber as a muon-identifier was studied. First comparisons of results from test measurements to calculated results using the GHEISHA code were made

  18. Heavy-quark energy loss at RHIC and LHC

    CERN Document Server

    Dainese, A.; Cacciari, M.; Salgado, C.A.; Wiedemann, U.A.

    2006-01-01

    The attenuation of heavy-flavored particles in nucleus-nucleus collisions tests the microscopic dynamics of medium-induced parton energy loss and, in particular, its expected dependence on the identity (color charge and mass) of the parent parton. We discuss the comparison of theoretical calculations with recent single-electron data from RHIC experiments. Then, we present predictions for the heavy-to-light ratios of D and B mesons at LHC energy.

  19. The Strongly Interacting Quark Gluon Plasma at RHIC and LHC

    Directory of Open Access Journals (Sweden)

    Tserruya Itzhak

    2014-04-01

    Full Text Available The study of heavy-ion collisions has currently unprecedented opportunities with two first class facilities, the Relativistic Heavy Ion Collider (RHIC at BNL and the Large Hadron Collider (LHC at CERN, and five large experiments ALICE, ATLAS, CMS, PHENIX and STAR producing a wealth of high quality data. Selected results recently obtained are presented on the study of flow, energy loss and direct photons.

  20. Simulations of Gaussian electron guns for RHIC electron lens

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-02-28

    Simulations of two versions of the electron gun for RHIC electron lens are presented. The electron guns have to generate an electron beam with Gaussian radial profile of the electron beam density. To achieve the Gaussian electron emission profile on the cathode we used a combination of the gun electrodes and shaping of the cathode surface. Dependence of electron gun performance parameters on the geometry of electrodes and the margins for electrodes positioning are presented.

  1. QCD predictions for charm and bottom quark production at RHIC.

    Science.gov (United States)

    Cacciari, Matteo; Nason, Paolo; Vogt, Ramona

    2005-09-16

    We make up-to-date QCD predictions for open charm and bottom production at RHIC in nucleon-nucleon collisions at square root of S=200 GeV. We also calculate the electron spectrum resulting from heavy flavor decays to allow direct comparison to the data. A rigorous benchmark, including the theoretical uncertainties, is established against which nuclear collision data can be compared to obtain evidence for nuclear effects.

  2. QCD Predictions for Charm and Bottom Production at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Cacciari, Matteo; Nason, Paolo; Vogt, Ramona

    2005-09-01

    We make up-to-date QCD predictions for open charm and bottom production at RHIC in nucleon-nucleon collisions at {radical}S = 200 GeV. We also calculate the electron spectrum resulting from heavy flavor decays to allow direct comparison to the data. A rigorous benchmark, including the theoretical uncertainties, is established against which nuclear collision data can be compared to obtain evidence for nuclear effects.

  3. Parton-hadron cascade approach at SPS and RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Nara, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-07-01

    A parton-hadron cascade model which is the extension of hadronic cascade model incorporating hard partonic scattering based on HIJING is presented to describe the space-time evolution of parton/hadron system produced by ultra-relativistic nuclear collisions. Hadron yield, baryon stopping and transverse momentum distribution are calculated and compared with HIJING and VNI. Baryon density, energy density and temperature for RHIC are calculated within this model. (author)

  4. PROCESSING AND ANALYSIS OF THE MEASURED ALIGNMENT ERRORS FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    PILAT,F.; HEMMER,M.; PTITSIN,V.; TEPIKIAN,S.; TRBOJEVIC,D.

    1999-03-29

    All elements of the Relativistic Heavy Ion Collider (RHIC) have been installed in ideal survey locations, which are defined as the optimum locations of the fiducials with respect to the positions generated by the design. The alignment process included the presurvey of all elements which could affect the beams. During this procedure a special attention was paid to the precise determination of the quadrupole centers as well as the roll angles of the quadrupoles and dipoles. After installation the machine has been surveyed and the resulting as-built measured position of the fiducials have been stored and structured in the survey database. We describe how the alignment errors, inferred by comparison of ideal and as-built data, have been processed and analyzed by including them in the RHIC modeling software. The RHIC model, which also includes individual measured errors for all magnets in the machine and is automatically generated from databases, allows the study of the impact of the measured alignment errors on the machine.

  5. Power Systems for the RHIC First Sextant Test

    Science.gov (United States)

    Lambiase, R. F.; Bruno, D.; Feng, P. K.; Haque, T.; Schultheiss, C.

    1997-05-01

    The first sextant test of the RHIC project is an opportunity to evaluate the many systems that must work together for the accelerator to operate. For the main dipole string, the actual main quadrupole power supply with its DSP regulator and output circuit compartments will be used. Temporary supplies will be used for the main quadrupole string, quadrupole offset, and quadrupole shunt supplies. This will let us both measure the performance of the main supply as well as determine the interaction among other power elements in the circuit. Correction elements will also be powered. The actual gamma-T power supplies will be used, as well as temporary supplies for the dipole correctors and sextupole supplies. Some of these units are required for beam to be transported, others are to be operated without beam to measure their performance, and how they interact with their superconducting loads. The power supply equipment, and that of other systems, required an infrastucture of AC power and output cable distribution in the RHIC tunnel, outlying service buildings, and interconnecting the tunnel to the service buildings. This note will describe the performance of the RHIC power supply systems during the sextant test, and the experience gained from this exercise.

  6. Synchrotron Radiation in eRHIC Interaction Region

    CERN Document Server

    Beebe-Wang, Joanne; Montag, Christoph; Rondeau, Daniel J; Surrow, Bernd

    2005-01-01

    The eRHIC currently under study at BNL consists of an electron storage ring added to the existing RHIC complex. The interaction region of this facility has to provide the required low-beta focusing while accommodating the synchrotron radiation generated by beam separation close to the interaction point. In the current design, the synchrotron radiation caused by 10GeV electrons bent by low-beta triplet magnets will be guided through the interaction region and dumped 5m downstream. However, it is unavoidable to stop a fraction of the photons at the septum where the electron and ion vacuum system are separated. In order to protect the septum and minimize the backward scattering of the synchrotron radiation, an absorber and collimation system will be employed. In this paper, we first present the overview of the current design of the eRHIC interaction region with special emphasis on the synchrotron radiation. Then the initial design of the absorber and collimation system, including their geometrical and physical p...

  7. Recent RHIC in-situ coating technology developments

    CERN Document Server

    Hershcovitch, A.; Brennan, J.M.; Chawla, A.; Fischer, W.; Liaw, C-J; Meng, W.; Todd, R.; Custer, A.; Erickson, M.; Jamshidi, N.; Kobrin, P.; Laping, R.; Poole, H.J.; Jimenez, J.M.; Neupert, H.; Taborelli, M.; Yin-Vallgren, C.; Sochugov, N.

    2013-04-22

    To rectify the problems of electron clouds observed in RHIC and unacceptable ohmic heating for superconducting magnets that can limit future machine upgrades, we started developing a robotic plasma deposition technique for $in-situ$ coating of the RHIC 316LN stainless steel cold bore tubes based on staged magnetrons mounted on a mobile mole for deposition of Cu followed by amorphous carbon (a-C) coating. The Cu coating reduces wall resistivity, while a-C has low SEY that suppresses electron cloud formation. Recent RF resistivity computations indicate that 10 {\\mu}m of Cu coating thickness is needed. But, Cu coatings thicker than 2 {\\mu}m can have grain structures that might have lower SEY like gold black. A 15-cm Cu cathode magnetron was designed and fabricated, after which, 30 cm long samples of RHIC cold bore tubes were coated with various OFHC copper thicknesses; room temperature RF resistivity measured. Rectangular stainless steel and SS discs were Cu coated. SEY of rectangular samples were measured at ro...

  8. Quadrupole beam-based alignment in the RHIC interaction regions

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, J.; Satogata, T.

    2011-03-28

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements. BBA data has been collected over the past two runs for all three of the active experimental IRs at RHIC, updating results from the 2005 run which were taken with incorrectly installed offsets. The technique was successfully applied to expose a systematic misuse of the BPM survey offsets in the control system. This is likely to benefit polarized proton operations as polarization transmission through acceleration ramps depends on RMS orbit control in the arcs, but a quantitative understanding of its impact is still under active investigation. Data taking is ongoing as are refinements to the BBA technique aimed at reducing systematic errors and properly accounting for dispersive effects. Further development may focus on non-triplet BPMs such as those located near snakes, or arc quadrupoles that do not have individually shunted power supplies (a prerequisite for the current method) and as such, will require a modified procedure.

  9. Hard scattering and QCD Fundamentals at RHIC

    CERN Document Server

    Tannenbaum, M J

    2008-01-01

    In 1998, at the 4th QCD workshop, Rolf Baier asked me whether jets could be measured in Au+Au collisions because he had a prediction of a QCD medium-effect (energy loss via soft gluon radiation induced by multiple scattering) on color-charged partons traversing a hot-dense-medium composed of screened color-charges. I reviewed the possibilities in a talk explaining that there was a general consensus that for Au+Au central collisions at $\\sqrt{s_{NN}}=200$ GeV, leading particles are the only way to find jets because of the large particle density. The good news was that hard-scattering in p-p collisions was originally observed by the method of leading particles and that these techniques could be used to study hard-scattering and jets in Au+Au collisions. Notably, I described ``How everything you want to know about jets can be found using 2-particle correlations''. In fact, the predicted ``jet quenching'' and other new phenomena were discovered by this method. However, this past year, I had to soften the statemen...

  10. Workshop Proceedings

    DEFF Research Database (Denmark)

    2012-01-01

    This collection of papers stems from the Fifth Workshop on the Representation and Processing of Sign Languages, held in May 2012 as a satellite to the Language Resources and Evaluation Conference in Istanbul. While there has been occasional attention for sign languages at the main LREC conference......, the main focus there is on spoken languages in their written and spoken forms. This series of workshops, however, offers a forum for researchers focussing on sign languages. For the third time, the workshop had sign language corpora as its main topic. This time, the focus was on the interaction between...... corpus and lexicon. More than half of the papers presented contribute to this topic. Once again, the papers at this workshop clearly identify the potentials of even closer cooperation between sign linguists and sign language engineers, and we think it is events like this that contribute a lot to a better...

  11. Network workshop

    DEFF Research Database (Denmark)

    Bruun, Jesper; Evans, Robert Harry

    2014-01-01

    This paper describes the background for, realisation of and author reflections on a network workshop held at ESERA2013. As a new research area in science education, networks offer a unique opportunity to visualise and find patterns and relationships in complicated social or academic network data...... research community. With this workshop, participants were offered a way into network science based on authentic educational research data. The workshop was constructed as an inquiry lesson with emphasis on user autonomy. Learning activities had participants choose to work with one of two cases of networks...... network methodology in one’s research might supersede the perceived benefits of doing so. As a response to that problem, we argue that workshops can act as a road towards meaningful engagement with networks and highlight that network methodology promises new ways of interpreting data to answer questions...

  12. Virtual Workshop

    DEFF Research Database (Denmark)

    Buus, Lillian; Bygholm, Ann

    In relation to the Tutor course in the Mediterranean Virtual University (MVU) project, a virtual workshop “Getting experiences with different synchronous communication media, collaboration, and group work” was held with all partner institutions in January 2006. More than 25 key-tutors within MVU...... participated from different institutions in the workshop. The result of the workshop was experiences with different communication tools and media. Facing the difficulties and possibilities in collaborateting virtually concerned around group work and development of a shared presentation. All based on getting...... experiences for the learning design of MVU courses. The workshop intented to give the participants the possibility to draw their own experiences with issues on computer supported collaboration, group work in a virtual environment, synchronous and asynchronous communication media, and different perspectives...

  13. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP FUTURE TRANSVERSITY MEASUREMENTS (VOLUME 29).

    Energy Technology Data Exchange (ETDEWEB)

    Boer, D.; Grosse Perdekamp, M.

    2001-01-02

    The RIKEN-BNL Research Center workshop on ''Future Transversity Measurements'' was held at BNL from September 18-20, 2000. The main goal of the workshop was to explore future measurements of transversity distributions. This issue is of importance to the RHIC experiments, which will study polarized proton-proton collisions with great precision. One of the workshop's goals was to enhance interactions between the DIS community at HERA and the spin community at RHIC in this field. The workshop has been well received by the participants; the number of 69 registered participants demonstrates broad interest in the workshop's topics. The program contained 35 talks and there was ample time for lively discussions. The program covered all recent work in the field and in addition some very elucidating educational talks were given. At the workshop the present status of the field was discussed and it has succeeded in stimulating new experimental and theoretical studies (e.g. model calculations for interference fragmentation functions (IFF), IFF analysis at DELPHI). It also functioned to focus attention on the open questions that need to be resolved for near future experiments. In general, the conclusions were optimistic, i.e. measuring the transversity functions seems to be possible, although some new experimental hurdles will have to be taken.

  14. The STAR silicon vertex tracker: a large area silicon drift detector

    CERN Document Server

    Lynn, D; Beuttenmüller, Rolf H; Caines, H; Chen, W; Dimassimo, D; Dyke, H; Elliot, D; Eremin, V; Grau, M; Hoffmann, G W; Humanic, T; Ilyashenko, Yu S; Kotov, I; Kraner, H W; Kuczewski, P; Leonhardt, B; Li, Z; Liaw, C J; Lo Curto, G; Middelkamp, P; Minor, R; Munhoz, M; Ott, G; Pandey, S U; Pruneau, C A; Rykov, V L; Schambach, J; Sedlmeir, J; Soja, B; Sugarbaker, E R; Takahashi, J; Wilson, K; Wilson, R

    2000-01-01

    The Solenoidal Tracker At RHIC-Silicon Vertex Tracker (STAR-SVT) is a three barrel microvertex detector based upon silicon drift detector technology. As designed for the STAR-SVT, silicon drift detectors (SDDs) are capable of providing unambiguous two-dimensional hit position measurements with resolutions on the order of 20 mu m in each coordinate. Achievement of such resolutions, particularly in the drift direction coordinate, depends upon certain characteristics of silicon and drift detector geometry that are uniquely critical for silicon drift detectors hit measurements. Here we describe features of the design of the STAR-SVT SDDs and the front-end electronics that are motivated by such characteristics.

  15. Measurement of Longitudinal Spin Asymmetries From $W\\rightarrow e$ Boson Decay in Polarized pp Collisions at $\\sqrt{s}=500$ GeV at RHIC-PHENIX

    CERN Document Server

    al., Kensuke Okada et

    2010-01-01

    We report the measurement of the parity violating single spin asymmetries for inclusive high transverse momentum electrons and positrons in polarized $p+p$ collisions at a center of mass energy of $\\sqrt{s}=500$ GeV with the PHENIX detector at RHIC. These electrons are attributed to the decay of $W^\\pm$ and $Z^0$ bosons, and measured production cross section is consistent with the expectations. The $W$ production is confirmed for the first time in $p+p$ collisions. Its spin asymmetry in the polarized $p+p$ collisions is a important probe for the quark flavor decomposition of the proton spin.

  16. The ROS Workshop

    CERN Multimedia

    Francis, D.

    The first week of February saw the taking place of the ReadOut Subsystem (ROS) workshop. The ROS is the subsystem of the Trigger, DAQ & DCS project which receives and buffers data from the detector ReadOut Drivers (RODs). On request it then provides a subset of this buffered data, the so-called Regions of Interest (RoI), to the Level 2 trigger. Using the subsequent Level 2 trigger decision, the ROS either removes the buffered event data from its buffers or sends the full event data to the Event Filter for further processing. The workshop took place over a four-day period at a location in the Jura. The average daily attendance was twenty people, which mainly represented the five main ATLAS institutes currently engaged in this Trigger, DAQ & DCS activity. The aim of the workshop was to bring to an end the current prototyping activities in this area and launch the next, final, phase of prototyping. This new phase of prototyping will build on the successful activities of the previous phase and will focus...

  17. Setup and Performance of the RHIC Injector Accelerators for the 2005 Run with Copper Ions

    CERN Document Server

    Gardner, Chris J; Alessi, James; Benjamin, John; Blaskiewicz, Michael; Brennan, Joseph M; Brown, Kevin A; Carlson, Charles; De Long, Joseph; Glenn, Joseph; Hayes, Thomas; MacKay, William W; Marr, Gregory J; Morris, John; Roser, Thomas; Severino, Freddy; Smith, Kevin T; Steski, Dannie; Tsoupas, Nicholaos; Zaltsman, Alex; Zeno, Keith

    2005-01-01

    Copper ions for the 2005 run of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory are accelerated in the Tandem, Booster and AGS prior to injection into RHIC. The setup and performance of this chain of accelerators will be reviewed.

  18. The overview of the spin physics at RHIC-PHENIX experiment

    OpenAIRE

    Fukao, Yoshinori; Collaboration, for the PHENIX

    2006-01-01

    In Spiring 2005, RHIC successfully completed its first long data collection run with polarized proton beams. PHENIX accumulated ten fold larger statistics with higher polarization than the previous spin physics run in 2003. This contribution will introduce the RHIC-PHENIX experiment and present our recent results.

  19. Azimuthal anisotropy of strange hadrons in U+U collisions at √SNN = 193 GeV at RHIC

    Directory of Open Access Journals (Sweden)

    Bairathi Vipul

    2018-01-01

    Full Text Available We present the measurement of the azimuthal anisotropy of strange hadrons (K0s, ϕ and Λ at mid-rapidity (|y| < 1.0 in U+U collisions at SNN = 193 GeV using the STAR detector at RHIC. We present the centrality and transverse momentum dependence of flow coefficients υn for n = 2, 3, 4. A strong centrality dependence of υ2 is observed for the particles K0s, ϕ and Λ in U+U collisions at SNN = 193 GeV similar to Au+Au collisions at SNN = 200 GeV. We studied the number of constituent quark scaling (NCQ of the flow coefficients. The NCQ scaling of the flow coefficients holds within uncertainties for the particles studied in the U+U collisions. We also present the comparison of the results to the AMPT transport model.

  20. Elliptic flow at SPS and RHIC from kinetic transport to hydrodynamics

    CERN Document Server

    Kolb, P F; Heinz, Ulrich W; Heiselberg, H

    2001-01-01

    Anisotropic transverse flow is studied in Pb+Pb and Au+Au collisions at SPS and RHIC energies. The centrality and transverse momentum dependence at midrapidity of the elliptic flow coefficient v_2 is calculated in the hydrodynamic and low density limits. Hydrodynamics is found to agree well with the RHIC data for semicentral collisions up to transverse momenta of 1-1.5 GeV/c, but it considerably overestimates the measured elliptic flow at SPS energies. The low density limit LDL is inconsistent with the measured magnitude of v_2 at RHIC energies and with the shape of its p_t-dependence at both RHIC and SPS energies. The success of the hydrodynamic model points to very rapid thermalization in Au+Au collisions at RHIC and provides a serious challenge for kinetic approaches based on classical scattering of on-shell particles.

  1. 75 FR 25281 - Food Protection Workshop; Public Workshop

    Science.gov (United States)

    2010-05-07

    ... HUMAN SERVICES Food and Drug Administration Food Protection Workshop; Public Workshop AGENCY: Food and Drug Administration, HHS. ] ACTION: Notice of public workshop. SUMMARY: The Food and Drug... workshop entitled ``Food Protection Workshop.'' This public workshop is intended to provide information...

  2. 32th Winter Workshop on Nuclear Dynamics

    CERN Document Server

    2016-01-01

    The 32nd edition of the Winter Workshop will be held 28 February - 5 March 2016, Hotel Resort Fort Royal Guadeloupe in Guadeloupe a French overseas territory, is an island group in the southern Caribbean Sea. As with previous years, the workshop will bring together scientists from all fields of nuclear physics for engaging and friendly exchanges of ideas. Much emphasis will be on the recent LHC, RHIC and SPS heavy ion results, but advances in the ongoing and future programs at FAIR, FRIB, EIC, JLab and NICA and will also be featured. The meeting will start with a welcome reception on the evening of Sunday, February 28. The workshop program will commence on Monday morning and run until Saturday. We recommend to arrive on Sunday and leave on Sunday. Talks will be as usual 25+5 minutes, there will be no parallel sessions. If you are interested in presenting your work, please fill out the registration form prior to the registration deadline. After the program committee has met we will confirm your talk via indivi...

  3. Measurement and Optimization of Local Coupling from RHIC BPM Data

    CERN Document Server

    Calaga, Rama; Bai, Mei; Fischer, Wolfram; Franchi, Andrea; Tomas, Rogelio

    2005-01-01

    Global coupling in RHIC is routinely corrected by using three skew quadrupole families to minimize the tune split. In this paper we aim to re-optimize the coupling at top energy by minimizing resonance driving terms and the C-matrix in two steps: 1. Find the best configuration of the three skew quadrupole families and 2. Identify locations with coupling sources by inspection of the driving terms and the C-matrix around the ring. The measurements of resonance terms and C-matrix are presented.

  4. Analysis of failed ramps during the RHIC FY09 run

    Energy Technology Data Exchange (ETDEWEB)

    Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-08-15

    The Relativistic Heavy Ion Collider (RHIC) is a versatile accelerator that supports operation with polarized protons of up to 250 GeV and ions with up to 100 GeV/nucleon. During any running period, various operating scenarios with different particle species, beam energies or accelerator optics are commissioned. In this report the beam commissioning periods for establishing full energy beams (ramp development periods) from the FY09 run are summarized and, for the purpose of motivating further developments, we analyze the reasons for all failed ramps.

  5. Baryon Resonances in the STAR Experiment at RHIC

    Directory of Open Access Journals (Sweden)

    Witt Richard

    2015-01-01

    Full Text Available We present measurements of mass, width, and yields of the Δ(1232++, Σ(1385 and Λ(1520 from p + p, d+Au, and Au+Au collisions at √sNN = 200 GeV in the STAR experiment at Brookhaven National Laboratory’s Relativistic Heavy-Ion Collider (RHIC. These measurements are discussed in the context of re-scattering and regeneration. We also discuss preliminary measurements of the Ξ(1530 and possibilities for upcoming measurements based on recently collected data.

  6. Energy and centrality dependence of rapidity densities at RHIC energies.

    Science.gov (United States)

    Wang, X N; Gyulassy, M

    2001-04-16

    The energy and centrality dependence of the charged multiplicity per participant nucleon is shown to be able to differentiate between final state saturation and fixed scale perturbative QCD models of initial entropy production in high-energy heavy-ion collisions. The energy dependence is shown to test the nuclear enhancement of the minijet component of the initial conditions, while the centrality dependence provides a key test of whether gluon saturation is reached at RHIC energies. The HIJING model predicts that the rapidity density per participant increases with centrality, while the saturation model prediction is essentially independent of centrality.

  7. Bounding W-W' mixing with spin asymmetries at RHIC.

    Science.gov (United States)

    Boer, Daniël; den Dunnen, Wilco J

    2010-08-13

    The W boson can obtain a small right-handed coupling to quarks and leptons through mixing with a hypothetical W^{'} boson that appears in many extensions of the standard model. Measuring or even bounding this coupling to the light quarks is very challenging. Only one model independent bound on the absolute value of the complex mixing parameter has been obtained to date. Here we discuss a method sensitive to both the real and CP-violating imaginary parts of the coupling, independent of assumptions on the new physics, and demonstrate quantitatively the feasibility of its measurement at RHIC.

  8. Open and hidden charm production at RHIC and LHC

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R.

    2005-10-12

    We discuss aspects of open and hidden charm production in hadron-nucleus collisions at RHIC and LHC energies. We first discuss the extraction of the total charm cross section in lower energy collisions and how it compares to next-to-leading order quantum chromodynamics calculations. We then describe calculations of the transverse momentum distributions and their agreement with the shape of the measured STAR transverse momentum distributions. We next explain how shadowing and moderate nuclear absorption can explain the PHENIX J/{psi} dAu/pp ratios.

  9. Design and test of the RHIC CMD10 abort kicker

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Drees, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mi, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meng, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pai, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sandberg, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhang, W. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    In recent RHIC operational runs, planned and unplanned pre-fire triggered beam aborts have been observed that resulted in quenches of SC main ring magnets, indicating a weakened magnet kick strength due to beam-induced ferrite heating. An improvement program was initiated to reduce the longitudinal coupling impedance with changes to the ferrite material and the eddy-current strip geometry. Results of the impedance measurements and of magnet heating tests with CMD10 ferrite up to 190°C are reported. All 10 abort kickers in the tunnel have been modified and were provided with a cooling system for the RUN 15.

  10. Construction details and test results from RHIC sextupoles

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, M.; Anerella, M.; Ganetis, G. [and others

    1993-12-31

    Four 8 cm aperture sextupoles have been built at BNL to verify the magnetic performance of this magnet in the RHIC installation. Two significantly different mechanical configurations have been designed, and two magnets of each design have been built, and successfully tested, and have exceeded the required minimum quench current by a substantial margin. This report describes the assembly details of the second configuration, which is the final production configuration. In addition the first industry built production sextupole has been delivered and tested. This report presents the results of quench tests on all 5 magnets and field measurements on the first production sextupole.

  11. The ATLAS Electromagnetic Calorimeter Calibration Workshop

    CERN Multimedia

    Hong Ma; Isabelle Wingerter

    The ATLAS Electromagnetic Calorimeter Calibration Workshop took place at LAPP-Annecy from the 1st to the 3rd of October; 45 people attended the workshop. A detailed program was setup before the workshop. The agenda was organised around very focused presentations where questions were raised to allow arguments to be exchanged and answers to be proposed. The main topics were: Electronics calibration Handling of problematic channels Cluster level corrections for electrons and photons Absolute energy scale Streams for calibration samples Calibration constants processing Learning from commissioning Forty-five people attended the workshop. The workshop was on the whole lively and fruitful. Based on years of experience with test beam analysis and Monte Carlo simulation, and the recent operation of the detector in the commissioning, the methods to calibrate the electromagnetic calorimeter are well known. Some of the procedures are being exercised in the commisssioning, which have demonstrated the c...

  12. Ondernemersplan workshop

    NARCIS (Netherlands)

    Jacques Hartog

    2013-01-01

    Workshop over tips & tricks voor een goed plan - Serie Startup Academy., gehouden op 28-05-2013. Workshopprogramma Value in Business, ViB050. Binnen het CVO Groningen stimuleert het Groningen Center of Enterpreneurship Value050 valorisatie door het ontwikkelen en ondersteunen van ondernemerschap en

  13. Workshop report

    African Journals Online (AJOL)

    2015-05-02

    May 2, 2015 ... Participants developed logic models capturing inputs, activities, ... The workshop was facilitated by an expert in the evaluation of medical .... capture inputs, activities, outputs, and expected outcomes of their programmes. The logic model process was adapted from The Systems Evaluation. Protocol (V2.2).

  14. Workshop proceedings

    DEFF Research Database (Denmark)

    investigation already, but for many other domains, such as books, news, scientific articles, and Web pages we do not know if and how these data sources should be combined to provided the best recommendation performance. The CBRecSys 2014 workshop aims to address this by providing a dedicated venue for papers...

  15. Workshop presentation.

    Science.gov (United States)

    2013-12-01

    On December 18, 2013, the research team hosted a workshop at CTR to gather feedback on and : generate discussion of the mode choice model that was developed. : Attendees included the project monitoring committee (PMC) and TTI personnel who staff a he...

  16. Workshop report

    African Journals Online (AJOL)

    raoul

    2011-10-10

    Oct 10, 2011 ... A workshop report on promoting HIV/AIDS understanding through a capacity building train-the-trainer educational intervention. Holly J Diesel1,&, Dickson S Nsagha2, Clement M Sab2, Donna Taliaferro3, Neal S Rosenburg4. 1Goldfarb School of Nursing at Barnes Jewish College, 4483 Duncan, St. Louis, ...

  17. Women's Workshop.

    Science.gov (United States)

    Karelius, Karen

    The Women's Workshop Notebook is the tool used in the nine-week course designed for the mature woman returning to school at Antelope Valley College. The notebook exercises along with the group interaction and instruction stress the importance of personal assessment of strengths, weaknesses, dreams, deliberations and life history in…

  18. Workshop report

    African Journals Online (AJOL)

    2015-05-02

    May 2, 2015 ... a reasonable standard, inadequate transportation and absence of internet connectivity ... CapacityPlus and the MEPI Coordinating Center conducted a workshop to share good practices for CBE evaluation, identify approaches that can be used for .... and content – that is, every school represented interprets ...

  19. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP (VOLUME 55) COLLECTIVE FLOW AND QGP PROPERTIES.

    Energy Technology Data Exchange (ETDEWEB)

    BASS,S.ESUMI,S.HEINZ,U.KOLB,P.SHURYAK,E.XU,N.

    2003-11-17

    The first three years of RHIC physics, with Au/Au collisions induced at 65, 130 and 200 GeV per nucleon pair, produced dramatic results, particularly with respect to collective observables such as transverse flow and anisotropies in transverse momentum spectra. It has become clear that the data show very strong rescattering at very early times of the reaction, strong enough in fact to be described by the hydrodynamic limit. Therefore, with today's experiments, we are able to investigate the equation of state of hot quark gluon matter, discuss its thermodynamic properties and relate them to experimental observables. At this workshop we came together to discuss our latest efforts both in the theoretical description of heavy ion collisions as well as most recent experimental results that ultimately allow us to extract information on the properties of RHIC matter. About 50 participants registered for the workshop, but many more dropped in from the offices at BNL. The workshop lasted for three days, of which each day was assigned a special topic on which the talks focused. On the first day we dealt with the more general question what the strong collective phenomena observed in RHIC collisions tell us about the properties and the dynamics of RHIC matter. The second day covered all different aspects of momentum anisotropies, and interesting new experimental results were presented for the first time. On the third day, we focused on the late fireball dynamics and the breakdown of the assumption of thermalization. New experimental observables were discussed, which will deliver more information of how the expanding fireball breaks up, once the frequent interaction ceases.

  20. Construction of the STAR Event Plane Detector

    Science.gov (United States)

    Adams, Joseph

    2017-09-01

    The Event Plane Detector (EPD) is an upgrade to the STAR experiment at RHIC, providing high granularity and acceptance in the forward (2.2 EPD consists of two scintillator discs, one at positive and one at negative rapidity, 3.75 m from the center of the TPC. Each disc is segmented into 372 optically isolated tiles, read out by wavelength shifting fibers coupled to silicon photomultipliers. One quarter of a single disc was installed in STAR for the 2017 run for commissioning. In this talk I will discuss the construction of the EPD, the installation of the quarter wheel, and plans for full installation in 2018.

  1. Summary of activity. Topic I: detectors and experiments. [High-energy detectors for use at ISABELLE

    Energy Technology Data Exchange (ETDEWEB)

    Marx, J; Ozaki, S

    1978-01-01

    Results of a workshop studying detectors for Isabelle experimental halls are described. The detectors must be very reliable. Spatial resolution of the tracking detectors must be high to provide accurate measurements of angle and momentum, retain a short resolving time, and show excellent multiparticle handling capability. Included in the study were hodoscopes, drift chambers, proportional chambers, time projection chambers, Cherenkov counters, electromagnetic shower detectors, and hadron calorimeters. Data handling methods were also included in the studies. (FS)

  2. RAPIDE 0.0 RHIC Accelerator Physics Intrepid Development Environment

    Energy Technology Data Exchange (ETDEWEB)

    Satogata, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Saltmarsh, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Peggs, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    1993-08-01

    This document is a guide to the common environmental features of computing in (and around) the RHIC Accelerator Physics.sectio on the 'zoo' cluster of UNJX workstations, in RAPIDE, the RHIC Accelerator Physics Intrepid Development Environment It is hoped tliat later revisions of this document will approach a more professional 'style guide', beyond the convenient collection of pointers and hints presented here. RAP does two kinds of computing, "controls" and "general", addressed in sections 2 and 3 of this document For general computing, efficient system administration requires cooperation in using a common environment There is a much stronger need to define - and adhere to - a commonly agreed set of styles (or rules) in developing controls software. Right now, these rules have been set "de facto". Future improvements to the controls environment, particularly in response to the opinions of users, depends on broad knowledge of what the rules are. There are environmental issues that are basic to both controls and general computing, and that are so fundamental that they are (almost) unarguable. They are described immediately below, in the next section.

  3. Conceptual design of the Relativistic Heavy Ion Collider: RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Samios, Nicholas P.

    1986-05-01

    The complete Relativistic Heavy Ion Collider (RHIC) facility will be a complex set of accelerators and beam transfer equipment connecting them. A significant portion of the total facility either exists or is under construction. Two existing Tandem Van de Graaff accelerators will serve for the initial ion acceleration. Ions with a charge of -1 would be accelerated from ground to +15 MV potential, pass through a stripping foil, and accelerate back to ground potential, where they would pass through a second stripping foil. From there the ions will traverse a long transfer line to the AGS tunnel and be injected into the Booster accelerator. The Booster accelerates the ion bunch, and then the ions pass through one more stripper and then enter the Alternating Gradient Synchrotron (AGS), where they are accelerated to the top AGS energy and transferred to the collider. Bending and focusing of ion beams is to be achieved by superconducting magnets. The physics goals behind the RHIC are enumerated, particularly as regards the study of quark matter and the characteristics of high energy nucleus-nucleus collisions. The design of the collider and all its components is described, including the injector, the lattice, magnet system, cryogenic and vacuum systems, beam transfer, injection, and dump, rf system, and beam instrumentation and control system. Also given are cost estimates, construction schedules, and a management plan. (LEW)

  4. RHIC and LHC jet suppression in non-central collisions

    Directory of Open Access Journals (Sweden)

    Magdalena Djordjevic

    2014-10-01

    Full Text Available Understanding properties of QCD matter created in ultra-relativistic heavy-ion collisions is a major goal of RHIC and LHC experiments. An excellent tool to study these properties is high-momentum hadron suppression of light and heavy flavor observables. Utilizing this tool requires accurate suppression predictions for different experiments, probes and experimental conditions, and their unbiased comparison with experimental data. With this goal, we here extend our dynamical energy loss formalism towards generating predictions for non-central collisions; the formalism takes into account both radiative and collisional energy loss, dynamical (as opposed to static scattering centers, finite magnetic mass, running coupling and uses no free parameters in comparison with experimental data. Specifically, we here generate predictions for all available centrality ranges, for both LHC and RHIC experiments, and for four different probes (charged hadrons, neutral pions, D mesons and non-prompt J/ψ. We obtain good agreement with all available non-central data, and also generate predictions for suppression measurements that will soon become available. Finally, we discuss implications of the obtained good agreement with experimental data with different medium models that are currently considered.

  5. Measuring Parton Energy Loss at RHIC compared to LHC

    CERN Document Server

    Tannenbaum, M J

    2012-01-01

    The method of measuring $\\hat{x}_h=\\hat{p}_{Ta}/\\hat{p}_{Tt}$, the ratio of the away-parton transverse momentum, $\\hat{p}_{T_a}$, to the trigger-parton transverse momentum, $\\hat{p}_{T_t}$, using two-particle correlations at RHIC, will be reviewed. This measurement is simply related to the two new variables introduced at LHC for the di-jet fractional transverse momentum imbalance: ATLAS $A_J=(\\hat{p}_{Tt}-\\hat{p}_{Ta})/(\\hat{p}_{Tt}+\\hat{p}_{Ta})= (1-\\hat{x}_h)/(1+\\hat{x}_h)$; and CMS $\\mean{(\\hat{p}_{Tt}-\\hat{p}_{Ta})/\\hat{p}_{Tt}}= \\mean{1-\\hat{x}_h}$. Results from two-particle correlations at RHIC for $\\hat{x}_h$ in p-p and A+A collisions will be reviewed and new results will be presented and compared to LHC results. The importance of comparing any effect in A+A collisions to the same effect effect in p-p collisions will be illustrated and emphasized.

  6. From SPS to RHIC Breaking the Barrier to the Quark-Gluon Plasma

    CERN Document Server

    Heinz, Ulrich W

    2001-01-01

    After 15 years of heavy-ion collision experiments at the AGS and SPS, the recent turn-on of RHIC has initiated a new stage of quark-gluon plasma studies. I review the evidence for deconfined quark-gluon matter at SPS energies and the recent confirmation of some of the key ideas by the new RHIC data. Measurements of the elliptic flow at RHIC provide strong evidence for efficient thermalization during the very early partonic collision stage, resulting in a well-developed quark-gluon plasma with almost ideal fluid-dynamical collective behaviour and a lifetime of several fm/c.

  7. OBSERVATION OF LONG-RANGE BEAM-BEAM EFFECT IN RHIC AND PLANS FOR COMPENSATION.

    Energy Technology Data Exchange (ETDEWEB)

    FISCHER, W.; CALAGA, R.; DORDA, U.; DOUTCHOUK, J.-P.; ZIMMERMANN, F.; RANJBAR, V.; SEN, T.; SHI, J.; QIANG, J.; KABEL, A.

    2006-06-23

    At large distances the electromagnetic field of a wire is the same as the field produced by a bunch. Such a long-range beam-beam wire compensator was proposed for the LHC, and single beam tests with wire compensators were successfully done in the SPS. RHIC offers the possibility to test the compensation scheme with colliding beams. We report on measurements of beam losses as a function of transverse separation in RHIC at 100 GeV, and comparisons with simulations. We present a design for a long-range wire compensator in RHIC.

  8. Effect of the electron lenses on the RHIC proton beam closed orbit

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X.; Luo, Y.; Pikin, A.; Okamura, M.; Fischer, W.; Montag, C.; Gupta, R.; Hock, J.; Jain, A.; Raparia, D.

    2011-02-01

    We are designing two electron lenses (E-lens) to compensate for the large beam-beam tune spread from proton-proton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). They will be installed at RHIC IR10. The transverse fields of the E-lenses bending solenoids and the fringe field of the main solenoids will shift the proton beam. We calculate the transverse kicks that the proton beam receives in the electron lens via Opera. Then, after incorporating the simplified E-lens lattice in the RHIC lattice, we obtain the closed orbit effect with the Simtrack Code.

  9. Potential luminosity improvement for low-energy RHIC operation with electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov,A.

    2009-06-08

    There is a strong interest in heavy-ion RHIC collisions in the energy range below the present RHIC injection energy, which is termed 'low-energy' operation. These collisions will help to answer one of the key questions in the field of QCD about the existence and location of a critical point on the QCD phase diagram. However, luminosity projections are relatively low for the lowest energy points of interest. Luminosity improvement can be provided with RHIC electron cooling at low beam energies. This report summarizes the expected luminosity improvements with electron cooling and various limitations.

  10. The effects of betatron phase advances on beam-beam and its compensation in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y.; Fischer, W.; Gu, X.; Tepikian, S.; Trbojevic, D.

    2011-03-28

    In this article we perform simulation studies to investigate the effects of betatron phase advances between the beam-beam interaction points on half-integer resonance driving term, second order chromaticty and dynamic aperture in RHIC. The betatron phase advances are adjusted with artificial matrices inserted in the middle of arcs. The lattices for the 2011 RHIC polarized proton (p-p) run and 2010 RHIC Au-Au runs are used in this study. We also scan the betatron phase advances between IP8 and the electron lens for the proposed Blue ring lattice with head-on beam-beam compensation.

  11. Development of Micro-Pattern Gas Detectors Technologies

    CERN Multimedia

    Richer, J; Santos, D; Barsuk, S; Hamar, G; Shah, M K; Catanesi, M G; Colaleo, A; Maggi, M; Loddo, F; Berardi, V; Bagliesi, M; Menon, G; Richter, R; Lahonde-hamdoun, C; Dris, M; Chechik, R; Ochi, A; Hartjes, F; Lopes, I M; Deshpande, A; Franz, A; Dabrowski, W; Fiutowski, T A; Ferreira, A; Bastos de oliveira, C A; Miller, B W; Monrabal-capilla, F; Liubarsky, I; Plazas de pinzon, M C; Tsarfati, T; Voss, B J R; Carmona martinez, J M; Stocchi, A; Dinu, N; Semeniouk, I; Giebels, B; Marton, K; De leo, R; De lucia, E; Alviggi, M; Bellerive, A; Herten, L G; Zimmermann, S U; Giomataris, I; Peyaud, A; Schune, P; Delagnes, E; Delbart, A; Charles, G; Wang, W; Markou, A; Arazi, L; Cibinetto, G; Edo, Y; Neves, F F; Solovov, V; Stoll, S; Sampsonidis, D; Mindur, B; Zielinska, A Z; Sauli, F; Calapez de albuquerque veloso, J F; Kahlaoui, N; Sharma, A; Zenker, K; Cebrian guajardo, S V; Luzon marco, G M; Guillaudin, O J H; Cornebise, P; Lounis, A; Bruel, P J; Laszlo, A; Mukerjee, K; Nappi, E; Nuzzo, S V; Bencivenni, G; Tessarotto, F; Levorato, S; Dixit, M S; Riallot, M; Jeanneau, F; Nizery, F G; Maltezos, S; Kyriakis, A; Lyashenko, A; Van der graaf, H; Ferreira marques, R; Alexa, C; Liyanage, N; Dehmelt, K; Hemmick, T K; Polychronakos, V; Cisbani, E; Garibaldi, F; Koperny, S Z; Das neves dias carramate, L F; Munoz-vidal, J; Gutierrez, R; Fuentes, F; Van stenis, M; Resnati, F; Lupberger, M; Desch, K K; Soyk, D; Adloff, C J; Chefdeville, M; Vouters, G; Ranieri, A; Lami, S; Shekhtman, L; Dolgov, A; Bamberger, A; Landgraf, U; Kortner, O; Ferrero, A; Aune, S; Attie, D M; Bakas, G; Tsigaridas, S; Surrow, B; Gnanvo, K A K; Feege, N M; Woody, C L; Bhattacharya, S; Capogni, M; Veenhof, R J; Tapan, I; Dangendorf, V; Monteiro bernades, C M; Castro serrato, H F; De oliveira, R; Ropelewski, L; Behnke, T; Boudry, V; Radicioni, E; Lai, A; Shemyakina, E; Giganon, A E; Titov, M; Papakrivopoulos, I; Komai, H; Van bakel, N A; Tchepel, V; Repond, J O; Li, Y; Kourkoumelis, C; Tzamarias, S; Majumdar, N; Kowalski, T; Da rocha azevedo, C D; Serra diaz cano, L; Alvarez puerta, V; Trabelsi, A; Riegler, W; Ketzer, B F; Rosemann, C G; Herrera munoz, D C; Drancourt, C; Mayet, F; Geerebaert, Y; De robertis, G; Felici, G; Scribano memoria, A; Cecchi, R; Dalla torre, S; Gregori, M; Buzulutskov, A; Schwegler, P; Sanchez nieto, F J; Colas, P M A; Gros, M; Neyret, D; Zito, M; Ferrer ribas, E; Breskin, A; Martoiu, V S; Purschke, M L; Loomba, D; Gasik, P J; Petridou, C; Kordas, K; Mukhopadhyay, S; Bucciantonio, M; Bhopatkar, V S; Biagi, S F; Ji, X; Kanaki, K; Zavazieva, D; Capeans garrido, M D M; Schindler, H; Kaminski, J; Krautscheid, T; Lippmann, C; Arora, R; Dafni, T; Garcia irastorza, I; Puill, V; Wicek, F B; Burmistrov, L; Singh, K P; Pugliese, G; Kroha, H; Kunne, F; Alexopoulos, T; Daskalakis, G; Geralis, T; Bettoni, D; Heijhoff, K; Xiao, Z; Tzanakos, G; Leisos, A; Frullani, S; Sahin, O; Kalkan, Y; Giboni, K; Krieger, C; Breton, D R; Bhattacharyya, S; Abbrescia, M; Erriquez, O; Paticchio, V; Cardini, A; Aloisio, A; Turini, N; Bressan, A; Tikhonov, Y; Schumacher, M; Simon, F R; Nowak, S; Herlant, S; Chaus, A; Fanourakis, G; Bressler, S; Homma, Y; Timmermans, J; Fonte, P; Underwood, D G; Azmoun, B; Fassouliotis, D; Wiacek, P; Dos santos covita, D; Monteiro da silva, A L; Yahlali haddou, N; Marques ferreira dos santos, J; Domingues amaro, F

    The proposed R&D collaboration, RD51, aims at facilitating the development of advanced gas-avalanche detector technologies and associated electronic-readout systems, for applications in basic and applied research. Advances in particle physics have always been enabled by parallel advances in radiation-detector technology. Radiation detection and imaging with gas-avalanche detectors, capable of economically covering large detection volumes with a low material budget, have been playing an important role in many fields. Besides their widespread use in particle-physics and nuclear-physics experiments, gaseous detectors are employed in many other fields: astro-particle research and applications such as medical imaging, material science, and security inspection. While extensively employed at the LHC, RHIC, and other advanced HEP experiments, present gaseous detectors (wire-chambers, drift-tubes, resistive-plate chambers and others) have limitations which may prevent their use in future experiments. Present tec...

  12. First performance results of the Phobos silicon detectors

    CERN Document Server

    Pernegger, H; Baker, M D; Barton, D S; Betts, R R; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Decowski, M P; García, E; George, N; Gulbrandsen, K H; Gushue, S; Halliwell, C; Hamblen, J; Heintzelman, G A; Henderson, C; Holynski, R; Hofman, D J; Holzman, B; Johnson, E; Kane, J L; Katzy, J; Khan, N; Kucewicz, W; Kulinich, P; Lin, W T; Manly, S; McLeod, D; Michalowski, J; Mignerey, A; Mülmenstädt, J; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Rosenberg, L J; Sarin, P; Sawicki, P; Skulski, W; Steadman, S G; Stephans, G S F; Steinberg, P; Stodulski, M; Sukhanov, A; Tang, J L; Teng, R; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Verdier, R; Wadsworth, B; Wolfs, F L H; Wosiek, B; Wozniak, K; Wuosmaa, A H; Wyslouch, B

    2001-01-01

    The Phobos experiment concluded its first year of operation at RHIC taking data in Au-Au nucleus collisions at s radical = 65 GeV and 130 GeV/nucleon pair. First preliminary results of the performances of our silicon detectors in the experiment are summarized. The Phobos experiment uses silicon pad detectors for both tracking and multiplicity measurements. The silicon sensors vary strongly in their pad geometry. In this paper, we compare the signal response, the signal uniformity and signal-to-noise performance as measured in the experiment for the different geometries. Additionally, we investigate effects of very high channel occupancy on the signal response.

  13. First performance results of the Phobos silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pernegger, H. E-mail: heinz.pernegger@cern.ch; Back, B.B.; Baker, M.D.; Barton, D.S.; Betts, R.R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M.P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G.A.; Henderson, C.; Holynski, R.; Hofman, D.J.; Holzman, B.; Johnson, E.; Kane, J.L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Lin, W.T.; Manly, S.; McLeod, D.; Michalowski, J.; Mignerey, A.; Muelmenstaedt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I.C.; Reed, C.; Remsberg, L.P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S.G.; Stephans, G.S.F.; Steinberg, P.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; Nieuwenhuizen, G.J. van; Verdier, R.; Wadsworth, B.; Wolfs, F.L.H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A.H.; Wyslouch, B

    2001-11-01

    The Phobos experiment concluded its first year of operation at RHIC taking data in Au-Au nucleus collisions at s radical = 65 GeV and 130 GeV/nucleon pair. First preliminary results of the performances of our silicon detectors in the experiment are summarized. The Phobos experiment uses silicon pad detectors for both tracking and multiplicity measurements. The silicon sensors vary strongly in their pad geometry. In this paper, we compare the signal response, the signal uniformity and signal-to-noise performance as measured in the experiment for the different geometries. Additionally, we investigate effects of very high channel occupancy on the signal response.

  14. Proceedings of RIKEN BNL Research Center Workshop: The Physics of W and Z Bosons

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, S.; Okada, K.; Patwa, A.; Qiu, J.; Surrow, B.

    2010-06-24

    A two-day workshop on 'The Physics of Wand Z Bosons' Was held at the RIKEN BNL Research Center at Brookhaven National Laboratory on June 24-25, 2010. With the recent release of the first measurement of W bosons in proton-proton collisions at RHIC and the first observation of W events at the LHC, the workshop was a timely opportunity to bring together experts from both the high energy particle and nuclear physics communities to share their ideas and expertise on the physics of Wand Z bosons, with the aim of fully exploring the potential of the W/Z physics programs at RHIC and the LHC. The focus was on the production and measurement of W/Z bosons in both polarized and unpolarized proton-proton collisions, and the role of W/Z production in probing the parton flavor and helicity structure of the colliding proton and in the search for new physics. There were lively discussions about the potential and future prospects of W/Z programs at RHIC, Tevatron, and the LHC.

  15. Charm Meson Production in Au-Au Collisions at √ SNN = 200 Gev at Rhic

    Science.gov (United States)

    Vanfossen, Joseph A., Jr.

    This research work is in the field of experimental nuclear physics, more specifically, the analysis of data taken with the Solenoidal Tracker at RHIC (STAR) apparatus at the Relativistic Heavy Ion Collider (RHIC) located at Brookhaven National Laboratory (BNL). There, we accelerate and collide beams of heavy ions (e.g. gold nuclei) at relativistic velocities. The collisions of heavy nuclei in the STAR Experiment compress nuclear matter to high densities, and heat it to extreme temperatures, over one trillion degrees Celsius. Under such conditions, Lattice QCD and other phenomeno- logical models predict a phase transition in nuclear matter, a transition, where quarks and gluons become deconfined, i.e. they freely move throughout the interaction volume and are no longer confined to individual nucleons, forming Quark Gluon Plasma (QGP), a new state of nuclear matter. The study of QGP, its properties and dynamics, will provide a better understanding of QCD, the strong force, and of the history of the early universe. Mesons containing heavy flavor (charm and bottom) quarks can be used in QGP searches. Heavy quarks are produced mainly in the early stages of a collisions via energetic parton-parton interactions; heavy flavor production in QGP or during hadronization is suppressed due to the high masses of the quarks. Heavy quarks can therefore be used to probe the whole evolution of the system and as a calibrated tool to better understand the nature of the early, hot matter formed in the collisions. A key finding by the experiments at RHIC is the anomalously low production of heavy flavor at high transverse momentum values. This was found by measuring the yields of the decay electrons from mesons containing either charm or bottom quarks. These measurements suffer from very large combinatorial backgrounds and conceal the parent's kinematic properties. A suppression of particle production at high transverse momenta is likely caused by their interaction with the hot and

  16. Helium release rates and ODH calculations from RHIC magnet cooling line failure

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, C.J.; Than, Y.; Tuozzolo, J.

    2011-03-28

    A catastrophic failure of the magnet cooling lines, similar to the LHC superconducting bus failure incident, could discharge cold helium into the RHIC tunnel and cause an Oxygen Deficiency Hazard (ODH) problem. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the insulating vacuum volumes and discharging via the reliefs into the RHIC tunnel, had been developed. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces are included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Results, including helium discharge rates, helium inventory loss, and the resulting oxygen concentration in the RHIC tunnel area, are reported. Good agreement had been achieved when comparing the simulation results, a RHIC sector depressurization test measurement, and some simple analytical calculations.

  17. Creating Fantastic PI Workshops

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, Laura B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Clark, Blythe G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Colbert, Rachel S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dagel, Amber Lynn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gupta, Vipin P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hibbs, Michael R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Perkins, David Nikolaus [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); West, Roger Derek [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    The goal of this SAND report is to provide guidance for other groups hosting workshops and peerto-peer learning events at Sandia. Thus this SAND report provides detail about our team structure, how we brainstormed workshop topics and developed the workshop structure. A Workshop “Nuts and Bolts” section provides our timeline and check-list for workshop activities. The survey section provides examples of the questions we asked and how we adapted the workshop in response to the feedback.

  18. REAL-WORLD SORTING OF RHIC SUPERCONDUCTING MAGNETS.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; GUPTA,R.; HARRISON,M.; JAIN,A.; PEGGS,S.; THOMPSON,P.; TRBOJEVIC,D.; WANDERER,P.

    1999-03-29

    During the seven-year construction of the Relativistic Heavy Ion Collider (RHIC), more than 1700 superconducting dipoles, quadrupoles, sextupoles, and multi-layer correctors have been constructed and installed. These magnets have been sorted at several production stages to optimize their performance and reliability. For arc magnets, priorities have been put first on quench performance and operational risk minimization, second on field transfer function and other first-order quantities, and finally on nonlinear field errors which were painstakingly optimized at design. For Interaction-Region (IR) magnets, sorting is applied to select the best possible combination of magnets for the low-{beta}* interaction points (IP). This paper summarizes the history of this real-world sorting process.

  19. Noise estimation of beam position monitors at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Shen, X. [Indiana Univ., Bloomington, IN (United States); Bai, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Lee, S. Y. [Indiana Univ., Bloomington, IN (United States)

    2014-02-10

    Beam position monitors (BPM) are used to record the average orbits and transverse turn-by-turn displacements of the beam centroid motion. The Relativistic Hadron Ion Collider (RHIC) has 160 BPMs for each plane in each of the Blue and Yellow rings: 72 dual-plane BPMs in the insertion regions (IR) and 176 single-plane modules in the arcs. Each BPM is able to acquire 1024 or 4096 consecutive turn-by-turn beam positions. Inevitably, there are broadband noisy signals in the turn-by-turn data due to BPM electronics as well as other sources. A detailed study of the BPM noise performance is critical for reliable optics measurement and beam dynamics analysis based on turn-by-turn data.

  20. Constraining the polarized gluon PDF in pp collisions at RHIC

    CERN Document Server

    Ellinghaus, Frank

    2008-01-01

    The main focus of the physics program at PHENIX and STAR that makes use of RHIC's polarized proton beams is to figure out how and if at all the gluons inside protons are polarized, or to put it another way, do the spin 1 gluons prefer to have their spins aligned or anti-aligned with the spin of the proton, or do they just not care? This question is an important part of the more general question of how the constituents of protons, gluons and quarks, conspire to make up the overall spin 1/2 of the proton. Measurements of, e.g, jet and hadron, production cross-section differences between the two cases where the two polarized protons colliding have their spins aligned and anti-aligned are sensitive to the gluon polarization, which is encoded in the spin--dependent parton distribution function (PDF) for gluons, Delta-g(x).

  1. The first operation of 56 MHz SRF cavity in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); DeSanto, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Goldberg, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Harvey, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hayes, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Orfin, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Seberg, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Severino, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    A 56 MHz superconducting RF cavity has been designed, fabricated and installed in the Relativistic Heavy Ion Collider (RHIC). The cavity operates at 4.4 K with a “quiet helium source” to isolate the cavity from environmental acoustic noise. The cavity is a beam driven quarter wave resonator. It is detuned and damped during injection and acceleration cycles and is brought to operation only at store energy. For a first test operation, the cavity voltage was stabilized at 300 kV with full beam current. Within both Au + Au and asymmetrical Au + He3 collisions, luminosity improvement was detected from direct measurement, and the hourglass effect was reduced. One higher order mode (HOM) coupler was installed on the cavity. We report in this paper on our measurement of a broadband HOM spectrum excited by the Au beam.

  2. THE ERL HIGH-ENERGY COOLER FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI, I.

    2006-06-23

    Electron cooling [1] entered a new era with the July 2005 cooling of the Tevatron recycler ring [2] at Fermilab, using {gamma} = 9.5. Considering that the cooling rate decreases as faster than {gamma}{sup 2} and the electron energy forces higher electron currents, new acceleration techniques, high-energy electron cooling presents special challenges to the accelerator scientists and engineers. For example, electron cooling of RHIC at collisions requires electron beam energy up to about 54 MeV at an average current of between 50 to 100 mA and a particularly bright electron beam. The accelerator chosen to generate this electron beam is a superconducting Energy Recovery Linac (ERL) with a superconducting RF gun with a laser-photocathode.

  3. R AND D TOWARDS COOLING OF THE RHIC COLLIDER.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI,I.SRINIVASAN-RAO,T.ET AL.

    2003-05-12

    We introduce the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon bunched-beam ion collider at storage energy using 54 MeV electrons. The electron source will be an RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum bunch frequency is 28.15 MHz, with bunch charge of 10 nC. The R&D program has the following components: The photoinjector, the superconducting linac, start-to-end beam dynamics with magnetized electrons, electron cooling calculations and development of a large superconducting solenoid.

  4. Re-visiting RHIC snakes: OPERA fields, n0 dance

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gupta, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-09-22

    In this Tech. Note RHIC snakes and stable spin direction $\\vector{n}$0(s) are re-visited, based on OPERA-computed field maps of the former. The numerical simulations so undertaken provide various outcomes regarding RHIC optics and spin dynamics, in relation with orbital and focusing effects resulting from the use of this realistic 3-D representation of the snakes.

  5. Non Linear Error Analysis from Orbit Measurements in SPS and RHIC

    CERN Document Server

    Cardona, Javier F

    2005-01-01

    Recently, an "action and phase" analysis of SPS orbits measurements proved to be sensitive to sextupole components intentionally activated at specific locations in the ring. In this paper we attempt to determine the strenght of such sextupoles from the measured orbits and compare them with the set values. Action and phase analysis of orbit trayectories generated by RHIC models with non linearities will also be presented and compare with RHIC experiments.

  6. Optics correction for the multi-pass FFAG ERL machine eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    Gradient errors in the multi-pass Fixed Field Alternating Gradient (FFAG) Energy Recovery Linac (ERL) machine, eRHIC, distort the beam orbit and therefore cause emittance increase. The localization and correction of gradient errors are essential for an effective orbit correction and emittance preservation. In this report, the methodology and simulation of optics correction for the multi-pass FFAG ERL machine eRHIC will be presented.

  7. Azimuthal correlations of forward dihadrons in d + Au collisions at RHIC in the color glass condensate.

    Science.gov (United States)

    Albacete, J L; Marquet, C

    2010-10-15

    We present a good description of recent experimental data on forward dihadron azimuthal correlations measured in deuteron-gold collisions at the BNL Relativistic Heavy Ion Collider (RHIC), where monojet production has been observed. Our approach is based on the color glass condensate theory for the small-x degrees of freedom of the nuclear wave function, including the use of nonlinear evolution equations with running QCD coupling. Our analysis provides further evidence for the presence of saturation effects in RHIC data.

  8. STATUS OF THE RESEARCH AND DEVELOPMENT TOWARDS ELECTRON COOLING OF RHIC

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI,I.; OZAKI, T.; YOSHIDA, T.; NANKAWA, T.; KOZAI, N.; SAKAMOTO, F.; SUZUKI, Y.

    2007-06-25

    The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed calculations were made of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. The electron beam accelerator will be a superconducting Energy Recovery Linac (ERL). An intensive experimental R&D program engages the various elements of the accelerator, as described by 24 contributions to the 2007 PAC.

  9. Resummed pQCD for $W^{+-}$ and $Z^{0}$ transverse momentum spectra at RHIC and LHC

    CERN Document Server

    Xiao Fei Zhang

    2003-01-01

    The transverse momentum distributions of W/sup +or-/ and Z/sup 0/ are predicted at RHIC and LHC. A resummation formalism with power corrections to the renormalization group equations is used. Shadowing effects are discussed and found to be unimportant at RHIC, but important for LHC. We study the enhancement of power corrections due to multiple scattering in nuclear collisions and numerically illustrate the weak effects of the dependence on the nuclear mass. (12 refs).

  10. Collaborative authoring workshop

    NARCIS (Netherlands)

    Klemke, Roland; Schmitz, Birgit

    2009-01-01

    Klemke, R., & Schmitz, B. (2009). Collaborative authoring workshop. Workshop presentation at the Joint Technology Enhanced Learning Summerschool (JTELSS 2009). May, 30-June, 6, 2009, Terchova, Slovakia.

  11. Workshop experience

    Directory of Open Access Journals (Sweden)

    Georgina Holt

    2007-04-01

    Full Text Available The setting for the workshop was a heady mix of history, multiculturalism and picturesque riverscapes. Within the group there was, as in many food studies, a preponderance of female scientists (or ethnographers, but the group interacted on lively, non-gendered terms - focusing instead on an appreciation of locals food and enthusiasm for research shared by all, and points of theoretical variance within that.The food provided by our hosts was of the very highest eating and local food qualities...

  12. The Phenix Detector magnet subsystem

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R.M.; Bowers, J.M.; Harvey, A.R. [Lawrence Livermore National Lab., CA (United States)] [and others

    1995-05-19

    The PHENIX [Photon Electron New Heavy Ion Experiment] Detector is one of two large detectors presently under construction for RHIC (Relativistic Heavy Ion Collider) located at Brookhaven National Laboratory. Its primary goal is to detect a new phase of matter; the quark-gluon plasma. In order to achieve this objective, the PHENIX Detector utilizes a complex magnet subsystem which is comprised of two large magnets identified as the Central Magnet (CM) and the Muon Magnet (MM). Muon Identifier steel is also included as part of this package. The entire magnet subsystem stands over 10 meters tall and weighs in excess of 1900 tons (see Fig. 1). Magnet size alone provided many technical challenges throughout the design and fabrication of the project. In addition, interaction with foreign collaborators provided the authors with new areas to address and problems to solve. Russian collaborators would fabricate a large fraction of the steel required and Japanese collaborators would supply the first coil. This paper will describe the overall design of the PHENIX magnet subsystem and discuss its present fabrication status.

  13. System Size and Energy Dependence on Strangeness Production in 22 GeV Cu+Cu Collisions at RHIC

    Science.gov (United States)

    2011-05-10

    RHIC by Midshipman 1/C Grant A. Morgan United States Naval Academy Annapolis, MD __________________________________________ Certification of Adviser...Dependence On Strangeness Production In 22 GEV Cu+Cu Collisions At RHIC 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Prescribed by ANSI Std Z39-18 1 Abstract The Relativistic Heavy Ion Collider ( RHIC ) at Brookhaven National Laboratory collides different ions at a wide

  14. Jets and dijets in Au+Au and p+p collisions at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Hardtke, D.; STAR Collaboration

    2002-12-09

    Recent data from RHIC suggest novel nuclear effects in the production of high p{sub T} hadrons. We present results from the STAR detector on high p{sub T} angular correlations in Au+Au and p+p collisions at {radical}S = 200 GeV/c. These two-particle angular correlation measurements verify the presence of a partonic hard scattering and fragmentation component at high p{sub T} in both central and peripheral Au+Au collisions. When triggering on a leading hadron with p{sub T}>4 GeV, we observe a quantitative agreement between the jet cone properties in p+p and all centralities of Au+Au collisions. This quantitative agreement indicates that nearly all hadrons with p{sub T}>4 GeV/c come from jet fragmentation and that jet fragmentation properties are not substantially modified in Au+Au collisions. STAR has also measured the strength of back-to-back high p{sub T} charged hadron correlations, and observes a small suppression of the back-to-back correlation strength in peripheral collisions, and a nearly complete disappearance o f back-to-back correlations in central Au+Au events. These phenomena, together with the observed strong suppression of inclusive yields and large value of elliptic flow at high p{sub T}, are consistent with a model where high p{sub T} hadrons come from partons created near the surface of the collision region, and where partons that originate or propagate towards the center of the collision region are substantially slowed or completely absorbed.

  15. SEARCHING FOR QUARK - GLUON PLASMA (QGP) BUBBLE EFFECTS AT RHIC / LHC.

    Energy Technology Data Exchange (ETDEWEB)

    LINDENBAUM,S.J.; LONGACRE,R.S.; KRAMER,M.

    2003-03-01

    Since the early eighties, we have shared with Leon Van Hove the view that if a QGP were produced in high energy heavy ion colliders that its hadronization products would likely come from small localized in phase space bubbles of plasma. In previous papers we have discussed the case where one to at most a few separated bubbles were produced. In this paper we develop a model based on HIJING to which we added a ring of adjoining multi bubble production, which we believe is a higher cross-section process which dominates the near central rapidity region. We have performed simulations which were designed to be tested by the expected first to become available suitable test data, namely the forthcoming RHIC STAR detector data on 65Gev/n Au colliding with 65 Gev/n Au. We took into account background effects and resonance effects so that a direct comparison with the data, and detailed test of these ideas could be made in the near future. Subsequently 100 Gev/n Au on 100 Gev/n Au forthcoming data can be tested, and of course these techniques, suitably modified by experience can be applied to it and eventually to LHC. We concluded that two charged particle correlations versus the azimuthal angle {Delta}{phi}; vs the opening angle, and vs psuedorapidity {eta}, can detect important bubble signals in the expected background, with statistical significances of 5 - 20{sigma}, provided the reasonably conservative assumptions we have made for bubble production occur. We also predicted charge fluctuation suppressions which increase with the bubble signal, and range from {approx} 5% to 27% in the simulations performed. We demonstrated reasonably that in our model, these charge suppression effects would not significantly be affected by resonances.

  16. The Design of a Detector for the Electron Relativistic Heavy Ion Collider

    Science.gov (United States)

    Kirleis, Anders

    2010-02-01

    The proposed construction of the Electron Relativistic Heavy Ion Collider (eRHIC) at Brookhaven National Laboratory (BNL) will begin a new experimental quest to study the gluons that bind all matter. The main goal is to design a detector for eRHIC that is able to cover a large acceptance and separate the different particle types expected to be seen. To do this, it was first necessary to perform computerized simulations using Monte Carlo event generators which allow scientists to model the interactions during a collision to reveal the inner structure of the hadrons. Software programs such as PYTHIA and ROOT were used to determine the properties of the events and the individual particles. After analysis of this data, we were able to construct a three-dimensional image of a preliminary detector design using GEANT software. In this talk, I will present preliminary designs of an eRHIC detector. This is an important step in calculating the capabilities for measuring identified particles (such as pions, kaons, electrons, charm) and their resolutions. We are working closely with the collider-accelerator department as the size of the interaction regions places constraints on the size and makeup of the detector. )

  17. CERN-built prototype RICH detector back from the USA

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    In summer 1999, a ring-imaging Cherenkov detector (RICH) developed, constructed and tested at CERN was dismantled and sent to the Brookhaven National Laboratory (BNL) where it was used to extend the particle identification range of the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The RICH was a prototype of part of the ALICE-HMPID detector. Here we see members of the STAR-RICH team from ALICE-HMPID group with the detector, still in its shipping crates, back from BNL. L. to r.: A.Braem, E. Schyns, D. Fraissard, C. David, A. Di Mauro, J. van Beelen, G. Paic, Y. Lesenechal, F. Piuz, P. Martinengo, D. Di Bari, G. De Cataldo, Y. Andres, M. Davenport, V. Barozier, E. Nappi, T. D. Williams.

  18. Calibration and performance of the STAR Muon Telescope Detector using cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C. [University of Science and Technology of China, Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics (IHEP and USTC), USTC, Hefei 230026 (China); Huang, X.J., E-mail: huangxj12@mails.tsinghua.edu.cn [Tsinghua University, Beijing 100084 (China); Du, C.M. [Institute of Modern Physics, Lanzhou 730000 (China); Huang, B.C. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Ahammed, Z.; Banerjee, A. [Variable Energy Cyclotron Centre, West Bengal 700064 (India); Bhattarari, P. [University of Texas at Austin, Austin, TX 78712 (United States); Biswas, S. [Variable Energy Cyclotron Centre, West Bengal 700064 (India); Bowen, B. [University of Texas at Austin, Austin, TX 78712 (United States); Butterworth, J. [Rice University, Houston, TX 77005 (United States); Calderón de la Barca Sánchez, M. [University of California, Davis, CA 95616 (United States); Carson, H. [Texas A and M University, College Station, TX 77843 (United States); Chattopadhyay, S. [Variable Energy Cyclotron Centre, West Bengal 700064 (India); Cebra, D. [University of California, Davis, CA 95616 (United States); Chen, H.F. [University of Science and Technology of China, Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics (IHEP and USTC), USTC, Hefei 230026 (China); Cheng, J.P. [Tsinghua University, Beijing 100084 (China); Codrington, M. [University of Texas at Austin, Austin, TX 78712 (United States); Eppley, G. [Rice University, Houston, TX 77005 (United States); Flores, C. [University of California, Davis, CA 95616 (United States); Geurts, F. [Rice University, Houston, TX 77005 (United States); and others

    2014-10-21

    We report the timing and spatial resolution from the Muon Telescope Detector (MTD) installed in the STAR experiment at RHIC. Cosmic ray muons traversing the STAR detector have an average transverse momentum of 6 GeV/c. Due to their very small multiple scattering, these cosmic muons provide an ideal tool to calibrate the detectors and measure their timing and spatial resolution. The values obtained were ∼100 ps and ∼1–2 cm. These values are comparable to those obtained from cosmic-ray bench tests and test beams.

  19. MICCAI Workshops

    CERN Document Server

    Nedjati-Gilani, Gemma; Venkataraman, Archana; O'Donnell, Lauren; Panagiotaki, Eleftheria

    2014-01-01

    This volume contains the proceedings from two closely related workshops: Computational Diffusion MRI (CDMRI’13) and Mathematical Methods from Brain Connectivity (MMBC’13), held under the auspices of the 16th International Conference on Medical Image Computing and Computer Assisted Intervention, which took place in Nagoya, Japan, September 2013. Inside, readers will find contributions ranging from mathematical foundations and novel methods for the validation of inferring large-scale connectivity from neuroimaging data to the statistical analysis of the data, accelerated methods for data acquisition, and the most recent developments on mathematical diffusion modeling. This volume offers a valuable starting point for anyone interested in learning computational diffusion MRI and mathematical methods for brain connectivity as well as offers new perspectives and insights on current research challenges for those currently in the field. It will be of interest to researchers and practitioners in computer science, ...

  20. European Strategy for Future Neutrino Physics Workshop

    CERN Document Server

    Dufour, F

    2010-01-01

    The workshop “European Strategy for Future Neutrino Physics” was organized at the initiative of CERN management and of the neutrino panel of the CERN Scientific Policy Committee, and attracted 254 registered participants and 48 posters. The workshop reviewed the physics of massive neutrinos with emphasis on the long baseline neutrino oscillation experimental programme and the R&D towards future detectors and accelerator possibilities with the aim of initiating the process by which a strategy for accelerator neutrino physics could be established in the horizon of 2012.

  1. Particle detectors

    CERN Multimedia

    CERN. Geneva

    1999-01-01

    Introduction, interaction of radiation with matter measurement of momentum of charged particles, of energy of e/gamma, hadrons, identification of particles. Design of HEP detectors. Principle of operation and performance of tracking sub-detectors, calorimeters and muon system.

  2. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  3. Proceedings of RIKEN BNL Research Center Workshop entitled Hydrodynamics in Heavy Ion Collisions and QCD Equation of State (Volume 88)

    Energy Technology Data Exchange (ETDEWEB)

    Karsch,F.; Kharzeev, D.; Molnar, K.; Petreczky, P.; Teaney, D.

    2008-04-21

    The interpretation of relativistic heavy-ion collisions at RHIC energies with thermal concepts is largely based on the relative success of ideal (nondissipative) hydrodynamics. This approach can describe basic observables at RHIC, such as particle spectra and momentum anisotropies, fairly well. On the other hand, recent theoretical efforts indicate that dissipation can play a significant role. Ideally viscous hydrodynamic simulations would extract, if not only the equation of state, but also transport coefficients from RHIC data. There has been a lot of progress with solving relativistic viscous hydrodynamics. There are already large uncertainties in ideal hydrodynamics calculations, e.g., uncertainties associated with initial conditions, freezeout, and the simplified equations of state typically utilized. One of the most sensitive observables to the equation of state is the baryon momentum anisotropy, which is also affected by freezeout assumptions. Up-to-date results from lattice quantum chromodynamics on the transition temperature and equation of state with realistic quark masses are currently available. However, these have not yet been incorporated into the hydrodynamic calculations. Therefore, the RBRC workshop 'Hydrodynamics in Heavy Ion Collisions and QCD Equation of State' aimed at getting a better understanding of the theoretical frameworks for dissipation and near-equilibrium dynamics in heavy-ion collisions. The topics discussed during the workshop included techniques to solve the dynamical equations and examine the role of initial conditions and decoupling, as well as the role of the equation of state and transport coefficients in current simulations.

  4. Polarized ^{3}He^{+2} ions in the Alternate Gradient Synchrotron to RHIC transfer line

    Directory of Open Access Journals (Sweden)

    N. Tsoupas

    2016-09-01

    Full Text Available The proposed electron-hadron collider (eRHIC to be built at Brookhaven National Laboratory (BNL will allow the collisions of 20 GeV polarized electrons with 250 GeV polarized protons, or 100  GeV/n polarized ^{3}He^{+2} ions, or other unpolarized ion species. The large value of the anomalous magnetic moment of the ^{3}He nucleus G_{He}=(g-2/2=-4.184 (where g is the g-factor of the ^{3}He nuclear spin combined with the peculiar layout of the transfer line which transports the beam bunches from the Alternate Gradient Synchrotron (AGS to the Relativistic Heavy Ion Collider (RHIC makes the transfer and injection of polarized ^{3}He ions from AGS to RHIC (AtR a special case as we explain in the paper. Specifically in this paper we calculate the stable spin direction of a polarized ^{3}He beam at the exit of the AtR line which is also the injection point of RHIC, and we discuss a simple modifications of the AtR beam-transfer-line, to perfectly match the stable spin direction of the injected polarized ^{3}He beam to that of the circulating beam, at the injection point of RHIC.

  5. Magic Lenses for RHIC: Compensating Beam-beam Interaction (488th Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yun [BNL Collider-Accelerator Department

    2013-07-17

    Scientists at Brookhaven Lab’s Relativistic Heavy Ion Collider (RHIC) smash atomic particles together to understand more about why the physical world works the way it does. Increasing rates of particle collisions, or luminosity, at RHIC is no small challenge, but the results—more data for better clues—are crucial for scientists trying answer big questions about the origins of matter and mass. When scientists at RHIC collide protons, they don’t hope for a head-on crash by focusing only two particles roaring toward each other from opposite directions. For all intents and purposes, that would be impossible. The scientists can smash protons because they significantly increase the likelihood of collisions by steering hundreds of billions clumped into bunches, which at RHIC are about 3.5 meters long and less than 1 millimeter tall. The particles of these bunches are all positively charged, so when they interact, they repel outwardly—think how magnets repel when their same poles are pushed together. Although this decreases the density of each bunch, reducing luminosity, scientists in Brookhaven Lab’s Collider-Accelerator Department (C-AD) have a solution. After more than seven years of development, the scientists have designed an electron-lens system that uses electrons’ negative charges to attract positively charged proton bunches and minimize their repelling tendencies. Combined with other upgrades to the RHIC accelerator complex, these lenses are important components in efforts towards the major task of doubling the luminosity for proton-proton collisions.

  6. $\\Lambda$ (1520) production at SPS and RHIC energies

    CERN Document Server

    Markert, C

    2002-01-01

    The recent preliminary results from central Au+Au collisions at square root s/sub NN/= 130 GeV from the STAR experiment at RHIC are presented and discussed along with the results on the Lambda (1520) production in central Pb+Pb and p+p collisions at square root s=17 Ge V from the NA49 experiment at the SPS. The Lambda (1520) is measured with the invariant mass reconstruction of the decay products in the hadronic channel (K/sup -/, p). The mean Lambda (1520) multiplicity scaled by the number of participants decreases from p+p to Pb+Pb collisions at the same energy of square root s=17 GeV. An upper limit estimate of the multiplicity from the first measurement at square root s/sub NN/=130 GeV shows the same trend. Comparisons with model predictions provide an indication of possible medium effects on the resonances and their decay daughters. (20 refs).

  7. First results froim the PHOBOS experiment at RHIC

    CERN Document Server

    Roland, G; Baker, M D; Barton, D S; Betts, R R; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Decowski, M P; García, E; George, N; Gulbrandsen, K H; Gushue, S; Halliwell, C; Hamblen, J; Heintzelman, G A; Henderson, C; Holynski, R; Hofman, D J; Holzman, B; Johnson, E; Kane, J L; Katzy, J M; Khan, N; Kucewicz, W; Kulinich, P A; Lin, W T; Manly, S L; McLeod, D; Michalowski, J; Mignerey, A C; Mülmenstädt, J; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Rosenberg, L J; Sarin, P; Sawicki, P; Skulski, W; Steadman, S G; Stephans, G S F; Steinberg, P; Stodulski, M; Sukhanov, A; Tang, J L; Teng, R; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Verdier, R; Wadsworth, B; Wolfs, F L H; Wosiek, B; Wozniak, K; Wuosmaa, A H; Byslouch, B

    2002-01-01

    During the first run of RHIC, the PHOBOS experiment recorded Au+Au collisions at square root (S/sub NN/) of 56 GeV and 130 GeV. These data have allowed us-to study. the, energy and centrality dependence of particle production, the anisotropy of the final state azimuthal distribution and particle-ratios at mid-rapidity. Our results show a non-trivial evolution of particle densities with both centrality and collision energy reaching significantly higher values per participating nucleon than at lower energies or in nucleon-nucleon collisions. At square root (S/sub NN/)=130 GeV we observe 4100+or-100 (stat.)+or-400(stat.) charged particles with \\eta 0.06, beyond the value predicted in hadronic cascade models, indicates a closer approach to local thermal equilibration than at lower collision energies. The data on particle ratios show that at square root (S/sub NN/)=130 GeV a significant fraction of the incoming baryon number is still shifted towards mid-rapidity. Nevertheless, the resulting baryochemical potential...

  8. Measurement of Azimuthal Anisotropy at RHIC-PHENIX

    Directory of Open Access Journals (Sweden)

    Shimomura Maya

    2017-01-01

    Full Text Available The transverse momentum (pT and centrality dependence of the azimuthal anisotropy of second harmonics(υ2 are measured for charged hadron species at various collision systems and energies such as √SNN = 62.4 and 200 GeV in Cu + Cu and Au + Au collisions and at √SNN = 200 GeV in Cu + Au collisions by the PHENIX experiment at RHIC. The higher order anisotropy (υ3 are also measured for charged hadron at √SNN = 200 GeV in Cu + Cu, Au + Au and Au + Cu collisions. From these systematic study, we found that the all results are consistent with eccentricity scaling, quark number + KET scaling and Npart1/3 scaling except at small Npart in Cu + Cu at 62.4 GeV. Taking these scaling (quark number, KET, eccentricity and Npart1/3 into account, there is a universal scaling for π/K/p υ2 with different energies, collision sizes and particle species.

  9. Measurement of Azimuthal Anisotropy at RHIC-PHENIX

    Science.gov (United States)

    Shimomura, Maya

    2017-04-01

    The transverse momentum (pT) and centrality dependence of the azimuthal anisotropy of second harmonics(υ2) are measured for charged hadron species at various collision systems and energies such as √SNN = 62.4 and 200 GeV in Cu + Cu and Au + Au collisions and at √SNN = 200 GeV in Cu + Au collisions by the PHENIX experiment at RHIC. The higher order anisotropy (υ3) are also measured for charged hadron at √SNN = 200 GeV in Cu + Cu, Au + Au and Au + Cu collisions. From these systematic study, we found that the all results are consistent with eccentricity scaling, quark number + KET scaling and Npart1/3) scaling except at small Npart in Cu + Cu at 62.4 GeV. Taking these scaling (quark number, KET, eccentricity and Npart1/3) into account, there is a universal scaling for π/K/p υ2 with different energies, collision sizes and particle species.

  10. Conceptual design report for the Solenoidal Tracker at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    The STAR Collaboration

    1992-06-15

    The Solenoidal Tracker At RHIC (STAR) will search for signatures of quark-gluon plasma (QGP) formation and investigate the behavior of strongly interacting matter at high energy density. The emphasis win be the correlation of many observables on an event-by-event basis. In the absence of definitive signatures for the QGP, it is imperative that such correlations be used to identify special events and possible signatures. This requires a flexible detection system that can simultaneously measure many experimental observables. The physics goals dictate the design of star and it`s experiment. To meet the design criteria, tracking, momentum analysis, and particle identification of most of the charged particles at midrapidity are necessary. The tracking must operate in conditions at higher than the expected maximum charged particle multiplicities for central Au + Au collisions. Particle identification of pions/kaons for p < 0.7 GeV/c and kaons/protons for p < 1 GeV/c, as well as measurement of decay particles and reconstruction of secondary vertices will be possible. A two-track resolution of 2 cm at 2 m radial distance from, the interaction is expected. Momentum resolution of {Delta}p/p {approximately} 0.02 at p = 0.1 GeV/c is required to accomplish the physics, and,{Delta}p/p of several percent at p = 10 GeV/c is sufficient to accurately measure the rapidly failing spectra at high Pt and particles from mini-jets and jets.

  11. Infrared detectors

    CERN Document Server

    Rogalski, Antonio

    2010-01-01

    This second edition is fully revised and reorganized, with new chapters concerning third generation and quantum dot detectors, THz detectors, cantilever and antenna coupled detectors, and information on radiometry and IR optics materials. Part IV concerning focal plane arrays is significantly expanded. This book, resembling an encyclopedia of IR detectors, is well illustrated and contains many original references … a really comprehensive book.-F. Sizov, Institute of Semiconductor Physics, National Academy of Sciences, Kiev, Ukraine

  12. New science with new detectors

    Energy Technology Data Exchange (ETDEWEB)

    Graafsma, H.; Grubel, G.; Ryan, A.; Dautet, H.; Longoni, A.; Fiorini, H.; Vacchi, A.; Broennimann, C.; Gruner, S.; Berar, J.F.; Boudet, N.; Clemens, J.C.; Delpierre, P.; Siddons, P.; O' Connor, P.; Geronimo, G. de; Rehak, P.; Ryan, C.; Poulsen, H.F.; Wulff, M.; Lorenc, M.; Kong, Q.; Lo Russo, M.; Cammarata, M.; Reichenbach, W.; Eybert, L.; Claustre, L.; Miao, J.; Ishikawa, T.; Riekel, C.; Monaco, G.; Cloetens, P.; Huotari, S.; Albergamo, F.; Henriquet, C.; Graafsma, H.; Ponchut, C.; Vanko, G.; Verbeni, R.; Mokso, R.; Ludwig, W.; Boller, E.E.; Hignette, O.; Lambert, J.; Bohic, S

    2005-07-01

    The ESRF (European synchrotron radiation facility), with the help of the user community, is in the process of developing its long term strategy, covering the next 10 to 20 years. A central role in this strategy will be given to detector developments, since it is clear that the biggest possible improvement in performance is by increasing the overall detection capabilities. These improvements can be both quantitative, meaning more and larger detectors, and qualitative, meaning new detection concepts. This document gathers the abstracts and transparencies of most presentations of this workshop.

  13. 77 FR 31371 - Public Workshop: Privacy Compliance Workshop

    Science.gov (United States)

    2012-05-25

    ... SECURITY Office of the Secretary Public Workshop: Privacy Compliance Workshop AGENCY: Privacy Office, DHS. ACTION: Notice Announcing Public Workshop. SUMMARY: The Department of Homeland Security Privacy Office will host a public workshop, ``Privacy Compliance Workshop.'' DATES: The workshop will be held on June...

  14. Electron lenses for head-on beam-beam compensation in RHIC

    Science.gov (United States)

    Gu, X.; Fischer, W.; Altinbas, Z.; Anerella, M.; Bajon, E.; Bannon, M.; Bruno, D.; Costanzo, M.; Drees, A.; Gassner, D. M.; Gupta, R. C.; Hock, J.; Harvey, M.; Jain, A. K.; Jamilkowski, J. P.; Kankiya, P.; Lambiase, R.; Liu, C.; Luo, Y.; Mapes, M.; Marusic, A.; Mi, C.; Michnoff, R.; Miller, T. A.; Minty, M.; Nemesure, S.; Ng, W.; Phillips, D.; Pikin, A. I.; Rosas, P. J.; Robert-Demolaize, G.; Samms, T.; Sandberg, J.; Schoefer, V.; Shrey, T. C.; Tan, Y.; Than, R.; Theisen, C.; Thieberger, P.; Tuozzolo, J.; Wanderer, P.; Zhang, W.; White, S. M.

    2017-02-01

    Two electron lenses (e -lenses) have been in operation during the 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam-induced resonance-driving terms, the electron lenses reduced the beam-beam-induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detail the design considerations and verification of the electron beam parameters of the RHIC e -lenses. Longitudinal and transverse alignments with ion beams and the transverse beam transfer function measurement with head-on electron-proton beam are presented.

  15. Design aspects of an electrostatic electron cooler for low-energy RHIC operation

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, A.; Ben-Zvi, I.; Brodowski, J.; Chang, X.Y.; Gassner, D.; Hoff, L.; Kayran, D.; Kewisch, J.; Oerter, B.; Pendzick, A.; Tepikian, S.; Thieberger, P.; Prost, L.; Shemyakin, A.

    2011-03-28

    Electron cooling was proposed to increase the luminosity of the Relativistic Heavy Ion Collider (RHIC) operation for heavy ion beam energies below 10 GeV/nucleon. The electron cooling system needed should be able to deliver an electron beam of adequate quality in a wide range of electron beam energies (0.9-5 MeV). An option of using an electrostatic accelerator to produce electrons for cooling heavy ions in RHIC was evaluated in detail. In this paper, we describe the requirements and options which were considered in the design of such a cooler for RHIC, as well as the associated challenges. The expected luminosity improvement and limitations with such an electron cooling system are also discussed.

  16. Optimization of dynamic aperture for hadron lattices in eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Yichao [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, Vladimir [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, Dejan [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The potential upgrade of the Relativistic Heavy Ion Collider (RHIC) to an electron ion collider (eRHIC) involves numerous extensive changes to the existing collider complex. The expected very high luminosity is planned to be achieved at eRHIC with the help of squeezing the beta function of the hadron ring at the IP to a few cm, causing a large rise of the natural chromaticities and thus bringing with it challenges for the beam long term stability (Dynamic aperture). We present our effort to expand the DA by carefully tuning the nonlinear magnets thus controlling the size of the footprints in tune space and all lower order resonance driving terms. We show a reasonably large DA through particle tracking over millions of turns of beam revolution.

  17. Mimicking bipolar sextupole power supplies for low-energy operations at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Montag, C.; Bruno, D.; Jain, A.; Robert-Demolaize, G.; Satogata, T.; Tepikian, S.

    2011-03-28

    RHIC operated at energies below the nominal ion injection energy of E=9.8 GeV/u in 2010. Earlier test runs and magnet measurements indicated that all defocusing sextupole unipolar power supplies should be reversed to provide the proper sign of chromaticity. However, vertical chromaticity at E=3.85 GeV/u with this power supply configuration was still not optimal. This uncertainty inspired a new machine configuration where only half of the defocusing sextupole power supplies were reversed, taking advantage of the flexibility of the RHIC nonlinear chromaticity correction system to mimic bipolar sextupoles. This configuration resulted in a 30 percent luminosity gain and eliminated the need for further polarity changes for later 2010 low energy physics operations. Here we describe the background to this problem, operational experience, and RHIC online model changes to implement this solution.

  18. Status of the R&D Towards Electron Cooling of RHIC

    Energy Technology Data Exchange (ETDEWEB)

    A. Favale; D. Holmes; J.J. Sredniawski; Hans Bluem; M.D. Cole; J. Rathke; T. Schultheiss; A.M.M. Todd; V.V. Parkhomchuk; V.B. Reva; J. Alduino; D.S. Barton; Dana Richard Beavis; I. Ben-Zvi; Michael Blaskiewicz; J.M. Brennan; Andrew Burrill; Rama Calaga; P. Cameron; X. Chang; K.A. Drees; A.V. Fedotov; W. Fischer; G. Ganetis; D.M. Gassner; J.G. Grimes; Hartmut Hahn; L.R. Hammons; A. Hershcovitch; H.C. Hseuh; D. Kayran; J. Kewisch; R.F. Lambiase; D.L. Lederle; Vladimir Litvinenko; C. Longo; W.W. MacKay; G.J. Mahler; G.T. McIntyre; W. Meng; B. Oerter; C. Pai; George Parzen; D. Pate; D. Phillips; S.R. Plate; Eduard Pozdeyev; Triveni Rao; J. Reich; Thomas Roser; A.G. Ruggiero; T. Russo; C. Schultheiss; Z. Segalov; J. Smedley; K. Smith; T. Tallerico; S. Tepikian; R. Than; R.J. Todd; Dejan Trbojevic; J.E. Tuozzolo; P. Wanderer; G. WANG; D. Weiss; Q. Wu; Kin Yip; A. Zaltsman; A. Burov; S. Nagaitsev; L.R. Prost; A.O. Sidorin; A.V. Smirnov; Yaroslav Derbenev; Peter Kneisel; John Mammosser; H. Phillips; Joseph Preble; Charles Reece; Robert Rimmer; Jeffrey Saunders; Mircea Stirbet; Haipeng Wang; A.V. Aleksandrov; D.L. Douglas; Y.W. Kang; D.T. Abell; G.I. Bell; David L. Bruhwiler; R. Busby; John R. Cary; D.A. Dimitrov; P. Messmer; Vahid Houston Ranjbar; D.S. Smithe; A.V. Sobol; P. Stoltz

    2007-08-01

    The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed cooling calculations have been made to determine the efficacy of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. Electron cooling of RHIC at collisions requires electron beam energy up to about 54 MeV at an average current of between 50 to 100 mA and a particularly bright electron beam. The accelerator chosen to generate this electron beam is a superconducting Energy Recovery Linac (ERL) with a superconducting RF gun with a laser-photocathode. An intensive experimental R&D program engages the various elements of the accelerator: Photocathodes of novel design, superconducting RF electron gun of a particularly high current and low emittance, a very high-current ERL cavity and a demonstration ERL using these components.

  19. NUMERICAL STUDIES OF THE FRICTION FORCE FOR THE RHIC ELECTRON COOLER.

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV,A.V.; BEN-ZVI,I.; LITVINENKO, V.

    2005-05-16

    Accurate calculation of electron cooling times requires an accurate description of the dynamical friction force. The proposed RHIC cooler will require {approx}55 MeV electrons, which must be obtained from an RF linac, leading to very high transverse electron temperatures. A strong solenoid will be used to magnetize the electrons and suppress the transverse temperature, but the achievable magnetized cooling logarithm will not be large. In this paper, we explore the magnetized friction force for parameters of the RHIC cooler, using the VORPAL code [l]. VORPAL can simulate dynamical friction and diffusion coefficients directly from first principles [2]. Various aspects of the fiction force are addressed for the problem of high-energy electron cooling in the RHIC regime.

  20. Gaseous Detectors: Charged Particle Detectors - Particle Detectors and Detector Systems

    CERN Document Server

    Hilke, H J

    2011-01-01

    Gaseous Detectors in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.2 Gaseous Detectors' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.2 Gaseous Detectors 3.1.2.1 Introduction 3.1.2.2 Basic Processes 3.1.2.2.1 Gas ionization by charged particles 3.1.2.2.1.1 Primary clusters 3.1.2.2.1.2 Cluster size distribution 3.1.2.2.1.3 Total number of ion pairs 3.1.2.2.1.4 Dependence of energy deposit on particle velocity 3.1.2.2.2 Transport of...

  1. Center of mass energy and system-size dependence of photon production at forward rapidity at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    STAR Collaboration; Abelev, Betty

    2010-07-05

    We present the multiplicity and pseudorapidity distributions of photons produced in Au+Au and Cu+Cu collisions at {radical}s{sub NN} = 62.4 and 200 GeV. The photons are measured in the region -3.7 < {eta} < -2.3 using the photon multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of the collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for Au+Au and Cu+Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 {+-} 0.1 and 1.2 {+-} 0.1 for {radical}s{sub NN} = 62.4 GeV and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of {eta} - ybeam, are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies.

  2. Formaldehyde Workshop Agenda

    Science.gov (United States)

    This is the agenda for the Formaldehyde Workshop hosted by the Office of Research and Development's National Center for Environmental Assessments in cooperation with the IRIS Program. The workshop was held in April 2014

  3. IPHE Infrastructure Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-02-01

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fueling station development.

  4. Off-momentum beta-beat correction in the RHIC proton run

    Energy Technology Data Exchange (ETDEWEB)

    Luo Y.; Bai, M.; Fischer, W.; Marusic, A.; Mernick, K.; White, S.

    2012-05-20

    In this article, we will review the techniques to measure the off-momentum {beta}-beat and the correction algorithms with the chromatic arc sextupoles in RHIC. We will focus on the measurement and correction of the off-momentum {beta}*-beat at the interaction points. The off-momentum {beta}* is measured with the quadrupole strength change and a high resolution phase lock loop tune meter. The results of off-momentum {beta}* correction performed in a dedicated beam experiment in the 2012 RHIC 250 GeV polarized proton run are presented.

  5. Workshops as a Research Methodology

    Science.gov (United States)

    Ørngreen, Rikke; Levinsen, Karin

    2017-01-01

    This paper contributes to knowledge on workshops as a research methodology, and specifically on how such workshops pertain to e-learning. A literature review illustrated that workshops are discussed according to three different perspectives: workshops as a means, workshops as practice, and workshops as a research methodology. Focusing primarily on…

  6. Conceptual design report for the Solenoidal Tracker at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-15

    The Solenoidal Tracker At RHIC (STAR) will search for signatures of quark-gluon plasma (QGP) formation and investigate the behavior of strongly interacting matter at high energy density. The emphasis win be the correlation of many observables on an event-by-event basis. In the absence of definitive signatures for the QGP, it is imperative that such correlations be used to identify special events and possible signatures. This requires a flexible detection system that can simultaneously measure many experimental observables. The physics goals dictate the design of star and it's experiment. To meet the design criteria, tracking, momentum analysis, and particle identification of most of the charged particles at midrapidity are necessary. The tracking must operate in conditions at higher than the expected maximum charged particle multiplicities for central Au + Au collisions. Particle identification of pions/kaons for p < 0.7 GeV/c and kaons/protons for p < 1 GeV/c, as well as measurement of decay particles and reconstruction of secondary vertices will be possible. A two-track resolution of 2 cm at 2 m radial distance from, the interaction is expected. Momentum resolution of {Delta}p/p {approximately} 0.02 at p = 0.1 GeV/c is required to accomplish the physics, and,{Delta}p/p of several percent at p = 10 GeV/c is sufficient to accurately measure the rapidly failing spectra at high Pt and particles from mini-jets and jets.

  7. Development of Microstrip Silicon Detectors for Star and ALICE

    CERN Document Server

    Arnold, L; Coffin, J P; Guillaume, G; Guthneck, L; Higueret, S; Hundt, F; Kühn, C E; Lutz, Jean Robert; Pozdniakov, S; Rami, F; Tarchini, A; Boucham, A; Bouvier, S; Erazmus, B; Germain, M; Giliberto, S; Martin, L; Le Moal, C; Roy, C; Colledani, C; Dulinski, W; Turchetta, R

    1998-01-01

    The physics program of STAR and ALICE at ultra-relativistic heavy ion colliders, RHIC and LHC respectively, requires very good tracking capabilities. Some specific quark gluon plasma signatures, based on strange matter measurements implies quite a good secondary vertex reconstruction.For this purpose, the inner trackers of both experiments are composed of high-granularity silicon detectors. The current status of the development of double-sided silicon microstrip detectors is presented in this work.The global performance for tracking purpose adn particle identification are first reviewed. Then tests of the detectors and of the associated readout electronics are described. In-beam measurements of noise, spatial resolution, efficiency and charge matching capability, as well as radiation hardness, are examined.

  8. Sensor Development and Readout Prototyping for the STAR Pixel Detector

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, L.; Anderssen, E.; Matis, H.S.; Ritter, H.G.; Stezelberger, T.; Szelezniak, M.; Sun, X.; Vu, C.; Wieman, H.

    2009-01-14

    The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is designing a new vertex detector. The purpose of this upgrade detector is to provide high resolution pointing to allow for the direct topological reconstruction of heavy flavor decays such as the D{sup 0} by finding vertices displaced from the collision vertex by greater than 60 microns. We are using Monolithic Active Pixel Sensor (MAPS) as the sensor technology and have a coupled sensor development and readout system plan that leads to a final detector with a <200 {micro}s integration time, 400 M pixels and a coverage of -1 < {eta} < 1. We present our coupled sensor and readout development plan and the status of the prototyping work that has been accomplished.

  9. Workshop on electroweak symmetry breaking: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hinchliffe, I. (ed.)

    1984-10-01

    A theoretical workshop on electroweak symmetry breaking at the Superconducting Supercollider was held at Lawrence Berkeley Laboratory, June 4-22, 1984. The purpose of the workshop was to focus theoretical attention on the ways in which experimentation at the SSC could reveal manifestations of the phenomenon responsible for electroweak symmetry breaking. This issue represents, at present, the most compelling scientific argument for the need to explore the energy region to be made accessible by the SSC, and a major aim of the workshop was to involve a broad cross section of particle theorists in the ongoing process of sharpening the requirements for both accelerator and detector design that will ensure detection and identification of meaningful signals, whatever form the electroweak symmetry breaking phenomenon should actually take. Separate entries were prepared for the data base for the papers presented.

  10. ICP-MS Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Carman, April J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Eiden, Gregory C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-11-01

    This is a short document that explains the materials that will be transmitted to LLNL and DNN HQ regarding the ICP-MS Workshop held at PNNL June 17-19th. The goal of the information is to pass on to LLNL information regarding the planning and preparations for the Workshop at PNNL in preparation of the SIMS workshop at LLNL.

  11. MOOC Design Workshop

    DEFF Research Database (Denmark)

    Nørgård, Rikke Toft; Mor, Yishay; Warburton, Steven

    2016-01-01

    For the last two years we have been running a series of successful MOOC design workshops. These workshops build on previous work in learning design and MOOC design patterns. The aim of these workshops is to aid practitioners in defining and conceptualising educational innovations (predominantly, ...

  12. Integrability detectors

    Indian Academy of Sciences (India)

    2015-10-29

    Oct 29, 2015 ... Abstract. In this short review, we present some applications and historical facts about the integrability detectors: Painlevé analysis, singularity confinement and algebraic entropy.

  13. ISABELLE. Volume 3. Experimental areas, large detectors

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This section presents the papers which resulted from work in the Experimental Areas portion of the Workshop. The immediate task of the group was to address three topics. The topics were dictated by the present state of ISABELLE experimental areas construction, the possibility of a phased ISABELLE and trends in physics and detectors.

  14. SuperB Progress Report: Detector

    Energy Technology Data Exchange (ETDEWEB)

    Grauges, E.; /Barcelona U., ECM; Donvito, G.; Spinoso, V.; /INFN, Bari /Bari U.; Manghisoni, M.; Re, V.; Traversi, G.; /INFN, Pavia /Bergamo U., Ingengneria Dept.; Eigen, G.; Fehlker, D.; Helleve, L.; /Bergen U.; Carbone, A.; Di Sipio, R.; Gabrielli, A.; Galli, D.; Giorgi, F.; Marconi, U.; Perazzini, S.; Sbarra, C.; Vagnoni, V.; Valentinetti, S.; Villa, M.; Zoccoli, A.; /INFN, Bologna /Bologna U. /Caltech /Carleton U. /Cincinnati U. /INFN, CNAF /INFN, Ferrara /Ferrara U. /UC, Irvine /Taras Shevchenko U. /Orsay, LAL /LBL, Berkeley /UC, Berkeley /Frascati /INFN, Legnaro /Orsay, IPN /Maryland U. /McGill U. /INFN, Milan /Milan U. /INFN, Naples /Naples U. /Novosibirsk, IYF /INFN, Padua /Padua U. /INFN, Pavia /Pavia U. /INFN, Perugia /Perugia U. /INFN, Perugia /Caltech /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore /PNL, Richland /Queen Mary, U. of London /Rutherford /INFN, Rome /Rome U. /INFN, Rome2 /Rome U.,Tor Vergata /INFN, Rome3 /Rome III U. /SLAC /Tel Aviv U. /INFN, Turin /Turin U. /INFN, Padua /Trento U. /INFN, Trieste /Trieste U. /TRIUMF /British Columbia U. /Montreal U. /Victoria U.

    2012-02-14

    This report describes the present status of the detector design for SuperB. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  15. PKU-RBRC Workshop on Transverse Spin

    Energy Technology Data Exchange (ETDEWEB)

    Avakian,H.; Bunce, G.; Yuan, F.

    2008-06-30

    Understanding the structure of the nucleon is a fundamental question in subatomic physics, and it has been under intensive investigation for the last several years. Modern research focuses in particular on the spin structure of the nucleon. Experimental and theoretical investigations worldwide over the last few decades have established that, contrary to nave quark model expectations, quarks carry only about 30% of the totd spin of the proton. The origin of the remaining spin is the key question in current hadronic physics and also the major driving forces for the current and future experiments, such as RHIC and CEBAF in US, JPARC in Japan, COMPASS at CERN in Europe, FAIR at GSI in Germany. Among these studies, the transverse-spin physics develops actively and rapidly in the last few years. Recent studies reveal that transverse-spin physics is closely related to many fundamental properties of the QCD dynamics such as the factorization, the non-trivial universality of the parton distribution and fragmentation functions. It was very timely to bring together the theorists and experimentalists in this field at this workshop to review and discuss the latest developments and future perspective in hadronic spin physics. This workshop was very success iu many aspects. First of all, it attracted almost every expert working in this field. We had more than eighty participants in total, among them 27 came from the US institutes, 13 from Europe, 3 from Korea, and 2 from Japan. The rest participants came from local institutes in China. Second, we arranged plenty physics presentations, and the program covers all recent progresses made in the last few years. In total, we had 47 physics presentations, and two round table discussions. The discussion sessions were especially very useful and very much appreciated by all participants. In addition, we also scheduled plenty time for discussion in each presentation, and the living discussions impressed and benefited all participants.

  16. MUON DETECTORS: DT

    CERN Multimedia

    M. Dallavalle.

    The DT system is ready for the LHC start up. The status of detector hardware, control and safety, of the software for calibration and monitoring and of people has been reviewed at several meetings, starting with the CMS Action Matrix Review and with the Muon Barrel Workshop (October 5 to 7). The disconnected HV channels are at a level of about 0.1%. The loss in detector acceptance because of failures in the Read-Out and Trigger electronics is about 0.5%. The electronics failure rate has been lower this year: next year will tell us whether the rate has stabilised and hopefully will confirm that the number of spares is adequate for ten years operation. Although the detector safety control is very accurate and robust, incidents have happened. In particular the DT system suffered from a significant water leak, originated in the top part of YE+1, that generated HV trips in eighteen chambers going transversely down from the top sector in YB+2 to the bottom sector in YB-2. All chambers recovered and all t...

  17. Setup and performance of RHIC for the 2008 run with deuteron-gold collisions.

    Energy Technology Data Exchange (ETDEWEB)

    Gardner,C.; Abreu, N.P.; Ahren, L.; Alessi, J.; Bai, M.; et al.

    2008-06-23

    This year (2008) deuterons and gold ions were collided in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) for the first time since 2003. The setup and performance of the collider for the 2008 run is reviewed with a focus on improvements that have led to an order of magnitude increase in luminosity over that achieved in the 2003 run.

  18. From minijet saturation to global observables in A+A collisions at the LHC and RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Paatelainen, R.; Eskola, K.J.; Niemi, H. [Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä (Finland); Helsinki Institute of Physics, P.O. Box 64, FI-00014 University of Helsinki (Finland); Tuominen, K. [Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 University of Helsinki (Finland); Helsinki Institute of Physics, P.O. Box 64, FI-00014 University of Helsinki (Finland)

    2014-12-15

    We review the recent results from the computation of saturated next-to-leading order perturbative QCD minijet initial conditions combined with viscous hydrodynamical evolution of ultrarelativistic heavy-ion collisions at the LHC and RHIC. Comparison with experimental data is shown.

  19. Determination of freeze-out conditions from fluctuation observables measured at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, M. [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Alba, P.; Alberico, W. [Department of Physics, Torino University and INFN, Sezione di Torino, via P. Giuria 1, 10125 Torino (Italy); Bellwied, R. [Department of Physics, University of Houston, Houston, TX 77204 (United States); Mantovani Sarti, V. [Department of Physics, Torino University and INFN, Sezione di Torino, via P. Giuria 1, 10125 Torino (Italy); Nahrgang, M. [Department of Physics, Duke University, Durham, NC 27708 (United States); Ratti, C. [Department of Physics, Torino University and INFN, Sezione di Torino, via P. Giuria 1, 10125 Torino (Italy)

    2014-11-15

    We extract chemical freeze-out conditions via a thermal model approach from fluctuation observables measured at RHIC and compare with results from lattice QCD and statistical hadronization model fits. The possible influence of additional critical and non-critical fluctuation sources not accounted for in our analysis is discussed.

  20. Reliable operation of the Brookhaven EBIS for highly charged ion production for RHIC and NSRL

    Energy Technology Data Exchange (ETDEWEB)

    Beebe, E., E-mail: beebe@bnl.gov; Alessi, J., E-mail: beebe@bnl.gov; Binello, S., E-mail: beebe@bnl.gov; Kanesue, T., E-mail: beebe@bnl.gov; McCafferty, D., E-mail: beebe@bnl.gov; Morris, J., E-mail: beebe@bnl.gov; Okamura, M., E-mail: beebe@bnl.gov; Pikin, A., E-mail: beebe@bnl.gov; Ritter, J., E-mail: beebe@bnl.gov; Schoepfer, R., E-mail: beebe@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-01-09

    An Electron Beam Ion Source for the Relativistic Heavy Ion Collider (RHIC EBIS) was commissioned at Brookhaven in September 2010 and since then it routinely supplies ions for RHIC and NASA Space Radiation Laboratory (NSRL) as the main source of highly charged ions from Helium to Uranium. Using three external primary ion sources for 1+ injection into the EBIS and an electrostatic injection beam line, ion species at the EBIS exit can be switched in 0.2 s. A total of 16 different ion species have been produced to date. The length and the capacity of the ion trap have been increased by 20% by extending the trap by two more drift tubes, compared with the original design. The fraction of Au{sup 32+} in the EBIS Au spectrum is approximately 12% for 70-80% electron beam neutralization and 8 pulses operation in a 5 Hertz train and 4-5 s super cycle. For single pulse per super cycle operation and 25% electron beam neutralization, the EBIS achieves the theoretical Au{sup 32+} fractional output of 18%. Long term stability has been very good with availability of the beam from RHIC EBIS during 2012 and 2014 RHIC runs approximately 99.8%.

  1. Jet-like correlations of heavy-flavor particles – from RHIC to LHC

    NARCIS (Netherlands)

    Mischke, A.

    2011-01-01

    Measurements at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory have revealed strong modification of the jet structure in high-energy heavy-ion collisions, which can be attributed to the interaction of hard scattered partons with the hot and dense QCD matter. The study

  2. Quantum opacity, the RHIC Hanbury Brown-Twiss puzzle, and the chiral phase transition.

    Science.gov (United States)

    Cramer, John G; Miller, Gerald A; Wu, Jackson M S; Yoon, Jin-Hee

    2005-03-18

    We present a relativistic quantum-mechanical treatment of opacity and refractive effects that allows reproduction of observables measured in two-pion Hanbury Brown-Twiss (HBT) interferometry and pion spectra at RHIC. The inferred emission duration is substantial. The results are consistent with the emission of pions from a system that has a restored chiral symmetry.

  3. High transverse momentum inclusive neutral pion production in d+Au collisions at RHIC

    NARCIS (Netherlands)

    Grebenyuk, O.|info:eu-repo/dai/nl/304848883; Mischke, A.|info:eu-repo/dai/nl/325781435; Stolpovsky, A.

    2006-01-01

    Preliminary results are presented on high pT inclusive neutral pion production in d+Au collisions at sNN = 200 GeV in the pseudo-rapidity range 0 <η <1. Photons from the decay π0 → γγ are detected in the Barrel Electromagnetic Calorimeter of the STAR experiment at RHIC. The analysis procedure is

  4. A new correlation method to identify and separate charm and bottom production processes at RHIC

    NARCIS (Netherlands)

    Mischke, A.

    2009-01-01

    Electrons from semileptonic decays of heavy-flavor mesons (D and B) allow to study the energy loss of heavy-quarks in nuclear collisions at s = 200 GeV at RHIC. Since pQCD calculations have shown that the crossing point where bottom decay electrons start to dominate over charm decay electrons is

  5. Low Mass Vector Meson Measurements via Di-electrons at RHIC by the PHENIX Experiment

    CERN Document Server

    Sharma, Deepali

    2009-01-01

    The PHENIX experiment at RHIC has measured $\\omega$ and $\\phi$ mesons in $p+p$, $d+Au$ and $Au+Au$ collisions at \\sqn = 200 GeV via both hadronic and di-electron decay channels. The transverse momentum spectra as measured in different decay modes and at different centralities are shown and discussed here.

  6. Study of luminosity leveling with crossing angle for polarized proton program at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blackler, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-01-25

    Luminosity leveling has been requested by experiments in the past and it is also foreseen in the future at RHIC. There are some options to do this, some well tested and some are potential. In this report, we present the theoretical and experimental study on leveling luminosity by crossing angle.

  7. FY2014 Parameters for Helions and Gold Ions in Booster, AGS, and RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-08-15

    The nominal parameters for helions (helion is the bound state of two protons and one neutron, the nucleus of a helium-3 atom) and gold ions in Booster, AGS, and RHIC are given for the FY2014 running period. The parameters are found using various formulas to derive mass, helion anomalous g-factor, kinetic parameters, RF parameters, ring parameters, etc..

  8. Impact of metal overhang and guard ring techniques on breakdown voltage of Si strip sensors - 2003 IEEE nuclear science symposium, medical imaging conference, and workshop of room-temperature semiconductor detectors

    CERN Document Server

    Ranjan, K; Namrata, S; Chatterji, S; Srivastava-Ajay, K; Kumar, A; Jha, Manoj Kumar; Shivpuri, R K

    2004-01-01

    The importance of Si sensors in high-energy physics (HEP) experiments can hardly be overemphasized. However, the high luminosity and the high radiation level in the future HEP experiments, like Large Hadron Collider (LHC), has posed a serious challenge to the fabrication of Si detectors. For the safe operation over the full LHC lifetime, detectors are required to sustain very high voltage operation, well exceeding the bias voltage needed to full deplete the heavily irradiated Si sensors. Thus, the main effort in the development of Si sensors is concentrated on a design that avoids p-n junction breakdown at operational biases. Among various proposed techniques, Field-limiting Ring (FLR) (or guard ring) and Metal-Overhang (MO) are technologically simple and are suitable for vertical devices. Since high-voltage planar Si junctions are of great importance in the HEP experiments, it is very interesting to compare these two aforementioned techniques for achieving the maximum breakdown voltage under optimal conditio...

  9. The MAPS-based vertex detector for the STAR experiment: Lessons learned and performance

    Energy Technology Data Exchange (ETDEWEB)

    Contin, Giacomo, E-mail: gcontin@lbl.gov

    2016-09-21

    The PiXeL detector (PXL) of the STAR experiment at RHIC is the first application of the state-of-the-art thin Monolithic Active Pixel Sensors (MAPS) technology in a collider environment. The PXL, together with the Intermediate Silicon Tracker (IST) and the Silicon Strip Detector (SSD), form the Heavy Flavor Tracker (HFT), which has been designed to improve the vertex resolution and extend the STAR measurement capabilities in the heavy flavor domain, providing a clean probe for studying the Quark–Gluon Plasma. The two PXL layers are placed at a radius of 2.8 and 8 cm from the beam line, respectively, and is based on ultra-thin high resolution MAPS sensors. The sensor features 20.7 μm pixel pitch, 185.6 μs readout time and 170 mW/cm{sup 2} power dissipation. The detector is air-cooled, allowing a global material budget of 0.4% radiation length on the innermost layer. A novel mechanical approach to detector insertion allows for fast installation and integration of the pixel sub detector. The HFT took data in Au+Au collisions at 200 GeV during the 2014 RHIC run. Modified during the RHIC shutdown to improve its reliability, material budget, and tracking capabilities, the HFT took data in p+p and p+Au collisions at √s{sub NN}=200 GeV in the 2015 RHIC run. In this paper we present detector specifications, experience from the construction and operations, and lessons learned. We also show preliminary results from 2014 Au+Au data analyses, demonstrating the capabilities of charm reconstruction with the HFT. - Highlights: • First MAPS-based vertex detector in a collider experiment. • Achieved low material budget of 0.39% of radiation length per detector layer. • Track pointing resolution to the primary vertex better than 10⊕24 GeV/p×c μm. • Gain in significance for the topological reconstruction of the D{sup 0}−>K+π decay in STAR. • Observed latch-up induced damage of MAPS sensors.

  10. Photon multiplicity measurements: From SPS to RHIC and LHC

    Indian Academy of Sciences (India)

    Abstract. Results from the photon multiplicity measurements using a fine granularity pre-shower photon multiplicity detector (PMD) at CERN SPS are discussed. These include study of pseudo- rapidity distributions of photons, scaling of photon multiplicity with number of participating nucle- ons, centrality dependence of pT of ...

  11. Photon multiplicity measurements: From SPS to RHIC and LHC

    Indian Academy of Sciences (India)

    Abstract. Results from the photon multiplicity measurements using a fine granularity pre-shower photon multiplicity detector (PMD) at CERN SPS are discussed. These include study of pseudorapidity distributions of photons, scaling of photon multiplicity with number of participating nucleons, centrality dependence of ⟨ p T ⟩ ...

  12. ISABELLE. Volume 4. Detector R and D

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Workshop participants were asked to assess the current status of detector R and D in terms of the specific needs for ISABELLE experiments: the demands of high particle rates, extremely selective triggers on complex and rare events, and the economics of large detector systems. The detailed results of working groups convened to consider specific areas of detector development are presented. The key points of this assessment, as regards the continuing R and D program for ISABELLE are summarized here. Twenty-six items from the volume were prepared separately for the data base, along with five items previously prepared. (GHT)

  13. Optical Detectors

    Science.gov (United States)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  14. Vapor Detector

    Science.gov (United States)

    Waddell, H. M.; Garrard, G. C.; Houston, D. W.

    1982-01-01

    Detector eliminates need for removing covers to take samples. Detector is canister consisting of screw-in base and clear plastic tube that contains two colors of silica gel. Monoethylhydrazine and nitrogen tetroxide vapors are visually monitored with canister containing color-changing gels.

  15. Proceedings of the 1978 ISABELLE summer workshop, Upton, New York, July 17--28, 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-02-01

    Three general areas are covered by the workshop. These are detectors, experimental areas and data handling. Fifty-seven individual items were prepared separately for the data base. Several brief contributions were included in the workshop proceedings but were not prepared separately. (GHT)

  16. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER, RHIC SPIN COLLABORATION MEETING VI, VOLUME 36.

    Energy Technology Data Exchange (ETDEWEB)

    BLAND,L.; SAITO,N.

    2001-10-10

    The sixth meeting of the RHIC Spin Collaboration (RSC) took place on October 1, 2001 at Brookhaven National Laboratory. RHIC is now in its second year of operation for physics production and the first polarized proton collision run at {radical}s=200 GeV is expected to start in eight weeks. The RSC has developed a plan for this coming run through two previous meetings, RHIC Spin Physics III (August 3, 2000) and IV (October 13-14, 2000). We requested the following: two weeks of polarized proton studies in AGS, three weeks of polarized collider commissioning, and five weeks of polarized proton physics run. As a result, we have obtained all we asked and the above plans are implemented in the current operation schedule. The focus of the present meeting was to bring all involved in the RHIC Spin activities up-to-date on the progress of machine development, theory issues, and experimental issues. This meeting was right after the Program Advisory Committee (PAC) meeting and it started with the comments on the PAC discussion by Gerry Bunce, who was informed about the PAC deliberations by Tom Kirk. The PAC was fully supportive to complete the proposed spin program within the currently available budget for RHIC run 2 operations. Gerry further explained the expected luminosity to be {integral} Ldt = 0.5 pb{sup -1} per week, reflecting the current machine status. The introductory session also had a talk from Werner Vogelsang that reviewed the progress in perturbative QCD theory focused on spin effects.

  17. Gaseous Detectors

    Science.gov (United States)

    Titov, Maxim

    Since long time, the compelling scientific goals of future high-energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volumes with low mass budget, have been playing an important role in many fields of physics. Advances in photolithography and microprocessing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high-energy physics, MPGD applications have expanded to nuclear physics, photon detection, astroparticle and neutrino physics, neutron detection, and medical imaging.

  18. Unusual dileptions at RHIC a field theoretic approach based on a non-equilibrium chiral phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, F. [Los Alamos National Labs., NM (United States)

    1997-09-22

    This paper contains viewgraphs on unusual dileptons at Brookhaven RHIC. A field theory approach is used based on a non-equilibrium chiral phase transformation utilizing the schroedinger and Heisenberg picture.

  19. MOOC Design Workshop

    DEFF Research Database (Denmark)

    Nørgård, Rikke Toft; Mor, Yishay; Warburton, Steven

    2016-01-01

    For the last two years we have been running a series of successful MOOC design workshops. These workshops build on previous work in learning design and MOOC design patterns. The aim of these workshops is to aid practitioners in defining and conceptualising educational innovations (predominantly......, but not exclusively MOOCs) which are based on an empathic user-centered view of the target learners and teachers. In this paper, we share the main principles, patterns and resources of our workshops and present some initial results for their effectiveness...

  20. DUMAND detector

    CERN Multimedia

    This object is one of the 256 other detectors of the DUMAND (Deep Underwater Muon And Neutrino Detection) experiment. The goal of the experiment was the construction of the first deep ocean high energy neutrino detector, to be placed at 4800 m depth in the Pacific Ocean off Keahole Point on the Big Island of Hawaii. A few years ago, a European conference with Cosmic experiments was organized at CERN as they were projects like DUMAND in Hawaii. Along with the conference, a temporary exhibition was organised as well. It was a collaboration of institutions from Germany, Japan, Switzerland and the U.S.A. CERN had borrowed equipment and objects from different institutes around the world, including this detector of the DUMAND experiment. Most of the equipment were sent back to the institutes, however this detector sphere was offered to a CERN member of the personnel.

  1. MS Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koppenaal, David W.; Barinaga, Charles J.; Denton, M Bonner B.; Sperline, Roger P.; Hieftje, Gary M.; Schilling, G. D.; Andrade, Francisco J.; Barnes IV., James H.

    2005-11-01

    Good eyesight is often taken for granted, a situation that everyone appreciates once vision begins to fade with age. New eyeglasses or contact lenses are traditional ways to improve vision, but recent new technology, i.e. LASIK laser eye surgery, provides a new and exciting means for marked vision restoration and improvement. In mass spectrometry, detectors are the 'eyes' of the MS instrument. These 'eyes' have also been taken for granted. New detectors and new technologies are likewise needed to correct, improve, and extend ion detection and hence, our 'chemical vision'. The purpose of this report is to review and assess current MS detector technology and to provide a glimpse towards future detector technologies. It is hoped that the report will also serve to motivate interest, prompt ideas, and inspire new visions for ion detection research.

  2. Emission detectors

    CERN Document Server

    Bolozdynya, Alexander I

    2010-01-01

    After decades of research and development, emission detectors have recently become the most successful instrumentation used in modern fundamental experiments searching for cold dark matter, and are also considered for neutrino coherent scattering and magnetic momentum neutrino measurement. This book is the first monograph exclusively dedicated to emission detectors. Properties of two-phase working media based on noble gases, saturated hydrocarbon, ion crystals and semiconductors are reviewed.

  3. Detectors course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    This lecture series on detectors, will give a general, although somewhat compressed, introduction to particle interaction with matter and magnetic fields. Tracking detectors and calorimeters will also be covered as well as particle identification systems. The lectures will start out with a short review of particle interaction with fields and then we will discuss particle detection. At the end some common composite detection systems will be described.

  4. Fundamental understanding of aging processes Review of the workshop results

    CERN Document Server

    Sauli, Fabio

    2003-01-01

    A short summary of major observations reported at the workshop is given, together with a critical discussion of points still obscure or controversial, with suggestions on possible lines of research towards finding solutions to the problem of aging detectors. (37 refs).

  5. Online Trigger Simulations for the sPHENIX Detector

    Science.gov (United States)

    Bossard, Erin; Sphenix Collaboration

    2017-09-01

    sPHENIX is a new detector being built to succeed the previous PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). sPHENIX is designed to measure jets and upsilons with high precision to further our understanding of the Quark Gluon Plasma (QGP). sPHENIX will take data from a variety of collision systems including p+ p, p+Au, and Au+Au at √{ s} = 200 GeV. To successfully collect a large sample of data in p+ p collisions, the capability of an online trigger to select rare events of interest must be understood. In this study, GEANT4 simulations of the detector were used to calculate the efficiency and rejection power of photon, hadron, upsilon, and jet triggers. US Department of Energy Grant DE-FG02-00ER41152.

  6. Recent heavy flavor measurements from PHENIX at RHIC

    Directory of Open Access Journals (Sweden)

    Hachiya Takashi

    2017-01-01

    Full Text Available Heavy flavor is a useful probe to study the property of the strongly coupled quark gluon plasma created in high-energy heavy-ion collisions. They are produced in the early stage of the collisions, and then propagate though QGP. Therefore, they carry information of QGP. PHENIX measures the separated bottom and charm production using the precise tracking by the silicon vertex detector installed at mid-rapidity and forward rapidity. In this article, we present the recent results of separated charm and bottom modification in Au+Au and Cu+Au collisions, and charmonia production in p+Al and p+Au collisions.

  7. Recent heavy flavor measurements from PHENIX at RHIC

    Science.gov (United States)

    Hachiya, Takashi

    2017-04-01

    Heavy flavor is a useful probe to study the property of the strongly coupled quark gluon plasma created in high-energy heavy-ion collisions. They are produced in the early stage of the collisions, and then propagate though QGP. Therefore, they carry information of QGP. PHENIX measures the separated bottom and charm production using the precise tracking by the silicon vertex detector installed at mid-rapidity and forward rapidity. In this article, we present the recent results of separated charm and bottom modification in Au+Au and Cu+Au collisions, and charmonia production in p+Al and p+Au collisions.

  8. Proceedings of RIKEN BNL Research Center Workshop: P- and CP-odd Effects in Hot and Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, A.; Fukushima, K.; Kharzeev, D.; Warringa, H.; Voloshin, S.

    2010-04-26

    This volume contains the proceedings of the RBRC/CATHIE workshop on 'P- and CP-odd Effects in Hot and Dense Matter' held at the RIKEN-BNL Research Center on April 26-30, 2010. The workshop was triggered by the experimental observation of charge correlations in heavy ion collisions at RHIC, which were predicted to occur due to local parity violation (P- and CP-odd fluctuations) in hot and dense QCD matter. This experimental result excited a significant interest in the broad physics community, inspired a few alternative interpretations, and emphasized the need for a deeper understanding of the role of topology in QCD vacuum and in hot and dense quark-gluon matter. Topological effects in QCD are also closely related to a number of intriguing problems in condensed matter physics, cosmology and astrophysics. We therefore felt that a broad cross-disciplinary discussion of topological P- and CP-odd effects in various kinds of matter was urgently needed. Such a discussion became the subject of the workshop. Specific topics discussed at the workshop include the following: (1) The current experimental results on charge asymmetries at RHIC and the physical interpretations of the data; (2) Quantitative characterization of topological effects in QCD matter including both analytical (perturbative and non-perturbative using gauge/gravity duality) and numerical (lattice-QCD) calculations; (3) Topological effects in cosmology of the Early Universe (including baryogenesis and dark energy); (4) Topological effects in condensed matter physics (including graphene and superfiuids); and (5) Directions for the future experimental studies of P- and CP-odd effects at RHIC and elsewhere. We feel that the talks and intense discussions during the workshop were extremely useful, and resulted in new ideas in both theory and experiment. We hope that the workshop has contributed to the progress in understanding the role of topology in QCD and related fields. We thank all the speakers and

  9. Workshops on Writing Science

    Indian Academy of Sciences (India)

    2017-09-30

    Sep 30, 2017 ... Minimum requirements for participation: Ability to understand and speak English, the lan- guage of the workshop. Demonstrable ability to write in English or in any other Indian language would be an advantage. The workshop in IISER TVM will have special prefer- ence to people interested in writing ...

  10. Warehouse Sanitation Workshop Handbook.

    Science.gov (United States)

    Food and Drug Administration (DHHS/PHS), Washington, DC.

    This workshop handbook contains information and reference materials on proper food warehouse sanitation. The materials have been used at Food and Drug Administration (FDA) food warehouse sanitation workshops, and are selected by the FDA for use by food warehouse operators and for training warehouse sanitation employees. The handbook is divided…

  11. From Leading Hadron Suppression to Jet Quenching at RHIC and at the LHC

    CERN Document Server

    Wiedemann, Urs Achim

    2005-01-01

    In nucleus-nucleus collisions at the Relativistic Heavy Ion Collider (RHIC), one generically observes a strong medium-induced suppression of high-pT hadron production. This suppression is accounted for in models which assume a significant medium-induced radiative energy loss of high-pT parent partons produced in the collision. How can we further test the microscopic dynamics conjectured to underly this abundant high-pT phenomenon? What can we learn about the dynamics of parton fragmentation, and what can we learn about the properties of the medium which modifies it ? Given that inelastic parton scattering is expected to be the dominant source of partonic equilibration processes, can we use hard processes as an experimentally well-controlled window into QCD non-equilibrium dynamics ? Here I review what has been achieved so far, and which novel opportunities open up with higher luminosity at RHIC, and with the wider kinematical range accessible soon at the LHC.

  12. Experimental Approach to the QCD Phase Diagram - Beam Energy Scan at RHIC

    Science.gov (United States)

    Odyniec, G.

    2009-04-01

    The QCD phase diagram appears to be the most important single figure of our field. While recent progress in Lattice QCD (LQCD) and model calculations is impressive, the location of phase boundaries and the exact position of the hypothetical critical point (CP) remains unknown. The available theoretical estimates, however, indicate that the critical point might be in the region of the phase diagram probed by current heavy ion experiments. The Beam Energy Scan (BES) program at RHIC, described in this paper, was launched to expand the experimental study where theory cannot yet reach. Both large RHIC experiments, STAR and PHENIX, are in the process of preparing for the first run. Particularly STAR with its large, uniform acceptance and excellent particle identification capabilities, is uniquely positioned to cover this physics in unprecedented depth and detail.

  13. Simulations of beam-beam and beam-wire interactions in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung J.; Sen, Tanaji; /Fermilab; Abreu, Natalia P.; Fischer, Wolfram; /Brookhaven

    2009-02-01

    The beam-beam interaction is one of the dominant sources of emittance growth and luminosity lifetime deterioration. A current carrying wire has been proposed to compensate long-range beam-beam effects in the LHC and strong localized long-range beam-beam effects are experimentally investigated in the RHIC collider. Tune shift, beam transfer function, and beam loss rate are measured in dedicated experiments. In this paper, they report on simulations to study the effect of beam-wire interactions based on diffusive apertures, beam loss rates, and beam transfer function using a parallelized weak-strong beam simulation code (BBSIMC). The simulation results are compared with measurements performed in RHIC during 2007 and 2008.

  14. The ERL-based Design of Electron-Hadron Collider eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ptitsyn, Vadim [et al.

    2016-06-01

    Recent developments of the ERL-based design of future high-luminosity electron-hadron collider eRHIC focused on balancing technological risks present in the design versus the design cost. As a result a lower risk design has been adopted at moderate cost increase. The modifications include a change of the main linac RF frequency, reduced number of SRF cavity types and modified electron spin transport using a spin rotator. A luminosity-staged approach is being explored with a Nominal design ($L \\sim 10^{33} {\\rm cm}^2 {\\rm s}^{-1}$) that employs reduced electron current and could possibly be based on classical electron cooling, and then with the Ultimate design ($L \\gt 10^{34} {\\rm cm}^{-2} {\\rm s}^{-1}$) that uses higher electron current and an innovative cooling technique (CeC). The paper describes the recent design modifications, and presents the full status of the eRHIC ERL-based design.

  15. Half-length model of a Siberian Snake magnet for RHIC

    CERN Document Server

    Okamura, M; Kawaguchi, T; Katayama, T; Jain, A; Muratore, J; Morgan, G; Willen, E

    2000-01-01

    For the Relativistic Heavy Ion Collider (RHIC) Spin Project, super-conducting helical dipole magnets are being constructed. These magnets will be used in 'Siberian Snakes' and 'Spin Rotators', which manipulate spin direction of proton beams in RHIC. The dipole field in these magnets rotates 360 deg. and is required to reach a magnetic field strength of more than 4.0 T. The bore radius of the coils and the magnetic length of the magnets are 50 and 2400 mm, respectively. To ascertain the performance of these magnets, which are built using a new 'coil in a slot' technique, a half-length model has been fabricated and tested. The quench performance, field uniformity and rotation angle have been investigated. The measured values in the model magnet agreed well with field calculations. These results demonstrate the adequacy of the fabrication method adopted in the model magnet. (authors)

  16. Operations and Performance of RHIC as a Cu-Cu Collider

    CERN Document Server

    Pilat, Fulvia Caterina; Bai, Mei; Barton, Donald; Beebe-Wang, Joanne; Blaskiewicz, Michael; Brennan, Joseph M; Bruno, Donald; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Harvey, Margaret; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Lee, Roger C; Litvinenko, Vladimir N; Luo, Yun; MacKay, William W; Marr, Gregory J; Marusic, Al; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oerter, Brian; Ptitsyn, Vadim; Roser, Thomas; Russo, Thomas; Sandberg, Jon; Satogata, Todd; Schultheiss, Carl; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Zaltsman, Alex; Zeno, Keith; Zhang, S Y; Zhang, Wu

    2005-01-01

    The 5th year of RHIC operations, started in November 2004 and expected to last till June 2005, consists of a physics run with Cu-Cu collisions at 100 GeV/u followed by one with polarized protons at 100 GeV. We will address here overall performance of the RHIC complex used for the first time as a Cu-Cu collider, and compare it with previous operational experience with Au, PP and asymmetric d-Au collisions. We will also discuss operational improvements, such as a ?* squeeze to 85cm in the high luminosity interaction regions from the design value of 1m, system improvements and machine performance limitations, such as vacuum pressure rise, intra-beam scattering, and beam beam interaction.

  17. Simulation of Statistical Fluctuations in the Spin Precession Measurements at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Poblaguev, A. A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-02-25

    Measurements of the driven spin coherent precession Sx(t)=Sx(0) - Sx(1) sin(ωt+φ0) were initiated in RHIC Run13. The expected value of the precession amplitude Sx(1) ~ 2 x 10-4 is about the statistical error in a single measurement and data fit gives a biased estimate of the Sx(1). For a proper statistical interpretation of the results of the several measurements, statistical fluctuations were studied using Monte-Carlo simulation. Preliminary results of the spin precession measurements in RHIC Run13 are presented.

  18. High-intensity polarized H- ion source for the RHIC SPIN physics

    Science.gov (United States)

    Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Kolmogorov, A.; Davydenko, V.

    2017-08-01

    A novel polarization technique had been successfully implemented for the RHIC polarized H- ion source upgrade to higher intensity and polarization. In this technique a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gas ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically-pumped Rb vapour. The use of high-brightness primary beam and large cross-sections of charge-exchange cross-sections resulted in production of high intensity H- ion beam of 85% polarization. High beam brightness and polarization resulted in 75% polarization at 23 GeV out of AGS and 60-65% beam polarization at 100-250 GeV colliding beams in RHIC. The status of un-polarized magnetron type (Cs-vapour loaded) BNL source is also discussed.

  19. Detecting the anti-hypertriton and anti-helium-4 from the RHIC

    Directory of Open Access Journals (Sweden)

    Ma Yu-Gang

    2014-03-01

    Full Text Available Recent progress on the dectection of antimatter particles at RHIC is briefly reviewed. The observations of the anti-hypertriton (H¯⊼3${}_ \\mathbin{\\buildrel\\relbar \\over{\\smash{\\scriptstyle\\wedge}\\vphantom{_x}}} ^3\\overline {\\rm{H}} $and anti-helium-4 nuclei ( (4He¯, or α¯$\\left( {^4\\overline {{\\rm{He}}} ,\\,{\\rm{or}}\\,\\overline {\\rm{\\alpha }} } \\right$, or ᾱ from the RHIC-STAR Collaboration are highlighted. In addition, preliminary lifetime measurement of H¯Λ3${}_\\Lambda ^3\\overline {\\rm{H}} $ and energy dependence of strangeness population factor are presented. The mechanism of light antinuclei production is also discussed.

  20. Flow at the SPS and RHIC as a quark-gluon plasma signature.

    Science.gov (United States)

    Teaney, D; Lauret, J; Shuryak, E V

    2001-05-21

    Radial and elliptic flow in noncentral heavy-ion collisions can constrain the effective equation of state (EOS) of the excited nuclear matter. To this end, a model combining relativistic hydrodynamics and a hadronic transport code [Sorge, Phys. Rev. C 52, 3291 (1995)] is developed. For an EOS with a first-order phase transition, the model reproduces both the radial and elliptic flow data at the SPS. With the EOS fixed from SPS data, we quantify predictions at RHIC where the quark-gluon plasma (QGP) pressure is expected to drive additional radial and elliptic flows. Currently, the strong elliptic flow observed in the first RHIC measurements does not conclusively signal this nascent QGP pressure.

  1. OPERATIONS AND PERFORMANCE OF RHIC AS A CU-CU COLLIDER.

    Energy Technology Data Exchange (ETDEWEB)

    PILAT, R.; AHRENS, L.; BAI, M.; BARTON, D.S.; ET AL.

    2005-05-16

    The 5th year of RHIC operations, started in November 2004 and expected to last till June 2005, consists of a physics run with Cu-Cu collisions at 100 GeV/u followed by one with polarized protons (pp) at 100 GeV [l]. We will address here the overall performance of the RHIC complex used for the first time as a Cu-Cu collider, and compare it with previous operational experience with Au, PP and asymmetric d-Au collisions. We will also discuss operational improvements, such as a {beta}* squeeze to 85cm in the high luminosity interaction regions from the design value of 1m, system improvements, machine performance and limitations, and address reliability and uptime issues.

  2. Latest Results of Open Heavy Flavor and Quarkonia from the PHENIX Experiment at RHIC

    Science.gov (United States)

    Nouicer, Rachid; PHENIX Collaboration

    2017-01-01

    The PHENIX Collaboration carries out a comprehensive physics program which studies heavy flavor production in relativistic heavy ion collisions at RHIC. The discovery at RHIC of large high-p T suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au+Au collisions at GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the PHENIX has installed a silicon vertex tracker both in central rapidity (VTX) and in forward rapidity (FVTX) regions, and has collected large data samples. These two silicon trackers enhance the capability of heavy flavor measurements via precision tracking. This paper summarizes some of the latest PHENIX results concerning open heavy flavor and quarkonia production as a function of rapidity, energy and system size.

  3. Intermediate-Mass Dileptons at the CERN-SPS and RHIC

    CERN Document Server

    Rapp, R

    2000-01-01

    The significance of thermal dilepton radiation at intermediate invariant masses (1GeVRHIC energies the thermal signal is dominated by early emission indicative for QGP formation. Chemical under-saturation effects and the competition with open-charm contributions are addressed.

  4. DESIGN CONSIDERATIONS FOR THE MECHANICAL TUNER OF THE RHIC ELECTRON COOLER RF CAVITY.

    Energy Technology Data Exchange (ETDEWEB)

    RANK, J.; BEN-ZVI,I.; HAHN,G.; MCINTYRE,G.; DALY,E.; PREBLE,J.

    2005-05-16

    The ECX Project, Brookhaven Lab's predecessor to the RHIC e-Cooler, includes a prototype RF tuner mechanism capable of both coarse and fast tuning. This tuner concept, adapted originally from a DESY design, has longer stroke and significantly higher loads attributable to the very stiff ECX cavity shape. Structural design, kinematics, controls, thermal and RF issues are discussed and certain improvements are proposed.

  5. Progress on Test EBIS and the Design of an EBIS-Based RHIC Preinjector

    CERN Document Server

    Alessi, James; Gould, Omar; Kponou, Ahovi; Lockey, Robert; Pikin, Alexander I; Prelec, Krsto; Raparia, Deepak; Ritter, John; Snydstrup, Louis

    2005-01-01

    Following the successful development of the Test EBIS at BNL,* we now have a design for an EBIS-based heavy ion preinjector which would serve as an alternative to the Tandem Van de Graaffs in providing beams for RHIC and the NASA Space Radiation Laboratory. This baseline design includes an EBIS producing mA-level currents of heavy ions (ex. Au 32+) in ~ 10-20

  6. High p(T) azimuthal asymmetry in noncentral A + A at RHIC.

    Science.gov (United States)

    Gyulassy, M; Vitev, I; Wang, X N

    2001-03-19

    The high p(T)>3 GeV azimuthal asymmetry, v(2)(p(T)), in noncentral nuclear collisions at RHIC is shown to be a sensitive measure of the initial parton density distribution of the produced quark-gluon plasma. A generalization of the Gyulassy-Lévai-Vitev non-Abelian energy loss formalism including Bjorken (1+1)D expansion as well as important kinematic constraints is used.

  7. K*0(892 and ϕ(1020 resonance production at RHIC

    Directory of Open Access Journals (Sweden)

    Kumar Lokesh

    2015-01-01

    The K*0(892 and ϕ(1020 resonance production at mid-rapidity (|y| <0.5, measured in high energy (Au+Au, Cu+Cu, d+Au and p + p collisions at RHIC with the STAR experiment, reconstructed by their hadronic decay in Kπ and KK, respectively, are discussed. Mesons’ spectra, yields, mean transverse momentum 〈pT〉, nuclear modification factor, and azimuthal anisotropy are discussed as a function of centrality and collision energy.

  8. Results from pQCD for A+A collisions at RHIC & LHC energies

    CERN Document Server

    Tuominen, K

    2000-01-01

    This talk will discuss how to compute initial quantites in heavy ion collisions at RHIC (200 AGeV) and at LHC (5500 AGeV) using perturbative QCD (pQCD) by including the next-to-leading order (NLO) corrections and a dynamical determination of the dominant physical scale. The initial numbers are converted into final ones by assuming kinetic thermalization and adiabatic expansion.

  9. Open and hidden charm production in dA collisions at RHIC andLHC

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R.

    2005-03-04

    We discuss aspects of open and hidden charm production in deuterium-nucleus collisions at RHIC and LHC energies. We describe calculations of the total c{bar c} cross section and the charm quark transverse momentum distributions. We next explain how shadowing and moderate nuclear absorption can explain the PHENIX J/{psi} dAu/pp ratios and predict the combined effect of shadowing and absorption in 6.2 TeV d+Pb collisions.

  10. RHIC 12x150A current lead temperature controller: design and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Mi, C.; Seberg, S.; Ganetis, Hamdi, K.; Louie, W.; Heppner, G.; Jamilkowski, J.; Bruno, D.; DiLieto, A.; Sirio, C.; Tuozzolo, J.; Sandberg, J.; Unger, K.

    2011-03-28

    There are 60 12 x 150A current leads distributed in six RHIC service buildings; each lead delivers power supply current from room temperature to cryogenic temperature in RHIC. Due to the humid environment, condensation occurs frequently and ice forms quickly during operation, especially during an extensive storage period. These conditions generate warnings and alarms to which personnel must respond and establish temporary solutions to keep the machine operating. In here, we designed a temperature control system to avoid such situations. This paper discusses its design, implementation, and some results. There are six service buildings in the RHIC complex; each building has two valve boxes that transfer room-temperature current cables from the power supplies into superconducting leads, and then transport them into the RHIC tunnel. In there, the transition between the room-temperature lead into superconducting lead is critical and essential; smooth running during the physics store is crucial for the machine's continuing operation. One of the problems that often occurred previously was the icing of these current leads that could result in a potential leakage current onto ground, thereby preventing a continuous supply of physics store. Fig. 1 illustrates a typical example on a power lead. Among the modifications of the design of the valve box, we list below the new requirements for designing the temperature controller to prevent icing occurring: (1) Remotely control, monitor, and record each current lead's temperature in real time. Prevent icing or overheating of a power lead. (2) Include a temperature alarm for the high/low level threshold. In this paper we discuss the design, implementation, upgrades to, and operation of this new system.

  11. Observation of W decay in 500 GeV p+p collisions at RHIC

    CERN Document Server

    Okada, Kensuke

    2010-01-01

    W boson production is observed in $\\sqrt{s}=500$ GeV proton proton collisions at RHIC-PHENIX experiment. The single longitudinal spin asymmetry $A_L(\\overrightarrow{p}p\\rightarrow W^+X)$ is measured via decay positrons in the mid rapidity region. The asymmetry $-0.83\\pm0.31\\pm(11%$ scale uncertainty) is consistent with calculations from various polarized parton distribution functions.

  12. Summary of the Linear Collider Testbeam Workshop 2009 - LCTW09

    CERN Document Server

    Boudry, V; Frey, R E; Gaede, F; Hast, C; Hauptman, J; Kawagoe, K; Linssen, L; Lipton, R; Lohmann, W; Matsuda, T; Nelson, T; Poeschl, R; Ramberg, E; Sefkow, F; Vos, M; Wing, M; Yu, J

    2010-01-01

    This note summarises the workshop LCTW09 held between the 3.11.2009 and 5.11.2009 at LAL Orsay. The workshop was dedicated to discuss the beam tests in the years 2010 up to 2013 for detectors to be operated at a future linear electron positron collider. The document underlines the rich R&D program on these detectors in the coming years. Large synergies were identified in the DAQ and software systems. Considerable consolidation of resources are expected from the establishment of semi-permanent beam lines for linear collider detector R&D at major centres like CERN and FNAL. Reproducing a beam structure as foreseen for the International Linear Collider (ILC) would clearly enhance the value of the obtained beam test results. Although not ultimately needed for every research program, all groups would exploit such a feature if it is available.

  13. Pixel detectors

    CERN Document Server

    Passmore, M S

    2001-01-01

    positions on the detector. The loss of secondary electrons follows the profile of the detector and increases with higher energy ions. studies of the spatial resolution predict a value of 5.3 lp/mm. The image noise in photon counting systems is investigated theoretically and experimentally and is shown to be given by Poisson statistics. The rate capability of the LAD1 was measured to be 250 kHz per pixel. Theoretical and experimental studies of the difference in contrast for ideal charge integrating and photon counting imaging systems were carried out. It is shown that the contrast differs and that for the conventional definition (contrast = (background - signal)/background) the photon counting device will, in some cases, always give a better contrast than the integrating system. Simulations in MEDICI are combined with analytical calculations to investigate charge collection efficiencies (CCE) in semiconductor detectors. Different pixel sizes and biasing conditions are considered. The results show charge shari...

  14. Flow Measurements at the RHIC and LHC, What Have We Learned? What is Needed?

    Science.gov (United States)

    Todoroki, Takahito

    2014-09-01

    Higher-order flow coefficients, vn, reflect the space-time evolution process of hot and dense medium formed in relativistic heavy ion collisions. In the low pT region, experimental vn data at the highest energy A+A collisions at the RHIC and LHC is successfully described by various hydrodynamic calculations that employ Glauber/CGC initial conditions for heavy ion collisions and a shear viscosity of the medium. Our goal is to determine a single combination of an initial state and a viscosity value which can describe the data. However, there are currently more than one such combination and further constraints from experiments and theories are of importance. Azimuthal anisotropy vn is also observed in small collisions systems such as p(d)+A collisions at RHIC and LHC. The CGC (initial state effect) and hydrodynamic expansion (final state effect) are suggested as a possible explanations. Understanding the primary causes of vn evolution is important for the understanding of small collision systems and might provide useful information to the understanding of the initial condition in A+A collisions. In this talk, we will (i) summarize what we have observed in p(d)-A and A+A collisions at the RHIC and LHC, and (ii) discuss what has to be done as next step towards more precise understanding of the properties of the medium.

  15. 76 FR 60505 - Food Defense Workshop; Public Workshop

    Science.gov (United States)

    2011-09-29

    ... HUMAN SERVICES Food and Drug Administration Food Defense Workshop; Public Workshop AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public workshop. The Food and Drug Administration (FDA), Office of... M. Kerr Food & Agricultural Products Center (FAPC), is announcing a public workshop entitled ``Food...

  16. 75 FR 29775 - Food Labeling Workshop; Public Workshop

    Science.gov (United States)

    2010-05-27

    ... HUMAN SERVICES Food and Drug Administration Food Labeling Workshop; Public Workshop AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public workshop. SUMMARY: The Food and Drug Administration..., in collaboration with the University of Arkansas (UA), is announcing a public workshop entitled...

  17. 75 FR 74736 - Food Labeling Workshop; Public Workshop

    Science.gov (United States)

    2010-12-01

    ... HUMAN SERVICES Food and Drug Administration Food Labeling Workshop; Public Workshop AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public workshop. SUMMARY: The Food and Drug Administration..., in collaboration with Iowa State University, is announcing a public workshop entitled ``Food Labeling...

  18. 77 FR 12313 - Food Labeling Workshop; Public Workshop

    Science.gov (United States)

    2012-02-29

    ... HUMAN SERVICES Food and Drug Administration Food Labeling Workshop; Public Workshop AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public workshop. The Food and Drug Administration (FDA... University (OSU), Robert M. Kerr Food & Agricultural Products Center (FAPC), is announcing a public workshop...

  19. Overview and charge - Snowmass Workshop 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E. L.; High Energy Physics

    2006-02-01

    This contribution to the published Proceedings records the opening talk I presented on the first morning of the 2005 International Linear Collider Workshop in Snowmass, CO, August 14 - 27, 2005. It includes a summary of the motivation for the workshop, the scientific goals and charges for the working groups, the initial plans of the accelerator, detector, and physics groups, and the activities of the communication, education, and outreach group. This document also describes organizational aspects of the meeting, particularly the scientific committee structure, the self-organization of the working groups, the composition of the indispensable secretariat and computer support teams, and the sources of funding support. The report serves as an introduction to the proceedings whose individual papers and summary documents must be consulted for an appreciation of the accomplishments and progress made at Snowmass in 2005 toward the realization of an International Linear Collider.

  20. Pixel Detectors

    CERN Document Server

    Wermes, Norbert

    2005-01-01

    Pixel detectors for precise particle tracking in high energy physics have been developed to a level of maturity during the past decade. Three of the LHC detectors will use vertex detectors close to the interaction point based on the hybrid pixel technology which can be considered the state of the art in this field of instrumentation. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as the very harsh radiation environment at the LHC without severe compromises in performance. From these developments a number of different applications have spun off, most notably for biomedical imaging. Beyond hybrid pixels, a number of monolithic or semi-monolithic developments, which do not require complicated hybridization but come as single sensor/IC entities, have appeared and are currently developed to greater maturity. Most advanced in terms of maturity are so called CMOS active pixels and DEPFET pixels. The present state in the ...

  1. Nuclear Innovation Workshops Report

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, John Howard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Allen, Todd Randall [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hildebrandt, Philip Clay [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baker, Suzanne Hobbs [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The Nuclear Innovation Workshops were held at six locations across the United States on March 3-5, 2015. The data collected during these workshops has been analyzed and sorted to bring out consistent themes toward enhancing innovation in nuclear energy. These themes include development of a test bed and demonstration platform, improved regulatory processes, improved communications, and increased public-private partnerships. This report contains a discussion of the workshops and resulting themes. Actionable steps are suggested at the end of the report. This revision has a small amount of the data in Appendix C removed in order to avoid potential confusion.

  2. SPLASH'13 workshops summary

    DEFF Research Database (Denmark)

    Balzer, S.; Schultz, U. P.

    2013-01-01

    Following its long-standing tradition, SPLASH 2013 will host 19 high-quality workshops, allowing their participants to meet and discuss research questions with peers, to mature new and exciting ideas, and to build up communities and start new collaborations. SPLASH workshops complement the main t...... tracks of the conference and provide meetings in a smaller and more specialized setting. Workshops cultivate new ideas and concepts for the future, optionally recorded in formal proceedings. Copyright © 2013 by the Association for Computing Machinery, Inc. (ACM)....

  3. PREFACE: Workshop Photograph and Program

    Science.gov (United States)

    2011-07-01

    Workshop photograph Workshop Program Sunday 28 March 201019:00-21:00 Reception at Okura Frontier Hotel Tsukuba(Buffet style dinner with drink) Monday 29 March 2010Introduction (Chair: André Rubbia (ETH Zurich))09:00 Welcome address (05') Atsuto Suzuki (KEK)09:05 Message from CERN on neutrino physics (10') Sergio Bertolucci (CERN)09:15 Message from FNAL on neutrino physics (10') Young Kee Kim (FNAL)09:25 Message from KEK on neutrino physics (10') Koichiro Nishikawa (KEK)09:35 Introductory remark on GLA2010 (10') Takuya Hasegawa (KEK) Special session (Chair: Koichiro Nishikawa (KEK))09:45 The ICARUS Liquid Argon TPC (45') Carlo Rubbia (CERN)10:30-11:00 Coffee break Main goals of Giant Liquid Argon Charge Imaging Experiments I (Chair: Takashi Kobayashi (KEK))11:00 Results from massive underground detectors (non accelerator) (30') Takaaki Kajita (ICRR, U. of Tokyo)11:30 Present long baseline neutrino experiments (30') Chang Kee Jung (SUNY Stony Brook)12:00-12:10 Workshop picture12:10-14:00 Lunch break Main goals of Giant Liquid Argon Charge Imaging Experiments II (Chair: Takashi Kobayashi (KEK))14:00 Physics goals of the next generation massive underground experiments (30') David Wark (Imperial College London)14:30 Near detectors for long baseline neutrino experiments (20') Tsuyoshi Nakaya (Kyoto U.) Lessons on Liquid Argon Charge Imaging technology from ongoing developments (Chair: Chang Kee Jung (SUNY Stony Brook))14:50 WARP (30') Claudio Montanari (U. of Pavia)15:20 ArDM (30') Alberto Marchionni (ETH Zurich)15:50 From ArgoNeuT to MicroBooNE (30') Bonnie Fleming (Yale U.)16:20 250L (30') Takasumi Maruyama (KEK)16:50 The DEAP/CLEAN project (20') Mark Boulay (Queen's U.)17:10-17:40 Coffee break Lessons from Xe based Liquids Imaging detectors (Chair: Flavio Cavanna (U. of L'Aquilla))17:30 MEG (20') Satoshi Mihara (KEK)17:50 The XENON project (20') Elena Aprile (Columbia U.)18:10 XMASS (20') Hiroyuki Sekiya (ICRR, U. of Tokyo) Studies on physics performance (Chair

  4. Highly Autonomous Systems Workshop

    Science.gov (United States)

    Doyle, R.; Rasmussen, R.; Man, G.; Patel, K.

    1998-01-01

    It is our aim by launching a series of workshops on the topic of highly autonomous systems to reach out to the larger community interested in technology development for remotely deployed systems, particularly those for exploration.

  5. CKM workshop in DURHAM

    CERN Multimedia

    2003-01-01

    The second workshop on the CKM Unitarity Triangle will be held in Durham from 5th until 9th April 2003. The first workshop took place at CERN February 2002, with the main aim of finalizing the LEP/SLD, CLEO and Tevatron I results and the precise extraction of CKM parameters. The emphasis will now be shifted towards results from the B factories and CKM physics at future hadron machines (LHC experiments at CERN, BTEV at Fermilab). New working groups are created to discuss present and future measurements of the angles. Please have a look at the web page, the registration is still open: http://ckm-workshop.web.cern.ch/ckm-workshop/

  6. Transportation Management Workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This report is a compilation of discussions presented at the Transportation Management Workshop held in Gaithersburg, Maryland. Topics include waste packaging, personnel training, robotics, transportation routing, certification, containers, and waste classification.

  7. Waterfowl identification workshops

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Summary of waterfowl identification workshops conducted by Upper Souris National Wildlife Refuge and J. Clark Salyer National Wildlife Refuge. Objectives of the...

  8. Printed Spacecraft Workshop Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objectives of this workshop are to engage the engineering community at JPL that is knowledgeable in this technology in guiding/developing/critiquing  its...

  9. Urban Waters Workshop

    Science.gov (United States)

    This page will house information leading up to the 2017 Urban Waters National Training Workshop. The agenda, hotel and other quarterly updates will be posted to this page including information about how to register.

  10. Genome Engineering Workshop Slides

    OpenAIRE

    Macrae, Rhiannon

    2017-01-01

    These slides were presented at Genome Engineering 5.0, an annual workshop hosted by the Zhang Lab at the Broad Institute. They are designed to help new users get CRISPR-based tools working in their own hands.

  11. Complex Flow Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-05-01

    This report documents findings from a workshop on the impacts of complex wind flows in and out of wind turbine environments, the research needs, and the challenges of meteorological and engineering modeling at regional, wind plant, and wind turbine scales.

  12. Proceedings of RIKEN BNL Research Center Workshop: Thermal Photons and Dileptons in Heavy-Ion Collisions. Volume 119

    Energy Technology Data Exchange (ETDEWEB)

    David, G. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Rapp, R. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Ruan, L. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Yee, H-U. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2014-09-11

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkyusho'' (RIKEN, The Institute of Physical and Chemical Research) of Japan and the U. S. Department of Energy’s Office of Science. The RBRC is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has theory, lattice gauge computing and experimental components. It is presently exploring the possibility of an astrophysics component being added to the program. The primary theme for this workshop related to sharing the latest experimental and theoretical developments in area of low transverse momentum (pT) dielectron and photons. All the presentations given at the workshop are included in this proceedings, primarily as PowerPoint presentations.

  13. Experience from the construction and operation of the STAR PXL detector

    Science.gov (United States)

    Greiner, L.; Anderssen, E. C.; Contin, G.; Schambach, J.; Silber, J.; Stezelberger, T.; Sun, X.; Szelezniak, M.; Vu, C.; Wieman, H. H.; Woodmansee, S.

    2015-04-01

    A new silicon based vertex detector called the Heavy Flavor Tracker (HFT) was installed at the Soleniodal Tracker At RHIC (STAR) experiment for the Relativistic Heavy Ion Collider (RHIC) 2014 heavy ion run to improve the vertex resolution and extend the measurement capabilities of STAR in the heavy flavor domain. The HFT consists of four concentric cylinders around the STAR interaction point composed of three different silicon detector technologies based on strips, pads and for the first time in an accelerator experiment CMOS monolithic active pixels (MAPS) . The two innermost layers at a radius of 2.8 cm and 8 cm from the beam line are constructed with 400 high resolution MAPS sensors arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors giving a total silicon area of 0.16 m2. Each sensor consists of a pixel array of nearly 1 million pixels with a pitch of 20.7 μm with column-level discriminators, zero-suppression circuitry and output buffer memory integrated into one silicon die with a sensitive area of ~ 3.8 cm2. The pixel (PXL) detector has a low power dissipation of 170 mW/cm2, which allows air cooling. This results in a global material budget of 0.5% radiation length per layer for detector used in this run. A novel mechanical approach to detector insertion allows for the installation and integration of the pixel sub detector within a 12 hour period during an on-going STAR run. The detector specifications, experience from the construction and operation, lessons learned and initial measurements of the PXL performance in the 200 GeV Au-Au run will be presented.

  14. Industrial Fuel Flexibility Workshop

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  15. Workshop on Water on Mars

    Science.gov (United States)

    Clifford, S. (Editor)

    1984-01-01

    The opening session of the Workshop focused on one of the most debated areas of Mars volatiles research-the size of the planet's past and present bulk water content. Current estimates of the inventory of H2O on Mars range from an equivalent layer of liquid 10-1000 meters deep averaged over the planet's surface. The most recent of these estimates, presented at the Workshop, is based on the now popular belief that the SNC class of meteorites represent actual samples of the Martian crust. From a model of planetary accretion and degassing founded on this assumption, it was determined that the present inventory of H2O on Mars is equivalent to a global layer no more than 50 meters deep. During the discussion generated by this estimate, several investigators expressed reservations about an H2O inventory as small as a few tens of meters, for it appears to directly contradict the seemingly abundant morphologic evidence that Mars is (or has been) water rich. Others, however, argued that the interpretation of much of this morphologic evidence is at best equivocal and that the case for a wet Mars is far from established. Atmospheric water vapor measurements, compiled by Earth based telescopes and the Viking Orbiter Mars Atmospheric Water Detectors (MAWD), now span a period of over six Martian years. Analysis of this data suggests that the seasonal cycle is governed by both the sublimation and condensation of H2O at the poles and by its adsorption/desorption within the regolith. So far, efforts to simulate the seasonal vapor cycle have failed to reproduce the observed behavior.

  16. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  17. Transverse single-spin asymmetries from p↑ + p → jet + X and p↑ + p → jet + π± + X at √s = 500 GeV at RHIC

    Directory of Open Access Journals (Sweden)

    Drachenberg J.L.

    2014-06-01

    Full Text Available Current extractions of Sivers and transversity functions come from measurements of transverse single-spin asymmetries (SSA from SIDIS and fragmentation functions from lepton-lepton scattering. The limited kinematic reach leaves sizable uncertainty in model predictions. One way to extend knowledge to higher kinematics is through jet production from high-energy polarized-proton collisions. The STAR detector at RHIC has observed hints of non-zero SSA's for the Collins effect from p↑ + p → jet + π± + X at 0 < η < 1 and √s = 200 GeV. Extending transverse SSA measurements for the first time to mid-rapidity jet production at 500 GeV allows one to examine the Sivers and Collins effects for a different mix of partonic subprocesses. Moreover, the increased gluon participation allows a more favorable examination of the gluon Collins-like effect. Progress toward these first measurements will be shown.

  18. Photon production in relativistic nuclear collisions at SPS and RHIC energies

    CERN Document Server

    Turbide, S; Rapp, R; 10.1142/S0217751X0402258X

    2004-01-01

    Chiral Lagrangians are used to compute the production rate of photons from the hadronic phase of relativistic nuclear collisions. Special attention is paid to the role of the a/sub 1/ pseudovector. Calculations that include strange meson reactions, form factors, the use of consistent vector spectral densities, the emission from a quark-gluon plasma, and primordial nucleon-nucleon collisions reproduce the photon spectra measured at the Super Proton Synchrotron (SPS). Some predictions for the Relativistic Heavy Ion Collider (RHIC) are made.

  19. Differences in high $p_{t}$ meson production between CERN SPS and RHIC heavy ion collisions

    CERN Document Server

    Papp, G; Barnafoldi, G G; Yi Zhang; Fái, G; Papp, Gabor; Levai, Peter; Barnafoldi, Gergely G.; Zhang, Yi; Fai, George

    2001-01-01

    In this talk we present a perturbative QCD improved parton model calculation for light meson production in high energy heavy ion collisions. In order to describe the experimental data properly, one needs to augment the standard pQCD model by the transverse momentum distribution of partons ("intrinsic k/sub T/"). Proton-nucleus data indicate the presence of nuclear shadowing and multi-scattering effects. Further corrections are needed in nucleus-nucleus collisions to explain the observed reduction of the cross section. We introduce the idea of proton dissociation and compare our calculations with the SPS and RHIC experimental data. (18 refs).

  20. TWO-PHOTON PHYSICS IN NUCLEUS-NUCLEUS COLLISIONS AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    NYSTRAND,J.

    1998-09-10

    Ultra-relativistic heavy-ions carry strong electromagnetic and nuclear fields. Interactions between these fields in peripheral nucleus-nucleus collisions can probe many interesting physics topics. This presentation will focus on coherent two-photon and photonuclear processes at RHIC. The rates for these interactions will be high. The coherent coupling of all the protons in the nucleus enhances the equivalent photon flux by a factor Z{sup 2} up to an energy of {approx} 3 GeV. The plans for studying coherent interactions with the STAR experiment will be discussed. Experimental techniques for separating signal from background will be presented.

  1. Two-photon physics in nucleus-nucleus collisions at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Nystrand, J.; Klein, S.

    1998-09-01

    Ultra-relativistic heavy-ions carry strong electromagnetic and nuclear fields. Interactions between these fields in peripheral nucleus-nucleus collisions can probe many interesting physics topics. This presentation will focus on coherent two-photon and photonuclear processes at RHIC. The rates for these interactions will be high. The coherent coupling of all the protons in the nucleus enhances the equivalent photon flux by a factor Z{sup 2} up to an energy of {approx} 3 GeV. The plans for studying coherent interactions with the STAR experiment will be discussed. Experimental techniques for separating signal from background will be presented.

  2. Nuclear Stopping in Central Au+Au Collisions at RHIC Energies

    Directory of Open Access Journals (Sweden)

    Ying Yuan

    2014-01-01

    Full Text Available Nuclear stopping in central Au+Au collisions at relativistic heavy-ion collider (RHIC energies is studied in the framework of a cascade mode and the modified ultrarelativistic quantum molecular dynamics (UrQMD transport model. In the modified mode, the mean field potentials of both formed and “preformed” hadrons (from string fragmentation are considered. It is found that the nuclear stopping is increasingly influenced by the mean-field potentials in the projectile and target regions with the increase of the reaction energy. In the central region, the calculations of the cascade model considering the modifying factor can describe the experimental data of the PHOBOS collaboration.

  3. Description of the RHIC p(perpendicular) spectra in a thermal model with expansion.

    Science.gov (United States)

    Broniowski, W; Florkowski, W

    2001-12-31

    The assumption of simultaneous chemical and thermal freeze-outs of the hadron gas leads to a surprisingly accurate, albeit entirely conventional, explanation of the recently measured RHIC p(perpendicular) spectra. The original thermal spectra are supplied with secondaries from cascade decays of all resonances, and subsequently folded with a suitably parametrized expansion involving longitudinal and transverse flow. The predictions of this thermal approach, with various parametrizations for the expansion, are in a striking quantitative agreement with the data in the whole available range of 0 < or = p(perpendicular) < or = 3.5 GeV.

  4. Jet flavor tomography of quark gluon plasmas at RHIC and LHC.

    Science.gov (United States)

    Buzzatti, Alessandro; Gyulassy, Miklos

    2012-01-13

    A new Monte Carlo model of jet quenching in nuclear collisions, CUJET1.0, is applied to predict the jet flavor dependence of the nuclear modification factor for fragments f=π,D,B,e(-) from quenched jet flavors g,u,c,b in central collisions at RHIC and LHC. The nuclear modification factors for different flavors are predicted to exhibit a novel level crossing pattern over a transverse momentum range 5

  5. Measurement of D*-meson triggered correlations in p+p collisions at RHIC

    Science.gov (United States)

    Ma, Long; STAR Collaboration

    2017-08-01

    We report the preliminary results of the azimuthal correlations between D*± mesons and charged hadrons (D*-h) measured by the STAR experiment in proton+proton collisions at √{ s } = 500 GeV. Results at mid-rapidity in the transverse-momentum range 8 ≤ pTD* ≤ 20 GeV / c are compared with light hadron triggered correlations (h-h) and PYTHIA predictions. We also present an exploratory study of azimuthal correlations between D*+ and D*- mesons in p+p collisions. The prospects of measuring heavy-flavor triggered correlations in heavy-ion collisions at RHIC energies are also discussed.

  6. Observation of higher-order snake resonances in polarized proton acceleration in RHIC.

    Science.gov (United States)

    Ranjbar, V H; Lee, S Y; Huang, H; Luccio, A U; MacKay, W W; Ptitsyn, V; Roser, T; Tepikian, S

    2003-07-18

    Higher-order and coupled snake resonances were observed during the 2002 polarized proton run in RHIC. Strong depolarization was observed when the fractional part of the vertical betatron tune approached 1/4, and when the fractional part of the horizontal tune approached 3/14. Because of the closed orbit error, each snake resonance splits into two. From the width of the observed snake resonances, we can derive the strength of the imperfection spin resonance. Our results appear consistent with the measured closed orbit error.

  7. Experimental overview of collective flow with identified particles at RHIC and the LHC

    Directory of Open Access Journals (Sweden)

    Christakoglou Panos

    2015-01-01

    Full Text Available Anisotropic flow studies play a crucial role in improving our understanding of the behaviour and the nature of matter created in collisions of heavy ions. In particular, the study of elliptic flow (υ2 for identified particles can be used to constrain the initial conditions and the value of shear viscosity over entropy density ratio. It also allows to determine the role of the hadronic rescattering phase in the development of flow. In these proceedings I review the results from measurements of υ2 for identified particles from the RHIC and LHC heavy-ion physics programs.

  8. Cold Nuclear Matter effects on J/psi production at RHIC: comparing shadowing models

    Energy Technology Data Exchange (ETDEWEB)

    Ferreiro, E.G.; /Santiago de Compostela U.; Fleuret, F.; /Ecole Polytechnique; Lansberg, J.P.; /SLAC; Rakotozafindrabe, A.; /SPhN, DAPNIA, Saclay

    2009-06-19

    We present a wide study on the comparison of different shadowing models and their influence on J/{psi} production. We have taken into account the possibility of different partonic processes for the c{bar c}-pair production. We notice that the effect of shadowing corrections on J/{psi} production clearly depends on the partonic process considered. Our results are compared to the available data on dAu collisions at RHIC energies. We try different break up cross section for each of the studied shadowing models.

  9. The use of BMAD in simulating transverse and longitudinal dynamics in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Lovelace, III, Henry H. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-08-28

    In accelerator physics, models of a given machine are used to predict the behaviors of the beam, magnets, and radiofrequency cavities. The use of the computational model has become wide spread to ease the development period of the accelerator lattice. There are various programs that are used to create lattices and run simulations of both transverse and longitudinal beam dynamics. The programs include Methodical Accelerator Design(MAD) MAD8, MADX, Zgoubi, Polymorphic Tracking Code (PTC), and many others. In this discussion the BMAD (Baby Methodical Accelerator Design) is presented as an additional tool in creating and simulating accelerator lattices for the study of beam dynamics in the Relativistic Heavy Ion Collider (RHIC).

  10. Meson Production in High Energy p+p Collisions at the RHIC Energies

    Directory of Open Access Journals (Sweden)

    Bao-Chun Li

    2013-01-01

    Full Text Available Transverse momentum spectra of mesons produced in p+p collisions are studied in the framework of a thermalized cylinder model. In the region of high transverse momentum, the considered distributions have a tail part at the maximum energy of RHIC. A two-component distribution based upon the improved cylinder model is used to fit the experimental data of the PHENIX Collaboration. It is found that the improved approach can describe the meson production in the wider range of transverse momenta.

  11. Jet properties from direct $\\gamma$ - hadron correlation in PHENIX at RHIC

    CERN Document Server

    Kim, D J; Rak, Jan

    2010-01-01

    Two-particle correlations of direct photon triggers with associated hadrons are obtained by isolation method in p+p collisions at \\sqrt{s} = 200 GeV in PHENIX at RHIC. The initial momentum of the away-side parton is tightly constrained, because the parton-photon pair is balanced in momentum at the leading order in perturbative quantum chromodynamics (pQCD). Therefore making such correlations can be used as a tool to measure the away-side parton fragmentation function. The direct photon associated yields in p+p collisions are compared with PYTHIA and the effect of the $k_{T}$ smearing in the spectra is discussed.

  12. Jet-evolution in the quark-gluon plasma from RHIC to the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Domdey, S. [Institute for Theoretical Physics, University of Heidelberg (Germany); Kopeliovich, B.Z. [Institute for Theoretical Physics, University of Heidelberg (Germany); Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Instituto de Estudios Avanzados en Ciencias e Ingenieria, Centro Cientifico-Tecnologico de Valparaiso, Casilla 110-V, Valparaiso (Chile); Pirner, H.J., E-mail: pir@tphys.uni-heidelberg.d [Institute for Theoretical Physics, University of Heidelberg (Germany)

    2011-04-15

    The observed suppression of high{sub pperpendicular} hadrons allows different explanations. We discuss two possible scenarios: In scenario 1, parton energy loss from scattering in the hot medium is complemented by final state interactions in the resonance matter. Scenario 2 has an enhanced transport parameter q-hat which is fitted to RHIC data. For LHC, the two scenarios lead to very different predictions for the nuclear modification factor of hadrons. In addition, jet reconstruction allows more specific tests of the mechanisms responsible for jet quenching. We calculate the distribution of partons inside a jet and find different results for the two scenarios.

  13. EXPERIMENTAL STUDIES OF IBS (INTRA-BEAM SCATTERING) IN RHIC AND COMPARISON WITH THEORY.

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV, A.V.; FISCHER, W.; TEPIKIAN, S.; WEI, J.

    2006-05-29

    A high-energy electron cooling system is presently being developed to overcome emittance growth due to Intra-beam Scattering (IBS) in RHIC. A critical item for choosing appropriate parameters of the cooler is an accurate description of the IBS. The analytic models were verified vs dedicated IBS measurements. Analysis of the 2004 data with the Au ions showed very good agreement for the longitudinal growth rates but significant disagreement with exact IBS models for the transverse growth rates. Experimental measurements were improved for the 2005 run with the Cu ions. Here, we present comparison of the 2005 data with theoretical models.

  14. MUON DETECTORS: DT

    CERN Multimedia

    C. Fernandez Bedoya

    2012-01-01

      The major activity of the DT group during this Year-End Technical Stop has been the reworking of LV modules. It has been a large campaign, carefully planned, to try to solve, once and for all, the long-standing problem of Anderson Power connectors overheating. The solution involved removing the 140 CAEN modules from the detector (6.5 kg each), soldering of “pigtails” in a temporary workshop in USC, and thorough testing of all the modules in a local system installed in USC. The operation has been satisfactorily smooth, taking into account the magnitude of the intervention. The system is now back in good shape and ready for commissioning. In addition, HV boards have been cleaned up, HV USC racks have been equipped with water detection cables, and the gas and HV have been switched back on smoothly. Other significant activities have also taken place during this YETS, such as the installation of a new and faster board for the Minicrates secondary link and the migration to Scienti...

  15. Final Scientific EFNUDAT Workshop

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive.EFNUDAT website: http://www.efnudat.euTopics of interest include: Data evaluationCross section measurementsExperimental techniquesUncertainties and covariancesFission propertiesCurrent and future facilities  International Advisory Committee: C. Barreau (CENBG, France)T. Belgya (IKI KFKI, Hungary)E. Gonzalez (CIEMAT, Spain)F. Gunsing (CEA, France)F.-J. Hambsch (IRMM, Belgium)A. Junghans (FZD, Germany)R. Nolte (PTB, Germany)S. Pomp (TSL UU, Sweden) Workshop Organizing Committee: Enrico Chiaveri (Chairman)Marco CalvianiSamuel AndriamonjeEric BerthoumieuxCarlos GuerreroRoberto LositoVasilis Vlachoudis Workshop Assistant: Géraldine Jean

  16. QCD Evolution Workshop

    CERN Document Server

    2015-01-01

    These are the proceedings of the QCD Evolution 2015 Workshop which was held 26–30 May, 2015 at Jefferson Lab, Newport News, Virginia, USA. The workshop is a continuation of a series of workshops held during four consecutive years 2011, 2012, 2013 at Jefferson Lab, and in 2014 in Santa Fe, NM. With the rapid developments in our understanding of the evolution of parton distributions including low-x, TMDs, GPDs, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques we look forward with great enthusiasm to the 2015 meeting. A special attention was also paid to participation of experimentalists as the topics discussed are of immediate importance for the JLab 12 experimental program and a future Electron Ion Collider.

  17. WALLTURB International Workshop

    CERN Document Server

    Jimenez, Javier; Marusic, Ivan

    2011-01-01

    This book brings together selected contributions from the WALLTURB workshop on ”Understanding and modelling of wall turbulence” held in Lille, France, on April 21st to 23rd 2009. This workshop was organized by the WALLTURB consortium, in order to present to the relevant scientific community the main results of the project and to stimulate scientific discussions around the subject of wall turbulence. The workshop reviewed the recent progress in theoretical, experimental and numerical approaches to wall turbulence. The problems of zero pressure gradient, adverse pressure gradient and separating turbulent boundary layers were addressed in detail with the three approaches, using the most advanced tools. This book is a milestone in the research field, thanks to the high level of the invited speakers and the involvement of the contributors and a testimony of the achievement of the WALLTURB project.

  18. Chromosome 19 International Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Pericak-Vance, M.A. (Duke Univ., Durham, NC (United States). Medical Center); Ropers, H.H. (Univ. Hospital Nijmegen, (The Netherlands). Dept. of Human Genetics); Carrano, A.J. (Lawrence Livermore National Lab., CA (United States))

    1993-01-04

    The Second International Workshop on Human Chromosome 19 was hosted on January 25 and 26, 1992, by the Department of Human Genetics, University Hospital Nijmegen, The Netherlands, at the 'Meerdal Conference Center'. The workshop was supported by a grant from the European Community obtained through HUGO, the Dutch Research Organization (NWO) and the Muscular Dystrophy Association (MDA). Travel support for American participants was provided by the Department of Energy. The goals of this workshop were to produce genetic, physical and integrated maps of chromosome 19, to identify inconsistencies and gaps, and to discuss and exchange resources and techniques available for the completion of these maps. The second day of the meeting was largely devoted to region or disease specific efforts. In particular, the meeting served as a platform for assessing and discussing the recent progress made into the molecular elucidation of myotonic dystrophy.

  19. Measurement control workshop instructional materials

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Philip [Brookhaven National Lab. (BNL), Upton, NY (United States); Crawford, Cary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGinnis, Brent [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Insolves LLC, Piketon, OH (United States)

    2014-04-01

    A workshop to teach the essential elements of an effective nuclear materials control and accountability (MC&A) programs are outlined, along with the modes of Instruction, and the roles and responsibilities of participants in the workshop.

  20. Workshop on moisture buffer capacity

    DEFF Research Database (Denmark)

    2003-01-01

    Summary report of a Nordtest workshop on moisture buffer capacity held at Copenhagen August 21-22 2003......Summary report of a Nordtest workshop on moisture buffer capacity held at Copenhagen August 21-22 2003...

  1. Workshop on Hadron-Hadron & Cosmic-Ray Interactions at multi-TeV Energies

    CERN Document Server

    Alessandro, B; Bergman, D; Bongi, M; Bunyatyan, A; Cazon, L; d'Enterria, D; de Mitri, I; Doll, P; Engel, R; Eggert, K; Garzelli, M; Gerhardt, L; Gieseke, S; Godbole, R; Grosse-Oetringhaus, J F; Gustafson, G; Hebbeker, T; Kheyn, L; Kiryluk, J; Lipari, P; Ostapchenko, S; Pierog, T; Piskounova, O; Ranft, J; Rezaeian, A; Rostovtsev, A; Sakurai, N; Sapeta, S; Schleich, S; Schulz, H; Sjostrand, T; Sonnenschein, L; Sutton, M; Ulrich, R; Werner, K; Zapp, K; CRLHC10; CRLHC 10

    2011-01-01

    The workshop on "Hadron-Hadron and Cosmic-Ray Interactions at multi-TeV Energies" held at the ECT* centre (Trento) in Nov.-Dec. 2010 gathered together both theorists and experimentalists to discuss issues of the physics of high-energy hadronic interactions of common interest for the particle, nuclear and cosmic-ray communities. QCD results from collider experiments -- mostly from the LHC but also from the Tevatron, RHIC and HERA -- were discussed and compared to various hadronic Monte Carlo generators, aiming at an improvement of our theoretical understanding of soft, semi-hard and hard parton dynamics. The latest cosmic-ray results from various ground-based observatories were also presented with an emphasis on the phenomenological modeling of the first hadronic interactions of the extended air-showers generated in the Earth atmosphere. These mini-proceedings consist of an introduction and short summaries of the talks presented at the meeting.

  2. LRT 2006: 2. topical workshop in low radioactivity techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, P.; Piquemal, F.; Ford, R.; Yakushev, E.; Pandola, L.; Franco, D.; Bellini, F.; Hubert, Ph.; Laubenstein, M.; Abt, I.; Bongrand, M.; Schnee, R.; Dusan, B.; Chen, M.; Piquemal, F.; Nachab, A.; Zuzel, G.; Simgen, H.; Navick, X.F.; Pedretti, M.; Wojcik, M.; Sekiya, H.; Kim, Y.; Kishimoto, T.; Dawson, J.; Borjabad, S.; Perrot, F.; Gurriaran, R.; Nikolayko, A.; Hubert, Ph

    2006-07-01

    This second topical workshop in low radioactivity techniques is intended to bring together experts in the field of low background techniques, especially applied to dark matter experiments, double beta decay experiments and neutrino detection in underground laboratories. This workshop has been organized into 7 sessions: 1) underground facilities (where a worldwide review is made), 2) neutron and muon induced background, isotope production, 3) low background counting techniques and low background detectors, 4) techniques for radon reduction, purified noble gases and liquid scintillator purification, 5) low levels on Pb-Bi-Po{sup 210} and surface background, 6) low radioactivity detector components and material purification, and 7) low radioactive techniques in other applications (particularly to check the geographical origin of food-products or to date wine. This document is made up of the slides of the presentations.

  3. NX15 science workshop

    CERN Multimedia

    2015-01-01

    Science. For some of us, it's daunting or maybe even terrifying. How to tell a good science story? That's the question we will explore together in this workshop. Conceived and produced by journalist and Scientific News producer Claudio Rosmino of Euronews, and presented by Euronews' Jeremy Wilks, the workshop will look at actual case studies (from Euronews and beyond) where science news proved exciting, inspiring and accessible to audiences around the world. These might include the Rosetta mission and CERN's work on Science for Peace. Together, we'll share ideas and knowledge around how science journalism and science news can increase its visibility in the media and maybe save the planet...!

  4. International phosphorus workshop

    DEFF Research Database (Denmark)

    Kronvang, Brian; Rubæk, Gitte Holton; Heckrath, Goswin

    2009-01-01

    agricultural P surpluses are still observed in some countries. The IPW5 Special Submission included in this issue addresses and discusses four key topics that emerged from the workshop: (i) managing agricultural P losses-effectiveness, uncertainties, and costs; (ii) P modeling at different scales; (iii...... the main outcomes of the workshop and the special collection of eight papers. Moreover, we identify the main gaps in our knowledge and future research directions on P, which are linked to important issues such as addressing scale effects, improved P models with the ability to quantify uncertainty...

  5. 2015 Workshop on Continuations

    DEFF Research Database (Denmark)

    his volume contains the papers presented at WoC 2015, the Workshop on Continuations held at ETAPS 2015. There were four submissions. Each of them was reviewed by, on the average, three PC members. The committee decided to accept three papers. The program also includes one invited talk. It also...... documents the depth, variety, and richness of continuations with four distilled tutorials. Thanks are due to the local organizers of ETAPS 2015 for the infras- tructure and to the general chairman of WoC 2015, Ugo de'Liguoro, for initiating this workshop and making it happen...

  6. Open heavy flavor and quarkonia measurements in heavy-ion collisions at RHIC

    Directory of Open Access Journals (Sweden)

    Bielcik Jaroslav

    2014-04-01

    Full Text Available The properties of the hot and dense nuclear matter produced at RHIC in heavy-ion collisions can be investigated in multiple ways by heavy flavor production. The STAR and PHENIX experiments have excellent capability to study both open heavy flavor and quarkonia. Heavy quarks are produced in early stage of the collisions and the mechanisms of their interaction with nuclear matter are not yet well understood. The open heavy flavor hadrons can be studied using electrons from their semileptonic decays or via direct reconstruction through their hadronic decay channels. The heavy quarkonia production is expected to be sequentially suppressed depending on the temperature of the produced nuclear matter. However, cold nuclear matter effects play an important role and have to be well understood. In this paper we report recent results from the RHIC heavyion program on non-photonic electrons, direct reconstruction of charm mesons, J/ψ as well as ϒ in p+p, d+Au and Au+Au collisions at √sNN = 200 GeV.

  7. New capabilities in the HENP grand challenge storage access systemand its application at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Bernardo, L.; Gibbard, B.; Malon, D.; Nordberg, H.; Olson, D.; Porter, R.; Shoshani, A.; Sim, A.; Vaniachine, A.; Wenaus, T.; Wu, K.; Zimmerman, D.

    2000-04-25

    The High Energy and Nuclear Physics Data Access GrandChallenge project has developed an optimizing storage access softwaresystem that was prototyped at RHIC. It is currently undergoingintegration with the STAR experiment in preparation for data taking thatstarts in mid-2000. The behavior and lessons learned in the RHIC MockData Challenge exercises are described as well as the observedperformance under conditions designed to characterize scalability. Up to250 simultaneous queries were tested and up to 10 million events across 7event components were involved in these queries. The system coordinatesthe staging of "bundles" of files from the HPSS tape system, so that allthe needed components of each event are in disk cache when accessed bythe application software. The caching policy algorithm for thecoordinated bundle staging is described in the paper. The initialprototype implementation interfaced to the Objectivity/DB. In this latestversion, it evolved to work with arbitrary files and use CORBA interfacesto the tag database and file catalog services. The interface to the tagdatabase and the MySQL-based file catalog services used by STAR aredescribed along with the planned usage scenarios.

  8. Measurements of $\\phi$ meson production in relativistic heavy-ion collisions at RHIC

    CERN Document Server

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Beavis, D R; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Blyth, S L; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Braidot, E; Brandin, A V; Bruna, E; Bültmann, S; Burton, T P; Bystersky, M; Cai, X Z; Caines, H; Calderón de la Barca-Sanchez, M; Callner, J; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Chung, S U; Clarke, R F; Codrington, M J M; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; De Silva, C; Dedovich, T G; De Phillips, M; Derevshchikov, A A; Derradide Souza, R; Didenko, L; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunlop, J C; Dutta-Majumdar, M R; Edwards, W R; Efimov, L G; Elhalhuli, E; Elnimr, M; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Yu; Gagliardi, C A; Gaillard, L; Gangadharan, D R; Ganti, M S; García-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Sen-Gupta, A; Gupta, N; Guryn, W; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Heppelmann, S; Hippolyte, B; Hirsch, A; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, H Z; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jin, F; Jones, P G; Joseph, J; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kopytine, M; Kotchenda, L; Kouchpil, V; Kravtsov, P; Kravtsov, V I; Krüger, K; Krus, M; Kuhn, C; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; La Pointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, C H; Le Vine, M J; Li, C; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Mahapatra, D P; Majka, R; Mall, M I; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Matis, H S; Matulenko, Yu A; McShane, T S; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mischke, A; Mitchell, J; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, C; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, G J; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Page, B S; Pal, S K; Pandit, Y; Panebratsev, Yu A; Pawlak, T; Peitzmann, T; Perevozchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Poskanzer, A M; Potukuchi, B V K S; Prindle, D; Pruneau, C; Pruthi, N K; Putschke, J; Raniwala, R; Raniwala, S; Ray, R L; Reed, R; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Rykov, V; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Shi, X H; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Snellings, R; Sørensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tlusty; Tokarev, M; Trainor, T A; Tram, V N; Trattner, A L; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; Van Leeuwen, M; Van der Molen, A M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasilevski, I M; Vasilev, A N; Videbaek, F; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, Q; Wang, X; Wang, X L; Wang, Y; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yepes, P; Yoo, I K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, H; Zhang, S; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zuo, J X

    2008-01-01

    We present results for the measurement of $\\phi$ meson production via its charged kaon decay channel $\\phi \\to K^+K^-$ in Au+Au collisions at $\\sqrt{s_{_{NN}}}=62.4$, 130, 200 GeV, and in p+p and d+Au collisions at $\\sqrt{s_{_{NN}}}=200$ GeV from the STAR experiment at RHIC. The mid-rapidity ($|y|<0.5$) $\\phi$ meson spectra in central Au+Au collisions are found to be well described by a single exponential distribution. On the other hand, the spectra from p+p, d+Au and peripheral Au+Au collisions show power-law tails at intermediate and high transverse momenta ($p_{T}$) and are described better by Levy distributions. The constant $\\phi/K^-$ yield ratio vs. beam species, collision centrality and colliding energy is in contradiction with expectations from models having kaon coalescence as the dominant mechanism for $\\phi$ production at RHIC. The $\\Omega/\\phi$ yield ratio as a function of $p_{T}$ is consistent with a model based on the recombination of thermal $s$ quarks up to $p_{T}\\sim 4$ GeV/c, but disagree...

  9. RHIC and quark matter: proposal for a relativistic heavy ion collider at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    This document describes the Brookhaven National Laboratory Proposal for the construction of a Relativistic Heavy Ion Collider (RHIC). The construction of this facility represents the natural continuation of the laboratory's role as a center for nuclear and high-energy physics research and extends and uses the existing AGS, Tandem Van de Graaff and CBA facilities at BNL in a very cost effective manner. The Administration and Congress have approved a project which will provide a link between the Tandem Van de Graaf and the AGS. Completion of this project in 1986 will provide fixed target capabilities at the AGS for heavy ions of about 14 GeV/amu with masses up to approx. 30 (sulfur). The addition of an AGS booster would extend the mass range to the heaviest ions (A approx. 200, e.g., gold); its construction could start in 1986 and be completed in three years. These two new AGS experimental facilities can be combined with the proposed Relativistic Heavy Ion Collider to extend the energy range to 100 x 100 GeV/amu for the heaviest ions. BNL proposes to start construction of RHIC in FY 86 with completion in FY 90 at a total cost of 134 M$.

  10. Cryogenic systems for proof of the principle experiment of coherent electron cooling at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuenian; Belomestnykh, Sergey; Brutus, Jean Clifford; Lederle, Dewey; Orfin, Paul; Skaritka, John; Soria, Victor; Tallerico, Thomas; Than, Roberto [Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-01-29

    The Coherent electron Cooling (CeC) Proof of Principle (PoP) experiment is proposed to be installed in the Relativistic Heavy Ion Collider (RHIC) to demonstrate proton and ion beam cooling with this new technique that may increase the beam luminosity in certain cases, by as much as tenfold. Within the scope of this project, a 112 MHz, 2MeV Superconducting Radio Frequency (SRF) electron gun and a 704 MHz 20MeV 5-cell SRF cavity will be installed at IP2 in the RHIC ring. The superconducting RF electron gun will be cooled in a liquid helium bath at 4.4 K. The 704 MHz 5-cell SRF cavity will be cooled in a super-fluid helium bath at 2.0 K. This paper discusses the cryogenic systems designed for both cavities. For the 112 MHz cavity cryogenic system, a condenser/boiler heat exchanger is used to isolate the cavity helium bath from pressure pulses and microphonics noise sources. For the 704 MHz 5-cell SRF cavity, a heat exchanger is also used to isolate the SRF cavity helium bath from noise sources in the sub-atmospheric pumping system operating at room temperature. Detailed designs, thermal analyses and discussions for both systems will be presented in this paper.

  11. Direct photons at large pT : from RHIC to LHC

    Directory of Open Access Journals (Sweden)

    Cepila J.

    2014-03-01

    Full Text Available Using the color dipole formalism we study the production of direct photons in proton-nucleus and nucleus-nucleus collisions at energies corresponding to RHIC and LHC experiments. Prompt photons produced in a hard reaction are not accompanied with any final state interaction, either energy loss or absorption. Therefore, in the RHIC energy range besides small isotopic corrections one should not expect any nuclear effects at large pT . However, data from the PHENIX experiment indicates a significant large-pT suppression in d+Au and central Au+Au collisions that cannot be accompanied by coherent phenomena. We demonstrate that such an unexpected result is subject to the energy sharing problem universally induced by multiple initial state interactions (ISI at large pT and/or at forward rapidities. In the LHC kinematic region ISI corrections are irrelevant at mid rapidities but cause rather strong suppression at forward rapidities. We present for the first time predictions for expected nuclear effects at large pT in p + Pb and Pb + Pb collisions at different rapidities. We include and analyze also a contribution of coherent effects associated with gluon shadowing modifying nuclear effects predominantly at small and medium-high pT.

  12. In-Medium Modifications of Low-Mass Vector Mesons in PHENIX at RHIC

    CERN Document Server

    Tsuchimoto, Yuji

    2009-01-01

    Measurements at RHIC have established the creation of a Quark Gluon Plasma (QGP) in most central heavy-ion collisions. An important tool to understand properties of the QGP is study of the spectral shapes of low-mass vector mesons (LVM's), $\\rho$, $\\omega$ and $\\phi$, which can be modified in the medium by partial restoration of chiral symmetry. This modification may be accessed directly by measuring low-momentum LVM's via their decays into lepton pairs inside the hot matter. Since leptons are not subject to the strong interaction, they do not rescatter on their way out of the medium. The PHENIX experiment at RHIC has measured LVM production at mid-rapidity in $p$ + $p$, $d$+Au and Au+Au collisions at $\\sqrt{s_{\\rm NN}}$ = 200 GeV\\@. Mass peaks for the LVM's have been observed in the di-electron invariant mass spectra with a resolution of 10 MeV/$c^2$ in all of the three collision systems. The extracted spectra, mass and width of $\\omega$ and $\\phi$ in $p$ + $p$, $d$+Au and Au+Au, in the leptonic and hadronic...

  13. Report of the eRHIC Ring-Ring Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, E. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brennan, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Parker, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Peggs, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Willeke, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-13

    This report evaluates the ring-ring option for eRHIC as a lower risk alternative to the linac-ring option. The reduced risk goes along with a reduced initial luminosity performance. However, a luminosity upgrade path is kept open. This upgrade path consists of two branches, with the ultimate upgrade being either a ring-ring or a linac-ring scheme. The linac-ring upgrade could be almost identical to the proposed linac-ring scheme, which is based on an ERL in the RHIC tunnel. This linac-ring version has been studied in great detail over the past ten years, and its significant risks are known. On the other hand, no detailed work on an ultimate performance ring-ring scenario has been performed yet, other than the development of a consistent parameter set. Pursuing the ring-ring upgrade path introduces high risks and requires significant design work that is beyond the scope of this report.

  14. RHIC polarized proton-proton operation at 100 GeV in Run 15

    Energy Technology Data Exchange (ETDEWEB)

    Schoefer, V. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Aschenauer, E. C. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Atoian, G. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Brown, K. A. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Bruno, D. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Connolly, R. [Brookhaven National Laboratory (BNL), Upton, NY (United States); D Ottavio, T. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Drees, K. A. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Gardner, C. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Gu, X. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Hayes, T. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Laster, J. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Liu, C. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Luo, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Makdisi, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Marr, G. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Marusic, A. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Mernick, K. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Michnoff, R. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Marusic, A. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Morris, J. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Narayan, G. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Nemesure, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Pile, P. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Poblaguev, A. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Robert-Demolaize, G. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Schmidke, W. B. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Severino, F. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Shrey, T. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Steski, D. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Wang, G. [Brookhaven National Laboratory (BNL), Upton, NY (United States); White, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Yip, K. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Zelenski, A. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Zeno, K. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Zhang, S. Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-05-03

    The first part of RHIC Run 15 consisted of ten weeks of polarized proton on proton collisions at a beam energy of 100 GeV at two interaction points. In this paper we discuss several of the upgrades to the collider complex that allowed for improved performance. The largest effort consisted in commissioning of the electron lenses, one in each ring, which are designed to compensate one of the two beam-beam interactions experienced by the proton bunches. The e-lenses raise the per bunch intensity at which luminosity becomes beam-beam limited. A new lattice was designed to create the phase advances necessary for a beam-beam compensation with the e-lens, which also has an improved off-momentum dynamic aperture relative to previous runs. In order to take advantage of the new, higher intensity limit without suffering intensity driven emittance deterioration, other features were commissioned including a continuous transverse bunch-by-bunch damper in RHIC and a double harmonic RF cature scheme in the Booster. Other high intensity protections include improvements to the abort system and the installation of masks to intercept beam lost due to abort kicker pre-fires.

  15. Duke Workshop: Electroweak Measurements at the Energy Frontier

    CERN Document Server

    2013-01-01

    The possibilities for future directions of precision electroweak measurements from the current results and extrapolations at the LHC to a wide range of potential upgrades and new collider facilities are presented and compared. The strategies for producing simulation results and the benchmarks for physics and detector performances are discussed.This workshop is a major kick-off meeting for the development of the Snowmass report on future Electroweak Physics for summer 2013.

  16. Radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, Rusi P.

    2017-06-27

    Alpha particle detecting devices are disclosed that have a chamber that can hold a fluid in a tensioned metastable state. The chamber is tuned with a suitable fluid and tension such that alpha emitting materials such as radon and one or more of its decay products can be detected. The devices can be portable and can be placed in areas, such as rooms in dwellings or laboratories and used to measure radon in these areas, in situ and in real time. The disclosed detectors can detect radon at and below 4 pCi/L in air; also, at and below 4,000 pCi/L or 300 pCi/L in water.

  17. Azimuthal anisotropy and formation of an extreme state of strongly interacting matter at the relativistic heavy-ion collider (RHIC)

    NARCIS (Netherlands)

    Okorokov, V. A.

    Experimental results obtained by studying the azimuthal anisotropy of final states in nucleus-nucleus interactions at the energies of the relativistic heavy-ion collider (RHIC) are systematized. The medium is found to exhibit a pronounced collective behavior, which is likely to be formed at an

  18. The case for a directional dark matter detector and the status of current experimental efforts

    CERN Document Server

    Ahlen, S; Battat, J B R; Billard, J; Bozorgnia, N; Burgos, S; Caldwell, T; Carmona, J M; Cebrián, S; Colas, P; Dafni, T; Daw, E; Dujmic, D; Dushkin, A; Fedus, W; Ferrer, E; Finkbeiner, D; Fisher, P H; Forbes, J; Fusayasu, T; Galan, J; Gamble, T; Ghag, C; Giomataris, Yu; Gold, M; Gomez, H; Gómez, M E; Gondolo, P; Green, A; Grignon, C; Guillaudin, O; Hagemann, C; Hattori, K; Henderson, S; Higashi, N; Ida, C; Iguaz, F J; Inglis, A; Irastorza, I G; Iwaki, S; Kaboth, A; Kabuki, S; Kadyk, J; Kallivayalil, N; Kubo, H; Kurosawa, S; Kudryavtsev, V A; Lamy, T; Lanza, R; Lawson, T B; Lee, A; Lee, E R; Lin, T; Loomba, D; López, J; Luzón, G; Manobu, T; Martoff, J; Mayet, F; McCluskey, B; Miller, E; Miuchi, K; Monroe, J; Morgan, B; Muna, D; Murphy, A St J; Naka, T; Nakamura, K; Nakamura, M; Nakano, T; Nicklin, G G; Nishimura, H; Niwa, K; Paling, S M; Parker, J; Petkov, A; Pipe, M; Pushkin, K; Robinson, M; Rodríguez, A; Rodríguez-Quintero, J; Sahin, T; Sanderson, R; Sanghi, N; Santos, D; Sato, O; Sawano, T; Sciolla, G; Sekiya, H; Slatyer, T R; Snowden-Ifft, D P; Spooner, N J C; Sugiyama, A; Takada, A; Takahashi, M; Takeda, A; Tanimori, T; Taniue, K; Tomas, A; Tomita, H; Tsuchiya, K; Turk, J; Tziaferi, E; Ueno, K; Vahsen, S; Vanderspek, R; Vergados, J; Villar, J A; Wellenstein, H; Wolfe, I; Yamamoto, R K; Yegoryan, H

    2010-01-01

    We present the case for a dark matter detector with directional sensitivity. This document was developed at the 2009 CYGNUS workshop on directional dark matter detection, and contains contributions from theorists and experimental groups in the field. We describe the need for a dark matter detector with directional sensitivity; each directional dark matter experiment presents their project's status; and we close with a feasibility study for scaling up to a one ton directional detector, which would cost around $150M.

  19. ATLAS TRT 2002 Workshop

    CERN Multimedia

    Capeans, M.

    Starting on 17th May, the ATLAS TRT 2002 Workshop was organised by Ken MacFarlane and his team at Hampton University, Virginia, USA. During a welcome break in the very dense workshop programme, the group enjoyed a half-day long boat trip along the waterways, offering a first-hand look at the history and heritage of this part of America. The attendance during the six-day workshop was about 50 people representing most of the collaborating institutes, although many Russian colleagues had stayed in their institutes to pursue the start-up of end-cap wheel production at PNPI and DUBNA. The meeting clearly showed that, during the year 2002, the TRT community is focusing on final design issues and module/wheel construction, while moving at the same time towards acceptance testing and integration, including the front-end electronics. The two main topics treated at the workshop were the preparation for beginning full production of the FE electronics, and the wire-joint problem that the US barrel colleagues have been fa...

  20. Summary of cosmology workshop

    Indian Academy of Sciences (India)

    Abstract. Cosmology is passing through a golden phase of rapid advance. The cosmology workshop at ICGC-2004 attracted a large number of research contributions to diverse topics of cosmology. I attempt to classify and summarize the research work and results of the oral and poster presentations made at the meeting.

  1. Workshops on Writing Science

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 7. Workshops on Writing Science. Information and Announcements Volume 22 Issue 7 July 2017 pp 718-718. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/022/07/0718-0718. Abstract ...

  2. Course/Workshop Complementarity

    Science.gov (United States)

    Kane, Dan

    1976-01-01

    This paper discusses the law-related studies provided in a human ecology degree program. The studies involve workshops which are project-oriented experiences and courses which provide skills and knowledge. The program emphasizes law relating to land use management, small business enterprises, consumer protection, real estate, and family. (MR)

  3. OpenShift Workshop

    CERN Multimedia

    CERN. Geneva; Rodriguez Peon, Alberto

    2017-01-01

    Workshop to introduce developers to the OpenShift platform available at CERN. Several use cases will be shown, including deploying an existing application into OpenShift. We expect attendees to realize about OpenShift features and general architecture of the service.

  4. FINPIE/97. Workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This publication contains the proceedings of 1997 Finnish Workshop on Power and Industrial Electronics, held in Espoo, Finland, on 26 August, 1997. The programme consisted of technical sessions on Advanced AC Motor Control, Electric Machines and Drives, Advanced Control and Measurement, Power Electronics Systems, Modelling and Simulation, and Power Converters

  5. Flywheel energy storage workshop

    Energy Technology Data Exchange (ETDEWEB)

    O`Kain, D.; Carmack, J. [comps.

    1995-12-31

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  6. Radiation Source Replacement Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

    2010-12-01

    This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

  7. Transient Management Workshop

    Science.gov (United States)

    1984-08-30

    Community College has provided video tape I equipment for this workshop and it is going to be videotaped. We also have a court reporter. I’m going to...go into some new operation or something to counteract it. UNIDENTIFIED SPEAKER: What about alcohol-related rape, incest , and family violence that is

  8. Second Quaternary dating workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    The second Quaternary dating methods workshop was held at Lucas Heights and sponsored by ANSTO and AINSE. Topics covered include, isotope and thermoluminescence dating, usage of accelerator and thermal ionisation mass spectrometry in environmental studies emphasizing on the methodologies used and sample preparation

  9. Dynamic defense workshop :

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Sean Michael; Doak, Justin E.; Haas, Jason Juedes.; Helinski, Ryan; Lamb, Christopher C.

    2013-02-01

    On September 5th and 6th, 2012, the Dynamic Defense Workshop: From Research to Practice brought together researchers from academia, industry, and Sandia with the goals of increasing collaboration between Sandia National Laboratories and external organizations, de ning and un- derstanding dynamic, or moving target, defense concepts and directions, and gaining a greater understanding of the state of the art for dynamic defense. Through the workshop, we broadened and re ned our de nition and understanding, identi ed new approaches to inherent challenges, and de ned principles of dynamic defense. Half of the workshop was devoted to presentations of current state-of-the-art work. Presentation topics included areas such as the failure of current defenses, threats, techniques, goals of dynamic defense, theory, foundations of dynamic defense, future directions and open research questions related to dynamic defense. The remainder of the workshop was discussion, which was broken down into sessions on de ning challenges, applications to host or mobile environments, applications to enterprise network environments, exploring research and operational taxonomies, and determining how to apply scienti c rigor to and investigating the eld of dynamic defense.

  10. Writing Workshop in Preschool

    Science.gov (United States)

    King, Kelly A.

    2012-01-01

    Preschoolers may be novices in the area of writing but, as this article highlights, they are indeed writers. In a year-long ethnography of preschoolers during structured writing time the teacher/researcher explored how students adapted to a writing workshop format. Students participated in daily journal writing and sharing, and weekly conference…

  11. CLIC Detector Power Requirements

    CERN Document Server

    Gaddi, A

    2013-01-01

    An estimate for the CLIC detector power requirements is outlined starting from the available data on power consumptions of the four LHC experiments and considering the differences between a typical LHC Detector (CMS) and the CLIC baseline detector concept. In particular the impact of the power pulsing scheme for the CLIC Detector electronics on the overall detector consumption is considered. The document will be updated with the requirements of the sub-detector electronics once they are more defined.

  12. Workshops as a Research Methodology

    DEFF Research Database (Denmark)

    Ørngreen, Rikke; Levinsen, Karin Tweddell

    2017-01-01

    This paper contributes to knowledge on workshops as a research methodology, and specifically on how such workshops pertain to e-learning. A literature review illustrated that workshops are discussed according to three different perspectives: workshops as a means, workshops as practice...... that workshops provide a platform that can aid researchers in identifying and exploring relevant factors in a given domain by providing means for understanding complex work and knowledge processes that are supported by technology (for example, e-learning). The approach supports identifying factors......, and workshops as a research methodology. Focusing primarily on the latter, this paper presents five studies on upper secondary and higher education teachers’ professional development and on teaching and learning through video conferencing. Through analysis and discussion of these studies’ findings, we argue...

  13. Joint CARE-ELAN, CARE-HHH-APD, and EUROTEV-WP3 Workshop on Electron Cloud Clearing

    CERN Document Server

    Scandale, Walter; Schulte, D; Zimmermann, F; Electron Cloud Effects and Technological Consequences; ECL2

    2007-01-01

    This report contains the Proceedings of the joint CARE-HHH-APD, CARE-ELAN, and EUROTEV-WP3 Mini-Workshop on 'Electron Cloud Clearing - Electron Cloud and Technical Consequences', "ECL2", held at CERN in Geneva, Switzerland, 1-2 March 2007). The ECL2 workshop explored novel technological remedies against electron-cloud formation in an accelerator beam pipe. A primary motivation for the workshop was the expected harmful electron-cloud effects in the upgraded LHC injectors and in future linear colliders, as well as recent beam observations in operating facilities like ANKA, CESR, KEKB, RHIC, and SPS. The solutions discussed at ECL2 included enamel-based clearing electrodes, slotted vacuum chambers, NEG coating, and grooves. Several of the proposed cures were assessed in terms of their clearing efficiency and the associated beam impedance. The workshop also reviewed new simulation tools like the 3D electron-ion build-up 'Faktor', modeling assumptions, analytical calculations, beam experiments, and laboratory meas...

  14. UVI Cyber-security Workshop Workshop Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Kuykendall, Tommie G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Allsop, Jacob Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Anderson, Benjamin Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boumedine, Marc [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carter, Cedric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Galvin, Seanmichael Yurko [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzalez, Oscar [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Wellington K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lin, Han Wei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Morris, Tyler Jake [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nauer, Kevin S.; Potts, Beth A.; Ta, Kim Thanh; Trasti, Jennifer; White, David R.

    2015-07-08

    The cybersecurity consortium, which was established by DOE/NNSA’s Minority Serving Institutions Partnerships Program (MSIPP), allows students from any of the partner schools (13 HBCUs, two national laboratories, and a public school district) to have all consortia options available to them, to create career paths and to open doors to DOE sites and facilities to student members of the consortium. As a part of this year consortium activities, Sandia National Laboratories and the University of Virgin Islands conducted a week long cyber workshop that consisted of three courses; Digital Forensics and Malware Analysis, Python Programming, and ThunderBird Cup. These courses are designed to enhance cyber defense skills and promote learning within STEM related fields.

  15. Workshop on electronuclear physics with internal targets: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, R.G.; Minehart, R.C. (eds.)

    1987-05-01

    The Workshop on Electronuclear Physics with Internal Targets was held at SLAC on January 5-8, 1987. The idea for this workshop grew out of interest among physicists at SLAC and MIT/Bates who have been exploring the possibilities for internal targets in the PEP ring at SLAC and in a proposed stretcher ring at MIT/Bates. The aim of the workshop was to bring together physicists from these groups and from other laboratories and universities to discuss the new physics that could be made accessible with internal targets, and to share information on recent developments in internal target technology, on the impact of internal targets on ring operation, and on the detector requirements. The workshop was sponsored by NPAS, the program of Nuclear Physics at SLAC, and it was attended by more than 100 physicists from the US, Canada, Europe, and Japan. The workshop sessions began with two days of invited talks followed by two days of shorter presentations organized by the chairmen of four Working Groups. Written versions of all the plenary talks and all but four of the Working Group talks are presented here.

  16. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    DT As announced in the previous Bulletin MU DT completed the installation of the vertical chambers of barrel wheels 0, +1 and +2. 242 DT and RPC stations are now installed in the negative barrel wheels. The missing 8 (4 in YB-1 and 4 in YB-2) chambers can be installed only after the lowering of the two wheels into the UX cavern, which is planned for the last quarter of the year. Cabling on the surface of the negative wheels was finished in May after some difficulties with RPC cables. The next step was to begin the final commissioning of the wheels with the final trigger and readout electronics. Priority was giv¬en to YB0 in order to check everything before the chambers were covered by cables and services of the inner detectors. Commissioning is not easy since it requires both activity on the central and positive wheels underground, as well as on the negative wheels still on the surface. The DT community is requested to commission the negative wheels on surface to cope with a possible lack of time a...

  17. Identification of high momentum charged hadrons in ALICE:. detector performance and perspectives

    Science.gov (United States)

    Volpe, G.

    2010-04-01

    The results obtained by the RHIC experiments at BNL from high energy nucleus-nucleus collisions have shown the importance of identifying high momentum charged hadrons. At LHC, the relevant range for particle identification is expected to be wider than at RHIC, i.e. well above 10 GeV/c. In the ALICE experiment, dedicated to the study of heavy-ion collisions at LHC energies, particles with momentum below 10 GeV/c are identified by high-quality particle identification detectors based on the measurements of ionization energy losses in the Time-Projection-Chamber (TPC), Time-of- Flight (TOF) and Cherenkov radiation (HMPID). At higher momenta, statistical identification of hadrons is envisaged by measuring the ionization energy loss in the relativistic rise momentum region of the TPC. However, since the topology of the jets having a baryon leading particle may be different than those with a meson leading particle, it will also be necessary to identify track by track the highest momentum particles. For this reason, a proposal for an up-grade of the high momentum particle identification is being considered. Such an upgrade would consist of a ring imaging Cherenkov detector, called VHMPID (Very High Momentum Particle IDentification), exploiting the focusing properties of a segmented spherical mirror and using C4F10 as Cherenkov radiator. Characteristics and expected performance of the ALICE high momentum identification systems and of the VHMPID will be reviewed in this paper.

  18. Detector simulation needs for detector designers

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, G.G.

    1987-11-01

    Computer simulation of the components of SSC detectors and of the complete detectors will be very important for the designs of the detectors. The ratio of events from interesting physics to events from background processes is very low, so detailed understanding of detector response to the backgrounds is needed. Any large detector for the SSC will be very complex and expensive and every effort must be made to design detectors which will have excellent performance and will not have to undergo major rebuilding. Some areas in which computer simulation is particularly needed are pattern recognition in tracking detectors and development of shower simulation code which can be trusted as an aid in the design and optimization of calorimeters, including their electron identification performance. Existing codes require too much computer time to be practical and need to be compared with test beam data at energies of several hundred GeV. Computer simulation of the processing of the data, including electronics response to the signals from the detector components, processing of the data by microprocessors on the detector, the trigger, and data acquisition will be required. In this report we discuss the detector simulation needs for detector designers.

  19. Solar workshops financial incentives

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Ten one-day workshops were held across the United States. Information in this workbook is compiled in conjunction with those workshops. The following discussions are included: solar as a fuel (history); why alternative fuels are being sought today; the need for conservation; advantages of solar energy; the potential of solar energy; why solar energy is not more widely used; a definition of solar; how solar can help meet energy demands; Federal policies and programs; what solar technologies exist today that can be effectively utilized (thermal applications, fuels from biomass, solar electric). Additional information is presented in three attachments: Energy-Conserving Methods; Domestic Policy Review of Solar Energy; and DOE Secretary's Annual Report to Congress-Solar Section. (MCW)

  20. Accelerator reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.