WorldWideScience

Sample records for rh in-situ light

  1. Light-emission from in-situ grown organic nanostructures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Kjelstrup-Hansen, Jakob; Rubahn, Horst-Günter

    2011-01-01

    Organic crystalline nanofibers made from phenylene-based molecules exhibit a wide range of extraordinary optical properties such as intense, anisotropic and polarized luminescence that can be stimulated either optically or electrically, waveguiding and random lasing. For lighting and display...... of morphological characterization and demonstrate how appropriate biasing with an AC gate voltage enables electroluminescence from these in-situ grown organic nanostructures....

  2. In situ measurement of inelastic light scattering in natural waters

    Science.gov (United States)

    Hu, Chuanmin

    Variation in the shape of solar absorption (Fraunhofer) lines are used to study the inelastic scattering in natural waters. In addition, oxygen absorption lines near 689nm are used to study the solar stimulated chlorophyll fluorescence. The prototype Oceanic Fraunhofer Line Discriminator (OFLD) has been further developed and improved by using a well protected fiber optic - wire conductor cable and underwater electronic housing. A Monte-Carlo code and a simple code have been modified to simulate the Raman scattering, DOM fluorescence and chlorophyll fluorescence. A series of in situ measurements have been conducted in clear ocean waters in the Florida Straits, in the turbid waters of Florida Bay, and in the vicinity of a coral reef in the Dry Tortugas. By comparing the reduced data with the model simulation results, the Raman scattering coefficient, b r with an excitation wavelength at 488nm, has been verified to be 2.6 × 10-4m-1 (Marshall and Smith, 1990), as opposed to 14.4 × 10- 4m-1 (Slusher and Derr, 1975). The wavelength dependence of b r cannot be accurately determined from the data set as the reported values (λ m-4 to λ m- 5) have an insignificant effect in the natural underwater light field. Generally, in clear water, the percentage of inelastic scattered light in the total light field at /lambda 510nm. At low concentrations (a y(/lambda = 380nm) less than 0.1m-1), DOM fluorescence plays a small role in the inelastic light field. However, chlorophyll fluorescence is much stronger than Raman scattering at 685nm. In shallow waters where a sea bottom affects the ambient light field, inelastic light is negligible for the whole visible band. Since Raman scattering is now well characterized, the new OFLD can be used to measure the solar stimulated in situ fluorescence. As a result, the fluorescence signals of various bottom surfaces, from coral to macrophytes, have been measured and have been found to vary with time possibly due to nonphotochemical quenching

  3. Spectroscopic identification of the active site for CO oxidation on Rh/Al{sub 2}O{sub 3} by concentration modulation in situ DRIFTS

    Energy Technology Data Exchange (ETDEWEB)

    Cavers, M.; Davidson, J.M.; Harkness, I.R.; Rees, L.V.C.; McDougall, G.S.

    1999-12-10

    Diffuse reflectance infrared spectroscopy experiments are described in which the concentrations of the reactant gases passing over a solid catalyst are modulated. This simple modification to the normal in situ experiment enables direct correlation of specific surface species with the production of gaseous products. Spectra of solely the active surface intermediates with no contribution from so called spectator species are generated. For CO oxidation over a Rh/alumina catalyst at 576 K, the active CO species is identified as linearly adsorbed CO on oxidized Rh sites ({nu}{sub CO} = 2,100 cm{sup {minus}1}) on a catalyst surface apparently otherwise dominated by CO adsorbed as unreactive geminal dicarbonyl.

  4. Multicomponent Synthesis of Isoindolinone Frameworks via RhIII -Catalysed in situ Directing Group-Assisted Tandem Oxidative Olefination/Michael Addition.

    Science.gov (United States)

    Wang, Liang; Liu, Xi; Liu, Jian-Biao; Shen, Jun; Chen, Qun; He, Ming-Yang

    2018-04-04

    A Rh III -catalysed three-component synthesis of isoindolinone frameworks via direct assembly of benzoyl chlorides, o-aminophenols and activated alkenes has been developed. The process involves in situ generation of o-aminophenol (OAP)-based bidentate directing group (DG), Rh III -catalysed tandem ortho C-H olefination and subsequent cyclization via aza-Michael addition. This protocol exhibits good chemoselectivity and functional group tolerance. Computational studies showed that the presence of hydroxyl group on the N-aryl ring could enhance the chemoselectivity of the reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Genetic variation in total number and locations of GnRH neurons identified using in situ hybridization in a wild-source population.

    Science.gov (United States)

    Kaugars, Katherine E; Rivers, Charlotte I; Saha, Margaret S; Heideman, Paul D

    2016-02-01

    The evolution of brain function in the regulation of physiology may depend in part upon the numbers and locations of neurons. Wild populations of rodents contain natural genetic variation in the inhibition of reproduction by winter-like short photoperiod, and it has been hypothesized that this functional variation might be due in part to heritable variation in the numbers or location of gonadotropin releasing hormone (GnRH) neurons. A naturally variable wild-source population of white-footed mice was used to develop lines artificially selected for or against mature gonads in short, winter-like photoperiods. We compared a selection line that is reproductively inhibited in short photoperiod (Responsive) to a line that is weakly inhibited by short photoperiod (Nonresponsive) for differences in counts of neurons identified using in situ hybridization for GnRH mRNA. There was no effect of photoperiod, but there were 60% more GnRH neurons in total in the Nonresponsive selection line than the Responsive selection line. The lines differed specifically in numbers of GnRH neurons in more anterior regions, whereas numbers of GnRH neurons in posterior areas were not statistically different between lines. We compare these results to those of an earlier study that used immunohistochemical labeling for GnRH neurons. The results are consistent with the hypothesis that the selection lines and natural source population contain significant genetic variation in the number and location of GnRH neurons. The variation in GnRH neurons may contribute to functional variation in fertility that occurs in short photoperiods in the laboratory and in the wild source population in winter. © 2015 Wiley Periodicals, Inc.

  6. Electroluminescence dependence of the simplified green light organic light emitting diodes on in situ thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Haichuan, E-mail: hcmu@ecust.edu.cn [Department of Physics, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Rao, Lu [Department of Physics, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Li, Weiling; Wei, Bin [Key Laboratory of Advanced Display and System Applications, Ministry of Education, School of Mechanics Engineering and Automation, Shanghai University, 149 Yanchang Road, Shanghai 200072 (China); Wang, Keke; Xie, Haifen [Department of Physics, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)

    2015-12-01

    Highlights: • In-situ thermal treating the organic tri-layer (CBP/CBP:Ir(ppy){sub 3}/TPBi) of the green light PHOLED under various temperatures during the organic materials evaporation. • Investigating the effect of in situ thermal treatment on the electroluminescence (EL) performance of the green light PHOLED with tri-layer structures. • Provide an easy and practical way to improve the EL performance of the OLEDs without major modification of the organic materials and OLEDs structures required. - Abstract: Simplified multilayer green light phosphorescent organic light emitting diodes (PHOLED) with the structure of ITO/MoO{sub 3}(1 nm)/CBP(20 nm)/CBP:Ir(ppy){sub 3} (1 wt%) (15 nm)/TPBi(60 nm)/LiF(0.5 nm)/Al were fabricated via thermal evaporation and in situ thermal treatment (heating the OLED substrates to certain temperatures during the thermal evaporation of the organic materials) was performed. The effect of the in situ thermal treatment on the electroluminescence (EL) performance of the PHOLED was investigated. It was found that the OLED exhibited strong EL dependence on the thermal treatment temperatures, and their current efficiency was improved with the increasing temperature from room temperature (RT) to 69 °C and deteriorated with the further increasing temperature to 105 °C. At the brightness of 1000 cd/m{sup 2}, over 80% improvement of the current efficiency at the optimal thermal treatment temperature of 69 °C (64 cd/A) was demonstrated compared to that at RT (35 cd/A). Meanwhile, the tremendous influences of the in situ thermal treatment on the morphology of the multilayer CBP/CBP:Ir(ppy){sub 3}/TPBi were also observed. At the optimal thermal treatment temperature of 69 °C, the improvement of the EL performance could be ascribed to the enhancement of the electron and hole transporting in the CBP:Ir(ppy){sub 3} emitting layer, which suppressed the triplets self-quenching interactions and promoted the charge balance and excitons formation. The

  7. In silico and in situ characterization of the zebrafish (Danio rerio gnrh3 (sGnRH gene

    Directory of Open Access Journals (Sweden)

    Husebye Harald

    2002-08-01

    Full Text Available Abstract Background Gonadotropin releasing hormone (GnRH is responsible for stimulation of gonadotropic hormone (GtH in the hypothalamus-pituitary-gonadal axis (HPG. The regulatory mechanisms responsible for brain specificity make the promoter attractive for in silico analysis and reporter gene studies in zebrafish (Danio rerio. Results We have characterized a zebrafish [Trp7, Leu8] or salmon (s GnRH variant, gnrh3. The gene includes a 1.6 Kb upstream regulatory region and displays the conserved structure of 4 exons and 3 introns, as seen in other species. An in silico defined enhancer at -976 in the zebrafish promoter, containing adjacent binding sites for Oct-1, CREB and Sp1, was predicted in 2 mammalian and 5 teleost GnRH promoters. Reporter gene studies confirmed the importance of this enhancer for cell specific expression in zebrafish. Interestingly the promoter of human GnRH-I, known as mammalian GnRH (mGnRH, was shown capable of driving cell specific reporter gene expression in transgenic zebrafish. Conclusions The characterized zebrafish Gnrh3 decapeptide exhibits complete homology to the Atlantic salmon (Salmo salar GnRH-III variant. In silico analysis of mammalian and teleost GnRH promoters revealed a conserved enhancer possessing binding sites for Oct-1, CREB and Sp1. Transgenic and transient reporter gene expression in zebrafish larvae, confirmed the importance of the in silico defined zebrafish enhancer at -976. The capability of the human GnRH-I promoter of directing cell specific reporter gene expression in zebrafish supports orthology between GnRH-I and GnRH-III.

  8. A Reactive Oxide Overlayer on Rh Nanoparticles during CO Oxidation and Its Size Dependence Studied by in Situ Ambient Pressure XPS

    International Nuclear Information System (INIS)

    Grass, Michael E.; Zhang, Yawen; Butcher, Derek R.; Park, Jeong Y.; Li, Yimin; Bluhm, Hendrik; Bratlie, Kaitlin M.; Zhang, Tianfu; Somorjai, Gabor A.

    2008-01-01

    CO oxidation is one of the most studied heterogeneous reactions, being scientifically and industrially important, particularly for removal of CO from exhaust streams and preferential oxidation for hydrogen purification in fuel cell applications. The precious metals Ru, Rh, Pd, Pt, and Au are most commonly used for this reaction because of their high activity and stability. Despite the wealth of experimental and theoretical data, it remains unclear what is the active surface for CO oxidation under catalytic conditions for these metals. In this communication, we utilize in situ synchrotron ambient pressure X-ray photoelectron spectroscopy (APXPS) to monitor the oxidation state at the surface of Rh nanoparticles during CO oxidation and demonstrate that the active catalyst is a surface oxide, the formation of which is dependent on particle size. The amount of oxide formed and the reaction rate both increase with decreasing particle size.

  9. In Situ IR Characterization of CO Interacting with Rh Nanoparticles Obtained by Calcination and Reduction of Hydrotalcite-Type Precursors

    Directory of Open Access Journals (Sweden)

    F. Basile

    2011-01-01

    Full Text Available Supported Rh nanoparticles obtained by reduction in hydrogen of severely calcined Rh/Mg/Al hydrotalcite-type (HT phases have been characterized by FT-IR spectroscopy of adsorbed CO [both at room temperature (r.t. and nominal liquid nitrogen temperature] and Transmission Electron Microscopy (TEM. The effect of reducing temperature has been investigated, showing that Rh crystal size increases from 1.4 nm to 1.8 nm when the reduction temperature increases from 750°C to 950°C. The crystal growth favours the formation of bridged CO species and linear monocarbonyl species with respect to gem-dicarbonyl species; when CO adsorbs at r.t., CO disproportionation occurs on Rh and it accompanies the formation of RhI(CO2. The role of interlayer anions in the HT precursors to affect the properties of the final materials has been also investigated considering samples prepared from silicate-instead of carbonate-containing precursors. In this case, formation of RhI(CO2 and CO disproportionation do not occur, and this evidence is discussed in terms of support effect.

  10. (meth)acrylates on in situ visible light polymerization of ...

    Indian Academy of Sciences (India)

    60

    ... faster to be cured using a visible light source with a Tungsten-Halogen lamp ... ranging from 350 to 1100 nm, which even covers some UV and near IR region. .... incorporation of the acid-containing and/or acrylate-containing monomer led to.

  11. Construction of porous covalent organic polymer as photocatalysts for RhB degradation under visible light

    Institute of Scientific and Technical Information of China (English)

    Pingxiao Liu; Lingbao Xing; Hongtao Lin; Haining Wang; Ziyan Zhou; Zhongmin Su

    2017-01-01

    In the present work,a novel porous,and chemically stable amine-based covalent organic polymer (POP-1) was designed and synthesized under solvothermal conditions.The porosity,crystallinity,chemical stability,electrochemical properties,and diffuse reflectance of POP-1 were investigated via N2 sorption experiment,power X-ray diffraction,thermogravimetric analysis,cyclic voltammetry,and ultraviolet visible near infrared spectrometry,respectively.POP-1 exhibits good chemical stability in both acidic and alkaline aqueous solutions,as well as in organic solvents.Undoped POP-1 can be directly used as a photocatalyst for rhodamine B irradiation degradation under light-emitting diode and natural light.The Ea of POP-1 for RhB degradation is 82.37 kJ/mol.Furthermore,POP-1 can be reused as a catalyst in RhB degradation without degraded catalytic activity.

  12. Enhanced photocatalytic activity of nanocellulose supported zinc oxide composite for RhB dye as well as ciprofloxacin drug under sunlight/visible light

    Science.gov (United States)

    Tavker, Neha; Sharma, Manu

    2018-05-01

    Zinc oxide nanoparticles were synthesised from zinc acetate di-hydrate via co-precipitation method. Nanocellulose was isolated from agrowaste using chemo-mechanical treatments and characterized. Nanocellulose supported zinc oxide composites were prepared through in-situ method by adding different amounts of nanocellulose. The photocatalytic efficiency of pure Zno and nanocellulose supported ZnO was calculated using RhB dye under visible light and sun light. The composites which had nanocellulose in greater ratio showed higher degradation efficiency in sunlight rather than visible light for both; dye and drug. All the composites showed high rate of photodegradation compared to bare ZnO and bare nanocellulose. The enhancement in photocatalytic activity was observed maximum where the amount of cellulose was maximum. The maximum observed rate was 0.025 min-1 using Ciprofloxacin drug due to the increase in lifetime of Z4 sample delaying the electron and hole pair recombination. The degrading efficiency of nanocellulose supported zinc oxide (NC/ZnO) composite for RhB was found to be 35% in visible, 76% in sunlight and 75% for ciprofloxacin under sunlight.

  13. Nucleation and Nanometric Inhomogeneity in Niobiogermanate Glass: In-Situ Inelastic Light Scattering and TEM Studies

    International Nuclear Information System (INIS)

    Takahashi, Y; Ihara, R; Fujiwara, T; Osada, M; Masai, H

    2011-01-01

    We performed in-situ inelastic light scattering measurement in KNbGeO 5 glass with a high nucleation ability during heating in order to elucidate nanocrystallization dynamics. The results of the in-situ measurement and TEM observation revealed that nanometric heterogeneous region (∼1-2 nm) consisting of the Nb-richer phase develops, i.e., K 3 Nb 7 O 19 , at the temperature, in which glassy-supercooled-liquid (SCL) phase-transition occurs, i.e., precursive stage of nanocrystallization. This strongly suggests that evolution of the nanometric Nb-richer phase in the SCL phase corresponds to nucleation in the KNbGeO 5 glass.

  14. Sensor fabrication method for in situ temperature and humidity monitoring of light emitting diodes.

    Science.gov (United States)

    Lee, Chi-Yuan; Su, Ay; Liu, Yin-Chieh; Chan, Pin-Cheng; Lin, Chia-Hung

    2010-01-01

    In this work micro temperature and humidity sensors are fabricated to measure the junction temperature and humidity of light emitting diodes (LED). The junction temperature is frequently measured using thermal resistance measurement technology. The weakness of this method is that the timing of data capture is not regulated by any standard. This investigation develops a device that can stably and continually measure temperature and humidity. The device is light-weight and can monitor junction temperature and humidity in real time. Using micro-electro-mechanical systems (MEMS), this study minimizes the size of the micro temperature and humidity sensors, which are constructed on a stainless steel foil substrate (40 μm-thick SS-304). The micro temperature and humidity sensors can be fixed between the LED chip and frame. The sensitivities of the micro temperature and humidity sensors are 0.06±0.005 (Ω/°C) and 0.033 pF/%RH, respectively.

  15. Improvements in in-situ filter test methods using a total light-scattering detector

    International Nuclear Information System (INIS)

    Marshall, M.; Stevens, D.C.

    1986-01-01

    This paper presents research aimed at providing useful data on a commonly used technique; a DOP (di-2-ethylhexyl phthalate) aerosol and a total light-scattering photometer. Methods of increasing the sensitivity of this technique are described. Alternative methods of in-situ filter testing are also considered. The sensitivity of a typical, modern, total light-scattering photometer, as a function of particle diameter, has a broad maximum in mass terms between 0.1 and 0.4 um. At its maximum usable sensitivity the instrument can detect approx. 1 particle/cm 3 . This response can be explained by light scattering theory and particle loss in the instrument inlet. The mass median diameter of the aerosols produced by various DOP generators varies from 0.2 to 1.0μm. Experiments with good quality HEPA filters indicate a maximum penetration for particles of 0.15 - 0.2μm. Details of the studies are given and the consequences discussed. It is shown that filter penetration of -3 % can be measured in-situ with existing equipment. Methods of extending the sensitivity to measure a penetration of approx.10 -5 % are described. (author)

  16. A light-assisted in situ embedment of silver nanoparticles to prepare functionalized fabrics

    Directory of Open Access Journals (Sweden)

    Toh HS

    2017-11-01

    Full Text Available Her Shuang Toh,1 Roxanne Line Faure,2 Liyana Bte Mohd Amin,1 Crystal Yu Fang Hay,1 Saji George1,3 1Centre of Sustainable Nanotechnology, School of Chemical and Life Sciences, Nanyang Polytechnic, Singapore, Singapore; 2DUT Analyses Biologiques et Biochimiques, IUT Génie Biologique, Dijon, France; 3Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Sainte-Anne-de-Bellevue, QC, Canada Abstract: This article presents a simple, one-step, in situ generation of silver nanoparticle-functionalized fabrics with antibacterial properties, circumventing the conventional, multistep, time-consuming methods. Silver nanoparticle formation was studied with a library of capping agents (branched polyethylenimine [BPEI] of molecular weight [Mw] 10,000 and 25,000, polyvinylpyrrolidone, polyethylene glycol, polyvinylalcohol and citrate mixed with silver nitrate. The mixture was then exposed to an assortment of light wavelengths (ultraviolet, infrared and simulated solar light for studying the light-assisted synthesis of nanoparticles. The formation of nanoparticles corresponded with the reducing capabilities of the polymers wherein BPEI gave the best response. Notably, the irradiation wavelengths had little effect on the formation of the nanoparticle when the total irradiation energy was kept constant. The feasibility of utilizing this method for in situ nanoparticle synthesis on textile fabrics (towel [100% cotton], gauze [100% cotton], rayon, felt [100% polyester] and microfiber [15% nylon, 85% polyester] was verified by exposing the fabrics soaked in an aqueous solution of 1% (w/v AgNO3 and 1% (w/v BPEI (Mw 25,000 to light. The formation of nanoparticles on fabrics and their retention after washing was verified using scanning electron microscopy and quantified by inductively coupled plasma optical emission spectrometry. The functional property of the fabric as an antibacterial surface was successfully demonstrated using

  17. The use of light weight deflectometer for in situ evaluation of sand degree of compaction

    Directory of Open Access Journals (Sweden)

    Amr F. Elhakim

    2014-12-01

    Full Text Available The light weight deflectometer (LWD, also known as the light falling weight deflectometer, light drop weight tester, and dynamic plate load test, is a hand portable device that was developed in Germany to measure the soil in situ LWD dynamic modulus. Typically, this modulus is used to evaluate the subsoil degree of compaction. Thus it is suitable for compaction quality control of soil-surfaced roads, embankments and replacement fill. As a dynamic test, the device is suited, in particular, for coarse and mixed grained soils with a maximum grain size of 63 mm. The response of poorly graded calcareous and siliceous sands is the focus of this research. First, the index soil properties of the tested soils including grain size distribution; maximum and minimum void ratios and specific gravity were obtained. Petrographic analyses of the tested sands were also performed to determine their mineralogical composition. A 1-m3 chamber was built for performing the LWD testing in the laboratory. The study was performed for relative densities of 20%, 40%, 60% and 80% to represent the behavior of very loose, loose, medium dense and dense sands. The effect of the existence of a rigid boundary beneath the tested soil on test results was also investigated to determine the zone of influence of the light weight deflectometer.

  18. In-situ shearing interferometry of National Synchrotron Light Source mirrors

    International Nuclear Information System (INIS)

    Qian, S.N.; Rarback, H.; Shu, D.; Takacs, P.Z.

    1987-01-01

    In situ mirror distortion measurements were made with a lateral shearing interferometer on three mirrors in beam line X17T at the National Syn203hrotron Light Source. Lateral shearing interference is insensitive to vibrational motion in five of the six degrees of freedom, so it is well-suited for investigations in the synchrotron radiation (SR) environment. No distortion was seen in an uncooled silicon carbide mirror and in a colled copper alloy mirror on X17TB, but a change in the radius of an uncooled electroless nickel-plated aluminium cylinder mirror of about 6.2% was observed on X17TA. Angular vibrations in the 2 to 3 arc second range were easily observed on one of the beam lines, as was an overall mirror rotation in the arc second range

  19. In situ light spectroscopy in the environmental transmission electron microscope (ETEM)

    DEFF Research Database (Denmark)

    Cavalca, Filippo; Langhammer, C.; Pedersen, Thomas

    2012-01-01

    the LSPR signal coming from the whole specimen, providing information complementary to the TEM analysis. During any ETEM experiment the electron beam effect on the sample is a difficult issue to address and rule out. In addition, if a reaction has to be followed in situ in the ETEM, the information...... is often recorded on a limited portion of the sample. Being able to probe the sample with INPS and ETEM at the same time allows parallel investigation at the local and macro scale, as well as aids the assessment of beam effects. A dedicated custom TEM specimen holder containing two optical fibers, five...... electrical contacts, a fixed miniaturized optical bench for light handling and a heating element (Fig. 1) has been designed. A system of pre-aligned mirrors and a MEMS heater are implemented in the holder. The system is primarily designed for use in combination with LSPR spectroscopy, but it is flexible...

  20. Sensor Fabrication Method for in Situ Temperature and Humidity Monitoring of Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Chi-Yuan Lee

    2010-04-01

    Full Text Available In this work micro temperature and humidity sensors are fabricated to measure the junction temperature and humidity of light emitting diodes (LED. The junction temperature is frequently measured using thermal resistance measurement technology. The weakness of this method is that the timing of data capture is not regulated by any standard. This investigation develops a device that can stably and continually measure temperature and humidity. The device is light-weight and can monitor junction temperature and humidity in real time. Using micro-electro-mechanical systems (MEMS, this study minimizes the size of the micro temperature and humidity sensors, which are constructed on a stainless steel foil substrate (40 μm-thick SS-304. The micro temperature and humidity sensors can be fixed between the LED chip and frame. The sensitivities of the micro temperature and humidity sensors are 0.06 ± 0.005 (Ω/°C and 0.033 pF/%RH, respectively.

  1. Facile synthesis of surface N-doped Bi_2O_2CO_3: Origin of visible light photocatalytic activity and in situ DRIFTS studies

    International Nuclear Information System (INIS)

    Zhou, Ying; Zhao, Ziyan; Wang, Fang; Cao, Kun; Doronkin, Dmitry E.; Dong, Fan; Grunwaldt, Jan-Dierk

    2016-01-01

    Graphical abstract: Surfactant (CTAB) can induce nitrogen interstitially doping in the Bi_2O_2CO_3 surface, leading to the formation of localized states from N−O bond, which probably account for the origin of the visible light activity. Moreover, the photocatalytic NO oxidation processes over Bi_2O_2CO_3 were successfully monitored for the first time by in situ DRIFTS. - Highlights: • Interstitially doping N in the Bi_2O_2CO_3 surface was achieved at room temperature. • N-doped Bi_2O_2CO_3 exhibited significantly enhanced visible light photocatalytic activity compared to the pristine Bi_2O_2CO_3. • The formation of localized states from N−O bond could account for the visible light activity of Bi_2O_2CO_3. • The photocatalytic NO oxidation process was monitored by in situ DRIFTS. - Abstract: Bi_2O_2CO_3 nanosheets with exposed {001} facets were prepared by a facile room temperature chemical method. Due to the high oxygen atom density in {001} facets of Bi_2O_2CO_3, the addition of cetyltrimethylammonium bromide (CTAB) does not only influence the growth of crystalline Bi_2O_2CO_3, but also modifies the surface properties of Bi_2O_2CO_3 through the interaction between CTAB and Bi_2O_2CO_3. Nitrogen from CTAB as dopant interstitially incorporates in the Bi_2O_2CO_3 surface evidenced by both experimental and theoretical investigations. Hence, the formation of localized states from N−O bond improves the visible light absorption and charge separation efficiency, which leads to an enhancement of visible light photocatalytic activity toward to the degradation of Rhodamine B (RhB) and oxidation of NO. In addition, the photocatalytic NO oxidation over Bi_2O_2CO_3 nanosheets was successfully monitored for the first time using in situ diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS). Both bidentate and monodentate nitrates were identified on the surface of catalysts during the photocatalytic reaction process. The application of this strategy to

  2. In Situ Preparation of Metal Halide Perovskite Nanocrystal Thin Films for Improved Light-Emitting Devices.

    Science.gov (United States)

    Zhao, Lianfeng; Yeh, Yao-Wen; Tran, Nhu L; Wu, Fan; Xiao, Zhengguo; Kerner, Ross A; Lin, YunHui L; Scholes, Gregory D; Yao, Nan; Rand, Barry P

    2017-04-25

    Hybrid organic-inorganic halide perovskite semiconductors are attractive candidates for optoelectronic applications, such as photovoltaics, light-emitting diodes, and lasers. Perovskite nanocrystals are of particular interest, where electrons and holes can be confined spatially, promoting radiative recombination. However, nanocrystalline films based on traditional colloidal nanocrystal synthesis strategies suffer from the use of long insulating ligands, low colloidal nanocrystal concentration, and significant aggregation during film formation. Here, we demonstrate a facile method for preparing perovskite nanocrystal films in situ and that the electroluminescence of light-emitting devices can be enhanced up to 40-fold through this nanocrystal film formation strategy. Briefly, the method involves the use of bulky organoammonium halides as additives to confine crystal growth of perovskites during film formation, achieving CH 3 NH 3 PbI 3 and CH 3 NH 3 PbBr 3 perovskite nanocrystals with an average crystal size of 5.4 ± 0.8 nm and 6.4 ± 1.3 nm, respectively, as confirmed through transmission electron microscopy measurements. Additive-confined perovskite nanocrystals show significantly improved photoluminescence quantum yield and decay lifetime. Finally, we demonstrate highly efficient CH 3 NH 3 PbI 3 red/near-infrared LEDs and CH 3 NH 3 PbBr 3 green LEDs based on this strategy, achieving an external quantum efficiency of 7.9% and 7.0%, respectively, which represent a 40-fold and 23-fold improvement over control devices fabricated without the additives.

  3. In Situ Caging of Biomolecules in Graphene Hybrids for Light Modulated Bioactivity.

    Science.gov (United States)

    Cheng, Gong; Han, Xiao-Hui; Hao, Si-Jie; Nisic, Merisa; Zheng, Si-Yang

    2018-01-31

    Remote and noninvasive modulation of protein activity is essential for applications in biotechnology and medicine. Optical control has emerged as the most attractive approach owing to its high spatial and temporal resolutions; however, it is challenging to engineer light responsive proteins. In this work, a near-infrared (NIR) light-responsive graphene-silica-trypsin (GST) nanoreactor is developed for modulating the bioactivity of trypsin molecules. Biomolecules are spatially confined and protected in the rationally designed compartment architecture, which not only reduces the possible interference but also boosts the bioreaction efficiency. Upon NIR irradiation, the photothermal effect of the GST nanoreactor enables the ultrafast in situ heating for remote activation and tuning of the bioactivity. We apply the GST nanoreactor for remote and ultrafast proteolysis of proteins, which remarkably enhances the proteolysis efficiency and reduces the bioreaction time from the overnight of using free trypsin to seconds. We envision that this work not only provides a promising tool of ultrafast and remotely controllable proteolysis for in vivo proteomics in study of tissue microenvironment and other biomedical applications but also paves the way for exploring smart artificial nanoreactors in biomolecular modulation to gain insight in dynamic biological transformation.

  4. Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw

    NARCIS (Netherlands)

    Zieger, P.; Weingartner, E.; Henzing, J.; Moerman, M.; Leeuw, G. de; Mikkilä, J.; Ehn, M.; Petäjä, T.; Clémer, K.; Roozendael, M. van; Yilmaz, S.; Frieß, U.; Irie, H.; Wagner, T.; Shaiganfar, R.; Beirle, S.; Apituley, A.; Wilson, K.; Baltensperger, U.

    2011-01-01

    In the field, aerosol in-situ measurements are often performed under dry conditions (relative humidity RH<30-40%). Since ambient aerosol particles experience hygroscopic growth at enhanced RH, their microphysical and optical properties especially the aerosol light scattering are also strongly

  5. Parallel and convergent evolution of the dim-light vision gene RH1 in bats (Order: Chiroptera).

    Science.gov (United States)

    Shen, Yong-Yi; Liu, Jie; Irwin, David M; Zhang, Ya-Ping

    2010-01-21

    Rhodopsin, encoded by the gene Rhodopsin (RH1), is extremely sensitive to light, and is responsible for dim-light vision. Bats are nocturnal mammals that inhabit poor light environments. Megabats (Old-World fruit bats) generally have well-developed eyes, while microbats (insectivorous bats) have developed echolocation and in general their eyes were degraded, however, dramatic differences in the eyes, and their reliance on vision, exist in this group. In this study, we examined the rod opsin gene (RH1), and compared its evolution to that of two cone opsin genes (SWS1 and M/LWS). While phylogenetic reconstruction with the cone opsin genes SWS1 and M/LWS generated a species tree in accord with expectations, the RH1 gene tree united Pteropodidae (Old-World fruit bats) and Yangochiroptera, with very high bootstrap values, suggesting the possibility of convergent evolution. The hypothesis of convergent evolution was further supported when nonsynonymous sites or amino acid sequences were used to construct phylogenies. Reconstructed RH1 sequences at internal nodes of the bat species phylogeny showed that: (1) Old-World fruit bats share an amino acid change (S270G) with the tomb bat; (2) Miniopterus share two amino acid changes (V104I, M183L) with Rhinolophoidea; (3) the amino acid replacement I123V occurred independently on four branches, and the replacements L99M, L266V and I286V occurred each on two branches. The multiple parallel amino acid replacements that occurred in the evolution of bat RH1 suggest the possibility of multiple convergences of their ecological specialization (i.e., various photic environments) during adaptation for the nocturnal lifestyle, and suggest that further attention is needed on the study of the ecology and behavior of bats.

  6. In-situ XMCD evaluation of ferromagnetic state at FeRh thin film surface induced by 1 keV Ar ion beam irradiation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, T. [Research Organization for the 21st Century, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Aikoh, K. [Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Sakamaki, M.; Amemiya, K. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Iwase, A. [Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)

    2015-12-15

    Surface ferromagnetic state of FeRh thin films irradiated with 1 keV Ar ion-beam has been investigated by using soft X-ray Magnetic Circular Dichroism (XMCD). It was revealed that the Fe atoms of the samples were strongly spin-polarized after Ar ion-beam irradiation. Due to its small penetration depth, 1 keV Ar ion-beam irradiation can modify the magnetic state at subsurface of the samples. In accordance with the XMCD sum rule analysis, the main component of the irradiation induced ferromagnetism at the FeRh film surface was to be effective spin magnetic moment, and not to be orbital moment. We also confirmed that the surface ferromagnetic state could be produced by thermal annealing of the excessively ion irradiated paramagnetic subsurface of the FeRh thin films. This novel magnetic modification technique by using ion irradiation and subsequent annealing can be a potential tool to control the surface magnetic state of FeRh thin films.

  7. In situ photoactivated plasmonic Ag{sub 3}PO{sub 4}@silver as a stable catalyst with enhanced photocatalytic activity under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongfang; Wang, Jiaxun, E-mail: zdfbb66@aliyun.com [College of Science, Huazhong Agricultural University, Wuhan (China)

    2017-05-15

    Silver orthophosphate (Ag{sub 3}PO{sub 4}) had been reported as an excellent candidate to split water or decompose pollutants with high efficiency in visible light region, yet is not stable due to the reduction of silver ion. In this work, an easy-fabricated method (in situ photoinduced reduction) was provided to enhance the stability of Ag{sub 3}PO{sub 4} for its possible application as a visible-light sensitive photocatalyst. The as-prepared samples were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectra, photoluminescence spectra (PL) and Photoelectrochemical measurements. The Ag{sub 3}PO{sub 4}/Ag photocatalysts showed strong photocatalytic activity for decomposition of RhB dye or phenol-X-3B mixture under visible light irradiation (λ> 420 nm) and can be used repeatedly. The possible mechanism for the enhanced photocatalytic properties of the Ag{sub 3}PO{sub 4} /Ag hybrid was also discussed. It was found that •OH and holes take priority over •O{sub 2}{sup -} radicals in serving as the main oxidant in the Ag{sub 3}PO{sub 4}/Ag photocatalytic system. Especially, the experimental results indicate that the surface plasmon resonance of Ag nanoparticles and a large negative charge of PO{sub 4}{sup 3-} ions as well as high separation efficiency of {sup e-} --h{sup +} pairs, facilitated the enhancement of the photocatalytic activity of the Ag{sub 3} PO{sub 4} /Ag composite. The results indicated that Ag{sub 3} PO{sub 4} /Ag is an efficient and stable visible-light-driven photocatalyst. (author)

  8. Rh Incompatibility

    Science.gov (United States)

    ... type is called Rh. Rh factor is a protein on red blood cells. Most people are Rh-positive; they have Rh factor. Rh-negative people don't have it. Rh factor is inherited though genes. When you're pregnant, blood from your baby can cross into your ...

  9. Comprehensive Airborne in Situ Characterization of Atmospheric Aerosols: From Angular Light Scattering to Particle Microphysics

    Science.gov (United States)

    Espinosa, W. Reed

    A comprehensive understanding of atmospheric aerosols is necessary both to understand Earth's climate as well as produce skillful air quality forecasts. In order to advance our understanding of aerosols, the Laboratory for Aerosols, Clouds and Optics (LACO) has recently developed the Imaging Polar Nephelometer instrument concept for the in situ measurement of aerosol scattering properties. Imaging Nephelometers provide measurements of absolute phase function and polarized phase function over a wide angular range, typically 3 degrees to 177 degrees, with an angular resolution smaller than one degree. The first of these instruments, the Polarized Imaging Nephelometer (PI-Neph), has taken part in five airborne field experiments and is the only modern aerosol polar nephelometer to have flown aboard an aircraft. A method for the retrieval of aerosol optical and microphysical properties from I-Neph measurements is presented and the results are compared with existing measurement techniques. The resulting retrieved particle size distributions agree to within experimental error with measurements made by commercial optical particle counters. Additionally, the retrieved real part of the refractive index is generally found to be within the predicted error of 0.02 from the expected values for three species of humidified salt particles, whose refractive index is well established. A synopsis is then presented of aerosol scattering measurements made by the PI-Neph during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and the Deep Convection Clouds and Chemistry (DC3) field campaigns. To better summarize these extensive datasets a novel aerosol classification scheme is developed, making use of ancillary data that includes gas tracers, chemical composition, aerodynamic particle size and geographic location, all independent of PI-Neph measurements. Principal component analysis (PCA) is then used to reduce the

  10. Speckle-based portable device for in-situ metrology of x-ray mirrors at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Zhou, Tunhe; Sawhney, Kawal

    2017-09-01

    For modern synchrotron light sources, the push toward diffraction-limited and coherence-preserved beams demands accurate metrology on X-ray optics. Moreover, it is important to perform in-situ characterization and optimization of X-ray mirrors since their ultimate performance is critically dependent on the working conditions. Therefore, it is highly desirable to develop a portable metrology device, which can be easily implemented on a range of beamlines for in-situ metrology. An X-ray speckle-based portable device for in-situ metrology of synchrotron X-ray mirrors has been developed at Diamond Light Source. Ultra-high angular sensitivity is achieved by scanning the speckle generator in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that characterization and alignment of X-ray mirrors is simple and fast. The functionality and feasibility of this device is presented with representative examples.

  11. Mechanism of Particle Formation in Silver/Epoxy Nanocomposites Obtained through a Visible-Light-Assisted in Situ Synthesis.

    Science.gov (United States)

    dell'Erba, Ignacio E; Martínez, Francisco D; Hoppe, Cristina E; Eliçabe, Guillermo E; Ceolín, Marcelo; Zucchi, Ileana A; Schroeder, Walter F

    2017-10-03

    A detailed understanding of the processes taking place during the in situ synthesis of metal/polymer nanocomposites is crucial to manipulate the shape and size of nanoparticles (NPs) with a high level of control. In this paper, we report an in-depth time-resolved analysis of the particle formation process in silver/epoxy nanocomposites obtained through a visible-light-assisted in situ synthesis. The selected epoxy monomer was based on diglycidyl ether of bisphenol A, which undergoes relatively slow cationic ring-opening polymerization. This feature allowed us to access a full description of the formation process of silver NPs before this was arrested by the curing of the epoxy matrix. In situ time-resolved small-angle X-ray scattering investigation was carried out to follow the evolution of the number and size of the silver NPs as a function of irradiation time, whereas rheological experiments combined with near-infrared and ultraviolet-visible spectroscopies were performed to interpret how changes in the rheological properties of the matrix affect the nucleation and growth of particles. The analysis of the obtained results allowed us to propose consistent mechanisms for the formation of metal/polymer nanocomposites obtained by light-assisted one-pot synthesis. Finally, the effect of a thermal postcuring treatment of the epoxy matrix on the particle size in the nanocomposite was investigated.

  12. Fluorescence photooxidation with eosin: a method for high resolution immunolocalization and in situ hybridization detection for light and electron microscopy

    Science.gov (United States)

    1994-01-01

    A simple method is described for high-resolution light and electron microscopic immunolocalization of proteins in cells and tissues by immunofluorescence and subsequent photooxidation of diaminobenzidine tetrahydrochloride into an insoluble osmiophilic polymer. By using eosin as the fluorescent marker, a substantial improvement in sensitivity is achieved in the photooxidation process over other conventional fluorescent compounds. The technique allows for precise correlative immunolocalization studies on the same sample using fluorescence, transmitted light and electron microscopy. Furthermore, because eosin is smaller in size than other conventional markers, this method results in improved penetration of labeling reagents compared to gold or enzyme based procedures. The improved penetration allows for three-dimensional immunolocalization using high voltage electron microscopy. Fluorescence photooxidation can also be used for high resolution light and electron microscopic localization of specific nucleic acid sequences by in situ hybridization utilizing biotinylated probes followed by an eosin-streptavidin conjugate. PMID:7519623

  13. In situ observation of modulated light emission of fiber fuse synchronized with void train over hetero-core splice point.

    Directory of Open Access Journals (Sweden)

    Shin-ichi Todoroki

    Full Text Available BACKGROUND: Fiber fuse is a process of optical fiber destruction under the action of laser radiation, found 20 years ago. Once initiated, opical discharge runs along the fiber core region to the light source and leaves periodic voids whose shape looks like a bullet pointing the direction of laser beam. The relation between damage pattern and propagation mode of optical discharge is still unclear even after the first in situ observation three years ago. METHODOLOGY/PRINCIPAL FINDINGS: Fiber fuse propagation over hetero-core splice point (Corning SMF-28e and HI 1060 was observed in situ. Sequential photographs obtained at intervals of 2.78 micros recorded a periodic emission at the tail of an optical discharge pumped by 1070 nm and 9 W light. The signal stopped when the discharge ran over the splice point. The corresponding damage pattern left in the fiber core region included a segment free of periodicity. CONCLUSIONS: The spatial modulation pattern of the light emission agreed with the void train formed over the hetero-core splice point. Some segments included a bullet-shaped void pointing in the opposite direction to the laser beam propagation although the sequential photographs did not reveal any directional change in the optical discharge propagation.

  14. In situ calibration of a light source in a sensor device

    Science.gov (United States)

    Okandan, Murat; Serkland, Darwin k.; Merchant, Bion J.

    2015-12-29

    A sensor device is described herein, wherein the sensor device includes an optical measurement system, such as an interferometer. The sensor device further includes a low-power light source that is configured to emit an optical signal having a constant wavelength, wherein accuracy of a measurement output by the sensor device is dependent upon the optical signal having the constant wavelength. At least a portion of the optical signal is directed to a vapor cell, the vapor cell including an atomic species that absorbs light having the constant wavelength. A photodetector captures light that exits the vapor cell, and generates an electrical signal that is indicative of intensity of the light that exits the vapor cell. A control circuit controls operation of the light source based upon the electrical signal, such that the light source emits the optical signal with the constant wavelength.

  15. Solid oxide electrode kinetics in light of in situ surface studies

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    2014-01-01

    The combination of in situ and in particular in operando characterization methods such as electrochemical impedance spectroscopy (EIS) on both technical and model electrode are well known ways to gain some practical insight in electrode reaction kinetics. Yet, is has become clear that in spite...... of the strengths it is not sufficient to reveal much details of the electrode mechanisms mainly because it provide average values only. Therefore it has to be combined with surface science methods in order to reveal the interface structure and composition. Ex situ methods have been very useful over the latest....... Furthermore, it seems that detailed mathematical modeling using new tools like COMSOL is necessary for the synthesis of the large amount of data for a well-characterized electrode into one physical meaningful picture. A brief review of literature an own data will be presented with a practical example of SOFC...

  16. Deposition of CdS nanoparticles on MIL-53(Fe) metal-organic framework with enhanced photocatalytic degradation of RhB under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Longxing, E-mail: hulxhhhb@shu.edu.cn [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Deng, Guihua [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Lu, Wencong [College of Sciences, Shanghai University, Shanghai 200444 (China); Pang, Siwei; Hu, Xing [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)

    2017-07-15

    Graphical abstract: The CdS/MIL-53(Fe) photocatalyst has been synthesized by a facile two-step solvothermal method and applied for photocatalytic degradation of organic pollutant RhB under visible light irradiation. - Highlights: • A novel CdS/MIL-53(Fe) photocatalyst was successfully synthesized via a facile two-step solvothermal method. • CdS/MIL-53(Fe) exhibited an enhanced visible-light photocatalytic degradation of RhB in water. • The mechanisms for the formation of CdS/MIL-53(Fe) and photocatalytic degradation of RhB were proposed. - Abstract: A novel composite, CdS/MIL-53(Fe), was successfully fabricated via a facile solvothermal method and characterized with XRD, SEM, TEM, XPS, FT-IR and UV–vis DRS. The results showed that the fabrication was able to result in a good dispersion of CdS nanoparticles onto MIL-53(Fe). The photocatalytic activities of the as-synthesized composite were investigated through the degradation of Rhodamine B (RhB) in water under visible light irradiation. It was found that the composite prepared at the mass ratio of CdS to MIL-53(Fe) of 1.5:1 displayed the highest photocatalytic activity. An approximately 92.5% of photocatalytic degradation of RhB was achieved at 0.5 g/L of 1.5-CdS/MIL dosage, 10 mg/L of initial RhB concentration and 23 °C of reaction temperature under visible light irradiation. The RhB photocatalytic degradation followed well the first-order kinetics equation and the increased catalyst dosage and optimal initial RhB concentration were responsible for the enhanced photocatalytic degradation. Quenching tests revealed that the predominant free radicals in the CdS/MIL-(53)-RhB{sub aq}-visible light system was O{sub 2}{sup −}·; nevertheless, h{sup +} and ·OH also contributed to a certain degree. The enhanced photocatalytic performance was ascribed to the formation of heterojunction structure between CdS and MIL-53(Fe) which significantly suppressed the recombination of photogenerated electron-hole pairs

  17. Deposition of CdS nanoparticles on MIL-53(Fe) metal-organic framework with enhanced photocatalytic degradation of RhB under visible light irradiation

    International Nuclear Information System (INIS)

    Hu, Longxing; Deng, Guihua; Lu, Wencong; Pang, Siwei; Hu, Xing

    2017-01-01

    Graphical abstract: The CdS/MIL-53(Fe) photocatalyst has been synthesized by a facile two-step solvothermal method and applied for photocatalytic degradation of organic pollutant RhB under visible light irradiation. - Highlights: • A novel CdS/MIL-53(Fe) photocatalyst was successfully synthesized via a facile two-step solvothermal method. • CdS/MIL-53(Fe) exhibited an enhanced visible-light photocatalytic degradation of RhB in water. • The mechanisms for the formation of CdS/MIL-53(Fe) and photocatalytic degradation of RhB were proposed. - Abstract: A novel composite, CdS/MIL-53(Fe), was successfully fabricated via a facile solvothermal method and characterized with XRD, SEM, TEM, XPS, FT-IR and UV–vis DRS. The results showed that the fabrication was able to result in a good dispersion of CdS nanoparticles onto MIL-53(Fe). The photocatalytic activities of the as-synthesized composite were investigated through the degradation of Rhodamine B (RhB) in water under visible light irradiation. It was found that the composite prepared at the mass ratio of CdS to MIL-53(Fe) of 1.5:1 displayed the highest photocatalytic activity. An approximately 92.5% of photocatalytic degradation of RhB was achieved at 0.5 g/L of 1.5-CdS/MIL dosage, 10 mg/L of initial RhB concentration and 23 °C of reaction temperature under visible light irradiation. The RhB photocatalytic degradation followed well the first-order kinetics equation and the increased catalyst dosage and optimal initial RhB concentration were responsible for the enhanced photocatalytic degradation. Quenching tests revealed that the predominant free radicals in the CdS/MIL-(53)-RhB aq -visible light system was O 2 − ·; nevertheless, h + and ·OH also contributed to a certain degree. The enhanced photocatalytic performance was ascribed to the formation of heterojunction structure between CdS and MIL-53(Fe) which significantly suppressed the recombination of photogenerated electron-hole pairs. Moreover, the

  18. In-situ volumetric topography of IC chips for defect detection using infrared confocal measurement with active structured light

    International Nuclear Information System (INIS)

    Chen, Liang-Chia; Le, Manh-Trung; Phuc, Dao Cong; Lin, Shyh-Tsong

    2014-01-01

    The article presents the development of in-situ integrated circuit (IC) chip defect detection techniques for automated clipping detection by proposing infrared imaging and full-field volumetric topography. IC chip inspection, especially held during or post IC packaging, has become an extremely critical procedure in IC fabrication to assure manufacturing quality and reduce production costs. To address this, in the article, microscopic infrared imaging using an electromagnetic light spectrum that ranges from 0.9 to 1.7 µm is developed to perform volumetric inspection of IC chips, in order to identify important defects such as silicon clipping, cracking or peeling. The main difficulty of infrared (IR) volumetric imaging lies in its poor image contrast, which makes it incapable of achieving reliable inspection, as infrared imaging is sensitive to temperature difference but insensitive to geometric variance of materials, resulting in difficulty detecting and quantifying defects precisely. To overcome this, 3D volumetric topography based on 3D infrared confocal measurement with active structured light, as well as light refractive matching principles, is developed to detect defects the size, shape and position of defects in ICs. The experimental results show that the algorithm is effective and suitable for in-situ defect detection of IC semiconductor packaging. The quality of defect detection, such as measurement repeatability and accuracy, is addressed. Confirmed by the experimental results, the depth measurement resolution can reach up to 0.3 µm, and the depth measurement uncertainty with one standard deviation was verified to be less than 1.0% of the full-scale depth-measuring range. (paper)

  19. Assessment of In Situ Time Resolved Shock Experiments at Synchrotron Light Sources*

    Science.gov (United States)

    Belak, J.; Ilavsky, J.; Hessler, J. P.

    2005-07-01

    Prior to fielding in situ time resolved experiments of shock wave loading at the Advanced Photon Source, we have performed feasibility experiments assessing a single photon bunch. Using single and poly-crystal Al, Ti, V and Cu shock to incipient spallation on the gas gun, samples were prepared from slices normal to the spall plane of thickness 100-500 microns. In addition, single crystal Al of thickness 500 microns was shocked to incipient spallation and soft recovered using the LLNL e-gun mini-flyer system. The e-gun mini-flyer impacts the sample target producing a 10's ns flat-top shock transient. Here, we present results for imaging, small-angle scattering (SAS), and diffraction. In particular, there is little SAS away from the spall plane and significant SAS at the spall plane, demonstrating the presence of sub-micron voids. * Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38 and work performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  20. In situ synthesis of CdS decorated titanate nanosheets with highly efficient visible-light-induced photoactivity

    International Nuclear Information System (INIS)

    Liu, Zhi; Fang, Pengfei; Liu, Fuwei; Zhang, Yupeng; Liu, Xinzhao; Lu, Dingze; Li, Delong; Wang, Shaojie

    2014-01-01

    Appropriately dispersed CdS nanoparticles were intimately embedded into titanate nanosheets (TNS) through ion-exchange and in situ sulfurization process. The sheet-like intermediates of titanate during the transforming process into nanotubes were firstly used as substrate for the decoration of CdS nanoparticles, and the synthesis route was achieved by ion-exchange process between titanate precursor and Cd 2+ ions solution, and the following sulfuration process by using Na 2 S solutions. The catalytic activity of the photocatalyst was investigated by photodegradation of Rhodamine B under visible light irradiation. With an optimal Cd/Ti molar ratio of 15%, the CdS/TNS composite exhibits the highest photocatalytic performance, which is approximately 5.4 times greater than that of pure TNS. The mechanism of the separation behavior of the photogenerated charges was also discussed.

  1. In-situ measurement of the light attenuation in liquid argon in the GERDA cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Birgit [TU Dresden, Institut fuer Kern- und Teilchenphysik (Germany); Collaboration: GERDA-Collaboration

    2016-07-01

    GERDA is an experiment searching for neutrinoless double beta decay in {sup 76}Ge. It operates the enriched germanium detectors bare in liquid argon (LAr), which serves both as a coolant and a shield for external radiation. Phase II of GERDA aims for an exposure of 100 kg . yr with a background index (BI) of 10{sup -3} cts/(kg . yr . keV). One of the major improvements to further reduce the BI comes from the instrumentation of the LAr to readout its scintillation light. The attenuation of the scintillation light in LAr limits the effective active volume of the LAr veto and is therefore a key parameter to characterize the instrumentation. In order to measure the light attenuation in LAr, a setup was designed that could be deployed directly into the GERDA cryostat. This setup contains a movable beta source and a PMT to detect the scintillation light at different distances. The talk will present the acquired data as well as a detailed description of the performed analysis technique and the current results.

  2. In Situ Fluorine Doping of TiO2 Superstructures for Efficient Visible-Light Driven Hydrogen Generation.

    Science.gov (United States)

    Zhang, Peng; Tachikawa, Takashi; Fujitsuka, Mamoru; Majima, Tetsuro

    2016-03-21

    With the aid of breakthroughs in nanoscience and nanotechnology, it is imperative to develop metal oxide semiconductors through visible light-driven hydrogen generation. In this study, TiOF2 was incorporated as an n-type F-dopant source to TiO2 mesocrystals (TMCs) with visible-light absorption during the topotactic transformation. The crystal growth, structural change, and dynamic morphological evolution, from the initial intermediate NH4 TiOF3 to HTiOF3, TiOF2, and F-doped TMCs, were verified through in situ temperature-dependent techniques to elucidate the doping mechanism from intermediate TiOF2. The visible-light efficiencies of photocatalytic hydrogen were dependent on the contents of the dopant as compared with the pure TMC and a controled reference. Using femtosecond time-resolved diffuse reflectance spectroscopy, the charge-transfer dynamics were monitored to confirm the improvement of charge separation after doping. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. In situ glow discharge plasma electrolytic synthesis of reduced TiO2 for enhanced visible light photocatalysis

    Science.gov (United States)

    Feng, Guang; Wu, Botao; Qayyum Khan, Abdul; Zeng, Heping

    2018-05-01

    Reduced titanium dioxide (TiO2‑x) due to its extraordinary visible light absorption has been widely investigated in photodegradation and water splitting nowadays. However, conventional routes to synthesize reduced TiO2 usually demand multiple preparation steps, harsh controlled conditions or expensive facilities. Here we developed a single-step in situ approach to prepare the gray TiO2‑x nanoparticles (sub-10 nm) effectively by the glow discharge plasma electrolysis (GDPE) under atmospheric pressure. The co-existence of self-doped oxygen vacancies and Ti3+ in the generated TiO2‑x nanoparticles is demonstrated by electron paramagnetic resonance (EPR). The tunable ratio of bulk/surface defect can be realized by controlling the glow discharge power directly. It should be noticed that Ti3+ in the synthesized TiO2‑x are quite stable in ambient air. The UV–vis spectra of gray TiO2‑x show an enhanced visible light absorption, which leads to high visible-light photocatalytic activity. Moreover, the as-prepared TiO2‑x after 6 months storage still shows excellent stability during photocatalytic reactions. Owing to its simplicity and effectivity, this preparation method with GDPE should provide a large-scale production for TiO2‑x with high photoactivity.

  4. Synthesis and Study of Shape-Memory Polymers Selectively Induced by Near-Infrared Lights via In Situ Copolymerization

    Directory of Open Access Journals (Sweden)

    Tianyu Fang

    2017-05-01

    Full Text Available Shape-memory polymers (SMPs selectively induced by near-infrared lights of 980 or 808 nm were synthesized via free radical copolymerization. Methyl methacrylate (MMA monomer, ethylene glycol dimethylacrylate (EGDMA as a cross-linker, and organic complexes of Yb(TTA2AAPhen or Nd(TTA2AAPhen containing a reactive ligand of acrylic acid (AA were copolymerized in situ. The dispersion of the organic complexes in the copolymer matrix was highly improved, while the transparency of the copolymers was negligibly influenced in comparison with the pristine cross-linked PMMA. In addition, the thermal resistance of the copolymers was enhanced with the complex loading, while their glass transition temperature, cross-linking level, and mechanical properties were to some extent reduced. Yb(TTA2AAPhen and Nd(TTA2AAPhen provided the prepared copolymers with selective photothermal effects and shape-memory functions for 980 and 808 nm NIR lights, respectively. Finally, smart optical devices which exhibited localized transparency or diffraction evolution procedures were demonstrated based on the prepared copolymers, owing to the combination of good transparency and selective light wavelength responsivity.

  5. Powder agglomeration study in RF silane plasmas by in situ polarization-sensitive laser light scattering and TEM measurements

    Energy Technology Data Exchange (ETDEWEB)

    Courteille, C; Hollenstein, C; Dorier, J L; Gay, P; Schwarzenbach, W; Howling, A A [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Bertran, E; Viera, G [Barcelona Univ., Dep. de de Fisica Aplicada I Electronica, Barcelona (Spain); Martins, R; Macarico, A [FCTUNL, Materials Science Dep., Monte de Caparica (Portugal)

    1966-03-01

    To determine self-consistently the time evolution of particle size and their number density in situ multi-angle polarization laser light scattering was used. Cross-polarization intensities (incident and scattered light intensities with opposite polarization) measured at 135{sup o} and ex-situ TEM analysis demonstrate the existence of non-spherical agglomerates during the early phase of agglomeration. Later in the particle time development both techniques reveal spherical particles again. The presence of strong cross-polarization intensities is accompanied by low frequency instabilities detected on the scattered light intensities and plasma emission. It is found that the particle radius and particle number density during the agglomeration phase can be well described by the Brownian Free Molecule Coagulation model. Application of this neutral particle coagulation model is justified by calculation of the particle charge whereby it is shown that particles of a few tens of nanometer can be considered as neutral under our experimental conditions. The measured particle dispersion can be well described by a Brownian Free Molecule Coagulation model including a log-normal particle size distribution. (author) 11 figs., 48 refs.

  6. Powder agglomeration study in RF silane plasmas by in situ polarization-sensitive laser light scattering and TEM measurements

    International Nuclear Information System (INIS)

    Courteille, C.; Hollenstein, C.; Dorier, J.L.; Gay, P.; Schwarzenbach, W.; Howling, A.A.; Bertran, E.; Viera, G.; Martins, R.; Macarico, A.

    1966-03-01

    To determine self-consistently the time evolution of particle size and their number density in situ multi-angle polarization laser light scattering was used. Cross-polarization intensities (incident and scattered light intensities with opposite polarization) measured at 135 o and ex-situ TEM analysis demonstrate the existence of non-spherical agglomerates during the early phase of agglomeration. Later in the particle time development both techniques reveal spherical particles again. The presence of strong cross-polarization intensities is accompanied by low frequency instabilities detected on the scattered light intensities and plasma emission. It is found that the particle radius and particle number density during the agglomeration phase can be well described by the Brownian Free Molecule Coagulation model. Application of this neutral particle coagulation model is justified by calculation of the particle charge whereby it is shown that particles of a few tens of nanometer can be considered as neutral under our experimental conditions. The measured particle dispersion can be well described by a Brownian Free Molecule Coagulation model including a log-normal particle size distribution. (author) 11 figs., 48 refs

  7. Deposition of CdS nanoparticles on MIL-53(Fe) metal-organic framework with enhanced photocatalytic degradation of RhB under visible light irradiation

    Science.gov (United States)

    Hu, Longxing; Deng, Guihua; Lu, Wencong; Pang, Siwei; Hu, Xing

    2017-07-01

    A novel composite, CdS/MIL-53(Fe), was successfully fabricated via a facile solvothermal method and characterized with XRD, SEM, TEM, XPS, FT-IR and UV-vis DRS. The results showed that the fabrication was able to result in a good dispersion of CdS nanoparticles onto MIL-53(Fe). The photocatalytic activities of the as-synthesized composite were investigated through the degradation of Rhodamine B (RhB) in water under visible light irradiation. It was found that the composite prepared at the mass ratio of CdS to MIL-53(Fe) of 1.5:1 displayed the highest photocatalytic activity. An approximately 92.5% of photocatalytic degradation of RhB was achieved at 0.5 g/L of 1.5-CdS/MIL dosage, 10 mg/L of initial RhB concentration and 23 °C of reaction temperature under visible light irradiation. The RhB photocatalytic degradation followed well the first-order kinetics equation and the increased catalyst dosage and optimal initial RhB concentration were responsible for the enhanced photocatalytic degradation. Quenching tests revealed that the predominant free radicals in the CdS/MIL-(53)-RhBaq-visible light system was O2-rad ; nevertheless, h+ and rad OH also contributed to a certain degree. The enhanced photocatalytic performance was ascribed to the formation of heterojunction structure between CdS and MIL-53(Fe) which significantly suppressed the recombination of photogenerated electron-hole pairs. Moreover, the reusability of 1.5-CdS/MIL composite was also studied.

  8. In-situ measurement of the light attenuation in liquid argon in the GERDA cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Birgit [IKTP, TU Dresden (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    GERDA is an experiment searching for neutrinoless double beta decay in {sup 76}Ge. It uses germanium detectors which are enriched in {sup 76}Ge and operates them naked in liquid argon (LAr), which serves both as a coolant and a shield for external radiation. For phase II of GERDA it is planned to reach an exposure of 100 kg . yr with a BI of 10{sup -3} cts/(kg . yr . keV). One of the major improvements to further reduce the BI is to instrument the LAr to act as an additional background veto. The attenuation of the scintillation light in LAr creates a constraint on the effective active volume of the LAr veto and is therefore a key parameter to characterize the instrumentation. In order to measure the light attenuation in LAr, a setup was designed that could be deployed directly into the GERDA cryostat. This setup contains a movable beta source and a PMT to detect the scintillation light at different distances. The talk will describe in detail the construction of the setup, its successful deployment in the GERDA cryostat and the consecutive analysis of the acquired data.

  9. In-Situ Generated Graphene as the Catalytic Site for Visible-Light Mediated Ethylene Epoxidation on AG Nanocatalysts

    Science.gov (United States)

    Zhang, Xueqiang Alex; Jain, Prashant

    2017-06-01

    Despite the harsh conditions for chemical conversion, ethylene oxide produced from ethylene epoxidation on Ag-based heterogeneous catalyst constitutes one of the largest volume chemicals in chemical industry. Recently, photocatalytic epoxidation of ethylene over plasmonic Ag nanoparticles enables the chemical conversion under significantly decreased temperature and ambient pressure conditions. Yet a detailed understanding of the photocatalytic process at the reactant/catalyst interface is under debate. Surface enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy technique that enables the localized detection of rare and/or transient chemical species with high sensitivity under in situ and ambient conditions. Using SERS, we are able to monitor at individual sites of an Ag nanocatalyst the visible-light-mediated adsorption and epoxidation of ethylene. From detected intermediates, we find that the primary step in the photoepoxidation is the transient formation of graphene catalyzed by the Ag surface. Density functional theory (DFT) simulations that model the observed SERS spectra suggest that the defective edge sites of the graphene formed on Ag constitute the active site for C2H4 adsorption and epoxidation. Further studies with pre-formed graphene/Ag catalyst composites confirm the indispensable role of graphene in visible-light-mediated ethylene epoxidation. Carbon is often thought to be either an innocent support or a poison for metallic catalysts; however our studies reveal a surprising role for crystalline carbon layers as potential co-catalysts.

  10. In Situ Catalytic Pyrolysis of Low-Rank Coal for the Conversion of Heavy Oils into Light Oils

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem Amin

    2017-01-01

    Full Text Available Lighter tars are largely useful in chemical industries but their quantity is quite little. Catalytic cracking is applied to improve the yield of light tars during pyrolysis. Consequently, in situ upgrading technique through a MoS2 catalyst has been explored in this research work. MoS2 catalyst is useful for the conversion of high energy cost into low energy cost. The variations in coal pyrolysis tar without and with catalyst were determined. Meanwhile, the obtained tar was analyzed using simulated distillation gas chromatograph and Elemental Analyzer. Consequently, the catalyst reduced the pitch contents and increased the fraction of light tar from 50 to 60 wt.% in coal pyrolysis tar. MoS2 catalyst increased the liquid yield from 18 to 33 (wt.%, db and decreased gas yield from 27 to 12 (wt.%, db compared to coal without catalyst. Moreover, it increased H content and hydrogen-to-carbon ratio by 7.9 and 3.3%, respectively, and reduced the contents of nitrogen, sulphur, and oxygen elements by 8.1%, 15.2%, and 23.9%, respectively, in their produced tars compared to coal without catalyst.

  11. Influence of different light-curing units on the surface roughness of restorative materials: in situ study

    Directory of Open Access Journals (Sweden)

    Juliane Cristina Ciccone-Nogueira

    2007-09-01

    Full Text Available The aim of this study was to evaluate the influence of different light sources (LED and Halogen lamp on the roughness (superficial of composite resin (Filtek Z250, Filtek P60, Charisma and Durafill varying post-irradiation times, in an in situ experiment. For this purpose, 80 specimens were made in polyurethane moulds. Ten volunteers without medicament use and good oral condition were selected and from them study moulds were obtained. A palatal intra-oral acrylic resin appliance was made for each of the subjects of the experiment. In each appliance, two specimens of each material were fixed (LED/Halogen lamp - control group. Roughness tests were performed immediately and 30 days after initial light-curing. Statistical analysis was performed using ANOVA. Statistically significant difference was observed only between post-irradiation times, where the 30th day showed the highest roughness values. It be concluded that roughness was influenced only by post-irradiation times, presenting the 30- days period inferior behavior.

  12. In situ Sn2+-incorporation synthesis of titanate nanotubes for photocatalytic dye degradation under visible light illumination

    International Nuclear Information System (INIS)

    Tsai, Chien-Cheng; Chen, Liang-Che; Yeh, Te-Fu; Teng, Hsisheng

    2013-01-01

    Highlights: ► Sn 2+ ions sensitize titanate nanotubes for photocatalysis under visible-light illumination. ► The Sn 5s orbital replaces the O 2p orbital as the top level of the valence band of titanates. ► The presence of Sn 2+ lifts the valence band of titanate nanotubes by approximately 0.9 eV. ► The doped Sn 2+ sites are active in donating photo-induced charges to dye degradation. - Abstract: Sn 2+ -incorporated titanate nanotubes, prepared by washing a layered sodium titanate with a SnCl 2 solution for tube formation, exhibit noticeable photocatalytic activity under visible light irradiation. This in situ synthesis results in a Sn/Ti ratio of approximately 0.6. Because of the introduction of Sn 2+ ions, the Sn 5s orbital replaces the O 2p orbital as the top level of the valence band of titanate nanotubes. Optical absorption analysis shows that Sn doping reduces the bandgap of titanate nanotubes from 3.5 to 2.6 eV. Oxidation of the Sn 2+ -incorporated titanate nanotubes leads to oxidation of Sn 2+ to Sn 4+ , hence, widening the bandgap. Under visible light irradiation, Sn 2+ -incorporated titanate nanotubes effectively degrade methylene blue in an aqueous solution, whereas the bare titanate nanotubes exhibit substantially lower photocatalytic activity. Photoluminescence analysis demonstrates that the induced charges from excitation of the Sn 2+ ions tend to be relaxed through chemical interactions, rather than irradiative recombination.

  13. Inversion of In Situ Light Absorption and Attenuation Measurements to Estimate Constituent Concentrations in Optically Complex Shelf Seas

    Science.gov (United States)

    Ramírez-Pérez, M.; Twardowski, M.; Trees, C.; Piera, J.; McKee, D.

    2018-01-01

    A deconvolution approach is presented to use spectral light absorption and attenuation data to estimate the concentration of the major nonwater compounds in complex shelf sea waters. The inversion procedure requires knowledge of local material-specific inherent optical properties (SIOPs) which are determined from natural samples using a bio-optical model that differentiates between Case I and Case II waters and uses least squares linear regression analysis to provide optimal SIOP values. A synthetic data set is used to demonstrate that the approach is fundamentally consistent and to test the sensitivity to injection of controlled levels of artificial noise into the input data. Self-consistency of the approach is further demonstrated by application to field data collected in the Ligurian Sea, with chlorophyll (Chl), the nonbiogenic component of total suspended solids (TSSnd), and colored dissolved organic material (CDOM) retrieved with RMSE of 0.61 mg m-3, 0.35 g m-3, and 0.02 m-1, respectively. The utility of the approach is finally demonstrated by application to depth profiles of in situ absorption and attenuation data resulting in profiles of optically significant constituents with associated error bar estimates. The advantages of this procedure lie in the simple input requirements, the avoidance of error amplification, full exploitation of the available spectral information from both absorption and attenuation channels, and the reasonably successful retrieval of constituent concentrations in an optically complex shelf sea.

  14. Carbonate-based Janus micromotors moving in ultra-light acidic environment generated by HeLa cells in situ

    Science.gov (United States)

    Guix, Maria; Meyer, Anne K.; Koch, Britta; Schmidt, Oliver G.

    2016-02-01

    Novel approaches to develop naturally-induced drug delivery in tumor environments in a deterministic and controlled manner have become of growing interest in recent years. Different polymeric-based microstructures and other biocompatible substances have been studied taking advantage of lactic acidosis phenomena in tumor cells, which decrease the tumor extracellular pH down to 6.8. Micromotors have recently demonstrated a high performance in living systems, revealing autonomous movement in the acidic environment of the stomach or moving inside living cells by using acoustic waves, opening the doors for implementation of such smart microengines into living entities. The need to develop biocompatible motors which are driven by natural fuel sources inherently created in biological systems has thus become of crucial importance. As a proof of principle, we here demonstrate calcium carbonate Janus particles moving in extremely light acidic environments (pH 6.5), whose motion is induced in conditioned acidic medium generated by HeLa cells in situ. Our system not only obviates the need for an external fuel, but also presents a selective activation of the micromotors which promotes their motion and consequent dissolution in presence of a quickly propagating cell source (i.e. tumor cells), therefore inspiring new micromotor configurations for potential drug delivery systems.

  15. In situ photodeposition of cobalt on CdS nanorod for promoting photocatalytic hydrogen production under visible light irradiation

    Science.gov (United States)

    Chen, Wei; Wang, Yanhong; Liu, Mei; Gao, Li; Mao, Liqun; Fan, Zeyun; Shangguan, Wenfeng

    2018-06-01

    Non-noble metal Co were loaded on CdS for enhancing photocatalytic activity of water splitting by a simple and efficient in situ photodeposition method. The Co particles with diameter ca. 5 nm were photoreduced and then loaded on the surface of CdS. The loading of Co can not only effectively promote the separation of electrons and holes photoexcited by CdS, but reduce the overpotential of hydrogen evolution as well, thus enhancing photocatalytic activity of water splitting. The highest photocatalytic H2 evolution rate of Co/CdS reaches up to 1299 μmol h-1 under visible light irradiation(λ > 420 nm) when the amount of loading is 1.0 wt%, which is 17 times of that of pure CdS and achieves 80% of that of 0.5 wt%Pt/CdS. This work not only exhibits a pathway to obtain photocatalysts with high photocatalytic activity for hydrogen production, but provides a possibility for the utilization of low cost Co as a substitute for noble metals in photocatalytic hydrogen production.

  16. Thermosensitive polymer-grafted iron oxide nanoparticles studied by in situ dynamic light backscattering under magnetic hyperthermia

    Science.gov (United States)

    Hemery, Gauvin; Garanger, Elisabeth; Lecommandoux, Sébastien; Wong, Andrew D.; Gillies, Elizabeth R.; Pedrono, Boris; Bayle, Thomas; Jacob, David; Sandre, Olivier

    2015-12-01

    Thermometry at the nanoscale is an emerging area fostered by intensive research on nanoparticles (NPs) that are capable of converting electromagnetic waves into heat. Recent results suggest that stationary gradients can be maintained between the surface of NPs and the bulk solvent, a phenomenon sometimes referred to as ‘cold hyperthermia’. However, the measurement of such highly localized temperatures is particularly challenging. We describe here a new approach to probing the temperature at the surface of iron oxide NPs and enhancing the understanding of this phenomenon. This approach involves the grafting of thermosensitive polymer chains to the NP surface followed by the measurement of macroscopic properties of the resulting NP suspension and comparison to a calibration curve built up by macroscopic heating. Superparamagnetic iron oxide NPs were prepared by the coprecipitation of ferrous and ferric salts and functionalized with amines, then azides using a sol-gel route followed by a dehydrative coupling reaction. Thermosensitive poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) with an alkyne end-group was synthesized by controlled radical polymerization and was grafted using a copper assisted azide-alkyne cycloaddition reaction. Measurement of the colloidal properties by dynamic light scattering (DLS) indicated that the thermosensitive NPs exhibited changes in their Zeta potential and hydrodynamic diameter as a function of pH and temperature due to the grafted PDMAEMA chains. These changes were accompanied by changes in the relaxivities of the NPs, suggesting application as thermosensitive contrast agents for magnetic resonance imaging (MRI). In addition, a new fibre-based backscattering setup enabled positioning of the DLS remote-head as close as possible to the coil of a magnetic heating inductor to afford in situ probing of the backscattered light intensity, hydrodynamic diameter, and temperature. This approach provides a promising platform for

  17. Seeing the light: Applications of in situ optical measurements for understanding DOM dynamics in river systems (Invited)

    Science.gov (United States)

    Pellerin, B. A.; Bergamaschi, B. A.; Downing, B. D.; Saraceno, J.; Fleck, J.; Shanley, J. B.; Aiken, G.; Boss, E.; Fujii, R.

    2009-12-01

    A critical challenge for understanding the sources, character and cycling of dissolved organic matter (DOM) is making measurements at the time scales in which changes occur in aquatic systems. Traditional approaches for data collection (daily to monthly discrete sampling) are often limited by analytical and field costs, site access and logistical challenges, particularly for long-term sampling at a large number of sites. The ability to make optical measurements of DOM in situ has been known for more than 50 years, but much of the work on in situ DOM absorbance and fluorescence using commercially-available instruments has taken place in the last few years. Here we present several recent examples that highlight the application of in situ measurements for understanding DOM dynamics in riverine systems at intervals of minutes to hours. Examples illustrate the utility of in situ optical sensors for studies of DOM over short-duration events of days to weeks (diurnal cycles, tidal cycles, storm events and snowmelt periods) as well as longer-term continuous monitoring for months to years. We also highlight the application of in situ optical DOM measurements as proxies for constituents that are significantly more difficult and expensive to measure at high frequencies (e.g. methylmercury, trihalomethanes). Relatively simple DOM absorbance and fluorescence measurements made in situ could be incorporated into short and long-term ecological research and monitoring programs, resulting in advanced understanding of organic matter sources, character and cycling in riverine systems.

  18. Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw

    Directory of Open Access Journals (Sweden)

    P. Zieger

    2011-03-01

    Full Text Available In the field, aerosol in-situ measurements are often performed under dry conditions (relative humidity RH<30–40%. Since ambient aerosol particles experience hygroscopic growth at enhanced RH, their microphysical and optical properties – especially the aerosol light scattering – are also strongly dependent on RH. The knowledge of this RH effect is of crucial importance for climate forcing calculations or for the comparison of remote sensing with in-situ measurements. Here, we will present results from a four-month campaign which took place in summer 2009 in Cabauw, The Netherlands. The aerosol scattering coefficient σsp(λ was measured dry and at various, predefined RH conditions between 20 and 95% with a humidified nephelometer. The scattering enhancement factor f(RH,λ is the key parameter to describe the effect of RH on σsp(λ and is defined as σsp(RH,λ measured at a certain RH divided by the dry σsp(dry,λ. The measurement of f(RH,λ together with the dry absorption measurement (assumed not to change with RH allows the determination of the actual extinction coefficient σep(RH,λ at ambient RH. In addition, a wide range of other aerosol properties were measured in parallel. The measurements were used to characterize the effects of RH on the aerosol optical properties. A closure study showed the consistency of the aerosol in-situ measurements. Due to the large variability of air mass origin (and thus aerosol composition a simple parameterization of f(RH,λ could not be established. If f(RH,λ needs to be predicted, the chemical composition and size distribution need to be known. Measurements of four MAX-DOAS (multi-axis differential optical absorption spectroscopy instruments were used to retrieve vertical profiles of σep(λ. The values of the lowest layer were compared to the in-situ values after conversion of the latter ones to ambient

  19. CoFeRh alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tabakovic, Ibro [Seagate Technology, Research and Development, Bloomington, MN 55435 (United States)], E-mail: ibro.m.tabakovic@seagate.com; Qiu Jiaoming; Riemer, Steve; Sun Ming; Vas' ko, Vlad; Kief, Mark [Seagate Technology, Research and Development, Bloomington, MN 55435 (United States)

    2008-01-01

    The electrochemical behavior of Rh(III) species in CoFe solution containing RhCl{sub 3}, NH{sub 4}Cl, H{sub 3}BO{sub 3}, CoSO{sub 4}, FeSO{sub 4}, saccharin, and NaLS (Na lauryl sulfate) has been investigated. The electrochemistry of Rh(III) species is influenced by each of the compounds present in CoFe plating solution, but especially by addition of saccharin and H{sub 3}BO{sub 3} to the RhCl{sub 3}-NH{sub 4}Cl solution. The nucleation and growth of Rh on GC (glassy carbon), Ru, and Cu electrodes from NH{sub 4}Cl solution was studied using the potentiostatic current-transient methods. The results support a predominantly progressive nucleation of Rh on all three-electrode surfaces. The nucleation kinetic parameters ANo (steady state nucleation rate) and Ns (saturation nuclear number density) were found to vary with potential and are electrode-dependent in order: GC > Ru{approx}Cu. The electrodeposited Rh films obtained from NH{sub 4}Cl solution and nonmagnetic CoFeRh film obtained from CoFe solution were characterized in terms of the following properties: morphology, surface roughness, crystal structure and chemical composition. The origin of light elements found in Rh and CoFeRh films (O, Cl, S, C, N) was discussed.

  20. CoFeRh alloys

    International Nuclear Information System (INIS)

    Tabakovic, Ibro; Qiu Jiaoming; Riemer, Steve; Sun Ming; Vas'ko, Vlad; Kief, Mark

    2008-01-01

    The electrochemical behavior of Rh(III) species in CoFe solution containing RhCl 3 , NH 4 Cl, H 3 BO 3 , CoSO 4 , FeSO 4 , saccharin, and NaLS (Na lauryl sulfate) has been investigated. The electrochemistry of Rh(III) species is influenced by each of the compounds present in CoFe plating solution, but especially by addition of saccharin and H 3 BO 3 to the RhCl 3 -NH 4 Cl solution. The nucleation and growth of Rh on GC (glassy carbon), Ru, and Cu electrodes from NH 4 Cl solution was studied using the potentiostatic current-transient methods. The results support a predominantly progressive nucleation of Rh on all three-electrode surfaces. The nucleation kinetic parameters ANo (steady state nucleation rate) and Ns (saturation nuclear number density) were found to vary with potential and are electrode-dependent in order: GC > Ru∼Cu. The electrodeposited Rh films obtained from NH 4 Cl solution and nonmagnetic CoFeRh film obtained from CoFe solution were characterized in terms of the following properties: morphology, surface roughness, crystal structure and chemical composition. The origin of light elements found in Rh and CoFeRh films (O, Cl, S, C, N) was discussed

  1. Ultraviolet electroluminescence from nitrogen-doped ZnO-based heterojuntion light-emitting diodes prepared by remote plasma in situ atomic layer-doping technique.

    Science.gov (United States)

    Chien, Jui-Fen; Liao, Hua-Yang; Yu, Sheng-Fu; Lin, Ray-Ming; Shiojiri, Makoto; Shyue, Jing-Jong; Chen, Miin-Jang

    2013-01-23

    Remote plasma in situ atomic layer doping technique was applied to prepare an n-type nitrogen-doped ZnO (n-ZnO:N) layer upon p-type magnesium-doped GaN (p-GaN:Mg) to fabricate the n-ZnO:N/p-GaN:Mg heterojuntion light-emitting diodes. The room-temperature electroluminescence exhibits a dominant ultraviolet peak at λ ≈ 370 nm from ZnO band-edge emission and suppressed luminescence from GaN, as a result of the decrease in electron concentration in ZnO and reduced electron injection from n-ZnO:N to p-GaN:Mg because of the nitrogen incorporation. The result indicates that the in situ atomic layer doping technique is an effective approach to tailoring the electrical properties of materials in device applications.

  2. Ratiometric two-photon excited photoluminescence of quantum dots triggered by near-infrared-light for real-time detection of nitric oxide release in situ

    International Nuclear Information System (INIS)

    Jin, Hui; Gui, Rijun; Sun, Jie; Wang, Yanfeng

    2016-01-01

    Probe-donor integrated nanocomposites were developed from conjugating silica-coated Mn"2"+:ZnS quantum dots (QDs) with MoS_2 QDs and photosensitive nitric oxide (NO) donors (Fe_4S_3(NO)_7"−, RBS). Under excitation with near-infrared (NIR) light at 808 nm, the Mn"2"+:ZnS@SiO_2/MoS_2-RBS nanocomposites showed the dual-emissive two-photon excited photoluminescence (TPEPL) that induced RBS photolysis to release NO in situ. NO caused TPEPL quenching of Mn"2"+:ZnS QDs, but it produced almost no impact on the TPEPL of MoS_2 QDs. Hence, the nanocomposites were developed as a novel QDs-based ratiometric TPEPL probe for real-time detection of NO release in situ. The ratiometric TPEPL intensity is nearly linear (R"2 = 0.9901) with NO concentration in the range of 0.01∼0.8 μM, which corresponds to the range of NO release time (0∼15 min). The detection limit was calculated to be approximately 4 nM of NO. Experimental results confirmed that this novel ratiometric TPEPL probe possessed high selectivity and sensitivity for the detection of NO against potential competitors, and especially showed high detection performance for NIR-light triggered NO release in tumor intracellular microenvironments. These results would promote the development of versatile probe-donor integrated systems, also providing a facile and efficient strategy to real-time detect the highly controllable drug release in situ, especially in physiological microenvironments. - Highlights: • Mn"2"+:ZnS@SiO_2/MoS_2-RBS nanocomposites were developed as a novel ratiometric two-photon excited fluorescence probe. • This probe could conduct real-time detection of nitric oxide release in situ. • High feasibility of this probe was confirmed in tumor intracellular microenvironments.

  3. In-situ fabrication of diketopyrrolopyrrole-carbazole-based conjugated polymer/TiO2 heterojunction for enhanced visible light photocatalysis

    Science.gov (United States)

    Yang, Long; Yu, Yuyan; Zhang, Jianling; Chen, Fu; Meng, Xiao; Qiu, Yong; Dan, Yi; Jiang, Long

    2018-03-01

    Aiming at developing highly efficient photocatalysts by broadening the light-harvesting region and suppressing photo-generated electron-hole recombination simultaneously, this work reports rational design and fabrication of donor-acceptor (D-A) conjugated polymer/TiO2 heterojunction catalyst with strong interfacial interactions by a facile in-situ thermal treatment. To expand the light-harvesting window, soluable conjugated copolymers with D-A architecture are prepared by Pd-mediated polycondensation of diketopyrrolopyrrole (DPP) and t-butoxycarbonyl (t-Boc) modified carbazole (Car), and used as visible-light-harvesting antenna to couple with TiO2 nanocrystals. The DPP-Car/TiO2 composites show wide range absorption in 300-1000 nm. To improve the interfacial binding at the interface, a facile in-situ thermal treatment is carried out to cleave the pendant t-Boc groups in carbazole units and liberate the polar amino groups (-NH-) which strongly bind to the surface of TiO2 through dipole-dipole interactions, forming a heterojunction interface. This in-situ thermal treatment changes the surface elemental distribution of TiO2, reinforces the interface bonding at the boundary of conjugated polymers/TiO2 and finally improves the photocatalytic efficiency of DPP-Car/TiO2 under visible-light irradiation. The interface changes are characterized and verified through Fourier-transform infrared spectroscopy (FT-IR), photo images, UV/Vis (solution state and powder diffuse reflection spectroscopy), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fluorescence, scanning electron microscopy(SEM) and transmission electron microscopy (TEM) techniques. This study provides a new strategy to avoid the low solubility of D-A conjugated polymers and construct highly-efficient conjugated polymer/TiO2 heterojunction by enforcing the interface contact and facilitating charge or energy transfer for the applications in photocatalysis.

  4. TiO{sub 2}/N-graphene nanocomposite via a facile in-situ hydrothermal sol–gel strategy for visible light photodegradation of eosin Y

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yingliang; Pei, Fuyun, E-mail: xusg@zzu.edu.cn; Lu, Ruijuan; Xu, Shengang; Cao, Shaokui, E-mail: caoshaokui@zzu.edu.cn

    2014-12-15

    Highlights: • TiO{sub 2}/N-graphene is synthesized via in-situ hydrothermal sol–gel strategy. • TiO{sub 2} nanoparticles are chemically anchored on N-graphene nanosheets. • The band gap of TiO{sub 2}/N-graphene is red-shifted from neat TiO{sub 2} nanoparticles. • 5-NGT nanocomposite has the best visible light photodegradation performance. - Abstract: TiO{sub 2}/N-graphene nanocomposites are synthesized via a facile in-situ hydrothermal sol–gel strategy in order to improve the photocatalytic efficiency for pollutant photodegradation under visible light irradiation. The as-prepared nanocomposites are respectively characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and UV–vis diffuse reflectance spectroscopy. Results indicated that neat TiO{sub 2} nanoparticles have an average diameter about 6.70 nm while TiO{sub 2} nanoparticles in TiO{sub 2}/N-graphene nanocomposites synthesized through in-situ hydrothermal sol–gel strategy bear an average diameter of ∼1 nm and are anchored on N-graphene nanosheets via chemical bonding. Both neat TiO{sub 2} nanoparticles and chemically anchored TiO{sub 2} nanoparticles in TiO{sub 2}/N-graphene nanocomposites take on the crystal type of anatase. The band gap of TiO{sub 2}/N-graphene nanocomposites is red-shifted compared with neat TiO{sub 2} nanoparticles. The evaluation of photodegradation performance under visible light irradiation suggested that the nanocomposite with 5 wt% N-graphene content has the best visible light photodegradation performance.

  5. Facile synthesis of surface N-doped Bi{sub 2}O{sub 2}CO{sub 3}: Origin of visible light photocatalytic activity and in situ DRIFTS studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ying, E-mail: yzhou@swpu.edu.cn [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); Insititute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); Zhao, Ziyan [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); Wang, Fang; Cao, Kun [The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); Doronkin, Dmitry E. [Insititute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); Dong, Fan [College of Environmental and Biological Engineering, Chonqing Technology and Business University, Chongqing 400067 (China); Grunwaldt, Jan-Dierk, E-mail: grunwaldt@kit.edu [Insititute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany)

    2016-04-15

    Graphical abstract: Surfactant (CTAB) can induce nitrogen interstitially doping in the Bi{sub 2}O{sub 2}CO{sub 3} surface, leading to the formation of localized states from N−O bond, which probably account for the origin of the visible light activity. Moreover, the photocatalytic NO oxidation processes over Bi{sub 2}O{sub 2}CO{sub 3} were successfully monitored for the first time by in situ DRIFTS. - Highlights: • Interstitially doping N in the Bi{sub 2}O{sub 2}CO{sub 3} surface was achieved at room temperature. • N-doped Bi{sub 2}O{sub 2}CO{sub 3} exhibited significantly enhanced visible light photocatalytic activity compared to the pristine Bi{sub 2}O{sub 2}CO{sub 3}. • The formation of localized states from N−O bond could account for the visible light activity of Bi{sub 2}O{sub 2}CO{sub 3}. • The photocatalytic NO oxidation process was monitored by in situ DRIFTS. - Abstract: Bi{sub 2}O{sub 2}CO{sub 3} nanosheets with exposed {001} facets were prepared by a facile room temperature chemical method. Due to the high oxygen atom density in {001} facets of Bi{sub 2}O{sub 2}CO{sub 3}, the addition of cetyltrimethylammonium bromide (CTAB) does not only influence the growth of crystalline Bi{sub 2}O{sub 2}CO{sub 3}, but also modifies the surface properties of Bi{sub 2}O{sub 2}CO{sub 3} through the interaction between CTAB and Bi{sub 2}O{sub 2}CO{sub 3}. Nitrogen from CTAB as dopant interstitially incorporates in the Bi{sub 2}O{sub 2}CO{sub 3} surface evidenced by both experimental and theoretical investigations. Hence, the formation of localized states from N−O bond improves the visible light absorption and charge separation efficiency, which leads to an enhancement of visible light photocatalytic activity toward to the degradation of Rhodamine B (RhB) and oxidation of NO. In addition, the photocatalytic NO oxidation over Bi{sub 2}O{sub 2}CO{sub 3} nanosheets was successfully monitored for the first time using in situ diffuse reflectance infrared Fourier

  6. Development of ultraviolet- and visible-light one-shot spectral domain optical coherence tomography and in situ measurements of human skin

    Science.gov (United States)

    Hirayama, Heijiro; Nakamura, Sohichiro

    2015-07-01

    We have developed ultraviolet (UV)- and visible-light one-shot spectral domain (SD) optical coherence tomography (OCT) that enables in situ imaging of human skin with an arbitrary wavelength in the UV-visible-light region (370-800 nm). We alleviated the computational burden for each color OCT image by physically dispersing the irradiating light with a color filter. The system consists of SD-OCT with multicylindrical lenses; thus, mechanical scanning of the mirror or stage is unnecessary to obtain an OCT image. Therefore, only a few dozens of milliseconds are necessary to obtain single-image data. We acquired OCT images of one subject's skin in vivo and of a skin excision ex vivo for red (R, 650±20 nm), green (G, 550±20 nm), blue (B, 450±20 nm), and UV (397±5 nm) light. In the visible-light spectrum, R light penetrated the skin and was reflected at a lower depth than G or B light. On the skin excision, we demonstrated that UV light reached the dermal layer. We anticipated that basic knowledge about the spectral properties of human skin in the depth direction could be acquired with this system.

  7. Facile in situ solvothermal method to synthesize MWCNT/SnIn4S8 composites with enhanced visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Ding, Chaoying; Tian, Li; Liu, Bo; Liang, Qian; Li, Zhongyu; Xu, Song; Liu, Qiaoli; Lu, Dayong

    2015-01-01

    Highlights: • MWCNT/SnIn 4 S 8 composites were facilely fabricated via in situ solvothermal method. • MWCNT/SnIn 4 S 8 composites exhibited significantly enhanced visible-light activity. • MWCNT/SnIn 4 S 8 composites showed remarkable visible light photocatalytic activity. • MWCNT/SnIn 4 S 8 composites exhibited excellent photo-stability. • Possible photocatalytic mechanism under visible-light irradiation was proposed. - Abstract: Superior photocatalytic activity could be achieved by multi-walled carbon nanotube (MWCNT) incorporated in the porous assembly of marigold-like SnIn 4 S 8 heterostructures synthesized by a flexible in-situ solvothermal method. The as-prepared MWCNT/SnIn 4 S 8 composites were well-characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic properties of the as-prepared samples were tested by photo-degradation of aqueous malachite green (MG) under the irradiation of visible light. It was found that the MWCNT/SnIn 4 S 8 composites showed enhanced visible light photocatalytic activity for dye degradation, and an optimum photocatalytic activity was observed over 3.0 wt.% MWCNT incorporated SnIn 4 S 8 composites. The superior photocatalytic activity of MWCNT/SnIn 4 S 8 composites could be ascribed to the existence of MWCNT which could serve as a good electron acceptor, mediator as well as the co-catalyst for dye degradation. The synergistic effect between SnIn 4 S 8 and MWCNT in the composites facilitated the interfacial charge transfer driven by the excitation of SnIn 4 S 8 under visible-light irradiation. Furthermore, a possible mechanism for the photocatalytic degradation of MWCNT/SnIn 4 S 8 composites was also discussed

  8. Environmental application of millimetre-scale sponge iron (s-Fe"0) particles (IV): New insights into visible light photo-Fenton-like process with optimum dosage of H_2O_2 and RhB photosensitizers

    International Nuclear Information System (INIS)

    Ju, Yongming; Yu, Yunjiang; Wang, Xiaoyan; Xiang, Mingdeng; Li, Liangzhong; Deng, Dongyang; Dionysiou, Dionysios D.

    2017-01-01

    Highlights: • Synergistic action of Rhodamine B (RhB), visible light, H_2O_2 and s-Fe"0 is essential. • The complexes of RhB and Fe"3"+ eject one electron via ligand-to-metal charge-transfer. • RhB assists the photo-Fenton-like removal of tetrabromobisphenol A (TBBPA). - Abstract: In this study, we firstly develop the photo-Fenton-like system with millimetric sponge iron (s-Fe"0), H_2O_2, visible light (vis, λ ≥ 420 nm) and rhodamine B (RhB), and present a comprehensive study concerning the mechanism. Thus, we investigate (1) the adsorption of RhB onto s-Fe"0, (2) the photo-Fenton-like removal of RhB over iron oxides generated from the corrosion of s-Fe"0, (3) the homogeneous photo-Fenton removal of RhB over Fe"2"+ or Fe"3"+, (4) the Fe"3"+-RhB complexes, and (5) the photo-Fenton-like removal of tetrabromobisphenol A (TBBPA). The results show that neither the adsorption process over s-Fe"0 nor the photo-Fenton-like process over FeOOH, Fe_3O_4 and Fe_2O_3, achieved efficient removal of RhB. For comparison, in homogeneous photo-Fenton process, the presence of Fe"3"+ ions, rather than Fe"2"+ ions, effectively eliminated RhB. Furthermore, the UV–vis spectra showing new absorbance at ∼ 285 nm indicate the complexes of RhB and Fe"3"+ ions, adopting vis photons to form excited state and further eject one electron via ligand-to-metal charge-transfer to activate H_2O_2. Additionally, efficient TBBPA removal was obtained only in the presence of RhB. Accordingly, the s-Fe"0– based photo-Fenton-like process assisted with dyestuff wastewater is promising for removing a series of persistent organic pollutants.

  9. 2D BiOCl/Bi12O17Cl2 nanojunction: Enhanced visible light photocatalytic NO removal and in situ DRIFTS investigation

    Science.gov (United States)

    Zhang, Wendong; Dong, Xin'an; Jia, Bin; Zhong, Junbo; Sun, Yanjuan; Dong, Fan

    2018-02-01

    Novel two-dimensional (2D) BiOCl/Bi12O17Cl2 nanojunctions were fabricated by a facile one-pot in situ method at room temperature. The as-prepared samples were analyzed by XRD, SEM, TEM, HRTEM, UV-vis DRS, PL, ESR and BET-BJH measurement in detail. The photocatalytic performance of the samples was evaluated by removal of NO at ppb level under visible-light illumination. The result reveals that the BiOCl/Bi12O17Cl2 nanojunctions manifests conspicuously enhanced photocatalytic efficiency for NO removal. The facilitated performance can be ascribed to the well-matched band structure and relatively high specific surface area. In addition, the in situ diffuse reflectance infrared Fourier transform spectroscopy was applied to investigate the adsorption and photocatalytic NO oxidation processes. The reaction mechanism of photocatalytic NO oxidation was proposed based on the observed intermediates. The present work could pave a way to synthesize novel visible light photocatalysts at room temperature for environmental application.

  10. Growth of micro-crystals in solution by in-situ heating via continuous wave infrared laser light and an absorber

    Science.gov (United States)

    Pathak, Shashank; Dharmadhikari, Jayashree A.; Thamizhavel, A.; Mathur, Deepak; Dharmadhikari, Aditya K.

    2016-01-01

    We report on growth of micro-crystals such as sodium chloride (NaCl), copper sulphate (CuSO4), potassium di-hydrogen phosphate (KDP) and glycine (NH2CH2COOH) in solution by in-situ heating using continuous wave Nd:YVO4 laser light. Crystals are grown by adding single walled carbon nanotubes (SWNT). The SWNTs absorb 1064 nm light and act as an in-situ heat source that vaporizes the solvent producing microcrystals. The temporal dynamics of micro-crystal growth is investigated by varying experimental parameters such as SWNT bundle size and incident laser power. We also report crystal growth without SWNT in an absorbing medium: copper sulphate in water. Even though the growth dynamics with SWNT and copper sulphate are significantly different, our results indicate that bubble formation is necessary for nucleation. Our simple method may open up new vistas for rapid growth of seed crystals especially for examining the crystallizability of inorganic and organic materials.

  11. Comparing ignitability for in situ burning of oil spills for an asphaltenic, a waxy and a light crude oil as a function of weathering conditions under arctic conditions

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Brandvik, Per Johan; Villumsen, Arne

    2012-01-01

    (asphalthenic), Kobbe (light oil) and Norne (waxy), for ignitability as a function of ice conditions and weathering degree. The crude oils (9 L) were weathered in a laboratory basin (4.8 m3) under simulated arctic conditions (0, 50 and 90% ice cover). The laboratory burning tests show that the ignitability...... is dependent on oil composition, ice conditions and weathering degree. In open water, oil spills rapidly become “not ignitable” due to the weathering e.g. high water content and low content of residual volatile components. The slower weathering of oil spills in ice (50 and 90% ice cover) results in longer time......-windows for the oil to be ignitable. The composition of the oils is important for the window of opportunity. The asphalthenic Grane crude oil had a limited timewindow for in situ burning (9 h or less), while the light Kobbe crude oil and the waxy Norne crude oil had the longest time-windows for in situ burning (from...

  12. In situ visualizing the evolution of the light-induced refractive index change of Mn:KLTN crystal with digital holographic interferometry

    Directory of Open Access Journals (Sweden)

    Jinxin Han

    2015-04-01

    Full Text Available The light-induced refractive index change in Mn:KLTN crystal, illuminated by focused light sheet, is visualized in situ and quantified by digital holographic interferometry. By numerically retrieving a series of sequential phase maps from recording digital holograms, the spatial distribution of the induced refractive index change can be visualized and estimated readily. This technique enables the observation of the temporal evolution of the refractive index change under different recording situations such as writing laser power, applied voltage, and temperature, and the photoconductivity of Mn:KLTN crystal can be calculated as well, the experimental results are in good agreement with the theory. The research results suggest that the presented method is successful and feasible.

  13. Automated colorimetric in situ hybridization (CISH) detection of immunoglobulin (Ig) light chain mRNA expression in plasma cell (PC) dyscrasias and non-Hodgkin lymphoma.

    Science.gov (United States)

    Beck, Rose C; Tubbs, Raymond R; Hussein, Mohamad; Pettay, James; Hsi, Eric D

    2003-03-01

    Immunohistochemistry (IHC) is frequently used to detect plasma cell (PC) or B cell monoclonality in histologic sections, but its interpretation is often confounded by background staining. We evaluated a new automated method for colorimetric in situ hybridization (CISH) detection of clonality in PC dyscrasias and small B cell lymphomas. Cases of PC dyscrasia included multiple myeloma (MM; 31 cases), plasmacytoma (seven cases), or amyloidosis (one case), while cases of lymphoma included small lymphocytic (three cases), marginal zone (four cases), lymphoplasmacytic (three cases), and mantle cell lymphomas (three cases). Tissue sections were stained for kappa and lambda light chains by IHC and for light chain mRNA by automated CISH using haptenated probes. Twenty-eight of 31 MM cases had detectable light chain restriction by IHC. Thirty of 31 MM cases demonstrated light chain restriction by CISH, including 2 cases with uninterpretable IHC and one case of nonsecretory myeloma, which was negative for light chains by IHC. Seven of 7 plasmacytoma cases had detectable light chain restriction by CISH, including one case of nonsecretory plasmacytoma in which IHC was noninformative. Automated CISH demonstrated monoclonality in 9 of 13 cases of B cell non-Hodgkin lymphoma and had a slightly higher sensitivity than IHC (6 of 13 cases), especially in cases of lymphoplasmacytic and marginal zone lymphoma. Overall, there were no discrepancies in light chain restriction results between IHC, CISH, or serum paraprotein analysis. Automated CISH is useful in detecting light chain expression in paraffin sections and appeared superior to IHC for light chain detection in PC dyscrasias and B cell non-Hodgkin lymphomas, predominantly due to lack of background staining.

  14. Ratiometric two-photon excited photoluminescence of quantum dots triggered by near-infrared-light for real-time detection of nitric oxide release in situ

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hui [Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, College of Chemistry and Chemical Engineering, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong 266071 (China); Gui, Rijun, E-mail: guirijun@qdu.edu.cn [Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, College of Chemistry and Chemical Engineering, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong 266071 (China); Sun, Jie; Wang, Yanfeng [Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062 (China)

    2016-05-30

    Probe-donor integrated nanocomposites were developed from conjugating silica-coated Mn{sup 2+}:ZnS quantum dots (QDs) with MoS{sub 2} QDs and photosensitive nitric oxide (NO) donors (Fe{sub 4}S{sub 3}(NO){sub 7}{sup −}, RBS). Under excitation with near-infrared (NIR) light at 808 nm, the Mn{sup 2+}:ZnS@SiO{sub 2}/MoS{sub 2}-RBS nanocomposites showed the dual-emissive two-photon excited photoluminescence (TPEPL) that induced RBS photolysis to release NO in situ. NO caused TPEPL quenching of Mn{sup 2+}:ZnS QDs, but it produced almost no impact on the TPEPL of MoS{sub 2} QDs. Hence, the nanocomposites were developed as a novel QDs-based ratiometric TPEPL probe for real-time detection of NO release in situ. The ratiometric TPEPL intensity is nearly linear (R{sup 2} = 0.9901) with NO concentration in the range of 0.01∼0.8 μM, which corresponds to the range of NO release time (0∼15 min). The detection limit was calculated to be approximately 4 nM of NO. Experimental results confirmed that this novel ratiometric TPEPL probe possessed high selectivity and sensitivity for the detection of NO against potential competitors, and especially showed high detection performance for NIR-light triggered NO release in tumor intracellular microenvironments. These results would promote the development of versatile probe-donor integrated systems, also providing a facile and efficient strategy to real-time detect the highly controllable drug release in situ, especially in physiological microenvironments. - Highlights: • Mn{sup 2+}:ZnS@SiO{sub 2}/MoS{sub 2}-RBS nanocomposites were developed as a novel ratiometric two-photon excited fluorescence probe. • This probe could conduct real-time detection of nitric oxide release in situ. • High feasibility of this probe was confirmed in tumor intracellular microenvironments.

  15. Implementation of a Light Source in a TEM Sample Holder for In-situ Studies of Photocatalytic Materials

    DEFF Research Database (Denmark)

    Cavalca, Filippo; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    can be used inside an environmental TEM (ETEM) allowing specimens to be analyzed during exposure to a controlled gas atmosphere and illumination. The holder is presently being used to study a variety of photoreactive materials and structures, including photocatalysts, photonic devices and solar cells....... For example, electron holography is being used to study p-n junctions both in the presence and in the absence of light in order to assess electron beam induced charging and discharging effects during laser light exposure [3]. Here, we present results from ETEM studies of light-induced phenomena that include...

  16. In situ dynamics of O2, pH, light and photosynthesis in ikaite tufa columns (Ikka Fjord, Greenland – a unique microbial habitat.

    Directory of Open Access Journals (Sweden)

    Erik Christian Løvbjerg Trampe

    2016-05-01

    Full Text Available The Ikka Fjord (SW Greenland harbors a unique microbial habitat in the form of several hundred submarine tufa columns composed of ikaite, a special hexahydrate form of calcium carbonate that precipitates when alkaline phosphate- and carbonate-enriched spring water seeping out of the sea floor meets cold seawater. While several unique heterotrophic microbes have been isolated from the tufa columns, the microbial activity and the boundary conditions for microbial growth in ikaite have remained unexplored. We present the first detailed in situ characterization of the physico-chemical microenvironment and activity of oxygenic phototrophs thriving within the ikaite columns. In situ underwater microsensor measurements of pH, temperature, and irradiance in the porous ikaite crystal matrix, revealed an extreme microenvironment characterized by low temperatures, strong light attenuation, and gradients of pH changing from pH 9 at the outer column surface to above pH 10 over the first 1-2 cm of the ikaite. This outer layer of the freshly deposited ikaite matrix contained densely pigmented yellow and green zones harboring a diverse phototrophic community dominated by diatoms and cyanobacteria, respectively, as shown by amplicon sequencing. In situ O2 measurements, as well as underwater variable chlorophyll fluorescence measurements of photosynthetic activity, demonstrated high levels of oxygenic photosynthesis in this extreme gradient environment with strong irradiance-driven O2 dynamics ranging from anoxia to hyperoxic conditions in the ikaite matrix, albeit the local formation of gas bubbles buffered the day-night dynamics of O2 in the tufa columns. The microbial phototrophs in the ikaite matrix are embedded in exopolymers forming endolithic biofilms that may interact with mineral formation and cementing of ikaite crystals.

  17. In situ Dynamics of O2, pH, Light, and Photosynthesis in Ikaite Tufa Columns (Ikka Fjord, Greenland)-A Unique Microbial Habitat.

    Science.gov (United States)

    Trampe, Erik C L; Larsen, Jens E N; Glaring, Mikkel A; Stougaard, Peter; Kühl, Michael

    2016-01-01

    The Ikka Fjord (SW Greenland) harbors a unique microbial habitat in the form of several hundred submarine tufa columns composed of ikaite, a special hexahydrate form of calcium carbonate that precipitates when alkaline phosphate- and carbonate-enriched spring water seeping out of the sea floor meets cold seawater. While several unique heterotrophic microbes have been isolated from the tufa columns, the microbial activity, and the boundary conditions for microbial growth in ikaite have remained unexplored. We present the first detailed in situ characterization of the physico-chemical microenvironment and activity of oxygenic phototrophs thriving within the ikaite columns. In situ underwater microsensor measurements of pH, temperature, and irradiance in the porous ikaite crystal matrix, revealed an extreme microenvironment characterized by low temperatures, strong light attenuation, and gradients of pH changing from pH 9 at the outer column surface to above pH 10 over the first 1-2 cm of the ikaite. This outer layer of the freshly deposited ikaite matrix contained densely pigmented yellow and green zones harboring a diverse phototrophic community dominated by diatoms and cyanobacteria, respectively, as shown by amplicon sequencing. In situ O2 measurements, as well as underwater variable chlorophyll fluorescence measurements of photosynthetic activity, demonstrated high levels of oxygenic photosynthesis in this extreme gradient environment with strong irradiance-driven O2 dynamics ranging from anoxia to hyperoxic conditions in the ikaite matrix, albeit the local formation of gas bubbles buffered the day-night dynamics of O2 in the tufa columns. The microbial phototrophs in the ikaite matrix are embedded in exopolymers forming endolithic biofilms that may interact with mineral formation and cementing of ikaite crystals.

  18. In situ Dynamics of O2, pH, Light, and Photosynthesis in Ikaite Tufa Columns (Ikka Fjord, Greenland)—A Unique Microbial Habitat

    Science.gov (United States)

    Trampe, Erik C. L.; Larsen, Jens E. N.; Glaring, Mikkel A.; Stougaard, Peter; Kühl, Michael

    2016-01-01

    The Ikka Fjord (SW Greenland) harbors a unique microbial habitat in the form of several hundred submarine tufa columns composed of ikaite, a special hexahydrate form of calcium carbonate that precipitates when alkaline phosphate- and carbonate-enriched spring water seeping out of the sea floor meets cold seawater. While several unique heterotrophic microbes have been isolated from the tufa columns, the microbial activity, and the boundary conditions for microbial growth in ikaite have remained unexplored. We present the first detailed in situ characterization of the physico-chemical microenvironment and activity of oxygenic phototrophs thriving within the ikaite columns. In situ underwater microsensor measurements of pH, temperature, and irradiance in the porous ikaite crystal matrix, revealed an extreme microenvironment characterized by low temperatures, strong light attenuation, and gradients of pH changing from pH 9 at the outer column surface to above pH 10 over the first 1–2 cm of the ikaite. This outer layer of the freshly deposited ikaite matrix contained densely pigmented yellow and green zones harboring a diverse phototrophic community dominated by diatoms and cyanobacteria, respectively, as shown by amplicon sequencing. In situ O2 measurements, as well as underwater variable chlorophyll fluorescence measurements of photosynthetic activity, demonstrated high levels of oxygenic photosynthesis in this extreme gradient environment with strong irradiance-driven O2 dynamics ranging from anoxia to hyperoxic conditions in the ikaite matrix, albeit the local formation of gas bubbles buffered the day-night dynamics of O2 in the tufa columns. The microbial phototrophs in the ikaite matrix are embedded in exopolymers forming endolithic biofilms that may interact with mineral formation and cementing of ikaite crystals. PMID:27242741

  19. Enhanced visible-light photocatalytic activities of Ag{sub 3}PO{sub 4}/MWCNT nanocomposites fabricated by facile in situ precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bo [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Li, Zhongyu, E-mail: zhongyuli@mail.tsinghua.edu.cn [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Changzhou Expansion New Stuff Technology Limited Company, Changzhou 213122 (China); Jilin Institute of Chemical Technology, Jilin 132022 (China); Xu, Song, E-mail: cyanine123@163.com [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Han, Dandan; Lu, Dayong [Jilin Institute of Chemical Technology, Jilin 132022 (China)

    2014-05-01

    Highlights: • Ag{sub 3}PO{sub 4}/MWCNT composites were facilely fabricated via in situ precipitation method. • Ag{sub 3}PO{sub 4}/MWCNT composites exhibited enhanced visible-light photocatalytic activity. • Ag{sub 3}PO{sub 4}/MWCNT composites showed good photostability compared with Ag{sub 3}PO{sub 4} particles. • Possible photocatalytic mechanism under visible-light irradiation was proposed. - Abstract: The Ag{sub 3}PO{sub 4}/MWCNT nanocomposites were facilely fabricated via in situ precipitation method by adding (NH{sub 4}){sub 2}HPO{sub 4} into the mixture of multi-walled carbon nanotube (MWCNT) and AgNO{sub 3} solution under stirring. The as-prepared Ag{sub 3}PO{sub 4}/MWCNT nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), the Brunauer–Emmett–Teller surface area (BET) and UV–vis diffuse reflectance spectroscopy. The TEM results showed that the Ag{sub 3}PO{sub 4} nanoparticles were distributed on the surface of MWCNT uniformly with an average diameter of 70 nm, indicating excellent loading result. The photocatalytic activities of Ag{sub 3}PO{sub 4}/MWCNT nanocomposites were investigated by degrading methylene blue (MB) and malachite green (MG) under visible-light irradiation. It was found that the Ag{sub 3}PO{sub 4}/MWCNT nanocomposite exhibited excellent photocatalytic performance with enhanced photocatalytic efficiency and good photostability compared with bare Ag{sub 3}PO{sub 4}. Furthermore, a possible mechanism for the photocatalytic oxidative degradation was also discussed.

  20. Molecular design of light-responsive hydrogels, for in situ generation of fast and reversible valves for microfluidic applications

    NARCIS (Netherlands)

    Schiphorst, ter J.; Coleman, S.; Stumpel, J.E.; Ben Azouz, A.; Diamond, D.; Schenning, A.P.H.J.

    2015-01-01

    Reversible light-responsive hydrogel valves with response characteristics compatible for microfluidics have been obtained by optimization of molecular design of spiropyran photoswitches and gel composition. Self-protonating gel formulations were exploited, wherein acrylic acid was copolymerized in

  1. In-Situ Hydrothermal Synthesis of Bi-Bi2O2CO3 Heterojunction Photocatalyst with Enhanced Visible Light Photocatalytic Activity

    Science.gov (United States)

    Kar, Prasenjit; Maji, Tuhin Kumar; Nandi, Ramesh; Lemmens, Peter; Pal, Samir Kumar

    2017-04-01

    Bismuth containing nanomaterials recently received increasing attention with respect to environmental applications because of their low cost, high stability and nontoxicity. In this work, Bi-Bi2O2CO3 heterojunctions were fabricated by in-situ decoration of Bi nanoparticles on Bi2O2CO3 nanosheets via a simple hydrothermal synthesis approach. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) were used to confirm the morphology of the nanosheet-like heterostructure of the Bi-Bi2O2CO3 composite. Detailed ultrafast electronic spectroscopy reveals that the in-situ decoration of Bi nanoparticles on Bi2O2CO3 nanosheets exhibit a dramatically enhanced electron-hole pair separation rate, which results in an extraordinarily high photocatalytic activity for the degradation of a model organic dye, methylene blue (MB) under visible light illumination. Cycling experiments revealed a good photochemical stability of the Bi-Bi2O2CO3 heterojunction under repeated irradiation. Photocurrent measurements further indicated that the heterojunction incredibly enhanced the charge generation and suppressed the charge recombination of photogenerated electron-hole pairs.

  2. A coatable, light-weight, fast-response nanocomposite sensor for the in situ acquisition of dynamic elastic disturbance: from structural vibration to ultrasonic waves

    Science.gov (United States)

    Zeng, Zhihui; Liu, Menglong; Xu, Hao; Liu, Weijian; Liao, Yaozhong; Jin, Hao; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2016-06-01

    Inspired by an innovative sensing philosophy, a light-weight nanocomposite sensor made of a hybrid of carbon black (CB)/polyvinylidene fluoride (PVDF) has been developed. The nanoscalar architecture and percolation characteristics of the hybrid were optimized in order to fulfil the in situ acquisition of dynamic elastic disturbance from low-frequency vibration to high-frequency ultrasonic waves. Dynamic particulate motion induced by elastic disturbance modulates the infrastructure of the CB conductive network in the sensor, with the introduction of the tunneling effect, leading to dynamic alteration in the piezoresistivity measured by the sensor. Electrical analysis, morphological characterization, and static/dynamic electromechanical response interrogation were implemented to advance our insight into the sensing mechanism of the sensor, and meanwhile facilitate understanding of the optimal percolation threshold. At the optimal threshold (˜6.5 wt%), the sensor exhibits high fidelity, a fast response, and high sensitivity to ultrafast elastic disturbance (in an ultrasonic regime up to 400 kHz), yet with an ultralow magnitude (on the order of micrometers). The performance of the sensor was evaluated against a conventional strain gauge and piezoelectric transducer, showing excellent coincidence, yet a much greater gauge factor and frequency-independent piezoresistive behavior. Coatable on a structure and deployable in a large quantity to form a dense sensor network, this nanocomposite sensor has blazed a trail for implementing in situ sensing for vibration- or ultrasonic-wave-based structural health monitoring, by striking a compromise between ‘sensing cost’ and ‘sensing effectiveness’.

  3. Light-Induced C-H Arylation of (Hetero)arenes by In Situ Generated Diazo Anhydrides.

    Science.gov (United States)

    Cantillo, David; Mateos, Carlos; Rincon, Juan A; de Frutos, Oscar; Kappe, C Oliver

    2015-09-07

    Diazo anhydrides (Ar-N=N-O-N=N-Ar) have been known since 1896 but have rarely been used in synthesis. This communication describes the development of a photochemical catalyst-free C-H arylation methodology for the preparation of bi(hetero)aryls by the one-pot reaction of anilines with tert-butyl nitrite and (hetero)arenes under neutral conditions. The key step in this procedure is the in situ formation and subsequent photochemical (>300 nm) homolytic cleavage of a transient diazo anhydride intermediate. The generated aryl radical then efficiently reacts with a (hetero)arene to form the desired bi(hetero)aryls producing only nitrogen, water, and tert-butanol as byproducts. The scope of the reaction for several substituted anilines and (hetero)arenes was investigated. A continuous-flow protocol increasing selectivity and safety has been developed enabling the experimentally straightforward preparation of a variety of substituted bi(hetero)aryls within 45 min of reaction time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. In-situ TEM study on structural change and light emission of a multiwall carbon nanotube during Joule heating

    Science.gov (United States)

    Nishikawa, K.; Asaka, K.; Nakahara, H.; Saito, Y.

    2018-01-01

    Structure changes of a multiwall carbon nanotube (MWNT) during Joule heating were studied with simultaneous measurement of light emission spectra. The outer shells of the MWNT peeled off one by one because of excessive heating. All the peeled outer shells finally disappeared and inner shells whose tips were closed emerged, i.e., a new MWNT was formed. Each diameter of the shells comprising the MWNT decreased compared with those before the fracture. Light emission spectra during Joule heating of an MWNT were composed of both the blackbody radiation and characteristic peaks. The peaks in the light emission spectra shifted to higher energies in accordance with shrinkage of the inner shells. The energies of the peaks in the spectra corresponded to energy gaps between van Hove singularities calculated from the diameters of the shells, indicating that the peaks in the spectra are attributed to the interband electron transition in the MWNT.

  5. Synthesis of NaOH-Modified TiOF2 and Its Enhanced Visible Light Photocatalytic Performance on RhB

    Directory of Open Access Journals (Sweden)

    Chentao Hou

    2017-08-01

    Full Text Available NaOH-modified TiOF2 was successfully prepared using a modified low-temperature hydrothermal method. Scanning electron microscopy shows that NaOH-modified TiOF2 displayed a complex network shape with network units of about 100 nm. The structures of NaOH-modified TiOF2 have not been reported elsewhere. The network shape permits the NaOH-modified TiOF2 a SBET of 36 m2∙g−1 and a pore diameter around 49 nm. X-ray diffraction characterization shows that TiOF2 and NaOH-modified TiOF2 are crystallized with a pure changed cubic phase which accords with the SEM results. Fourier transform infrared spectroscopy characterization shows that NaOH-modified TiOF2 has more O–H groups to supply more lone electron pairs to transfer from O of O–H to Ti and O of TiOF2. UV–vis diffuse reflectance spectroscopy (DRS shows that the NaOH-modified TiOF2 sample has an adsorption plateau rising from 400 to 600 nm in comparison with TiOF2, and its band gap is 2.62 eV, lower than that of TiOF2. Due to the lower band gap, more O–H groups adsorption, network morphologies with larger surface area, and sensitization progress, the NaOH-modified TiOF2 exhibited much higher photocatalytic activity for Rhodamine B (RhB degradation. In addition, considering the sensitization progress, O–H groups on TiOF2 not only accelerated the degradation rate of RhB, but also changed its degradation path. As a result, the NaOH-modified TiOF2 exhibited much higher photocatalytic activity for RhB degradation than the TiOF2 in references under visible light. This finding provides a new idea to enhance the photocatalytic performance by NaOH modification of the surface of TiOF2.

  6. Facile in situ hydrothermal synthesis of g-C{sub 3}N{sub 4}/SnS{sub 2} composites with excellent visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Fang; Zhao, Lina; Pei, Xule [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063 (China); College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Xubiao, E-mail: luoxubiao@126.com [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063 (China); College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Shenglian, E-mail: sllou@hnu.edu.cn [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063 (China); College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2017-03-01

    The g-C{sub 3}N{sub 4}/SnS{sub 2} composites were prepared by in situ hydrothermal method, and the effect of g-C{sub 3}N{sub 4} content on the physical and chemical properties, and photocatalytic performance of g-C{sub 3}N{sub 4}/SnS{sub 2} composites was investigated. The introduction of g-C{sub 3}N{sub 4} enhanced the visible-light absorption of SnS{sub 2}, and reduced the recombination rate of electron-hole pairs. The photocatalytic performance of g-C{sub 3}N{sub 4}/SnS{sub 2} composites was also obviously influenced by g-C{sub 3}N{sub 4} content, and it was found that 15% g-C{sub 3}N{sub 4}/SnS{sub 2} composite exhibited the highest photocatalytic activity and excellent regeneration, which was attributed to the most efficient charge separation, the largest specific surface area and the formation of dominant active species (h{sup +} and ·O{sub 2}{sup −} radicals) during the photocatalytic process. - Graphical abstract: Photocatalytic mechanism of g-C{sub 3}N{sub 4}/SnS{sub 2} composites. - Highlights: • g-C{sub 3}N{sub 4}/SnS{sub 2} composites were fabricated by a in situ hydrothermal process. • g-C{sub 3}N{sub 4} content was optimized, and the optimal g-C{sub 3}N{sub 4} content is 15%. • 15% g-C{sub 3}N{sub 4}/SnS{sub 2} shows the highest visible-light photocatalytic activity. • g-C{sub 3}N{sub 4}/SnS{sub 2} composites exhibit excellent reusability.

  7. Seeing the light: the effects of particles, dissolved materials, and temperature on in situ measurements of DOM fluorescence in rivers and streams

    Science.gov (United States)

    Downing, Bryan D.; Pellerin, Brian A.; Bergamaschi, Brian A.; Saraceno, John Franco; Kraus, Tamara E.C.

    2012-01-01

    Field-deployable sensors designed to continuously measure the fluorescence of colored dissolved organic matter (FDOM) in situ are of growing interest. However, the ability to make FDOM measurements that are comparable across sites and over time requires a clear understanding of how instrument characteristics and environmental conditions affect the measurements. In particular, the effects of water temperature and light attenuation by both colored dissolved material and suspended particles may be significant in settings such as rivers and streams. Using natural standard reference materials, we characterized the performance of four commercially-available FDOM sensors under controlled laboratory conditions over ranges of temperature, dissolved organic matter (DOM) concentrations, and turbidity that spanned typical environmental ranges. We also examined field data from several major rivers to assess how often attenuation artifacts or temperature effects might be important. We found that raw (uncorrected) FDOM values were strongly affected by the light attenuation that results from dissolved substances and suspended particles as well as by water temperature. Observed effects of light attenuation and temperature agreed well with theory. Our results show that correction of measured FDOM values to account for these effects is necessary and feasible over much of the range of temperature, DOM concentration, and turbidity commonly encountered in surface waters. In most cases, collecting high-quality FDOM measurements that are comparable through time and between sites will require concurrent measurements of temperature and turbidity, and periodic discrete sample collection for laboratory measurement of DOM.

  8. Plasmon-induced photoelectrochemical biosensor for in situ real-time measurement of biotin-streptavidin binding kinetics under visible light irradiation

    International Nuclear Information System (INIS)

    Guo, Jingchun; Oshikiri, Tomoya; Ueno, Kosei; Shi, Xu; Misawa, Hiroaki

    2017-01-01

    We developed a localized surface plasmon-induced visible light-responsive photoelectrochemical (PEC) biosensor using a titanium dioxide (TiO_2) photoelectrode loaded with gold nanoislands (AuNIs) for in situ real-time measurement of biotin-streptavidin association. As a proof of concept, self-assembled thiol-terminated biotin molecules bound on a AuNIs/TiO_2 photoelectrode were successfully utilized to explore the photocurrent response to streptavidin-modified gold nanoparticle (STA-AuNP) solutions. This plasmon-induced PEC biosensor is simple and easy to miniaturize. Additionally, the PEC biosensor achieves highly sensitive measurements under only visible light irradiation and prevents the UV-induced damage of samples. Furthermore, a novel approach has been proposed to realize the real-time monitoring of biotin-STA binding affinities and kinetics by analyzing the PEC sensing characteristics. This PEC biosensor and novel analysis method could provide a new approach for the specific electrical detection and real-time kinetic measurements for clinical diagnostics and drug development. - Highlights: • A plasmon-induced visible light-responsive photoelectrochemical biosensor is developed and the system can be miniaturized.

  9. Plasmon-induced photoelectrochemical biosensor for in situ real-time measurement of biotin-streptavidin binding kinetics under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jingchun; Oshikiri, Tomoya; Ueno, Kosei; Shi, Xu [Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021 (Japan); Misawa, Hiroaki, E-mail: misawa@es.hokudai.ac.jp [Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021 (Japan); Department of Applied Chemistry & Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2017-03-08

    We developed a localized surface plasmon-induced visible light-responsive photoelectrochemical (PEC) biosensor using a titanium dioxide (TiO{sub 2}) photoelectrode loaded with gold nanoislands (AuNIs) for in situ real-time measurement of biotin-streptavidin association. As a proof of concept, self-assembled thiol-terminated biotin molecules bound on a AuNIs/TiO{sub 2} photoelectrode were successfully utilized to explore the photocurrent response to streptavidin-modified gold nanoparticle (STA-AuNP) solutions. This plasmon-induced PEC biosensor is simple and easy to miniaturize. Additionally, the PEC biosensor achieves highly sensitive measurements under only visible light irradiation and prevents the UV-induced damage of samples. Furthermore, a novel approach has been proposed to realize the real-time monitoring of biotin-STA binding affinities and kinetics by analyzing the PEC sensing characteristics. This PEC biosensor and novel analysis method could provide a new approach for the specific electrical detection and real-time kinetic measurements for clinical diagnostics and drug development. - Highlights: • A plasmon-induced visible light-responsive photoelectrochemical biosensor is developed and the system can be miniaturized.

  10. Shining a light on Jarosite: formation, alteration and stability studies using in situ experimental synchrotron and neutron techniques.

    Science.gov (United States)

    Brand, H. E. A.; Scarlett, N. V. Y.; Wilson, S. A.; Frierdich, A. J.; Grey, I. E.

    2016-12-01

    Jarosites and related minerals are critical to a range of mineral processing and research applications. They are used in the removal of iron species from smelting processes; they occur in metal bioleaching systems, and they are present in acid mine drainage environments. There has been a recent resurgence in interest in jarosites since their detection on Mars. In this context, the presence of jarosite has been recognised as a likely indicator of liquid water at the surface of Mars in the past & it is thought that their study will provide insight into the environmental history of Mars. Acid sulfate soils cover large areas of the Australian coastline and are likely to be a major constituent of the Martian environment. The oxidation of acid sulfate soils, coupled with potential release of heavy metals and acidic groundwaters, can have serious consequences for fragile ecosystems. Understanding these sediments will provide insight into the biogeochemical processes that affect the lifetimes of transient mineral species on Earth, and may be used to better understand soil acidification, contaminant mobility at sites affected by acid and metalliferous drainage, and even constrain past weathering and putative biosignatures on Mars. Knowledge of the behaviour of jarosite minerals under the actual conditions that they are found in is crucial to understanding their potential environmental impacts on both Earth and Mars. To this end, we are engaged in a program to study the formation, stability and alteration of natural and synthetic jarosite minerals using a complementary suite of in situ synchrotron and neutron techniques. There are 3 sections to this work that will introduce the experimental techniques and sample environments that make these measurements possible: Studying the nucleation and growth of jarosites under laboratory conditions. The experimentation consisted of time-resolved synchrotron small angle X-ray scattering and X-ray diffraction. Studying the stability of

  11. Rh Incompatibility (For Parents)

    Science.gov (United States)

    ... work to destroy, foreign substances) against the Rh proteins. Other ways Rh-negative pregnant women can be exposed to the Rh protein that might cause antibody production include blood transfusions ...

  12. In-situ anion exchange fabrication of porous ZnO/ZnSe heterostructural microspheres with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hairui, E-mail: liuhairui1@126.com [College of Physics & Electrics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Hu, Yanchun [College of Physics & Electrics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); He, Xia [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); Jia, Husheng, E-mail: jia_husheng@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Liu, Xuguang; Xu, Bingshe [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China)

    2015-11-25

    Porous ZnO microspheres were fabricated by an ultrasonic irradiation technique. Subsequently, through a facile in-situ anion exchange reaction between the ZnO microsphere and sodium selenite, spherical ZnO/ZnSe heterostructures with different ratios of the two components were fabricated. The as-obtained products were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV–vis spectrometry. The results reveal that the secondary ZnSe nanoparticles are grown on the surface of pre-grown ZnO microspheres. Compared with pure ZnO microspheres, the ZnO/ZnSe hetero-microspheres show enhance visible-light photocatalytic activity for degradation of methylene blue (MB) and 4-nitrophenol (4-NP). The enhanced photocatalytic performance is attributed to fast separation and transport of photogenerated electrons and holes derived from the coupling effect of ZnSe and ZnO heterostructure. Photoluminescent spectra further indicate that the ZnO/ZnSe heterostructures greatly suppress the charge recombination of photogenerated electron–hole pairs, which would be beneficial to improve their photocatalytic activity. Finally, the photocatalytic mechanism of the ZnO/ZnSe heterostructures is proposed. - Graphical abstract: Porous ZnO/ZnSe heterostructures with different ratios of the two components were fabricated and present enhance visible-light photocatalytic activity for degradation of methylene blue (MB) and 4-nitrophenol (4-NP). The enhanced photocatalytic performance is attributed to fast separation and transport of photogenerated electrons and holes derived from the coupling effect of ZnSe and ZnO heterostructure. - Highlights: • Spherical ZnO/ZnSe porous composites were fabricated by in-situ anion exchange. • ZnO/ZnSe composites exhibited enhanced visible-light photocatalytic activity. • The matching band gap improves the separation of

  13. Facile in situ synthesis of wurtzite ZnS/ZnO core/shell heterostructure with highly efficient visible-light photocatalytic activity and photostability

    Science.gov (United States)

    Xiao, Jian-Hua; Huang, Wei-Qing; Hu, Yong-sheng; Zeng, Fan; Huang, Qin-Yi; Zhou, Bing-Xin; Pan, Anlian; Li, Kai; Huang, Gui-Fang

    2018-02-01

    High photocatalytic activity and photostability are the pursuit of the goal for designing promising photocatalysts. Herein, using ZnO to encapsulate ZnS nanoparticles is proposed as an effective strategy to enhance photocatalytic activity and anti-photocorrosion. The ZnS/ZnO core/shell heterostructures are obtained via an annealing treatment of ZnS nanoparticles produced by a facile wet chemical approach. Due to its small size, the nascent cubic sphalerite ZnS (s-ZnS) converts into a hexagonal wurtzite ZnS (w-ZnS)/ZnO core/shell structure after annealing treatment. In situ oxidation leads to increasing ZnO, simultaneously decreasing the w-ZnS content in the resultant w-ZnS/ZnO with thermal annealing time. The w-ZnS/ZnO core/shell heterostructures show high photocatalytic activity, demonstrated by the photodegradation rate of methylene blue being up to ten-fold and seven-fold higher than that of s-ZnS under UV and visible light irradiation, respectively, and the high capability of degrading rhodamine B. The enhanced photocatalytic activity may be attributed to the large specific surface and improved charge carrier separation at the core/shell interface. Moreover, it displays high photostability owing to the protection of the ZnO shell, greatly inhibiting the photocorrosion of ZnS. This facile in situ oxidation is effective and easily scalable, providing opportunities for developing novel core/shell structure photocatalysts with high activity and photostability.

  14. In situ growth of CdS nanoparticles on UiO-66 metal-organic framework octahedrons for enhanced photocatalytic hydrogen production under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian-Jian; Wang, Rong; Liu, Xin-Ling; Peng, Fu-Min [School of Chemistry and Chemical Engineering and Innovation Lab for Clean Energy & Green Catalysis, Anhui University, Hefei 230601 (China); Li, Chuan-Hao, E-mail: chuanhao.li@yale.edu [School of Chemistry and Chemical Engineering and Innovation Lab for Clean Energy & Green Catalysis, Anhui University, Hefei 230601 (China); Department of Chemical & Environmental Engineering, Yale University, New Haven 06511 (United States); Teng, Fei [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Yuan, Yu-Peng, E-mail: yupengyuan@ahu.edu.cn [School of Chemistry and Chemical Engineering and Innovation Lab for Clean Energy & Green Catalysis, Anhui University, Hefei 230601 (China); Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China)

    2015-08-15

    Graphical abstract: Enhanced photocatalytic hydrogen generation was achieved though constructing the CdS/UiO-66 MOF hybrids. In addition, the resultant hybrids show excellent photostability for hydrogen generation. - Highlights: • CdS nanoparticles were hydrothermally grown on UiO-66 octahedrons. • The resultant CdS/UiO-66 hybrids show enhanced photocatalytic H{sub 2} generation under visible light irradiation. • CdS/UiO-66 hybrids possess excellent photostability for long-term hydrogen generation. - Abstract: CdS nanoparticles acting as photosensitizer was grown in situ upon UiO-66 metal-organic framework octahedrons through a hydrothermal process. The resultant CdS/UiO-66 hybrid photocatalysts show remarkably active hydrogen evolution under visible light irradiation as compared to CdS and UiO-66 alone. The optimum hybrid with 16 wt% CdS loading shows a hydrogen production rate of 235 μmol h{sup −1}, corresponding to 1.2% quantum efficiency at 420 nm. The improved photocatalytic hydrogen production over hybrid CdS/UiO-66 is ascribed to the efficient interfacial charge transfer from CdS to UiO-66, which effectively suppresses the recombination of photogenerated electron-hole pairs and thereby enhancing the photocatalytic efficiency.

  15. In situ measurement of the junction temperature of light emitting diodes using a flexible micro temperature sensor.

    Science.gov (United States)

    Lee, Chi-Yuan; Su, Ay; Liu, Yin-Chieh; Fan, Wei-Yuan; Hsieh, Wei-Jung

    2009-01-01

    This investigation aimed to fabricate a flexible micro resistive temperature sensor to measure the junction temperature of a light emitting diode (LED). The junction temperature is typically measured using a thermal resistance measurement approach. This approach is limited in that no standard regulates the timing of data capture. This work presents a micro temperature sensor that can measure temperature stably and continuously, and has the advantages of being lightweight and able to monitor junction temperatures in real time. Micro-electro-mechanical-systems (MEMS) technologies are employed to minimize the size of a temperature sensor that is constructed on a stainless steel foil substrate (SS-304 with 30 μm thickness). A flexible micro resistive temperature sensor can be fixed between the LED chip and the frame. The junction temperature of the LED can be measured from the linear relationship between the temperature and the resistance. The sensitivity of the micro temperature sensor is 0.059 ± 0.004 Ω/°C. The temperature of the commercial CREE(®) EZ1000 chip is 119.97 °C when it is thermally stable, as measured using the micro temperature sensor; however, it was 126.9 °C, when measured by thermal resistance measurement. The micro temperature sensor can be used to replace thermal resistance measurement and performs reliably.

  16. In Situ Measurement of the Junction Temperature of Light Emitting Diodes Using a Flexible Micro Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Wei-Jung Hsieh

    2009-06-01

    Full Text Available This investigation aimed to fabricate a flexible micro resistive temperature sensor to measure the junction temperature of a light emitting diode (LED. The junction temperature is typically measured using a thermal resistance measurement approach. This approach is limited in that no standard regulates the timing of data capture. This work presents a micro temperature sensor that can measure temperature stably and continuously, and has the advantages of being lightweight and able to monitor junction temperatures in real time. Micro-electro-mechanical-systems (MEMS technologies are employed to minimize the size of a temperature sensor that is constructed on a stainless steel foil substrate (SS-304 with 30 μm thickness. A flexible micro resistive temperature sensor can be fixed between the LED chip and the frame. The junction temperature of the LED can be measured from the linear relationship between the temperature and the resistance. The sensitivity of the micro temperature sensor is 0.059 ± 0.004 Ω/°C. The temperature of the commercial CREE® EZ1000 chip is 119.97 °C when it is thermally stable, as measured using the micro temperature sensor; however, it was 126.9 °C, when measured by thermal resistance measurement. The micro temperature sensor can be used to replace thermal resistance measurement and performs reliably.

  17. In Situ Synthesis of Ag@Cu2O-rGO Architecture for Strong Light-Matter Interactions

    Directory of Open Access Journals (Sweden)

    Shuang Guo

    2018-06-01

    Full Text Available Emerging opportunities based on two-dimensional (2D layered structures can utilize a variety of complex geometric architectures. Herein, we report the synthesis and properties of a 2D+0D unique ternary platform-core-shell nanostructure, termed Ag@Cu2O-rGO, where the reduced graphene oxide (rGO 2D acting as a platform is uniformly decorated by Ag@Cu2O core-shell nanoparticles. Cu2O nanoparticles occupy the defect positions on the surface of the rGO platform and restore the conjugation of the rGO structure, which contributes to the significant decrease of the ID/IG intensity ratio. The rGO platform can not only bridge the isolated nanoparticles together but also can quickly transfer the free electrons arising from the Ag core to the Cu2O shell to improve the utilization efficiency of photogenerated electrons, as is verified by high efficient photocatalytic activity of Methyl Orange (MO. The multi-interface coupling of the Ag@Cu2O-rGO platform-core-shell nanostructure leads to the decrease of the bandgap with an increase of the Cu2O shell thickness, which broadens the absorption range of the visible light spectrum.

  18. In situ modification of cell-culture scaffolds by photocatalysis of visible-light-responsive TiO2 film

    Science.gov (United States)

    Kono, Sho; Furusawa, Kohei; Kurotobi, Atsushi; Hattori, Kohei; Yamamoto, Hideaki; Hirano-Iwata, Ayumi; Tanii, Takashi

    2018-02-01

    We propose a novel process to modify the cell affinity of scaffolds in a cell-culture environment using the photocatalytic activity of visible-light (VL)-responsive TiO2. The proposed process is the improved version of our previous demonstration in which ultraviolet (UV)-responsive TiO2 was utilized. In that demonstration, we showed that cell-repellent molecules on TiO2 were decomposed and replaced with cell-permissive molecules upon UV exposure in the medium where cells are being cultured. However, UV irradiation involves taking the risk of inducing damage to the cells. In this work, a TiO2 film was sputter-deposited on a quartz coverslip at 640 °C without O2 gas injection to create a rutile structure containing oxygen defects, which is known to exhibit photocatalytic activity upon VL exposure. We show that the cell adhesion site and migration area can be controlled with the photocatalytic activity of the VL-responsive TiO2 film, while the cellular oxidative stress is reduced markedly by the substitution of VL for UV.

  19. In situ, high sensitivity, measurement of sup 9 sup 0 strontium in ground water using Cherenkov light

    CERN Document Server

    Bowyer, T W; Hossbach, T W; Hansen, R; Wilcox, W A

    2000-01-01

    The measurement of sup 9 sup 0 Sr in soils and ground water is important for characterization and remediation of radioactively contaminated sites. Measuring the sup 9 sup 0 Sr content to a few pCi/g of soil has been accomplished based on a design of scintillating fibers in a multilayered configuration measuring the high-energy beta emitted from sup 9 sup 0 Y decay (when in secular equilibrium with sup 9 sup 0 Sr), but has not been applied to water because the technique is sensitive to only the first few mm of soil. The volume of the source to which the detector is sensitive limits the theoretical sensitivity of such a detector, unless chemical preprocessing to strip the sup 9 sup 0 Sr from the water is performed. sup 9 sup 0 Sr activity in water can be quantified by detecting the high-energy beta particle by the Cherenkov light it produces when the high-energy beta from sup 9 sup 0 Y passes through the medium. We have used this phenomenon to sensitively measure sup 9 sup 0 Sr ( sup 9 sup 0 Y) from a volume of...

  20. Preparation and Thermoelectric Characteristics of ITO/PtRh:PtRh Thin Film Thermocouple.

    Science.gov (United States)

    Zhao, Xiaohui; Wang, Hongmin; Zhao, Zixiang; Zhang, Wanli; Jiang, Hongchuan

    2017-12-15

    Thin film thermocouples (TFTCs) can provide more precise in situ temperature measurement for aerospace propulsion systems without disturbance of gas flow and surface temperature distribution of the hot components. ITO/PtRh:PtRh TFTC with multilayer structure was deposited on alumina ceramic substrate by magnetron sputtering. After annealing, the TFTC was statically calibrated for multiple cycles with temperature up to 1000 °C. The TFTC with excellent stability and repeatability was realized for the negligible variation of EMF in different calibration cycles. It is believed that owing to oxygen diffusion barriers by the oxidation of top PtRh layer and Schottky barriers formed at the grain boundaries of ITO, the variation of the carrier concentration of ITO film is minimized. Meanwhile, the life time of TFTC is more than 30 h in harsh environment. This makes ITO/PtRh:PtRh TFTC a promising candidate for precise surface temperature measurement of hot components of aeroengines.

  1. In situ crystallization for fabrication of a core-satellite structured BiOBr-CdS heterostructure with excellent visible-light-responsive photoreactivity.

    Science.gov (United States)

    Guo, Yuxi; Huang, Hongwei; He, Ying; Tian, Na; Zhang, Tierui; Chu, Paul K; An, Qi; Zhang, Yihe

    2015-07-21

    We demonstrate the fabrication of a core-satellite structured BiOBr-CdS photocatalyst with highly efficient photocatalytic reactivity via a facile in situ crystallization approach at room temperature. The transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM) results reveal that the BiOBr flakes are surrounded by CdS particles. The coverage of the satellites on the surface of the BiOBr nanosheets could be controlled by changing the content of the CdS, which contributes to the enhanced level of photocatalytic performance. The UV-vis diffuse reflection spectra demonstrate that the visible light absorption of the BiOBr-CdS photocatalyst is also enhanced by the CdS loaded. The excellent structural and spectral properties endow the BiOBr-CdS heterojunctions with improved photocatalytic performance pertaining to bisphenol A (BPA) degradation and photocurrent generation. Under visible light irradiation, the optimum photocatalytic activity of BiOBr-CdS at a molar ratio of 1 : 5 (CdS/BiOBr) is almost 2.8 times and 24.6 times as high as that of pure BiOBr and CdS. The remarkably enhanced photoreactivity should be attributed to the match in the energy levels and close core-satellite structural coupling between the CdS and BiOBr, which greatly facilitates the separation and transfer of photoinduced electron-hole pairs, as confirmed by photoluminescence (PL) and electrochemical impedance spectra (EIS). The present work sheds new light on the construction of highly efficient core-satellite heterojunctional photocatalysts for practical applications.

  2. Simultaneous in situ measurements of properties of particulates in rf silane plasmas using a polarization-sensitive laser-light-scattering method

    Science.gov (United States)

    Shiratani, Masaharu; Kawasaki, Hiroharu; Fukuzawa, Tsuyoshi; Yoshioka, Takashi; Ueda, Yoshio; Singh, Sanjay; Watanabe, Yukio

    1996-01-01

    A polarization-sensitive laser-light-scattering method is developed for simultaneous in situ measurements of properties (size, size dispersion, density, and refractive index) of particulates formed in processing plasmas. The developed system is applied to observe the growth processes of particulates in a range of their size larger than about 10 nm in rf silane plasmas. A size, a size dispersion (logarithm of a standard deviation of size), a density, and a refractive index of particulates in the plasmas are found to be 10-200 nm, about 0.1, 107-109 cm-3 and about 3-5i, respectively. The former three of such values agree fairly well with ones deduced from scanning electron microscopic (SEM) observation. These particulates grow through three phases of nucleation and initial growth, rapid growth, and growth saturation. Coexistence of two size groups of particulates with narrow size dispersions during and after the rapid growth phase verified by the SEM observation may be explained by a model taking into account coagulation between oppositely charged particulates.

  3. Synthesis of core-shell heterostructured Cu/Cu2O nanowires monitored by in situ XRD as efficient visible-light photocatalysts

    KAUST Repository

    Chen, Wei

    2013-01-01

    Core-shell heterostructured Cu/Cu2O nanowires with a high aspect ratio were synthesized from Cu foam using a novel oxidation/reduction process. In situ XRD was used as an efficient tool to acquire phase transformation details during the temperature-programmed oxidation of Cu foam and the subsequent reduction process. Based on knowledge of the crucial phase transformation, optimal synthesis conditions for producing high-quality CuO and core-shell Cu/Cu2O nanowires were determined. In favor of efficient charge separation induced by the special core-shell heterostructure and the advanced three-dimensional spatial configuration, Cu/Cu2O nanowires exhibited superior visible-light activity in the degradation of methylene blue. The present study illustrates a novel strategy for fabricating efficiently core-shell heterostructured nanowires and provides the potential for developing their applications in electronic devices, for environmental remediation and in solar energy utilization fields. This journal is © The Royal Society of Chemistry.

  4. In Situ Analysis of Metabolic Characteristics Reveals the Key Yeast in the Spontaneous and Solid-State Fermentation Process of Chinese Light-Style Liquor

    Science.gov (United States)

    Kong, Yu; Wu, Qun; Zhang, Yan

    2014-01-01

    The in situ metabolic characteristics of the yeasts involved in spontaneous fermentation process of Chinese light-style liquor are poorly understood. The covariation between metabolic profiles and yeast communities in Chinese light-style liquor was modeled using the partial least square (PLS) regression method. The diversity of yeast species was evaluated by sequence analysis of the 26S ribosomal DNA (rDNA) D1/D2 domains of cultivable yeasts, and the volatile compounds in fermented grains were analyzed by gas chromatography (GC)-mass spectrometry (MS). Eight yeast species and 58 volatile compounds were identified, respectively. The modulation of 16 of these volatile compounds was associated with variations in the yeast population (goodness of prediction [Q2] > 20%). The results showed that Pichia anomala was responsible for the characteristic aroma of Chinese liquor, through the regulation of several important volatile compounds, such as ethyl lactate, octanoic acid, and ethyl tetradecanoate. Correspondingly, almost all of the compounds associated with P. anomala were detected in a pure culture of this yeast. In contrast to the PLS regression results, however, ethyl lactate and ethyl isobutyrate were not detected in the same pure culture, which indicated that some metabolites could be generated by P. anomala only when it existed in a community with other yeast species. Furthermore, different yeast communities provided different volatile patterns in the fermented grains, which resulted in distinct flavor profiles in the resulting liquors. This study could help identify the key yeast species involved in spontaneous fermentation and provide a deeper understanding of the role of individual yeast species in the community. PMID:24727269

  5. Histological and radiographic evaluation of the muscle tissue of rats after implantation of bone morphogenic protein (rhBMP-2 in a scaffold of inorganic bone and after stimulation with low-power laser light

    Directory of Open Access Journals (Sweden)

    Bengtson Antonio

    2010-01-01

    Full Text Available Objective: The present study histologically and radiologically evaluates the muscle tissue of rats after implantation of bone morphogenic protein (rhBMP-2 in a natural inorganic bone mineral scaffold from a bull calf femur and irradiation with low-power light laser. Materials and Methods: The right and left hind limbs of 16 rats were shaved and an incision was made in the muscle on the face corresponding to the median portion of the tibia, into which rhBMP-2 in a scaffold of inorganic bone was implanted. Two groups of limbs were formed: control (G1 and laser irradiation (G2. G2 received diode laser light applied in the direction of the implant, at a dose of 8 J/cm2 for three minutes. On the 7th, 21st, 40th and 112th days after implantation, hind limbs of 4 animals were radiographed and their implants removed together with the surrounding tissue for study under the microscope. The histological results were graded as 0=absence, 1=slight presence, 2=representative and 3=very representative, with regard to the following events: formation of osteoid structure, acute inflammation, chronic inflammation, fibrin deposition, neovascularization, foreign-body granuloma and fibrosis. Results: There were no statistically significant differences in these events at each evaluation times, between the two groups (P > 0.05; Mann-Whitney test. Nevertheless, it could be concluded that the natural inorganic bone matrix with rhBMP-2, from the femur of a bull calf, is a biocompatible combination. Conclusions: Under these conditions, the inductive capacity of rhBMP-2 for cell differentiation was inhibited. There was a slight acceleration in tissue healing in the group that received irradiation with low-power laser light.

  6. Antimicrobial Photoinactivation Using Visible Light Plus Water-Filtered Infrared-A (VIS + wIRA Alters In Situ Oral Biofilms.

    Directory of Open Access Journals (Sweden)

    A Al-Ahmad

    Full Text Available Recently, growing attention has been paid to antimicrobial photodynamic therapy (aPDT in dentistry. Changing the microbial composition of initial and mature oral biofilm by aPDT using visible light plus water-filtered infrared-A wavelengths (VIS + wIRA has not yet been investigated. Moreover, most aPDT studies have been conducted on planktonic bacterial cultures. Therefore, in the present clinical study we cultivated initial and mature oral biofilms in six healthy volunteers for 2 hours or 3 days, respectively. The biofilms were treated with aPDT using VIS+wIRA (200 mW cm(-2, toluidine blue (TB and chlorine e6 (Ce6 for 5 minutes. Chlorhexidine treated biofilm samples served as positive controls, while untreated biofilms served as negative controls. After aPDT treatment the colony forming units (CFU of the biofilm samples were quantified, and the surviving bacteria were isolated in pure cultures and identified using MALDI-TOF, biochemical tests and 16S rDNA-sequencing. aPDT killed more than 99.9% of the initial viable bacterial count and 95% of the mature oral biofilm in situ, independent of the photosensitizer. The number of surviving bacterial species was highly reduced to 6 (TB and 4 (Ce6 in the treated initial oral biofilm compared to the 20 different species of the untreated biofilm. The proportions of surviving bacterial species were also changed after TB- and Ce6-mediated aPDT of the mature oral biofilm, resulting in a shift in the microbial composition of the treated biofilm compared to that of the control biofilm. In conclusion, aPDT using VIS + wIRA showed a remarkable potential to eradicate both initial and mature oral biofilms, and also to markedly alter the remaining biofilm. This encourages the clinical use of aPDT with VIS + wIRA for the treatment of periimplantitis and periodontitis.

  7. Serendipitous discovery of light-induced (In Situ) formation of an Azo-bridged dimeric sulfonated naphthol as a potent PTP1B inhibitor.

    Science.gov (United States)

    Bongard, Robert D; Lepley, Michael; Thakur, Khushabu; Talipov, Marat R; Nayak, Jaladhi; Lipinski, Rachel A Jones; Bohl, Chris; Sweeney, Noreena; Ramchandran, Ramani; Rathore, Rajendra; Sem, Daniel S

    2017-05-31

    Protein tyrosine phosphatases (PTPs) like dual specificity phosphatase 5 (DUSP5) and protein tyrosine phosphatase 1B (PTP1B) are drug targets for diseases that include cancer, diabetes, and vascular disorders such as hemangiomas. The PTPs are also known to be notoriously difficult targets for designing inihibitors that become viable drug leads. Therefore, the pipeline for approved drugs in this class is minimal. Furthermore, drug screening for targets like PTPs often produce false positive and false negative results. Studies presented herein provide important insights into: (a) how to detect such artifacts, (b) the importance of compound re-synthesis and verification, and (c) how in situ chemical reactivity of compounds, when diagnosed and characterized, can actually lead to serendipitous discovery of valuable new lead molecules. Initial docking of compounds from the National Cancer Institute (NCI), followed by experimental testing in enzyme inhibition assays, identified an inhibitor of DUSP5. Subsequent control experiments revealed that this compound demonstrated time-dependent inhibition, and also a time-dependent change in color of the inhibitor that correlated with potency of inhibition. In addition, the compound activity varied depending on vendor source. We hypothesized, and then confirmed by synthesis of the compound, that the actual inhibitor of DUSP5 was a dimeric form of the original inhibitor compound, formed upon exposure to light and oxygen. This compound has an IC 50 of 36 μM for DUSP5, and is a competitive inhibitor. Testing against PTP1B, for selectivity, demonstrated the dimeric compound was actually a more potent inhibitor of PTP1B, with an IC 50 of 2.1 μM. The compound, an azo-bridged dimer of sulfonated naphthol rings, resembles previously reported PTP inhibitors, but with 18-fold selectivity for PTP1B versus DUSP5. We report the identification of a potent PTP1B inhibitor that was initially identified in a screen for DUSP5, implying common

  8. Effects of relative humidity on aerosol light scattering in the Arctic

    Directory of Open Access Journals (Sweden)

    P. Zieger

    2010-04-01

    Full Text Available Aerosol particles experience hygroscopic growth in the ambient atmosphere. Their optical properties – especially the aerosol light scattering – are therefore strongly dependent on the ambient relative humidity (RH. In-situ light scattering measurements of long-term observations are usually performed under dry conditions (RH>30–40%. The knowledge of this RH effect is of eminent importance for climate forcing calculations or for the comparison of remote sensing with in-situ measurements. This study combines measurements and model calculations to describe the RH effect on aerosol light scattering for the first time for aerosol particles present in summer and fall in the high Arctic. For this purpose, a field campaign was carried out from July to October 2008 at the Zeppelin station in Ny-Ålesund, Svalbard. The aerosol light scattering coefficient σsp(λ was measured at three distinct wavelengths (λ=450, 550, and 700 nm at dry and at various, predefined RH conditions between 20% and 95% with a recently developed humidified nephelometer (WetNeph and with a second nephelometer measuring at dry conditions with an average RH<10% (DryNeph. In addition, the aerosol size distribution and the aerosol absorption coefficient were measured. The scattering enhancement factor f(RH, λ is the key parameter to describe the RH effect on σsp(λ and is defined as the RH dependent σsp(RH, λ divided by the corresponding dry σsp(RHdry, λ. During our campaign the average f(RH=85%, λ=550 nm was 3.24±0.63 (mean ± standard deviation, and no clear wavelength dependence of f(RH, λ was observed. This means that the ambient scattering coefficients at RH=85% were on average about three times higher than the dry measured in-situ scattering coefficients. The RH dependency of the recorded f(RH, λ can be well described by an empirical one-parameter equation. We used a simplified

  9. Bandgap tailoring of in-situ nitrogen-doped TiO₂ sputtered films intended for electrophotocatalytic applications under solar light

    Energy Technology Data Exchange (ETDEWEB)

    Delegan, N.; El Khakani, M. A., E-mail: elkhakani@emt.inrs.ca [Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650, Boulevard Lionel-Boulet, Varennes, Québec J3X-1S2 (Canada); Daghrir, R.; Drogui, P. [Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, 490 Rue de la Couronne, Québec G1K-9A9 (Canada)

    2014-10-21

    We report on a reactive RF-sputtering process permitting the in-situ nitrogen doping of TiO₂ films in order to shift their photoactivity from UV to visible range. By carefully controlling the relative nitrogen-to-argon mass flow rate ratio (within the 0%–25% range) in the sputter deposition chamber, TiO₂:N films were grown with nitrogen contents ranging from 0 to 6.2 at. %, as determined by high-resolution X-ray spectroscopy measurements. A systematic investigation of the crystalline structure of the TiO₂:N films, as a function of their N content, revealed that low N contents (0.2–0.3 at. %) induce crystallization in the rutile phase while higher N contents (≥1.4 at. %) were accompanied with the recovery of the anatase structure with an average crystallite size of ~35 nm. By using both UV-Vis absorption and spectroscopic ellipsometry measurements, we were able to quantitatively determine the bandgap (E{sub g}) variation of the TiO₂:N films as a function of their N content. Thus, we have demonstrated that the E{sub g} of the TiO₂:N films effectively narrows from 3.2 eV down to a value as low as ~2.3 eV for the optimal N doping concentration of 3.4 at. % (higher N incorporation does not translate into further red shifting of the TiO₂:N films' E{sub g}). The photoactivity of the TiO₂:N films under visible light was confirmed through electro-photocatalytic decomposition of chlortetracycline (CTC, an emerging water pollutant) under standard 1.5AM solar radiation. Thus, CTC degradation efficiencies of up to 98% were achieved with 2 hours process cycles under simulated solar light. Moreover, the electro-photocatalytic performance of the TiO₂:N films is shown to be directly correlated to their optoelectronic properties (namely their bandgap narrowing).

  10. Melatonin Inhibits GnRH-1, GnRH-3 and GnRH Receptor Expression in the Brain of the European Sea Bass, Dicentrarchus labrax

    Directory of Open Access Journals (Sweden)

    José Antonio Muñoz-Cueto

    2013-04-01

    Full Text Available Several evidences supported the existence of melatonin effects on reproductive system in fish. In order to investigate whether melatonin is involved in the modulation of GnRH systems in the European sea bass, we have injected melatonin (0.5 µg/g body mass in male specimens. The brain mRNA transcript levels of the three GnRH forms and the five GnRH receptors present in this species were determined by real time quantitative PCR. Our findings revealed day–night variations in the brain expression of GnRH-1, GnRH-3 and several GnRH receptors (dlGnRHR-II-1c, -2a, which exhibited higher transcript levels at mid-light compared to mid-dark phase of the photocycle. Moreover, an inhibitory effect of melatonin on the nocturnal expression of GnRH-1, GnRH-3, and GnRH receptors subtypes 1c, 2a and 2b was also demonstrated. Interestingly, the inhibitory effect of melatonin affected the expression of hypophysiotrophic GnRH forms and GnRH receptors that exhibit day–night fluctuations, suggesting that exogenous melatonin reinforce physiological mechanisms already established. These interactions between melatoninergic and GnRH systems could be mediating photoperiod effects on reproductive and other rhythmic physiological events in the European sea bass.

  11. The molecular dimension of microbial species: 3. Comparative genomics of Synechococcus strains with different light responses and in situ diel transcription patterns of associated ecotypes in the Mushroom Spring microbial mat

    Directory of Open Access Journals (Sweden)

    Millie T. Olsen

    2015-06-01

    Full Text Available Genomes were obtained for three closely related strains of Synechococcus that are representative of putative ecotypes that predominate at different depths in the 1 mm-thick, upper-green layer in the 60°C mat of Mushroom Spring, Yellowstone National Park, and exhibit different light adaptation and acclimation responses. The genomes were compared to the published genome of a previously obtained, closely related strain from a neighboring spring, and differences in both gene content and orthologous gene alleles between high-light-adapted and low-light-adapted strains were identified. Evidence of genetic differences that relate to adaptation to light intensity and/or quality, CO2 uptake, nitrogen metabolism, organic carbon metabolism, and uptake of other nutrients were found between strains of the different putative ecotypes. In situ diel transcription patterns of genes, including genes unique to either low-light-adapted or high-light-adapted strains and different alleles of an orthologous photosystem gene, revealed that expression is fine-tuned to the different light environments experienced by ecotypes prevalent at various depths in the mat. This study suggests that strains of closely related putative ecotypes have different genomic adaptations that enable them to inhabit distinct ecological niches while living in close proximity within a microbial community.

  12. Origins of gonadotropin-releasing hormone (GnRH) in vertebrates: identification of a novel GnRH in a basal vertebrate, the sea lamprey.

    Science.gov (United States)

    Kavanaugh, Scott I; Nozaki, Masumi; Sower, Stacia A

    2008-08-01

    We cloned a cDNA encoding a novel (GnRH), named lamprey GnRH-II, from the sea lamprey, a basal vertebrate. The deduced amino acid sequence of the newly identified lamprey GnRH-II is QHWSHGWFPG. The architecture of the precursor is similar to that reported for other GnRH precursors consisting of a signal peptide, decapeptide, a downstream processing site, and a GnRH-associated peptide; however, the gene for lamprey GnRH-II does not have introns in comparison with the gene organization for all other vertebrate GnRHs. Lamprey GnRH-II precursor transcript was widely expressed in a variety of tissues. In situ hybridization of the brain showed expression and localization of the transcript in the hypothalamus, medulla, and olfactory regions, whereas immunohistochemistry using a specific antiserum showed only GnRH-II cell bodies and processes in the preoptic nucleus/hypothalamus areas. Lamprey GnRH-II was shown to stimulate the hypothalamic-pituitary axis using in vivo and in vitro studies. Lamprey GnRH-II was also shown to activate the inositol phosphate signaling system in COS-7 cells transiently transfected with the lamprey GnRH receptor. These studies provide evidence for a novel lamprey GnRH that has a role as a third hypothalamic GnRH. In summary, the newly discovered lamprey GnRH-II offers a new paradigm of the origin of the vertebrate GnRH family. We hypothesize that due to a genome/gene duplication event, an ancestral gene gave rise to two lineages of GnRHs: the gnathostome GnRH and lamprey GnRH-II.

  13. In situ one-pot fabrication of g-C3N4 nanosheets/NiS cocatalyst heterojunction with intimate interfaces for efficient visible light photocatalytic H2 generation

    Science.gov (United States)

    He, Kelin; Xie, Jun; Li, Mingli; Li, Xin

    2018-02-01

    Constructing high-quality earth-abundant semionconductor/cocatalyst heterojunction remains a grand challenge in the promising fields of photocatalytic solar fuel H2 production. Herein, an intimate g-C3N4 nanosheet/NiS cocatalyst heterojunction is fabricated by in situ one-step calcination of urea, thiourea and nickel acetate. Interestingly, thiourea could act as both the precursor of g-C3N4 and the sulfur source of NiS. The H2-evolution activity of as-obtained photocatalysts was tested in a triethanolamine (TEOA) scavenger solution under visible light irradiation. Transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) mapping analysis clearly demonstrated that the NiS catalyst nanoparticles could be in situ fabricated and homogeneously distributed on the surface of g-C3N4 nanosheets without an obvious aggregation. The maximum H2-production rate of 29.68 μmol h-1 could be achieved, which is nearly comparable to that of 0.5 wt% Pt loaded sample. It is believed that the intimate heterojunction interfaces between NiS nanoparticles and g-C3N4 nanosheets could be in situ constructed by high temperature calcination, which achieved the improved charge separation, the enhanced oxidation ability of TEOA and the accelerated the sluggish H2-evolution kinetics, thus resulting in the remarkably enhanced hydrogen evolution. Therefore, our study provides insights into constructing high-quality robust g-C3N4-based heterojunction material for photocatalytic applications by using a simple one-step in-situ calcination technique.

  14. Environmental application of millimetre-scale sponge iron (s-Fe{sup 0}) particles (IV): New insights into visible light photo-Fenton-like process with optimum dosage of H{sub 2}O{sub 2} and RhB photosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming, E-mail: juyongming@scies.org [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, South China Subcenter of State Environmental Dioxin Monitoring Center, Guangzhou 510655 (China); Guangdong Key Laboratory of Agro-Environment Integrated Control, South China Institute of Environmental Sciences, Guangzhou 510655 (China); Yu, Yunjiang, E-mail: yuyunjiang@scies.org [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Wang, Xiaoyan; Xiang, Mingdeng; Li, Liangzhong [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Deng, Dongyang [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, South China Subcenter of State Environmental Dioxin Monitoring Center, Guangzhou 510655 (China); Guangdong Key Laboratory of Agro-Environment Integrated Control, South China Institute of Environmental Sciences, Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, Cincinnati, Ohio, 45221-0012 (United States)

    2017-02-05

    Highlights: • Synergistic action of Rhodamine B (RhB), visible light, H{sub 2}O{sub 2} and s-Fe{sup 0} is essential. • The complexes of RhB and Fe{sup 3+} eject one electron via ligand-to-metal charge-transfer. • RhB assists the photo-Fenton-like removal of tetrabromobisphenol A (TBBPA). - Abstract: In this study, we firstly develop the photo-Fenton-like system with millimetric sponge iron (s-Fe{sup 0}), H{sub 2}O{sub 2}, visible light (vis, λ ≥ 420 nm) and rhodamine B (RhB), and present a comprehensive study concerning the mechanism. Thus, we investigate (1) the adsorption of RhB onto s-Fe{sup 0}, (2) the photo-Fenton-like removal of RhB over iron oxides generated from the corrosion of s-Fe{sup 0}, (3) the homogeneous photo-Fenton removal of RhB over Fe{sup 2+} or Fe{sup 3+}, (4) the Fe{sup 3+}-RhB complexes, and (5) the photo-Fenton-like removal of tetrabromobisphenol A (TBBPA). The results show that neither the adsorption process over s-Fe{sup 0} nor the photo-Fenton-like process over FeOOH, Fe{sub 3}O{sub 4} and Fe{sub 2}O{sub 3}, achieved efficient removal of RhB. For comparison, in homogeneous photo-Fenton process, the presence of Fe{sup 3+} ions, rather than Fe{sup 2+} ions, effectively eliminated RhB. Furthermore, the UV–vis spectra showing new absorbance at ∼ 285 nm indicate the complexes of RhB and Fe{sup 3+} ions, adopting vis photons to form excited state and further eject one electron via ligand-to-metal charge-transfer to activate H{sub 2}O{sub 2}. Additionally, efficient TBBPA removal was obtained only in the presence of RhB. Accordingly, the s-Fe{sup 0}– based photo-Fenton-like process assisted with dyestuff wastewater is promising for removing a series of persistent organic pollutants.

  15. Rh Factor Blood Test

    Science.gov (United States)

    ... Also, talk with your health care provider about scheduling an Rh immune globulin injection during your pregnancy ... of Privacy Practices Notice of Nondiscrimination Manage Cookies Advertising Mayo Clinic is a not-for-profit organization ...

  16. RH Packaging Operations Manual

    International Nuclear Information System (INIS)

    Washington TRU Solutions LLC

    2003-01-01

    This procedure provides operating instructions for the RH-TRU 72-B Road Cask, Waste Shipping Package. In this document, ''Packaging'' refers to the assembly of components necessary to ensure compliance with the packaging requirements (not loaded with a payload). ''Package'' refers to a Type B packaging that, with its radioactive contents, is designed to retain the integrity of its containment and shielding when subject to the normal conditions of transport and hypothetical accident test conditions set forth in 10 CFR Part 71. Loading of the RH 72-B cask can be done two ways, on the RH cask trailer in the vertical position or by removing the cask from the trailer and loading it in a facility designed for remote-handling (RH). Before loading the 72-B cask, loading procedures and changes to the loading procedures for the 72-B cask must be sent to CBFO at sitedocuments at wipp.ws for approval

  17. Illumination Sufficiency Survey Techniques: In-situ Measurements of Lighting System Performance and a User Preference Survey for Illuminance in an Off-Grid, African Setting

    Energy Technology Data Exchange (ETDEWEB)

    Alstone, Peter; Jacobson, Arne; Mills, Evan

    2010-08-26

    Efforts to promote rechargeable electric lighting as a replacement for fuel-based light sources in developing countries are typically predicated on the notion that lighting service levels can be maintained or improved while reducing the costs and environmental impacts of existing practices. However, the extremely low incomes of those who depend on fuel-based lighting create a need to balance the hypothetically possible or desirable levels of light with those that are sufficient and affordable. In a pilot study of four night vendors in Kenya, we document a field technique we developed to simultaneously measure the effectiveness of lighting service provided by a lighting system and conduct a survey of lighting service demand by end-users. We took gridded illuminance measurements across each vendor's working and selling area, with users indicating the sufficiency of light at each point. User light sources included a mix of kerosene-fueled hurricane lanterns, pressure lamps, and LED lanterns.We observed illuminance levels ranging from just above zero to 150 lux. The LED systems markedly improved the lighting service levels over those provided by kerosene-fueled hurricane lanterns. Users reported that the minimum acceptable threshold was about 2 lux. The results also indicated that the LED lamps in use by the subjects did not always provide sufficient illumination over the desired retail areas. Our sample size is much too small, however, to reach any conclusions about requirements in the broader population. Given the small number of subjects and very specific type of user, our results should be regarded as indicative rather than conclusive. We recommend replicating the method at larger scales and across a variety of user types and contexts. Policymakers should revisit the subject of recommended illuminance levels regularly as LED technology advances and the price/service balance point evolves.

  18. In situ atomic force microscopy studies of reversible light-induced switching of surface roughness and adhesion in azobenzene-containing PMMA films

    International Nuclear Information System (INIS)

    Mueller, M.; Gonzalez-Garcia, Y.; Pakula, C.; Zaporojtchenko, V.; Strunskus, T.; Faupel, F.; Herges, R.; Zargarani, D.; Magnussen, O.M.

    2011-01-01

    Thin films in the range 40-80 nm of a blend of PMMA with an azobenzene derivative have been studied directly during UV and blue light irradiation by atomic force microscopy (AFM), revealing highly reversible changes in the surface roughness and the film adhesion. UV light induces an ∼80% increase in surface roughness, whereas illumination by blue light completely reverses these changes. Based on the observed surface topography and transition kinetics a reversible mass flow mechanisms is suggested, where the polarity changes upon switching trigger a wetting-dewetting transition in a surface segregation layer of the chromophore. Similar AFM measurements of the pull-off force indicate a decrease upon UV and an increase after blue light illumination with a complex kinetic behavior: a rapid initial change, attributed to the change in the cis isomer fraction of the azobenzene derivative, and a more gradual change, indicative of slow structural reorganization.

  19. [Scattered light and glare sensitivity after wavefront-guided photorefractive keratectomy (WFG-PRK) and laser in situ keratomileusis (WFG-LASIK)].

    Science.gov (United States)

    Vignal, R; Tanzer, D; Brunstetter, T; Schallhorn, S

    2008-05-01

    To compare glare sensitivity measured by the intraocular scattered light between WFG-PRK and WFG-LASIK at 12 months follow-up and to assess its correlation to patients' complaints. Prospective and randomized study on 13 patients treated with WFG-LASIK, 13 patients with WFG-PRK and a control group of 35 patients. The intraocular stray light was measured by the Oculus C-Quant 12 months after surgery and before surgery for the control group. Photopic and mesopic contrast acuity and glare symptoms were reported pre- and postoperatively. Stray light values were normal in 79% of patients after WFG-LASIK and PRK and 86% in the control group, with mean values of 1.05 log, 1.03 log, and 0.99 log, respectively (p>0.05). All the patients with significant glare complaints had impaired stray light values versus 31.5% in the no-complaint group. Photopic and mesopic contrast acuity and glare symptoms were improved 1 year after surgery compared to preoperatively (no significant difference between groups). WFG-LASIK and PRK are safe and equivalent procedures regarding quality of vision. The measurement of stray light can be a discriminative test to assessing patients' glare complaints.

  20. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance.

    Science.gov (United States)

    Harley, Peter; Eller, Allyson; Guenther, Alex; Monson, Russell K

    2014-09-01

    Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature, and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87% of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75% of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was dependent on light and 13CO2 labeling studies confirmed de novo production. Thus, modeling of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions, which explicitly accounts for the physicochemical properties of emitted compounds, we were able to simulate these observed stomatal effects, whether induced experimentally or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light-dependent monoterpenes comprise a significant fraction of emissions in ponderosa pine. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in Δ-3-carene.

  1. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance

    Energy Technology Data Exchange (ETDEWEB)

    Harley, Peter; Eller, Allyson; Guenther, Alex; Monson, Russell K.

    2014-07-12

    Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87% of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75% of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was light dependent and 13CO2 labeling studies confirmed de novo production. Thus, modeling of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions which explicitly accounts for the physico-chemical properties of emitted compounds, we are able to simulate these observed stomatal effects, whether induced through experimentation or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light dependent monoterpenes can comprise a large fraction of emissions. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in Δ-3-carene.

  2. Characterization of enzymatically induced aggregation of casein micelles in natural concentration by in situ static light scattering and ultra low shear viscosimetry

    DEFF Research Database (Denmark)

    Lehner, D.; Worning, Peder; G, Fritz

    1999-01-01

    of multiple scattering whenthe transmission is above 0.85. Due to the very complex and porous structure of the casein aggregates theRayleigh-Debye-Gans scattering theory has been used in the data analysis. Measurements with a newinstrument using ultra low shear showed good agreement with theory. Copyright......The aggregation of casein micelles in undiluted skim milk after the addition of chymosin was studied bystatic light scattering and ultra low shear viscometry. The static light scattering measurements were madewith two different sample thicknesses, 72 and 16 mum. The scattering data were analyzed...... by indirect Fouriertransformation and by the polydispersity inversion technique which led to pair distance distributionfunctions and size distribution function, respectively. The minimum scattering angle was 1 degrees, whichallows for the determination of particle sizes up to a maximum diameter of 12 mum...

  3. Single-particle measurements of bouncing particles and in situ collection efficiency from an airborne aerosol mass spectrometer (AMS) with light-scattering detection

    Science.gov (United States)

    Liao, Jin; Brock, Charles A.; Murphy, Daniel M.; Sueper, Donna T.; Welti, André; Middlebrook, Ann M.

    2017-10-01

    A light-scattering module was coupled to an airborne, compact time-of-flight aerosol mass spectrometer (LS-AMS) to investigate collection efficiency (CE) while obtaining nonrefractory aerosol chemical composition measurements during the Southeast Nexus (SENEX) campaign. In this instrument, particles scatter light from an internal laser beam and trigger saving individual particle mass spectra. Nearly all of the single-particle data with mass spectra that were triggered by scattered light signals were from particles larger than ˜ 280 nm in vacuum aerodynamic diameter. Over 33 000 particles are characterized as either prompt (27 %), delayed (15 %), or null (58 %), according to the time and intensity of their total mass spectral signals. The particle mass from single-particle spectra is proportional to that derived from the light-scattering diameter (dva-LS) but not to that from the particle time-of-flight (PToF) diameter (dva-MS) from the time of the maximum mass spectral signal. The total mass spectral signal from delayed particles was about 80 % of that from prompt ones for the same dva-LS. Both field and laboratory data indicate that the relative intensities of various ions in the prompt spectra show more fragmentation compared to the delayed spectra. The particles with a delayed mass spectral signal likely bounced off the vaporizer and vaporized later on another surface within the confines of the ionization source. Because delayed particles are detected by the mass spectrometer later than expected from their dva-LS size, they can affect the interpretation of particle size (PToF) mass distributions, especially at larger sizes. The CE, measured by the average number or mass fractions of particles optically detected that had measurable mass spectra, varied significantly (0.2-0.9) in different air masses. The measured CE agreed well with a previous parameterization when CE > 0.5 for acidic particles but was sometimes lower than the minimum parameterized CE of 0.5.

  4. In-Situ Simulation

    DEFF Research Database (Denmark)

    Bjerregaard, Anders Thais; Slot, Susanne; Paltved, Charlotte

    2015-01-01

    , and organisational characteristic. Therefore, it might fail to fully mimic real clinical team processes. Though research on in situ simulation in healthcare is in its infancy, literature is abundant on patient safety and team training1. Patient safety reporting systems that identify risks to patients can improve......Introduction: In situ simulation offers on-site training to healthcare professionals. It refers to a training strategy where simulation technology is integrated into the clinical encounter. Training in the simulation laboratory does not easily tap into situational resources, e.g. individual, team...... patient safety if coupled with training and organisational support. This study explored the use of critical incidents and adverse events reports for in situ simulation and short-term observations were used to create learning objectives and training scenarios. Method: This study used an interventional case...

  5. In situ grown hierarchical 50%BiOCl/BiOI hollow flowerlike microspheres on reduced graphene oxide nanosheets for enhanced visible-light photocatalytic degradation of rhodamine B

    Science.gov (United States)

    Su, Xiangde; Yang, Jinjin; Yu, Xiang; Zhu, Yi; Zhang, Yuanming

    2018-03-01

    50%BiOCl/BiOI/reduced graphene oxide (50%BiOCl/BiOI/rGO) composite photocatalyst was synthesized successfully by a facile one-step solvothermal route in this work. Reduction of graphene oxide (GO) took place in the process of solvothermal reaction and a new Bi-C bond between rGO and 50%BiOCl/BiOI was formed. The introduction of rGO affected the morphology of 50%BiOCl/BiOI, resulting in the transformation of 50%BiOCl/BiOI from solid microspheres to hollow microspheres. Both the introduction of rGO and formation of 50%BiOCl/BiOI hollow microspheres can facilitate the light absorption. The strong interaction between 50%BiOCl/BiOI and rGO and the electrical conductivity of rGO greatly improved the effective separation of photogenerated carriers. Hence, GOB-5 demonstrated the highest photocatalytic activity which was over twice of the pristine 50%BiOCl/BiOI in the presence of visible light. Mechanism study revealed that 50%BiOCl/BiOI generated electrons and holes in the presence of visible light, and holes together with rad O2- generated from reduction of O2 by electrons degraded the pollutant directly. Overall, this work provides an excellent reference to the synthesis of chemically bonded BiOX/BiOY (X, Y = Cl, Br, I)/rGO nanocomposite and helps to promote their applications in environmental protection and photoelectric conversion.

  6. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  7. In situ growing Bi{sub 2}MoO{sub 6} on g-C{sub 3}N{sub 4} nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan [School of Chemical Engineering, Northwest University, Xi’an, 710069 (China); School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023 (China); Yin, Yunchao; Liu, Enzhou; Ma, Yongning; Wan, Jun [School of Chemical Engineering, Northwest University, Xi’an, 710069 (China); Fan, Jun, E-mail: fanjun@nwu.edu.cn [School of Chemical Engineering, Northwest University, Xi’an, 710069 (China); Hu, Xiaoyun, E-mail: hxy3275@nwu.edu.cn [School of Physics, Northwest University, Xi’an, 710069 (China)

    2017-01-05

    Graphical abstract: TEM image and schematic diagram of photocatalytic mechanism of Bi{sub 2}MoO{sub 6}/g-C{sub 3}N{sub 4} composite. - Highlights: • BM/CNNs heterojunctions were obtained by an in situ solvothermal method. • 2D CNNs are superior to CN as photocatalysts and supporting materials. • The photocatalytic hydrogen evolution of BM/CNNs has been first studied. • The photocatalytic disinfection of bacteria by BM/CNNs has been first studied. • The photocatalytic mechanism of BM/CNNs heterojunction was described. - Abstract: Bi{sub 2}MoO{sub 6}/g-C{sub 3}N{sub 4} heterojunctions were fabricated by an in situ solvothermal method using g-C{sub 3}N{sub 4} nanosheets. The photocatalytic activities of as-prepared samples were evaluated by hydrogen evolution from water splitting and disinfection of bacteria under visible light irradiation. The results indicate that exfoliating bulk g-C{sub 3}N{sub 4} to g-C{sub 3}N{sub 4} nanosheets greatly enlarges the specific surface area and shortens the diffusion distance for photogenerated charges, which could not only promote the photocatalytic performance but also benefit the sufficient interaction with Bi{sub 2}MoO{sub 6}. Furthermore, intimate contact of Bi{sub 2}MoO{sub 6} (BM) and g-C{sub 3}N{sub 4} nanosheets (CNNs) in the BM/CNNs composites facilitates the transfer and separation of photogenetrated electron-hole pairs. 20%-BM/CNNs heterojunction exhibits the optimal photocatalytic hydrogen evolution as well as photocatalytic disinfection of bacteria. Furthermore, h{sup +} was demonstrated as the dominant reactive species which could make the bacteria cells inactivated in the photocatalytic disinfection process. This study extends new chance of g-C{sub 3}N{sub 4}-based photocatalysts to the growing demand of clean new energy and drinking water.

  8. In situ growing Bi_2MoO_6 on g-C_3N_4 nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation

    International Nuclear Information System (INIS)

    Li, Juan; Yin, Yunchao; Liu, Enzhou; Ma, Yongning; Wan, Jun; Fan, Jun; Hu, Xiaoyun

    2017-01-01

    Graphical abstract: TEM image and schematic diagram of photocatalytic mechanism of Bi_2MoO_6/g-C_3N_4 composite. - Highlights: • BM/CNNs heterojunctions were obtained by an in situ solvothermal method. • 2D CNNs are superior to CN as photocatalysts and supporting materials. • The photocatalytic hydrogen evolution of BM/CNNs has been first studied. • The photocatalytic disinfection of bacteria by BM/CNNs has been first studied. • The photocatalytic mechanism of BM/CNNs heterojunction was described. - Abstract: Bi_2MoO_6/g-C_3N_4 heterojunctions were fabricated by an in situ solvothermal method using g-C_3N_4 nanosheets. The photocatalytic activities of as-prepared samples were evaluated by hydrogen evolution from water splitting and disinfection of bacteria under visible light irradiation. The results indicate that exfoliating bulk g-C_3N_4 to g-C_3N_4 nanosheets greatly enlarges the specific surface area and shortens the diffusion distance for photogenerated charges, which could not only promote the photocatalytic performance but also benefit the sufficient interaction with Bi_2MoO_6. Furthermore, intimate contact of Bi_2MoO_6 (BM) and g-C_3N_4 nanosheets (CNNs) in the BM/CNNs composites facilitates the transfer and separation of photogenetrated electron-hole pairs. 20%-BM/CNNs heterojunction exhibits the optimal photocatalytic hydrogen evolution as well as photocatalytic disinfection of bacteria. Furthermore, h"+ was demonstrated as the dominant reactive species which could make the bacteria cells inactivated in the photocatalytic disinfection process. This study extends new chance of g-C_3N_4-based photocatalysts to the growing demand of clean new energy and drinking water.

  9. Nonpolar a-plane light-emitting diode with an in-situ SiNx interlayer on r-plane sapphire grown by metal-organic chemical vapour deposition

    International Nuclear Information System (INIS)

    Fang Hao; Long Hao; Sang Li-Wen; Qi Sheng-Li; Xiong Chang; Yu Tong-Jun; Yang Zhi-Jian; Zhang Guo-Yi

    2011-01-01

    We report on the growth and fabrication of nonpolar a-plane light emitting diodes with an in-situ SiN x interlayer grown between the undoped a-plane GaN buffer and Si-doped GaN layer. X-ray diffraction shows that the crystalline quality of the GaN buffer layer is greatly improved with the introduction of the SiN x interlayer. The electrical properties are also improved. For example, electron mobility and sheet resistance are reduced from high resistance to 31.6 cm 2 /(V·s) and 460 Ω/□ respectively. Owing to the significant effect of the SiN x interlayer, a-plane LEDs are realized. Electroluminescence of a nonpolar a-plane light-emitting diode with a wavelength of 488nm is demonstrated. The emission peak remains constant when the injection current increases to over 20 mA. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Part I: A Comparative Thermal Aging Study on the Regenerability of Rh/Al2O3 and Rh/CexOy-ZrO2 as Model Catalysts for Automotive Three Way Catalysts

    Directory of Open Access Journals (Sweden)

    Qinghe Zheng

    2015-10-01

    Full Text Available The rhodium (Rh component in automotive three way catalysts (TWC experiences severe thermal deactivation during fuel shutoff, an engine mode (e.g., at downhill coasting used for enhancing fuel economy. In a subsequent switch to a slightly fuel rich condition, in situ catalyst regeneration is accomplished by reduction with H2 generated through steam reforming catalyzed by Rh0 sites. The present work reports the effects of the two processes on the activity and properties of 0.5% Rh/Al2O3 and 0.5% Rh/CexOy-ZrO2 (CZO as model catalysts for Rh-TWC. A very brief introduction of three way catalysts and system considerations is also given. During simulated fuel shutoff, catalyst deactivation is accelerated with increasing aging temperature from 800 °C to 1050 °C. Rh on a CZO support experiences less deactivation and faster regeneration than Rh on Al2O3. Catalyst characterization techniques including BET surface area, CO chemisorption, TPR, and XPS measurements were applied to examine the roles of metal-support interactions in each catalyst system. For Rh/Al2O3, strong metal-support interactions with the formation of stable rhodium aluminate (Rh(AlO2y complex dominates in fuel shutoff, leading to more difficult catalyst regeneration. For Rh/CZO, Rh sites were partially oxidized to Rh2O3 and were relatively easy to be reduced to active Rh0 during regeneration.

  11. Sex in situ

    DEFF Research Database (Denmark)

    Krøgholt, Ida

    2017-01-01

    Sex er en del af vores sociale praksis og centralt for det, vi hver især er. Men bortset fra pornoindustrien, har vi ikke mange muligheder for at få adgang til billeder af sex. Teater Nordkrafts forestilling Sex in situ vil gøre seksuelle billeder til noget, der kan deles, udveksles og tales om, og...

  12. Quantitative and qualitative morphology of rabbit retinal glia. A light microscopical study on cells both in situ and isolated by papaine.

    Science.gov (United States)

    Reichenbach, A

    1987-01-01

    Rabbit retinal glia was studied by light microscopy of both stained sections of frozen retinae and enzymatically isolated cells. In the vast majority of this tissue, except for a small region around the optic nerve head, the glia consists solely of radial glia, i.e. Müller cells whose morphology was found to depend markedly on their topographic localization within the retina. Müller cells in the periphery are short and have thick vitreal processes bearing a single large endfoot. Central Müller cells are long and slender; through the thickening nerve fibre layer they send vitreal processes which are subdivided into several fine branches ending with multiple small endfeet. Müller cells in the retinal centre are far more closely packed than those in the periphery; everywhere, however, a constant ratio of Müller cells: neurons of about 1:15 was found, except for the juxta-optic nerve head region where this ratio is slightly reduced. Where the central retina reaches a thickness requiring Müller cell lengths of more than 130 micron, additional non-radial glial cells occur within the nerve fibre layer. The majority of these cells seem to be astrocytes. Their number per retinal area increases with the thickening of both the whole retina and the nerve fibre layer. The occurrence of these non-radial glial cells leads to an enhancement of the glia:neuron index in the retinal centre. Possible mechanisms of physiological control of gliogenesis are discussed.

  13. In situ measurements of desert dust particles above the western Mediterranean Sea with the balloon-borne Light Optical Aerosol Counter/sizer (LOAC) during the ChArMEx campaign of summer 2013

    Science.gov (United States)

    Renard, Jean-Baptiste; Dulac, François; Durand, Pierre; Bourgeois, Quentin; Denjean, Cyrielle; Vignelles, Damien; Couté, Benoit; Jeannot, Matthieu; Verdier, Nicolas; Mallet, Marc

    2018-03-01

    Mineral dust from arid areas is a major component of global aerosol and has strong interactions with climate and biogeochemistry. As part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) to investigate atmospheric chemistry and its impacts in the Mediterranean region, an intensive field campaign was performed from mid-June to early August 2013 in the western basin including in situ balloon-borne aerosol measurements with the light optical aerosol counter (LOAC). LOAC is a counter/sizer that provides the aerosol concentrations in 19 size classes between 0.2 and 100 µm, and an indication of the nature of the particles based on dual-angle scattering measurements. A total of 27 LOAC flights were conducted mainly from Minorca Island (Balearic Islands, Spain) but also from Ile du Levant off Hyères city (SE France) under 17 light dilatable balloons (meteorological sounding balloons) and 10 boundary layer pressurised balloons (quasi-Lagrangian balloons). The purpose was to document the vertical extent of the plume and the time evolution of the concentrations at constant altitude (air density) by in situ observations. LOAC measurements are in agreement with ground-based measurements (lidar, photometer), aircraft measurements (counters), and satellite measurements (CALIOP) in the case of fair spatial and temporal coincidences. LOAC has often detected three modes in the dust particle volume size distributions fitted by lognormal laws at roughly 0.2, 4 and 30 µm in modal diameter. Thanks to the high sensitivity of LOAC, particles larger than 40 µm were observed, with concentrations up to about 10-4 cm-3. Such large particles were lifted several days before and their persistence after transport over long distances is in conflict with calculations of dust sedimentation. We did not observe any significant evolution of the size distribution during the transport from quasi-Lagrangian flights, even for the longest ones ( ˜ 1 day). Finally, the presence of charged

  14. Airborne characterization of aerosols over the contiguous United States during the SEAC4RS and DC3 campaigns: an in situ light scattering perspective

    Science.gov (United States)

    Espinosa, R.; Remer, L.; Puthukkudy, A.; Orozco, D.; Dubovik, O.; Martins, J. V.

    2017-12-01

    Models used to estimate climate change and interpret remote sensing observations must make assumptions regarding aerosol radiation interactions. This presentation will summarize aerosol light scattering measurements made by the Polarized Imaging Nephelometer (PI-Neph) during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and Deep Convective Clouds and Chemistry (DC3) experiments. The data presented includes direct measurements of phase function (P11) and polarized phase function (-P12/P11) as well as retrievals of size distribution, sphericity and complex refractive index made using the Generalized Retrieval of Aerosol and Surface Properties (GRASP). An aerosol classification scheme is developed to identify different aerosol types measured during the deployments, making use of ancillary data that includes gas tracers, chemical composition, aerodynamic particle size and geographic location. Principal component analysis (PCA) is then used to reduce the dimensionality of the multi-angle PI-Neph scattering data and a strong link between the PCA scores and the ancillary classification results is observed. The scattering differences that reliable distinguish the different aerosol types are found to be quite subtle and often rely on the relationships between many scattering angles simultaneously. This fact emphasis the value of multi-angle scattering measurements, as well as principal component analysis's ability to reveal the underlying patterns in these datasets. The parameters retrieved from the DC3 scattering data suggest the presence of a significant amount of dust in aerosols influenced by convective systems, with the quantity of dust correlating strongly with sampling location and the underlying surface features. All fine mode dominated aerosol types from SEAC4RS had remarkably similar retrieved properties, except for the real refractive index of the biomass burning cases, which was consistently

  15. Successful synthesis and thermal stability of immiscible metal Au-Rh, Au-Ir andAu-Ir-Rh nanoalloys

    Science.gov (United States)

    Shubin, Yury; Plyusnin, Pavel; Sharafutdinov, Marat; Makotchenko, Evgenia; Korenev, Sergey

    2017-05-01

    We successfully prepared face-centred cubic nanoalloys in systems of Au-Ir, Au-Rh and Au-Ir-Rh, with large bulk miscibility gaps, in one-run reactions under thermal decomposition of specially synthesised single-source precursors, namely, [AuEn2][Ir(NO2)6], [AuEn2][Ir(NO2)6] х [Rh(NO2)6]1-х and [AuEn2][Rh(NO2)6]. The precursors employed contain all desired metals ‘mixed’ at the atomic level, thus providing significant advantages for obtaining alloys. The observations using high-resolution transmission electron microscopy show that the nanoalloy structures are composed of well-dispersed aggregates of crystalline domains with a mean size of 5 ± 3 nm. Еnergy dispersive x-ray spectroscopy and x-ray powder diffraction (XRD) measurements confirm the formation of AuIr, AuRh, AuIr0.75Rh0.25, AuIr0.50Rh0.50 and AuIr0.25Rh0.75 metastable solid solutions. In situ high-temperature synchrotron XRD (HTXRD) was used to study the formation mechanism of nanoalloys. The observed transformations are described by the ‘conversion chemistry’ mechanism characterised by the primary development of particles comprising atoms of only one type, followed by a chemical reaction resulting in the final formation of a nanoalloy. The obtained metastable nanoalloys exhibit essential thermal stability. Exposure to 180 °C for 30 h does not cause any dealloying process.

  16. In situ macromolecular crystallography using microbeams.

    Science.gov (United States)

    Axford, Danny; Owen, Robin L; Aishima, Jun; Foadi, James; Morgan, Ann W; Robinson, James I; Nettleship, Joanne E; Owens, Raymond J; Moraes, Isabel; Fry, Elizabeth E; Grimes, Jonathan M; Harlos, Karl; Kotecha, Abhay; Ren, Jingshan; Sutton, Geoff; Walter, Thomas S; Stuart, David I; Evans, Gwyndaf

    2012-05-01

    Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams. © 2012 International Union of Crystallography

  17. In situ reactor

    Science.gov (United States)

    Radtke, Corey William; Blackwelder, David Bradley

    2004-01-27

    An in situ reactor for use in a geological strata, is described and which includes a liner defining a centrally disposed passageway and which is placed in a borehole formed in the geological strata; and a sampling conduit is received within the passageway defined by the liner and which receives a geological specimen which is derived from the geological strata, and wherein the sampling conduit is in fluid communication with the passageway defined by the liner.

  18. RH Packaging Program Guidance

    International Nuclear Information System (INIS)

    2008-01-01

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package (also known as the 'RH-TRU 72-B cask') and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: 'each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application.' It further states: 'each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application.' Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M and O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) 71.8, 'Deliberate Misconduct.' Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, 'Packaging and Transportation of Radioactive Material,' certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, 'Reporting of Defects and Noncompliance,' regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous

  19. The Design, Synthesis and Study of Mixed-Metal Ru,Rh and Os, Rh Complexes with Biologically Relevant Reactivity

    OpenAIRE

    Wang, Jing

    2013-01-01

    A series of mixed-metal bimetallic complexes [(TL)2M(dpp)RhCl2(TL)]3 (M = Ru and Os, terminal ligands (TL) = phen, Ph2phen, Me2phen and bpy, terminal ligands (TL) = phen, bpy and Me2bpy ), which couple one Ru or Os polyazine light absorber (LA) to a cis-RhIIICl2 center through a dpp bridging ligand (BL), were synthesized using a building block method. These are related to previously studied trimetallic systems [{(TL)2M(dpp)2RhCl2]5+, but the bimetallics are synthetically more complex to prepa...

  20. RH-TRU Waste Content Codes (RH-TRUCON)

    International Nuclear Information System (INIS)

    2007-01-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is '3.' The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based

  1. RH-TRU Waste Content Codes (RH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2007-08-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  2. RH-TRU Waste Content Codes (RH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions

    2007-05-30

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  3. RH-TRU Waste Content Codes (RH-Trucon)

    International Nuclear Information System (INIS)

    2007-01-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is '3.' The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based

  4. XPS and NEXAFS analysis of dimethyl sulfide adsorbed on the Rh(PVP) nanoparticle surface

    International Nuclear Information System (INIS)

    Niwa, Hironori; Ogawa, Satoshi; Yagi, Shinya; Kutluk, Galif

    2010-01-01

    We have studied the adsorption reaction of dimethyl sulfide (DMS: (CH 3 ) 2 S) on the surface of Rh(PVP) nanoparticles by using AFM, XPS and NEXAFS techniques. The AFM images show the degree of dispersion of the Rh(PVP) nanoparticles depends on the amount of them. The in-situ XPS results indicate that the dissociation reaction of DMS into atomic S does not depend upon the existence of the Rh(PVP) nanoparticles. The NEXAFS results show that there is a strong chemical bonding between Rh(PVP) nanoparticle and atomic S. The ex-situ XPS results show the atomic S adsorbed on the Rh(PVP) nanoparticles partially desorb by exposing to the air. (author)

  5. Malignant mesothelioma in situ.

    Science.gov (United States)

    Churg, Andrew; Hwang, Harry; Tan, Larry; Qing, Gefei; Taher, Altaf; Tong, Amy; Bilawich, Ana M; Dacic, Sanja

    2018-05-01

    The existence of malignant mesothelioma in situ (MIS) is often postulated, but there are no accepted morphological criteria for making such a diagnosis. Here we report two cases that appear to be true MIS on the basis of in-situ genomic analysis. In one case the patient had repeated unexplained pleural unilateral effusions. Two thoracoscopies 9 months apart revealed only visually normal pleura. Biopsies from both thoracoscopies showed only a single layer of mildly reactive mesothelial cells. However, these cells had lost BRCA1-associated protein 1 (BAP1) and showed loss of cyclin-dependent kinase inhibitor 2 (CDKN2A) (p16) by fluorescence in-situ hybridisation (FISH). NF2 was not deleted by FISH but 28% of the mesothelial cells showed hyperploidy. Six months after the second biopsy the patient has persisting effusions but no evidence of pleural malignancy on imaging. The second patient presented with ascites and minimal omental thickening on imaging, but no visual evidence of tumour at laparoscopy. Omental biopsy showed a single layer of minimally atypical mesothelial cells with rare tiny foci of superficial invasion of fat. BAP1 immunostain showed loss of nuclear BAP1 in all the surface mesothelial cells and the invasive cells. There was CDKN2A deletion, but no deletion of NF2 by FISH. These cases show that morphologically bland single-layered surface mesothelial proliferations with molecular alterations seen previously only in invasive malignant mesotheliomas exist, and presumably represent malignant MIS. More cases are need to understand the frequency of such changes and the time-course over which invasive tumour develops. © 2018 John Wiley & Sons Ltd.

  6. In situ breast cancer

    International Nuclear Information System (INIS)

    Pacheco, Luis

    2004-01-01

    In situ breast cancer, particularly the ductal type, is increasing in frequency in the developed countries as well as in Ecuador, most probably. These lesions carry a higher risk of developing a subsequent invasive cancer. Treatment has changed recently due to results of randomized studies, from classical mastectomy to conservative surgery associated to radiotherapy. The Van Nuys Prognostic Index is currently the most usual instrument to guide diagnosis and treatment. Tamoxifen seems to decrease significantly the risk of tumor recurrence after initial treatment. (The author)

  7. RH Packaging Program Guidance

    International Nuclear Information System (INIS)

    2006-01-01

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: 'each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application.' It further states: 'each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application.' Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M and O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with 10 Code of Federal Regulations (CFR) 1.8, 'Deliberate Misconduct.' Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. In accordance with 10 CFR Part 71, 'Packaging and Transportation of Radioactive Material,' certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, 'Reporting of Defects and Noncompliance,' regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these

  8. RH Packaging Program Guidance

    International Nuclear Information System (INIS)

    Washington TRU Solutions, LLC

    2003-01-01

    The purpose of this program guidance document is to provide technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the SARP and/or C of C shall govern. The C of C states: ''...each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, ''Operating Procedures,'' of the application.'' It further states: ''...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, ''Acceptance Tests and Maintenance Program of the Application.'' Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M and O) contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC approved, users need to be familiar with 10 CFR (section) 71.11, ''Deliberate Misconduct.'' Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. This document details the instructions to be followed to operate, maintain, and test the RH-TRU 72-B packaging. This Program Guidance standardizes instructions for all users. Users shall follow these instructions. Following these instructions assures that operations are safe and meet the requirements of the SARP. This document is available on the Internet at: ttp://www.ws/library/t2omi/t2omi.htm. Users are responsible for ensuring they are using the current revision and change notices. Sites may prepare their own document using the word

  9. Structure and catalytic reactivity of Rh oxides

    DEFF Research Database (Denmark)

    Gustafson, J.; Westerström, R.; Resta, A.

    2009-01-01

    Using a combination of experimental and theoretical techniques, we show that a thin RhO2 surface oxide film forms prior to the bulk Rh2O3 corundum oxide on all close-packed single crystal Rh surfaces. Based on previous reports, we argue that the RhO2 surface oxide also forms on vicinal Rh surface...

  10. RH-TRU Waste Content Codes (RH TRUCON)

    International Nuclear Information System (INIS)

    2007-01-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: (1) A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. (2) A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is ''3''. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  11. RH-TRU Waste Content Codes (RH TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions

    2007-05-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  12. In situ synthesis of g-C3N4/TiO2 heterojunction nanocomposites as a highly active photocatalyst for the degradation of Orange II under visible light irradiation.

    Science.gov (United States)

    Ren, Bin; Wang, Tiecheng; Qu, Guangzhou; Deng, Fang; Liang, Dongli; Yang, Wenli; Liu, Meishan

    2018-05-04

    As a highly active photocatalyst, g-C 3 N 4 /TiO 2 heterojunction nanocomposites were in situ synthesized by simple ultrasonic mixing and calcination by using TiO 2 and melamine as precursors. The morphology and structure of the prepared photocatalysts were characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, UV-Vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. The photocatalytic activities of g-C 3 N 4 /TiO 2 nanocomposites to degrade Orange II (AO7) under visible light irradiation were evaluated. Results showed that the photocatalytic rate of the prepared g-C 3 N 4 /TiO 2 photocatalyst to degrade AO7 was about three times than that of pristine TiO 2 and g-C 3 N 4 . The g-C 3 N 4 /TiO 2 composite with a ratio of 1:4 had the highest degradation efficiency for AO7 solution. Its degradation efficiency under acidic conditions was significantly higher than that under alkaline conditions. The enhancement of photocatalytic activity can be attributed to the formation of heterojunctions between g-C 3 N 4 and TiO 2 , which leads to rapid charge transfer and the efficient separation of photogenerated electron-hole pairs. The recycling experiment indicated that the photocatalyst of g-C 3 N 4 /TiO 2 nanocomposites still maintained good photochemical stability and recyclability after five cycles; this finding was important for its practical applications. A series of free radical trapping experiments showed that •O 2 - played a crucial role in the degradation of AO7. Graphical Abstract ᅟ.

  13. In situ zymography.

    Science.gov (United States)

    George, Sarah J; Johnson, Jason L

    2010-01-01

    In situ zymography is a unique laboratory technique that enables the localisation of matrix-degrading metalloproteinase (MMP) activity in histological sections. Frozen sections are placed on glass slides coated with fluorescently labelled matrix proteins. After incubation MMP activity can be observed as black holes in the fluorescent background due to proteolysis of the matrix protein. Alternatively frozen sections can be incubated with matrix proteins conjugated to quenched fluorescein. Proteolysis of the substrate by MMPs leads to the release of fluorescence. This technique can be combined with immunohistochemistry to enable co-location of proteins such as cell type markers or other proteins of interest. Additionally, this technique can be adapted for use with cell cultures, permitting precise location of MMP activity within cells, time-lapse analysis of MMP activity and analysis of MMP activity in migrating cells.

  14. Rh(III)-catalyzed olefination of N-sulfonyl imines: synthesis of ortho-olefinated benzaldehydes.

    Science.gov (United States)

    Zhang, Tao; Wu, Lamei; Li, Xingwei

    2013-12-20

    Rh(III)-catalyzed olefination of N-sulfonyl imines using acrylates and styrenes has been achieved for the synthesis of ortho-olefinated benaldehydes. This reaction proceeds via a chelation assisted C-H olefination/in situ hydrolysis process.

  15. In situ spectroscopic ellipsometry as a surface sensitive tool to probe thin film growth

    International Nuclear Information System (INIS)

    Liu, C.

    1999-01-01

    Sputtered thin film and multilayer x-ray mirrors are made routinely at the Advanced Photon Source (APS) for the APS users. Precise film growth control and characterization are very critical in fabricating high-quality x-ray mirrors. Film thickness calibrations are carried out using in situ and ex situ spectroscopic ellipsometry, interferometry, and x-ray scattering. To better understand the growth and optical properties of different thin film systems, we have carried out a systematic study of sputtered thin films of Au, Rh, Pg Pd, Cu, and Cr, using in situ ellipsometry. Multiple data sets were obtained in situ for each film material with incremental thicknesses and were analyzed with their correlation in mind. We found that in situ spectroscopic ellipsometry as a surface-sensitive tool can also be used to probe the growth and morphology of the thin film system. This application of in situ spectroscopic ellipsometry for metal thin film systems will be discussed

  16. Lighting.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  17. In situ macromolecular crystallography using microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Axford, Danny; Owen, Robin L.; Aishima, Jun [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Foadi, James [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Imperial College, London SW7 2AZ (United Kingdom); Morgan, Ann W.; Robinson, James I. [University of Leeds, Leeds LS9 7FT (United Kingdom); Nettleship, Joanne E.; Owens, Raymond J. [Research Complex at Harwell, Rutherford Appleton Laboratory R92, Didcot, Oxfordshire OX11 0DE (United Kingdom); Moraes, Isabel [Imperial College, London SW7 2AZ (United Kingdom); Fry, Elizabeth E.; Grimes, Jonathan M.; Harlos, Karl; Kotecha, Abhay; Ren, Jingshan; Sutton, Geoff; Walter, Thomas S. [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Stuart, David I. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Evans, Gwyndaf, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2012-04-17

    A sample environment for mounting crystallization trays has been developed on the microfocus beamline I24 at Diamond Light Source. The technical developments and several case studies are described. Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams.

  18. In situ macromolecular crystallography using microbeams

    International Nuclear Information System (INIS)

    Axford, Danny; Owen, Robin L.; Aishima, Jun; Foadi, James; Morgan, Ann W.; Robinson, James I.; Nettleship, Joanne E.; Owens, Raymond J.; Moraes, Isabel; Fry, Elizabeth E.; Grimes, Jonathan M.; Harlos, Karl; Kotecha, Abhay; Ren, Jingshan; Sutton, Geoff; Walter, Thomas S.; Stuart, David I.; Evans, Gwyndaf

    2012-01-01

    A sample environment for mounting crystallization trays has been developed on the microfocus beamline I24 at Diamond Light Source. The technical developments and several case studies are described. Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams

  19. Modeling in situ vitrification

    International Nuclear Information System (INIS)

    Mecham, D.C.; MacKinnon, R.J.; Murray, P.E.; Johnson, R.W.

    1990-01-01

    In Situ Vitrification (ISV) process is being assessed by the Idaho National Engineering Laboratory (INEL) to determine its applicability to transuranic and mixed wastes buried at INEL'S Subsurface Disposal Area (SDA). This process uses electrical resistance heating to melt waste and contaminated soil in place to produce a durable glasslike material that encapsulates and immobilizes buried wastes. This paper outlines the requirements for the model being developed at the INEL which will provide analytical support for the ISV technology assessment program. The model includes representations of the electric potential field, thermal transport with melting, gas and particulate release, vapor migration, off-gas combustion and process chemistry. The modeling objectives are to help determine the safety of the process by assessing the air and surrounding soil radionuclides and chemical pollution hazards, the nuclear criticality hazard, and the explosion and fire hazards, help determine the suitability of the ISV process for stabilizing the buried wastes involved, and help design laboratory and field tests and interpret results. 3 refs., 2 figs., 1 tab

  20. In situ controllable synthesis of novel surface plasmon resonance-enhanced Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} composite for enhanced and stable visible light photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jiali [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Dai, Kai, E-mail: daikai940@chnu.edu.cn [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Zhang, Jinfeng [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Lu, Luhua, E-mail: lhlu@cug.edu.cn [Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Liang, Changhao, E-mail: chliang@issp.ac.cn [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 23003 (China); Geng, Lei; Wang, Zhongliao; Yuan, Guangyu; Zhu, Guangping [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China)

    2017-01-01

    Highlights: • Novel Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} ternary photocatalyst was prepared. • Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} showed enhanced catalytic activity. • Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} showed long reusable life. - Abstract: A novel hierarchical Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} ternary visible-light-driven photocatalyst was successfully synthesized by in situ doping Ag{sub 2}WO{sub 4} with Bi{sub 2}MoO{sub 6} nanosheets through a facile hydrothermal and photochemical process. The morphology, structure, optical performance and crystallinity of the products were measured by field emission scanning electron microscope (FESEM), energy dispersive spectrometer (EDS), UV–vis diffuse reflectance spectroscopy (DRS) and X-ray diffraction (XRD). The results showed that Ag{sub 2}WO{sub 4}/Ag was uniformly dispersed on the surface of Bi{sub 2}MoO{sub 6} nanosheets. The photocatalytic performance of Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} heterostructures was evaluated by the degradation of methylene blue (MB) under 410 nm LED arrays. The ternary Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} nanocomposite exhibits higher photocatalytic activity than Bi{sub 2}MoO{sub 6} and Ag{sub 2}WO{sub 4}. The synergistic effect of Ag{sub 2}WO{sub 4} and Bi{sub 2}MoO{sub 6} could generated more heterojunctions which promoted photoelectrons transfer from Ag{sub 2}WO{sub 4} to Bi{sub 2}MoO{sub 6}, leading to the improvement of photocatalytic performance by photoelectrons-holes recombination suppression. At the same time, the surface plasmon resonance of Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} is another crucial reason for the high photocatalytic performance of organic pollutants degradation. And the 20 wt% Ag{sub 2}WO{sub 4}-loaded Bi{sub 2}MoO{sub 6} shows the optimal photocatalytic performance in the degradation of MB. In addition, the ternary composites can be easily reclaimed by precipitation and exhibits high stability of photocatalytic

  1. Lighting

    Data.gov (United States)

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  2. In Situ Infrared Spectroelectrochemistry.

    Science.gov (United States)

    1986-07-30

    The serious if the solvent is water , which staLe of the incident light, mechanism of absorption involves in- absorbs strongly throughout most of In...reflection uses a 3b shows spectra taken with the same thin-layer cell. where bulk electrolyses potentials as in 3a (this time using a of solution species...away from tion of both s-polarized and p-polar- ing neutral species and the highly con- the regions of strong water absorpt ion. ized light, and thought

  3. Light

    DEFF Research Database (Denmark)

    Prescott, N.B.; Kristensen, Helle Halkjær; Wathes, C.M.

    2004-01-01

    This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality......This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality...

  4. In-situ uranium leaching

    International Nuclear Information System (INIS)

    Dotson, B.J.

    1986-01-01

    This invention provides a method for improving the recovery of mineral values from ore bodies subjected to in-situ leaching by controlling the flow behaviour of the leaching solution. In particular, the invention relates to an in-situ leaching operation employing a foam for mobility control of the leaching solution. A foam bank is either introduced into the ore bed or developed in-situ in the ore bed. The foam then becomes a diverting agent forcing the leaching fluid through the previously non-contacted regions of the deposit

  5. In situ solid-state fabrication of hybrid AgCl/AgI/AgIO3 with improved UV-to-visible photocatalytic performance.

    Science.gov (United States)

    Xie, Jing; Cao, Yali; Jia, Dianzeng; Li, Yizhao; Wang, Kun; Xu, Hui

    2017-09-28

    The AgCl/AgI/AgIO 3 composites were synthesized through a one-pot room-temperature in situ solid-state approach with the feature of convenient and eco-friendly. The as-prepared composites exhibit superior photocatalytic performance than pure AgIO 3 for the degradation of methyl orange (MO) under both UV and visible light irradiation. The photodegradation rate toward MO of the AgCl/AgI/AgIO 3 photocatalyst can reach 100% after 12 min irradiation under UV light, or 85.4% after 50 min irradiation under visible light, being significantly higher than AgCl, AgI, AgIO 3 and AgI/AgIO 3 . In addition, the AgCl/AgI/AgIO 3 photocatalyst possesses strong photooxidation ability for the degradation of rhodamine B (RhB), methylene blue (MB), phenol, bisphenol A (BPA) and tetracycline hydrochloride under visible light irradiation. The reactive species capture experiments confirmed that the h + and •O 2- play an essential role during the photocatalytic process under UV light or visible light irradiation. The enhanced effect may be beneficial from the enhanced light adsorption in full spectrum and increased separation efficiency of photogenerated hole-electron pairs, which can be ascribed to the synergistic effect among AgCl, AgI and AgIO 3 nanoplates in AgCl/AgI/AgIO 3 composites.

  6. Human activity and rest in situ.

    Science.gov (United States)

    Roenneberg, Till; Keller, Lena K; Fischer, Dorothee; Matera, Joana L; Vetter, Céline; Winnebeck, Eva C

    2015-01-01

    Our lives are structured by the daily alternation of activity and rest, of wake and sleep. Despite significant advances in circadian and sleep research, we still lack answers to many of the most fundamental questions about this conspicuous behavioral pattern. We strongly believe that investigating this pattern in entrained conditions, real-life and daily contexts-in situ-will help the field to elucidate some of these central questions. Here, we present two common approaches for in situ investigation of human activity and rest: the Munich ChronoType Questionnaire (MCTQ) and actimetry. In the first half of this chapter, we provide detailed instructions on how to use and interpret the MCTQ. In addition, we give an overview of the main insights gained with this instrument over the past 10 years, including some new findings on the interaction of light and age on sleep timing. In the second half of this chapter, we introduce the reader to the method of actimetry and share our experience in basic analysis techniques, including visualization, smoothing, and cosine model fitting of in situ recorded data. Additionally, we describe our new approach to automatically detect sleep from activity recordings. Our vision is that the broad use of such easy techniques in real-life settings combined with automated analyses will lead to the creation of large databases. The resulting power of big numbers will promote our understanding of such fundamental biological phenomena as sleep. © 2015 Elsevier Inc. All rights reserved.

  7. In situ leaching of uranium

    International Nuclear Information System (INIS)

    Martin, B.

    1980-01-01

    A process is described for the in-situ leaching of uranium-containing ores employing an acidic leach liquor containing peroxymonosulphuric acid. Preferably, additionally, sulphuric acid is present in the leach liquor. (author)

  8. In-Situ Burning of Crude Oil on Water

    DEFF Research Database (Denmark)

    van Gelderen, Laurens

    in the small scale water basin. Boilovers were also observed during the burning of a heavy crude oil with a substantial light fraction without a water layer, however, which suggests that water is not essential for boilover occurrence. Further studies are required to determine the conditions under which......The fire dynamics and fire chemistry of in-situ burning of crude oil on water was studied in order to improve predictions on the suitability of this oil spill response method. For this purpose, several operational parameters were studied to determine the factors that control the burning efficiency...... of in-situ burning, i.e. the amount of oil (in wt%) removed from the water surface by the burning process. The burning efficiency is the main parameter for expressing the oil removal effectiveness of in-situ burning as response method and is thus relevant for suitability predictions of in-situ burning...

  9. Construction of g-C_3N_4/Al_2O_3 hybrids via in-situ acidification and exfoliation with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Wang, Xiao-jing; Liu, Chao; Li, Xu-li; Li, Fa-tang; Li, Yu-pei; Zhao, Jun; Liu, Rui-hong

    2017-01-01

    Highlights: • Ultrathin g-C_3N_4/Al_2O_3 hybrids are prepared via in-situ reaction. • The structure modification role of in-situ formed HNO_3 for g-C_3N_4 is found. • The ultrathin g-C_3N_4 nanosheets are formed by the acidified melamine and Al(OH)_3. • In-situ calcination of melamine and Al(OH)_3 benefits the contact of C_3N_4 and Al_2O_3. • The activity of g-C_3N_4/Al_2O_3 is 16.6 times that of pristine g-C_3N_4 in degrading RhB. - Abstract: Homogeneous ultrathin g-C_3N_4 nanosheets/Al_2O_3 heterojunctions are synthesized using melamine and Al(NO_3)_3 via in-situ reaction and the following thermal polymerization approach. The in-situ reaction between melamine and Al(NO_3)_3 results in the existence of HNO_3-acidified melamine and Al(OH)_3 aggregates via the hydrolysis of Al(NO_3)_3. After thermal polymerization, the aggregates are converted to g-C_3N_4/Al_2O_3 composites. The thermal polymerization of acidified melamine and the support effect of aluminum hydroxide for g-C_3N_4 during the calcination process lead to highly dispersed amrophous Al_2O_3 on ultrathin g-C_3N_4 nanosheets, which is beneficial for the separation of photogenerated electron-hole pairs in the heterojunction. The degradation rate for Rhodamine B (RhB) over the most activie sample is 16.6 times than that of pristine g-C_3N_4 under visible light irradiation, which can be attributed to the high specific surface area, highly dispersion of amorphous Al_2O_3 on ultrathin g-C_3N_4 nanosheet, and the effective electrons transfer from g-C_3N_4 to the amorphous Al_2O_3.

  10. One-step synthesis of in situ reduced metal Bi decorated bismuth molybdate hollow microspheres with enhancing photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Meng [College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044 (China); Lu, Shiyu [Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, 400715 (China); Ma, Li, E-mail: mlsys607@126.com [College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044 (China); Gan, Mengyu [College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2017-02-28

    Highlights: • Metal Bi decorated Bi{sub 2-x}MoOy was synthesised by a simple and one-step. • Bi{sup 3+} could be in situ reduced to Bi{sup 0} gradually and dispersed uniform in Bi{sub 2-x}MoOy. • It shows excellent photocatalytic activity due to special structure and composition. - Abstract: In this feature work, in situ metal Bi are successfully modified bismuth molybdate hollow spheres using an effective one-pot solvthermal reduction without any temple. In order to deeply understand the influence of reduction conditions on the texture, surface state, and photocatalytic performance of the resulting samples, a series of products were synthesized by tuning the temperatures. The similar morphology, surface area of photocatalysis (BMO-160 and BMO-170) were synthesized, only with the different composition. The detailed characterization and analysis distinctly suggested that increasing solvothermal reduction temperature led to Bi{sup 3+} was in situ reduced to elementary substance Bi{sup 0} by ethylene glycol gradually and dispersed very uniform in bismuth molybdate. Benefiting from the enhanced charge separation, transfer, and donor density resulting from the formation of Bi decorated bismuth molybdate where Bi as cocatalyst, the photocatalytic performance of the reductive Bi/Bi{sub 2-x}MoO{sub y} hollow spheres (BMO-170) is higher than that of the untreated Bi{sub 2-x}MoO{sub y} hollow spheres (BMO-160) for Rh6G degradation under visible light irradiation. Additionally, the reductive BMO-170 has a superior stability after five cycles.

  11. In Situ TEM Electrical Measurements

    DEFF Research Database (Denmark)

    Canepa, Silvia; Alam, Sardar Bilal; Ngo, Duc-The

    2016-01-01

    understanding of complex physical and chemical interactions in the pursuit to optimize nanostructure function and device performance. Recent developments of sample holder technology for TEM have enabled a new field of research in the study of functional nanomaterials and devices via electrical stimulation...... influence the sample by external stimuli, e.g. through electrical connections, the TEM becomes a powerful laboratory for performing quantitative real time in situ experiments. Such TEM setups enable the characterization of nanostructures and nanodevices under working conditions, thereby providing a deeper...... and measurement of the specimen. Recognizing the benefits of electrical measurements for in situ TEM, many research groups have focused their effort in this field and some of these methods have transferred to ETEM. This chapter will describe recent advances in the in situ TEM investigation of nanostructured...

  12. Growth and structure of water on SiO2 films on Si investigated byKelvin probe microscopy and in situ X-ray Spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Verdaguer, A.; Weis, C.; Oncins, G.; Ketteler, G.; Bluhm, H.; Salmeron, M.

    2007-06-14

    The growth of water on thin SiO{sub 2} films on Si wafers at vapor pressures between 1.5 and 4 torr and temperatures between -10 and 21 C has been studied in situ using Kelvin Probe Microscopy and X-ray photoemission and absorption spectroscopies. From 0 to 75% relative humidity (RH) water adsorbs forming a uniform film 4-5 layers thick. The surface potential increases in that RH range by about 400 mV and remains constant upon further increase of the RH. Above 75% RH the water film grows rapidly, reaching 6-7 monolayers at around 90% RH and forming a macroscopic drop near 100%. The O K-edge near-edge X-ray absorption spectrum around 75% RH is similar to that of liquid water (imperfect H-bonding coordination) at temperatures above 0 C and ice-like below 0 C.

  13. Triplex in-situ hybridization

    Science.gov (United States)

    Fresco, Jacques R.; Johnson, Marion D.

    2002-01-01

    Disclosed are methods for detecting in situ the presence of a target sequence in a substantially double-stranded nucleic acid segment, which comprises: a) contacting in situ under conditions suitable for hybridization a substantially double-stranded nucleic acid segment with a detectable third strand, said third strand being capable of hybridizing to at least a portion of the target sequence to form a triple-stranded structure, if said target sequence is present; and b) detecting whether hybridization between the third strand and the target sequence has occured.

  14. Application of in situ polymerization for design and development of oral drug delivery systems.

    Science.gov (United States)

    Ngwuluka, Ndidi

    2010-12-01

    Although preformed polymers are commercially available for use in the design and development of drug delivery systems, in situ polymerization has also been employed. In situ polymerization affords the platform to tailor and optimize the drug delivery properties of polymers. This review brings to light the benefits of in situ polymerization for oral drug delivery and the possibilities it provides to overcome the challenges of oral route of administration.

  15. Application of In Situ Polymerization for Design and Development of Oral Drug Delivery Systems

    OpenAIRE

    Ngwuluka, Ndidi

    2010-01-01

    Although preformed polymers are commercially available for use in the design and development of drug delivery systems, in situ polymerization has also been employed. In situ polymerization affords the platform to tailor and optimize the drug delivery properties of polymers. This review brings to light the benefits of in situ polymerization for oral drug delivery and the possibilities it provides to overcome the challenges of oral route of administration.

  16. In situ quantification of membrane foulant accumulation by reflectometry

    NARCIS (Netherlands)

    Schroën, C.G.P.H.; Roosjen, A.; Tang, K.; Norde, W.; Boom, R.M.

    2010-01-01

    In this paper, we present laser light reflectometry [1] (not to be mistaken with ultrasound reflectometry [2] that uses ultrasound waves) as a tool for quantitative investigation of (the initial stages of) fouling on membrane-like surfaces. Reflectometry allows in situ investigation of adsorption

  17. Light

    CERN Document Server

    Robertson, William C

    2003-01-01

    Why is left right and right left in the mirror? Baffled by the basics of reflection and refraction? Wondering just how the eye works? If you have trouble teaching concepts about light that you don t fully grasp yourself, get help from a book that s both scientifically accurate and entertaining with Light. By combining clear explanations, clever drawings, and activities that use easy-to-find materials, this book covers what science teachers and parents need to know to teach about light with confidence. It uses ray, wave, and particle models of light to explain the basics of reflection and refraction, optical instruments, polarization of light, and interference and diffraction. There s also an entire chapter on how the eye works. Each chapter ends with a Summary and Applications section that reinforces concepts with everyday examples. Whether you need a deeper understanding of how light bends or a good explanation of why the sky is blue, you ll find Light more illuminating and accessible than a college textbook...

  18. Targeted theranostic platinum(IV) prodrug with a built-in aggregation-induced emission light-up apoptosis sensor for noninvasive early evaluation of its therapeutic responses in situ.

    Science.gov (United States)

    Yuan, Youyong; Kwok, Ryan T K; Tang, Ben Zhong; Liu, Bin

    2014-02-12

    Targeted drug delivery to tumor cells with minimized side effects and real-time in situ monitoring of drug efficacy is highly desirable for personalized medicine. In this work, we report the synthesis and biological evaluation of a chemotherapeutic Pt(IV) prodrug whose two axial positions are functionalized with a cyclic arginine-glycine-aspartic acid (cRGD) tripeptide for targeting integrin αvβ3 overexpressed cancer cells and an apoptosis sensor which is composed of tetraphenylsilole (TPS) fluorophore with aggregation-induced emission (AIE) characteristics and a caspase-3 enzyme specific Asp-Glu-Val-Asp (DEVD) peptide. The targeted Pt(IV) prodrug can selectively bind to αvβ3 integrin overexpressed cancer cells to facilitate cellular uptake. In addition, the Pt(IV) prodrug can be reduced to active Pt(II) drug in cells and release the apoptosis sensor TPS-DEVD simultaneously. The reduced Pt(II) drug can induce the cell apoptosis and activate caspase-3 enzyme to cleave the DEVD peptide sequence. Due to free rotation of the phenylene rings, TPS-DEVD is nonemissive in aqueous media. The specific cleavage of DEVD by caspase-3 generates the hydrophobic TPS residue, which tends to aggregate, resulting in restriction of intramolecular rotations of the phenyl rings and ultimately leading to fluorescence enhancement. Such noninvasive and real-time imaging of drug-induced apoptosis in situ can be used as an indicator for early evaluation of the therapeutic responses of a specific anticancer drug.

  19. In situ solution mining technique

    International Nuclear Information System (INIS)

    Learmont, R.P.

    1978-01-01

    A method of in situ solution mining is disclosed in which a primary leaching process employing an array of 5-spot leaching patterns of production and injection wells is converted to a different pattern by converting to injection wells all the production wells in alternate rows

  20. 'In situ' expanded graphite extinguishant

    International Nuclear Information System (INIS)

    Cao Qixin; Shou Yuemei; He Bangrong

    1987-01-01

    This report is concerning the development of the extinguishant for sodium fire and the investigation of its extinguishing property. The experiment result shows that 'in situ' expanded graphite developed by the authors is a kind of extinguishant which extinguishes sodium fire quickly and effectively and has no environment pollution during use and the amount of usage is little

  1. In Situ Cardiovascular Tissue Engineering

    NARCIS (Netherlands)

    Talacua, H

    2016-01-01

    In this thesis, the feasibility of in situ TE for vascular and valvular purposes were tested with the use of different materials, and animal models. First, the feasibility of a decellularized biological scaffold (pSIS-ECM) as pulmonary heart valve prosthesis is examined in sheep (Chapter 2). Next,

  2. Waste Isolation Pilot Plant simulated RH TRU waste experiments: Data and interpretation pilot

    International Nuclear Information System (INIS)

    Molecke, M.A.; Argueello, G.J.; Beraun, R.

    1993-04-01

    The simulated, i.e., nonradioactive remote-handled transuranic waste (RH TRU) experiments being conducted underground in the Waste Isolation Pilot Plant (WIPP) were emplaced in mid-1986 and have been in heated test operation since 9/23/86. These experiments involve the in situ, waste package performance testing of eight full-size, reference RH TRU containers emplaced in horizontal, unlined test holes in the rock salt ribs (walls) of WIPP Room T. All of the test containers have internal electrical heaters; four of the test emplacements were filled with bentonite and silica sand backfill materials. We designed test conditions to be ''near-reference'' with respect to anticipated thermal outputs of RH TRU canisters and their geometrical spacing or layout in WIPP repository rooms, with RH TRU waste reference conditions current as of the start date of this test program. We also conducted some thermal overtest evaluations. This paper provides a: detailed test overview; comprehensive data update for the first 5 years of test operations; summary of experiment observations; initial data interpretations; and, several status; experimental objectives -- how these tests support WIPP TRU waste acceptance, performance assessment studies, underground operations, and the overall WIPP mission; and, in situ performance evaluations of RH TRU waste package materials plus design details and options. We provide instrument data and results for in situ waste container and borehole temperatures, pressures exerted on test containers through the backfill materials, and vertical and horizontal borehole-closure measurements and rates. The effects of heat on borehole closure, fracturing, and near-field materials (metals, backfills, rock salt, and intruding brine) interactions were closely monitored and are summarized, as are assorted test observations. Predictive 3-dimensional thermal and structural modeling studies of borehole and room closures and temperature fields were also performed

  3. In-situ co-doping of sputter-deposited TiO2:WN films for the development of photoanodes intended for visible-light electro-photocatalytic degradation of emerging pollutants

    Science.gov (United States)

    Delegan, N.; Pandiyan, R.; Komtchou, S.; Dirany, A.; Drogui, P.; El Khakani, M. A.

    2018-05-01

    We report on the magnetron sputtering deposition of in-situ codoped TiO2:WN films intended for electro-photocatalytic (EPC) applications under solar irradiation. By varying the RF-magnetron sputtering deposition parameters, we were able to tune the in-situ incorporation of both N and W dopants in the TiO2 films over a wide concentration range (i.e., 0-9 at. % for N and 0-3 at. % for W). X-ray photoelectron spectroscopy analysis revealed that both dopants are mostly of a substitutional nature. The analysis of the UV-Vis transmission spectra of the films confirmed that the optical bandgap of both TiO2:N and TiO2:WN films can be significantly narrowed (from 3.2 eV for undoped-TiO2 down to ˜2.3 eV for the doped ones) by tuning their dopant concentrations. We were thus able to pinpoint an optimal window for both dopants (N and W) where the TiO2:WN films exhibit the narrowest bandgap. Moreover, the optimal codoping conditions greatly reduce the recombination defect state density compared to the monodoped TiO2:N films. These electronically passivated TiO2:WN films are shown to be highly effective for the EPC degradation of atrazine (pesticide pollutant) under sunlight irradiation (93% atrazine degraded after only 30 min of EPC treatment). Indeed, the optimally codoped TiO2:WN photoanodes were found to be more efficient than both the undoped-TiO2 and equally photosensitized TiO2:N photoanodes (by ˜70% and ˜25%, respectively) under AM1.5 irradiation.

  4. Light

    CERN Document Server

    Ditchburn, R W

    1963-01-01

    This classic study, available for the first time in paperback, clearly demonstrates how quantum theory is a natural development of wave theory, and how these two theories, once thought to be irreconcilable, together comprise a single valid theory of light. Aimed at students with an intermediate-level knowledge of physics, the book first offers a historical introduction to the subject, then covers topics such as wave theory, interference, diffraction, Huygens' Principle, Fermat's Principle, and the accuracy of optical measurements. Additional topics include the velocity of light, relativistic o

  5. Magnetic properties of Co-Rh and Ni-Rh nanowires

    International Nuclear Information System (INIS)

    Sondon, Tristana; Saul, Andres; Guevara, Javier

    2007-01-01

    We have calculated the magnetic properties of pure Ni, Co and Rh, and alloyed Co-Rh and Ni-Rh free-standing nanowires by an ab initio method. We have found that the pure Co and Ni wires present an enhanced magnetic moment with respect to their bulk values, and we have obtained that a magnetic order appears for pure Rh wires. For concentrations up to 50% Rh, in the alloyed Ni-Rh linear chains there is an enhancement of the total magnetic moment with respect to the pure nanowires, and in the case of Co-Rh the alloying with Rh enhances the Co magnetic moment. In both systems we obtain very high Rh magnetic moments

  6. Characterization of Rh films on Ta(110)

    International Nuclear Information System (INIS)

    Jiang, L.Q.; Ruckman, M.W.; Strongin, M.

    1989-01-01

    The surface and electronic structure of Rh films on Ta(110) up to several monolayers thick on Ta(110) are characterized by photoemission, Auger emission, low energy electron diffraction and low energy ion scattering. From the variation of the Rh Auger peak-to-peak intensity as a function of evaporation time, Rh/Ta(110) appears to grow in the Stranski-Krastanov mode at room temperature. However, the LEIS data show that the Rh adatoms begin to cluster on Ta(110) before growth of the monolayer is completed. Diffuse LEED scattering suggests that the Rh films are disordered. Photoemission shows that Rh chemisorption on Ta(110) generates two peaks located at 1.2 and 2. 5 eV binding energy during the initial phase of thin film growth (0 3.7 ML). Photoemission data for CO covered surfaces show that CO dissociates on the Rh/Ta(110) surface for Rh coverages less than 2.5 ML and also show that the Rh clusters develop at least one site capable of molecular CO adsorption above 0.3 ML Rh coverage. 38 refs., 5 figs

  7. Polyolefin nanocomposites in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine, E-mail: griselda.barrera@ufrgs.br [Universidade Federal do Rio Grande de Sul - UFRGS, Porto Alegre, RS (Brazil); Basso, Nara R.S. [Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil); Quijada, Raul [Universidad de Chile, Santiago (Chile)

    2011-07-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  8. Polyolefin nanocomposites in situ polymerization

    International Nuclear Information System (INIS)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine; Basso, Nara R.S.; Quijada, Raul

    2011-01-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  9. Color vision of the coelacanth (Latimeria chalumnae) and adaptive evolution of rhodopsin (RH1) and rhodopsin-like (RH2) pigments.

    Science.gov (United States)

    Yokoyama, S

    2000-01-01

    The coelacanth, a "living fossil," lives at a depth of about 200 m near the coast of the Comoros archipelago in the Indian Ocean and receives only a narrow range of light at about 480 nm. To see the entire range of "color" the Comoran coelacanth appears to use only rod-specific RH1 and cone-specific RH2 visual pigments, with the optimum light sensitivities (lambda max) at 478 nm and 485 nm, respectively. These blue-shifted lambda max values of RH1 and RH2 pigments are fully explained by independent double amino acid replacements E122Q/A292S and E122Q/M207L, respectively. More generally, currently available mutagenesis experiments identify only 10 amino acid changes that shift the lambda max values of visual pigments more than 5 nm. Among these, D83N, E1220, M207L, and A292S are associated strongly with the adaptive blue shifts in the lambda max values of RH1 and RH2 pigments in vertebrates.

  10. Feasibility of in situ beta ray measurements in underwater environment.

    Science.gov (United States)

    Park, Hye Min; Park, Ki Hyun; Kang, Sung Won; Joo, Koan Sik

    2017-09-01

    We describe an attempt at the development of an in situ detector for beta ray measurements in underwater environment. The prototype of the in situ detector is based on a CaF2: Eu scintillator using crystal light guide and Si photomultiplier. Tests were conducted using various reference sources for evaluating the linearity and stability of the detector in underwater environment. The system is simple and stable for long-term monitoring, and consumes low power. We show here an effective detection distance of 7 mm and a 2.273 MeV end-point energy spectrum of 90 Sr/ 90 Y when using the system underwater. The results demonstrate the feasibility of in situ beta ray measurements in underwater environment and can be applied for designing an in situ detector for radioactivity measurement in underwater environment. The in situ detector can also have other applications such as installation on the marine monitoring platform and quantitative analysis of radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Noise canceling in-situ detection

    Science.gov (United States)

    Walsh, David O.

    2014-08-26

    Technologies applicable to noise canceling in-situ NMR detection and imaging are disclosed. An example noise canceling in-situ NMR detection apparatus may comprise one or more of a static magnetic field generator, an alternating magnetic field generator, an in-situ NMR detection device, an auxiliary noise detection device, and a computer.

  12. Atmospheric Measurements by Ultra-Light SpEctrometer (AMULSE Dedicated to Vertical Profile in Situ Measurements of Carbon Dioxide (CO2 Under Weather Balloons: Instrumental Development and Field Application

    Directory of Open Access Journals (Sweden)

    Lilian Joly

    2016-09-01

    Full Text Available The concentration of greenhouse gases in the atmosphere plays an important role in the radiative effects in the Earth’s climate system. Therefore, it is crucial to increase the number of atmospheric observations in order to quantify the natural sinks and emission sources. We report in this paper the development of a new compact lightweight spectrometer (1.8 kg called AMULSE based on near infrared laser technology at 2.04 µm coupled to a 6-m open-path multipass cell. The measurements were made using the Wavelength Modulation Spectroscopy (WMS technique and the spectrometer is hence dedicated to in situ measuring the vertical profiles of the CO2 at high precision levels (σAllan = 0.96 ppm in 1 s integration time (1σ and with high temporal/spatial resolution (1 Hz/5 m using meteorological balloons. The instrument is compact, robust, cost-effective, fully autonomous, has low-power consumption, a non-intrusive probe and is plug & play. It was first calibrated and validated in the laboratory and then used for 17 successful flights up to 10 km altitude in the region Champagne—Ardenne, France in 2014. A rate of 100% of instrument recovery was validated due to the pre-localization prediction of the Météo—France based on the flight simulation software.

  13. Characterization of Rh films on Ta(110)

    International Nuclear Information System (INIS)

    Jiang, L.Q.; Ruckman, M.W.; Strongin, M.

    1990-01-01

    The surface and electronic structure of Rh films on Ta(110) up to several monolayers thick on Ta(110) are characterized by photoemission, Auger emission, low-energy electron diffraction (LEED) and low-energy ion scattering (LEIS). From the variation of the Rh Auger peak-to-peak intensity as a function of evaporation time, Rh appears to grow in the Stranski--Krastanov mode at room temperature. However, the LEIS data show that the Rh adatoms begin to cluster on Ta(110) before growth of the monolayer is completed. Diffuse LEED scattering suggests that the Rh films are disordered. Photoemission shows that Rh chemisorption on Ta(110) generates two peaks located at -1.5 and -2.5 eV binding energy during the initial phase of thin-film growth (0 3.7 ML). CO dissociates on the Rh/Ta(110) surface for Rh coverages<2.5 ML and the surface develops a site capable of molecular CO adsorption above 0.3-ML Rh coverage

  14. Intravenous immunoglobulin in ABO and Rh hemolytic diseases of newborn.

    Science.gov (United States)

    Nasseri, Fatemeh; Mamouri, Gholam A; Babaei, Homa

    2006-12-01

    To evaluate whether the use of intravenous immunoglobulin in newborn infants with isoimmune hemolytic jaundice due to Rh and ABO incompatibility is an effective treatment in reducing the need for exchange transfusion. This study included all direct Coombs' test positive Rh and ABO isoimmunized babies, who admitted in the Neonatal Intensive Care Unit of Ghaem Hospital of Mashhad University of Medical Sciences, Iran, from October 2003 to October 2004. Significant hyperbilirubinemia was defined as rising by >or=0.5 mg/dl per hour. Babies were randomly assigned to received phototherapy with intravenous immunoglobulin (IVIg) 0.5 g/kg over 4 hours, every 12 hours for 3 doses (study group) or phototherapy alone (control group). Exchange transfusion was performed in any group if serum bilirubin exceeded >or=20mg/dl or rose by >or=1mg/dl/h. A total of 34 babies were eligible for this study (17 babies in each group). The number of exchange transfusion, duration of phototherapy and hospitalization days, were significant shorter in the study group versus control group. When we analyzed the outcome results in ABO and Rh hemolytic disease separately, the efficacy of IVIg was significantly better in Rh versus ABO isoimmunization. Late anemia was more common in the IVIg group 11.8% versus 0%, p=0.48. Adverse effects were not observed during IVIg administration. Administration of IVIg to newborns with significant hyperbilirubinemia due to Rh hemolytic disease reduced the need for exchange transfusion but in ABO hemolytic disease there was no significant difference between IVIg and double surface blue light phototherapy.

  15. High activity of cubic PtRh alloys supported on graphene towards ethanol electrooxidation.

    Science.gov (United States)

    Rao, Lu; Jiang, Yan-Xia; Zhang, Bin-Wei; Cai, Yuan-Rong; Sun, Shi-Gang

    2014-07-21

    Cubic PtRh alloys supported on graphene (PtxRhy/GN) with different atomic ratio of Pt and Rh were directly synthesized for the first time using the modified polyol method with Br(-) for the shape-directing agents. The process didn't use surface-capping agents such as PVP that easily occupy the active sites of electrocatalysts and are difficult to remove. Graphene is the key factor for cubic shape besides Br(-) and keeping catalysts high-dispersed. The X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to characterize the structure and morphology of these electrocatalysts. The results showed that they were composed of homogeneous cubic PtRh alloys. Traditional electrochemical methods, such as cyclic voltammetry and chronoamperometry, were used to investigate the electrocatalytic properties of PtxRhy/GN towards ethanol electrooxidation. It can be seen that PtxRhy/GN with all atomic ratios exhibited high catalytic activity, and the most active one has a composition with Pt : Rh = 9 : 1 atomic ratio. Electrochemical in situ FTIR spectroscopy was used to evaluate the cleavage of C-C bond in ethanol at room temperature in acidic solutions, the results illustrated that Rh in an alloy can promote the split of C-C bond in ethanol, and the alloy catalyst with atomic ratio Pt : Rh = 1 : 1 showed obviously better performance for the C-C bond breaking in ethanol and higher selectivity for the enhanced activity of ethanol complete oxidation to CO2 than alloys with other ratios of Pt and Rh. The investigation indicates that high activity of PtxRhy/GN electrocatalyst towards ethanol oxidation is due to the specific shape of alloys and the synergistic effect of two metal elements as well as graphene support.

  16. In situ measurement of diffusivity

    International Nuclear Information System (INIS)

    Berne, F.; Pocachard, J.

    2004-01-01

    The mechanism of molecular diffusion controls the migration of contaminants in very low-permeability porous media, like underground facilities for the storage of hazardous waste. Determining of relevant diffusion coefficients is therefore of prime importance. A few techniques exist for in situ measurement of the quantity, but they suffer from many handicaps (duration, complexity and cost of the experiments). We propose here two innovative methods that have some potential to improve the situation. So far, we have found them feasible on the basis of design calculations and laboratory experiments. This work is presently protected by a patent. (author)

  17. In situ measurement of diffusivity

    International Nuclear Information System (INIS)

    Berne, Ph.; Pocachard, J.

    2005-01-01

    The mechanism of molecular diffusion controls the migration of contaminants in very low-permeability porous media, like underground facilities for the storage of hazardous waste. Determining the relevant diffusion coefficients is, therefore, of prime importance. A few techniques exist for the in situ measurement of that quantity, but they suffer from many handicaps (duration, complexity and cost of the experiments). We propose here two innovative methods that have some potential to improve this situation. So far, we have found them feasible on the basis of design calculations and laboratory experiments. This work is presently protected by a patent. (author)

  18. In situ dehydration of yugawaralite

    DEFF Research Database (Denmark)

    Artioli, G.; Ståhl, Kenny; Cruciani, G.

    2001-01-01

    The structural response of the natural zeolite yugawaralite (CaAl2Si6O16. 4H(2)O) upon thermally induced dehydration has been studied by Rietveld analysis of temperature-resolved powder diffraction data collected in situ in the temperature range 315-791 K using synchrotron radiation. The room...... progressively disappearing as the dehydration proceeds. The yugawaralite structure reacts to the release of water molecules with small changes in the Ca-O bond distances and minor distortions of the tetrahedral framework up to about 695 K. Above this temperature the Ca coordination falls below 7 (four framework...

  19. Rh Variability in Multi-Ethnic Perspective: Consequences for RH Genotyping

    NARCIS (Netherlands)

    G.H.M. Tax

    2006-01-01

    textabstractThe RhD bloodgroup was first described by Levine en Stetson in 1939 after the manifestation of a hemolytic transfusion reaction in a woman who recently gave birth, after transfusion with her husbands red cells. The RhD-negative woman produced antibodies against the RhD present on the

  20. Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions

    DEFF Research Database (Denmark)

    Payne, Ruth O; Silk, Sarah E; Elias, Sean C

    2017-01-01

    serum antibodies exhibited cross-strain functional growth inhibition activity (GIA) in vitro, targeted linear and conformational epitopes within RH5, and inhibited key interactions within the RH5 invasion complex. This is the first time to our knowledge that substantial RH5-specific responses have been...

  1. GnRH-agonist versus GnRH-antagonist IVF cycles

    DEFF Research Database (Denmark)

    Papanikolaou, E G; Pados, G; Grimbizis, G

    2012-01-01

    In view of the current debate concerning possible differences in efficacy between the two GnRH analogues used in IVF stimulated cycles, the current study aimed to explore whether progesterone control in the late follicular phase differs when GnRH antagonist is used as compared with GnRH agonist...

  2. RH-TRU Waste Content Codes

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions

    2007-07-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  3. Construction of g-C{sub 3}N{sub 4}/Al{sub 2}O{sub 3} hybrids via in-situ acidification and exfoliation with enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao-jing [College of Science, Hebei University of Science and Technology, Shijiazhuang 050018 (China); State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Liu, Chao [College of Gemmology and Material Technics, Hebei GEO University, Shijiazhuang 050031 (China); Li, Xu-li [College of Science, Hebei University of Science and Technology, Shijiazhuang 050018 (China); Li, Fa-tang, E-mail: lifatang@126.com [College of Science, Hebei University of Science and Technology, Shijiazhuang 050018 (China); Li, Yu-pei [College of Science, Hebei University of Science and Technology, Shijiazhuang 050018 (China); Zhao, Jun [College of Science, Hebei University of Science and Technology, Shijiazhuang 050018 (China); State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Liu, Rui-hong [College of Science, Hebei University of Science and Technology, Shijiazhuang 050018 (China)

    2017-02-01

    Highlights: • Ultrathin g-C{sub 3}N{sub 4}/Al{sub 2}O{sub 3} hybrids are prepared via in-situ reaction. • The structure modification role of in-situ formed HNO{sub 3} for g-C{sub 3}N{sub 4} is found. • The ultrathin g-C{sub 3}N{sub 4} nanosheets are formed by the acidified melamine and Al(OH){sub 3}. • In-situ calcination of melamine and Al(OH){sub 3} benefits the contact of C{sub 3}N{sub 4} and Al{sub 2}O{sub 3}. • The activity of g-C{sub 3}N{sub 4}/Al{sub 2}O{sub 3} is 16.6 times that of pristine g-C{sub 3}N{sub 4} in degrading RhB. - Abstract: Homogeneous ultrathin g-C{sub 3}N{sub 4} nanosheets/Al{sub 2}O{sub 3} heterojunctions are synthesized using melamine and Al(NO{sub 3}){sub 3} via in-situ reaction and the following thermal polymerization approach. The in-situ reaction between melamine and Al(NO{sub 3}){sub 3} results in the existence of HNO{sub 3}-acidified melamine and Al(OH){sub 3} aggregates via the hydrolysis of Al(NO{sub 3}){sub 3}. After thermal polymerization, the aggregates are converted to g-C{sub 3}N{sub 4}/Al{sub 2}O{sub 3} composites. The thermal polymerization of acidified melamine and the support effect of aluminum hydroxide for g-C{sub 3}N{sub 4} during the calcination process lead to highly dispersed amrophous Al{sub 2}O{sub 3} on ultrathin g-C{sub 3}N{sub 4} nanosheets, which is beneficial for the separation of photogenerated electron-hole pairs in the heterojunction. The degradation rate for Rhodamine B (RhB) over the most activie sample is 16.6 times than that of pristine g-C{sub 3}N{sub 4} under visible light irradiation, which can be attributed to the high specific surface area, highly dispersion of amorphous Al{sub 2}O{sub 3} on ultrathin g-C{sub 3}N{sub 4} nanosheet, and the effective electrons transfer from g-C{sub 3}N{sub 4} to the amorphous Al{sub 2}O{sub 3}.

  4. New superconductor LaRhSb

    International Nuclear Information System (INIS)

    Nishigori, S.; Moriwaki, H.; Suzuki, T.; Fujita, T.; Tanaka, H.; Takabatake, T.; Fujii, H.

    1994-01-01

    Superconductivity in LaRhSb was newly found below the transition temperature T c = 2.67 K by the measurements of the electrical resistivity, magnetic susceptibility and specific heat in magnetic fields. The characteristics of the superconductivity determined in this study indicate that LaRhSb is a type II superconductor following the BCS theory. (orig.)

  5. Rh-catalyzed linear hydroformylation of styrene

    NARCIS (Netherlands)

    Boymans, E.H.; Janssen, M.C.C.; Mueller, C.; Lutz, M.; Vogt, D.

    2012-01-01

    Usually the Rh-catalyzed hydroformylation of styrene predominantly yields the branched, chiral aldehyde. An inversion of regioselectivity can be achieved using strong p-acceptor ligands. Binaphthol-based diphosphite and bis(dipyrrolyl-phosphorodiamidite) ligands were applied in the Rh-catalyzed

  6. Four Models of In Situ Simulation

    DEFF Research Database (Denmark)

    Musaeus, Peter; Krogh, Kristian; Paltved, Charlotte

    2014-01-01

    Introduction In situ simulation is characterized by being situated in the clinical environment as opposed to the simulation laboratory. But in situ simulation bears a family resemblance to other types of on the job training. We explore a typology of in situ simulation and suggest that there are f......Introduction In situ simulation is characterized by being situated in the clinical environment as opposed to the simulation laboratory. But in situ simulation bears a family resemblance to other types of on the job training. We explore a typology of in situ simulation and suggest...... that there are four fruitful approaches to in situ simulation: (1) In situ simulation informed by reported critical incidents and adverse events from emergency departments (ED) in which team training is about to be conducted to write scenarios. (2) In situ simulation through ethnographic studies at the ED. (3) Using...... the following processes: Transition processes, Action processes and Interpersonal processes. Design and purpose This abstract suggests four approaches to in situ simulation. A pilot study will evaluate the different approaches in two emergency departments in the Central Region of Denmark. Methods The typology...

  7. A comparative DFT study on the dehydrogenation of methanol on Rh(100) and Rh(110)

    Science.gov (United States)

    Zhang, Minhua; Wu, Xingyu; Yu, Yingzhe

    2018-04-01

    Numerous density functional theory calculations have been performed to investigate the complete mechanisms of methanol dehydrogenation on Rh(100) and Rh(110) surfaces. The adsorption properties of relevant species were discussed in details. In addition, a comprehensive reaction network including four reaction pathways was built and analyzed. It is found that the initial Osbnd H bond scission of CH3OH seems to be more favorable than Csbnd H bond cleavage on both Rh(100) and Rh(110) surfaces from the perspective of activation barriers. It is also concluded that path1 (CH3OH → CH3O → CH2O → CHO → CO) is the predominant pathway on both Rh(100) and Rh (110) surfaces. On the whole, in most of the dehydrogenation reactions investigated, the energy barriers on Rh(100) are lower than those on Rh (110). Remarkable differences in the activity and predominant reaction pathway on Rh(100), Rh(110) and Rh(111) indicate that the dehydrogenation of methanol might be structure-sensitive.

  8. In-situ membrane hydration measurement of proton exchange membrane fuel cells

    Science.gov (United States)

    Lai, Yeh-Hung; Fly, Gerald W.; Clapham, Shawn

    2015-01-01

    Achieving proper membrane hydration control is one of the most critical aspects of PEM fuel cell development. This article describes the development and application of a novel 50 cm2 fuel cell device to study the in-situ membrane hydration by measuring the through-thickness membrane swelling via an array of linear variable differential transducers. Using this setup either as an air/air (dummy) cell or as a hydrogen/air (operating) cell, we performed a series of hydration and dehydration experiments by cycling the RH of the inlet gas streams at 80 °C. From the linear relationship between the under-the-land swelling and the over-the-channel water content, the mechanical constraint within the fuel cell assembly can suppress the membrane water uptake by 11%-18%. The results from the air/air humidity cycling test show that the membrane can equilibrate within 120 s for all RH conditions and that membrane can reach full hydration at a RH higher than 140% in spite of the use of a liquid water impermeable Carbel MP30Z microporous layer. This result confirms that the U.S. DOE's humidity cycling mechanical durability protocol induces sufficient humidity swings to maximize hygrothermal mechanical stresses. This study shows that the novel experimental technique can provide a robust and accurate means to study the in-situ hydration of thin membranes subject to a wide range of fuel cell conditions.

  9. In situ bypass og diabetes

    DEFF Research Database (Denmark)

    Jensen, Leif Panduro; Schroeder, T V; Lorentzen, J E

    1993-01-01

    decreased survival rate was found in diabetics (p useful in the treatment of critical ischaemia of the lower limb in diabetic patients. The overall results in diabetic patients, whether insulin-dependent or not, were equal to those in non-diabetic......From 1986 through to 1990 a total of 483 in situ bypass procedures were performed in 444 patients. Preoperative risk-factors were equally distributed among diabetic (DM) and non-diabetic (NDM) patients, except for smoking habits (DM:48%, NDM:64%, p = 0.002) and cardiac disease (DM:45%, NDM:29%, p...... = 0.005). Critical limb-ischaemia was more often present in diabetic than non-diabetic patients (DM:57%, NDM:36%, p = 0.0002). Diabetic patients had a significantly lower distal anastomosis than non-diabetic patients (p = 0.00001). There were no differences among diabetic and non-diabetic patients...

  10. In situ treatability test plan

    International Nuclear Information System (INIS)

    1996-08-01

    This document describes the plans for the in situ treatment zone (ISTZ) treatability test for groundwater contaminated with strontium-90. The treatability test is to be conducted at the Hanford Site in Richland, Washington, in a portion of the 100-N Area adjacent to the Columbia River referred to as N-Springs. The purpose of the treatability test is to evaluate the effectiveness of an innovative technology to prevent the discharge of strontium-90 contaminated groundwater into the Columbia River. The ISTZ is a passive technology that consists of placing a treatment agent in the path of the groundwater. The treatment agent must restrict target radioactive contaminants and provide time for the contaminant to decay to acceptable levels. The permeability of the treatment zone must be greater than or equal to that of the surrounding sediments to ensure that the contaminated groundwater flows through the treatment zone agent and not around the agent

  11. DOE In Situ Remediation Integrated Program

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1993-01-01

    The In Situ Remediation Integrated Program (ISRP) supports and manages a balanced portfolio of applied research and development activities in support of DOE environmental restoration and waste management needs. ISRP technologies are being developed in four areas: containment, chemical and physical treatment, in situ bioremediation, and in situ manipulation (including electrokinetics). the focus of containment is to provide mechanisms to stop contaminant migration through the subsurface. In situ bioremediation and chemical and physical treatment both aim to destroy or eliminate contaminants in groundwater and soils. In situ manipulation (ISM) provides mechanisms to access contaminants or introduce treatment agents into the soil, and includes other technologies necessary to support the implementation of ISR methods. Descriptions of each major program area are provided to set the technical context of the ISM subprogram. Typical ISM needs for major areas of in situ remediation research and development are identified

  12. IN SITU MEASUREMENT OF BEDROCK EROSION

    Directory of Open Access Journals (Sweden)

    D. H. Rieke-Zapp

    2012-07-01

    Full Text Available While long term erosion rates of bedrock material may be estimated by dating methods, current day erosion rates are – if at all available – based on rough estimates or on point measurements. Precise quantification of short term erosion rates are required to improve our understanding of short term processes, for input in landscape evolution models, as well as for studying the mechanics and efficiency of different erosion processes in varying geomorphological settings. Typical current day erosion rates in the European Alps range from sub-millimetre to several millimetres per year depending on the dominant erosion processes. The level of surveying accuracy required for recurring sub-millimetre to millimetre measurements in the field is demanding. A novel surveying setup for in-situ measurement of bedrock erosion was tested recently in three different locations in Switzerland. Natural bedrock was investigated in the Gornera gorge close to Zermatt. Further on, bedrock samples were installed in exposed locations in the Erlenbach research watershed close to Einsiedeln, and in the Illgraben debris flow channel, located in the Canton Schwyz and Valais, respectively. A twofold measurement approach was chosen for all locations. For the first setup control points providing an absolute reference frame for recurrent measurements were embedded close to the area of interest. Close range photogrammetry was applied to measure surface changes on the bedrock samples. The precision for surface measurements in the field was 0.1 mm (1 σ and thus suitable for the application. The equipment needed for the surveys can easily be carried to the field. At one field site a structured light scanner was used along with the photogrammetric setup. Although the current generation of structured light scanners appeared less suitable for field application, data acquisition was much faster and checking the data for completeness in the field was straight forward. The latest

  13. In Situ Measurement of Bedrock Erosion

    Science.gov (United States)

    Rieke-Zapp, D. H.; Beer, A.; Turowski, J. M.; Campana, L.

    2012-07-01

    While long term erosion rates of bedrock material may be estimated by dating methods, current day erosion rates are - if at all available - based on rough estimates or on point measurements. Precise quantification of short term erosion rates are required to improve our understanding of short term processes, for input in landscape evolution models, as well as for studying the mechanics and efficiency of different erosion processes in varying geomorphological settings. Typical current day erosion rates in the European Alps range from sub-millimetre to several millimetres per year depending on the dominant erosion processes. The level of surveying accuracy required for recurring sub-millimetre to millimetre measurements in the field is demanding. A novel surveying setup for in-situ measurement of bedrock erosion was tested recently in three different locations in Switzerland. Natural bedrock was investigated in the Gornera gorge close to Zermatt. Further on, bedrock samples were installed in exposed locations in the Erlenbach research watershed close to Einsiedeln, and in the Illgraben debris flow channel, located in the Canton Schwyz and Valais, respectively. A twofold measurement approach was chosen for all locations. For the first setup control points providing an absolute reference frame for recurrent measurements were embedded close to the area of interest. Close range photogrammetry was applied to measure surface changes on the bedrock samples. The precision for surface measurements in the field was 0.1 mm (1 σ) and thus suitable for the application. The equipment needed for the surveys can easily be carried to the field. At one field site a structured light scanner was used along with the photogrammetric setup. Although the current generation of structured light scanners appeared less suitable for field application, data acquisition was much faster and checking the data for completeness in the field was straight forward. The latest generation of compact

  14. In Situ Hybridization Pada Kanker Payudara

    OpenAIRE

    Diah Witari, Ni Putu

    2014-01-01

    Kesulitan yang dijumpai pada penanganan kanker payudara adalah terjadinya kekambuhan atau relaps. Deteksi status HER2 pada pasien merupakan salah satu upaya untuk mendeteksi terjadinya relaps dan juga untuk menentukan jenis terapi yang ada diberikan. Ekspresi protein HER2 dapat dideteksi dengan immunohistochemistry (IHC), sedangkan mutasi gen HER2 dapat dideteksi dengan teknik in situ hybridization baik berupa fluorescence in situ hybridization (FISH) ataupun chromogenic in situ hy...

  15. Training for teamwork through in situ simulations

    Science.gov (United States)

    Sorensen, Asta; Poehlman, Jon; Bollenbacher, John; Riggan, Scott; Davis, Stan; Miller, Kristi; Ivester, Thomas; Kahwati, Leila

    2015-01-01

    In situ simulations allow healthcare teams to practice teamwork and communication as well as clinical management skills in a team's usual work setting with typically available resources and equipment. The purpose of this video is to demonstrate how to plan and conduct in situ simulation training sessions, with particular emphasis on how such training can be used to improve communication and teamwork. The video features an in situ simulation conducted at a labour and delivery unit in response to postpartum hemorrhage. PMID:26294962

  16. A prospective, randomized, fellow eye comparison of WaveLight® Allegretto Wave® Eye-Q versus VISX CustomVue™ STAR S4 IR™ in laser in situ keratomileusis (LASIK: analysis of visual outcomes and higher order aberrations

    Directory of Open Access Journals (Sweden)

    Moshirfar M

    2011-09-01

    Full Text Available Majid Moshirfar1, Brent S Betts2, Daniel S Churgin3, Maylon Hsu1, Marcus Neuffer1, Shameema Sikder4, Dane Church5, Mark D Mifflin11John A Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA; 2Temple University School of Medicine, Philadelphia, PA, USA; 3University of Arizona College of Medicine – Phoenix, Phoenix, AZ, USA; 4Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA; 5Virginia Commonwealth University School of Medicine, Richmond, VA, USAPurpose: To compare outcomes in visual acuity, refractive error, higher-order aberrations (HOAs, contrast sensitivity, and dry eye in patients undergoing laser in situ keratomileusis (LASIK using wavefront (WF guided VISX CustomVue and WF optimized WaveLight Allegretto platforms.Methods: In this randomized, prospective, single-masked, fellow eye study, LASIK was performed on 44 eyes (22 patients, with one eye randomized to WaveLight Allegretto, and the fellow eye receiving VISX CustomVue. Postoperative outcome measures at 3 months included uncorrected distance visual acuity (UDVA, corrected distance visual acuity (CDVA, refractive error, root-mean-square (RMS value of total and grouped HOAs, contrast sensitivity, and Schirmers testing.Results: Mean values for UDVA (logMAR were -0.067 ± 0.087 and -0.073 ± 0.092 in the WF optimized and WF guided groups, respectively (P = 0.909. UDVA of 20/20 or better was achieved in 91% of eyes undergoing LASIK with both lasers while UDVA of 20/15 or better was achieved in 64% of eyes using the Allegretto platform, and 59% of eyes using VISX CustomVue (P = 1.000. In the WF optimized group, total HOA increased 4% (P = 0.012, coma increased 11% (P = 0.065, and spherical aberration increased 19% (P = 0.214, while trefoil decreased 5% (P = 0.490. In the WF guided group, total HOA RMS decreased 9% (P = 0.126, coma decreased 18% (P = 0.144, spherical aberration decreased 27% (P = 0.713 and trefoil

  17. Cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror

    International Nuclear Information System (INIS)

    Yuan Sheng; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; Celestre, Richard; McKinney, Wayne R.; Morrison, Gregory; Macdougall, James; Mochi, Iacopo; Warwick, Tony

    2011-01-01

    At the Advanced Light Source (ALS), we are developing broadly applicable, high-accuracy, in-situ, at-wavelength wavefront slope measurement techniques for Kirkpatrick-Baez (KB) mirror nano-focusing. In this paper, we report an initial cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror. This cross-check provides a validation of the in-situ shearing interferometry, currently under development at the ALS.

  18. In situ variation in leaf anatomy and morphology of Andira legalis (Leguminosae in two neighbouring but contrasting light environments in a Brazilian sandy coastal plain Variação in situ em anatomia e morfologia foliar de Andira legalis (Leguminosae em dois ambientes adjacentes, porém contrastantes quanto ao regime de luz, em restinga brasileira

    Directory of Open Access Journals (Sweden)

    Daniela Carvalho Pereira

    2009-03-01

    Full Text Available Andira legalis (Vell. Toledo is a legume shrub widespread along the sandy plains of the Brazilian coast. It occurs both shaded, in forest habitats, or exposed to full sunlight, in the vegetation islands growing on sand deposits. Previous studies reported a high range of morpho-physiological variation for this species along a geographical gradient. This study compared leaf morphology and anatomy of A. legalis in two distinct but adjacent light environments: a dense forest (shaded and a scrub of Palmae (exposed. We studied the amplitude of variation for these traits within a small (0.5 ha geographical area. Leaf anatomy parameters were measured for five leaves collected from five plants in each habitat. The parameters measured were leaf and mesophyll thickness, thickness of the outer periclinal cell wall, thickness of the adaxial and abaxial epidermis and vascular bundle transversal section area, and also common epidermal cells, stomata and trichome density. Leaf morphology parameters were obtained from five leaves of each of 20 plants in each site. Dry and fresh weights were measured to obtain leaf specific mass and succulence. All anatomy and morphology parameters, except trichome density, were significantly higher for the sun-exposed plants. Less expected, however, was the marked qualitative difference between exposed and shaded plants: in the former the mesophyll had a unilateral symmetry (i.e., the whole mesophyll occupied by photosynthetic tissue, whereas in the latter there was a dorsiventral symmetry (i.e., partly palisade and partly spongy parenchyma. Such amplitude of variation shows that even within a small geographic area A. legalis has a broad ecological plasticity.Andira legalis (Vell. Toledo é uma leguminosa arbustiva distribuída ao longo de planícies arenosas da costa brasileira. Tem ocorrência em ambientes florestais, sombreadas, ou em ilhas de vegetação de restingas abertas, onde é exposta à plena radiação solar

  19. The SENSEI Generic In Situ Interface

    Energy Technology Data Exchange (ETDEWEB)

    Ayachit, Utkarsh [Kitware, Inc., Clifton Park, NY (United States); Whitlock, Brad [Intelligent Light, Rutherford, NJ (United States); Wolf, Matthew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Loring, Burlen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States); Lonie, David [Kitware, Inc., Clifton Park, NY (United States); Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-11

    The SENSEI generic in situ interface is an API that promotes code portability and reusability. From the simulation view, a developer can instrument their code with the SENSEI API and then make make use of any number of in situ infrastructures. From the method view, a developer can write an in situ method using the SENSEI API, then expect it to run in any number of in situ infrastructures, or be invoked directly from a simulation code, with little or no modification. This paper presents the design principles underlying the SENSEI generic interface, along with some simplified coding examples.

  20. Rh-flash acquisition card

    International Nuclear Information System (INIS)

    Bourrion, O.

    2003-01-01

    The rh-flash card main purpose is to convert and store the image of the analog data present at input into an output buffer, namely in a given timing window besides a stop signal (like a digital oscilloscope). It is conceived in VME format 1U wide with an additional connector. Novelty of this card is its ability to sample at a high frequency, due to flash coders, and this at a high repetition rate. To do that the card allows the storage of the data considered 'useful' and that is done by storing only the data exceeding a certain threshold. This can be useful for instance for viewing peaks in a spectrum, and obtaining their relative location. The goal is to stock and process the data sampled before and after the arrival of a stop signal (what entails a storage depth). A threshold is defined and any peak exceeding its level will really be stored in the output buffer which is readable through the VME bus. The peak values will be stored as well as m preceding and n subsequent values (both programmable). Obviously, if the threshold is zero the system of data processing is off and all data will be stored. The document is structured on six sections titled: 1. Description; 2. Specifications; 3. Explaining the design of channels; 4. Explaining the shared part of the design; 5. Addressing (→ user guide); 6. Software precautions. (author)

  1. Expression and distribution of octopus gonadotropin-releasing hormone in the central nervous system and peripheral organs of the octopus (Octopus vulgaris) by in situ hybridization and immunohistochemistry.

    Science.gov (United States)

    Iwakoshi-Ukena, Eiko; Ukena, Kazuyoshi; Takuwa-Kuroda, Kyoko; Kanda, Atshuhiro; Tsutsui, Kazuyoshi; Minakata, Hiroyuki

    2004-09-20

    We recently purified a peptide with structural features similar to vertebrate gonadotropin-releasing hormone (GnRH) from the brain of Octopus vulgaris, cloned a cDNA encoding the precursor protein, and named it oct-GnRH. In the current study, we investigated the expression and distribution of oct-GnRH throughout the central nervous system (CNS) and peripheral organs of Octopus by in situ hybridization on the basis of the cDNA sequence and by immunohistochemistry using a specific antiserum against oct-GnRH. Oct-GnRH mRNA-expressing cell bodies were located in 10 of 19 lobes in the supraesophageal and subesophageal parts of the CNS. Several oct-GnRH-like immunoreactive fibers were seen in all the neuropils of the CNS lobes. The sites of oct-GnRH mRNA expression and the mature peptide distribution were consistent with each other as judged by in situ hybridization and immunohistochemistry. In addition, many immunoreactive fibers were distributed in peripheral organs such as the heart, the oviduct, and the oviducal gland. Modulatory effects of oct-GnRH on the contractions of the heart and the oviduct were demonstrated. The results suggested that, in the context of reproduction, oct-GnRH is a key peptide in the subpedunculate lobe and/or posterior olfactory lobe-optic gland-gonadal axis, an octopus analogue of the hypothalamo-hypophysial-gonadal axis. It may also act as a modulatory factor in controlling higher brain functions such as feeding, memory, movement, maturation, and autonomic functions

  2. 103Ru/103mRh generator

    International Nuclear Information System (INIS)

    Bartos, B.; Kowalska, E.; Bilewicz, A.; Skarnemark, G.

    2009-01-01

    103m Rh is a very promising radionuclide for Auger electron therapy due to its very low photon/electron ratio. The goal of the present work was the elaboration a method for production of large quantities of 103m Rh for generator system. It was found that the combination of solvent extraction with evaporation of 103 RuO 4 followed by decomposition of H 5 IO 6 makes it possible to produce 103m Rh of high radionuclidic and chemical purity. (author)

  3. Scattering of fast neutrons from 103Rh

    International Nuclear Information System (INIS)

    Barnard, E.; Reitmann, D.

    1978-01-01

    The scattering of fast neutrons from 103 Rh was studied by means of (n, n), (n, n') and (n, n'γ) measurements at neutron energies up to 2 MeV. More than fifty unknown γ-transitions were identified and a level scheme established which includes fifteen unreported excited states. Branching ratios, spins and parities for these levels were deduced, as well as the effective activation cross sections for the 103 Rh(n, n')sup(103m)Rh reaction. The results are compared with existing data and with calculations based on the optical and statistical models. (Auth.)

  4. Reliable test for prenatal prediction of fetal RhD type using maternal plasma from RhD negative women

    DEFF Research Database (Denmark)

    Clausen, Frederik Banch; Krog, Grethe Risum; Rieneck, Klaus

    2005-01-01

    The objective of this study was to establish a reliable test for prenatal prediction of fetal RhD type using maternal plasma from RhD negative women. This test is needed for future prenatal Rh prophylaxis.......The objective of this study was to establish a reliable test for prenatal prediction of fetal RhD type using maternal plasma from RhD negative women. This test is needed for future prenatal Rh prophylaxis....

  5. Innovative technologies for in-situ remediation

    International Nuclear Information System (INIS)

    Ragaini, R.; Aines, R.; Knapp, R.; Matthews, S.; Yow, J.

    1994-06-01

    LLNL is developing several innovative remediation technologies as long-term improvements to the current pump and treat approaches to cleaning up contaminated soils and groundwater. These technologies include dynamic underground stripping, in-situ microbial filters, and remediation using bremsstrahlung radiation. Concentrated underground organic contaminant plumes are one of the most prevalent groundwater contamination sources. The solvent or fuel can percolate deep into the earth, often into water-bearing regions. Collecting as a separate, liquid organic phase called dense non-aqueous-phase liquids (DNAPLs), or light NAPLs (LNAPLs), these contaminants provide a source term that continuously compromises surrounding groundwater. This type of spill is one of the most difficult environmental problems to remediate. Attempts to remove such material requires a huge amount of water which must be washed through the system to clean it, requiring decades. Traditional pump and treat approaches have not been successful. LLNL has developed several innovative technologies to clean up NAPL contamination. Detailed descriptions of these technologies are given

  6. Screening for carcinoma in situ of the contralateral testis in patients with germinal testicular cancer

    DEFF Research Database (Denmark)

    Berthelsen, J G; Skakkebaek, N E; von der Maase, H

    1982-01-01

    Two hundred and fifty biopsy specimens from the contralateral testis in patients with unilateral germinal testicular cancer were analysed by light microscopy for carcinoma-in-situ changes. Changes were found in 13 (5.2%) patients. One-third of patients with an atrophic contralateral testis (volume...... of cryptorchidism or both had been screened. Since the natural course of carcinoma in situ in the contralateral testis of patients with germinal testicular cancer has not been established, the patients are being re-evaluated frequently. To date two patients with carcinoma in situ have developed a second cancer....

  7. PRINS and in situ PCR protocols

    National Research Council Canada - National Science Library

    Gosden, John R

    1997-01-01

    ... mapping of DNA sequences on chromosomes and location of gene expression followed the invention and refinement of in situ hybridization. Among the most recent technical developments has been the use of oligonucleotide primers to detect and amplify or extend complementary sequences in situ, and it is to this novel field that PRINS and In S...

  8. Technology assessment of in situ uranium mining

    International Nuclear Information System (INIS)

    Cowan, C.E.

    1981-01-01

    The objective of the PNL portion of the Technology Assessment project is to provide a description of the current in situ uranium mining technology; to evaluate, based on available data, the environmental impacts and, in a limited fashion, the health effects; and to explore the impediments to development and deployment of the in situ uranium mining technology

  9. The In Situ Vitrification Project

    International Nuclear Information System (INIS)

    Buelt, J.L.

    1988-10-01

    The Columbia Section of the American Society of Civil Engineers (ASCE) is pleased to submit the In Situ Vitrification (ISV) Project to the Pacific Northwest Council for consideration as the Outstanding Civil Engineering Achievement. The ISV process, developed by Battelle-Northwest researchers beginning in 1980, converts contaminated soils and sludges to a glass and crystalline product. In this way it stabilizes hazardous chemical and radioactive wastes and makes them chemically inert. This report describes the process. A square array of four molybdenum electrodes is inserted into the ground to the desired treatment depth. Because soil is not electrically conductive when the moisture has been driven off, a conductive mixture of flaked graphite and glass frit is placed among the electrodes as a starter path. An electrical potential is applied to the electrodes to establish an electric current in the starter path. The resultant power heats the starter path and surrounding soil to 2000/degree/C, well above the initial soil-melting temperature of 1100/degree/C to 1400/degree/C. The graphite starter path is eventually consumed by oxidation, and the current is transferred to the molten soil, which is electrically conductive. As the molten or vitrified zone grows, it incorporates radionuclides and nonvolatile hazardous elements, such as heavy metals, and destroys organic components by pyrolysis. 2 figs

  10. In situ vitrification: A review

    International Nuclear Information System (INIS)

    Cole, L.L.; Fields, D.E.

    1989-11-01

    The in situ vitrification process (ISV) converts contaminated soils and sludges to a glass and crystalline product. The process appears to be ideally suited for on site treatment of both wet and dry wastes. Basically, the system requires four molybdenum electrodes, an electrical power system for vitrifying the soil, a hood to trap gaseous effluents, an off-gas treatment system, an off-gas cooling system, and a process control station. Mounted in three transportable trailers, the ISV process can be moved from site to site. The process has the potential for treating contaminated soils at most 13 m deep. The ISV project has won a number of outstanding achievement awards. The process has also been patented with exclusive worldwide rights being granted to Battelle Memorial Institute for nonradioactive applications. While federal applications still belong to the Department of Energy, Battelle transferred the rights of ISV for non-federal government, chemical hazardous wastes to a separate corporation in 1989 called Geosafe. This report gives a review of the process including current operational behavior and applications

  11. Distillation of shale in situ

    Energy Technology Data Exchange (ETDEWEB)

    de Ganahl, C F

    1922-07-04

    To distill buried shale or other carbon containing compounds in situ, a portion of the shale bed is rendered permeable to gases, and the temperature is raised to the point of distillation. An area in a shale bed is shattered by explosives, so that it is in a relatively finely divided form, and the tunnel is then blocked by a wall, and fuel and air are admitted through pipes until the temperature of the shale is raised to such a point that a portion of the released hydrocarbons will burn. When distillation of the shattered area takes place and the lighter products pass upwardly through uptakes to condensers and scrubbers, liquid oil passes to a tank and gas to a gasometer while heavy unvaporized products in the distillation zone collect in a drain, flow into a sump, and are drawn off through a pipe to a storage tank. In two modifications, methods of working are set out in cases where the shale lies beneath a substantially level surface.

  12. Absolute calibration of the Rh-103(n,n')Rh-103m reaction rate

    International Nuclear Information System (INIS)

    Taylor, W.H.; Murphy, M.F.; March, M.R.

    1979-05-01

    The uncertainties in determining the absolute values of the Rh-103(n, n') Rh-103m reaction rate (which is widely used as a neutron damage flux monitor) have been reduced to approximately +-5%. This has been achieved with the use of a calibrated source of Pd-103-Rh-103m activity supplied by the IAEA. Agreement to within 3% between measured and calculated values of the reaction rate (normalised to the U-238 fission rate) has been achieved. (author)

  13. Activity of PtSnRh/C nanoparticles for the electrooxidation of C1 and C2 alcohols

    International Nuclear Information System (INIS)

    Teran, Freddy E.; Santos, Deise M.; Ribeiro, Josimar; Kokoh, Kouakou B.

    2012-01-01

    A systematic investigation of alcohol adsorption and oxidation on binary and ternary electrocatalysts in acid medium was performed. Binary (PtRh) and ternary (PtRhSn) were prepared by the Pechini modified method on carbon Vulcan XC-72, and different nominal compositions were characterized by energy dispersive X-ray and X-ray diffraction (XRD) techniques. The XRD results showed that the Pt 80 Rh 20 /C and Pt 70 Sn 10 Rh 20 /C electrocatalysts consisted of the Pt displaced phase, suggesting the formation of a solid solution between the metals Pt/Rh and Pt/Sn. Electrochemical investigations on these different electrode materials were carried out as a function of the electrocatalyst composition, in acid medium (0.5 mol dm −3 H 2 SO 4 ), and in the absence and presence of different alcohols (methanol, ethanol and ethylene glycol). The electrochemical results obtained at room temperature have shown that the Pt 70 Sn 10 Rh 20 /C catalyst display better catalytic activity for alcohol oxidation compared with the binary catalyst. In situ reflectance infrared spectroscopy measurements have shown that the oxidation of alcohols mentioned produced CO 2 at low potentials indicating that the materials synthesized could be used as efficient anodes in the fuel cell applications. - Highlights: ► Pt-based catalysts were synthesized by thermal decomposition polymeric precursors. ► Pt 70 Sn 10 Rh 20 /C displays better catalytic activity for the oxidation of alcohols. ► The co-catalysts tin and rhodium promote the removal of CO to CO 2 at low potentials. ► Ethylene glycol is oxidizing strongly to CO 2 at low potentials. ► Pt 70 Sn 10 Rh 20 /C catalyst is an efficient anode material for a direct alcohol fuel cell.

  14. In situ Transmission Electron Microscopy of catalyst sintering

    DEFF Research Database (Denmark)

    DeLaRiva, Andrew T.; Hansen, Thomas Willum; Challa, Sivakumar R.

    2013-01-01

    Recent advancements in the field of electron microscopy, such as aberration correctors, have now been integrated into Environmental Transmission Electron Microscopes (TEMs), making it possible to study the behavior of supported metal catalysts under operating conditions at atomic resolution. Here......, we focus on in situ electron microscopy studies of catalysts that shed light on the mechanistic aspects of catalyst sintering. Catalyst sintering is an important mechanism for activity loss, especially for catalysts that operate at elevated temperatures. Literature from the past decade is reviewed...... along with our recent in situ TEM studies on the sintering of Ni/MgAl2O4 catalysts. These results suggest that the rapid loss of catalyst activity in the earliest stages of catalyst sintering could result from Ostwald ripening rather than through particle migration and coalescence. The smallest...

  15. Comparison of long GnRH agonist versus GnRH antagonist protocol in poor responders

    Directory of Open Access Journals (Sweden)

    Sadık Şahin

    2014-12-01

    Full Text Available Objective: To compare long GnRH agonist with GnRH antagonist protocol in poor responders. Materials and Methods: Medical charts of 531 poor responder women undergoing in-vitro fertilization (IVF cycle at Zeynep Kamil Maternity and Children’s Hospital, IVF Center were retrospectively analysed. Those who received at least 300 IU/daily gonadotropin and had ≤3 oocytes retrieved were enrolled in the study. Poor responders were categorized into two groups as those who received long GnRH agonist or GnRH antagonist regimen. Results: Treatment duration and total gonadotropin dosage were significantly higher in women undergoing the long GnRH agonist regimen compared with the GnRH antagonist regimen (p<0.001 for both. Although the number of total and mature oocytes retrieved was similar between the groups, good quality embryos were found to be higher in the GnRH antagonist regimen. The day of embryo transfer and number of transferred embryos were similar in the groups. No statistically significant differences were detected in pregnancy (10.5% vs 14.1%, clinical pregnancy (7.7% vs 10.6% and early pregnancy loss rates (27.2% vs 35% between the groups. Conclusion: GnRH antagonist regimen may be preferable to long GnRH regimen as it could decrease the cost and treatment duration in poor responders.

  16. Neuroregulatory and neuroendocrine GnRH pathways in the hypothalamus and forebrain of the baboon.

    Science.gov (United States)

    Marshall, P E; Goldsmith, P C

    1980-07-14

    The distribution of neurons containing gonadotropin-releasing hormone (GnRH) in the baboon hypothalamus and forebrain was studied immunocytochemically by light and electron microscopy. GnRH was present in the perikarya, axonal and dendritic processes of immunoreactive neurons. Three populations of GnRH neurons could be distinguished. Most of the GnRH neurons which are assumed to directly influence the anterior pituitary were in the medial basal hypothalamus. Other cells that projected to the median eminence were found scattered throughout the hypothalamus. A second, larger population of neurons apparently was not involved with control of the anterior pituitary. These neurons were generally found within afferent and efferent pathways of the hypothalamus and forebrain, and may receive external information affecting reproduction. A few neurons projecting to the median eminence were also observed sending collaterals to other brain areas. Thus, in addition to their neuroendocrine role, these cells possibly have neuroregulatory functions. The inference is made that these bifunctional neurons, together with the widely observed GnRH-GnRH cellular interactions may help to synchronize ovulation and sexual behavior.

  17. Development of in-situ radon sensor using plastic scintillator

    International Nuclear Information System (INIS)

    Shitashima, Kiminori

    2009-01-01

    Underwater in-situ radon measurement is important scientific priority for oceanography, especially for survey and monitoring of submarine groundwater discharge (SDG). The high sensitivity and lightweight underwater in-situ radon sensor using NaI(Tl) doped plastic scintillator was developed for application to SDG research. Because NaI(Tl) doped plastic scintillator contacts seawater directly, the plastic scintillator can expect high sensitivity in comparison with NaI(Tl) crystal sealed in a container. In order to improve condensation efficiency of scintillation, the plastic scintillator was processed in funnel form and coated by light-resistant paint. This sensor consists of plastic scintillator, photomultiplier tube, preamplifier unit, high-voltage power supply, data logger and lithium-ion battery, and all parts are stored in a pressure housing (200φx300L). The newly developed underwater in-situ radon sensor was tested at hydrothermal area (underwater hot springs) that the hydrothermal fluid containing high concentration of radon is discharged into seawater. The sensor was operated by a diver, and sensitivity tests and mapping survey for estimation of radon diffusion were carried out. The signals of the radon sensor ranged from 20 to 65 mV, and these signals corresponded with radon concentration of 2 to 12 becquerels per liter. The sensor was able to detect radon to 20 m above the hydrothermal point (seafloor). Since the sensor is small and light-weight, measurement, monitoring and mapping can perform automatically by installing the sensor to an AUV (autonomous underwater vehicle). Furthermore, underwater in-situ radon sensor is expected an application to earthquake prediction and volcanic activity monitoring as well as oceanography and hydrology. (author)

  18. Hypersensitivity reaction with intravenous GnRH after pulsatile subcutaneous GnRH treatment in male hypogonadotrophic hypogonadism.

    OpenAIRE

    Popović, V.; Milosević, Z.; Djukanović, R.; Micić, D.; Nesović, M.; Manojlović, D.; Djordjević, P.; Mićić, J.

    1988-01-01

    Chronic pulsatile subcutaneous administration of low doses of gonadotrophin releasing hormone (GnRH) is an effective therapy for men with hypogonadotrophic hypogonadism. Hypersensitivity reactions to GnRH are rare. We wish to report hypersensitivity reactions with intravenous GnRH after low dose subcutaneous pulsatile GnRH treatment in two men with hypogonadotrophic hypogonadism due to suprasellar disease.

  19. Polymorphism in the Mr 32,000 Rh protein purified from Rh(D)-positive and -negative erythrocytes

    International Nuclear Information System (INIS)

    Saboori, A.M.; Smith, B.L.; Agre, P.

    1988-01-01

    A M r 32,000 integral membrane protein has previously been identified on erythrocytes bearing the Rh(D) antigen and is thought to contain the antigenic variations responsible for the different Rh phenotypes. To study it on a biochemical level, a simple large-scale method was developed to purify the M r 32,000 Rh protein from multiple units of Rh(D)-positive and -negative blood. Erythrocyte membrane vesicles were solubilized in NaDodSO 4 , and a tracer of immunoprecipitated 125 I surface-labeled Rh protein was added. The Rh protein was purified to homogeneity by hydroxylapatite chromatography followed by preparative NaDodSO 4 /PAGE. Approximately 25 nmol of pure Rh protein was recovered from each unit of Rh(D)-positive and -negative blood. Rh protein purified from both Rh phenotypes appeared similar by one-dimensional NaDodSO 4 /PAGE, and the N-terminal amino acid sequences for the first 20 residues were identical. Rh proteins purified from Rh(D)-positive and -negative blood were compared by two-dimensional iodopeptide mapping after 125 I-labeling and α-chymotrypsin digestion. The peptide maps were very similar. These data indicate that a similar core Rh protein exists in both Rh(D)-positive and -negative erythrocytes, and the Rh proteins from erythrocytes with different Rh phenotypes contain distinct structural polymorphisms

  20. XANES and XMCD studies of FeRh and CoRh nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Smekhova, A; Wilhelm, F; Rogalev, A [European Synchrotron Radiation Facility, Grenoble Cedex 9, 38043 (France); Atamena, N; Ciuculescu, D; Amiens, C [Laboratoire de Chimie de Coordination, UPR 8241-CNRS, Toulouse Cedex 04, 31077 (France); Lecante, P, E-mail: smeal@esrf.f [Centre d' Elaboration de Materiaux et d' Etudes Structurales, UPR 8011-CNRS, Toulouse Cedex 04, 31055 (France)

    2010-01-01

    Element-selective magnetic properties of new core-shell bimetallic MRh (M=Fe or Co) nanoparticles (NP{sub S}) of 50/50 composition with either M-Rh or Rh-M core/shell order and an average diameter of {approx}2 nm have been investigated by X-ray Absorption Spectroscopy (XANES) and X-Ray Magnetic Circular Dichroism (XMCD) technique. XANES spectra at the Rh L{sub 2,3} edges exhibit the same characteristic features for all systems having the Rh metal enriched shell. XMCD experiments at the same edges have shown that 4d states of Rh atoms acquire a magnetic moment as a result of hybridization with iron or cobalt 3d states. As expected the value of this induced moment depends on the 3d transition metal and on the core/shell chemical order in the nanoparticle.

  1. ATR-SEIRAS study of CO adsorption and oxidation on Rh modified Au(111-25 nm) film electrodes in 0.1 M H2SO4

    International Nuclear Information System (INIS)

    Xu, Qinqin; Berná, Antonio; Pobelov, Ilya V.; Rodes, Antonio; Feliu, Juan M.; Wandlowski, Thomas; Kuzume, Akiyoshi

    2015-01-01

    Rh modified Au(111-25 nm) electrodes, prepared by electron beam evaporation and galvanostatic deposition, were employed to study adsorption and electro-oxidation of CO on Rh in 0.1 M sulfuric acid solution by in situ attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS). The results of ATR-SEIRAS experiments were compared with those obtained by infrared reflection absorption spectroscopy on three low-index Rh single crystal surfaces. The Rh film deposited on Au(111-25 nm) electrode consists of 3D clusters forming a highly stepped [n(111) × (111)]-like surface with narrow (111) terraces. When CO was dosed at the hydrogen adsorption potential region, CO adsorbed in both atop (CO L ) and bridge (CO B ) configurations, as well as coadsorbed water species, were detected on the Rh film electrode. A partial interconversion of spectroscopic bands due to the CO displacement from bridge to atop sites was found during the anodic potential scan, revealing that there is a potential-dependent preference of CO adsorption sites on Rh surfaces. Our data indicate that CO oxidation on Rh electrode surface in acidic media involves coadsorbed water and follows the nucleation and growth model of a Langmuir-Hinshelwood type reaction

  2. Monitoring dynamic electrochemical processes with in situ ptychography

    Science.gov (United States)

    Kourousias, George; Bozzini, Benedetto; Jones, Michael W. M.; Van Riessen, Grant A.; Dal Zilio, Simone; Billè, Fulvio; Kiskinova, Maya; Gianoncelli, Alessandra

    2018-03-01

    The present work reports novel soft X-ray Fresnel CDI ptychography results, demonstrating the potential of this method for dynamic in situ studies. Specifically, in situ ptychography experiments explored the electrochemical fabrication of Co-doped Mn-oxide/polypyrrole nanocomposites for sustainable and cost-effective fuel-cell air-electrodes. Oxygen-reduction catalysts based on Mn-oxides exhibit relatively high activity, but poor durability: doping with Co has been shown to improve both reduction rate and stability. In this study, we examine the chemical state distribution of the catalytically crucial Co dopant to elucidate details of the Co dopant incorporation into the Mn/polymer matrix. The measurements were performed using a custom-made three-electrode thin-layer microcell, developed at the TwinMic beamline of Elettra Synchrotron during a series of experiments that were continued at the SXRI beamline of the Australian Synchrotron. Our time-resolved ptychography-based investigation was carried out in situ after two representative growth steps, controlled by electrochemical bias. In addition to the observation of morphological changes, we retrieved the spectroscopic information, provided by multiple ptychographic energy scans across Co L3-edge, shedding light on the doping mechanism and demonstrating a general approach for the molecular-level investigation complex multimaterial electrodeposition processes.

  3. Development of an in situ fatigue sensor.

    Science.gov (United States)

    2011-01-01

    A prototype in situ fatigue sensor has been designed, constructed and evaluated experimentally for its ability to monitor the accumulation of fatigue damage in a cyclically loaded steel structure, e.g., highway bridge. The sensor consists of multiple...

  4. In Situ Aerosol Detector, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is developing new platform systems that have the potential to benefit Earth science research activities, which include in situ instruments for atmospheric...

  5. Past In-Situ Burning Possibilities

    National Research Council Canada - National Science Library

    Yoshioka, Gary

    1999-01-01

    This study evaluated the feasibility of conducting in-situ burning (ISB) using current technology on post 1967 major oil spills over 10,00 barrels in North America and over 50,00 barrels in South America and Europe...

  6. Observatory Magnetometer In-Situ Calibration

    Directory of Open Access Journals (Sweden)

    A Marusenkov

    2011-07-01

    Full Text Available An experimental validation of the in-situ calibration procedure, which allows estimating parameters of observatory magnetometers (scale factors, sensor misalignment without its operation interruption, is presented. In order to control the validity of the procedure, the records provided by two magnetometers calibrated independently in a coil system have been processed. The in-situ estimations of the parameters are in very good agreement with the values provided by the coil system calibration.

  7. In-situ characterization of heterogeneous catalysts

    CERN Document Server

    Rodriguez, Jose A; Chupas, Peter J

    2013-01-01

    Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts feat

  8. In situ gene expression and ecophysiology of thermophilic Cyanobacteria

    DEFF Research Database (Denmark)

    Jensen, Sheila Ingemann

    -378), the expression patterns of various functional genes (with an emphasis on nif genes involved in N2-fixation), the protein levels of nitrogenase (NifH), the N2-fixation activity, as well as microsensor based measurements on O2 availability, production and consumption were investigated in situ over the entire diel...... cycle. Interestingly, it was found that while the nif genes are expressed, and nitrogenase is synthesized once the mat gets anoxic in the early evening, the largest N2-fixation activity occurs as a burst during dim light in the early morning, albeit protein levels remained high over the entire course...

  9. Comparing Pt/SrTiO3 to Rh/SrTiO3 for hydrogen photocatalytic production from ethanol

    KAUST Repository

    Wahab, A. K.; Odedairo, T.; Labis, J.; Hedhili, Mohamed N.; Delavar, A.; Idriss, H.

    2013-01-01

    Photocatalytic hydrogen production from ethanol as an example of biofuel is studied over 0.5 wt% Rh/SrTiO3 and 0.5 wt% Pt/SrTiO3 perovskite materials. The rate of hydrogen production, rH2, over Pt/SrTiO3 is found to be far higher than that observed over Rh/SrTiO3 (4 × 10−6 mol of H2 g catal. −1 min−1 (1.1 × 10−6 mol of H2 m catal. −2 min−1) compared to 0.7 × 10−6 mol of H2 g catal. −1 min−1 (5.5 × 10−8 mol of H2 m catal. −2 min−1), respectively, under UV excitation with a flux equivalent to that from the sun light (ca. 1 mW cm−2). Analyses of the XPS Rh3d and XPS Pt4f indicate that Rh is mainly present in its ionic form (Rh3+) while Pt is mainly present in its metallic form (Pt0). A fraction of the non-metallic state of Rh in the catalyst persisted even after argon ion sputtering. The tendency of Rh to be oxidized compared to Pt might be the reason behind the lower activity of the former compared to the later. On the contrary, a larger amount of methane are formed on the Rh containing catalyst compared to that observed on the Pt containing catalyst due to the capacity of Rh to break the carbon–carbon bond of the organic compound.

  10. Comparing Pt/SrTiO3 to Rh/SrTiO3 for hydrogen photocatalytic production from ethanol

    KAUST Repository

    Wahab, A. K.

    2013-08-13

    Photocatalytic hydrogen production from ethanol as an example of biofuel is studied over 0.5 wt% Rh/SrTiO3 and 0.5 wt% Pt/SrTiO3 perovskite materials. The rate of hydrogen production, rH2, over Pt/SrTiO3 is found to be far higher than that observed over Rh/SrTiO3 (4 × 10−6 mol of H2 g catal. −1 min−1 (1.1 × 10−6 mol of H2 m catal. −2 min−1) compared to 0.7 × 10−6 mol of H2 g catal. −1 min−1 (5.5 × 10−8 mol of H2 m catal. −2 min−1), respectively, under UV excitation with a flux equivalent to that from the sun light (ca. 1 mW cm−2). Analyses of the XPS Rh3d and XPS Pt4f indicate that Rh is mainly present in its ionic form (Rh3+) while Pt is mainly present in its metallic form (Pt0). A fraction of the non-metallic state of Rh in the catalyst persisted even after argon ion sputtering. The tendency of Rh to be oxidized compared to Pt might be the reason behind the lower activity of the former compared to the later. On the contrary, a larger amount of methane are formed on the Rh containing catalyst compared to that observed on the Pt containing catalyst due to the capacity of Rh to break the carbon–carbon bond of the organic compound.

  11. Unintended and in situ amorphisation of pharmaceuticals.

    Science.gov (United States)

    Priemel, P A; Grohganz, H; Rades, T

    2016-05-01

    Amorphisation of poorly water-soluble drugs is one approach that can be applied to improve their solubility and thus their bioavailability. Amorphisation is a process that usually requires deliberate external energy input. However, amorphisation can happen both unintentionally, as in process-induced amorphisation during manufacturing, or in situ during dissolution, vaporisation, or lipolysis. The systems in which unintended and in situ amorphisation has been observed normally contain a drug and a carrier. Common carriers include polymers and mesoporous silica particles. However, the precise mechanisms by which in situ amorphisation occurs are often not fully understood. In situ amorphisation can be exploited and performed before administration of the drug or possibly even within the gastrointestinal tract, as can be inferred from in situ amorphisation observed during in vitro lipolysis. The use of in situ amorphisation can thus confer the advantages of the amorphous form, such as higher apparent solubility and faster dissolution rate, without the disadvantage of its physical instability. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. In situ measurement of tritium permeation through stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Walter G., E-mail: walter.luscher@pnnl.gov [Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (United States); Senor, David J., E-mail: david.senor@pnnl.gov [Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (United States); Clayton, Kevin K., E-mail: kevin.clayton@inl.gov [Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States); Longhurst, Glen R., E-mail: glenlonghurst@suu.edu [Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States)

    2013-06-15

    Highlights: ► In situ tritium permeation measurements collected over broad pressure range. ► Test conditions relevant to 316 SS in commercial light water reactors. ► Comparisons between in- and ex-reactor measurements provided. ► Correlation between tritium permeation, temperature, and pressure developed. -- Abstract: The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a {sup 4}He carrier gas mixed with a specified quantity of tritium (T{sub 2}) to yield partial pressures of 0.1, 5, and 50 Pa at 292 °C and 330 °C. In situ tritium permeation measurements were made by passing a He–Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of {sup 3}He to T, was also evaluated by introducing a {sup 4}He carrier gas mixed with {sup 3}He at a partial pressure of 1013 Pa at 330 °C. Less than 3% of the tritium resulting from {sup 3}He transmutation contributed to tritium permeation.

  13. Age-related changes in spectral transmittance of the human crystalline lens in situ.

    Science.gov (United States)

    Sakanishi, Yoshihito; Awano, Masakazu; Mizota, Atsushi; Tanaka, Minoru; Murakami, Akira; Ohnuma, Kazuhiko

    2012-01-01

    It was the aim of this study to measure spectral transmission of the human crystalline lens in situ. The crystalline lens was illuminated by one of four light-emitting diodes of different colors. The relative spectral transmittance of the human crystalline lens was measured with the Purkinje-Sanson mirror images over a wide range of ages. The study evaluated 36 crystalline lenses of 28 subjects aged 21-76 years. There was a significant correlation between the age and spectral transmittance for blue light. Spectral transmittance of the crystalline lens in situ could be measured with Purkinje-Sanson mirror images. Copyright © 2012 S. Karger AG, Basel.

  14. A flexible gas flow reaction cell for in situ x-ray absorption spectroscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Kroner, Anna B., E-mail: anna.kroner@diamond.ac.uk; Gilbert, Martin; Duller, Graham; Cahill, Leo; Leicester, Peter; Woolliscroft, Richard; Shotton, Elizabeth J. [Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Chilton, Oxfordshire, OX110DE (United Kingdom); Mohammed, Khaled M. H. [UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX110FA (United Kingdom); School of Chemistry, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2016-07-27

    A capillary-based sample environment with hot air blower and integrated gas system was developed at Diamond to conduct X-ray absorption spectroscopy (XAS) studies of materials under time-resolved, in situ conditions. The use of a hot air blower, operating in the temperature range of 298-1173 K, allows introduction of other techniques e.g. X-ray diffraction (XRD), Raman spectroscopy for combined techniques studies. The flexibility to use either quartz or Kapton capillaries allows users to perform XAS measurement at energies as low as 5600 eV. To demonstrate performance, time-resolved, in situ XAS results of Rh catalysts during the process of activation (Rh K-edge, Ce L{sub 3}-edge and Cr K-edge) and the study of mixed oxide membrane (La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3−δ}) under various partial oxygen pressure conditions are described.

  15. Structural, electronic and adsorption properties of Rh(111)/Mo(110) bimetallic catalyst: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Palotás, K., E-mail: palotas@phy.bme.hu [Budapest University of Technology and Economics, Department of Theoretical Physics, H-1111 Budapest (Hungary); Slovak Academy of Sciences, Institute of Physics, Department of Complex Physical Systems, Center for Computational Materials Science, SK-84511 Bratislava (Slovakia); Bakó, I. [Hungarian Academy of Sciences, Research Center for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest (Hungary); Bugyi, L. [MTA-SZTE, Reaction Kinetics and Surface Chemistry Research Group, Rerrich B. Sqr. 1, H-6720 Szeged (Hungary)

    2016-12-15

    Highlights: • 1 ML of Rh on Mo(110) forms a wavy structure propagating along the [001] direction. • Strain & ligand effects in the Rh film cause a downward shift of the d-band center. • CO adsorption energies are decreased by about 35% compared to pure Rh(111). • Depending on adsorption site, 0.28–0.46 e is transferred to adsorbed CO from Rh film. • CO adsorption generates 0.15–0.22 e transfer from Rh film to Mo in the unit cell. - Abstract: Geometric and electronic characterizations of one monolayer rhodium with Nishiyama-Wassermann (NW) structure on Mo(110) substrate have been performed by density functional theory (DFT) calculations. In the NW structure the Rh atoms form a wavy structure propagating along the [001] direction, characterized by an amplitude of 0.26 Å in the [110] direction and by 0.10 Å in the [110] direction of the Mo(110) substrate. Strain and ligand effects operating in the rhodium film are distinguished and found to be manifested in the downward shift of the d-band center of the electron density of states (DOS) by 0.11 eV and 0.18 eV, respectively. The shift in the d-band center of Rh DOS predicts a decrease in the surface reactivity toward CO adsorption, which has been verified by detailed calculations of bond energies of CO located at on-top, bridge and hollow adsorption sites. The CO adsorption energies are decreased by about 35% compared to those reported for pure Rh(111), offering novel catalytic pathways for the molecule. An in-depth analysis of the charge transfer and the partial DOS characters upon CO adsorption on the NW-structured Rh(111)/Mo(110) bimetallic catalyst and on the pure Rh(111) surface sheds light on the bonding mechanism of CO and on the governing factors determining its lowered bond energy on the bimetallic surface.

  16. In situ responses of a biological indicator Mytilus edulis L. to the variations of radionuclide discharges from a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Masson, Michel; Leon, Rene; Miramand, Pierre; Germain, Pierre.

    1983-01-01

    The introduction of 10 lots of 100kg of mussels in La Hague waters made it possible to investigate the in situ uptake kinetics of 106 Ru + 106 Rh released by the fuel reprocessing plant of La Hague during 1 year. Equilibrium was reached within 1 - 3 months, whatever the time of introduction and the amounts released. The removal of the mussels labelled at La Hague to a remote aera made it possible to calculate the biological half-life of 106 Ru + 106 Rh, viz from 16 to 18 days [fr

  17. Absolute calibration of the Rh-103 (n, n') Rh-103m reaction rate

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, W.H.; Murphy, M.F.; March, M.R. [Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1979-05-15

    The uncertainties in determining the absolute values of the Rh-103 (n, n') Rh-103m reaction rate (which is widely used as a neutron damage flux monitor) have been reduced to {approx}{+-}5%. This has been achieved with the use of a calibrated source of Pd-103-Rh-103m activity supplied by the I.A.E.A. Agreement to within 3% between measured and calculated values of the reaction rate (normalised to the U-238 fission rate) has been achieved. (author)

  18. Improvement of castable refractories for RH snorkel; RH shinshitsukanyo futeikeizai no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, K.; Obana, T.; Fijii, T.; Shimizu, I. [Harima Ceramics Corp., Hyogo (Japan)

    1999-11-01

    Relating to corrosion of RH submerged nozzle, resistance against iron oxide of monolithic refractories was examined. Corrosion and seepage of refractories were measured by rotating corrosion, refractories include alumina-spinel castable, which is applied to RH under tank, and alumina-magnesia castable, which is generally used for RH, submerged nozzle. Alumina-spinel castable is superior in resistance against iron oxide than alumina-magnesia castable, and the resistance decreased with increase of stainless fiber addition to castable. Alumina-spinel castable without stainless fiber was suitable for bottom end of the dipping pipe. (NEDO)

  19. Absolute calibration of the Rh-103 (n, n') Rh-103m reaction rate

    International Nuclear Information System (INIS)

    Taylor, W.H.; Murphy, M.F.; March, M.R.

    1979-05-01

    The uncertainties in determining the absolute values of the Rh-103 (n, n') Rh-103m reaction rate (which is widely used as a neutron damage flux monitor) have been reduced to ∼±5%. This has been achieved with the use of a calibrated source of Pd-103-Rh-103m activity supplied by the I.A.E.A. Agreement to within 3% between measured and calculated values of the reaction rate (normalised to the U-238 fission rate) has been achieved. (author)

  20. Models for estimating photosynthesis parameters from in situ production profiles

    Science.gov (United States)

    Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana

    2017-12-01

    The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of

  1. Noninvasive fetal RhD genotyping

    DEFF Research Database (Denmark)

    Clausen, Frederik Banch; Damkjær, Merete Berthu; Dziegiel, Morten Hanefeld

    2014-01-01

    Immunization against RhD is the major cause of hemolytic disease of the fetus and newborn (HDFN), which causes fetal or neonatal death. The introduction of postnatal immune prophylaxis in the 1960s drastically reduced immunization incidents in pregnant, D-negative women. In several countries, ant...

  2. Preparation of a 102Rh tracer

    International Nuclear Information System (INIS)

    Gorski, B.; Heinig, W.

    1986-01-01

    Electronic emission detectors used in reactors for the control of the neutron flux density contain rhodium as an emitter material. By dissolving the emitter material in a mixture of hydrobromic acid and bromine it is possible to get 102 Rh labelled solutions of the spent detectors. The preparation and purification of the solutions are described. (author)

  3. Atomic and molecular adsorption on Rh(111)

    DEFF Research Database (Denmark)

    Mavrikakis, Manos; Rempel, J.; Greeley, Jeffrey Philip

    2002-01-01

    A systematic study of the chemisorption of both atomic (H, O, N, S, C), molecular (N-2, CO, NO), and radical (CH3, OH) species on Rh(111) has been performed. Self-consistent, periodic, density functional theory (DFT-GGA) calculations, using both PW91 and RPBE functionals, have been employed to de...

  4. In-situ bioremediation via horizontal wells

    International Nuclear Information System (INIS)

    Hazen, T.C.; Looney, B.B.; Enzien, M.; Franck, M.M.; Fliermans, C.B.; Eddy, C.A.

    1993-01-01

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade TCE, PCE and their daughter products in situ by addition of nutrients to the contaminated zone. In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work (Radian 1989). Subsurface soils and water adjacent to an abandoned process sewer line at the SRS have been found to have elevated levels of TCE (Marine and Bledsoe 1984). This area of subsurface and groundwater contamination is the focus of a current integrated demonstration of new remediation technologies utilizing horizontal wells. Bioremediation has the potential to enhance the performance of in situ air stripping as well as offering stand-alone remediation of this and other contaminated sites (Looney et al. 1991). Horizontal wells could also be used to enhance the recovery of groundwater contaminants for bioreactor conversions from deep or inaccessible areas (e.g., under buildings) and to enhance the distribution of nutrient or microbe additions in an in situ bioremediation

  5. Efficacy monitoring of in situ fuel bioremediation

    International Nuclear Information System (INIS)

    Mueller, J.; Borchert, S.; Heard, C.

    1996-01-01

    The wide-scale, multiple-purpose use of fossil fuels throughout the industrialized world has resulted in the inadvertent contamination of myriad environments. Given the scope and magnitude of these environmental contamination problems, bioremediation often represents the only practical and economically feasible solution. This is especially true when depth of contamination, magnitude of the problem, and nature of contaminated material preclude other remedial actions, short of the no-response alternative. From the perspective, the effective, safe and scientifically valid use of in situ bioremediation technologies requires cost-efficient and effective implementation strategies in combination with unequivocal approaches for monitoring efficacy of performance. Accordingly, with support from the SERDP program, the authors are field-testing advanced in situ bioremediation strategies and new approaches in efficacy monitoring that employ techniques instable carbon and nitrogen isotope biogeochemistry. One field demonstration has been initiated at the NEX site in Port Hueneme, CA (US Navy's National Test Site). The objectives are: (1) to use stable isotopes as a biogeochemical monitoring tool for in situ bioremediation of refined petroleum (i.e., BTEX), and (2) to use vertical groundwater circulation technology to effect in situ chemical containment and enhanced in situ bioremediation

  6. Setup for in situ X-ray diffraction studies of thin film growth by magnetron sputtering

    CERN Document Server

    Ellmer, K; Weiss, V; Rossner, H

    2001-01-01

    A novel method is described for the in situ-investigation of nucleation and growth of thin films during magnetron sputtering. Energy dispersive X-ray diffraction with synchrotron light is used for the structural analysis during film growth. An in situ-magnetron sputtering chamber was constructed and installed at a synchrotron radiation beam line with a bending magnet. The white synchrotron light (1-70 keV) passes the sputtering chamber through Kapton windows and hits one of the substrates on a four-fold sample holder. The diffracted beam, observed under a fixed diffraction angle between 3 deg. and 10 deg., is energy analyzed by a high purity Ge-detector. The in situ-EDXRD setup is demonstrated for the growth of tin-doped indium oxide (ITO) films prepared by reactive magnetron sputtering from a metallic target.

  7. {sup 103}Rh NMR investigation of the superconductor Rh{sub 17}S{sub 15}

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T., E-mail: t-koyama@sci.u-hyogo.ac.j [Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297 (Japan); Kanda, K.; Motoyama, G.; Ueda, K.; Mito, T.; Kohara, T. [Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297 (Japan); Nakamura, H. [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan)

    2010-12-15

    We present {sup 103}Rh NMR studies for the superconductor Rh{sub 17}S{sub 15} (T{sub c} 5.4 K). We have identified the observed NMR lines corresponding to four different Rh sites in the cubic unit cell and deduced the temperature (T) dependence of the Knight shift components in Rh 24m site whose point symmetry is not axial. The isotropic part of the Knight shift K decreases with T in the normal state, indicating the negative hyperfine coupling and the enhancement of the spin susceptibility at lower T. The sudden change of K below T{sub c} is an indication of the spin-singlet Cooper paring.

  8. ADVANTAGES/DISADVANTAGES FOR ISCO METHODS IN-SITU FENTON OXIDATION IN-SITU PERMANGANATE OXIDATION

    Science.gov (United States)

    The advantages and disadvantages of in-situ Fenton oxidation and in-situ permanganate oxidation will be presented. This presentation will provide a brief overview of each technology and a detailed analysis of the advantages and disadvantages of each technology. Included in the ...

  9. In situ surface roughness measurement using a laser scattering method

    Science.gov (United States)

    Tay, C. J.; Wang, S. H.; Quan, C.; Shang, H. M.

    2003-03-01

    In this paper, the design and development of an optical probe for in situ measurement of surface roughness are discussed. Based on this light scattering principle, the probe which consists of a laser diode, measuring lens and a linear photodiode array, is designed to capture the scattered light from a test surface with a relatively large scattering angle ϕ (=28°). This capability increases the measuring range and enhances repeatability of the results. The coaxial arrangement that incorporates a dual-laser beam and a constant compressed air stream renders the proposed system insensitive to movement or vibration of the test surface as well as surface conditions. Tests were conducted on workpieces which were mounted on a turning machine that operates with different cutting speeds. Test specimens which underwent different machining processes and of different surface finish were also studied. The results obtained demonstrate the feasibility of surface roughness measurement using the proposed method.

  10. Magnetic surface domain imaging of uncapped epitaxial FeRh(001) thin films across the temperature-induced metamagnetic transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xianzhong; Matthes, Frank; Bürgler, Daniel E., E-mail: d.buergler@fz-juelich.de; Schneider, Claus M. [Peter Grünberg Institut, Electronic Properties (PGI-6) and Jülich-Aachen Research Alliance, Fundamentals of Future Information Technology (JARA-FIT), Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-01-15

    The surface magnetic domain structure of uncapped epitaxial FeRh/MgO(001) thin films was imaged by in-situ scanning electron microscopy with polarization analysis (SEMPA) at various temperatures between 122 and 450 K. This temperature range covers the temperature-driven antiferromagnetic-to-ferromagnetic phase transition in the body of the films that was observed in-situ by means of the more depth-sensitive magneto-optical Kerr effect. The SEMPA images confirm that the interfacial ferromagnetism coexisting with the antiferromagnetic phase inside the film is an intrinsic property of the FeRh(001) surface. Furthermore, the SEMPA data display a reduction of the in-plane magnetization occuring well above the phase transition temperature which, thus, is not related to the volume expansion at the phase transition. This observation is interpreted as a spin reorientation of the surface magnetization for which we propose a possible mechanism based on temperature-dependent tetragonal distortion due to different thermal expansion coefficients of MgO and FeRh.

  11. Remarks on the 103Rh(n,n') sup(103m)Rh excitation curve

    International Nuclear Information System (INIS)

    Pazsit, A.; Peto, G.; Csikai, J.; Jozsa, I.; Bacso, J.

    1975-01-01

    The cross sections of the 103 Rh(n,n')sup(103m)Rh reaction have been measured at 2.7MeV and 14.8MeV neutron energies as well as for neutron spectra of 252 Cf and 239 Pu-α-Be sources; the results are 999+-111mb, 216+-26mb, 757+-53mb and 918+-64mb, respectively. (author)

  12. IFMIF - Design Study for in Situ Creep Fatigue Tests

    International Nuclear Information System (INIS)

    Gordeev, S.; Heinzel, V.; Simakov, St.; Stratmanns, E.; Vladimirov, P.; Moeslang, A.

    2006-01-01

    While the high flux volume (20-50 dpa/fpy) of the International Fusion Materials Irradiation Facility (IFMIF) is dedicated to the irradiation of ∼ 1100 qualified specimens that will be post irradiation examined after disassembling in dedicated Hot Cells, various in situ experiments are foreseen in the medium flux volume (1-20 dpa/fpy). Of specific importance for structural lifetime assessments of fusion power reactors are instrumented in situ creep-fatigue experiments, as they can simulate realistically a superposition of thermal fatigue or creep fatigue and irradiation with fusion relevant neutrons. Based on former experience with in situ fatigue tests under high energy light ion irradiation, a design study has been performed to evaluate the feasibility of in situ creep fatigue tests in the IFMIF medium flux position. The vertically arranged test module for such experiments consists basically of a frame similar to a universal testing machine, but equipped with three pulling rods, driven by independent step motors, instrumentation systems and specimen cooling systems. Therefore, three creep fatigue specimens may be tested at one time in this apparatus. Each specimen is a hollow tube with coolant flow in the specimen interior to maintain individual specimen temperatures. The recently established IFMIF global 3D geometry model was used together the latest McDeLicious code for the neutral and charged particle transport calculations. These comprehensive neutronics calculations have been performed with a fine special resolution of 0.25 cm 3 , showing among others that the specimens will be irradiated with a homogeneous damage rate of up to 13(∼ 9%) dpa/fpy and a fusion relevant damage to helium ratio of 10-12 appm He/dpa. In addition, damage and gas production rates as well as the heat deposition in structural parts of the test module have been calculated. Despite of the vertical gradients in the nuclear heating, CFD code calculations with STAR-CD revealed very

  13. Unintended and in situ amorphisation of pharmaceuticals

    DEFF Research Database (Denmark)

    Priemel, P A; Grohganz, H; Rades, T

    2016-01-01

    Amorphisation of poorly water-soluble drugs is one approach that can be applied to improve their solubility and thus their bioavailability. Amorphisation is a process that usually requires deliberate external energy input. However, amorphisation can happen both unintentionally, as in process......-induced amorphisation during manufacturing, or in situ during dissolution, vaporisation, or lipolysis. The systems in which unintended and in situ amorphisation has been observed normally contain a drug and a carrier. Common carriers include polymers and mesoporous silica particles. However, the precise mechanisms...... of in situ amorphisation can thus confer the advantages of the amorphous form, such as higher apparent solubility and faster dissolution rate, without the disadvantage of its physical instability....

  14. In situ vitrification: Application to buried waste

    International Nuclear Information System (INIS)

    Callow, R.A.; Thompson, L.E.

    1991-01-01

    Two in situ vitrification field tests were conducted in June and July 1990 at Idaho National Engineering Laboratory. In situ vitrification is a technology for in-place conversion of contaminated soils into a durable glass and crystalline waste form and is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to assess the general suitability of the process to remediate buried waste structures found at Idaho National Engineering Laboratory. In particular, these tests were designed as part of a treatability study to provide essential information on field performance of the process under conditions of significant combustible and metal wastes, and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology provided valuable operational control for successfully processing the high metal content waste. The results indicate that in situ vitrification is a feasible technology for application to buried waste. 2 refs., 5 figs., 2 tabs

  15. Oil companies push in-situ recovery

    International Nuclear Information System (INIS)

    McIntyre, H.

    1977-01-01

    Possibly, a third Athabaska tar-sand plant using surface mining will be built in the 1980's, but future development beyond that point will probably depend on in-situ recovery. The discussion of in-situ recovery focusses on the effect it will have on the Canadian chemical industry, for example, the market for sodium hydroxide. To obtain the highest yields of oil from bitumen, an external source of hydrogen is necessary; for example Syncrude imports natural gas to make hydrogen for desulphurization. Gasification of coal is a possible source of hydrogen. Research on hydrocracking is progressing. Use of a prototype CANDU OCR reactor to raise the hot steam necessary for in-situ recovery has been suggested. Venezuela is interested in Canadian upgrading technology. (N.D.H.)

  16. Origin of room temperature ferromagnetic moment in Rh-rich [Rh/Fe] multilayer thin films

    International Nuclear Information System (INIS)

    Kande, Dhishan; Laughlin, David; Zhu Jiangang

    2010-01-01

    B2 ordered FeRh thin films switch from antiferromagnetic (AFM) to ferromagnetic (FM) state on heating above 350 K and switch back on cooling, with a hysteresis. This property makes FeRh a very attractive choice as a write-assist layer material for low temperature heat assisted magnetic recording (HAMR) media. Studies have shown that as we decrease the thickness of the FeRh films, the B2 phase is no longer AFM even below 350 K and there is a thickness dependant FM stabilization of the B2 phase. It was also proved that slightly Rh-richer compositions (>50 at. % Rh) were more preferable to stabilize the AFM phase. The current study focuses on growing highly ordered FeRh films by alternate layer rf sputtering of thin layers of iron and rhodium onto a heated substrate. It has been shown that films with rhodium content beyond 55 at. % contain a disordered bcc FM phase which gives rise to residual moment at room temperature even for thicker films.

  17. In situ viscometry by optical trapping interferometry

    DEFF Research Database (Denmark)

    Guzmán, C.; Flyvbjerg, Henrik; Köszali, R.

    2008-01-01

    We demonstrate quantitative in situ viscosity measurements by tracking the thermal fluctuations of an optically trapped microsphere subjected to a small oscillatory flow. The measured power spectral density of the sphere's positions displays a characteristic peak at the driving frequency of the f......We demonstrate quantitative in situ viscosity measurements by tracking the thermal fluctuations of an optically trapped microsphere subjected to a small oscillatory flow. The measured power spectral density of the sphere's positions displays a characteristic peak at the driving frequency...

  18. In situ soil remediation using electrokinetics

    International Nuclear Information System (INIS)

    Buehler, M.F.; Surma, J.E.; Virden, J.W.

    1994-11-01

    Electrokinetics is emerging as a promising technology for in situ soil remediation. This technique is especially attractive for Superfund sites and government operations which contain large volumes of contaminated soil. The approach uses an applied electric field to induce transport of both radioactive and hazardous waste ions in soil. The transport mechanisms include electroosmosis, electromigration, and electrophoresis. The feasibility of using electrokinetics to move radioactive 137 Cs and 60 Co at the Hanford Site in Richland, Washington, is discussed. A closed cell is used to provide in situ measurements of 137 Cs and 60 Co movement in Hanford soil. Preliminary results of ionic movement, along with the corresponding current response, are presented

  19. Hierarchical nanostructured 3D flowerlike BiOX particles with excellent visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jinling, E-mail: sjl2010004@imust.cn; Wang, Baoying; Guo, Xianjie; Wang, Ruifen; Dong, Zhongping [Inner Mongolia University of Science and Technology, School of Material and Metallurgy (China)

    2016-08-15

    BiOX (X = Cl, Br, and I) semiconductors were firstly prepared by a facile mixed solvent solvothermal route. Several characterization tools were employed to study the phase structures, morphologies, and optical properties of the samples. The in situ chemically mixed prepared BiOX particles with diameters 3.0–5.0 μm, fabricated by nanoplates in the thickness range of 5–18 nm, exhibited the highest visible-light photocatalytic activity among the as-prepared samples and Degussa P{sub 25} for the degradation of Rhodamine B (RhB). This result can be due to the narrow bandgap, broad sunlight range, high electronic negativity, and efficient separation of photoinduced electron–hole pairs. Finally, a possible photocatalytic mechanism has been proposed.

  20. Improved detection of urothelial carcinoma in situ with hexaminolevulinate fluorescence cystoscopy.

    NARCIS (Netherlands)

    Schmidbauer, J.; Witjes, J.A.; Schmeller, N.; Donat, R.; Susani, M.; Marberger, M.

    2004-01-01

    PURPOSE: In this European multicenter study we compared hexaminolevulinate (HAL) fluorescence cystoscopy and standard white light cystoscopy for the detection of carcinoma in situ (CIS) in patients suspected of having high risk bladder cancer. MATERIALS AND METHODS: This study was a prospective

  1. Microwave-assisted in-situ regeneration of a perovskite coated diesel soot filter

    NARCIS (Netherlands)

    Zhang-Steenwinkel, Y.; van der Zande, L.M.; Castricum, H.L.; Bliek, A.; van den Brink, R.W.; Elzinga, G.D.

    2005-01-01

    Dielectric heating may be used as an in situ technique for the periodic regeneration of soot filters, as those used in Diesel engines. As generally the Diesel exhaust temperatures are below the soot light-off temperature, passive regeneration is not possible. Presently, we have investigated the

  2. Catalytic hydrodechlorination of trichloroethylene in a novel NaOH/2-propanol/methanol/water system on ceria-supported Pd and Rh catalysts.

    Science.gov (United States)

    Cobo, Martha; Becerra, Jorge; Castelblanco, Miguel; Cifuentes, Bernay; Conesa, Juan A

    2015-08-01

    The catalytic hydrodechlorination (HDC) of high concentrations of trichloroethylene (TCE) (4.9 mol%, 11.6 vol%) was studied over 1%Pd, 1%Rh and 0.5%Pd-0.5%Rh catalysts supported on CeO2 under conditions of room temperature and pressure. For this, a one-phase system of NaOH/2-propanol/methanol/water was designed with molar percentages of 13.2/17.5/36.9/27.6, respectively. In this system, the alcohols delivered the hydrogen required for the reaction through in-situ dehydrogenation reactions. PdRh/CeO2 was the most active catalyst for the degradation of TCE among the evaluated materials, degrading 85% of the trichloroethylene, with alcohol dehydrogenation rates of 89% for 2-propanol and 83% for methanol after 1 h of reaction. Fresh and used catalysts were characterized by Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Thermogravimetric analysis (TGA). These results showed important differences of the active phase in each catalyst sample. Rh/CeO2 had particle sizes smaller than 1 nm and the active metal was partially oxidized (Rh(0)/Rh(+δ) ratio of 0.43). This configuration showed to be suitable for alcohols dehydrogenation. On the contrary, Pd/CeO2 showed a Pd completed oxidized and with a mean particle size of 1.7 nm, which seemed to be unfavorable for both, alcohols dehydrogenation and TCE HDC. On PdRh/CeO2, active metals presented a mean particle size of 2.7 nm and more reduced metallic species, with ratios of Rh(0)/Rh(+δ) = 0.67 and Pd(0)/Pd(+δ) = 0.28, which showed to be suitable features for the TCE HDC. On the other hand, TGA results suggested some deposition of NaCl residues over the catalyst surfaces. Thus, the new reaction system using PdRh/CeO2 allowed for the degradation of high concentrations of the chlorinated compound by using in situ hydrogen liquid donors in a reaction at room temperature and pressure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Expression of the GnRH and GnRH receptor (GnRH-R) genes in the hypothalamus and of the GnRH-R gene in the anterior pituitary gland of anestrous and luteal phase ewes.

    Science.gov (United States)

    Ciechanowska, Magdalena; Lapot, Magdalena; Malewski, Tadeusz; Mateusiak, Krystyna; Misztal, Tomasz; Przekop, Franciszek

    2008-11-01

    Data exists showing that seasonal changes in the innervations of GnRH cells in the hypothalamus and functions of some neural systems affecting GnRH neurons are associated with GnRH release in ewes. Consequently, we put the question as to how the expression of GnRH gene and GnRH-R gene in the hypothalamus and GnRH-R gene in the anterior pituitary gland is reflected with LH secretion in anestrous and luteal phase ewes. Analysis of GnRH gene expression by RT-PCR in anestrous ewes indicated comparable levels of GnRH mRNA in the preoptic area, anterior and ventromedial hypothalamus. GnRH-R mRNA at different concentrations was found throughout the preoptic area, anterior and ventromedial hypothalamus, stalk/median eminence and in the anterior pituitary gland. The highest GnRH-R mRNA levels were detected in the stalk/median eminence and in the anterior pituitary gland. During the luteal phase of the estrous cycle in ewes, the levels of GnRH mRNA and GnRH-R mRNA in all structures were significantly higher than in anestrous ewes. Also LH concentrations in blood plasma of luteal phase ewes were significantly higher than those of anestrous ewes. In conclusion, results from this study suggest that low expression of the GnRH and GnRH-R genes in the hypothalamus and of the GnRH-R gene in the anterior pituitary gland, amongst others, may be responsible for a decrease in LH secretion and the anovulatory state in ewes during the long photoperiod.

  4. Measurement of 103mRh produced by the 103Rh(γ,γ')103mRh reaction with liquid scintillation counting

    International Nuclear Information System (INIS)

    Sekine, T.; Yoshihara, Kenji; Pavlicsek, I.; Lakosi, L.; Veres, A.

    1989-01-01

    A liquid scintillation counting technique was applied to measure the isotope 103m Rh (half life = 56.12 min) which is difficult to detect because its γ-ray is of low energy and low emission probability. Tris-(2,4-pentanedionato)rhodium(III) (Rh(acac) 3 ) was irradiated with bremsstrahlung of accelerated 3.2 MeV electrons by LINAC. The method has given a reliable calibration curve for the determination of 103m Rh radioactivity below Rh(acac) 3 concentrations of 2 mM. The integrated cross section of 103 Rh(γ,γ') 103m Rh determined by this method was found to be 6.8±3.4 μb MeV at 3.2 MeV. (author) 8 refs.; 5 figs

  5. Paleozoic in situ spores and pollen. Lycopsida

    Czech Academy of Sciences Publication Activity Database

    Bek, Jiří

    2017-01-01

    Roč. 296, 1/6 (2017), s. 1-111 ISSN 0375-0299 R&D Projects: GA ČR GAP210/12/2053 Institutional support: RVO:67985831 Keywords : in situ spores * reproductive organs * Lycopsida * Paleozoic Sub ject RIV: DB - Geology ; Mineralogy OBOR OECD: Paleontology Impact factor: 1.333, year: 2016

  6. Smoothsort, an alternative for sorting in situ

    NARCIS (Netherlands)

    Dijkstra, E.W.

    1982-01-01

    Like heapsort - which inspired it - smoothsort is an algorithm for sorting in situ. It is of order N · log N in the worst case, but of order N in the best case, with a smooth transition between the two. (Hence its name.)

  7. Recovering uranium from coal in situ

    International Nuclear Information System (INIS)

    Terry, R.C.

    1978-01-01

    An underground carbonaceous deposit containing other mineral values is burned in situ. The underground hot zone is cooled down to temperature below the boiling point of a leachig solution. The leaching solution is percolated through the residial ash, with the pregnant solution recovered for separation of the mineral values in surface facilities

  8. In Situ TEM Creation of Nanowire Devices

    DEFF Research Database (Denmark)

    Alam, Sardar Bilal

    Integration of silicon nanowires (SiNWs) as active components in devices requires that desired mechanical, thermal and electrical interfaces can be established between the nanoscale geometry of the SiNW and the microscale architecture of the device. In situ transmission electron microscopy (TEM),...

  9. In Situ Flash Pyrolysis of Straw

    DEFF Research Database (Denmark)

    Bech, Niels

    In-Situ Flash Pyrolysis of Straw Ph.D. dissertation by Niels Bech Submitted: April 2007. Supervisors: Professor Kim Dam-Johansen, Associate Professor Peter Arendt Jensen Erfaringerne med forbrænding af halm opnået gennem et årti har vist, at en proces der kan koncentrere energien på marken, fjerne...

  10. IN SITU LEAD IMMOBILIZATION BY APATITE

    Science.gov (United States)

    Lead contamination is of environmental concern due to its effect on human health. The purpose of this study was to develop a technology to immobilize Pb in situ in contaminated soils and wastes using apatite. Hydroxyapatite [Ca10(PO4)6(O...

  11. Style et rhétorique

    DEFF Research Database (Denmark)

    Pedersen, Eva de la Fuente

    2006-01-01

    En se forgeant un style presque inimitable, qui paraît ébauché, Rembrandt a suscité l'admiration de ses contemporains. Au-delà son apparente spontanéité, ce style fait certainement écho aux préoccupations des théoriciens de l'art contemporains qui attendaient de la peinture, comme de la rhétorique...

  12. In Situ Cleanable Alternative HEPA Filter Media

    International Nuclear Information System (INIS)

    Adamson, D. J.; Terry, M. T.

    2002-01-01

    The Westinghouse Savannah River Company, located at the Savannah River Site in Aiken, South Carolina, is currently testing two types of filter media for possible deployment as in situ regenerable/cleanable High Efficiency Particulate Air (HEPA) filters. The filters are being investigated to replace conventional, disposable, glass-fiber, HEPA filters that require frequent removal, replacement, and disposal. This is not only costly and subjects site personnel to radiation exposure, but adds to the ever-growing waste disposal problem. The types of filter media being tested, as part of a National Energy Technology Laboratory procurement, are sintered nickel metal and ceramic monolith membrane. These media were subjected to a hostile environment to simulate conditions that challenge the high-level waste tank ventilation systems. The environment promoted rapid filter plugging to maximize the number of filter loading/cleaning cycles that would occur in a specified period of time. The filters were challenged using nonradioactive simulated high-level waste materials and atmospheric dust; materials that cause filter pluggage in the field. The filters are cleaned in situ using an aqueous solution. The study found that both filter media were insensitive to high humidity or moisture conditions and were easily cleaned in situ. The filters regenerated to approximately clean filter status even after numerous plugging and in situ cleaning cycles. Air Techniques International is conducting particle retention testing on the filter media at the Oak Ridge Filter Test Facility. The filters are challenged using 0.3-mm di-octyl phthalate particles. Both the ceramic and sintered media have a particle retention efficiency > 99.97%. The sintered metal and ceramic filters not only can be cleaned in situ, but also hold great potential as a long life alternative to conventional HEPA filters. The Defense Nuclear Facility Safety Board Technical Report, ''HEPA Filters Used in the Department of

  13. Contemporary management of ductal carcinoma in situ and lobular carcinoma in situ.

    Science.gov (United States)

    Obeng-Gyasi, Samilia; Ong, Cecilia; Hwang, E Shelley

    2016-06-01

    The management of in situ lesions ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS) continues to evolve. These diagnoses now comprise a large burden of mammographically diagnosed cancers, and with a global trend towards more population-based screening, the incidence of these lesions will continue to rise. Because outcomes following treatment for DCIS and LCIS are excellent, there is emerging controversy about what extent of treatment is optimal for both diseases. Here we review the current approaches to the diagnosis and treatment of both DCIS and LCIS. In addition, we will consider potential directions for future management of these lesions.

  14. In Situ Remediation Integrated Program: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

  15. In Situ Remediation Integrated Program: Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed

  16. Rh-Ni and Rh-Co Catalysts for Autothermal Reforming of Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yeongyu; Lee, Daehyung; Kim, Yongmin; Lee, Jinhee; Nam, Sukwoo; Choi, Daeki; Yoon, Chang Won [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2014-01-15

    Rh doped Ni and Co catalysts, Rh-M/CeO{sub 2}(20 wt %)-Al{sub 2}O{sub 3} (0.2 wt % of Rh; M = Ni or Co, 20 wt %) were synthesized to produce hydrogen via autothermal reforming (ATR) of commercial gasoline at 700 .deg. C under the conditions of a S/C ratio of 2.0, an O/C ratio of 0.84, and a gas hourly space velocity (GHSV) of 20,000 h{sup -1}. The Rh-Ni/CeO{sub 2}(20 wt %)-Al{sub 2}O{sub 3} catalyst (1) exhibited excellent activities, with H{sub 2} and (H{sub 2}+CO) yields of 2.04 and 2.58 mol/mol C, respectively. In addition, this catalyst proved to be highly stable over 100 h without catalyst deactivation, as evidenced by energy dispersive spectroscopy (EDX) and elemental analyses. Compared to 1, Rh-Co/CeO{sub 2}(20 wt %)-Al{sub 2}O{sub 3} catalyst (2) exhibited relatively low stability, and its activity decreased after 57 h. In line with this observation, elemental analyses confirmed that nearly no carbon species were formed at 1 while carbon deposits (10 wt %) were found at 2 following the reaction, which suggests that carbon coking is the main process for catalyst deactivation.

  17. Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida).

    Science.gov (United States)

    Ma, Nan; Chen, Wen; Fan, Tiangang; Tian, Yaran; Zhang, Shuai; Zeng, Daxing; Li, Yonghong

    2015-10-05

    Flower development is central to angiosperm reproduction and is regulated by a broad range of endogenous and exogenous stimuli. It has been well documented that ambient temperature plays a key role in controlling flowering time; however, the mechanisms by which temperature regulates floral organ differentiation remain largely unknown. In this study, we show that low temperature treatment significantly increases petal number in rose (Rosa hybrida) through the promotion of stamen petaloidy. Quantitative RT-PCR analysis revealed that the expression pattern of RhAG, a rose homolog of the Arabidopsis thaliana AGAMOUS C-function gene, is associated with low temperature regulated flower development. Silencing of RhAG mimicked the impact of low temperature treatments on petal development by significantly increasing petal number through an increased production of petaloid stamens. In situ hybridization studies further revealed that low temperature restricts its spatial expression area. Analysis of DNA methylation level showed that low temperature treatment enhances the methylation level of the RhAG promoter, and a specific promoter region that was hypermethylated at CHH loci under low temperature conditions, was identified by bisulfite sequencing. This suggests that epigenetic DNA methylation contributes to the ambient temperature modulation of RhAG expression. Our results provide highlights in the role of RhAG gene in petal number determination and add a new layer of complexity in the regulation of floral organ development. We propose that RhAG plays an essential role in rose flower patterning by regulating petal development, and that low temperatures increase petal number, at least in part, by suppressing RhAG expression via enhancing DNA CHH hypermethylation of the RhAG promoter.

  18. Electronic structure of Rh-based CuRh0.9Mg0.1O2 oxide thermoelectrics

    Science.gov (United States)

    Vilmercati, P.; Martin, E.; Cheney, C. Parks; Bondino, F.; Magnano, E.; Parmigiani, F.; Sasagawa, T.; Mannella, N.

    2013-03-01

    The electronic structure of the Rh-based CuRh0.9Mg0.1O2 oxide thermoelectric compound has been studied with a multitechnique approach consisting of photoemission, x-ray absorption, and x-ray emission spectroscopies. The data indicate that the region of the valence band in the proximity of the Fermi level is dominated by Rh-derived states. These findings outline the importance of the electronic structure of the Rh ions for the large thermoelectric power in CuRh0.9Mg0.1O2 at high temperature.

  19. In situ thermal properties characterization using frequential methods

    Energy Technology Data Exchange (ETDEWEB)

    Carpentier, O.; Defer, D.; Antczak, E.; Chauchois, A.; Duthoit, B. [Laboratoire dArtois de Mecanique Thermique Instrumentation (LAMTI), FSA Universite dArtois, Technoparc Futura, 62400 Bethune (France)

    2008-07-01

    In numerous fields, especially that of geothermal energy, we need to know about the thermal behaviour of the soil now that the monitoring of renewable forms of energy is an ecological, economic and scientific issue. Thus heat from the soil is widely used for air-conditioning systems in buildings both in Canada and in the Scandinavian countries, and it is spreading. The effectiveness of this technique is based on the soils calorific potential and its thermophysical properties which will define the quality of the exchanges between the soil and a heat transfer fluid. This article puts forward a method to be used for the in situ thermophysical characterisation of a soil. It is based upon measuring the heat exchanges on the surface of the soil and on measuring a temperature a few centimetres below the surface. The system is light, inexpensive, well-suited to the taking of measurements in situ without the sensors used introducing any disturbance into the heat exchanges. Whereas the majority of methods require excitation, the one presented here is passive and exploits natural signals. Based upon a few hours of recording, the natural signals allow us to identify the soils thermophysical properties continuously. The identification is based upon frequency methods the quality of which can be seen when the thermophysical properties are injected into a model with finite elements by means of a comparison of the temperatures modelled and those actually measured on site. (author)

  20. A Novel Penetration System for in situ Astrobiological Studies

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2005-12-01

    Full Text Available Due to ultraviolet flux in the surface layers of most solar bodies, future astrobiological research is increasingly seeking to conduct subsurface penetration and drilling to detect chemical signature for extant or extinct life. To address this issue, we present a micro-penetrator concept (mass < 10 kg that is suited for extraterrestrial planetary deployment and in situ investigation of chemical and physical properties. The instrumentation in this concept is a bio-inspired drill to access material beneath sterile surface layer for biomarker detection. The proposed drill represents a novel concept of two-valve-reciprocating motion, inspired by the working mechanism of wood wasp ovipositors. It is lightweight (0.5 kg, driven at low power (3 W, and able to drill deep (1-2 m. Tests have shown that the reciprocating drill is feasible and has potential of improving drill efficiency without using any external force. The overall penetration system provides a small, light and energy efficient solution to in situ astrobiological studies, which is crucial for space engineering. Such a micro-penetrator can be used for exploration of terrestrial-type planets or other small bodies of the solar system with the minimum of modifications.

  1. A Novel Penetration System for in situ Astrobiological Studies

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2008-11-01

    Full Text Available Due to ultraviolet flux in the surface layers of most solar bodies, future astrobiological research is increasingly seeking to conduct subsurface penetration and drilling to detect chemical signature for extant or extinct life. To address this issue, we present a micro-penetrator concept (mass < 10 kg that is suited for extraterrestrial planetary deployment and in situ investigation of chemical and physical properties. The instrumentation in this concept is a bio-inspired drill to access material beneath sterile surface layer for biomarker detection. The proposed drill represents a novel concept of two-valve-reciprocating motion, inspired by the working mechanism of wood wasp ovipositors. It is lightweight (0.5 kg, driven at low power (3 W, and able to drill deep (1-2 m. Tests have shown that the reciprocating drill is feasible and has potential of improving drill efficiency without using any external force. The overall penetration system provides a small, light and energy efficient solution to in situ astrobiological studies, which is crucial for space engineering. Such a micro-penetrator can be used for exploration of terrestrial-type planets or other small bodies of the solar system with the minimum of modifications.

  2. Preparation and evaluation of self-microemulsions for improved bioavailability of ginsenoside-Rh1 and Rh2.

    Science.gov (United States)

    Yang, Feifei; Zhou, Jing; Hu, Xiao; Yu, Stephanie Kyoungchun; Liu, Chunyu; Pan, Ruile; Chang, Qi; Liu, Xinmin; Liao, Yonghong

    2017-10-01

    Due to intestinal cytochrome P450 (CYP450)-mediated metabolism and P-glycoprotein (P-gp) efflux, poor oral bioavailability hinders ginsenoside-Rh1 (Rh1) and ginsenoside-Rh2 (Rh2) from clinical application. In this study, Rh1 and Rh2 were incorporated into two self-microemulsions (SME-1 and SME-2) to improve oral bioavailability. SME-1 contained both CYP450 and P-gp inhibitory excipients while SME-2 only consisted of P-gp inhibitory excipients. Results for release, cellular uptake, transport, and lymph node distribution demonstrated no significant difference between either self-microemulsions in vivo, but were elevated significantly in comparison to the free drug. The pharmaceutical profiles in vivo showed that the bioavailability of Rh1 in SME-1 (33.25%) was significantly higher than that in either SME-2 (21.28%) or free drug (12.92%). There was no significant difference in bioavailability for Rh2 between SME-1 (48.69%) or SME-2 (41.73%), although they both had remarkable increase in comparison to free drug (15.02%). We confirmed that SME containing CYP450 and P-gp inhibitory excipient could distinctively improve the oral availabilities of Rh1 compared to free drug or SME containing P-gp inhibitory excipient. No notable increase was observed between either SME for Rh2, suggesting that Rh2 undergoes P-gp-mediated efflux, but may not undergo distinct CYP450-mediated metabolism.

  3. Inherently safe in situ uranium recovery

    Science.gov (United States)

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  4. In situ hydrogen loading on zirconium powder

    Energy Technology Data Exchange (ETDEWEB)

    Maimaitiyili, Tuerdi, E-mail: tuerdi.maimaitiyili@mah.se; Blomqvist, Jakob [Malmö University, Östra Varvsgatan 11 A, Malmö, Skane 20506 (Sweden); Steuwer, Axel [Lund University, Ole Römers väg, Lund, Skane 22100 (Sweden); Nelson Mandela Metropolitan University, Gardham Avenue, Port Elizabeth 6031 (South Africa); Bjerkén, Christina [Malmö University, Östra Varvsgatan 11 A, Malmö, Skane 20506 (Sweden); Zanellato, Olivier [Ensam - Cnam - CNRS, 151 Boulevard de l’Hôpital, Paris 75013 (France); Blackmur, Matthew S. [Materials Performance Centre, School of Materials, The University of Manchester, Manchester M1 7HS (United Kingdom); Andrieux, Jérôme [European Synchrotron Radiation Facility, 6 rue J Horowitz, Grenoble 38043 (France); Université de Lyon, 43 Bd du 11 novembre 1918, Lyon 69100 (France); Ribeiro, Fabienne [Institut de Radioprotection et Sûreté Nucléaire, IRSN, BP 3, 13115 Saint-Paul Lez Durance (France)

    2015-06-26

    Commercial-grade Zr powder loaded with hydrogen in situ and phase transformations between various Zr and ZrH{sub x} phases have been monitored in real time. For the first time, various hydride phases in a zirconium–hydrogen system have been prepared in a high-energy synchrotron X-ray radiation beamline and their transformation behaviour has been studied in situ. First, the formation and dissolution of hydrides in commercially pure zirconium powder were monitored in real time during hydrogenation and dehydrogenation, then whole pattern crystal structure analysis such as Rietveld and Pawley refinements were performed. All commonly reported low-pressure phases presented in the Zr–H phase diagram are obtained from a single experimental arrangement.

  5. In situ synthesis of protein arrays.

    Science.gov (United States)

    He, Mingyue; Stoevesandt, Oda; Taussig, Michael J

    2008-02-01

    In situ or on-chip protein array methods use cell free expression systems to produce proteins directly onto an immobilising surface from co-distributed or pre-arrayed DNA or RNA, enabling protein arrays to be created on demand. These methods address three issues in protein array technology: (i) efficient protein expression and availability, (ii) functional protein immobilisation and purification in a single step and (iii) protein on-chip stability over time. By simultaneously expressing and immobilising many proteins in parallel on the chip surface, the laborious and often costly processes of DNA cloning, expression and separate protein purification are avoided. Recently employed methods reviewed are PISA (protein in situ array) and NAPPA (nucleic acid programmable protein array) from DNA and puromycin-mediated immobilisation from mRNA.

  6. In situ remediation of uranium contaminated groundwater

    International Nuclear Information System (INIS)

    Dwyer, B.P.; Marozas, D.C.

    1997-01-01

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications

  7. In situ bioremediation of Hanford groundwater

    International Nuclear Information System (INIS)

    Skeen, R.S.; Roberson, K.R.; Workman, D.J.; Petersen, J.N.; Shouche, M.

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl 4 ), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and remediation of existing contaminated groundwaters may be required. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl 4 , nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on going effort to develop effective in situ remediation strategies through the use of predictive simulations

  8. WIPP/SRL in-situ tests

    International Nuclear Information System (INIS)

    Mamsey, W.G.

    1990-01-01

    The Materials Interface Interactions Test (MIIT) is the only in-situ program involving the burial of simulated high-level waste forms operating in the United States. Fifteen glass and waste form compositions and their proposed package materials, supplied by 7 countries, are interred in salt at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. A joint effort between Sandia National Laboratories and Savannah River Laboratory, MIIT is the largest international cooperative in-situ venture yet undertaken. The objective of the current study is to document the waste form compositions used in the MIIT program and then to examine compositional correlations based on structural considerations, bonding energies, and surface layer formation. These correlations show important similarities between the many different waste glass compositions studied world wide and suggest that these glasses would be expected to perform well and in a similar manner

  9. In situ hydrogen loading on zirconium powder

    International Nuclear Information System (INIS)

    Maimaitiyili, Tuerdi; Blomqvist, Jakob; Steuwer, Axel; Bjerkén, Christina; Zanellato, Olivier; Blackmur, Matthew S.; Andrieux, Jérôme; Ribeiro, Fabienne

    2015-01-01

    Commercial-grade Zr powder loaded with hydrogen in situ and phase transformations between various Zr and ZrH x phases have been monitored in real time. For the first time, various hydride phases in a zirconium–hydrogen system have been prepared in a high-energy synchrotron X-ray radiation beamline and their transformation behaviour has been studied in situ. First, the formation and dissolution of hydrides in commercially pure zirconium powder were monitored in real time during hydrogenation and dehydrogenation, then whole pattern crystal structure analysis such as Rietveld and Pawley refinements were performed. All commonly reported low-pressure phases presented in the Zr–H phase diagram are obtained from a single experimental arrangement

  10. In-situ optical profilometry of CANDU fuel channels

    International Nuclear Information System (INIS)

    Jarvis, G.N.; Cornblum, E.O.; Grabish, M.G.

    1996-01-01

    Detailed knowledge of flaw geometry is crucial in the stress analysis of flaws found in the thin-walled Zirconium alloy pressure tubes of CANDU reactors. While ultrasonic inspection can provide much of the required data, the measurement of the sharpness, or root-radius, at the bottom of a flaw has not so far been possible in-situ. This paper will describe the application of optical profilometry techniques, to measure directly the depth and root-radius of open inside-surface flaws, within a flooded reactor pressure tube. The tool uses a rad-tolerant television camera, custom optics and light stripe generators to collect digitized image data from three different views of a flaw. Software has been developed to manage the collection of the image data and provide a full range of display and automated analysis options. The tool has recently been used successfully to measure fretting flaws in the 100--250 micron deep range

  11. In situ health monitoring of piezoelectric sensors

    Science.gov (United States)

    Jensen, Scott L. (Inventor); Drouant, George J. (Inventor)

    2013-01-01

    An in situ health monitoring apparatus may include an exciter circuit that applies a pulse to a piezoelectric transducer and a data processing system that determines the piezoelectric transducer's dynamic response to the first pulse. The dynamic response can be used to evaluate the operating range, health, and as-mounted resonance frequency of the transducer, as well as the strength of a coupling between the transducer and a structure and the health of the structure.

  12. Squamous cell carcinoma in situ after irradiation

    International Nuclear Information System (INIS)

    Kambara, Takeshi; Nishiyama, Takafumi; Yamada, Rie; Nagatani, Tetsuo; Nakajima, Hiroshi; Sugiyama, Asami

    1997-01-01

    We report two cases with Squamous Cell Carcinoma (SCC) in situ caused by irradiation to hand eczemas, resistant to any topical therapies. Both of our cases clinically show palmer sclerosis and flexor restriction of the fingers, compatible to chronic radiation dermatitis. Although SCC arising in chronic radiation dermatitis is usually developed ten to twenty years after irradiation, in our cases SCC were found more than forty years after irradiation. (author)

  13. Ductal Carcinoma In Situ: The Whole Truth.

    Science.gov (United States)

    Parikh, Ujas; Chhor, Chloe M; Mercado, Cecilia L

    2018-02-01

    Ductal carcinoma in situ (DCIS) is a noninvasive malignant breast disease traditionally described as a precursor lesion to invasive breast cancer. With screening mammography, DCIS now accounts for approximately 20% of newly diagnosed cancer cases. DCIS is not well understood because of its heterogeneous nature. Studies have aimed to assess prognostic factors to characterize its risk of invasive potential; however, there still remains a lack of uniformity in workup and treatment. We summarize current knowledge of DCIS and the ongoing controversies.

  14. In-Situ Burn Gaps Analysis

    Science.gov (United States)

    2015-02-01

    This Report) UNCLAS//Public 20. Security Class (This Page) UNCLAS//Public 21. No of Pages 76 22. Price UNCLAS//Public | CG-926 RDC | Merrick...surveillance and spotting techniques/equipment to keep responders in the heaviest oil concentrations where their operation to skim , burn, or disperse...Offshore Oil Skim And Burn System For Use With Vessels Of Opportunity. UNCLAS//Public | CG-926 RDC | Merrick, et al. Public | June 2015 In-Situ Burn Gaps

  15. Activity of PtSnRh/C nanoparticles for the electrooxidation of C1 and C2 alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Teran, Freddy E. [Universite de Poitiers, IC2MP UMR CNRS 7285, ' Equipe E-lyse' , 4 rue Michel Brunet-B27, BP 633, 86022 Poitiers cedex (France); Santos, Deise M. [Departamento de Quimica, CCE-UFES, Av. Fernando Ferrari, 514, Goiabeiras-Vitoria, ES (Brazil); Ribeiro, Josimar, E-mail: josimar.ribeiro@ufes.br [Universite de Poitiers, IC2MP UMR CNRS 7285, ' Equipe E-lyse' , 4 rue Michel Brunet-B27, BP 633, 86022 Poitiers cedex (France); Departamento de Quimica, CCE-UFES, Av. Fernando Ferrari, 514, Goiabeiras-Vitoria, ES (Brazil); Kokoh, Kouakou B. [Universite de Poitiers, IC2MP UMR CNRS 7285, ' Equipe E-lyse' , 4 rue Michel Brunet-B27, BP 633, 86022 Poitiers cedex (France)

    2012-07-01

    A systematic investigation of alcohol adsorption and oxidation on binary and ternary electrocatalysts in acid medium was performed. Binary (PtRh) and ternary (PtRhSn) were prepared by the Pechini modified method on carbon Vulcan XC-72, and different nominal compositions were characterized by energy dispersive X-ray and X-ray diffraction (XRD) techniques. The XRD results showed that the Pt{sub 80}Rh{sub 20}/C and Pt{sub 70}Sn{sub 10}Rh{sub 20}/C electrocatalysts consisted of the Pt displaced phase, suggesting the formation of a solid solution between the metals Pt/Rh and Pt/Sn. Electrochemical investigations on these different electrode materials were carried out as a function of the electrocatalyst composition, in acid medium (0.5 mol dm{sup -3} H{sub 2}SO{sub 4}), and in the absence and presence of different alcohols (methanol, ethanol and ethylene glycol). The electrochemical results obtained at room temperature have shown that the Pt{sub 70}Sn{sub 10}Rh{sub 20}/C catalyst display better catalytic activity for alcohol oxidation compared with the binary catalyst. In situ reflectance infrared spectroscopy measurements have shown that the oxidation of alcohols mentioned produced CO{sub 2} at low potentials indicating that the materials synthesized could be used as efficient anodes in the fuel cell applications. - Highlights: Black-Right-Pointing-Pointer Pt-based catalysts were synthesized by thermal decomposition polymeric precursors. Black-Right-Pointing-Pointer Pt{sub 70}Sn{sub 10}Rh{sub 20}/C displays better catalytic activity for the oxidation of alcohols. Black-Right-Pointing-Pointer The co-catalysts tin and rhodium promote the removal of CO to CO{sub 2} at low potentials. Black-Right-Pointing-Pointer Ethylene glycol is oxidizing strongly to CO{sub 2} at low potentials. Black-Right-Pointing-Pointer Pt{sub 70}Sn{sub 10}Rh{sub 20}/C catalyst is an efficient anode material for a direct alcohol fuel cell.

  16. A Novel in situ Trigger Combination Method

    International Nuclear Information System (INIS)

    Buzatu, Adrian; Warburton, Andreas; Krumnack, Nils; Yao, Wei-Ming

    2012-01-01

    Searches for rare physics processes using particle detectors in high-luminosity colliding hadronic beam environments require the use of multi-level trigger systems to reject colossal background rates in real time. In analyses like the search for the Higgs boson, there is a need to maximize the signal acceptance by combining multiple different trigger chains when forming the offline data sample. In such statistically limited searches, datasets are often amassed over periods of several years, during which the trigger characteristics evolve and their performance can vary significantly. Reliable production cross-section measurements and upper limits must take into account a detailed understanding of the effective trigger inefficiency for every selected candidate event. We present as an example the complex situation of three trigger chains, based on missing energy and jet energy, to be combined in the context of the search for the Higgs (H) boson produced in association with a W boson at the Collider Detector at Fermilab (CDF). We briefly review the existing techniques for combining triggers, namely the inclusion, division, and exclusion methods. We introduce and describe a novel fourth in situ method whereby, for each candidate event, only the trigger chain with the highest a priori probability of selecting the event is considered. The in situ combination method has advantages of scalability to large numbers of differing trigger chains and of insensitivity to correlations between triggers. We compare the inclusion and in situ methods for signal event yields in the CDF WH search.

  17. In situ rheology of yeast biofilms.

    Science.gov (United States)

    Brugnoni, Lorena I; Tarifa, María C; Lozano, Jorge E; Genovese, Diego

    2014-01-01

    The aim of the present work was to investigate the in situ rheological behavior of yeast biofilms growing on stainless steel under static and turbulent flow. The species used (Rhodototula mucilaginosa, Candida krusei, Candida kefyr and Candida tropicalis) were isolated from a clarified apple juice industry. The flow conditions impacted biofilm composition over time, with a predominance of C. krusei under static and turbulent flow. Likewise, structural variations occurred, with a tighter appearance under dynamic flow. Under turbulent flow there was an increase of 112 μm in biofilm thickness at 11 weeks (p < 0.001) and cell morphology was governed by hyphal structures and rounded cells. Using the in situ growth method introduced here, yeast biofilms were determined to be viscoelastic materials with a predominantly solid-like behavior, and neither this nor the G'0 values were significantly affected by the flow conditions or the growth time, and at large deformations their weak structure collapsed beyond a critical strain of about 1.5-5%. The present work could represent a starting point for developing in situ measurements of yeast rheology and contribute to a thin body of knowledge about fungal biofilm formation.

  18. In situ Raman mapping of art objects

    Science.gov (United States)

    Brondeel, Ph.; Moens, L.; Vandenabeele, P.

    2016-01-01

    Raman spectroscopy has grown to be one of the techniques of interest for the investigation of art objects. The approach has several advantageous properties, and the non-destructive character of the technique allowed it to be used for in situ investigations. However, compared with laboratory approaches, it would be useful to take advantage of the small spectral footprint of the technique, and use Raman spectroscopy to study the spatial distribution of different compounds. In this work, an in situ Raman mapping system is developed to be able to relate chemical information with its spatial distribution. Challenges for the development are discussed, including the need for stable positioning and proper data treatment. To avoid focusing problems, nineteenth century porcelain cards are used to test the system. This work focuses mainly on the post-processing of the large dataset which consists of four steps: (i) importing the data into the software; (ii) visualization of the dataset; (iii) extraction of the variables; and (iv) creation of a Raman image. It is shown that despite the challenging task of the development of the full in situ Raman mapping system, the first steps are very promising. This article is part of the themed issue ‘Raman spectroscopy in art and archaeology’. PMID:27799424

  19. Monitoring of electrokinetic in-situ-decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Goldmann, T. [INTUS Inst. fuer Technologie und Umweltschutz e.V., Berlin (Germany)

    2001-07-01

    The need for a monitoring system for in-situ soil decontamination is two-fold: Firstly, to ensure that remediation is attained and secondly to minimize costs and treatment time. A further reason is the potential risk of unexpected mobilization or chemical generation of hazardous compounds which could result in an extension of the contamination into other regions of soil, the ground water or the atmosphere. Electrokinetic in-situ decontamination is based on transport processes in the ground that proceed with relatively low velocity. This results in treatment times of several months. Since the transport processes can be described by a mathematical model, monitoring should always be combined with qualified mathematical processing. This makes it possible to estimate treatment time and costs to be expected. The challenge of in-situ monitoring is to identify relevant parameters describing the state of the ground. These parameters must be independent from influences like weather but they must be sensitive to changes of soil characteristics. In the case of electrokinetic soil remediation, probes and sensors must be resistant to influences of electric fields. The function of sensors or measuring systems can be disturbed or even damaged or destroyed by electric fields (for example by electro-corrosion). (orig.)

  20. Experimental design and quality assurance: in situ fluorescence instrumentation

    Science.gov (United States)

    Conmy, Robyn N.; Del Castillo, Carlos E.; Downing, Bryan D.; Chen, Robert F.

    2014-01-01

    Both instrument design and capabilities of fluorescence spectroscopy have greatly advanced over the last several decades. Advancements include solid-state excitation sources, integration of fiber optic technology, highly sensitive multichannel detectors, rapid-scan monochromators, sensitive spectral correction techniques, and improve data manipulation software (Christian et al., 1981, Lochmuller and Saavedra, 1986; Cabniss and Shuman, 1987; Lakowicz, 2006; Hudson et al., 2007). The cumulative effect of these improvements have pushed the limits and expanded the application of fluorescence techniques to numerous scientific research fields. One of the more powerful advancements is the ability to obtain in situ fluorescence measurements of natural waters (Moore, 1994). The development of submersible fluorescence instruments has been made possible by component miniaturization and power reduction including advances in light sources technologies (light-emitting diodes, xenon lamps, ultraviolet [UV] lasers) and the compatible integration of new optical instruments with various sampling platforms (Twardowski et at., 2005 and references therein). The development of robust field sensors skirt the need for cumbersome and or time-consuming filtration techniques, the potential artifacts associated with sample storage, and coarse sampling designs by increasing spatiotemporal resolution (Chen, 1999; Robinson and Glenn, 1999). The ability to obtain rapid, high-quality, highly sensitive measurements over steep gradients has revolutionized investigations of dissolved organic matter (DOM) optical properties, thereby enabling researchers to address novel biogeochemical questions regarding colored or chromophoric DOM (CDOM). This chapter is dedicated to the origin, design, calibration, and use of in situ field fluorometers. It will serve as a review of considerations to be accounted for during the operation of fluorescence field sensors and call attention to areas of concern when making

  1. Mars Oxygen In-Situ Resource Utilization Experiment

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) will be the first in-situ resource utilization (ISRU) technology demonstration on Mars. Competitively...

  2. DEMONSTRATION BULLETIN: IN SITU ELECTROKINETIC EXTRACTION SYSTEM - SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    Sandia National Laboratories (SNL) has developed an in situ soil remediation system that uses electrokinetic principles to remediate hexavalent chromium-contaminated unsaturated or partially saturated soils. The technology involves the in situ application of direct current to the...

  3. The surface oxide as a source of oxygen on Rh(1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Lundgren, E. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden)]. E-mail: edvin.lundgren@sljus.lu.se; Gustafson, J. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden); Resta, A. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden); Weissenrieder, J. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden); Mikkelsen, A. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden); Andersen, J.N. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden); Koehler, L. [Institut fuer Materialphysik and Centre for Computational Materials Science, Universitaet Wien, A-1090 Vienna (Austria); Kresse, G. [Institut fuer Materialphysik and Centre for Computational Materials Science, Universitaet Wien, A-1090 Vienna (Austria); Klikovits, J. [Institut fuer Allgemeine Physik, Technische Universitaet Wien, A-1040 Vienna (Austria); Biederman, A. [Institut fuer Allgemeine Physik, Technische Universitaet Wien, A-1040 Vienna (Austria); Schmid, M. [Institut fuer Allgemeine Physik, Technische Universitaet Wien, A-1040 Vienna (Austria); Varga, P. [Institut fuer Allgemeine Physik, Technische Universitaet Wien, A-1040 Vienna (Austria)

    2005-06-15

    The reduction of a thin surface oxide on the Rh(1 1 1) surface by CO is studied in situ by photoemission spectroscopy, scanning tunneling microscopy, and density functional theory. CO molecules are found not to adsorb on the surface oxide at a sample temperature of 100 K, in contrast to on the clean and chemisorbed oxygen covered surface. Despite this behavior, the surface oxide may still be reduced by CO, albeit in a significantly different fashion as compared to the reduction of a phase containing only chemisorbed on surface oxygen. The experimental observations combined with theoretical considerations concerning the stability of the surface oxide, result in a model of the reduction process at these pressures suggesting that the surface oxide behaves as a source of oxygen for the CO-oxidation reaction.

  4. In situ X-ray probing reveals fingerprints of surface platinum oxide.

    Science.gov (United States)

    Friebel, Daniel; Miller, Daniel J; O'Grady, Christopher P; Anniyev, Toyli; Bargar, John; Bergmann, Uwe; Ogasawara, Hirohito; Wikfeldt, Kjartan Thor; Pettersson, Lars G M; Nilsson, Anders

    2011-01-07

    In situ X-ray absorption spectroscopy (XAS) at the Pt L(3) edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard X-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF code and complementary extended X-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at high electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.

  5. Intraoperative perception and sensation in laser in situ keratomileusis (LASIK).

    Science.gov (United States)

    Srivannaboon, Sabong; Chansue, Ekktet

    2004-04-01

    To investigate intraoperative perception and sensation during Laser in situ Keratomileusis (LASIK). Sixty patients with uneventful LASIK were included. All procedures were performed by one surgeon with one technique. Any patient with intra-operative complications was excluded. The patients were asked to fill in the subjective evaluation form regarding their perception and sensation during the operation. Twenty-nine patients (48%) reported no pain and twenty-six patients (43%) reported no burning sensation during the surgery. Nineteen patients (32%) reported no light perception during the suction period of microkeratome. There was no correlation between duration of the suction and no light perception (R2 0.01). Thirty-four patients (56%) reported no trouble in maintaining visual fixation at the red light during the laser treatment. Ten patients (16%) reported they could clearly see the movement during the surgery and 5 out of 10 patients (50% of 16%) reported visual frightening. Fifty cases (84%) reported no visual frightening during the surgery after reassurance of the visual experience by the surgeon before the surgery. Patients undergoing LASIK may experience different visual perceptions. Reassurance of the intraoperative perception and sensation before the surgery can reduce the visual frightening.

  6. Photonuclear excitation of 103Rh by synchrotron radiation

    International Nuclear Information System (INIS)

    Kaji, Harumi; Yoshihara, Kenji; Mukoyama, Takeshi; Nakajima, Tetsuo

    1989-01-01

    Photonuclear excitation of 103 Rh nucleus was studied by the use of synchrotron radiation at KEK. Formation of excited state was confirmed by observing Rh K X-rays emitted following the isomeric transition of 103m Rh with a low-energy photon spectrometer. The induced activity due to 103 Rh(γ,γ') 103m Rh reaction was determined carefully by subtracting the fluorescent K X-rays due to natural background radiation. The integral cross-section for 103m Rh by resonance absorption at 295 keV is found to be (1∼2)x10 -28 cm 2 ·eV and is compared with that estimated from the previous experimental value for the 1277-keV level and the calculated value

  7. Novel in-situ lamella fabrication technique for in-situ TEM.

    Science.gov (United States)

    Canavan, Megan; Daly, Dermot; Rummel, Andreas; McCarthy, Eoin K; McAuley, Cathal; Nicolosi, Valeria

    2018-03-29

    In-situ transmission electron microscopy is rapidly emerging as the premier technique for characterising materials in a dynamic state on the atomic scale. The most important aspect of in-situ studies is specimen preparation. Specimens must be electron transparent and representative of the material in its operational state, amongst others. Here, a novel fabrication technique for the facile preparation of lamellae for in-situ transmission electron microscopy experimentation using focused ion beam milling is developed. This method involves the use of rotating microgrippers during the lift-out procedure, as opposed to the traditional micromanipulator needle and platinum weld. Using rotating grippers, and a unique adhesive substance, lamellae are mounted onto a MEMS device for in-situ TEM annealing experiments. We demonstrate how this technique can be used to avoid platinum deposition as well as minimising damage to the MEMS device during the thinning process. Our technique is both a cost effective and readily implementable alternative to the current generation of preparation methods for in-situ liquid, electrical, mechanical and thermal experimentation within the TEM as well as traditional cross-sectional lamella preparation. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. {sup 103}Rh-NMR studies in the superconductor Rh{sub 17}S{sub 15}

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T; Kanda, K; Ueda, K; Mito, T; Kohara, T [Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297 (Japan); Nakamura, H, E-mail: t-koyama@sci.u-hyogo.ac.j [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan)

    2010-01-15

    {sup 103}Rh nuclear magnetic resonance (NMR) measurements have been performed in the superconductor Rh{sub 17}S{sub 15} with the transition temperature T{sub C}=5.4 K. The observed {sup 103}Rh-NMR spectrum shows an asymmetric shape with several peaks, reflecting the local symmetry around each Rh site. We have identified the observed NMR lines corresponding to four different Rh sites and obtained the temperature (T) dependence of the Knight shift of 24m site. The isotropic part of the Knight shift K{sub iso} decreases with decreasing T, indicating the existence of the electron correlation in Rh{sub 17}S{sub 15}. In the superconducting state, the resonance lines shift to higher frequencies owing to a decrease of the spin part of the Knight shift with negative hyperfine coupling.

  9. Voltammetric, in-situ spectroelectrochemical and in-situ electrocolorimetric characterization of phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Koca, Atif [Department of Chemical Engineering, Faculty of Engineering, Marmara University, Goeztepe, 34722 Istanbul (Turkey)], E-mail: akoca@eng.marmara.edu.tr; Bayar, Serife; Dincer, Hatice A. [Department of Chemistry, Technical University of Istanbul, Maslak, 34469 Istanbul (Turkey); Gonca, Erguen [Department of Chemistry, Fatih University, TR34500 B.Cekmece, Istanbul (Turkey)

    2009-04-01

    In this work, electrochemical, and in-situ spectroelectrochemical characterization of the metallophthalocyanines bearing tetra-(1,1-(dicarbethoxy)-2-(2-methylbenzyl))-ethyl 3,10,17,24-tetra chloro groups were performed. Voltammetric and in-situ spectroelectrochemical measurements show that while cobalt phthalocyanine complex gives both metal-based and ring-based redox processes, zinc and copper phthalocyanines show only ring-based reduction and oxidation processes. The redox processes are generally diffusion-controlled, reversible and one-electron transfer processes. Differently lead phthalocyanine demetallized during second oxidation reaction while it was stable during reduction processes. An in-situ electrocolorimetric method, based on the 1931 CIE (Commission Internationale de l'Eclairage) system of colorimetry, has been applied to investigate the color of the electro-generated anionic and cationic forms of the complexes for the first time in this study.

  10. TSSM: The in situ exploration of Titan

    Science.gov (United States)

    Coustenis, A.; Lunine, J. I.; Lebreton, J. P.; Matson, D.; Reh, K.; Beauchamp, P.; Erd, C.

    2008-09-01

    The Titan Saturn System Mission (TSSM) mission was born when NASA and ESA decided to collaborate on two missions independently selected by each agency: the Titan and Enceladus mission (TandEM), and Titan Explorer, a 2007 Flagship study. TandEM, the Titan and Enceladus mission, was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call. The mission concept is to perform remote and in situ investigations of Titan primarily, but also of Enceladus and Saturn's magentosphere. The two satellites are tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TSSM will study Titan as a system, including its upper atmosphere, the interactions with the magnetosphere, the neutral atmosphere, surface, interior, origin and evolution, as well as the astrobiological potential of Titan. It is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini- Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time for Titan, several close flybys of Enceladus). One overarching goal of the TSSM mission is to explore in situ the atmosphere and surface of Titan. In the current mission architecture, TSSM consists of an orbiter (under NASA's responsibility) with a large host of instruments which would perform several Enceladus and Titan flybys before stabilizing in an orbit around Titan alone, therein delivering in situ elements (a Montgolfière, or hot air balloon, and a probe/lander). The latter are being studied by ESA. The balloon will circumnavigate Titan above the equator at an altitude of about 10 km for several months. The

  11. Effectiveness of a chemical herder in association with in-situ burning of oil spills in ice-infested water

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Fritt-Rasmussen, Janne; Jomaas, Grunde

    2017-01-01

    The average herded slick thickness, surface distribution and burning efficiency of a light crude oil were studied in ice-infested water to determine the effectiveness of a chemical herder in facilitating the in-situ burning of oil. Experiments were performed in a small scale (1.0m2) and an interm......The average herded slick thickness, surface distribution and burning efficiency of a light crude oil were studied in ice-infested water to determine the effectiveness of a chemical herder in facilitating the in-situ burning of oil. Experiments were performed in a small scale (1.0m2...

  12. In-situ thermal testing program strategy

    International Nuclear Information System (INIS)

    1995-06-01

    In the past year the Yucca Mountain Site Characterization Project has implemented a new Program Approach to the licensing process. The Program Approach suggests a step-wise approach to licensing in which the early phases will require less site information than previously planned and necessitate a lesser degree of confidence in the longer-term performance of the repository. Under the Program Approach, the thermal test program is divided into two principal phases: (1) short-term in situ tests (in the 1996 to 2000 time period) and laboratory thermal tests to obtain preclosure information, parameters, and data along with bounding information for postclosure performance; and (2) longer-term in situ tests to obtain additional data regarding postclosure performance. This effort necessitates a rethinking of the testing program because the amount of information needed for the initial licensing phase is less than previously planned. This document proposes a revised and consolidated in situ thermal test program (including supporting laboratory tests) that is structured to meet the needs of the Program Approach. A customer-supplier model is used to define the Project data needs. These data needs, along with other requirements, were then used to define a set of conceptual experiments that will provide the required data within the constraints of the Program Approach schedule. The conceptual thermal tests presented in this document represent a consolidation and update of previously defined tests that should result in a more efficient use of Project resources. This document focuses on defining the requirements and tests needed to satisfy the goal of a successful license application in 2001, should the site be found suitable

  13. In-situ burning: NIST studies

    International Nuclear Information System (INIS)

    Evans, D.D.

    1992-01-01

    In-situ burning of spilled oil has distinct advantages over other countermeasures. It offers the potential to convert rapidly large quantities of oil into its primary combustion products, carbon dioxide and water, with a small percentage of other unburned and residue byproducts. Because the oil is converted to gaseous products of combustion by burning, the need for physical collection, storage, and transport of recovered fluids is reduced to the few percent of the original spill volume that remains as residue after burning. Burning oil spills produces a visible smoke plume containing smoke particulate and other products of combustion which may persist for many kilometers from the burn. This fact gives rise to public health concerns, related to the chemical content of the smoke plume and the downwind deposition of particulate, which need to be answered. In 1985, a joint Minerals Management Service (MMS) and Environment Canada (EC) in-situ burning research program was begun at the National Institute of Standards and Technology (NIST). This research program was designed to study the burning of large crude oil spills on water and how this burning would affect air quality by quantifying the products of combustion and developing methods to predict the downwind smoke particulate deposition. To understand the important features of in-situ burning, it is necessary to perform both laboratory and mesoscale experiments. Finally, actual burns of spilled oil at sea will be necessary to evaluate the method at the anticipated scale of actual response operations. In this research program there is a continuing interaction between findings from measurements on small fire experiments performed in the controlled laboratory environments of NIST and the Fire Research Institute (FRI) in Japan, and large fire experiments at facilities like the USCG Fire Safety and Test Detachment in Mobile, Alabama where outdoor liquid fuel burns in large pans are possible

  14. The treatment of in situ breast cancer

    International Nuclear Information System (INIS)

    Fentiman, I.S.

    1989-01-01

    Carcinoma in situ is the earliest histologically recognisable form of malignancy and as such provides an opportunity to treat the disease in a curative way. The two major variants, ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS) will be considered separately as the two conditions have divergent natural histories. DCIS is increasing in incidence since microcalcification may be detected radiologically in the screening of asymptomatic women. The extent of microcalcification may not indicate the extent of disease. It has yet to be determined whether there is a difference in behaviour of the tumour forming and the asymptomatic types of DCIS. After a biopsy has shown DCIS there will be residual DCIS at the biopsy site in one-third of patients, and multifocal DCIS in another third. A coexistent infiltrating carcinoma may be present in up to 16%. Due to sampling problems areas of invasion may be missed. Axillary nodal metastases are found in only 1% of patients with histological DCIS. Radical surgery by total or modified mastectomy is almost curative, but 3% of patients will die of metastases. Taking results of uncontrolled trials, local relapse rates are as follows: excision alone 50%, wide excision 30%, wide excision plus radiotherapy 20%. Two prospective trials are underway run by the EORTC and NSABP in which patients with DCIS are treated by wide excision with or without external radiotherapy. LCIS is usually an incidental finding with a bilateral predisposition to subsequent infiltrating carcinomas. Curative procedures such as bilateral mastectomy with reconstruction may represent overtreatment. A systemic rather than local approach would seem appropriate and a trial is now underway run by the EORTC in which patients with histologically confirmed LCIS are randomised to observation alone or to receive tamoxifen 20 mg daily for 5 years. (orig./MG)

  15. Development of in-situ monitoring system

    International Nuclear Information System (INIS)

    Lee, Bong Soo; Cho, Dong Hyun; Yoo, Wook Jae; Heo, Ji Yeon

    2010-03-01

    Development of in-situ monitoring system using an optical fiber to measure the real time temperature variation of subsurface water for the evaluation of flow characteristics. We describe the feasibility of developing a fiber-optic temperature sensor using a thermochromic material. A sensor-tip is fabricated by mixing of a thermochromic material powder. The relationships between the temperatures and the output voltages of detectors are determined to measure the temperature of water. It is expected that the fiber-optic temperature monitoring sensor using thermochromic material can be used to measure the real time temperature variation of subsurface water

  16. Reasonable assurance and in-situ testing

    International Nuclear Information System (INIS)

    Rhoderick, J.E.; Nelson, J.W.

    1986-01-01

    The Department of Energy is currently preparing site characterization plans for sites being considered for the first geologic repository. The site investigations described in these plans will be aimed at providing ''reasonable assurance'' to the Nuclear Regulatory Commission that the performance objectives and criteria specified in 10 CFR Part 60 will be met. The in-situ testing being planned by the DOE for site characterization, and the subsequent testing conducted as part of performance confirmation, reflects how the basis for ''reasonable assurance'' will change through the licensing process

  17. In-Situ Wire Damage Detection System

    Science.gov (United States)

    Williams, Martha K. (Inventor); Roberson, Luke B. (Inventor); Tate, Lanetra C. (Inventor); Smith, Trent M. (Inventor); Gibson, Tracy L. (Inventor); Jolley, Scott T. (Inventor); Medelius, Pedro J. (Inventor)

    2014-01-01

    An in-situ system for detecting damage in an electrically conductive wire. The system includes a substrate at least partially covered by a layer of electrically conductive material forming a continuous or non-continuous electrically conductive layer connected to an electrical signal generator adapted to delivering electrical signals to the electrically conductive layer. Data is received and processed to identify damage to the substrate or electrically conductive layer. The electrically conductive material may include metalized carbon fibers, a thin metal coating, a conductive polymer, carbon nanotubes, metal nanoparticles or a combination thereof.

  18. Computer Aided in situ Cognitive Behavioral Therapy

    DEFF Research Database (Denmark)

    Chongtay, Rocio A.; Hansen, John Paulin; Decker, Lone

    . One of the most common and successfully used treatments for phobic conditions has been Cognitive Behavioral Therapy (CBT), which helps people learn to detect thinking patterns that trigger the irrational fear and to replace them with more realistic ideas. The health and financial impacts in society...... presented here is being designed in a modular and scalable fashion. The web-based module can be accessed anywhere any time from a PC connected to the internet and can be used alone or as supplement for a location-based module for in situ gradual exposure therapy....

  19. In Situ Preservation of Historic Spacecraft

    Science.gov (United States)

    Barclay, R.; Brooks, R.

    The loss of the Mir space station is shown to symbolize a new consciousness of the value of space artefacts. The reasons why such artefacts as Mir become historic objects worthy of preservation are examined. Preservation of space vehicles in situ is discussed, with particular reference to safety, monitoring and long term costs. An argument is made for a wider definition for World Heritage designations to include material beyond the surface of the Earth, and for international bodies to assess, monitor and oversee these projects. Such heritage sites are seen as an economic driver for the development of space tourism in the 21st century.

  20. PAEDIATRIC URETERIC CALCULI: IN-SITU EXTRACORPOREAL ...

    African Journals Online (AJOL)

    Il navait ni obstruction urétérale ni infection urinaire. De légères hématuries et coliques transitoires ont été observées après la lithotripsie. Conclusion Chez lenfant, la lithotripsie extra-corporelle in situ est une procédure efficace dans le traitement des calculs urétéraux quelque soit le siège. Il ny a aucune morbidité liée à la ...

  1. In situ controlled crystallization as a tool to improve the dissolution of Glibenclamide.

    Science.gov (United States)

    Elkordy, Amal Ali; Jatto, Ayobami; Essa, Ebtessam

    2012-05-30

    For pharmaceutical purpose, micro-sized drugs are needed for many delivery systems, such as pulmonary and oral drug delivery systems. Many strategies have been employed to reduce the particle size of poorly water soluble drugs. Microcrystals could be produced by controlled association of drug in order to obtain naturally grown particles. The aim of this work was to increase the aqueous solubility and dissolution of Glibenclamide. The in situ controlled crystallization process was conducted in the presence of the non-ionic surfactants, Cremophor RH40 and Solutol HS-15 (0.75 and 1.5%, w/v), as protective stabilizing agents against agglomeration. In addition, these surfactants inhibit P-glycoprotein that reduces intestinal absorption of Glibenclamide by efflux transportation. Crystal shape was changed and particle size was reduced by about 15-folds, compared to control untreated drug. Differential Scanning Calorimetry (DSC) results indicated no interaction between the drug and the stabilizer. Microcrystals showed marked increase in the drug dissolution, Solutol HS-15 at 1.5% (w/v) concentration showing the highest dissolution efficiency. It could be concluded that in situ controlled crystallization using surfactants are promising method to improve dissolution of Glibeclamide as a model poorly water soluble drug. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. In situ coral reef oxygen metabolism: an eddy correlation study.

    Directory of Open Access Journals (Sweden)

    Matthew H Long

    Full Text Available Quantitative studies of coral reefs are challenged by the three-dimensional hard structure of reefs and the high spatial variability and temporal dynamics of their metabolism. We used the non-invasive eddy correlation technique to examine respiration and photosynthesis rates, through O2 fluxes, from reef crests and reef slopes in the Florida Keys, USA. We assessed how the photosynthesis and respiration of different reef habitats is controlled by light and hydrodynamics. Numerous fluxes (over a 0.25 h period were as high as 4500 mmol O2 m(-2 d(-1, which can only be explained by efficient light utilization by the phototrophic community and the complex canopy structure of the reef, having a many-fold larger surface area than its horizontal projection. Over diel cycles, the reef crest was net autotrophic, whereas on the reef slope oxygen production and respiration were balanced. The autotrophic nature of the shallow reef crests implies that the export of organics is an important source of primary production for the larger area. Net oxygen production on the reef crest was proportional to the light intensity, up to 1750 µmol photons m(-2 s(-1 and decreased thereafter as respiration was stimulated by high current velocities coincident with peak light levels. Nighttime respiration rates were also stimulated by the current velocity, through enhanced ventilation of the porous framework of the reef. Respiration rates were the highest directly after sunset, and then decreased during the night suggesting that highly labile photosynthates produced during the day fueled early-night respiration. The reef framework was also important to the acquisition of nutrients as the ambient nitrogen stock in the water had sufficient capacity to support these high production rates across the entire reef width. These direct measurements of complex reefs systems yielded high metabolic rates and dynamics that can only be determined through in situ, high temporal resolution

  3. Large magnetoresistance in Er7Rh3

    International Nuclear Information System (INIS)

    Sengupta, Kaushik; Sampathkumaran, E.V.

    2005-01-01

    The compound Er 2 Rh 3 has been known to order antiferromagnetically below (T N =14K), and to exhibit a change in the sign of temperature coefficient of electrical resistivity (ρ) in the paramagnetic state around 120 K. Here we report the influence of external magnetic field (H) on the ρ(T) behavior of this compound (1.8-300 K). While the ρ behavior in the paramagnetic state, qualitatively speaking, is found to be robust to the application of H, the magnitude of the magnetoresistance (MR) is significant for moderate applications of H, even at temperatures for above T N untypical of metallic systems. In addition, large values are observed in the magnetically ordered state. (author)

  4. Disappearance of the in situ component

    International Nuclear Information System (INIS)

    Chauvet, B.; Le Pechoux, C.; Calais, G.; Reynaud-Bougnoux, A.; Bougnoux, P.; Le Floch, O.; Fetisoff, F.; Lemseffer, A.; Body, G.; Lansac, J.

    1992-01-01

    Local recurrence after conservative treatment of breast cancer is associated with a significant risk for metastasis. In order to identify criteria predictive of metastasis in this subset of women, a series of 35 patients with local relapse was analyzed among 512 consecutive patients treated with tumorectomy and radiotherapy. When relapse occurred within 2 years of initial treatment, overall 2-year survival from the time of local relapse was 39.5%. When local relapse occurred more than 2 years from initial therapy, 2-year survival was 80.5% (p<0.001). Pathological slides of both initial and recurrent tumors were reviewed and compared. In 17 patients, local relapse and initial tumor had the same morphological features, with an in-situ component either absent or present in the same proportion. Metastasis occurred in two of these patients. In contrast, 9 of 12 patients in whom the proportion of non-invasive carcinoma had decreased at the time of local recurrence developed metastasis. Overall 2-year survival from the time of relapse was significantly better in the former group of patients (93.3% versus 52.5%, p<0.05). It is concluded that early relapses have a poor prognostic significance and that disappearance of the in-situ component or increase of the invasive component at the time of relapse is a feature predictive of tumor-related death and that more intensive therapy might benefit to this subset of women. (author). 26 refs., 1 fig., 4 tabs

  5. Enzyme Engineering for In Situ Immobilization.

    Science.gov (United States)

    Rehm, Fabian B H; Chen, Shuxiong; Rehm, Bernd H A

    2016-10-14

    Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.

  6. In situ bioremediation under high saline conditions

    International Nuclear Information System (INIS)

    Bosshard, B.; Raumin, J.; Saurohan, B.

    1995-01-01

    An in situ bioremediation treatability study is in progress at the Salton Sea Test Base (SSTB) under the NAVY CLEAN 2 contract. The site is located in the vicinity of the Salon Sea with expected groundwater saline levels of up to 50,000 ppm. The site is contaminated with diesel, gasoline and fuel oils. The treatability study is assessing the use of indigenous heterotrophic bacteria to remediate petroleum hydrocarbons. Low levels of significant macro nutrients indicate that nutrient addition of metabolic nitrogen and Orthophosphate are necessary to promote the process, requiring unique nutrient addition schemes. Groundwater major ion chemistry indicates that precipitation of calcium phosphorus compounds may be stimulated by air-sparging operations and nutrient addition, which has mandated the remedial system to include pneumatic fracturing as an option. This presentation is tailored at an introductory level to in situ bioremediation technologies, with some emphasize on innovations in sparge air delivery, dissolved oxygen uptake rates, nutrient delivery, and pneumatic fracturing that should keep the expert's interest

  7. In situ migration experiment in argillaceous formation

    International Nuclear Information System (INIS)

    Yoshida, Hidekazu

    1990-01-01

    International cooperative R and D has been performed within the five years framework of the bilateral agreement between PNC (Power Reactor and Nuclear Fuel Development Corporation) and SCK/CEN (Studiecentrum voor Kernergie/Centre D'etude de L'energie Nucleaire, Mol, Belgium) which is focused on 'The Migration Experiment in argillaceous formation.' This Tertiary argillaceous formation, called Boom clay, is located at about 230m depth in Mol-Dessel area, Belgium. The argillaceous rock is considered to have a high capability for retardation to radionuclides when they migrate in geosphere because of a high content of clay minerals and dissolved carbon-rich pore water. The main purpose of this collaboration work is to characterize the migration phenomena in sedimentary rock through understanding of the behaviour of radionuclides migration in the argillaceous formation. The present report describes the preliminary results of in situ one-dimensional migration experiment with labelled clay core emplaced in borehole under advective condition. In the experiment, radioactive tracer Sr-85 and Eu-152+154 have been used in order to determine the apparent dispersion coefficient and retardation factor of Boom clay. Finally, the following conclusions were obtained by in situ measurement and calculation based on a appropriate migration model; a) From the Sr-85 experiment, diffusive behavior is interpreted to be a dominant phenomena on radionuclides transportation. b) From the Eu-152+154 experiment, very small non-retarded fraction is observed. (author)

  8. In situ SU-8 silver nanocomposites

    Directory of Open Access Journals (Sweden)

    Søren V. Fischer

    2015-07-01

    Full Text Available Nanocomposite materials containing metal nanoparticles are of considerable interest in photonics and optoelectronics applications. However, device fabrication of such materials always encounters the challenge of incorporation of preformed nanoparticles into photoresist materials. As a solution to this problem, an easy new method of fabricating silver nanocomposites by an in situ reduction of precursors within the epoxy-based photoresist SU-8 has been developed. AgNO3 dissolved in acetonitrile and mixed with the epoxy-based photoresist SU-8 forms silver nanoparticles primarily during the pre- and post-exposure soft bake steps at 95 °C. A further high-temperature treatment at 300 °C resulted in the formation of densely homogeneously distributed silver nanoparticles in the photoresist matrix. No particle growth or agglomeration of nanoparticles is observed at this point. The reported new in situ silver nanocomposite materials can be spin coated as homogeneous thin films and structured by using UV lithography. A resolution of 5 µm is achieved in the lithographic process. The UV exposure time is found to be independent of the nanoparticle concentration. The fabricated silver nanocomposites exhibit high plasmonic responses suitable for the development of new optoelectronic and optical sensing devices.

  9. Mitigating in situ oil sands carbon costs

    Energy Technology Data Exchange (ETDEWEB)

    Theriault, D.J.; Peterson, J. [Laricina Energy Ltd., Calgary, AB (Canada); Heinrichs, H. [Canadian Chemical Technology Inc., Calgary, AB (Canada)

    2008-10-15

    Carbon capture and sequestration is a complex problem with a variety of dimensions that need to be considered. The political, social, and regulatory pressures are forcing carbon costs on the oil sands industry in an effort to reduce the carbon footprint of oil sands operations. This paper reviewed the political, social, and regulatory pressures and obligations for the in-situ oil sands industry. It presented the views and insights of Laricina Energy on the carbon challenge. It also described the initiatives that Laricina Energy is taking to manage these imperatives and outlined the challenges the industry is facing. The purpose of the paper was to encourage dialogue and collaboration by the oil sands industry. The paper also described the dimensions of the carbon problem and how the industry can contribute to a solution. Last, the paper reviewed the parameters of carbon dioxide or greenhouse gas containment and storage issues. It was concluded that the regulatory and policy requirements need to be clarified so that industry understands the new business landscape as well as the requirements that influence the economics of in-situ oil sands development. 7 refs., 7 figs.

  10. Inherently safe in situ uranium recovery

    International Nuclear Information System (INIS)

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-01-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  11. Comparative study of in-situ filter test methods

    International Nuclear Information System (INIS)

    Marshall, M.; Stevens, D.C.

    1981-01-01

    Available methods of testing high efficiency particulate aerosol (HEPA) filters in-situ have been reviewed. In order to understand the relationship between the results produced by different methods a selection has been compared. Various pieces of equipment for generating and detecting aerosols have been tested and their suitability assessed. Condensation-nuclei, DOP (di-octyl phthalate) and sodium-flame in-situ filter test methods have been studied, using the 500 cfm (9000 m 3 /h) filter test rig at Harwell and in the field. Both the sodium-flame and DOP methods measure the penetration through leaks and filter material. However the measured penetration through filtered leaks depends on the aerosol size distribution and the detection method. Condensation-nuclei test methods can only be used to measure unfiltered leaks since condensation nuclei have a very low penetration through filtered leaks. A combination of methods would enable filtered and unfiltered leaks to be measured. A condensation-nucleus counter using n-butyl alcohol as the working fluid has the advantage of being able to detect any particle up to 1 μm in diameter, including DOP, and so could be used for this purpose. A single-particle counter has not been satisfactory because of interference from particles leaking into systems under extract, particularly downstream of filters, and because the concentration of the input aerosol has to be severely limited. The sodium-flame method requires a skilled operator and may cause safety and corrosion problems. The DOP method using a total light scattering detector has so far been the most satisfactory. It is fairly easy to use, measures reasonably low values of penetration and gives rapid results. DOP has had no adverse effect on HEPA filters over a long series of tests

  12. Rh Factor: How It Can Affect Your Pregnancy

    Science.gov (United States)

    ... father or the mother. Can the Rh factor cause problems during pregnancy? Yes. During pregnancy, problems can occur if you ... can die from anemia. Can the Rh factor cause problems during my first pregnancy? Health problems usually do not occur during an ...

  13. Photoelectrochemical properties of LaRhO3

    International Nuclear Information System (INIS)

    Viswanathan, B.; Narayanan, S.R.; Viswanath, R.P.; Varadrajan, T.K.

    1982-01-01

    The photoelectrochemical properties of LaRhO 3 at different values of pH were studied by current-voltage measurements and cyclic voltammetry and the results obtained are compared with those obtained for LaRhO 3 , a potential photoelectrode. (author)

  14. GnRH injection before artificial insemination (AI) alters follicle ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... releasing hormone (GnRH) injection on day 6 of the estrous cycle. The estrous cycles ... follicle at the time of GnRH injection (Silcox et al., 1993;. Twagiramungu .... Waves and their Effect on pregnancy rate in the Cow. Reprod.

  15. Alternatieve in situ bodemsaneringstechnieken; literatuuronderzoek bij het project "In Situ Biorestauratie" Asten

    NARCIS (Netherlands)

    Scheuter AJ; LBG

    1997-01-01

    In developing in situ remediation most of the focus used to be on techniques using infiltration water to supply oxygen to the location. Later, techniques were developed in which soil was flushed with air to enhance the oxygen availability to microorganisms. The aim of the study reported here was to

  16. Modeling biogeochemical processes in sediments from the Rhône River prodelta area (NW Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    L. Pastor

    2011-05-01

    Full Text Available In situ oxygen microprofiles, sediment organic carbon content, and pore-water concentrations of nitrate, ammonium, iron, manganese, and sulfides obtained in sediments from the Rhône River prodelta and its adjacent continental shelf were used to constrain a numerical diagenetic model. Results showed that (1 the organic matter from the Rhône River is composed of a fraction of fresh material associated to high first-order degradation rate constants (11–33 yr−1; (2 the burial efficiency (burial/input ratio in the Rhône prodelta (within 3 km of the river outlet can be up to 80 %, and decreases to ~20 % on the adjacent continental shelf 10–15 km further offshore; (3 there is a large contribution of anoxic processes to total mineralization in sediments near the river mouth, certainly due to large inputs of fresh organic material combined with high sedimentation rates; (4 diagenetic by-products originally produced during anoxic organic matter mineralization are almost entirely precipitated (>97 % and buried in the sediment, which leads to (5 a low contribution of the re-oxidation of reduced products to total oxygen consumption. Consequently, total carbon mineralization rates as based on oxygen consumption rates and using Redfield stoichiometry can be largely underestimated in such River-dominated Ocean Margins (RiOMar environments.

  17. In situ Microscopic Observation of Sodium Deposition/Dissolution on Sodium Electrode

    OpenAIRE

    Yuhki Yui; Masahiko Hayashi; Jiro Nakamura

    2016-01-01

    Electrochemical sodium deposition/dissolution behaviors in propylene carbonate-based electrolyte solution were observed by means of in situ light microscopy. First, granular sodium was deposited at pits in a sodium electrode in the cathodic process. Then, the sodium particles grew linearly from the electrode surface, becoming needle-like in shape. In the subsequent anodic process, the sodium dissolved near the base of the needles on the sodium electrode and the so-called ?dead sodium? broke a...

  18. Photonuclear excitation of 103Rh by synchrotron radiation

    International Nuclear Information System (INIS)

    Yoshihara, Kenji; Kaji, Harumi; Sekine, Tsutomu; Mukoyama, Takeshi

    1989-01-01

    Photonuclear excitation of the 103 Rh nucleus was studied using synchrotron radiation. Formation of the excited state was confirmed by observing K X-rays emitted following the isomeric transition of the 103m Rh with a low-energy photon spectrometer. The intensity of induced activity due to 103 Rh(γ,γ') 103m Rh reaction was determined carefully by subtracting the fluorescent K X-rays due to natural background radiation. The integral cross-section for isomer production of 103m Rh by resonance absorption of photons at 295 keV is found to be (2.1±0.8) x 10 -28 cm 2 eV and is compared with that estimated from the previous experimental value for the 1277-keV level. (author)

  19. Concept design on RH maintenance of CFETR Tokamak reactor

    International Nuclear Information System (INIS)

    Song, Yuntao; Wu, Songtao; Wan, Yuanxi; Li, Jiangang; Ye, Minyou; Zheng, Jinxing; Cheng, Yong; Zhao, Wenlong; Wei, Jianghua

    2014-01-01

    Highlights: •We discussed the concept design of the RH maintenance system based on the main design work of the key components for CFETR. •The main design work for RH maintenance in this paper was carried out including the divertor RH system, the blanket RH system and the transfer cask system. •The technical problems encountered in the design process were discussed. •The present concept design of remote maintenance system in this paper can meet the physical and engineering requirement of CFETR. -- Abstract: CFETR which stands for Chinese Fusion Engineering Testing Reactor is a superconducting Tokamak device. The concept design on RH maintenance of CFETR has been done in the past year. It is known that, the RH maintenance is one of the most important parts for Tokamak reactor. The fusion power was designed as 50–200 MW and its duty cycle time (or burning time) was estimated as 30–50%. The center magnetic field strength on the TF magnet is 5.0 T, the maximum capacity of the volt seconds provided by center solenoid winding will be about 160 VS. The plasma current will be 10 MA and its major radius and minor radius is 5.7 m and 1.6 m respectively. All the components of CFETR which provide their basic functions must be maintained and inspected during the reactor lifetime. Thus, the remote handling (RH) maintenance system should be a key component, which must be detailedly designed during the concept design processing of CFETR, for the operation of reactor. The main design work for RH maintenance in this paper was carried out including the divertor RH system, the blanket RH system and the transfer cask system. What is more, the technical problems encountered in the design process will also be discussed

  20. Immuno-histochemical localization of LH-RH during different phases of estrus cycle of rat, with reference to the preoptic and arcuate neurons, and the ependymal cells.

    Science.gov (United States)

    Naik, D V

    1976-10-06

    Immunohistochemical localization of luteinizing hormone-releasing hormone (LH-RH), during different phases of the estrus cycle, in the preoptic, suprachiasmatic and arcuate nuclei, and in the OVLT of rats, with special emphasis on the ependymal cells, was studied by light, fluorescent and electron microscopy, by using rabbit anti serum to synthetic LH-RH. The LH-RH neurons in the above mentioned areas, were very active during late diestrus and early proestrus phases. Specialized ependymal cells bordering the 3rd ventricle also showed varied LH-RH positive reaction during different phases of the estrus cycle. Immunofluorescent studies showed cyclic variations in the LH-RH material in the CSF of the preoptic and infundibular recesses, as well as in the 3rd ventricle near OVLT, in that, it was maximum during late diestrus and early proestrus phases. Immediately after this, the LH-RH late proestrus was reached. We have also observed that during the proestrus phase, as the LH-RH material started declining in the CSF, it had started building up in the specialized ependyma. Estrus, metaestrus and early diestrus phases showed very weak immunofluorescent LH-RH material in the lumen of the infundibular recess and in the specialized ependyma. Our immuno-electron microscopic observations showed pleomorphic LH-RH granules in the specialized ependyma during late kiestrus and proestrus phases. All these observations lead us to believe that LH-RH is not synthesized in the ependymal cells,but is phagocytosed from the CSF of the 3rd ventricle by the specialized ependyma, which transports it to the ME portal system. In males, the fluorescent LH-RH material did not show any noticeable changes. With the present and previous work,it is concluded that the neurons in differentnuclei synthesize LH-RH and transport it to the ME portal system,primarily through the nerve fibers and secondarily by the ventricular route. It is also suggested that the ependymal transport of LH-RH to the ME

  1. In-situ Planetary Subsurface Imaging System

    Science.gov (United States)

    Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.

    2017-12-01

    Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments

  2. Radiological aspects of in situ uranium recovery

    International Nuclear Information System (INIS)

    BROWN, STEVEN H.

    2007-01-01

    In the last few years, there has been a significant increase in the demand for Uranium as historical inventories have been consumed and new reactor orders are being placed. Numerous mineralized properties around the world are being evaluated for Uranium recovery and new mining / milling projects are being evaluated and developed. Ore bodies which are considered uneconomical to mine by conventional methods such as tunneling or open pits, can be candidates for non-conventional recovery techniques, involving considerably less capital expenditure. Technologies such as Uranium in situ leaching in situ recovery (ISL / ISR), have enabled commercial scale mining and milling of relatively small ore pockets of lower grade, and may make a significant contribution to overall world wide uranium supplies over the next ten years. Commercial size solution mining production facilities have operated in the US since 1975. Solution mining involves the pumping of groundwater, fortified with oxidizing and complexing agents into an ore body, solubilizing the uranium in situ, and then pumping the solutions to the surface where they are fed to a processing plant. Processing involves ion exchange and may also include precipitation, drying or calcining and packaging operations depending on facility specifics. This paper presents an overview of the ISR process and the health physics monitoring programs developed at a number of commercial scale ISL / ISR Uranium recovery and production facilities as a result of the radiological character of these processes. Although many radiological aspects of the process are similar to that of conventional mills, conventional-type tailings as such are not generated. However, liquid and solid byproduct materials may be generated and impounded. The quantity and radiological character of these by products are related to facility specifics. Some special monitoring considerations are presented which are required due to the manner in which Radon gas is evolved in

  3. GnRH agonist versus GnRH antagonist in in vitro fertilization and embryo transfer (IVF/ET

    Directory of Open Access Journals (Sweden)

    Depalo Raffaella

    2012-04-01

    Full Text Available Abstract Several protocols are actually available for in Vitro Fertilization and Embryo Transfer. The review summarizes the main differences and the clinic characteristics of the protocols in use with GnRH agonists and GnRH antagonists by emphasizing the major outcomes and hormonal changes associated with each protocol. The majority of randomized clinical trials clearly shows that in “in Vitro” Fertilization and Embryo Transfer, the combination of exogenous Gonadotropin plus a Gonadotropin Releasing Hormone (GnRH agonist, which is able to suppress pituitary FSH and LH secretion, is associated with increased pregnancy rate as compared with the use of gonadotropins without a GnRH agonist. Protocols with GnRH antagonists are effective in preventing a premature rise of LH and induce a shorter and more cost-effective ovarian stimulation compared to the long agonist protocol. However, a different synchronization of follicular recruitment and growth occurs with GnRH agonists than with GnRH antagonists. Future developments have to be focused on timing of the administration of GnRH antagonists, by giving a great attention to new strategies of stimulation in patients in which radio-chemotherapy cycles are needed.

  4. Hydrodeoxygenation of Phenol to Benzene and Cyclohexane on Rh(111) and Rh(211) Surfaces: Insights from Density Functional Theory

    DEFF Research Database (Denmark)

    Garcia-Pintos, Delfina; Voss, Johannes; Jensen, Anker Degn

    2016-01-01

    Herein we describe the C-O cleavage of phenol and cyclohexanol over Rh (111) and Rh (211) surfaces using density functional theory calculations. Our analysis is complemented by a microkinetic model of the reactions, which indicates that the C-O bond cleavage of cyclohexanol is easier than that of...

  5. In situ uranium stabilization by microbial metabolites

    International Nuclear Information System (INIS)

    Turick, Charles E.; Knox, Anna S.; Leverette, Chad L.; Kritzas, Yianne G.

    2008-01-01

    Microbial melanin production by autochthonous bacteria was explored in this study as a means to increase U immobilization in U contaminated soil. This article demonstrates the application of bacterial physiology and soil ecology for enhanced U immobilization in order to develop an in situ, U bio-immobilization technology. We have demonstrated microbial production of a metal chelating biopolymer, pyomelanin, in U contaminated soil from the Tims Branch area of the Department of Energy (DOE), Savannah River Site (SRS), South Carolina, as a result of tyrosine amendments. Bacterial densities of pyomelanin producers were >10 6 cells per g wet soil. Pyomelanin demonstrated U complexing and mineral binding capacities at pH 4 and 7. In laboratory studies, in the presence of goethite or illite, pyomelanin enhanced U sequestration by these minerals. Tyrosine amended soils in a field test demonstrated increased U sequestration capacity following pyomelanin production up to 13 months after tyrosine treatments

  6. Design Games for In-Situ Design

    DEFF Research Database (Denmark)

    Kristiansen, Erik

    2013-01-01

    The mobile culture has spawned a host of context-based products, like location-based and tag-based applications. This presents a new challenge for the designer. There is a need of design methods that acknowledge the context and allows it to influence the design ideas. This article focuses...... on a design problem where an in-situ design practice may further the early design process: the case of designing a pervasive game. Pervasive games are computer games, played using the city as a game board and often using mobile phones with GPS. Some contextual design methods exist, but we propose an approach...... sitestorming, is based on a game using Situationistic individual exploration of the site and different types of game cards, followed by a joint evaluation of the generated ideas. A series of evaluations showed that the designers found the method enjoyable to use, that the method motivated idea generation...

  7. In-situ SEM electrochemistry and radiolysis

    DEFF Research Database (Denmark)

    Møller-Nilsen, Rolf Erling Robberstad; Norby, Poul

    are backscattered and an image is reconstructed by the microscope. But the high energy electrons are a form of ionising radiation which can significantly affect the chemistry in liquid experiments. Ionising radiation can split water, produce radicals, reduce dissolved metal ions to metal particles, and more...... experiments. During the course of these studies it has also been possible to improve on the EC-SEM system. This has resulted in pyrolysed carbon electrodes, which offer the benefit of stability at 0.75 V higher potentials than traditional gold thin-film electrodes. With the quantitative insight...... microelectrodes on the windows to enable studies of electrohcemical processes. In this way it is possible to perform in-situ electrochemical experiments such as electroplating and charge and discharge analysis of battery electrodes. In a typical liquid cell, electrons are accelerated to sufficiently high energies...

  8. Reverse osmosis membrane allows in situ regeneration

    International Nuclear Information System (INIS)

    Bonhomme, N.; Menjeaud, C.; Poyet, C.

    1989-01-01

    The use of mineral membranes on metallic supports has provided a novel solution to the problem of filtration by the reverse osmosis process. A new reverse osmosis membrane is described which is capable of resisting high operational temperatures (120 0 C), fluctuations in pH(3 to 12) and high pressure (100 bar), as well as significant chlorine concentrations. In addition, the membrane can be regenerated in-situ on the same porous metal support. Numerous membranes can thus be used over the multi-year life of the porous support. Moreover, accidental damage to the membrane is of no great consequence as the membrane itself can be easily replaced. The life of the installation can thus be extended and the overall cost of filtration reduced. The membrane's various applications include water and effluent treatment in the nuclear power industry. (author)

  9. In situ vitrification applications to hazardous wastes

    International Nuclear Information System (INIS)

    Liikala, S.

    1989-01-01

    In Situ Vitrification is a new hazardous waste remediation alternative that should be considered for contaminated soil matrices. According to the authors the advantages of using ISV include: technology demonstrated at field scale; applicable to a wide variety of soils and contaminants; pyrolyzer organics and encapsulates inorganics; product durable over geologic time period; no threat of harm to the public from exposure; and applications available for barrier walls and structural support. The use of ISV on a large scale basis has thus far been limited to the nuclear industry but has tremendous potential for widespread applications to the hazardous waste field. With the ever changing regulations for the disposal of hazardous waste in landfills, and the increasing positive analytical data of ISV, the process will become a powerful source for on-site treatment and hazardous waste management needs in the very near future

  10. Cryogenic in situ microcompression testing of Sn

    International Nuclear Information System (INIS)

    Lupinacci, A.; Kacher, J.; Eilenberg, A.; Shapiro, A.A.; Hosemann, P.; Minor, A.M.

    2014-01-01

    Characterizing plasticity mechanisms below the ductile-to-brittle transition temperature is traditionally difficult to accomplish in a systematic fashion. Here, we use a new experimental setup to perform in situ cryogenic mechanical testing of pure Sn micropillars at room temperature and at −142 °C. Subsequent electron microscopy characterization of the micropillars shows a clear difference in the deformation mechanisms at room temperature and at cryogenic temperatures. At room temperature, the Sn micropillars deformed through dislocation plasticity, while at −142 °C they exhibited both higher strength and deformation twinning. Two different orientations were tested, a symmetric (1 0 0) orientation and a non-symmetric (4 5 ¯ 1) orientation. The deformation mechanisms were found to be the same for both orientations

  11. Refractive regression after laser in situ keratomileusis.

    Science.gov (United States)

    Yan, Mabel K; Chang, John Sm; Chan, Tommy Cy

    2018-04-26

    Uncorrected refractive errors are a leading cause of visual impairment across the world. In today's society, laser in situ keratomileusis (LASIK) has become the most commonly performed surgical procedure to correct refractive errors. However, regression of the initially achieved refractive correction has been a widely observed phenomenon following LASIK since its inception more than two decades ago. Despite technological advances in laser refractive surgery and various proposed management strategies, post-LASIK regression is still frequently observed and has significant implications for the long-term visual performance and quality of life of patients. This review explores the mechanism of refractive regression after both myopic and hyperopic LASIK, predisposing risk factors and its clinical course. In addition, current preventative strategies and therapies are also reviewed. © 2018 Royal Australian and New Zealand College of Ophthalmologists.

  12. Permaflood, formation in situ of surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Kapo, G

    1972-01-01

    The present paper described a new process to produce surfactants in situ in which advantage is taken of the chemical reaction of oxidation in the liquid phase. This process consists of injecting a front of oxidizing agents and reaction compounds, in order to avoid the precipitation of the reaction products and to avoid the interaction between the surfactants produced and the calcium and magnesium in the connate water. Many different types of oxidizing agents as sodium dichromate, hydrogen peroxide, potassium permanganate, sodium hypochlorite, etc., are used. Also, there is considered the use of catalyzers with these oxidizing agents and the variation of the pH of the oxidizing front (permanaganate was the first oxidant used to check the technical and economic possibilities of this process in the laboratory). The process is called Permaflood, so named because potassium permanganate was the first oxidant used to check the technical and economic possibilities of this process in the laboratory.

  13. In situ vitrification of buried waste sites

    International Nuclear Information System (INIS)

    Shade, J.W.; Thompson, L.E.; Kindle, C.H.

    1991-04-01

    In situ vitrification (ISV) is a remedial technology initially developed to treat soils contaminated with a variety of organics, heavy metals, and/or radioactive materials. Recent tests have indicated the feasibility of applying the process to buried wastes including containers, combustibles, and buried metals. In addition, ISV is being considered for application to the emplacement of barriers and to the vitrification of underground tanks. This report provides a review of some of the recent experiences of applying ISV in engineering-scale and pilot-scale tests to wastes containing organics, the Environmental Protection Agency (EPA) Toxic metals buried in sealed containers, and buried ferrous metals, with emphasis on the characteristics of the vitrified product and adjacent soil. 9 refs., 2 figs., 3 tabs

  14. In-situ trainable intrusion detection system

    Energy Technology Data Exchange (ETDEWEB)

    Symons, Christopher T.; Beaver, Justin M.; Gillen, Rob; Potok, Thomas E.

    2016-11-15

    A computer implemented method detects intrusions using a computer by analyzing network traffic. The method includes a semi-supervised learning module connected to a network node. The learning module uses labeled and unlabeled data to train a semi-supervised machine learning sensor. The method records events that include a feature set made up of unauthorized intrusions and benign computer requests. The method identifies at least some of the benign computer requests that occur during the recording of the events while treating the remainder of the data as unlabeled. The method trains the semi-supervised learning module at the network node in-situ, such that the semi-supervised learning modules may identify malicious traffic without relying on specific rules, signatures, or anomaly detection.

  15. IN SITU URANIUM STABILIZATION BY MICROBIAL METABOLITES

    Energy Technology Data Exchange (ETDEWEB)

    Turick, C; Anna Knox, A; Chad L Leverette,C; Yianne Kritzas, Y

    2006-11-29

    Soil contaminated with U was the focus of this study in order to develop in-situ, U bio-immobilization technology. We have demonstrated microbial production of a metal chelating biopolymer, pyomelanin, in U contaminated soil from the Tims Branch area of the Department of Energy (DOE) Savannah River Site (SRS) as a result of tyrosine amendments. Bacterial densities of pyomelanin producers were >106 cells/g wet soil. Pyomelanin demonstrated U chelating and mineral binding capacities at pH 4 and 7. In laboratory studies, in the presence of goethite or illite, pyomelanin enhanced U sequestration by these minerals. Tyrosine amended soils in field tests demonstrated increased U sequestration capacity following pyomelanin production up to 13 months after tyrosine treatments.

  16. In situ erosion of cohesive sediment

    International Nuclear Information System (INIS)

    Williamson, H.J.; Ockenden, M.C.

    1993-01-01

    There has been increasing interest in tidal power schemes and the effect of a tidal energy barrage on the environment. A large man-made environmental change, such as a barrage, would be expected to have significant effects on the sediment distribution and stability of an estuary and these effects need to be assessed when considering a tidal barrage project. This report describes the development of apparatus for in-situ measurements of cohesive sediment erosion on inter-tidal mudflats. Development of the prototype field erosion bell and field testing was commissioned on behalf of the Department of Trade and Industry by the Energy Technology Support Unit (ETSU). This later work commenced in August 1991 and was completed in September 1992. (Author)

  17. Facile Synthesis of Magnetic Photocatalyst Ag/BiVO4/Mn1−xZnxFe2O4 and Its Highly Visible-Light-Driven Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Taiping Xie

    2018-05-01

    Full Text Available Ag/BiVO4/Mn1−xZnxFe2O4 was synthesized with a dip-calcination in situ synthesis method. This work was hoped to provide a simple method to synthesis three-phase composite. The phase structure, optical properties and magnetic feature were confirmed by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectrometer (XPS, transmission electron microscopy (TEM, ultraviolet-visible diffuse reflectance spectrophotometer (UV-vis DRS, and vibrating sample magnetometer (VSM. The photocatalytic activity was investigated by Rhodamine B (RhB photo-degradation under visible light irradiation. The photo-degradation rate of RhB was 94.0~96.0% after only 60 min photocatalytic reaction under visible light irradiation, revealing that it had an excellent visible-light-induced photocatalytic activity. In the fifth recycle, the degradation rate of Ag/BiVO4/Mn1−xZnxFe2O4 still reached to 94.0%. Free radical tunnel experiments confirmed the dominant role of •O2− in the photocatalytic process for Ag/BiVO4/Mn1−xZnxFe2O4. Most importantly, the mechanism that multifunction Ag could enhance photocatalytic activity was explained in detail.

  18. Remote-Handled Transuranic Waste Content Codes (RH-Trucon)

    International Nuclear Information System (INIS)

    2006-01-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC). The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: (1) A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. (2) A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is ''3''. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  19. In-situ burning of spilled oil

    International Nuclear Information System (INIS)

    Tennyson, E.J.

    1992-01-01

    This presentation provided an overview of results from the Minerals Management Service's (MMS) funded research on in situ burning of spilled oil. The program began in 1983 to determine the limitations of this innovative response strategies. Specific physical variables evaluated were slick thickness, degree of weathering (sparging), sea state, wind velocities, air and water temperatures, degrees of emulsification and degree of ice-coverage. All of the oils tested burned with 50 to 95 percent removal ratios as long as emulsification had not occurred. Slick thickness of 3mm or thicker were required to sustain ignition and extinguishment occurred when the slick reached approximately 1mm thick. The next phase of the research involved quantitative analysis of the pollutants created by in situ burning including chemical composition of the parent oil, burn residue, and airborne constituents. These studies were conducted at the National Institute of Standards and Technology (NIST) with emphasis on particulate, and gaseous components created by the burning process. Research efforts over several years, and a variety of crude oils, yielded data which indicated that aldehydes ketones, dioxans, furans, and polyaromatic compounds (PAHS) were not formed in the burning process. The airborne pollutants reflected similar concentrations of these compounds that were present in the parent oil. Lighter molecular weight PAHs tended to be converted to higher molecular weight compounds. Heavier molecular weight compounds are considered less acutely toxic than lighter molecular weight PAHS. Predominant burn products released into the air were by weight: 75% carbon dioxide, 12% water vapor, 10% soot, 3% carbon monoxide and 0.2% other products including those listed above

  20. PERFORMANCE CONFIRMATION IN-SITU INSTRUMENTATION

    International Nuclear Information System (INIS)

    N.T. Raczka

    2000-01-01

    The purpose of this document is to identify and analyze the types of in-situ instruments and methods that could be used in support of the data acquisition portion of the Performance Confirmation (PC) program at the potential nuclear waste repository at Yucca Mountain. The PC program will require geomechanical , geophysical, thermal, and hydrologic instrumentation of several kinds. This analysis is being prepared to document the technical issues associated with each type of measurement during the PC period. This analysis utilizes the ''Performance Confirmation Input Criteria'' (CRWMS M andO 1999a) as its starting point. The scope of this analysis is primarily on the period after the start of waste package emplacement and before permanent closure of the repository, a period lasting between 15 and 300 years after last package emplacement (Stroupe 2000, Attachment 1, p. 1). The primary objectives of this analysis are to: (1) Review the design criteria as presented in the ''Performance Confirmation Input Criteria'' (CRWMS M andO 1999a). The scope of this analysis will be limited to the instrumentation related to parameters that require continuous monitoring of the conditions underground. (2) Preliminary identification and listing of the data requirements and parameters as related to the current repository layout in support of PC monitoring. (3) Preliminary identification of methods and instrumentation for the acquisition of the required data. Although the ''Performance Confirmation Input Criteria'' (CRWMS M andO 1999a) defines a broad range of data that must be obtained from a variety of methods, the focus of this analysis is on instrumentation related to the performance of the rock mass and the formation of water in the repository environment, that is obtainable from in-situ observation, testing, and monitoring

  1. In Situ Field Testing of Processes

    International Nuclear Information System (INIS)

    Wang, J.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts of the Yucca Mountain Site Characterization Project (YMP). This revision updates data and analyses presented in the initial issue of this AMR. This AMR was developed in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' and ''Technical Work Plan for UZ Flow, Transport, and Coupled Processes Process Model Report. These activities were performed to investigate in situ flow and transport processes. The evaluations provide the necessary framework to: (1) refine and confirm the conceptual model of matrix and fracture processes in the unsaturated zone (UZ) and (2) analyze the impact of excavation (including use of construction water and effect of ventilation) on the UZ flow and transport processes. This AMR is intended to support revisions to ''Conceptual and Numerical Models for UZ Flow and Transport'' and ''Unsaturated Zone Flow and Transport Model Process Model Report''. In general, the results discussed in this AMR are from studies conducted using a combination or a subset of the following three approaches: (1) air-injection tests, (2) liquid-release tests, and (3) moisture monitoring using in-drift sensors or in-borehole sensors, to evaluate the impact of excavation, ventilation, and construction-water usage on the surrounding rocks. The liquid-release tests and air-injection tests provide an evaluation of in situ fracture flow and the competing processes of matrix imbibition. Only the findings from testing and data not covered in the ''Seepage Calibration Model and Seepage Testing Data'' are analyzed in detail in the AMR

  2. In situ permeability testing of rock salt

    International Nuclear Information System (INIS)

    Peterson, E.W.; Lagus, P.L.; Broce, R.D.; Lie, K.

    1981-04-01

    Storage of transuranic (TRU) wastes in bedded salt formations requires a knowledge of the in situ permeability of SENM rock salt. Since assumptions for safety assessments have been made in which these wastes could generate gas pressures on the order of the lithostatic pressure over geologic time scales, the permeability of the surrounding formation becomes an important parameter for determining the manner in which the gases will be contained or dispersed. This report describes the series of tests conducted in the AEC-7 borehole, located near the WIPP site, to determine the in situ gas flow characteristics of the bedded salt. In these tests, compressed air was injected into the borehole and flow into the surrounding formation measured. These measured flow rates were interpreted in terms of formation permeabilities and porosities which were, in turn, used as modeling parameters for the repository response analysis. Two series of field tests were performed. The first series consisted of a number of whole-hole flow tests conducted to provide preliminary design information required for future operation of a guarded straddle packer system capable of measuring permeabilities > or = 0.1 μdarcy. The second series of tests were conducted using the Systems, Science and Software (S-Cubed) designed guarded straddle packer system. In these interval permeability tests, 100-foot lengths of borehole were isolated and the flow characteristics of the surrounding formation examined. In this report, a complete description of the test procedures, instrumentation, and measurement techniques is first given. The analytical/numerical methods used for data interpretation are then presented, followed by results of the interval and permeability tests. (The whole-hole tests are summarized in Appendix A.) Conclusions are presented in the final section

  3. In Situ Field Testing of Processes

    Energy Technology Data Exchange (ETDEWEB)

    J. Wang

    2001-12-14

    The purpose of this Analysis/Model Report (AMR) is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts of the Yucca Mountain Site Characterization Project (YMP). This revision updates data and analyses presented in the initial issue of this AMR. This AMR was developed in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' and ''Technical Work Plan for UZ Flow, Transport, and Coupled Processes Process Model Report. These activities were performed to investigate in situ flow and transport processes. The evaluations provide the necessary framework to: (1) refine and confirm the conceptual model of matrix and fracture processes in the unsaturated zone (UZ) and (2) analyze the impact of excavation (including use of construction water and effect of ventilation) on the UZ flow and transport processes. This AMR is intended to support revisions to ''Conceptual and Numerical Models for UZ Flow and Transport'' and ''Unsaturated Zone Flow and Transport Model Process Model Report''. In general, the results discussed in this AMR are from studies conducted using a combination or a subset of the following three approaches: (1) air-injection tests, (2) liquid-release tests, and (3) moisture monitoring using in-drift sensors or in-borehole sensors, to evaluate the impact of excavation, ventilation, and construction-water usage on the surrounding rocks. The liquid-release tests and air-injection tests provide an evaluation of in situ fracture flow and the competing processes of matrix imbibition. Only the findings from testing and data not covered in the ''Seepage Calibration Model and Seepage Testing Data'' are analyzed in detail in the AMR.

  4. Using In Situ Symbiotic Seed Germination to Restore Over-collected Medicinal Orchids in Southwest China.

    Science.gov (United States)

    Shao, Shi-Cheng; Burgess, Kevin S; Cruse-Sanders, Jennifer M; Liu, Qiang; Fan, Xu-Li; Huang, Hui; Gao, Jiang-Yun

    2017-01-01

    Due to increasing demand for medicinal and horticultural uses, the Orchidaceae is in urgent need of innovative and novel propagation techniques that address both market demand and conservation. Traditionally, restoration techniques have been centered on ex situ asymbiotic or symbiotic seed germination techniques that are not cost-effective, have limited genetic potential and often result in low survival rates in the field. Here, we propose a novel in situ advanced restoration-friendly program for the endangered epiphytic orchid species Dendrobium devonianum , in which a series of in situ symbiotic seed germination trials base on conspecific fungal isolates were conducted at two sites in Yunnan Province, China. We found that percentage germination varied among treatments and locations; control treatments (no inoculum) did not germinate at both sites. We found that the optimal treatment, having the highest in situ seed germination rate (0.94-1.44%) with no significant variation among sites, supported a warm, moist and fixed site that allowed for light penetration. When accounting for seed density, percentage germination was highest (2.78-2.35%) at low densities and did not vary among locations for the treatment that supported optimal conditions. Similarly for the same treatment, seed germination ranged from 0.24 to 5.87% among seasons but also did vary among sites. This study reports on the cultivation and restoration of an endangered epiphytic orchid species by in situ symbiotic seed germination and is likely to have broad application to the horticulture and conservation of the Orchidaceae.

  5. Solution (in situ leach) mining of uranium: an overview

    International Nuclear Information System (INIS)

    Kuhaida, A.J. Jr.; Kelly, M.J.

    1978-01-01

    Increases in the demand for and price of uranium have made in-situ mining an attractive alternative to the open-pit and underground U mining methods. Up to 50% of the known ore-bearing sandstone in the western U.S. can be mined using the in-situ mining method. In-situ mining also offers a significant environmental advantage. Restoration of the contaminated groundwater is discussed

  6. In-situ gelling polymers for biomedical applications

    CERN Document Server

    2015-01-01

    This book presents the research involving in situ gelling polymers and can be used as a guidebook for academics, industrialists and postgraduates interested in this area. This work summaries the academic contributions from the top authorities in the field and explore the fundamental principles of in situ gelling polymeric networks, along with examples of their major applications. This book aims to provide an up-to-date resource of in situ gelling polymer research.

  7. In situ QCM and TM-AFM investigations of the early stages of degradation of silver and copper surfaces

    International Nuclear Information System (INIS)

    Kleber, Ch.; Hilfrich, U.; Schreiner, M.

    2007-01-01

    The early stages of atmospheric corrosion of pure copper and pure silver specimens were investigated performing in situ tapping mode atomic force microscopy (TM-AFM), in situ quartz crystal microbalance (QCM) and X-ray photoelectron spectroscopy (XPS). The information obtained by TM-AFM is the change of the topography of the sample surfaces with emphasis on the shape and lateral distribution of the corrosion products grown within the first hours of weathering. The simultaneously performed in situ QCM measurements are indicating the mass changes due to possibly occurring corrosive processes on the surface during weathering and are therefore a valuable tool for the determination of corrosion rates. Investigations were carried out in synthetic air at different levels of relative humidity (RH) with and without addition of 250 ppb SO 2 as acidifying agent. On a polished copper surface the growth of corrosion products could be observed by TM-AFM analysis at 60% RH without any addition of acidifying gases [M. Wadsak, M. Schreiner, T. Aastrup, C. Leygraf, Surf. Sci. 454-456 (2000) 246-250]. On a weathered copper surface the addition of SO 2 to the moist air stream leads to the formation of additional features as already described in the literature [M. Wadsak, M. Schreiner, T. Aastrup, C. Leygraf, Surf. Sci. 454-456 (2000) 246-250; Ch. Kleber, J. Weissenrieder, M. Schreiner, C. Leygraf, Appl. Surf. Sci. 193 (2002) 245-253]. Exposing a silver specimen to humidity leads to the degradation of the surface structure as well as to a formation of corrosion products, which could be detected by in situ QCM measurements. After addition of 250 ppb SO 2 to the moist gas stream an increase of the formed feature's volume on the silver surface could be observed by TM-AFM measurements. The results obtained additionally from the in situ QCM measurements confirm the influence of SO 2 due to a further increase of the mass of the formed corrosion layer (and therefore an increase of the

  8. Opto-electrochemical In Situ Monitoring of the Cathodic Formation of Single Cobalt Nanoparticles.

    Science.gov (United States)

    Brasiliense, Vitor; Clausmeyer, Jan; Dauphin, Alice L; Noël, Jean-Marc; Berto, Pascal; Tessier, Gilles; Schuhmann, Wolfgang; Kanoufi, Fréderic

    2017-08-21

    Single-particle electrochemistry at a nanoelectrode is explored by dark-field optical microscopy. The analysis of the scattered light allows in situ dynamic monitoring of the electrodeposition of single cobalt nanoparticles down to a radius of 65 nm. Larger sub-micrometer particles are directly sized optically by super-localization of the edges and the scattered light contains complementary information concerning the particle redox chemistry. This opto-electrochemical approach is used to derive mechanistic insights about electrocatalysis that are not accessible from single-particle electrochemistry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Selective interactions among Rh, ABO, and sex ratio of newborns.

    Science.gov (United States)

    Valenzuela, C Y; Walton, R

    1985-01-01

    The hypothesis that the Rh and ABO blood systems behave like the HLA system in relation to mother-conception tolerance-rejection mechanisms was tested in 25,501 mother-infant pairs. According to this hypothesis, heterozygotes carrying a paternal gene that is not present in their mothers should be better tolerated than homozygotes. Significantly more BO infants born to AO mothers. AO infants born to BO mothers, Rh(+) heterozygotes born to Rh(-) mothers, and less significantly AO infants born to OO mothers confirm the hypothesis. Fewer homozygotes occurred in Rh(-) infants born to Rh(+) mothers and in O infants born to non-O mothers. Deviations from the Hardy-Weinberg equilibrium found in the ABO system were modified by the Rh and sex of the infant. These data strongly support the hypothesis that at least two feto-maternal systems influence the destiny of pregnancies: the classical known incompatibility system which operates late in pregnancy and a new one which is based on the induction of maternal tolerance early in pregnancy: maternal tolerance seems to be better elicited by heterozygous eggs or embryos carrying a gene not present in the mother. The data also support the hypothesis that the sex ratio is influenced by feto-maternal tolerance-rejection mechanisms associated with the ABO and Rh systems.

  10. Practice Bulletin No. 181 Summary: Prevention of Rh D Alloimmunization.

    Science.gov (United States)

    2017-08-01

    Advances in the prevention and treatment of Rh D alloimmunization have been one of the great success stories of modern obstetrics. There is wide variation in prevalence rates of Rh D-negative individuals between regions, for example from 5% in India to 15% in North America (1). However, high birth rates in low prevalence areas means Rh hemolytic disease of the newborn is still an important cause of morbidity and mortality in countries without prophylaxis programs (1). In such countries, 14% of affected fetuses are stillborn and one half of live born infants suffer neonatal death or brain injury (1). The routine use of Rh D immune globulin is responsible for the reduced rate of red cell alloimmunization in more economically developed countries. First introduced in the 1970s, the postpartum administration of Rh D immune globulin reduced the rate of alloimmunization in at-risk pregnancies from approximately 13-16% to approximately 0.5-1.8% (2, 3). The risk was further reduced to 0.14-0.2% with the addition of routine antepartum administration (2, 3). Despite considerable proof of efficacy, there are still a large number of cases of Rh D alloimmunization because of failure to follow established protocols. In addition, there are new data to help guide management, especially with regard to weak D phenotype women. The purpose of this document is to provide evidence-based guidance for the management of patients at risk of Rh D alloimmunization.

  11. Practice Bulletin No. 181: Prevention of Rh D Alloimmunization.

    Science.gov (United States)

    2017-08-01

    Advances in the prevention and treatment of Rh D alloimmunization have been one of the great success stories of modern obstetrics. There is wide variation in prevalence rates of Rh D-negative individuals between regions, for example from 5% in India to 15% in North America (1). However, high birth rates in low prevalence areas means Rh hemolytic disease of the newborn is still an important cause of morbidity and mortality in countries without prophylaxis programs (1). In such countries, 14% of affected fetuses are stillborn and one half of live born infants suffer neonatal death or brain injury (1). The routine use of Rh D immune globulin is responsible for the reduced rate of red cell alloimmunization in more economically developed countries. First introduced in the 1970s, the postpartum administration of Rh D immune globulin reduced the rate of alloimmunization in at-risk pregnancies from approximately 13-16% to approximately 0.5-1.8% (2, 3). The risk was further reduced to 0.14-0.2% with the addition of routine antepartum administration (2, 3). Despite considerable proof of efficacy, there are still a large number of cases of Rh D alloimmunization because of failure to follow established protocols. In addition, there are new data to help guide management, especially with regard to weak D phenotype women. The purpose of this document is to provide evidence-based guidance for the management of patients at risk of Rh D alloimmunization.

  12. Hydroformylation of 1-Hexene over Rh/Nano-Oxide Catalysts

    Directory of Open Access Journals (Sweden)

    Sari Suvanto

    2013-03-01

    Full Text Available The effect of nanostructured supports on the activity of Rh catalysts was studied by comparing the catalytic performance of nano- and bulk-oxide supported Rh/ZnO, Rh/SiO2 and Rh/TiO2 systems in 1-hexene hydroformylation. The highest activity with 100% total conversion and 96% yield of aldehydes was obtained with the Rh/nano-ZnO catalyst. The Rh/nano-ZnO catalyst was found to be more stable and active than the corresponding rhodium catalyst supported on bulk ZnO. The favorable morphology of Rh/nano-ZnO particles led to an increased metal content and an increased number of weak acid sites compared to the bulk ZnO supported catalysts. Both these factors favored the improved catalytic performance. Improvements of catalytic properties were obtained also with the nano-SiO2 and nano-TiO2 supports in comparison with the bulk supports. All of the catalysts were characterized by scanning electron microscope (SEM, inductively coupled plasma mass spectrometry (ICP-MS, BET, powder X-ray diffraction (PXRD and NH3- temperature-programmed desorption (TPD.

  13. In situ, rapid, and temporally resolved measurements of cellulase adsorption onto lignocellulosic substrates by UV-vis spectrophotometry

    Science.gov (United States)

    Hao Liu; J. Y. Zhu; X. S. Chai

    2011-01-01

    This study demonstrated two in situ UV-vis spectrophotometric methods for rapid and temporally resolved measurements of cellulase adsorption onto cellulosic and lignocellulosic substrates during enzymatic hydrolysis. The cellulase protein absorption peak at 280 nm was used for quantification. The spectral interferences from light scattering by small fibers (fines) and...

  14. An integrated architecture for the ITER RH control system

    International Nuclear Information System (INIS)

    Hamilton, David Thomas; Tesini, Alessandro

    2012-01-01

    Highlights: ► Control system architecture integrating ITER remote handling equipment systems. ► Standard control system architecture for remote handling equipment systems. ► Research and development activities to validate control system architecture. ► Standardization studies to select standard parts for control system architecture. - Abstract: The ITER remote handling (RH) system has been divided into 7 major equipment system procurements that deliver complete systems (operator interfaces, equipment controllers, and equipment) according to task oriented functional specifications. Each equipment system itself is an assembly of transporters, power manipulators, telemanipulators, vehicular systems, cameras, and tooling with a need for controllers and operator interfaces. From an operational perspective, the ITER RH systems are bound together by common control rooms, operations team, and maintenance team; and will need to achieve, to a varying degree, synchronization of operations, co-operation on tasks, hand-over of components, and sharing of data and resources. The separately procured RH systems must, therefore, be integrated to form a unified RH system for operation from the RH control rooms. The RH system will contain a heterogeneous mix of specially developed RH systems and off-the-shelf RH equipment and parts. The ITER Organization approach is to define a control system architecture that supports interoperable heterogeneous modules, and to specify a standard set of modules for each system to implement within this architecture. Compatibility with standard parts for selected modules is required to limit the complexity for operations and maintenance. A key requirement for integrating the control system modules is interoperability, and no module should have dependencies on the implementation details of other modules. The RH system is one of the ITER Plant systems that are integrated and coordinated through the hierarchical structure of the ITER CODAC system

  15. IN-SITU TRITIUM BETA DETECTOR

    International Nuclear Information System (INIS)

    Berthold, J.W.; Jeffers, L.A.

    1998-01-01

    The objectives of this three-phase project were to design, develop, and demonstrate a monitoring system capable of detecting and quantifying tritium in situ in ground and surface waters, and in water from effluent lines prior to discharge into public waterways. The tritium detection system design is based on measurement of the low energy beta radiation from the radioactive decay of tritium using a special form of scintillating optical fiber directly in contact with the water to be measured. The system consists of the immersible sensor module containing the optical fiber, and an electronics package, connected by an umbilical cable. The system can be permanently installed for routine water monitoring in wells or process or effluent lines, or can be moved from one location to another for survey use. The electronics will read out tritium activity directly in units of pico Curies per liter, with straightforward calibration. In Phase 1 of the project, we characterized the sensitivity of fluor-doped plastic optical fiber to tritium beta radiation. In addition, we characterized the performance of photomultiplier tubes needed for the system. In parallel with this work, we defined the functional requirements, target specifications, and system configuration for an in situ tritium beta detector that would use the fluor-doped fibers as primary sensors of tritium concentration in water. The major conclusions from the characterization work are: A polystyrene optical fiber with fluor dopant concentration of 2% gave best performance. This fiber had the highest dopant concentration of any fibers tested. Stability may be a problem. The fibers exposed to a 22-day soak in 120 F water experienced a 10x reduction in sensitivity. It is not known whether this was due to the build up of a deposit (a potentially reversible effect) or an irreversible process such as leaching of the scintillating dye. Based on the results achieved, it is premature to initiate Phase 2 and commit to a prototype

  16. IN-SITU TRITIUM BETA DETECTOR

    Energy Technology Data Exchange (ETDEWEB)

    J.W. Berthold; L.A. Jeffers

    1998-04-15

    The objectives of this three-phase project were to design, develop, and demonstrate a monitoring system capable of detecting and quantifying tritium in situ in ground and surface waters, and in water from effluent lines prior to discharge into public waterways. The tritium detection system design is based on measurement of the low energy beta radiation from the radioactive decay of tritium using a special form of scintillating optical fiber directly in contact with the water to be measured. The system consists of the immersible sensor module containing the optical fiber, and an electronics package, connected by an umbilical cable. The system can be permanently installed for routine water monitoring in wells or process or effluent lines, or can be moved from one location to another for survey use. The electronics will read out tritium activity directly in units of pico Curies per liter, with straightforward calibration. In Phase 1 of the project, we characterized the sensitivity of fluor-doped plastic optical fiber to tritium beta radiation. In addition, we characterized the performance of photomultiplier tubes needed for the system. In parallel with this work, we defined the functional requirements, target specifications, and system configuration for an in situ tritium beta detector that would use the fluor-doped fibers as primary sensors of tritium concentration in water. The major conclusions from the characterization work are: A polystyrene optical fiber with fluor dopant concentration of 2% gave best performance. This fiber had the highest dopant concentration of any fibers tested. Stability may be a problem. The fibers exposed to a 22-day soak in 120 F water experienced a 10x reduction in sensitivity. It is not known whether this was due to the build up of a deposit (a potentially reversible effect) or an irreversible process such as leaching of the scintillating dye. Based on the results achieved, it is premature to initiate Phase 2 and commit to a prototype

  17. Comparative analysis of the pituitary and ovarian GnRH systems in the leopard gecko: signaling crosstalk between multiple receptor subtypes in ovarian follicles.

    Science.gov (United States)

    Ikemoto, Tadahiro; Park, Min Kyun

    2007-02-01

    GnRH regulates reproductive functions through interaction with its pituitary receptor in vertebrates. The present study demonstrated that the leopard gecko possessed two and three genes for GnRH ligands and receptors, respectively, though one of the three receptor subtypes had long been thought not to exist in reptiles. Each receptor subtype showed a distinct pharmacology. All types of ligands and receptors showed different expression patterns, and were widely expressed both inside and outside the brain. This report also shows a comparison of the pituitary and ovarian GnRH systems in the leopard gecko during and after the egg-laying season. All three receptor subtypes were expressed in both the whole pituitary and ovary; however, only one receptor subtype could be detected in the anterior pituitary gland. In situ hybridization showed spatial expression patterns of ovarian receptors, and suggested co-expression of multiple receptor subtypes in granulosa cells of larger follicles. Co-transfection of receptor subtypes showed a distinct pharmacology in COS-7 cells compared with those of single transfections. These results suggest that distinct signaling mechanisms are involved in the pituitary and ovarian GnRH systems. Seasonal and developmental variations in receptor expression in the anterior pituitary gland and ovarian follicles may contribute to the seasonal breeding of this animal.

  18. Electrochemical oxidation of ethanol using PtRh/C electrocatalysts in alkaline medium and synthesized by sodium borohydride and alcohol reduction

    International Nuclear Information System (INIS)

    Fontes, Eric Hossein

    2017-01-01

    PtRh/C were prepared by the following atomic proportions: (100,0), (0,100), (90,10), (70,30) and (50,50). The methods employed in the synthesis of these materials were reduction by sodium borohydride and reduction by alcohol. The metal salts used were H 2 PtCl 6 3•6H 2 0 and (RhNO 3 ) 3 , the support used was Carbon black XC72 and the bulk metal composition was 20% and 80% of support. The electrocatalysts were characterized by Energy Dispersive X-ray spectroscopy, X-ray diffraction and Transmission electron microscopy. The ethanol electrochemical oxidation mechanism was investigated by in situ Fourier Transform Infrared Spectroscopy couple to an Attenuated Total Reflection technique. The electrocatalytic activity were evaluated by Cyclic Voltammetry, Linear Sweep Voltammetry and Chronoamperometry techniques. The Fuel Cells tests were made in a single direct alcohol fuel cell with alkaline membrane. The working electrodes were prepared by a thin porous coating technique. X-ray diffraction allowed to verify metallic alloys, segregate phases and to calculate the percentage of metallic alloys. It was else possible to identify crystallographic phases. Infrared Spectroscopy allowed to verify that the electrochemical oxidation of ethanol was carried out by an incomplete mechanism. PtRh(70:30)/C prepared by sodium borohydride produced large amounts of carbon dioxide and acetaldehyde. Rh/C showed electrocatalytic activity when compared with other materials studied.

  19. Experimental Measurement of In Situ Stress

    Science.gov (United States)

    Tibbo, Maria; Milkereit, Bernd; Nasseri, Farzine; Schmitt, Douglas; Young, Paul

    2016-04-01

    The World Stress Map data is determined by stress indicators including earthquake focal mechanisms, in situ measurement in mining, oil and gas boreholes as well as the borehole cores, and geologic data. Unfortunately, these measurements are not only infrequent but sometimes infeasible, and do not provide nearly enough data points with high accuracy to correctly infer stress fields in deep mines around the world. Improvements in stress measurements of Earth's crust is fundamental to several industries such as oil and gas, mining, nuclear waste management, and enhanced geothermal systems. Quantifying the state of stress and the geophysical properties of different rock types is a major complication in geophysical monitoring of deep mines. Most stress measurement techniques involve either the boreholes or their cores, however these measurements usually only give stress along one axis, not the complete stress tensor. The goal of this project is to investigate a new method of acquiring a complete stress tensor of the in situ stress in the Earth's crust. This project is part of a comprehensive, exploration geophysical study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, and focuses on two boreholes located in this mine. These boreholes are approximately 400 m long with NQ diameters and are located at depths of about 1300 - 1600 m and 1700 - 2000 m. Two borehole logging surveys were performed on both boreholes, October 2013 and July 2015, in order to perform a time-lapse analysis of the geophysical changes in the mine. These multi-parameter surveys include caliper, full waveform sonic, televiewer, chargeability (IP), and resistivity. Laboratory experiments have been performed on borehole core samples of varying geologies from each borehole. These experiments have measured the geophysical properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. The apparatus' used for this project are geophysical imaging cells capable

  20. In-situ photoluminescence imaging for passivation-layer etching process control for photovoltaics

    Science.gov (United States)

    Lee, J. Z.; Michaelson, L.; Munoz, K.; Tyson, T.; Gallegos, A.; Sullivan, J. T.; Buonassisi, T.

    2014-07-01

    Light-induced plating (LIP) of solar-cell metal contacts is a scalable alternative to silver paste. However, LIP requires an additional patterning step to create openings in the silicon nitride (SiNx) antireflection coating (ARC) layer prior to metallization. One approach to pattern the SiNx is masking and wet chemical etching. In-situ real-time photoluminescence imaging (PLI) is demonstrated as a process-monitoring method to determine when SiNx has been fully removed during etching. We demonstrate that the change in PLI signal intensity during etching is caused by a combination of (1) decreasing light absorption from the reduction in SiNx ARC layer thickness and (2) decreasing surface lifetime as the SiNx/Si interface transitions to an etch-solution/Si. Using in-situ PLI to guide the etching process, we demonstrate a full-area plated single-crystalline silicon device. In-situ PLI has the potential to be integrated into a commercial processing line to improve process control and reliability.

  1. In situ nucleophilic substitutional growth of methylammonium lead iodide polycrystals.

    Energy Technology Data Exchange (ETDEWEB)

    Acik, Muge [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Nanoscience and Technology Division; Alam, Todd M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Organic Materials Science; Guo, Fangmin [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division; Ren, Yang [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division; Lee, Byeongdu [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division; Rosenberg, Richard A. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division; Mitchell, JF [Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division; Kinaci, Alper [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Nanoscience and Technology Division; Chan, Maria [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Nanoscience and Technology Division; Darling, Seth B. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Nanoscience and Technology Division; Univ. of Chicago, IL (United States). Inst. for Molecular Engineering

    2017-01-01

    Methylammonium lead iodide (MAPbIx) perovskites are organic-inorganic semiconductors that serve as the light-harvesting component of the photovoltaics, and are desirable with their long diffusion length yielding power conversion efficiencies of ≥22%. Conventional techniques grow perovskites by spin coating precursors on an oxide or a polymer substrate followed by annealing, however, use of high boiling point solvents and high temperatures hinder device stability and performance. Through a one-step, acid-catalyzed nucleophilic-substitutional crystal growth in polar protic solvents, we show evidence for the substrate- and annealing- free production of MAPbIx polycrystals that are metallic-lead-free with negligibly small amount of PbI2 precipitation (<10%). On the basis of this chemical composition, we have devised an in situ growth of highly air (upto ~1.5 months) and thermally-stable (≤300°C), tetragonal-phased, variable-sized polycrystals (~100 nm-10 μm) amendable for large-area deposition, and ultimately, large-scale manufacturing. This method is encouraging for stable optoelectronic devices, and leads to energy-efficient and low-cost processing.

  2. In situ beamline analysis and correction of active optics.

    Science.gov (United States)

    Sutter, John; Alcock, Simon; Sawhney, Kawal

    2012-11-01

    At the Diamond Light Source, pencil-beam measurements have enabled long-wavelength slope errors on X-ray mirror surfaces to be examined under ultra-high vacuum and beamline mounting without the need to remove the mirror from the beamline. For an active mirror an automated procedure has been implemented to calculate the actuator settings that optimize its figure. More recently, this in situ pencil-beam method has been applied to additional uses for which ex situ measurements would be inconvenient or simply impossible. First, it has been used to check the stability of the slope errors of several bimorph mirrors at intervals of several weeks or months. Then, it also proved useful for the adjustment of bender and sag compensation actuators on mechanically bent mirrors. Fits to the bending of ideal beams have been performed on the slope errors of a mechanically bent mirror in order to distinguish curvatures introduced by the bending actuators from gravitational distortion. Application of the optimization procedure to another mechanically bent mirror led to an improvement of its sag compensation mechanism.

  3. In situ polymerization of polyaniline in wood veneers.

    Science.gov (United States)

    Trey, Stacy; Jafarzadeh, Shadi; Johansson, Mats

    2012-03-01

    The present study describes the possibility to polymerize aniline within wood veneers to obtain a semi-conducting material with solid wood acting as the base template. It was determined that it is possible to synthesize the intrinsically conductive polymer (ICP) polyaniline in situ within the wood structure of Southern yellow pine veneers, combining the strength of the natural wood structure with the conductivity of the impregnated polymer. It was found that polyaniline is uniformly dispersed within the wood structure by light microscopy and FT-IR imaging. A weight percent gain in the range of 3-12 wt % was obtained with a preferential formation in the wood structure and cell wall, rather than in the lumen. The modified wood was found to be less hydrophilic with the addition of phosphate doped polyaniline as observed by equilibrium water swelling studies. While wood itself is insulating, the modified veneers had conductivities of 1 × 10(-4) to 1 × 10(-9) S cm(-1), demonstrating the ability to tune the conductivity and allowing for materials with a wide range of applications, from anti-static to charge-dispersing materials. Furthermore, the modified veneers had lower total and peak heat releases, as determined by cone calorimetry, because of the char properties of the ICP. This is of interest if these materials are to be used in building and furniture applications where flame retardance is of importance. © 2012 American Chemical Society

  4. Reusable self-healing hydrogels realized via in situ polymerization.

    Science.gov (United States)

    Vivek, Balachandran; Prasad, Edamana

    2015-04-09

    In this work, a self-healing hydrogel has been prepared using in situ polymerization of acrylic acid and acrylamide in the presence of glycogen. The hydrogel was characterized using NMR, SEM, FT-IR, rheology, and dynamic light scattering (DLS) studies. The developed hydrogel exhibits self-healing properties at neutral pH, high swelling ability, high elasticity, and excellent mechanical strength. The hydrogel exhibits modulus values (G', G″) as high as 10(6) Pa and shows an exceptionally high degree of swelling ratio (∼3.5 × 10(3)). Further, the polymer based hydrogel adsorbs toxic metal ions (Cd(2+), Pb(2+), and Hg(2+)) and organic dyes (methylene blue and methyl orange) from contaminated water with remarkable efficiency (90-98%). The mechanistic analysis indicated the presence of pseudo-second-order reaction kinetics. The reusability of the hydrogel has been demonstrated by repeating the adsorption-desorption process over five cycles with identical results in the adsorption efficiency.

  5. Special Resins for Stereolithography: In Situ Generation of Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Gabriele Taormina

    2018-02-01

    Full Text Available The limited availability of materials with special properties represents one of the main limitations to a wider application of polymer-based additive manufacturing technologies. Filled resins are usually not suitable for vat photo-polymerization techniques such as stereolithography (SLA or digital light processing (DLP due to a strong increment of viscosity derived from the presence of rigid particles within the reactive suspension. In the present paper, the possibility to in situ generate silver nanoparticles (AgNPs starting from a homogeneous liquid system containing a well dispersed silver salt, which is subsequently reduced to metallic silver during stereolithographic process, is reported. The simultaneous photo-induced cross-linking of the acrylic resin produces a filled thermoset resin with thermal-mechanical properties significantly enhanced with respect to the unfilled resin, even at very low AgNPs concentrations. With this approach, the use of silver salts having carbon-carbon double bonds, such as silver acrylate and silver methacrylate, allows the formation of a nanocomposite structure in which the release of by-products is minimized due to the active role of all the reactive components in the three dimensional (3D-printing processes. The synergy, between this nano-technology and the geometrical freedom offered by SLA, could open up a wide spectrum of potential applications for such a material, for example in the field of food packaging and medical and healthcare sectors, considering the well-known antimicrobial effects of silver nanoparticles.

  6. The Effect of Surface Site Ensembles on the Activity and Selectivity of Ethanol Electrooxidation by Octahedral PtNiRh Nanoparticles.

    Science.gov (United States)

    Erini, Nina; Beermann, Vera; Gocyla, Martin; Gliech, Manuel; Heggen, Marc; Dunin-Borkowski, Rafal E; Strasser, Peter

    2017-06-01

    Direct ethanol fuel cells are attractive power sources based on a biorenewable, high energy-density fuel. Their efficiency is limited by the lack of active anode materials which catalyze the breaking of the C-C bond coupled to the 12-electron oxidation to CO 2 . We report shape-controlled PtNiRh octahedral ethanol oxidation electrocatalysts with excellent activity and previously unachieved low onset potentials as low as 0.1 V vs. RHE, while being highly selective to complete oxidation to CO 2 . Our comprehensive characterization and in situ electrochemical ATR studies suggest that the formation of a ternary surface site ensemble around the octahedral Pt 3 Ni 1 Rh x nanoparticles plays a crucial mechanistic role for this behavior. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. RhD Specific Antibodies Are Not Detectable in HLA-DRB11501* Mice Challenged with Human RhD Positive Erythrocytes

    Directory of Open Access Journals (Sweden)

    Lidice Bernardo

    2014-01-01

    Full Text Available The ability to study the immune response to the RhD antigen in the prevention of hemolytic disease of the fetus and newborn has been hampered by the lack of a mouse model of RhD immunization. However, the ability of transgenic mice expressing human HLA DRB11501* to respond to immunization with purified RhD has allowed this question to be revisited. In this work we aimed at inducing anti-RhD antibodies by administering human RhD+ RBCs to mice transgenic for the human HLA DRB11501* as well as to several standard inbred and outbred laboratory strains including C57BL/6, DBA1/J, CFW(SW, CD1(ICR, and NSA(CF-1. DRB11501* mice were additionally immunized with putative extracellular immunogenic RhD peptides. DRB11501* mice immunized with RhD+ erythrocytes developed an erythrocyte-reactive antibody response. Antibodies specific for RhD could not however be detected by flow cytometry. Despite this, DRB11501* mice were capable of recognizing immunogenic sequences of Rh as injection with Rh peptides induced antibodies reactive with RhD sequences, consistent with the presence of B cell repertoires capable of recognizing RhD. We conclude that while HLA DRB11501* transgenic mice may have the capability of responding to immunogenic sequences within RhD, an immune response to human RBC expressing RhD is not directly observed.

  8. A novel method for in-situ monitoring of local voltage, temperature and humidity distributions in fuel cells using flexible multi-functional micro sensors.

    Science.gov (United States)

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it.

  9. A Novel Method for In-Situ Monitoring of Local Voltage, Temperature and Humidity Distributions in Fuel Cells Using Flexible Multi-Functional Micro Sensors

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chang

    2011-01-01

    Full Text Available In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS. These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it.

  10. A Novel Method for In-Situ Monitoring of Local Voltage, Temperature and Humidity Distributions in Fuel Cells Using Flexible Multi-Functional Micro Sensors

    Science.gov (United States)

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it. PMID:22319361

  11. Methanol electro-oxidation and direct methanol fuel cell using Pt/Rh and Pt/Ru/Rh alloy catalysts

    International Nuclear Information System (INIS)

    Choi, Jong-Ho; Park, Kyung-Won; Park, In-Su; Nam, Woo-Hyun; Sung, Yung-Eun

    2004-01-01

    Pt-based binary or ternary catalysts containing Rh for use as anodes in direct methanol fuel cells (DMFC) were synthesized by borohydride reduction method combined with freeze-drying. The resulting catalysts had a specific surface area of approximately 65-75 m 2 /g. X-ray diffraction (XRD) patterns indicated that the catalysts were well alloyed and the average size of alloy catalysts was confirmed by transmission electron microscopy (TEM). The Pt/Rh (2:1) and Pt/Ru/Rh (5:4:1) alloy catalysts showed better catalytic activities for methanol electro-oxidation than Pt or Pt/Ru (1:1), respectively

  12. The solar wind at solar maximum: comparisons of EISCAT IPS and in situ observations

    Directory of Open Access Journals (Sweden)

    A. R. Breen

    Full Text Available The solar maximum solar wind is highly structured in latitude, longitude and in time. Coronal measurements show a very high degree of variability, with large variations that are less apparent within in situ spacecraft measurements. Interplanetary scintillation (IPS observations from EISCAT, covering distances from 20 to 100 solar radii (RS, are an ideal source of information on the inner solar wind and can be used, therefore, to cast light on its evolution with distance from the Sun. Earlier comparisons of in situ and IPS measurements under solar minimum conditions showed good large-scale agreement, particularly in the fast wind. In this study we attempt a quantitative comparison of measurements made over solar maximum by EISCAT (20–100 RS and the Wind and Ulysses spacecraft (at 215 RS and 300–1000 RS, respectively. The intervals studied were August–September 1999, May 2000, September 2000 and May 2001, the last-named being the period of the second Ulysses fast latitude scan. Both ballistic and – when possible – MHD/ballistic hybrid models were used to relate the data sets, and we compare the results obtained from these two mapping methods. The results of this study suggest that solar wind velocities measured in situ were less variable than those estimated from IPS measurements closer to the Sun, with the greatest divergence between IPS velocities and in situ measurements occurring in regions where steep longitudinal velocity gradients were seen in situ. We suggest that the interaction between streams of solar wind with different velocities leads to "smoothing" of solar wind velocities between 30–60 RS and 1 AU, and that this process continues at greater distances from the Sun.

    Key words. Interplanetary physics (solar wind plasma; sources of the solar wind; instruments and techniques

  13. A Radiation Hardened Housekeeping Slave Node (RH-HKSN) ASIC

    Data.gov (United States)

    National Aeronautics and Space Administration — This projects seeks to continue the development of the Radiation Hardened Housekeeping Slave Node (RH-HKSN) ASIC. The effort has taken parallel paths by implementing...

  14. Comparative frequency and allelic distribution of ABO and Rh (D ...

    African Journals Online (AJOL)

    Gourab Dewan

    2015-02-18

    Feb 18, 2015 ... desh and having borders with India and Myanmar (Fig. 1). It is a hilly area with ..... calculated allelic frequencies for ABO/Rh systems previously. Therefore, allelic .... in backward caste population of Uttar Pradesh, India. Not Sci.

  15. Frequency distribution 0f ABO, RH blood groups and blood ...

    African Journals Online (AJOL)

    user

    2006-11-16

    Nov 16, 2006 ... blood genotypes among the cell biology and genetics students of ... problem in some pregnancies when the mother is Rh – negative and the foetus ... electrophoresis technique was used to determine haemoglobin genotype.

  16. In situ Raman spectroscopy studies of bulk and surface metal

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.; Jehng, J.M.; Deo, G.; Guliants, V.V.; Benziger, J.B.

    1996-01-01

    Bulk V-P-O and model supported vanadia catalysts were investigated with in situ Raman spectroscopy during n-butane oxidation to maleic anhydride in order to determine the fundamental molecular structure-reactivity/selectivity insights that can be obtained from such experiments. The in situ Raman

  17. In situ investigation of catalysts for alcohol synthesis

    DEFF Research Database (Denmark)

    Duchstein, Linus Daniel Leonhard; Sharafutdinov, Irek; Wu, Qiongxiao

    consists of three complimentary in situ techniques: (1) Activity measurements based on a reactor connected to a gas chromatograph (GC), (2) In situ x-ray diffractometer (XRD) measurements based on a reactor cell connected to a mass spectrometer (MS), and (3) environmental TEM (ETEM) that allows...... distribution, measured both macroscopically (XRD) and microscopically (ETEM), with the catalytic activity....

  18. Development of the integrated in situ Lasagna process

    International Nuclear Information System (INIS)

    Ho, S.; Athmer, C.; Sheridan, P.

    1995-01-01

    Contamination in deep, low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in uniform delivery of treatment reagents have rendered existing in-situ methods such as bioremediation, vapor extraction, and pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites

  19. Development of an in situ polymeric hydrogel implant of ...

    African Journals Online (AJOL)

    Purpose: To prepare and characterize in situ gel-forming implants of methylprednisolone for the treatment of spinal cord injuries. Methods: In situ hydrogels of methylprednisolone were prepared by dispersing polylactide glycolic acid (PLGA) polymer and methylprednisolone in N-methyl-pyrrolidone solvent, and subsequent ...

  20. An overview of in situ waste treatment technologies

    International Nuclear Information System (INIS)

    Walker, S.; Hyde, R.A.; Piper, R.B.; Roy, M.W.

    1992-01-01

    In situ technologies are becoming an attractive remedial alternative for eliminating environmental problems. In situ treatments typically reduce risks and costs associated with retrieving, packaging, and storing or disposing-waste and are generally preferred over ex situ treatments. Each in situ technology has specific applications, and, in order to provide the most economical and practical solution to a waste problem, these applications must be understood. This paper presents an overview of thirty different in situ remedial technologies for buried wastes or contaminated soil areas. The objective of this paper is to familiarize those involved in waste remediation activities with available and emerging in situ technologies so that they may consider these options in the remediation of hazardous and/or radioactive waste sites. Several types of in situ technologies are discussed, including biological treatments, containment technologies, physical/chemical treatments, solidification/stabilization technologies, and thermal treatments. Each category of in situ technology is briefly examined in this paper. Specific treatments belonging to these categories are also reviewed. Much of the information on in situ treatment technologies in this paper was obtained directly from vendors and universities and this information has not been verified

  1. An expert support model for in situ soil remediation

    NARCIS (Netherlands)

    Okx, J.P.; Stein, A.

    2000-01-01

    This article presents an expert support model for in situ soil remediation. It combines knowledge and experiences obtained from previous in situ soil remediations. The aim of this model is to optimise knowledge transfer among the various parties involved in contaminated site management. Structured

  2. Some implications of in situ uranium mining technology development

    International Nuclear Information System (INIS)

    Cowan, C.E.; Parkhurst, M.A.; Cole, R.J.; Keller, D.; Mellinger, P.J.; Wallace, R.W.

    1980-09-01

    A technology assessment was initiated in March 1979 of the in-situ uranium mining technology. This report explores the impediments to development and deployment of this technology and evaluates the environmental impacts of a generic in-situ facility. The report is divided into the following sections: introduction, technology description, physical environment, institutional and socioeconomic environment, impact assessment, impediments, and conclusions

  3. In Situ Bioremediation of Energetic Compounds in Groundwater

    Science.gov (United States)

    2012-05-01

    negligible. Thus, this project clearly shows that in situ bioremediation of explosives in groundwater using active-passive cosubstrate addition can...Arlington, NJ, offices), the National Research Council (NRC) Biotechnology Research Institute (Montreal, Canada) and the Environmental Technology...NDAB are unlikely to accumulate during in situ anaerobic bioremediation explosives using cheese whey as a cosubstrate. 7.4 ADEQUATE DISTRIBUTION OF

  4. Comparison of in situ nutrient degradabilities of alternative by ...

    African Journals Online (AJOL)

    level of inclusion in the concentrate portion of lactating dairy cattle diets, ... Two rumen fistulated multiparous lactating Holstein cows were used for the in situ study. ... vitamins. Feeds were offered twice daily at 09:00 and 18:00. The in situ bag ...

  5. paediatric ureteric calculi: in-situ extracorporeal shock wave lithotripsy

    African Journals Online (AJOL)

    Objective To evaluate prospectively the efficacy of in-situ extracorporeal shock wave lithotripsy (ESWL) in the treatment of ureteric calculi in the paediatric age group. Patients and Methods Twenty children (aged 2.2 16 years) with 22 ureteric stones were evaluated and treated with in-situ ESWL using the Dornier S lithotripter ...

  6. Challenges in subsurface in situ remediation of chlorinated solvents

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Fjordbøge, Annika Sidelmann; Christiansen, Camilla Maymann

    2014-01-01

    Chlorinated solvent source zones in the subsurface pose a continuous threat to groundwater quality at many sites worldwide. In situ remediation of these sites is particularly challenging in heterogeneous fractured media and where the solvents are present as DNAPL. In situ remediation by chemical...

  7. Ontogenic and sexual differences in pituitary GnRH receptors and intracellular Ca2+ mobilization induced by GnRH.

    Science.gov (United States)

    Lacau-Mengido, I M; González Iglesias, A; Lux-Lantos, V; Libertun, C; Becú-Villalobos, D

    1998-04-01

    The present experiments were designed in order to elucidate the participation of the developing hypophysis in determining the changing sensitivity of gonadotrophins to gonadotropin-releasing hormone (GnRH) during ontogeny in the rat. To that end, we chose two well defined developmental ages that differ markedly in sexual and ontogenic characteristics of hypophyseal sensitivity to GnRH, 15 and 30 d. In order to study sex differences and the role of early sexual organization of the hypothalamus, experiments were carried out in males, females, and neonatally androgenized females (TP females). We evaluated (1) the characteristics of pituitary GnRH receptors, and (2) associated changes in GnRH-induced mobilization of intracellular Ca2+ (a second messenger involved in gonadotropins exocytosis). We measured binding characteristics of the GnRH analog D-Ser(TBu)6-des-Gly10-GnRH ethylamide in pituitary homogenates. We found that Kds did not vary among the different sex groups. Total number and concentration of receptors decreased in the female rat from 15-30 d of age, whereas in the male and TP female, receptors/pituitary increased, and the concentration/mg tissue did not change. Also, at 30 days of age, males presented higher content and concentration of receptors than females, and higher content than TP females. In order to evaluate if developmental and sexual differences in pituitary sensitivity to GnRH might be expressed through variations in the intracellular Ca2+ signal, we studied the mobilization of intracellular Ca2+ induced by GnRH (1 x 10(-8) to 1 x 10(-11) M) in a suspension of dispersed pituitary cells in the six groups. In cells from 15-d-old females, Ca2+ response was greater than in 30-d-old females at the doses of 10(-8) to 10(-10) M, indicating that in the infantile female rat activation of highly concentrated GnRH receptors is reflected in an increase in signal transduction mediated by Ca2+. In males and in female rats androgenized at birth, there was also

  8. Transfer Hydrogenation: Employing a Simple, In Situ Prepared Catalytic System

    KAUST Repository

    Ang, Eleanor Pei Ling

    2017-01-01

    Transfer hydrogenation has been recognized to be an important synthetic method in both academic and industrial research to obtain valuable products including alcohols. Transition metal catalysts based on precious metals, such as Ru, Rh and Ir

  9. Incomplete copolymer degradation of in situ chemotherapy.

    Science.gov (United States)

    Bourdillon, Pierre; Boissenot, Tanguy; Goldwirt, Lauriane; Nicolas, Julien; Apra, Caroline; Carpentier, Alexandre

    2018-02-17

    In situ carmustine wafers containing 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) are commonly used for the treatment of recurrent glioblastoma to overcome the brain-blood barrier. In theory, this chemotherapy diffuses into the adjacent parenchyma and the excipient degrades in maximum 8 weeks but no clinical data confirms this evolution, because patients are rarely operated again. A 75-year-old patient was operated twice for recurrent glioblastoma, and a carmustine wafer was implanted during the second surgery. Eleven months later, a third surgery was performed, revealing unexpected incomplete degradation of the wafer. 1H-Nuclear Magnetic Resonance was performed to compare this wafer to pure BCNU and to an unused copolymer wafer. In the used wafer, peaks corresponding to hydrophobic units of the excipient were no longer noticeable, whereas peaks of the hydrophilic units and traces of BCNU were still present. These surprising results could be related to the formation of a hydrophobic membrane around the wafer, thus interfering with the expected diffusion and degradation processes. The clinical benefit of carmustine wafers in addition to the standard radio-chemotherapy remains limited, and in vivo behavior of this treatment is not completely elucidated yet. We found that the wafer may remain after several months. Alternative strategies to deal with the blood-brain barrier, such as drug-loaded liposomes or ultrasound-opening, must be explored to offer larger drug diffusion or allow repetitive delivery.

  10. Backfilling of deposition tunnels, in situ alternative

    International Nuclear Information System (INIS)

    Keto, P.

    2007-04-01

    The backfilling process described in this report is based on in situ compaction of a mixture of bentonite and ballast (30:70) into the deposition tunnel. This method has been tested in practice in various field tests by SKB, most recently in the Prototype repository test performed at Aespoe HRL. The backfill mixture is prepared above ground and transported to the repository level with a tank truck. The material is compacted into layers with an inclination of 35 deg C and a thickness of approximately 20 cm. The compaction is performed with a vibratory plate attached to a boom of an excavator. In order to keep up with the required canister installation rate determined for the Finnish repository, at least 13 layers need to be compacted daily. This means working in 2-3 shifts on the working days that are available for backfilling operations. The dry densities achieved in field tests for the wall/roof section of the backfill have been insufficient compared with the dry density criteria set for the backfill. In theory, it may be possible to reach dry densities that fulfil the criteria, although with a relatively small safety margin. Another open issue is whether the mixture of bentonite and ballast has sufficient self-healing ability to seal-off erosion channels after the tunnels have been closed and the backfill has reached full saturation. (orig.)

  11. Enhancing in situ bioremediation with pneumatic fracturing

    International Nuclear Information System (INIS)

    Anderson, D.B.; Peyton, B.M.; Liskowitz, J.L.; Fitzgerald, C.; Schuring, J.R.

    1994-04-01

    A major technical obstacle affecting the application of in situ bioremediation is the effective distribution of nutrients to the subsurface media. Pneumatic fracturing can increase the permeability of subsurface formations through the injection of high pressure air to create horizontal fracture planes, thus enhancing macro-scale mass-transfer processes. Pneumatic fracturing technology was demonstrated at two field sites at Tinker Air Force Base, Oklahoma City, Oklahoma. Tests were performed to increase the permeability for more effective bioventing, and evaluated the potential to increase permeability and recovery of free product in low permeability soils consisting of fine grain silts, clays, and sedimentary rock. Pneumatic fracturing significantly improved formation permeability by enhancing secondary permeability and by promoting removal of excess soil moisture from the unsaturated zone. Postfracture airflows were 500% to 1,700% higher than prefracture airflows for specific fractured intervals in the formation. This corresponds to an average prefracturing permeability of 0.017 Darcy, increasing to an average of 0.32 Darcy after fracturing. Pneumatic fracturing also increased free-product recovery rates of number 2 fuel from an average of 587 L (155 gal) per month before fracturing to 1,647 L (435 gal) per month after fracturing

  12. In situ vitrification on buried waste

    International Nuclear Information System (INIS)

    Bates, S.O.

    1992-01-01

    In situ vitrification (ISV) is being evaluated as a remedial treatment technology for buried mixed and transuranic (TRU) wastes at the Subsurface Disposal Area (SDA) at Idaho National Engineering Laboratory (INEL) and can be related to buried wastes at other Department of Energy (DOE) sites. There are numerous locations around the DOE Complex where wastes were buried in the ground or stored for future burial. The Buried Waste Program (BWP) is conducting a comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation/feasibility study (RI/FS) for the Department of Energy - Field Office Idaho (DOE-ID). As part of the RI/FS, an ISV scoping study on the treatability of the SDA mixed low-level and mixed TRU waste is being performed for applicability to remediation of the waste at the Radioactive Waste Management Complex (RWMC). The ISV project being conducted at the INEL by EG ampersand G Idaho, Inc. consists of a treatability investigation to collect data to satisfy nine CERCLA criteria with regards to the SDA. This treatability investigation involves a series of experiments and related efforts to study the feasibility of ISV for remediation of mixed and TRU waste disposed of at the SDA

  13. In situ grouting of buried transuranic waste

    International Nuclear Information System (INIS)

    Spalding, B.P.; Lee, S.Y.

    1987-01-01

    This task is a demonstration and evaluation of the in situ hydrologic stabilization of buried transuranic waste at a humid site via grout injection. Two small trenches, containing buried transuranic waste, were filled with 34,000 liters of polyacrylamide grout. Initial field results have indicated that voids within the trenches were totally filled by the grout and that the intratrench hydraulic conductivity was reduced to below field-measurable values. The grout was also completely contained within the two trenches as no grout constituents were observed in the 12 perimeter ground water monitoring wells. Polyacrylamide grout was selected for field demonstration over polyacrylate grout because of its superior performance in laboratory degradation studies. Also supporting the selection of polyacrylamide was the difficulty of controlling the set time of the acrylate polymerization process in the presence of potassium ferricyanide. Based on preliminary degradation monitoring, polyacrylamide was estimated to have a microbiological half-life of 115 years in the test soil. However, this calculated value is likely to be conservatively low because microbial degradation of the grout set accelerator or residual monomer may be contributing most to the measured microbial respiration. Addition work, using 14 C-labeled acrylate and acrylamide grouts, is being carried out to more accurately estimate the grouts' microbiological half-life

  14. In Situ Immobilization of Selenium in Sediment

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stewart, Thomas Austin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    This project focused on the use of a sorbent, carbonated apatite, to immobilize selenium in the environment. It is know that apatite will sorb selenium and based on the mechanism of sorption it is theorized that carbonated apatite will be more effective that pure apatite. Immobilization of selenium in the environment is through the use of a sorbent in a permeable reactive barrier (PRB). A PRB can be constructed by trenching and backfill with the sorbent or in the case of apatite as the sorbent formed in situ using the apatite forming solution of Moore (2003, 2004). There is very little data on selenium sorption by carbonated apatite in the literature. Therefore, in this work, the basic sorptive properties of carbonated apatite were investigated. Carbonated apatite was synthesized by a precipitation method and characterized. Batch selenium kinetic and equilibrium experiments were performed. The results indicate the carbonated apatite contained 9.4% carbonate and uptake of selenium as selenite was rapid; 5 hours for complete uptake of selenium vs. more than 100 hours for pure hydroxyapatite reported in the literature. Additionally, the carbonated apatite exhibited significantly higher distribution coefficients in equilibrium experiments than pure apatite under similar experimental conditions. The next phase of this work will be to seek additional funds to continue the research with the goal of eventually demonstrating the technology in a field application.

  15. In situ biodenitrification of nitrate surface water

    International Nuclear Information System (INIS)

    Schmidt, G.C.; Ballew, M.B.

    1995-01-01

    The US Department of Energy's Weldon Spring Site Remedial Action Project has successfully operated a full-scale in situ biodenitrification system to treat water with elevated nitrate levels in abandoned raffinate pits. Bench- and pilot-scale studies were conducted to evaluate the feasibility of the process and to support its full-scale design and application. Bench testing evaluated variables that would influence development of an active denitrifying biological culture. The variables were carbon source, phosphate source, presence and absence of raffinate sludge, addition of a commercially available denitrifying microbial culture, and the use of a microbial growth medium. Nitrate levels were reduced from 750 mg/L NO 3 -N to below 10 mg/L NO 3 -N within 17 days. Pilot testing simulated the full-scale process to determine if nitrate levels could be reduced to less than 10 mg/L NO 3 -N when high levels are present below the sludge surface. Four separate test systems were examined along with two control systems. Nitrates were reduced from 1,200 mg/L NO 3 -N to below 2 mg/L NO 3 -N within 21 days. Full-scale operation has been initiated to denitrify 900,000-gal batches alternating between two 1-acre ponds. The process used commercially available calcium acetate solution and monosodium/disodium phosphate solution as a nutrient source for indigenous microorganisms to convert nitrates to molecular nitrogen and water

  16. In situ vitrification: Process and products

    International Nuclear Information System (INIS)

    Kindle, C.; Koegler, S.

    1991-06-01

    In situ vitrification (ISV) is an electrically powered thermal treatment process that converts soil into a chemically inert and stable glass and crystalline product. It is similar in concept to bringing a simplified glass manufacturing process to a site and operating it in the ground, using the soil as a glass feed stock. Gaseous emissions are contained, scrubbed, and filtered. When the process is completed, the molten volume cools producing a block of glass and crystalline material that resembles natural obsidian commingled with crystalline phases. The product passes US Environmental Protection Agency (EPA) leach resistance tests, and it can be classified as nonhazardous from a chemical hazard perspective. ISV was developed by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) for application to contaminated soils. It is also being adapted for applications to buried waste, underground tanks, and liquid seepage sites. ISV's then-year development period has included tests on many different site conditions. As of January 1991 there have been 74 tests using PNL's ISV equipment; these tests have ranged from technology development tests using nonhazardous conditions to hazardous and radioactive tests. 2 refs., 6 figs., 7 tabs

  17. Assessment of a biological in situ remediation

    International Nuclear Information System (INIS)

    Wuerdemann, H.; Lund, N.C.; Gudehus, G.

    1995-01-01

    A field experiment using a bioventing technique has been conducted at the center of contamination at a former gasworks site for 3 years. The emphasis of this investigation is to determine the efficiency of in situ remediation. Due to an extremely heterogeneous distribution of contamination it was impossible to satisfactorily quantify the reduction of hydrocarbons. However, a comparison of highly contaminated soil samples shows a qualitative alteration. The analyses of pollutant composition reveal a significant decrease of low condensed PAHs up to anthracene. The relative increase of high condensed PAHs in the contaminant composition indicates a PAH degradation of 54%. Soil respiration is used to assess the course of remediation. Continuous monitoring of O 2 and CO 2 in the used air leads to an amount of about 2,400 kg of decomposed organics. Large-scale elution tests show a reduction of the sum parameters for the organic pollution of the flushing water of 80%. The PAHs have dropped about 97%. The Microtox test indicates a detoxification of 98%

  18. In-situ combustion with solvent injection

    Energy Technology Data Exchange (ETDEWEB)

    D' Silva, J.; Kakade, G. [Society of Petroleum Engineers, Kuala Lumpur (Malaysia)]|[Maharashtra Inst. of Technology, Pune (India)

    2008-10-15

    The effects of combining in situ combustion and heavy hydrocarbon naphtha vapor injection techniques in a heavy oil reservoir were investigated. Oil production rates and steam injection efficiencies were considered. The technique was also combined with toe-to-heel air injection (THAI) processes. The study showed that the modified THAI process achieved high rates of recovery for both primary production and as a follow-up technique in partially depleted reservoirs after cyclic steam and cold production. Oil produced using the modified THAI technique was also partially upgraded by the process. Results of the vapour chamber pressure calculations showed that the volume of oil produced by naphtha assisted gravity drainage was between 1 to 3 times higher than amounts of oil produced by SAGD processes during the same amount of time. The naphtha injection process produced more oil than the steam only process. However, high amounts of naphtha were needed to produce oil. Injection and production rates during the naphtha injection process were higher. Naphtha vapor was injected near the heel of a horizontal producer well. The vapor acted as a thermal and diluent mechanism in order to reduce the viscosity of the heavy oil . 9 refs., 4 tabs., 6 figs.

  19. The Oxford-Diamond In Situ Cell for studying chemical reactions using time-resolved X-ray diffraction

    Science.gov (United States)

    Moorhouse, Saul J.; Vranješ, Nenad; Jupe, Andrew; Drakopoulos, Michael; O'Hare, Dermot

    2012-08-01

    A versatile, infrared-heated, chemical reaction cell has been assembled and commissioned for the in situ study of a range of chemical syntheses using time-resolved energy-dispersive X-ray diffraction (EDXRD) on Beamline I12 at the Diamond Light Source. Specialized reactor configurations have been constructed to enable in situ EDXRD investigation of samples under non-ambient conditions. Chemical reactions can be studied using a range of sample vessels such as alumina crucibles, steel hydrothermal autoclaves, and glassy carbon tubes, at temperatures up to 1200 °C.

  20. Regulation versus modulation in GnRH receptor function

    International Nuclear Information System (INIS)

    Zolman, J.C.; Theodoropoulos, T.J.

    1985-01-01

    Serum luteinizing hormone (LH) concentration after exposure to gonadotropin-releasing hormone (GnRH) indicates that an instantaneous increase occurs in the rate of release of LH directly from the anterior pituitary, as measured dynamically during superfusion in vitro. On the other hand, estradiol-17 beta (E2) alone shows no such instantaneous effect on LH release rate (at least for the first four hours), in either physiologic or pharmacologic concentrations. At the same time, brief (ten to 30 minute) exposure of isolated anterior pituitary plasma membranes to physiologic concentrations of E2 significantly alters the binding of a fully biologically active 125 I-GnRH to its plasma membrane receptor protein. In order to characterize the effect of E2 on GnRH binding further, dispersed bovine anterior pituitary cells were preincubated for six hours in the presence or absence of physiologic concentrations of E2 (10(-10)M). Following preincubation in the presence of E2, the cell suspension was incubated for 30 minutes with physiologic concentrations (5 x 10(-11) - 5 x 10(-10)M) of a fully biologically active 125 I-GnRH. The treatment, at least, doubled the number of biologically important high affinity GnRH binding sites (Kd's . 7.5 x -10(-11) - 4.5 x 10(-10)M), and changed the binding capacity of some of the binding sites up to three fold, which altered the cooperativity of GnRH-receptor interaction. Thus, the interaction of E2 with GnRH at the level of GnRH receptor is mandatory for the short-term pituitary effect of E2 on LH release in vitro and in vivo

  1. Reorientation precession measurements of quadrupole moments in 103Rh

    International Nuclear Information System (INIS)

    Gelberg, A.; Herskind, B.; Kalish, R.; Neiman, M.

    1976-01-01

    The quadrupole moments of the 3/2 - and 5/2 - states in 103 Rh have been determined by measuring the precession of the gamma-ray angular distribution following Coulomb excitation; 16 O and 32 S beams have been used. The structure of the negative-parity states in 103 Rh is found to be in agreement with the model of Arima and Iachello. (orig.) [de

  2. The Rh allele frequencies in Gaza city in Palestine

    Directory of Open Access Journals (Sweden)

    Skaik Younis

    2011-01-01

    Full Text Available Background: The Rh blood group system is the second most clinically significant blood group system. It includes 49 antigens, but only five (D, C, E, c and e are the most routinely identified due to their unique relation to hemolytic disease of the newborn (HDN and transfusion reactions. Frequency of the Rh alleles showed variation, with regard to race and ethnic. Objectives: The purpose of the study was to document the Rh alleles′ frequencies amongst males (M and females (F in Gaza city in Palestine. Materials and Methods: Two hundred and thirty-two blood samples (110 M and 122 F were tested against monoclonal IgM anti-C,anti-c, anti-E, anti-e and a blend of monoclonal/polyclonal IgM/IgG anti-D. The expected Rh phenotypes were calculated using gene counting method. Results: The most frequent Rh antigen in the total sample was e, while the least frequent was E.The order of the combined Rh allele frequencies in both M and F was CDe > cDe > cde > CdE > cDE > Cde > CDE. A significant difference was reported between M and F regarding the phenotypic frequencies (P < 0.05. However, no significance (P > 0.05 was reported with reference to the observed and expected Rh phenotypic frequencies in either M or F students. Conclusion: It was concluded that the Rh antigens, alleles and phenotypes in Gaza city have unique frequencies, which may be of importance to the Blood Transfusion Center in Gaza city and anthropology.

  3. PROSCARA Inc. in-situ burning summary paper

    International Nuclear Information System (INIS)

    1994-06-01

    In-situ burning as a viable response tactic in the event of an oil spill, was discussed. Key factors which influence a decision to use burning were enumerated, including a detailed analysis of the environmental effects of in-situ burning on soils. The critical parameters were time, soil heating and extent of oil penetration into the soil. It was noted that on water-saturated and frozen soil in-situ burning had no adverse effects. The advantages and disadvantages of in-situ burning vis-a-vis conventional mechanical recovery were discussed. Factors that do, and factors that do not support decisions in favour of in-situ burning were listed. 4 refs., 2 tabs

  4. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography

    Directory of Open Access Journals (Sweden)

    C. Mueller

    2015-09-01

    Full Text Available We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA. The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.

  5. Low Cost Al-Si Casting Alloy As In-Situ Composite for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.

    2000-01-01

    A new aluminum-silicon (Al-Si) alloy has been successfully developed at NASA- Marshall Space Flight Center (MSFC) that has significant improvement in tensile and fatigue strength at elevated temperatures (500 F-700 F). The alloy offers a number of benefits such as light weight, high hardness, low thermal expansion and high surface wear resistance. In hypereutectic form, this alloy is considered as an in-situ Al-Si composite with tensile strength of about 90% higher than the auto industry 390 alloy at 600 F. This composite is very economically produced by using either conventional permanent steel molds or die casting. The projected material cost is less than $0.90 per pound, and automotive components such as pistons can be cast for high production rate using conventional casting techniques with a low and fully accounted cost. Key Words: Metal matrix composites, In-situ composite, aluminum-silicon alloy, hypereutectic alloy, permanent mold casting, die casting.

  6. In Situ Thermal Generation of Silver Nanoparticles in 3D Printed Polymeric Structures

    Science.gov (United States)

    Fantino, Erika; Chiappone, Annalisa; Calignano, Flaviana; Fontana, Marco; Pirri, Fabrizio; Roppolo, Ignazio

    2016-01-01

    Polymer nanocomposites have always attracted the interest of researchers and industry because of their potential combination of properties from both the nanofillers and the hosting matrix. Gathering nanomaterials and 3D printing could offer clear advantages and numerous new opportunities in several application fields. Embedding nanofillers in a polymeric matrix could improve the final material properties but usually the printing process gets more difficult. Considering this drawback, in this paper we propose a method to obtain polymer nanocomposites by in situ generation of nanoparticles after the printing process. 3D structures were fabricated through a Digital Light Processing (DLP) system by disolving metal salts in the starting liquid formulation. The 3D fabrication is followed by a thermal treatment in order to induce in situ generation of metal nanoparticles (NPs) in the polymer matrix. Comprehensive studies were systematically performed on the thermo-mechanical characteristics, morphology and electrical properties of the 3D printed nanocomposites. PMID:28773716

  7. In Situ Thermal Generation of Silver Nanoparticles in 3D Printed Polymeric Structures

    Directory of Open Access Journals (Sweden)

    Erika Fantino

    2016-07-01

    Full Text Available Polymer nanocomposites have always attracted the interest of researchers and industry because of their potential combination of properties from both the nanofillers and the hosting matrix. Gathering nanomaterials and 3D printing could offer clear advantages and numerous new opportunities in several application fields. Embedding nanofillers in a polymeric matrix could improve the final material properties but usually the printing process gets more difficult. Considering this drawback, in this paper we propose a method to obtain polymer nanocomposites by in situ generation of nanoparticles after the printing process. 3D structures were fabricated through a Digital Light Processing (DLP system by disolving metal salts in the starting liquid formulation. The 3D fabrication is followed by a thermal treatment in order to induce in situ generation of metal nanoparticles (NPs in the polymer matrix. Comprehensive studies were systematically performed on the thermo-mechanical characteristics, morphology and electrical properties of the 3D printed nanocomposites.

  8. Gas-phase advanced oxidation for effective, efficient in situ control of pollution

    DEFF Research Database (Denmark)

    Johnson, Matthew Stanley; Nilsson, Elna Johanna Kristina; Svensson, Erik Anders

    2014-01-01

    In this article, gas-phase advanced oxidation, a new method for pollution control building on the photo-oxidation and particle formation chemistry occurring in the atmosphere, is introduced and characterized. The process uses ozone and UV-C light to produce in situ radicals to oxidize pollution......, generating particles that are removed by a filter; ozone is removed using a MnO2 honeycomb catalyst. This combination of in situ processes removes a wide range of pollutants with a comparatively low specific energy input. Two proof-of-concept devices were built to test and optimize the process...... particulate mass. Secondary pollution including formaldehyde and ultrafine particles might be generated, depending on the composition of the primary pollution....

  9. Elementary Steps of Faujasite Formation Followed by in Situ Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prodinger, Sebastian [Institute; Vjunov, Aleksei [Institute; Hu, Jian Zhi [Institute; Fulton, John L. [Institute; Camaioni, Donald M. [Institute; Derewinski, Miroslaw A. [Institute; Lercher, Johannes A. [Institute; Department

    2018-01-24

    Ex situ and in situ spectroscopy was used to identify the kinetics of processes during the formation of the faujasite (FAU) zeolite lattice from a hydrous gel. Using solid-state 27Al MAS NMR, the autocatalytic transformation from the amorphous gel into the crystalline material was monitored. Al-XANES shows that most Al already adopts a tetrahedral coordination in the X-ray-amorphous aluminosilicate at the beginning of the induction period, which hardly changes throughout the rest of the synthesis. Using 23Na NMR spectroscopy, environments in the growing zeolite crystal were identified and used to define the processes in the stepwise formation of the zeolite lattice. The end of the induction period was accompanied by a narrowing of the 27Al and 23Na MAS NMR peak widths, indicating the increased long-range order. The experiments show conclusively that the formation of faujasite occurs via the continuous formation and subsequent condensation of intermediary sodalite-like units that constitute the key building block of the zeolite. Acknowledgement The authors thank T. Huthwelker for assistance with XAFS experiment setup at the Swiss Light Source (PSI, Switzerland). Further, we would like to acknowledge V. Shutthanandan and B.W. Arey for performing Helium ion microscopy as well as Z. Zhao, N.R. Jaeger, M. Weng, C. Wan and M. Hu for aiding in the NMR experimental procedure. T. Varga is acknowledged for his help with the capillary XRD. A.V., D.M.C., J.H., J.L.F and J.A.L. were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. S.P. and M.A.D. acknowledge support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under Laboratory Directed Research & Development Program at PNNL. The in situ NMR experiments were supported by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences. Part of the research

  10. Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch

    Directory of Open Access Journals (Sweden)

    R. Fierz-Schmidhauser

    2010-03-01

    Full Text Available Ambient relative humidity (RH determines the water content of atmospheric aerosol particles and thus has an important influence on the amount of visible light scattered by particles. The RH dependence of the particle light scattering coefficient (σsp is therefore an important variable for climate forcing calculations. We used a humidification system for a nephelometer which allows for the measurement of σsp at a defined RH in the range of 20–95%. In this paper we present measurements of light scattering enhancement factors f(RHsp(RHsp(dry from a 1-month campaign (May 2008 at the high alpine site Jungfraujoch (3580 m a.s.l., Switzerland. Measurements at the Jungfraujoch are representative for the lower free troposphere above Central Europe. For this aerosol type hardly any information about the f(RH is available so far. At this site, f(RH=85% varied between 1.2 and 3.3. Measured f(RH agreed well with f(RH calculated with Mie theory using measurements of the size distribution, chemical composition and hygroscopic diameter growth factors as input. Good f(RH predictions at RH<85% were also obtained with a simplified model, which uses the Ångström exponent of σsp(dry as input. RH influences further intensive optical aerosol properties. The backscatter fraction decreased by about 30% from 0.128 to 0.089, and the single scattering albedo increased on average by 0.05 at 85% RH compared to dry conditions. These changes in σsp, backscatter fraction and single scattering albedo have a distinct impact on the radiative forcing of the Jungfraujoch aerosol.

  11. A first-principles study of the possible magnetism of Rh in the Cu/Rh/Cu(001) system

    CERN Document Server

    Jang, Y R; Chang, C S; Cho, L H; Lee, J I

    1999-01-01

    Possible 4d magnetism of a Rh monolayer in a Cu/Rh/Cu(001) system is investigated using the full-potential linearized augmented-plane-wave (FLAPW) energy band method based on the local-spin-density approximation (LSDA). We have calculated the total energy of the Cu/Rh/Cu(001) system and have found that the Rh monolayer is ferromagnetic (FM) with a tiny magnetic moment. However, the total energy difference between the ferromagnetic and the paramagnetic states is found to be very small, and thus which state can be realized at room temperature is uncertain. The calculated charge densities and layer-projected density of states (LDOS) are presented and discussed in relation to the magnetic properties.

  12. Comparison of Fluorescence In Situ Hybridization and Chromogenic In Situ Hybridization for Low and High Throughput HER2 Genetic Testing

    DEFF Research Database (Denmark)

    Poulsen, Tim S; Espersen, Maiken Lise Marcker; Kofoed, Vibeke

    2013-01-01

    cancer patients with HER2 immunohistochemistry (IHC) results scored as 0/1+, 2+, and 3+. HER2 genetic status was analysed using chromogenic in situ hybridization (CISH) and fluorescence in situ hybridization (FISH). Scoring results were documented through digital image analysis. The cancer region...

  13. An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale.

    Science.gov (United States)

    Alstadt, Kristin N; Katti, Dinesh R; Katti, Kalpana S

    2012-04-01

    Step-scan photoacoustic infrared spectroscopy experiments were performed on Green River oil shale samples obtained from the Piceance Basin located in Colorado, USA. We have investigated the molecular nature of light and dark colored areas of the oil shale core using FTIR photoacoustic step-scan spectroscopy. This technique provided us with the means to analyze the oil shale in its original in situ form with the kerogen-mineral interactions intact. All vibrational bands characteristic of kerogen were found in the dark and light colored oil shale samples confirming that kerogen is present throughout the depth of the core. Depth profiling experiments indicated that there are changes between layers in the oil shale molecular structure at a length scale of micron. Comparisons of spectra from the light and dark colored oil shale core samples suggest that the light colored regions have high kerogen content, with spectra similar to that from isolated kerogen, whereas, the dark colored areas contain more mineral components which include clay minerals, dolomite, calcite, and pyrite. The mineral components of the oil shale are important in understanding how the kerogen is "trapped" in the oil shale. Comparing in situ kerogen spectra with spectra from isolated kerogen indicate significant band shifts suggesting important nonbonded molecular interactions between the kerogen and minerals. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. MENDING THE IN SITU MANIPULATION BARRIER

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN, S.W.

    2006-02-06

    In early 2004, the U.S. Department of Energy (DOE) Richland and Fluor Hanford requested technical assistance from the DOE Headquarters EM-23 Technical Assistance Program to provide a team of technical experts to develop recommendations for mending the In Situ Redox Manipulation (ISRM) Barrier in the 100-D Area of the Hanford Site in Washington State. To accommodate this request, EM-23 provided support to convene a group of technical experts from industry, a national laboratory, and a DOE site to participate in a 2 1/2-day workshop with the objective of identifying and recommending options to enhance the performance of the 100-D Area reactive barrier and of a planned extension to the northeast. This report provides written documentation of the team's findings and recommendations. In 1995, a plume of dissolved hexavalent chromium [Cr(VI)], which resulted from operation of the D/DR Reactors at the Hanford site, was discovered along the Columbia River shoreline and in the 100-D Area. Between 1999 and 2003, a reactive barrier using the In Situ Redox Manipulation (ISRM) technology, was installed a distance of 680 meters along the river to reduce the Cr(VI) in the groundwater. The ISRM technology creates a treatment zone within the aquifer by injection of sodium dithionite, a strong reducing agent that scavenges dissolved oxygen (DO) from the aquifer and reduces ferric iron [Fe(III)], related metals, and oxy-ions. The reduction of Fe(III) to ferrous [Fe(II)] iron provides the primary reduction capacity to reduce Cr(VI) to the +3 state, which is less mobile and less toxic. Bench-scale and field-scale treatability tests were initially conducted to demonstrate proof-of principle and to provide data for estimation of barrier longevity. These calculations estimated barrier longevity in excess of twenty years. However, several years after initial and secondary treatment, groundwater in a number of wells has been found to contain elevated chromium (Cr) concentrations

  15. In Situ Hydrocarbon Degradation by Indigenous Nearshore Bacterial Populations

    International Nuclear Information System (INIS)

    Cherrier, J.

    2005-01-01

    Potential episodic hydrocarbon inputs associated with oil mining and transportation together with chronic introduction of hydrocarbons via urban runoff into the relatively pristine coastal Florida waters poses a significant threat to Florida's fragile marine environment. It is therefore important to understand the extent to which indigenous bacterial populations are able to degrade hydrocarbon compounds and also determine factors that could potentially control and promote the rate at which these compounds are broken down in situ. Previous controlled laboratory experiments carried out by our research group demonstrated that separately both photo-oxidation and cometabolism stimulate bacterial hydrocarbon degradation by natural bacterial assemblages collected from a chronically petroleum contaminated site in Bayboro Bay, Florida. Additionally, we also demonstrated that stable carbon and radiocarbon abundances of respired CO 2 could be used to trace in situ hydrocarbon degradation by indigenous bacterial populations at this same site. This current proposal had two main objectives: (a) to evaluate the cumulative impact of cometabolism and photo-oxidation on hydrocarbon degradation by natural bacterial assemblages collected the same site in Bayboro Bay, Florida and (b) to determine if in situ hydrocarbon degradation by indigenous bacterial populations this site could be traced using natural radiocarbon and stable carbon abundances of assimilated bacterial carbon. Funds were used for 2 years of full support for one ESI Ph.D. student, April Croxton. To address our first objective a series of closed system bacterial incubations were carried out using photo-oxidized petroleum and pinfish (i.e. cometabolite). Bacterial production of CO 2 was used as the indicator of hydrocarbon degradation and (delta) 13 C analysis of the resultant CO 2 was used to evaluate the source of the respired CO 2 (i.e. petroleum hydrocarbons or the pinfish cometabolite). Results from these time

  16. Environmental monitoring with in-situ gamma spectrometer; Umweltueberwachung mit in-situ-Gamma-Spektrometer

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, S. [ENVINET GmbH, Haar (Germany)

    2014-01-20

    The in-situ gamma spectroscopy allows large area and continuous monitoring of the radio nuclides and there composition in the environment. In comparison to the gamma dose rate measurement the additional spectral information gives the possibility for a quick and effective action in the case of a man-made radiation exposition in the environment. The knowledge respectively localization of the possible nuclides, which a responsible for the increased dose rate, supports responsible organization in the quick identification of the situation, definition of the actions and tracking of the temporal and local process of the radiation exposition. Due to dedicate actions the risk for people and environment is reduced.

  17. High Fidelity In Situ Shoulder Dystocia Simulation

    Directory of Open Access Journals (Sweden)

    Andrew Pelikan, MD

    2018-04-01

    Full Text Available Audience: Resident physicians, emergency department (ED staff Introduction: Precipitous deliveries are high acuity, low occurrence in most emergency departments. Shoulder dystocia is a rare but potentially fatal complication of labor that can be relieved by specific maneuvers that must be implemented in a timely manner. This simulation is designed to educate resident learners on the critical management steps in a shoulder dystocia presenting to the emergency department. A special aspect of this simulation is the unique utilization of the “Noelle” model with an instructing physician at bedside maneuvering the fetus through the stations of labor and providing subtle adjustments to fetal positioning not possible though a mechanized model. A literature search of “shoulder dystocia simulation” consists primarily of obstetrics and mid-wife journals, many of which utilize various mannequin models. None of the reviewed articles utilized a bedside provider maneuvering the fetus with the Noelle model, making this method unique. While the Noelle model is equipped with a remote-controlled motor that automatically rotates and delivers the baby either to the head or to the shoulders and can produce a turtle sign and which will prevent delivery of the baby until signaled to do so by the instructor, using the bedside instructor method allows this simulation to be reproduced with less mechanistically advanced and lower cost models.1-5 Objectives: At the end of this simulation, learners will: 1 Recognize impending delivery and mobilize appropriate resources (ie, both obstetrics [OB] and NICU/pediatrics; 2 Identify risk factors for shoulder dystocia based on history and physical; 3 Recognize shoulder dystocia during delivery; 4 Demonstrate maneuvers to relieve shoulder dystocia; 5 Communicate with team members and nursing staff during resuscitation of a critically ill patient. Method: High-fidelity simulation. Topics: High fidelity, in situ, Noelle model

  18. Cost performance assessment of in situ vitrification

    International Nuclear Information System (INIS)

    Showalter, W.E.; Letellier, B.C.; Booth, S.R.; Barnes-Smith, P.

    1992-01-01

    In situ vitrification (ISV) is a thermal treatment technology with promise for the destruction or immobilization of hazardous materials in contaminated soils. It has developed over the past decade to a level of maturity where meaningful cost effectiveness studies may be performed. The ISV process melts 4 to 25 m 2 of undisturbed soil to a maximum depth of 6 m into an obsidian-like glass waste form by applying electric current (3750 kill) between symmetrically spaced electrodes. Temperatures of approximately 2000 degree C drive off and destroy complex organics which are captured in an off-gas treatment system, while radio-nuclides are incorporated into the homogeneous glass monolith. A comparative life-cycle cost evaluation between mobile rotary kiln incineration and ISV was performed to quantitatively identify appropriate performance regimes and components of cost which are sensitive to the implementation of each technology. Predictions of melt times and power consumption were obtained from an ISV performance model over ranges of several parameters including electrode spacing, soil moisture, melt depth, electrical resistivity, and soil density. These data were coupled with manpower requirements, capitalization costs, and a melt placement optimization routine to allow interpolation over a wide variety of site characteristics. For the purpose of this study, a single site scenario representative of a mixed waste evaporation pond was constructed. Preliminary comparisons between ISV and incineration show that while operating costs are comparable, ISV avoids secondary treatment and monitored storage of radioactive waste that would be required following conventional incineration. It is the long term storage of incinerated material that is the most expensive component

  19. In-Situ Roughening of Polymeric Microstructures

    Science.gov (United States)

    Shadpour, Hamed; Allbritton, Nancy L.

    2010-01-01

    A method to perform in-situ roughening of arrays of microstructures weakly adherent to an underlying substrate was presented. SU8, 1002F, and polydimethylsiloxane (PDMS) microstructures were roughened by polishing with a particle slurry. The roughness and the percentage of dislodged or damaged microstructures was evaluated as a function of the roughening time for both SU8 and 1002F structures. A maximal RMS roughness of 7-18 nm for the surfaces was obtained within 15 to 30 s of polishing with the slurry. This represented a 4-9 fold increase in surface roughness relative to that of the native surface. Less than 0.8% of the microstructures on the array were removed or damage after 5 min of polishing. Native and roughened arrays were assessed for their ability to support fibronectin adhesion and cell attachment and growth. The quantity of adherent fibronectin was increased on roughened arrays by two-fold over that on native arrays. Cell adhesion to the roughened surfaces was also increased compared to native surfaces. Surface roughening with the particle slurry also improved the ability to stamp molecules onto the substrate during microcontact printing. Roughening both the PDMS stamp and substrate resulted in up to a 20-fold improvement in the transfer of BSA-Alexa Fluor 647 from the stamp to the substrate. Thus roughening of micron-scale surfaces with a particle slurry increased the adhesion of biomolecules as well as cells to microstructures with little to no damage to large scale arrays of the structures. PMID:20423129

  20. Update of the evaluation of the cross section of the neutron dosimetry reaction 103Rh(n,n')103mRh

    International Nuclear Information System (INIS)

    Pavlik, A.; Miah, M.M.H.; Strohmaier, B.; Vonach, H.

    1995-10-01

    On the occasion of a new measurement of the excitation function of the reaction 103 Rh(n,n') 103m Rh in the energy range between 5.69 and 12.0 MeV performed at the present institute in collaboration wit the PTB Braunschweig, the cross section of this reaction, which is part of the International Reactor Dosimetry Field (IRDF-90), was re-evaluated. Whereas the energy range of the evaluation, namely from threshold to 20 MeV, was kept unchanged with respect to IRDF-90, the underlying data base was extended by the experiment mentioned as well as by another measurement, and revised with regard to judgement and normalization of older data in the light of recent information. Based on the experimental data upgraded in this way, new model calculations were carried out, which in the energy region 14 - 20 MeV served to supplement the experimental cross sections for this evaluation. The cross sections and their uncertainties were evaluated in energy groups with widths of 0.2 to 1.0 MeV, and the relative correlation matrix of the evaluated cross sections at the different energies was calculated. The results presented here supersede the corresponding values published in Physics Data 13-5 and included to the IRDF-90. (author). 26 refs, 4 figs, 6 tabs

  1. Thermal Methane Conversion to Syngas Mediated by Rh1-Doped Aluminum Oxide Cluster Cations RhAl3O4.

    Science.gov (United States)

    Li, Ya-Ke; Yuan, Zhen; Zhao, Yan-Xia; Zhao, Chongyang; Liu, Qing-Yu; Chen, Hui; He, Sheng-Gui

    2016-10-05

    Laser ablation generated RhAl 3 O 4 + heteronuclear metal oxide cluster cations have been mass-selected using a quadrupole mass filter and reacted with CH 4 or CD 4 in a linear ion trap reactor under thermal collision conditions. The reactions have been characterized by state-of-the-art mass spectrometry and quantum chemistry calculations. The RhAl 3 O 4 + cluster can activate four C-H bonds of a methane molecule and convert methane to syngas, an important intermediate product in methane conversion to value-added chemicals. The Rh atom is the active site for activation of the C-H bonds of methane. The high electron-withdrawing capability of Rh atom is the driving force to promote the conversion of methane to syngas. The polarity of Rh oxidation state is changed from positive to negative after the reaction. This study has provided the first example of methane conversion to syngas by heteronuclear metal oxide clusters under thermal collision conditions. Furthermore, the molecular level origin has been revealed for the condensed-phase experimental observation that trace amounts of Rh can promote the participation of lattice oxygen of chemically very inert support (Al 2 O 3 ) to oxidize methane to carbon monoxide.

  2. The in situ measurement of road reflection.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1994-01-01

    This paper describes a procedure that has been designed to measure P(0;0), P(2;0) and P(1;90), the three values that are the basis for the C1-C2 system for measuring road reflection of light. The system was proposed in The Netherlands, and subsequently adopted by the CIE as an alternative to the

  3. An in situ postexposure feeding assay with Carcinus maenas for estuarine sediment-overlying water toxicity evaluations.

    Science.gov (United States)

    Moreira, Susana M; Moreira-Santos, Matilde; Guilhermino, Lúcia; Ribeiro, Rui

    2006-01-01

    This study developed and evaluated a short-term sublethal in situ toxicity assay for estuarine sediment-overlying waters, with the crab Carcinus maenas (L.) based on postexposure feeding. It consisted of a 48-h in situ exposure period followed by a short postexposure feeding period (30 min). A precise method for quantifying feeding, using the Polychaeta Hediste (Nereis) diversicolor Müller as food source, was first developed. The sensitivity of the postexposure feeding response was verified by comparing it to that of lethality, upon cadmium exposure. The influence of environmental conditions prevailing during exposure (salinity, temperature, substrate, light regime, and food availability) on postexposure feeding was also addressed. The potential of this in situ assay was then investigated by deploying organisms at ten sites, located in reference and contaminated Portuguese estuaries. Organism recovery ranged between 90% and 100% and a significant postexposure feeding depression (16.3-72.7%) was observed at all contaminated sites relatively to references.

  4. Perspectives of in situ/operando resonant inelastic X-ray scattering in catalytic energy materials science

    International Nuclear Information System (INIS)

    Liu, Yi-Sheng; Glans, Per-Anders; Chuang, Cheng-Hao; Kapilashrami, Mukes; Guo, Jinghua

    2015-01-01

    Highlights: • In-situ/operando soft X-ray RXES and RIXS offer unique perspectives in the energy material science. - Abstract: Growing environmental concerns have renewed the interest for light induced catalytic reactions to synthesize cleaner chemical fuels from syngas. This, however, requires a sound understanding for the dynamics taking place at molecular level as a result of light – matter interaction. We present herein the principles of soft X-ray resonant emission spectroscopy (RXES) and resonant inelastic scattering (RIXS) and the importance of these spectroscopic techniques in materials science in light of their unique ability to emanate characteristic fingerprints on the geometric structure, chemical bonding charge and spin states in addition to chemical sensitivity. The addition of in situ/operando RXES and RIXS capability offers new opportunities to project important material properties and functionalities under conditions nearly identical to the operational modes.

  5. Perspectives of in situ/operando resonant inelastic X-ray scattering in catalytic energy materials science

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi-Sheng; Glans, Per-Anders [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Chuang, Cheng-Hao [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Physics, Tamkang University, Tamsui 250, Taiwan, ROC (China); Kapilashrami, Mukes [Center for Engineering Concepts Development, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Guo, Jinghua, E-mail: jguo@lbl.gov [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064 (United States)

    2015-04-15

    Highlights: • In-situ/operando soft X-ray RXES and RIXS offer unique perspectives in the energy material science. - Abstract: Growing environmental concerns have renewed the interest for light induced catalytic reactions to synthesize cleaner chemical fuels from syngas. This, however, requires a sound understanding for the dynamics taking place at molecular level as a result of light – matter interaction. We present herein the principles of soft X-ray resonant emission spectroscopy (RXES) and resonant inelastic scattering (RIXS) and the importance of these spectroscopic techniques in materials science in light of their unique ability to emanate characteristic fingerprints on the geometric structure, chemical bonding charge and spin states in addition to chemical sensitivity. The addition of in situ/operando RXES and RIXS capability offers new opportunities to project important material properties and functionalities under conditions nearly identical to the operational modes.

  6. Quantitative determination of charge transfer parameters of photorefractive BaTiO3:Rh from EPR-based defect studies

    International Nuclear Information System (INIS)

    Veber, C; Meyer, M; Schirmer, O F; Kaczmarek, M

    2003-01-01

    Optical absorption bands can be used as fingerprints of defects and their charge states in insulators and semiconductors. On the basis of the photochromicity usually shown by such materials, a method is introduced by which the optical bands are assigned to the defects and their charge states. It is based on simultaneous measurements of the light-induced changes of the optical absorption and of the corresponding EPR signals. Moreover, indirectly optical bands of EPR-silent defects can also be labelled in this way, strongly widening the scope of EPR based defect studies. We apply this method to the infrared-sensitive photorefractive system BaTiO 3 :Rh, where illumination leads to recharging among the valence states Rh 5+ , Rh 4+ and Rh 3+ . The values of all parameters governing the charge transfers responsible are inferred from the magnitude of the absorption bands, the absolute determination of their absorption cross-sections and the kinetics of the absorption changes under illumination. In contrast to previous investigations, these parameters are deduced independently of photorefractive measurements

  7. Localisation of Abundant and Organ-Specific Genes Expressed in Rosa hybrida Leaves and Flower Buds by Direct In Situ RT-PCR

    Directory of Open Access Journals (Sweden)

    Agata Jedrzejuk

    2012-01-01

    Full Text Available In situ PCR is a technique that allows specific nucleic acid sequences to be detected in individual cells and tissues. In situ PCR and IS-RT-PCR are elegant techniques that can increase both sensitivity and throughput, but they are, at best, only semiquantitative; therefore, it is desirable first to ascertain the expression pattern by conventional means to establish the suitable conditions for each probe. In plants, in situ RT-PCR is widely used in the expression localisation of specific genes, including MADS-box and other function-specific genes or housekeeping genes in floral buds and other organs. This method is especially useful in small organs or during early developmental stages when the separation of particular parts is impossible. In this paper, we compared three different labelling and immunodetection methods by using in situ RT-PCR in Rosa hybrida flower buds and leaves. As target genes, we used the abundant β-actin and RhFUL gene, which is expressed only in the leaves and petals/sepals of flower buds. We used digoxygenin-11-dUTP, biotin-11-dUTP, and fluorescein-12-dUTP-labelled nucleotides and antidig-AP/ streptavidin-fluorescein-labelled antibodies. All of the used methods gave strong, specific signal and all of them may be used in localization of gene expression on tissue level in rose organs.

  8. Testing the Distance-Duality Relation in the Rh = ct Universe

    Science.gov (United States)

    Hu, J.; Wang, F. Y.

    2018-04-01

    In this paper, we test the cosmic distance duality (CDD) relation using the luminosity distances from joint light-curve analysis (JLA) type Ia supernovae (SNe Ia) sample and angular diameter distance sample from galaxy clusters. The Rh = ct and ΛCDM models are considered. In order to compare the two models, we constrain the CCD relation and the SNe Ia light-curve parameters simultaneously. Considering the effects of Hubble constant, we find that η ≡ DA(1 + z)2/DL = 1 is valid at the 2σ confidence level in both models with H0 = 67.8 ± 0.9 km/s/Mpc. However, the CDD relation is valid at 3σ confidence level with H0 = 73.45 ± 1.66 km/s/Mpc. Using the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC), we find that the ΛCDM model is very strongly preferred over the Rh = ct model with these data sets for the CDD relation test.

  9. Identification of a Catalytically Highly Active Surface Phase for CO Oxidation over PtRh Nanoparticles under Operando Reaction Conditions

    Science.gov (United States)

    Hejral, U.; Franz, D.; Volkov, S.; Francoual, S.; Strempfer, J.; Stierle, A.

    2018-03-01

    Pt-Rh alloy nanoparticles on oxide supports are widely employed in heterogeneous catalysis with applications ranging from automotive exhaust control to energy conversion. To improve catalyst performance, an atomic-scale correlation of the nanoparticle surface structure with its catalytic activity under industrially relevant operando conditions is essential. Here, we present x-ray diffraction data sensitive to the nanoparticle surface structure combined with in situ mass spectrometry during near ambient pressure CO oxidation. We identify the formation of ultrathin surface oxides by detecting x-ray diffraction signals from particular nanoparticle facets and correlate their evolution with the sample's enhanced catalytic activity. Our approach opens the door for an in-depth characterization of well-defined, oxide-supported nanoparticle based catalysts under operando conditions with unprecedented atomic-scale resolution.

  10. NOVEL IN-SITU METAL AND MINERAL EXTRACTION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Glenn O' Gorman; Hans von Michaelis; Gregory J. Olson

    2004-09-22

    This white paper summarizes the state of art of in-situ leaching of metals and minerals, and describes a new technology concept employing improved fragmentation of ores underground in order to prepare the ore for more efficient in-situ leaching, combined with technology to continuously improve solution flow patterns through the ore during the leaching process. The process parameters and economic benefits of combining the new concept with chemical and biological leaching are described. A summary is provided of the next steps required to demonstrate the technology with the goal of enabling more widespread use of in-situ leaching.

  11. RhNAC2 and RhEXPA4 Are Involved in the Regulation of Dehydration Tolerance during the Expansion of Rose Petals1[C][W][OA

    Science.gov (United States)

    Dai, Fanwei; Zhang, Changqing; Jiang, Xinqiang; Kang, Mei; Yin, Xia; Lü, Peitao; Zhang, Xiao; Zheng, Yi; Gao, Junping

    2012-01-01

    Dehydration inhibits petal expansion resulting in abnormal flower opening and results in quality loss during the marketing of cut flowers. We constructed a suppression subtractive hybridization library from rose (Rosa hybrida) flowers containing 3,513 unique expressed sequence tags and analyzed their expression profiles during cycles of dehydration. We found that 54 genes were up-regulated by the first dehydration, restored or even down-regulated by rehydration, and once again up-regulated by the second dehydration. Among them, we identified a putative NAC family transcription factor (RhNAC2). With transactivation activity of its carboxyl-terminal domain in yeast (Saccharomyces cerevisiae) cell and Arabidopsis (Arabidopsis thaliana) protoplast, RhNAC2 belongs to the NAC transcription factor clade related to plant development in Arabidopsis. A putative expansin gene named RhEXPA4 was also dramatically up-regulated by dehydration. Silencing RhNAC2 or RhEXPA4 in rose petals by virus-induced gene silencing significantly decreased the recovery of intact petals and petal discs during rehydration. Overexpression of RhNAC2 or RhEXPA4 in Arabidopsis conferred strong drought tolerance in the transgenic plants. RhEXPA4 expression was repressed in RhNAC2-silenced rose petals, and the amino-terminal binding domain of RhNAC2 bound to the RhEXPA4 promoter. Twenty cell wall-related genes, including seven expansin family members, were up-regulated in Arabidopsis plants overexpressing RhNAC2. These data indicate that RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals and that RhEXPA4 expression may be regulated by RhNAC2. PMID:23093360

  12. Electrochemical oxidation of ethanol using PtRh/C electrocatalysts in alkaline medium and synthesized by sodium borohydride and alcohol reduction; Oxidação eletroquímica do etanol utilizando eletrocatalisadores PtRh/C em meio alcalino e sintetizados via borohidreto de sódio e redução por álcool

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, Eric Hossein

    2017-07-01

    PtRh/C were prepared by the following atomic proportions: (100,0), (0,100), (90,10), (70,30) and (50,50). The methods employed in the synthesis of these materials were reduction by sodium borohydride and reduction by alcohol. The metal salts used were H{sub 2}PtCl{sub 6}3•6H{sub 2}0 and (RhNO{sub 3}){sub 3}, the support used was Carbon black XC72 and the bulk metal composition was 20% and 80% of support. The electrocatalysts were characterized by Energy Dispersive X-ray spectroscopy, X-ray diffraction and Transmission electron microscopy. The ethanol electrochemical oxidation mechanism was investigated by in situ Fourier Transform Infrared Spectroscopy couple to an Attenuated Total Reflection technique. The electrocatalytic activity were evaluated by Cyclic Voltammetry, Linear Sweep Voltammetry and Chronoamperometry techniques. The Fuel Cells tests were made in a single direct alcohol fuel cell with alkaline membrane. The working electrodes were prepared by a thin porous coating technique. X-ray diffraction allowed to verify metallic alloys, segregate phases and to calculate the percentage of metallic alloys. It was else possible to identify crystallographic phases. Infrared Spectroscopy allowed to verify that the electrochemical oxidation of ethanol was carried out by an incomplete mechanism. PtRh(70:30)/C prepared by sodium borohydride produced large amounts of carbon dioxide and acetaldehyde. Rh/C showed electrocatalytic activity when compared with other materials studied.

  13. Adenocarcinoma in situ of the cervix.

    Science.gov (United States)

    Schoolland, Meike; Segal, Amanda; Allpress, Stephen; Miranda, Alina; Frost, Felicity A; Sterrett, Gregory F

    2002-12-25

    The current study examines 1) the sensitivity of detection and 2) sampling and screening/diagnostic error in the cytologic diagnosis of adenocarcinoma in situ (AIS) of the cervix. The data were taken from public and private sector screening laboratories reporting 25,000 and 80,000 smears, respectively, each year. The study group was comprised of women with a biopsy diagnosis of AIS or AIS combined with a high-grade squamous intraepithelial lesion (HSIL) who were accessioned by the Western Australian Cervical Cytology Registry (WACCR) between 1993-1998. Cervical smears reported by the Western Australia Centre for Pathology and Medical Research (PathCentre) or Western Diagnostic Pathology (WDP) in the 36 months before the index biopsy was obtained were retrieved. A true measure of the sensitivity of detection could not be determined because to the authors' knowledge the exact prevalence of disease is unknown at present. For the current study, sensitivity was defined as the percentage of smears reported as demonstrating a possible or definite high-grade epithelial abnormality (HGEA), either glandular or squamous. Sampling error was defined as the percentage of smears found to have no HGEA on review. Screening/diagnostic error was defined as the percentage of smears in which HGEA was not diagnosed initially but review demonstrated possible or definite HGEA. Sensitivity also was calculated for a randomly selected control group of biopsy proven cases of Grade 3 cervical intraepithelial neoplasia (CIN 3) accessioned at the WACCR in 1999. For biopsy findings of AIS alone, the diagnostic "sensitivity" of a single smear was 47.6% for the PathCentre and 54.3% for WDP. Nearly all the abnormalities were reported as glandular. The sampling and screening/diagnostic errors were 47.6% and 4.8%, respectively, for the PathCentre and 33.3% and 12.3%, respectively, for WDP. The results from the PathCentre were better for AIS plus HSIL than for AIS alone, but the results from WDP were

  14. satellite and in-situ measurements

    Directory of Open Access Journals (Sweden)

    José de Jesús Salas Pérez

    2005-01-01

    Full Text Available La distribución espacial y temporal de la circulación superficial de la Bahía de Banderas se obtuvo con el empleo de series temporales de rapidez de viento, temperatura superficial del mar (AVHR radiómetro y un termógrafo, nivel del mar y trazas ascendentes y descendentes del radar altimétrico ERS-2. El período que abarca dichos datos es de cuatro años, ya que comenzó en el verano de 1997 y finalizó en el invierno de 2002. La marea en la Bahía es mixta (F=0.25 con predominio del armónico M2. La bahía no muestra características de resonancia con la marea del mar abierto. Amplitudes promedio de 30 cms., resultan en corrientes de marea de pocos cms./s. Las bajas frecuencias (periodos mayores a tres días parecen ser los principales generadores de la circulación marina en esta área, en la que predomina el periodo estacional sobre los otros periodos. FEOs fueron aplicadas a las componentes de velocidad, calculadas con observaciones de altimetría medidas en la boca de la Bahía, las cuales mostraron dos principales distribuciones espaciales. El primer periodo de distribución, que se extendió desde febrero hasta julio, muestra un flujo de entrada por la porción norte/sur de la bahía, con un flujo de salida por su boca (distribución anticiclónica. El segundo periodo se extiende desde agosto hasta diciembre y es opuesto al primero (distribución ciclónica. Las características de la circulación aquí presentadas son hipotéticas y observaciones de velocidad medidas in-situ deben confirmarlas

  15. Cloning and functional analysis of promoters of three GnRH genes in a cichlid

    International Nuclear Information System (INIS)

    Kitahashi, Takashi; Sato, Hideki; Sakuma, Yasuo; Parhar, Ishwar S.

    2005-01-01

    Mechanisms regulating gonadotropin-releasing hormone (GnRH) types, a key molecule for reproductive physiology, remain unclear. In the present study, we cloned the promoters of GnRH1, GnRH2, and GnRH3 genes in the tilapia, Oreochromis niloticus; and found putative binding sites for glucocorticoid receptors, Sp1, C/EBP, GATA, and Oct-1, but not for androgen receptors in all three GnRH promoters using computer analysis. The presence of binding sites for progesterone receptors in GnRH1, estrogen receptors in GnRH1 and GnRH2, and thyroid hormone receptors in GnRH1 and GnRH3 suggests direct action of steroid hormones on GnRH types. Our observation of SOX and LINE-like sequences exclusively in GnRH1, COUP in GnRH2, and retinoid X receptors in GnRH3 suggests their role in sexual differentiation, midbrain segmentation, and visual cue integration, respectively. Thus, the characteristic binding sites for nuclear receptors and transcription factors support the notion that each GnRH type is regulated differently and has distinct physiological roles

  16. Solvothermal synthesis of stable nanoporous polymeric bases-crystalline TiO2 nanocomposites: visible light active and efficient photocatalysts for water treatment.

    Science.gov (United States)

    Liu, Fujian; Kong, Weiping; Wang, Liang; Noshadi, Iman; Zhang, Zhonghua; Qi, Chenze

    2015-02-27

    Visible light active and stable nanoporous polymeric base-crystalline TiO2 nanocomposites were solvothermally synthesized from in situ copolymerization of divinylbenzene (DVB) with 1-vinylimidazolate (VI) or 4-vinylpyridine (Py) in the presence of tetrabutyl titanate without the use of any other additives (PDVB-VI-TiO2-x, PDVB-Py-TiO2-x, where x stands for the molar ratio of TiO2 to VI or Py), which showed excellent activity with respect to catalyzing the degradation of organic pollutants of p-nitrophenol (PNP) and rhodamine-B (RhB). TEM and SEM images show that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x have abundant nanopores, and TiO2 nanocrystals with a high degree of crystallinity were homogeneously embedded in the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x, forming a stable 'brick-and-mortar' nanostructure. PDVB-VI and PDVB-Py supports act as the glue linking TiO2 nanocrystals to form nanopores and constraining the agglomeration of TiO2 nanocrystals. XPS spectra show evidence of unique interactions between TiO2 and basic sites in these samples. UV diffuse reflectance shows that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x exhibit a unique response to visible light. Catalytic tests show that the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were active in catalyzing the degradation of PNP and RhB organic pollutants under visible light irradiation. The enhanced activities of the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were ascribed to synergistic effects between abundant nanopores and the unique optical adsorption of visible light in the samples.

  17. Solvothermal synthesis of stable nanoporous polymeric bases-crystalline TiO2 nanocomposites: visible light active and efficient photocatalysts for water treatment

    Science.gov (United States)

    Liu, Fujian; Kong, Weiping; Wang, Liang; Noshadi, Iman; Zhang, Zhonghua; Qi, Chenze

    2015-02-01

    Visible light active and stable nanoporous polymeric base-crystalline TiO2 nanocomposites were solvothermally synthesized from in situ copolymerization of divinylbenzene (DVB) with 1-vinylimidazolate (VI) or 4-vinylpyridine (Py) in the presence of tetrabutyl titanate without the use of any other additives (PDVB-VI-TiO2-x, PDVB-Py-TiO2-x, where x stands for the molar ratio of TiO2 to VI or Py), which showed excellent activity with respect to catalyzing the degradation of organic pollutants of p-nitrophenol (PNP) and rhodamine-B (RhB). TEM and SEM images show that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x have abundant nanopores, and TiO2 nanocrystals with a high degree of crystallinity were homogeneously embedded in the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x, forming a stable ‘brick-and-mortar’ nanostructure. PDVB-VI and PDVB-Py supports act as the glue linking TiO2 nanocrystals to form nanopores and constraining the agglomeration of TiO2 nanocrystals. XPS spectra show evidence of unique interactions between TiO2 and basic sites in these samples. UV diffuse reflectance shows that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x exhibit a unique response to visible light. Catalytic tests show that the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were active in catalyzing the degradation of PNP and RhB organic pollutants under visible light irradiation. The enhanced activities of the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were ascribed to synergistic effects between abundant nanopores and the unique optical adsorption of visible light in the samples.

  18. The system Cu-Rh-S at 900 degrees, 700 degrees, 540 degrees and 500 degrees C

    DEFF Research Database (Denmark)

    Karup-Møller, Sven; Makovicky, E.

    2007-01-01

    Phase relations in the dry condensed system Cu-Rh-S were determined at 900, 700, 540 and 500 degrees C. At 900 degrees C, the system contains digenite, four rhodium sulfides (Rh17S15, Rh3S4, Rh2S3 and RhS similar to 3), three ternary sulfides (CuRh2S4, CuxRhS3+x and a fibrous sulfide in the range...

  19. In-situ reactive glow discharge cleaning of NSLS distributed ion pumps

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.D.; Chou, T.S.

    1988-01-01

    Based on our experience with the in-situ cleaning of optical systems by reactive r.f. glow discharges and the conditioning and preparation of distributed ion pump (DIP) elements, we have sought to develop strategies for recovering from severe vacuum accidents by restoring DIP elements of storage rings such as those at the NSLS in-situ. In this paper we will describe a series of experiments conducted in a test apparatus to condition a so called ''egg-crate'' DIP in-situ, (this older type element being common in older storage rings). A new untreated element which was unable to pump below 5x10 /sup /minus/8/ Torr in its initial condition was treated in oxygen and subsequent argon r.f. discharges utilizing the pump element as the discharge electrode producing a nitrogen pumping speed of 168 l/s at 2x10 /sup /minus/8/ Torr. A light bake at 75/degree/C increased this to nearly 500 l/s at 5x10 /sup /minus/8/ Torr. After exposure to atmosphere the speed was reduced to nil at these pressures but subsequently recovered, without bakeout, by glow discharge cleaning. 22 refs., 6 figs.

  20. In situ TEM Raman spectroscopy and laser-based materials modification

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.I., E-mail: fiallen@lbl.gov [Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 (United States); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kim, E. [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Andresen, N.C. [Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Grigoropoulos, C.P. [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Minor, A.M., E-mail: aminor@lbl.gov [Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 (United States); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2017-07-15

    We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS{sub 2} combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. - Highlights: • Raman spectroscopy and laser-based materials processing in a TEM are demonstrated. • A lensed Raman probe is mounted in the sample chamber for close approach. • Localized laser processing is achieved using a tapered optical fiber. • Raman spectroscopy and pulsed laser ablation of MoS{sub 2} are performed in situ.

  1. In situ TEM Raman spectroscopy and laser-based materials modification

    International Nuclear Information System (INIS)

    Allen, F.I.; Kim, E.; Andresen, N.C.; Grigoropoulos, C.P.; Minor, A.M.

    2017-01-01

    We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS_2 combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. - Highlights: • Raman spectroscopy and laser-based materials processing in a TEM are demonstrated. • A lensed Raman probe is mounted in the sample chamber for close approach. • Localized laser processing is achieved using a tapered optical fiber. • Raman spectroscopy and pulsed laser ablation of MoS_2 are performed in situ.

  2. In-situ reactive glow discharge cleaning of NSLS distributed ion pumps

    International Nuclear Information System (INIS)

    Johnson, E.D.; Chou, T.S.

    1988-01-01

    Based on our experience with the in-situ cleaning of optical systems by reactive r.f. glow discharges and the conditioning and preparation of distributed ion pump (DIP) elements, we have sought to develop strategies for recovering from severe vacuum accidents by restoring DIP elements of storage rings such as those at the NSLS in-situ. In this paper we will describe a series of experiments conducted in a test apparatus to condition a so called ''egg-crate'' DIP in-situ, (this older type element being common in older storage rings). A new untreated element which was unable to pump below 5x10 /sup /minus/8/ Torr in its initial condition was treated in oxygen and subsequent argon r.f. discharges utilizing the pump element as the discharge electrode producing a nitrogen pumping speed of 168 l/s at 2x10 /sup /minus/8/ Torr. A light bake at 75/degree/C increased this to nearly 500 l/s at 5x10 /sup /minus/8/ Torr. After exposure to atmosphere the speed was reduced to nil at these pressures but subsequently recovered, without bakeout, by glow discharge cleaning. 22 refs., 6 figs

  3. Evidence for the microbial in situ conversion of oil to methane in the Dagang oilfield

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, N.; Richnow, H.H. [Helmholtz-Zentrum fuer Umweltforschung (UFZ), Leipzig (Germany). Abt. Isotopenbiogeochemie; Cai, M. [Helmholtz-Zentrum fuer Umweltforschung (UFZ), Leipzig (Germany). Abt. Isotopenbiogeochemie; University of Science and Technology, Beijing (China). School of Civil and Environment Engineering; Straaten, N.; Krueger, M. [Bundesanstalt fuer Geowissenschaften und Rohstoffe BGR Geozentrum (BGR), Hannover (Germany). Fachbereich Geochemie der Rohstoffe; Yao, Jun [University of Science and Technology, Beijing (China). School of Civil and Environment Engineering

    2013-08-01

    In situ biotransformation of oil to methane was investigated in a reservoir in Dagang, China using chemical fingerprinting, isotopic analyses, and molecular and biological methods. The reservoir is highly methanogenic despite chemical indications of advanced oil degradation, such as depletion of n-alkanes, alkylbenzenes, and light polycyclic aromatic hydrocarbon (PAHs) fractions or changes in the distribution of several alkylated polycyclic aromatic hydrocarbons. The degree of degradation strongly varied between different parts of the reservoir, ranging from severely degraded to nearly undegraded oil compositions. Geochemical data from oil, water and gas samples taken from the reservoir are consistent with in situ biogenic methane production linked to aliphatic and aromatic hydrocarbon degradation. Microcosms were inoculated with production and injection waters in order to characterize these processes in vitro. Subsequent degradation experiments revealed that autochthonous microbiota are capable of producing methane from {sup 13}C-labelled n-hexadecane or 2-methylnaphthalene, and suggest that further methanogenesis may occur from the aromatic and polyaromatic fractions of Dagang reservoir fluids. The microbial communities from produced oil-water samples were composed of high numbers of microorganisms (on the order to 10{sup 7}), including methane-producing Archaea within the same order of magnitude. In summary, the investigated sections of the Dagang reservoir may have significant potential for testing the viability of in situ conversion of oil to methane as an enhanced recovery method, and biodegradation of the aromatic fractions of the oil may be an important methane source. (orig.)

  4. In situ microscopy for on-line determination of biomass.

    Science.gov (United States)

    Bittner, C; Wehnert, G; Scheper, T

    1998-10-05

    A sensor is presented, which allows on-line microscopic observation of microorganisms during fermentations in bioreactors. This sensor, an In Situ Microscope (ISM) consists of a direct-light microscope with a measuring chamber, integrated in a 25 mm stainless steel tube, two CCD-cameras, and two frame-grabbers. The data obtained are processed by an automatic image analysis system. The ISM is connected with the bioreactor via a standard port, and it is immersed directly in the culture liquid-in our case Saccharomyces cerevisiae in a synthetic medium. The microscopic examination of the liquid is performed in the measuring chamber, which is situated near the front end of the sensor head. The measuring chamber is opened and closed periodically. In the open state, the liquid in the bioreactor flows unrestricted through the chamber. In closing, a defined volume of 2,2. 10(-8) mL of the liquid becomes enclosed. After a few seconds, when the movement of the cells in the enclosed culture has stopped, they are examined with the microscope. The microscopic images of the cells are registered with the CCD-cameras and are visualized on a monitor, allowing a direct view of the cell population. After detection, the measuring chamber reopens, and the enclosed liquid is released. The images obtained are evaluated as to cell concentration, cell size, cell volume, biomass, and other relevant parameters simultaneously by automatic image analysis. With a PC (486/33 MHz), image processing takes about 15 s per image. The detection range tested when measuring cells of S. cerevisiae is about 10(6) to 10(9) cells/mL (equivalent to a biomass of 0.01 g/L to 12 g/L). The calculated biomass values correlate very well with those obtained using dry weight analysis. Furthermore, histograms can be calculated, which are comparable to those obtained by flow cytometry. Copyright 1998 John Wiley & Sons, Inc.

  5. Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies

    Science.gov (United States)

    Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph

    2010-01-01

    The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.

  6. Effect of CPP/ACP on Initial Bioadhesion to Enamel and Dentin In Situ

    Directory of Open Access Journals (Sweden)

    Susann Grychtol

    2014-01-01

    Full Text Available The present in situ study investigated the influence of a preparation containing CPP/ACP (caseinphosphopeptide-amorphous calcium phosphate (GC Tooth mousse on initial bacterial colonization of enamel and dentin. Therefore, pellicle formation was performed in situ on bovine enamel and dentin specimens fixed to individual upper jaw splints worn by 8 subjects. After 1 min of pellicle formation GC Tooth mousse was used according to manufacturer’s recommendations. Rinses with chlorhexidine served as positive controls. Specimens carried without any rinse served as negative controls. After 8 h overnight exposure of the splints, bacterial colonization was quantified by fluorescence microscopy (DAPI and BacLight live/dead staining. Additionally, the colony forming units (CFU were determined after desorption. Furthermore, the effects on Streptococcus mutans bacteria were tested in vitro (BacLight. There was no significant impact of CPP/ACP on initial bacterial colonization proved with DAPI and BacLight. Determination of CFU showed statistical significance for CPP/ACP to reduce bacterial adherence on enamel. The in vitro investigation indicated no antimicrobial effects for CPP/ACP on Streptococcus mutans suspension. Under the chosen conditions, CPP/ACP (GC Tooth mousse had no significant impact on initial biofilm formation on dental hard tissues. The tested preparation cannot be recommended for biofilm management.

  7. Modeling In Situ Bioremediation of Perchlorate-Contaminated Groundwater

    National Research Council Canada - National Science Library

    Secody, Roland E

    2007-01-01

    .... An innovative technology was recently developed which uses dual-screened treatment wells to mix an electron donor into perchlorate-contaminated groundwater in order to effect in situ bioremediation...

  8. In situ vitrification program treatability investigation progress report

    International Nuclear Information System (INIS)

    Arrenholz, D.A.

    1991-02-01

    This document presents a summary of the efforts conducted under the in situ vitrification treatability study during the period from its initiation in FY-88 until FY-90. In situ vitrification is a thermal treatment process that uses electrical power to convert contaminated soils into a chemically inert and stable glass and crystalline product. Contaminants present in the soil are either incorporated into the product or are pyrolyzed during treatment. The treatability study being conducted at the Idaho National Engineering Laboratory by EG ampersand G Idaho is directed at examining the specific applicability of the in situ vitrification process to buried wastes contaminated with transuranic radionuclides and other contaminants found at the Subsurface Disposal Area of the Radioactive Waste Management Complex. This treatability study consists of a variety of tasks, including engineering tests, field tests, vitrified product evaluation, and analytical models of the in situ vitrification process. 6 refs., 4 figs., 3 tabs

  9. Bulk Copper Electrodeposition on Gold Imaged by In Situ STM

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Bech-Nielsen, Gregers; Møller, Per

    1996-01-01

    Electrochemical measurements were carried out simultaneously with acquisition of in situ STM images of copper electrodeposition at low cathodic overpotentials and subsequent dissolution from the underlying polycrystalline gold surfaces. The morphologies of the copper deposits were examined...

  10. Cytogenetic, genomic in situ hybridization (GISH) and agronomic ...

    African Journals Online (AJOL)

    F3 generations of a wheat-Psathyrostachys huashanica intergeneric cross. Their agronomic traits were evaluated in the field and their meiotic behaviors and chromosome composition were analyzed by cytogenetic and GISH (genomic in situ ...

  11. In situ bioremediation of chlorinated solvent with natural gas

    International Nuclear Information System (INIS)

    Rabold, D.E.

    1996-01-01

    A bioremediation system for the removal of chlorinated solvents from ground water and sediments is described. The system involves the the in-situ injection of natural gas (as a microbial nutrient) through an innovative configuration of horizontal wells

  12. In situ sampling cart development engineering task plan

    International Nuclear Information System (INIS)

    DeFord, D.K.

    1995-01-01

    This Engineering Task Plan (ETP) supports the development for facility use of the next generation in situ sampling system for characterization of tank vapors. In situ sampling refers to placing sample collection devices (primarily sorbent tubes) directly into the tank headspace, then drawing tank gases through the collection devices to obtain samples. The current in situ sampling system is functional but was not designed to provide the accurate flow measurement required by today's data quality objectives (DQOs) for vapor characterization. The new system will incorporate modern instrumentation to achieve much tighter control. The next generation system will be referred to in this ETP as the New In Situ System (NISS) or New System. The report describes the current sampling system and the modifications that are required for more accuracy

  13. Ductal carcinoma in situ: a proposal for a new classification

    NARCIS (Netherlands)

    Holland, R.; Peterse, J. L.; Millis, R. R.; Eusebi, V.; Faverly, D.; van de Vijver, M. J.; Zafrani, B.

    1994-01-01

    Details of a proposed new classification for ductal carcinoma in situ (DCIS) are presented. This is based, primarily, on cytonuclear differentiation and, secondarily, on architectural differentiation (cellular polarisation). Three categories are defined. First is poorly differentiated DCIS composed

  14. Comparison of GRACE with in situ hydrological measurement data ...

    African Journals Online (AJOL)

    Comparison of GRACE with in situ hydrological measurement data shows storage depletion in Hai River basin, Northern China. ... of the world, their application in conjunction with hydrological models could improve hydrological studies.

  15. Anchoring Technology for In Situ Exploration of Small Bodie

    Science.gov (United States)

    Steltzner, A.; Nasif, A.

    2000-01-01

    Comets, asteroids and other small bodies found in the solar system do not possess enough gravity to ensure spacecraft contact forces sufficient to allow many types of in situ science, such as core or surface sampling.

  16. Green Remediation Best Management Practices: Implementing In Situ Thermal Technologies

    Science.gov (United States)

    Over recent years, the use of in situ thermal technologies such as electrical resistance heating, thermal conductive heating, and steam enhanced extraction to remediate contaminated sites has notably increased.

  17. Planetary Volatiles Extractor for In Situ Resource Utilization, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Situ Resource Utilization (ISRU) or ?living off the land relies on exploiting local resources and in turn reducing burden of transporting supplies. NASA has...

  18. Development of an in situ polymeric hydrogel implant of ...

    African Journals Online (AJOL)

    All rights reserved. ... inflammatory activity (paw edema test) and in vivo motor function activity in a rat ... Conclusions: The in situ hydrogels of methylprednisolone developed may be .... in the left hind paw in all rats. .... Continuous brain-derived.

  19. In-situ polymerization PLOT columns I: divinylbenzene

    Science.gov (United States)

    Shen, T. C.

    1992-01-01

    A novel method for preparation of porous-layer open-tubular (PLOT) columns is described. The method involves a simple and reproducible, straight-forward in-situ polymerization of monomer directly on the metal tube.

  20. Fathead minnow whole-mount in situ hybridization (WISH)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This study demonstrates the potential of whole-mount in situ hybridization (WISH), in conjunction with quantitative real-time polymerase chain reaction (QPCR)...